

JAVA
A	Beginner’s	Guide

	
Advanced	Features	(Core	Series)

Updated	To	Java	8.

	

	

-Harry.H.Chaudhary.
	

(IT	Manager	&	Anonymous	Hacktivist	@	Anonymous	International)

	
	

	
Publisher’s	Note:

	
Every	possible	effort	has	been	made	to	ensure	that	the	information	contained	in	this

book	 is	 accurate,	 and	 the	 publisher	 or	 the	 Author–Harry.	 H.	 Chaudhary	 can’t	 accept
responsibility	 for	 any	 errors	 or	 omissions,	 however	 caused.	 All	 liability	 for	 loss,

disappointment,	 negligence	 or	 other	 damage	 caused	 by	 the	 reliance	 of	 the	 Technical
Programming	or	other	information	contained	in	this	book,	of	in	the	event	of	bankruptcy	or
liquidation	or	cessation	of	trade	of	any	company,	individual;	or	firm	mentioned,	is	hereby
excluded.

	

Sun	Microsystems	and	Oracle	the	trademarks,	are	the	Trademarks	of	the	Sun	(Now
Oracle)	&	Oracle	group	of	companies.	Sun	Microsystems	and	Oracle	the	trademarks	are
listed	 at	 their	 websites.	 	 All	 other	 marks	 are	 property	 of	 their	 respective	 owners.	 The
examples	of	 companies,	 organizations,	 products,	 domain	names,	 email	 addresses,	 logos,
people,	 places,	 and	 events	 depicted	 herein	 are	 fictitious.	 No	 association	 with	 any	 real
company,	organization,	product,	domain	name,	email	address,	logo,	person,	place,	or	event
is	intended	or	should	be	inferred.

	

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make
no	expressed	or	 implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

	

This	 book	 expresses	 the	 author	 views	 and	 opinions.	 The	 information	 contained	 in
this	 book	 is	 provided	without	 any	 express,	 statutory,	 or	 implied	warranties.	Neither	 the
authors,	and	Publisher,	nor	its	resellers,	or	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	either	directly	or	indirectly	by	this	book.

Copyright	©	2010-2014.	By	Harry.	H.	Chaudhary	(CEO	Programmers
Mind.)
Published	By	Programmers	Mind	||	Createspace	Inc.	OD	Publishing,	LLC	USA.

All	rights	reserved.	This	book	or	any	portion	thereof	may	not	be	reproduced	or	used	in	any
manner	whatsoever	without	the	express	written	permission	of	the	author	except	for	the	use
of	brief	quotations	in	a	book	review	or	scholarly	journal.

ISBN-13:	978-1500864408.

ISBN-10:	1500862347.

Printed	By	Createspace	O-D	Publishing	LLC	USA.	[SECOND	EDITION 2014]

Marketing	&	Distributed	By	||	Amazon	Inc.||	Programmer’s	Mind	Inc.	||	Lulu.com

||	Google	Books	&	Google	Play	Store.	||	other	25	worldwide	Bookstores.

Dedication
	

“This	book	is	dedicated	to	all	those	who	make	the	daily	sacrifices,

Especially	those	who’ve	made	sacrifice,	to	ensure	our	freedom	&	security.”

	

Thanks	to	Lord	Shiva	a	lot	for	giving	me	the	technical	and	all	abilities	in
my	life	to	write.

	

Dear	Dad,	Thank	you	baauji,	for	teaching	me	by	example	what	it	means
to	live	a	life	based	on	principles.

	

Dear	2	Mom’s,	Thank	you	for	showing	me	in	a	real	way	how	to	live
according	to	the	most	imp.	principle,	and	unconditional	love.
	

Dear	Sisters	&	Brother+Priya,	Thank	U,	your	smile	brightens	my	every
day.Your	zest	makes	my	heart	sing.	I	love	you	All.

	

I	would	especially	like	to	mention	the	name	of	beautiful	faces	inside	my
life	who	helped	me	in	coping	with	my	sorrows:

	

Thank	you	Priyanka,	you	are	the	meaning	of	my	life	and	apple	of	my
eyes,	I	Love	You	more	than	I	can	say.

	

Thank	U	Hem	Zizu,	Navneet,	Aman(Rajjo)	Eminem	-	you	are	the
inspiration	you	made	me	like	“Sing	for	the	movement”	,

	

Thanks	to	all	Anonymous	And	Black	Hat	Hackers	worldwide.

	

In	Loving	Memories	of	My	Loved	One	–My	Uncle	Lt.	G.C

	

In	Loving	Memories	of	My	Loved	One	–My	Lt.	Grand	Mom.

You	told	me	that	everything	will	be	okay	in	the	end,

You	also	told	me	that,		if	it’s	not	okay,	it’s	not	the	end.

	
“I’ll	search	for	you	through	1000	worlds	&	10000	lifetimes	until	I	find	you

About	Author:

	
Harry,is	 an Anonymous	 Hacktivist,	 GOC	 Famous	 computer	 Programmer	 and

Bestselling	Java	Author	and	scientifically	Hacking	Professional	has	a	unique	experience
in	the	field	of	computers	Programming,	Hacking	and	Cyber	Security.

	
He	 has	 helped	 many	 Countries	 Governments	 and	 many	 multinational	 Software

companies	of	around	 the	globe	 to	 secure	 their	networks	and	securities.	He	has	authored
several	books	on		Various	Computers	Programming	Languages	and	computer	security	&
Hacking.

	

He	is	technically	graduate	software	engineer	and	Master.	He	is	the	leading	authority
on	C	Programming	and	C++	Programming	as	well	as	on	Core	Java	and	Data	Structure
and	Algorithms.	His	 acclaimed	C	 and	C++	 ,C#	&	 Java	 books.	He	 has	 over	 5	 years	 of
experience	 as	 a	 software	 methodologist.	 His	 teaching	 and	 research	 interests	 are	 in	 the
areas	of	artificial	intelligence,	programming	languages.

	

He	is	living	two	lives.	One	life,	He	is	a	Computer	program	writer	for	a	respectable
software	company.	The	other	 life	 is	 lived	 in	computers,	where	he	go	by	 the	hacker	alias
“Chief	Hacker	–	Captain	Harry”.	Currently	he	is	working	as	offline	IT	manager	@	world
famous	community	Anonymous	international	Community.																																									
																																												-Team	Anonymous.

	

Author	side	:
You	 may	 have	 noticed	 something	 missing	 here:	 no	 impressive	 of	 credentials.	 I

haven’t	been	a	professor	at	a	Prestigious	University	for	a	quarter-century;	neither	am	I	a
top	executive	at	a	Silicon	Valley	giant.	 In	some	ways,	 I’m	a	student	of	Technology,	 just
like	you	are.

And	my	experience	over	the	years	has	shown	me	that	many	of	the	people	who	know
the	most	about	how	technology	works	also	have	rather	limited	success	in	explaining	what
they	know	 in	a	way	 that	will	 allow	me	 to	understand	 it.	My	 interests,	 and	 I	believe	my
skills,	lie	not	in	being	an	expert,	but	an	educator,	in	presenting	complex	information	in	a
form	that	is	sensible,	digestible	and	fun	to	read	my	books.

“What	is	real?	How	do	you	define	real?	If	you’re	talking	about	what	you	can	feel,	what
you	can	smell,	what	you	can	taste	and	see,	then	real	is	simply,	electrical	signals	interpreted
by	your	brain.”

‘‘…	I	am	just	now	beginning	to	discover	the	difficulty	of	expressing	one’s	ideas	on
paper.	 	As	 long	as	 it	consists	solely	of	description	 it	 is	pretty	easy;	but	where	reasoning

comes	into	play,	to	make	a	proper	connection,	a	clearness	&	a	moderate	fluency,	is	to	me,
as	I	have		said,	a	difficulty	of	which	I	had	no	idea	…’’

																																																																	–	HarrY.

∞	 Inside	Chaptersat	a	Glance 				∞
	

Unit Chapters	&	Topics	Inside	the	Book Page

00. Preface. 006.

01. Overview	of	Java 008.

02. Java	Language 023.

03. Control	Statements 039.

04. Scanner	class,	Arrays	&	Command	Line	Args 048.

05. Class	&	Objects	in	Java 059.

06. Inheritance	in	Java 082.

07. Object	oriented	programming 098.

08. Packages	in	Java 106.

09. Interface	in	Java 115.

10. String	and	StringBuffer 129.

11. Exception	Handling 142.

12. Multi-Threaded	Programming 185.

13. Modifiers/Visibility	modes 240.

14. Wrapper	Class 255.

15. Input/Output	in	Java 273.

16. Applet	Fundamentals 338.

17. Abstract	Windows	Toolkit	(AWT) 357.

18. Introducton	To	AWT	Events 404.

19. Painting	in	AWT 445.

20. java.lang.Object	Class 470.

21. Collection	Framework 490.

22. Java	8	Features	for	Developers	–	Lambdas.		 540.

23. Java	8	Functional	interface,Stream	&	Time	API. 565.

24. Key	Features	that	Make	Java	More	Secure	than	Other	Languages. 579.

	

Preface
∞	Essential	Java	Skills—Made	Easy!		∞

	
Learn	 the	 all	 basics	 and	 advanced	 features	 of	 Java	 programming	 in	 no	 time	 from
Bestseller	Java	Programming	Author	Harry.	H.	Chaudhary																		(More	than	1,67,000
Books	Sold	!).	This	Java	Guide,	starts	with	the	basics	and	Leads	to	Advance	features	of
Java	 in	detail	with	 thousands	of	Java	Codes,	 I	promise	 this	book	will	make	you	expert
level	champion	of	java.	Anyone	can	learn	java	through	this	book	at	expert	level.

	

Engineering	 Students	 and	 fresh	 developers	 can	 also	 use	 this	 book.	 This	 book
covers	common	core	syllabus	for	all	Computer	Science	Professional	Degrees	 If	you	are
really	serious	then	go	ahead	and	make	your	day	with	this	ultimate	java	book.

	

The	main	objective	of	 this	 java	book	 is	not	 to	give	you	 just	Java	Programming
Knowledge,	I	have	followed	a	pattern	of	improving	the	question	solution	of	thousands	of
Codes	with	clear	theory	explanations	with	different	Java	complexities	for	each	java	topic
problem,	and	you	will	find	multiple	solutions	for	complex	java	problems.

What	Special	–

In	this	book	I	covered	and	explained	several	topics	of	latest	Java	8	Features	in	detail	for
Developers	&	Fresher’s,	Topics	Like–	Lambdas.	||	Java	8	Functional	interface,	||	Stream
and	Time	API	in	Java	8.

If	 you’ve	 read	 this	 book,	 you	 know	 what	 to	 expect	 a	 visually	 rich	 format
designed	 for	 the	way	your	brain	works.	 If	 you	haven’t,	 you’re	 in	 for	 a	 treat.	You’ll	 see
why	people	say	it’s	unlike	any	other	Java	book	you’ve	ever	read.

Learning	a	new	language	is	no	easy	task	especially	when	it’s	an	Object	oriented
programming	language	like	Java.	You	might	think	the	problem	is	your	brain.	It	seems	to
have	a	mind	of	its	own,	a	mind	that	doesn’t	always	want	to	take	in	the	dry,	technical	stuff
you’re	forced	to	study.	The	fact	is	your	brain	craves	novelty.

It’s	 constantly	 searching,	 scanning,	 waiting	 for	 something	 unusual	 to	 happen.
After	all,	that’s	the	way	it	was	built	to	help	you	stay	alive.	It	takes	all	the	routine,	ordinary,
dull	stuff	and	filters	it	to	the	background	so	it	won’t	interfere	with	your	brain’s	real	work
—recording	things	that	matter.	How	does	your	brain	know	what	matters?

This	 Java	 book	 doesn’t	 require	 previous	 programming	 experience.	However,	 if
you	come	from	a	C	or	C++	programming	background,	then	you	will	be	able	to	learn	faster.

For	this	reason,	this	java	book	presents	a	quick	detailed	overview	of	several	key
features	of	Java.	The	material	described	here	will	give	you	a	foothold	that	will	allow	you
to	write	and	understand	simple	&	typical	programs.	Most	of	the	topics	discussed	will	be
examined	 in	 greater	 detail	 in	 upcoming	 chapters	 with	 thousands	 of	 live	 java	 code
examples.

As	we	 know	 in	 the	 past	 few	 years	 document	 the	 following	 fact:	 The	Web	 has
irrevocably	 recast	 the	 face	 of	 computing	 and	 programmers	 unwilling	 to	 master	 its
environment	will	be	left	behind.	The	preceding	is	a	strong	statement.	It	is	also	true.

More	 and	 more,	 applications	 must	 interface	 to	 the	 Web.	 It	 no	 longer	 matters
much	what	the	application	is,	near	universal	Web	access	is	dragging,	pushing,	and	coaxing
programmers	to	program	for	the	online	world,	and	Java	is	the	language	that	many	will	use
to	do	it.	Frankly,	fluency	in	Java	is	no	longer	an	option	for	the	professional	programmer,	it
is	a	requirement.	This	book	will	help	you	acquire	it.

	

	

	

	 	 	 	

CHAPTER
∞	1	∞

(Overview	of	Java)
	

	

	

	

	

	

Introduction-
Java	 is	 a	 powerful	 object	 oriented	 programming	 language	 developed	 by	 Sun

Microsystems	Inc.	in	1991.	Java	was	developed	for	consumer	electronic	devices	but	later
it	 was	 shifted	 towards	 Internet.	 Now	 Java	 has	 become	 the	 widely	 used	 programming
language	 for	 the	 Internet.	 Java	 is	 a	 platform	 neutral	 language	 (Machine	 Independent).
Program	developed	by	Java	can	run	on	any	hardware	or	on	any	operating	system	in	this
world.																																																																																																							

Sun	Microsystems	 (Oracle)	 formally	 announced	 Java	 at	 a	major	 conference	 in
May	 1995.	 Ordinarily,	 an	 event	 like	 this	 would	 not	 have	 generated	 much	 attention.
However,	 Java	 generated	 immediate	 interest	 in	 the	 business	 community	 because	 of	 the
phenomenal	interest	in	the	World	WideWeb.

Java	 is	now	used	 to	create	Web	pages	with	dynamic	and	 interactive	content,	 to
develop	large-scale	enterprise	applications,	to	enhance	the	functionality	of	World	Wide

Need	for	Java-

Java	was	developed	due	to	the	need	for	a	platform	neutral	language	that	could	be
used	 to	create	software	 to	be	embedded	 in	various	consumer	electronic	devices,	 such	as
microwave	ovens	and	remote	controls.	The	program	written	in	C	and	C++	are	compiled
for	a	particular	piece	of	hardware	and	software	and	that	program	will	not	run	on	any	other
hardware	 or	 software.	 So	 we	 need	 C/C++	 compilers	 one	 for	 each	 type	 of	 hardware	 to
compile	a	single	program.	But	compilers	are	expensive	and	time-consuming	to	create.	So
there	 is	 a	 need	 for	 platform	 neutral	 language.	 So	 that	 program	 compiled	 from	 that
compiler	can	run	on	any	hardware.	This	need	led	to	the	creation	of	Java.

Java	Class	Libraries-

Java	programs	 consist	 of	 pieces	 called	 classes.	Classes	 consist	 of	 pieces	 called
methods	 that	perform	 tasks	and	 return	 information	when	 they	complete	 their	 tasks.	You
can	 program	 each	 piece	 you	 may	 need	 to	 form	 a	 Java	 program.	 However,	 most	 Java
programmers	take	advantage	of	rich	collections	of	existing	classes	in	Java	class	libraries.
The	class	libraries	are	also	known	as	the	Java	APIs	(Application	Programming	Interfaces).

Thus,	 there	 are	 really	 two	 pieces	 to	 learning	 the	 Java	 “world.”	 The	 first	 is
learning	the	Java	language	itself	so	that	you	can	program	your	own	classes;	the	second	is
learning	how	to	use	the	classes	in	the	extensive	Java	class	libraries.

Throughout	 the	 book,	 we	 discuss	 many	 library	 classes.	 Class	 libraries	 are
provided	 primarily	 by	 compiler	 vendors,	 but	 many	 class	 libraries	 are	 supplied	 by
independent	 software	 vendors	 (ISVs).	Also,	many	 class	 libraries	 are	 available	 from	 the
Internet	 and	World	Wide	Web	 as	 freeware	 or	 shareware.	 You	 can	 download	 free	 ware
products	and	use	them	for	free	subject	to	any	restrictions	specified	by	the	copyright	owner.

Basics	of	a	Typical	Java	Environment-

Java	 systems	generally	 consist	 of	 several	 parts:	An	 environment,	 the	 language,
the	 Java	 Applications	 Programming	 Interface	 (API)	 and	 various	 class	 libraries.	 The
following	 discussion	 explains	 a	 typical	 Java	 program	 development	 environment,	 Java
programs	normally	go	through	five	phases	to	be	executed.	These	are:	edit,	compile,	load,
verify	 and	 execute.	 The	 	 descriptions	 	 that	 	 follow	 	 use	 	 the	 	 standard	 	 Java	 SE	 	 7	
Development		Kit		(JDK		7),		which		is		available	from		Oracle.

If		you		are		using		a		different		Java	development		environment,		then		you		may	
need		to	follow		a		different		procedure		for		compiling		and	executing		Java		programs.	In
this	case,	consult	your	compiler’s	documentation	for	details.

Note:	 If	 you	 are	 not	 using	 UNIX/Linux,	 Windows	 95/98/ME	 or	 Windows
NT/2000,	refer	to	the	manuals	for	your	system’s	Java	environment	or	ask	your	instructor
how	to	accomplish	these	tasks	in	your	environment	(which	will	probably	be	similar	to	the
environment,	Phase	1	consists	of	editing	a	file.

This	is	accomplished	with	an	editor	program	(normally	known	as	an	editor).	The
programmer	types	a	Java	program,	using	the	editor,	and	makes	corrections,	 if	necessary.
When	the	programmer	specifies	that	the	file	in	the	editor	should	be	saved,	the	program	is
stored	on	a	secondary	storage	device,	such	as	a	disk.	Java	program	file	names	end	with	the
.java	extension.

Two	editors	widely	used	on	UNIX/Linux	systems	are	vi	and	emacs.	On	Windows
95/98/ME	and	Windows	NT/2000,	simple	edit	programs	like	the	DOS	Edit	command	and
the	Windows	Notepad	will	suffice.

Java	 integrated	 development	 environments	 (IDEs),	 such	 as	 Forte	 for	 Java
Community	 Edition,	 NetBeans,	 Borland’s	 JBuilder,	 Symantec’s	 Visual	 Cafe	 and	 IBM’s
Visual	Age	have	built	in	editors	that	are	integrated	into	the	programming	environment.

We	 assume	 the	 reader	 knows	 how	 to	 edit	 a	 file.	 Languages	 such	 as	 Java	 are
object-oriented—programming	in	such	a	language	is	called	object-oriented	programming
(OOP)	and	allows	designers	to	implement	the	object	oriented	design	as	a	working	system.
Languages	 such	 as	 C,	 on	 the	 other	 hand,	 are	 procedural	 programming	 languages,	 so
programming	tends	to	be	action-oriented.

In	C,	the	unit	of	programming	is	the	function.	In	Java,	the	unit	of	programming	is
the	class	from	which	objects	are	eventually	instantiated	(a	fancy	term	for	“created”).	Java
classes	 contain	methods	 (that	 implement	 class	behaviors)	 and	attributes	 (that	 implement
class	data).

C	programmers	concentrate	on	writing	functions.	Groups	of	actions	that	perform
some	 common	 task	 are	 formed	 into	 functions,	 and	 functions	 are	 grouped	 to	 form
programs.	Data	are	certainly	 important	 in	C,	but	 the	view	 is	 that	data	exist	primarily	 in
support	of	the	actions	that	functions	perform.	The	verbs	in	a	system	specification	help	the
C	programmer	determine	the	set	of	functions	needed	to	implement	that	system.

Java	 programmers	 concentrate	 on	 creating	 their	 own	 user-defined	 types	 called
classes	and	components.	Each	class	contains	data	and	the	set	of	functions	that	manipulate
that	data.		The	data	components	of	a	Java	class	are	called	attributes.

The	function	components	of	a	Java	class	are	called	methods.	Just	as	an	instance
of	a	built-in	type	such	as	int	is	called	a	variable,	an	instance	of	a	user-defined	type	(i.e.,	a
class)	is	called	an	object.	The	programmer	uses	built-in	types	as	the	“building	blocks”	for
constructing	user-defined	types.

The	 focus	 in	 Java	 is	 on	 classes	 (out	 of	which	we	make	objects)	 rather	 than	on
functions.	The	nouns	in	a	system	specification	help	the	Java	programmer	determine	the	set
of	 classes	 from	which	 objects	will	 be	 created	 that	will	work	 together	 to	 implement	 the
system.	

Classes	 are	 to	 objects	 as	 blueprints	 are	 to	 houses.	We	 can	 build	many	 houses
from	one	blueprint,	and	we	can	instantiate	many	objects	from	one	class.	Classes	can	also
have	relationships	with	other	classes.

For	example,	in	an	object-oriented	design	of	a	bank,	the	“bank	teller”	class	needs
to	relate	to	the	“customer”	class.	These	relationships	are	called	associations.	We	will	see
that,	when	software	is	packaged	as	classes,	these	classes	can	be	reused	in	future	software
systems.	Groups	of	related	classes	are	often	packaged	as	reusable	components.

Each	new	class	you	create	will	have	the	potential	to	become	a	valuable	software
asset	that	you	and	other	programmers	can	use	to	speed	and	enhance	the	quality	of	future
software-development	efforts—an	exciting	possibility.

Relation	of	Java	with	C,	C++,	&	C#

From	C	Java	derives	its	syntax	and	from	C++	it	derives	object	oriented	features.
It	 is	 not	 an	 enhanced	 version	 of	 C++.	 Java	 is	 neither	 upwardly	 nor	 downwardly
compatible	with	C++.	One	important	thing	that	I	want	to	tell	you	is	that	Java	language	was
not	designed	to	replace	C++	and	C#.	Another	language	developed	by	Microsoft	to	support
the	 .NET	Framework,	C#	 is	closely	 related	 to	Java	because	both	share	C++	and	C	style
syntax,	support	distributed	programming,	and	utilize	the	same	object	model.

Primary	Objective	of	Java	is	to	achieve	-

1.	 Security:	-

	

There	is	no	threat	of	virus	infection	when	we	use	Java	compatible	Web
Browser.	Also	 there	 is	no	 threat	of	malicious	programs	 that	 can	gather	private
information,	such	as	credit	card	numbers,	bank	account	balances	and	passwords
from	local	machine.

Java	provides	a	firewall	between	a	networked	application	and	our	computer.

	

2.	 Portability:	-

	

Java	 programs	 are	 portable	 from	 one	 computer	 to	 another	 computer
running	different	types	of	operating	systems	and	having	different	hardware.

	

	

Java	Bytecode	-

	

The	output	of	a	 Java	compiler	 is	bytecode	not	 the	machine	code	 (“.class”	 file).
Bytecode	is	a	highly	optimized	set	of	instructions	designed	to	be	executed	by	the	Java	run-
time	system,	which	is	called	as	JVM	(Java	Virtual	Machine).

	

JVM	 is	 the	 interpreter	 which	 interprets	 the	 bytecode.	 Compiled	 program	 runs
faster	 but	 still	 Java	uses	 interpreter	 to	 achieve	portability	 so	 Java	programs	 runs	 a	 little
slower.	Now	a	program	compiled	through	a	Java	compiler	can	run	in	any	environment	but
JVM	needs	to	be	implemented	for	each	platform.	Java	programs	are	interpreted.	This	also
helps	to	make	it	secure	because	the	execution	of	every	Java	program	is	under	the	control
of	JVM.

	

JIT	(Just	In	Time):-

	

JIT	is	a	translator	used	by	JVM	to	translate	bytecode	into	actual	machine	code.	It
does	not	translate	entire	bytecodes	rather	it	translates	piece	by	piece	on	demand	basis.

	

Various	Versions	of	Java:-
	

Java	1

JDK	1.0

JDK	1.1

Java	2

JDK	1.2

JDK	1.3

JDK	1.4

JDK	1.5			or	JDK	5

JDK	1.6			or	JDK	6

Java	1.7			or	SE	7

Java	SE	8	(Java	8	,	April	2014)

	

Note1-	JDK	(Java	Development	Kit)

Note2-	Many	features	of	old	Java	versions	are	deprecated	by	new	versions

Of	Java	but	still	we	can	use	them.

	

Type	of	applications	Java	can	develop:-

	

1.	 Standalone	Applications-	A	standalone	application	is	a	program	that	runs	on	our
local	computer	under	the	operating	system	of	that	computer	just	like	a	C	or	a	C++
program.

	

2.	 Applets-	 An	 applet	 is	 a	 small	 program	 which	 travel	 across	 the	 Internet	 and
executed	 by	 a	 Java-Compatible	 web	 browser,	 such	 as	 Internet	 Explorer	 or
Netscape	Navigator,	on	the	client	machine.

	

An	applet	 is	 actually	a	 tiny	 Java	program,	dynamically	downloaded	across	 the
network.	Applet	programs	are	stored	on	a	web	server	and	they	travels	to	client
machine	on	request	from	the	client	machine.

	

An	applet	cannot	be	executed	like	standalone	application.	Applet	can	be
executed	only	by	embedding	it	into	an	HTML	page	like	a	sound	file	or	a	image
file	or	a	video	clip.

	

Now	 this	HTML	page	which	 has	 applet	 embedded	 into	 it	 can	 be	 run
after	downloading	such	HTML	page	by	a	web	browser	on	a	local	machine.	An
applet	 is	a	program	that	can	react	 to	user	 input	and	can	change	dynamically.	It
does	not	run	the	same	animation	or	sound	over	and	over.

	

3.	 Web	Applications-	These	are	the	programs	which	run	on	Web	Server.	When	we
access	a	web	site	by	specifying	the	URL	(Universal	Resource	Locator)	in	a	web
browser	then	the	web	browser	sends	a	request	to	the	web	server	for	a	particular
Web	site.	After	receiving	this	request	server	runs	a	program	and	this	program	is
called	as	Web	Application.	We	use	Java	Servlets	and	JSP	(Java	Server	Pages)	to
write	such	programs.

These	programs	run	on	the	server	and	then	send	the	result/response	to
the	 client.	 JSP	 pages	 can	 be	 thought	 of	 as	 a	 combination	 of	 HTML	 and	 Java
Code.	The	Web	Server	converts	JSP	pages	into	Java	Servlets	before	execution.

When	a	client	request	for	a	particular	URL	and	the	URL	corresponds	to
an	 HTML	 page	 the	 web	 server	 simply	 returns	 the	 HTML	 page	 to	 the	 client,
which	 then	displays	 it.	 If	 the	URL	corresponds	 to	 the	 servlet	 or	 JSP	 then	 it	 is
executed	on	the	Server	and	the	result/response	is	returned	to	the	client,	which	is
then	displayed	by	the	client.

	

4.	 Distributed	Applications-	Java	application	is	divided	into	small	programs	which
can	 run	 on	 separate	 machines.	 The	 objects	 used	 in	 these	 programs	 can
communicate	 with	 each	 other.	 These	 applications	 are	 known	 as	 Distributed
Applications.	 This	 allowed	 objects	 on	 two	 different	 computers	 to	 execute
procedure	remotely.	For	this	RMI	(Remote	Method	Invocation)	is	used.

	

	

Characteristics	of	Java:-

	

1.	 Simple-	 The	 syntax	 of	 Java	 is	 almost	 similar	 to	 C	 and	 C++	 so	 that	 a
programmer	 is	 familiar	with	C/C++	 does	 not	 have	 to	 learn	 the	 syntax	 from
scratch.	But	many	 features	 of	C/C++,	which	 are	 either	 complex	 or	 result	 in
ambiguity	have	been	removed	in	Java.

	

1.	 Java	 does	 not	 support	 multiple	 inheritance,	 as	 the	 concept	 is	 a	 bit
complex	and	may	result	in	ambiguity.

2.	 Java	does	not	support	global	variables,	which	also	lead	to	many	bugs	in
C/C++	programs.

3.	 Java	does	not	use	pointers	and	does	not	allow	pointer	arithmetic,	which
is	 cause	 of	 most	 of	 the	 bugs	 in	 C/C++	 programs	 due	 to	 inherent
complexity.

4.	 Java	does	not	support	operator	overloading	as	it	may	lead	to	confusion.
5.	 There	 is	 no	 concept	 of	 garbage	 value	 in	 Java.	 We	 have	 to	 initialize

variables	before	use.

	

2.	 Secure-	Java	programs	run	within	 the	JVM	(Java	Virtual	Machine)	and	they
are	 inaccessible	 to	 other	 parts.	 This	 greatly	 improves	 the	 security.	 A	 Java
program	rarely	hangs	due	 to	 this	 feature.	 It	 is	quite	unlike	C/C++	programs,
which	hang	frequently.	Java’s	security	model	has	three	primary	components:

	

1.	 Class	loader.
2.	 Bytecode	Verifier.
3.	 Security	Manager.

	

Java	 uses	 different	 class	 loaders	 to	 load	 class	 files	 (executable	 files)
from	local	machine	and	remote	machines.	The	classes	loaded	from	remote
machines	 like	Applet	 classes	 are	not	 allowed	 to	 read	or	write	 files	on	 the
local	machine.	This	prevents	a	malicious	program	from	damaging	the	local
file	 system.Bytecode	verifier	verifies	 the	bytecode	 as	 soon	as	 class	 loader
completes	 its	work.	 It	 ensures	 that	 bytecode	 is	 valid	 Java	 code.	 It	 almost
eliminates	 the	 possibility	 of	 Java	 program	 doing	 some	malicious	 activity
like	accessing	the	memory	outside	the	JVM.The	Security	Manager	controls
many	 critical	 operations	 like	 file	 deletion,	 creation	 of	 threads	 etc.	 These
operations	 are	 allowed	 only	 if	 the	 Java	 programs	 have	 sufficient
permissions	otherwise	Security	Manager	does	not	allow	the	operations	and
generates	Security	Exception.

3.	 Portable-	Java	programs	are	platform	independent.	They	follow	the	policy	of
write-once-run-anywhere.	A	Java	program	written	for	Windows	Platform	can
run	on	any	other	platform	(Unix,	Linux,	Sun	Solaris	etc.)	simply	by	copying
the	 bytecode	 (“.class”	 files).	 There	 is	 no	 need	 to	 copy	 the	 source	 code	 and
compile	 it	 again	 as	 in	 case	 of	 a	C/C++	program.	This	 feature	 has	made	 the
Java	a	powerful	language.	We	can	run	bytecode	on	any	machine	provided	that
the	machine	has	the	JVM.	JVM	is	itself	is	platform	dependent	but	it	makes	the
Java	 code	 platform	 independent.	 It	 is	 actually	 JVM	 which	 converts	 the
bytecode	into	machine	code	and	executes	them.

	

So	we	can	say	that	Java	is	a	portable	language.	One	more	feature	which
makes	Java	highly	portable	 is	 that	primitive	data	 types	are	of	 fixed	 length
irrespective	of	 the	platform.	For	 example	an	 int	will	 always	be	4	bytes	 in
Java.	 This	 is	 unlike	 C/C++	 where	 size	 of	 int	 can	 be	 2	 bytes	 on	 some
machines	and	4	bytes	on	other	machines.

	

4.	 Object	Oriented-	Java	is	almost	pure	object-oriented	language	but	it	supports
primitive	data	types	like	byte,	short,	int,	long,	float,	double,	char,	boolean	for
the	performance	reasons.

	

5.	 Robust:-	Most	programs	fail	one	of	the	two	reasons:
1.	 Memory	Management.
2.	 Exceptional	conditions	at	run	time.

	

While	designing	 the	 language	one	of	 the	aim	was	 to	 ensure	 that	 Java
programs	 are	 as	 robust	 as	 possible	 i.e.	 they	 should	 rarely	 fail.	 So	 due
importance	was	given	to	the	above	two	factors	in	the	Java.

	

In	Java	memory	allocation	and	de-allocation	is	handled	in	the	language
itself,	 which	 eliminates	 many	 problems	 caused	 due	 to	 dynamic	 memory
management	 features	 in	 C/C++.	 Java	 also	 supports	 object	 oriented
exceptional	handling	features	to	handle	exceptional	conditions,	which	occur
at	run-time.	This	allows	a	Java	program	to	recover	and	continue	execution
even	after	an	exceptional	condition	occurs.

	

6.	 Multithreaded:-	 Java	 was	 designed	 to	 meet	 the	 real	 world	 requirement	 of
creating	 interactive,	 networked	 programs.	 Java	 provides	 support	 for	 writing
multi-threaded	programs	to	achieve	this.	This	allows	the	programmer	to	write
programs	that	can	do	many	things	concurrently.

For	example	a	GUI	(Graphical	User	Interface)	based	application	might
be	 listening	 to	user	events	and	 taking	appropriate	action,	a	separate	 thread
might	be	doing	printing	and	a	separate	thread	might	be	downloading	a	file
from	some	machine	across	the	network,	all	of	this	being	done	concurrently.
This	results	in	better	performance	and	better	CPU	utilization.

	

It	is	possible	to	write	multi-threaded	programs	in	other	languages	also
but	it	is	achieved	only	by	making	use	of	System	calls	while	in	case	of	Java
it	can	be	achieved	by	using	features	of	the	language	itself.

	

7.	 Architecture-neutral-	One	of	the	main	problems	facing	programmers	is	that

no	 guarantee	 exists	 that	 if	we	write	 a	 program	 today,	 it	will	 run	 tomorrow-
even	on	 the	 same	machine.	Operating	 system	upgrades,	 processor	upgrades,
and	 changes	 in	 core	 system	 resources	 can	 all	 combine	 to	 make	 a	 program
malfunction.	But	the	goal	of	Java	programs	is	“write	once	run	anywhere”.

	

8.	 Interpreted	and	High	Performance-	Java	programs	are	 interpreted	but	still
they	run	fast	as	compared	to	other	interpreters.

	

9.	 Distributed-	Java	is	designed	for	distributed	environment	of	the	Internet.	Java
has	 built-in	 support	 for	 various	TCP/IP	 based	 protocols	 for	 this	 purpose.	 In
fact	accessing	a	resource	using	a	URL	is	similar	to	accessing	a	file	on	the	local
machine.	 Java	 also	 has	 features	 for	 Remote	 Method	 Invocation,	 which	 is
somewhat	 similar	 to	Remote	Procedure	Calls	 (RPC).	This	 allows	objects	on
different	computers	to	execute	procedures	remotely.	Java	has	built-in	API’s	for
this	purpose	called	as	RMI.

	

10.	 Dynamic-	Every	Java	class	is	a	separate	unit	of	execution.	A	class	is	loaded	at
the	run	time	only	when	it	is	needed.	Default	mechanism	for	binding	methods
in	Java	is	also	dynamic	(run-time	binding).

	

Running	a	Standalone	Java	Application:-

	

When	a	C	or	C++	program	is	compiled,	it	is	directly	translated	into	machine	code
of	a	particular	processor	or	a	particular	platform.	But	running	a	Java	program	is	a	two-step
process.	In	Java	translation	from	source	code	to	the	executable	code	is	achieved	using	two
translators:

	

1.	 Java	 Compiler	 -	 First	 of	 all	 Java	 program	 is	 compiled	 into	 bytecode.
Bytecode	 are	 just	 like	machine	 code	 but	 not	 for	 a	 particular	 processor	 or
platform.	Bytecodes	can	not	be	directly	executed.

2.	 Java	 Interpreter	 (JVM)	 -	 Java	 interpreter	 by	 using	 JIT	 translates	 the
bytecode	into	actual	machine	code	of	a	particular	platform.

Note	 1-	 C	 or	 C++	 programs	 are	 compiled	 only	 once	 but	 Java	 bytecodes	 are	 translated
every	time	we	execute	Java	programs.	So	Java	programs	run	a	little	slower	as	compared	to
C/	C++	programs.

Note	 2-	To	 run	 a	 Java	 program	 we	 need	 a	 Text	 Editor	 (Notepad	 or	 Edit),	 JDK	 (Java
Development	Kit),	 and	 JVM	 (already	 installed	 in	many	operating	 system).	We	 can	 also
use	Ecllipse	or	JCreater	in	place	of	Notepad.

Installing	Java	1.7	on	win	xp-

Double	Click	on	My	Computer � Double	Click	on	CD	Drive � Double	Click	on
JDK1.7	Java	Installation	File � 	Press	Next,	Next,	…..

To	set	the	Path	-

If	 we	 set	 the	 path	 of	 Java	 folder	 then	 we	 can	 run	 Java	 programs	 from	 anywhere
otherwise	we	have	to	run	our	java	programs	from	the	bin	folder	of	Java.

Right	Click	on	My	Computer � Properties � Advanced � Environment	Variables � Click
on	Path	and	then	click	on	Edit � Click	on	the	variable	value � Move	the	cursor	at	the	end
of	 this	 line	 by	 pressing	 END � 	Now	 type	 “c:\program	 files\Java\jdk1.7.0_01\bin;	 and
then	click	on	OK,	OK,	OK.

Creating	a	folder	for	Java	programs:-

Double	 Click	 on	 My	 Computer � Double	 Click	 on	 C:	 Drive � Right
Click � New � Folder � Type	JAVAPRG � 	Press	Enter	and	close	the	My	Computer.

Steps	for	running	Java	Program	on	a	command	Prompt:-

	

Step	1:-														Go	To	Command	Prompt

Start � Run � 	Type	“cmd”	and	click	on	OK.

Step	2:-														Type	“CD	\	JAVAPRG”	and	press	Enter

Step	3:-														Type	“Edit	Sum.Java”	and	press	Enter

Step	4:-														Type	the	Java	Program	and	click	on	File � Save	and	then	File � 	Exit

Step	5:-														Type	“javac		Sum.Java”	and	press	enter	to	compile.	This	will	create

“Sum.class”	file.	This	file	is	known	as	bytecode.

Step	6:-														Type	“java		Sum”	and	press	enter	to	run.	This	will	invoke	the	JVM.

Step	7:-														Type	“Exit”	and	then	press	enter	to	exit	from	command	prompt.

Note	-	We	can	also	run	Java	programs	through	Notepad	using	above	steps	but	instead	of
using	Edit	 command	we	will	use	Notepad.	After	 typing	 the	 Java	Program	save	 it	 to	 the
folder	“C:\JAVAPRG”	after	choosing	“All	files”	in	save	as	dialog	box.	To	compile	and	run
we	have	to	follow	above	steps.

	

Java	Program	Syntax:-													

	

class	<class	name>

														{

														public	static	void	main(String	args[])				or														(String	[]	args)

																												{

																																										-		-		-		-		-		-		-		-

																												}

}

	

First	Java	Program	-	Program	to	add	two	numbers	(Sum.Java)

	

1.														class	Sum

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										int	a,b,sum;

6.																																										a	=	5;

7.																																										b	=	6;

8.																																										sum	=	a	+	b;

9.																																										System.out.print(“Sum	is	“	+	sum);	//Output

10.																												}

11.														}

	

Output:															Sum	is	11.

	

Example	1.2	Program	to	swap	two	numbers	(Swap.Java)

1.														class	Swap

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										int	a=5,b=7;

6.																																										t	=	a;

7.																																										a	=	b;

8.																																										b	=	t;

9.																																										System.out.print(“After	Swap	Values	are	“	+	a	+”,”	+	b);

10.																												}

11.														}

	

Output:															After	Swap	Values	are	7,5

									Comments-

	

There	are	3	types	of	comments.

	

Single	line	comment														//	
Multi	line	comment														/*														*/
Documented	comment														/**														*/

	

									Every	Java	program	must	contain	one	class.	In	Java	main()	method	can	be
defined	only	inside	a	class.

	

									A	source	file	may	have	any	number	of	class	and	or	interface	definitions	but
there	can	be	at	the	most	one	public	class	or	interface.

	

	 	 	 	 	 	 	 	 	A	source	file	may	or	may	not	contain	a	class	having	main()	method	but	a
standalone	Java	program	always	starts	 its	execution	from		 	main()	method.	So
the	 class	 from	 which	 we	 want	 to	 start	 the	 execution	 must	 have	 the	 main	 ()
method	defined	in	it.

	

									The	main()	method	must	always	have	the	following	signature:

	

public	static	void	main(String	args[])

	

Note	-

Method	prototype	is	referred	to	as	signature	in	Java.

	

	 	 	 	 	 	 	 	 	 The	 keyword	 public	 indicates	 that	 the	 method	 can	 be	 accessed	 from
anywhere.	 The	main()	method	must	 be	 declared	 public	 as	 it	 is	 called	 by	 the
code,	which	 is	part	of	 the	JVM	and	 is	outside	 the	class	containing	 the	main()
method.

	

									The	keyword	static	indicates	that	main()	is	a	class	level	method	and	can	be
called	without	creating	any	object	it	is	must	as	no	object	exists	before	main()	is
called	and	any	object	creation	occurs	only	inside	the	main()	method.

									The	void	keyword	preceding	main()	method	indicates	that	it	does	not	return

any	value.

									The	main()	method	takes	one	argument,	which	is	the	array	of	Strings.	Each
element	of	the	array	represents	one	command	line	argument.

									System	is	a	predefined	class	that	provides	access	to	the	system,	and	out	is	the
output	 stream	 that	 is	 connected	 to	 the	 console.	 print()	method	 can	be	 used	 to
display	any	type	of	information.

	

Structure	of	a	Java	Program	–

	

All	 Java	 source	 files	must	 end	with	 the	 extension	 “.Java”.	 Java	 is	 a	 case	 sensitive
language.	Note	that	in	the	above	program	first	letter	of	classes	Sum,	String	and	System	is
written	in	uppercase.	It	is	better	to	save	the	Java	program	with	the	file	name	which	is	same
as	 of	 class	 name,	 but	 it	 is	 not	 compulsory.	 But	 if	 class	 is	 declared	 as	 public	 then	 it	 is
compulsory	to	save	the	class	in	a	file	whose	name	is	same	as	of	class	name.	A	class	can
contain	 only	 one	 public	 class	 but	 may	 contain	 as	 many	 non-public	 classes.	 If	 a	 file
contains	more	 than	one	class	 then	after	compilations	each	 individual	class	 is	put	 into	 its
own	output	file	named	after	the	class	and	using	.class	extension.

	

	 	 	 	 	 	 	 	 	Documentation	 Section	 -The	 documentation	 section	 contains	 a	 set	 of
comment	 lines	 giving	 the	 name	 of	 the	 program,	 the	 author	 and	 other	 details,
which	the	programmer	would	like	to	refer	to	at	a	later	stage.	Comments	explain
why	and	what	of	classes	and	how	of	algorithms.	In	addition	to	single,	multi	line
comment	 Java	 also	 uses	 a	 third	 style	 of	 comment	 /**…*/	 known	 as
documentation	comment.

	 	 	 	 	 	 	 	 	Package	 Statement	 -A	 source	 file	 may	 have	 at	 the	 most	 one	 package
statement.	If	a	package	statement	is	present	it	must	be	the	first	statement	in	the
Java	program.	Only	comments	may	appear	before	the	package	statement.

									Import	Statements	-	A	source	file	may	have	zero	or	more	import	statements.
Import	 statements	 are	 just	 like	 #include	 statement	 in	C/C++.	 If	 present	 all	 the
import	 statements	must	come	after	 the	package	statement	and	before	 the	class/
interface	definition.

	 	 	 	 	 	 	 	 	Interface	Statements	-An	Interface	is	like	a	class	but	includes	a	group	of
method	declarations.	This	is	also	an	optional	section	and	is	used	only	when	we
wish	to	implement	the	multiple	inheritance	features	in	the	program.

	

									Class	definition	not	containing	main	method	-A	Java	program	may	contain
multiple	 class	 definitions.	 Classes	 are	 the	 primary	 and	 essential	 elements	 of	 a
Java	Program.	These	classes	are	used	to	map	the	objects	of	real-world	problems.

	

	 	 	 	 	 	 	 	 	Class	definition	containing	main	method	-Since	every	Java	stand-alone

program	requires	a	main	method	as	 its	 starting	point,	 this	class	 is	 the	essential
part	of	a	Java	program.	A	simple	Java	program	may	contain	only	this	part.	The
main	method	creates	objects	of	various	classes	and	establishes	communications
between	 them.	 On	 reaching	 the	 end	 of	 main,	 the	 program	 terminates	 and	 the
control	passes	back	to	the	operating	system.

	

Garbage	Collection	-

Memory	allocation	for	the	Java	objects	is	completely	dynamic	but	Java	does	not	have
support	 for	pointer	arithmetic	 like	C/C++.	Whenever	we	 run	a	 Java	program,	 JVM	also
runs	 another	 program	 (thread)	 called	 Garbage	 Collector	 in	 the	 background.	 Garbage
Collector	keeps	check	on	the	Java	objects.

	

Whenever	a	Java	object	is	not	being	used	it	is	collected	by	the	Garbage	Collector
i.e.	the	memory	allocated	for	the	object	is	added	to	the	pool/heap	of	free	memory	and	can
be	 reused.	 This	 simplifies	 the	 task	 of	 the	 programmer	 to	 a	 large	 extent.	 This	 also
eliminates	 lots	 of	 bugs	 caused	 due	 to	 improper	 use	 of	 pointer	 arithmetic	 and	 memory
management	features	like	freeing	memory	explicitly.

	

	

Multiple	choice	Questions:
	

1.	Which	of	the	following	are	valid	definitions	of	an	application’s	main()	method?

(a)															public	static	void	main();
(b)															public	static	void	main(String	args);
(c)															public	static	void	main(String	args[]);
(d)														public	static	void	main(Graphics	g);
(e)															public	static	boolean	main(String	args[]);

	

2.														Which	organization	developed	the	Java	language?

(a)														Microsoft																												(b)														IBM

(c)														Sun	Microsytems	Inc.														(d)														AT&T

	

3.														Java	belongs	to	which	of	the	following	language	categories?

(a)														Object-Oriented																												(b)														Procedural

(c)														Both	(a)	&	(b)																												(d)														None	of	the	above

	

4.														Which	of	the	following	is	not	a	correct	statement?

(a)														Garbage	collection	in	Java	is	automatic.

(b)														Java	provides	support	for	distribution	applications.

(c)														Java	is	more	efficient	as	compared	to	C/C++.

(d)														Java	is	more	secure	as	compared	to	C/C++.

	

5.														Which	of	the	following	is	a	correct	statement?

(a)														Java	is	a	platform	independent	language?

(b)														Java	is	an	Object-Oriented	language?

(c)														Java	supports	multi-threading.

(d)														All	of	the	above.

	

Answers:														1.	(c)														2.	(c)														3.	(a)														4.	(c)														5.	(d)

Theory	Questions:

1.														Explain	working	of	Java	Virtual	Machine	(JVM).
2.														What	are	the	differences	between	C++	and	Java?
3.														Difference	between	“APPLET”	and	“APPLICATION”.	
4.														Disadvantages	of	Java.
5.														How	does	garbage	collection	work?
6.														What	is	BYTE	Code?	
7.														Is	java	a	fully	object	oriented	programming	or	not?	if	not	why?

8.														What	are	the	different	types	of	Java	Applications	/	Programs?

9.														What	is	the	extension	of	a	Java	executable	file?

10.														What	is	the	extension	of	a	Java	source	/	program	file?

11.														Which	command	is	used	to	compile	a	Java	Program?

12.														Which	organization	developed	the	Java	language?

13.														What	makes	Java	platform	independent?

14.														Why	Java	is	more	secure	language	as	compared	to	C/C++?

15.														Why	Java	is	more	robust	language	as	compared	to	C	language?

16.														What	do	we	understand	by	distributed	application?

17.														Describes	any	four	features	of	Java.

18.														Describes	the	steps	needed	to	compile	and	run	a	Java	program.

19.														What	are	the	main	reasons	for	the	popularity	of	Java?

20.														Why	many	features	of	C/C++	have	been	removed	in	Java?	Name	some
of	these	features.

21.														Name	three	types	of	comments	in	Java.

22.														List	any	10	major	differences	between	C	and	Java.

23.														Describe	the	structure	of	a	typical	Java	program.

	

Programming	Exercise:
	

1.	Write	a	program	to	calculate	average	of	two	integer	numbers.

2.	Write	a	program	to	swap	2	numbers	without	using	3rd	variable.

3.	Write	a	program	to	convert	hours,	minutes	and	seconds	into	total	seconds.

4.	Write	a	program	to	calculate	the	area	and	circumference	of	a	given	circle.

	 	 	

	

CHAPTER
∞	2	∞

(Java	Language)
	

	

	

Tokens-

The	smallest	individual	units	are	known	as	tokens	such	as	keywords,	identifiers,
constants,	strings	&	Operators.

	

A.	Keywords	 are	 the	 reserved	 names	 of	 a	 language	 and	 cannot	 be	 used	 as	 names	 of
variables,	functions	etc.

	

B.	Identifier	refers	to	the	names	of	variable,	arrays,	functions,	classes,	Interfaces	etc.

	

C.	Constants/Literals	refer	to	fixed	values	that	we	cannot	change	in	a	program.

	

D.	Operators	are	 special	 symbols	which	 operate	 on	 variable	&	 constants,	 and	 form	 an
expression.

	

E.	Separators	are	the	special	characters	used	to	separate	statements	such	as	“()		{	}		[]		;	
,		.”

	

	

A.	Keywords-

	

abstract																												continue														goto																												package													
synchronized

assert																												default																												if																												private													
														this

boolean	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	do	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 implements	 	 	 	 	 	 	 	 	 	 	 	 	
protected														throw

break																												double																												import																											
public																												throws													

byte																												else																												instanceof														return													
														transient

case																												extends														int														short																												try

catch																												final																												interface														static													
														void

char																												finally																												long																											
strictfp																												volatile

class																												float																												native																												super													
														while

const																												for																												new																												switch													
														enum

	

Note1-	There	are	50	reserved	keywords	in	Java.	The	keyword	const	and	goto	are	reserved
but	not	used.	The	assert	keyword	was	added	by	Java	2	version	1.4.	The	enum	keyword
was	added	by	Java2	version	1.5.

	

Note2-	 In	 addition	 to	 keywords,	 Java	 reserves	 the	 following	 literals	 true,	 false,	 and
null.We	 can’t	 use	 these	 reserved	 names	 as	 Identifiers	 (Variable	 or	 Class	 or	 Interface
names).

	

B.	Identifiers:-

An	identifier	is	a	word	used	in	a	program	to	name	a	variable,	method	(function),
class,	interface,	package	etc.	Java	identifiers	are	case	sensitive.

	

Identifier	naming	rules	(we	must	follow):-

	

1.	 A	Java	identifier	must	begin	with	a	letter,	dollar	sign	or	underscore.	It	can’t	begin
with	a	number.

2.	 The	subsequent	characters	may	be	digits	also.
3.	 There	is	no	restriction	on	the	length	of	identifiers.
4.	 Java	 allows	Unicode	 characters	 in	 identifiers.	We	 can	 use� , � , � , � 	 etc.	 in

identifiers	as	they	are	treated	as	letters	in	Unicode	(ASCII	is	replaced	by	Unicode	in
Java).

	

Identifier	naming	rules	(we	should	follow)-

	

1.	 Names	of	all	the	classes	and	interfaces	start	with	a	leading	uppercase	letter	and	each
subsequent	word	also	starts	with	a	leading	uppercase	letter.	Rest	of	the	letters	must	be
in	lower	case.	(Example	StudentTest).

	

2.	 Names	 of	 all	 the	 public	 data	members	 and	methods	 start	 with	 a	 leading	 lowercase
character.	When	more	than	one	word	are	used	in	a	name,	the	second	and	subsequent
words	start	with	a	leading	uppercase	letter.	(Example	netAnnualProfit).

	

3.	 Names	 of	 variables	 that	 represent	 constant	 values	 use	 all	 uppercase	 letters	 and
underscores	between	words.	(Example	PI).

	

C.	Constants/Literals:-

	

A	 Literal	 represents	 a	 constant	 value	 which	 we	 can’t	 change.	 A	 literal	 can’t
appear	 on	 the	 left	 side	 of	 an	 assignment	 operator.	 A	 literal	 is	 a	 value	 specified	 in	 the
source	code	it	is	not	determined	at	run	time.

	

Type	of	Literals-

	

1.	 5,	-5,	0x5A,	012,	5l,	5L	are	Integer	Literals	in	which	5,-5	are	decimal,	0x5A	is	a
hexa	decimal,	012	is	a	octal,	l	or	L	is	for	long.

	

2.	 5.23,	-5.23,	5.4f,	5.4F,	5.4d,	5.4D,	1.2E-03	are	Floating	Point	Literals	where	f
or	 F	 is	 for	 single	 precision(float),	 d	 or	 D	 is	 for	 double	 precision,	 5.23	 is	 a
Standard	notation	and	1.2E-03	is	in	exponent	notation	(Scientific	notation)	where
1.2	is	mantissa	and	-03	is	exponent.

	

3.	 ‘a’,	‘A’,	‘\n’,	‘\141’,	‘\u0061’	are	Character	Literals	 in	which	‘\n’	 is	an	escape
sequence,	‘\141’	is	octal	code	for	character	‘a’	and	‘\u0061’	is	hexa-decimal	code
for	character	‘a’.

	

4.	 “matrix”	is	a	String	Literal.	String	is	a	group	of	characters.	In	Java	Strings	there
is	 no	 line-continuation	 escape	 sequence	 as	 there	 in	other	 languages.	So	Strings
must	begin	and	end	on	the	same	line.	In	Java	strings	are	of	object	type.	“\”This	is
in	quotes\””.

	

5.	 True,	false	are	Boolean	Literals.	True	and	false	are	not	equal	to	1	or	0	in	Java.
We	can’t	convert	a	Boolean	value	to	integer	and	vice-versa.

	

	

	

	

D.	Operators-

Java	provides	a	rich	set	of	operators.	Operators	combine	constants,	variables	and
sub-expressions	to	form	expressions.	Most	of	the	operators	in	Java	behave	like	C/C++	but
there	are	few	differences,	which	are	covered	here.

Operators	can	be	classified	as:

	

									Arithmetic	Operators	(+,-,*,/,%)

	

These	operators	are	same	as	in	C/C++.

	

									%	operator	can	work	on	floating	numbers	also.

	

	 	 	 	 	 	 	 	 	When	binary	operator	 is	 applied	on	 two	operands	of	different	 types	 then
operand	of	lower	type	gets	converted	to	the	higher	type	before	the	evaluation	and
the	type	of	the	result	will	be	same	as	that	of	operand	of	higher	type.

	

									Division	or	modulus	by	zero	result	in	ArithmeticException	(run	time	Error)
in	case	of	int	but	not	in	case	of	floating	numbers.

	

									When	we	apply	arithmetic	operators	on	int	and	the	result	is	outside	the	range
of	 int	 then	 extra	 high	 order	 bits	 will	 be	 truncated	 and	 this	 new	 value	will	 be

assigned	 to	 the	 variable	 receiving	 their	 result	 but	 in	 floating	 type	 in	 case	 of
overflow	 it	will	 result	 in	 Infinity	 or	 –Infinity	 and	 in	 case	 of	 underflow	 it	will
result	in	0.

	

									Increment	and	Decrement	Operators	(++,	—)

	

These	operators	are	same	as	in	C/C++.

	

int	a=5,b;

														b	=	++a*++a;

														System.out.print(b);																												//42

														a	=	5;													

System.out.print(++a*++a);														//42

	

									Relational	Operators	(<,	>,	<=,	>=,	instanceof)

	

These	operators	are	same	as	in	C/C++	but	<.<=,>,>=	cannot	be	applied
on	boolean	types	and	reference	types.

	

									instanceof	operator:-

The	 instanceof	 operator	 is	 used	 to	 test	 the	 class	 of	 an	 object.	 The
instance	of	operator	has	the	general	form:

																												if(object	instanceof	type)

Here,	 object	 is	 an	 instance	 of	 a	 class,	 and	 type	 is	 a	 class	 type.	 If	 object	 is	 an
instance	of	the	specified	type	or	instance	of	any	sub-class	of	the	specified	type,
then	the	instance	of	operator	return	true	otherwise	its	result	is	false.

	

									Assignment	Operators	(=,	+=,	-	=,	*=,	/=,	%=)

These	operators	are	same	as	in	C/C++.

	

									Equality	Operators	(=	=,	!=)

These	operators	are	same	as	in	C/C++.

	

									Logical	Operators	(&&,	||,	!)

These	operators	are	same	as	in	C/C++.

	

									Conditional	Operator	(?	:)

This	operator	is	same	as	in	C/C++.

	

									Bitwise	Operators	(&,	|,	^,	~,	<<,	>>,	>>>)

	

These	operators	are	same	as	in	C/C++	except	shift	operators.	Shift	operators	works	only
on	integer	type.

	

									Left	Shift	(<<)	Operator

	

To	obtain	the	result	of	<<	operator,	the	bits	in	the	left	hand	side	operand	are	shifted	to
the	left	as	specified	by	the	right	hand	operand	and	the	empty	bit	positions	to	the	right	are
filled	with	zero.	Left	shifting	by	1	is	equivalent	to	multiplication	by	2.	It	is	possible	that
sign	of	the	result	may	differ	from	the	sign	of	the	left	hand	side	operand.	This	may	happen
because	 the	 sign	 depends	 on	 the	 left-most	 bit,	which	 can	 change	 from	0	 to	 1	 or	 1	 to	 0
hence	the	change	in	sign.

	

Example	b	=	a	<<	2;	To	obtain	the	value	of	b,	shift	the	bits	in	a	by	2	positions	to	the	left
and	fill	the	2	right	bits	with	zero.

	

Right	Shift	(>>)	Operator	(signed)

	

To	obtain	the	result	of		>>	operator,	the	bits	in	the	left	hand	operand	are	shifted	to
the	right	as	specified	by	the	right	hand	operand	and	the	empty	bit	positions	to	the	left	are
filled	with	sign	bit.	Right	shifting	by	1	is	equivalent	to	division	by	2.	This	operator	never
changes	the	sign	of	the	result	i.e.	it	will	be	same	as	the	sign	of	the	left	hand	operand.

	

Example	b	=	a	>>	2;	To	obtain	the	value	of	b,	shift	the	bits	in	a	by	2	positions	to	the	right
and	fill	the	2	right	bits	with	sign	(0	if	a	is	positive	or	1	if	a	is	negative.).

	

Right	Shift	with	zero	fill	(>>>)	Operator	(unsigned)

	

Rank Operators Description Associativity

1 ()

[]

.

Function	call

Subscript
Direct
member

Left	to	Right

2 ++

—

Increment

Decrement

Right	to	Left

To	obtain	 the	 result	 of	>>>	operator,	 the	 bits	 in	 the	 left	 hand	 side	 operand	 are
shifted	to	the	right	as	specified	by	the	right	hand	operand	and	the	empty	bit	positions	to
the	left	are	filled	with	0.	Right	shifting	by	1	is	equivalent	to	division	by	2.	If	shifting	takes
place	then	result	will	always	be	positive,	as	the	rightmost	bit	would	become	zero.

	

Example	b	=	a	>>>	2;	To	obtain	the	value	of	b,	shift	the	bits	in	a	by	2	positions	to	the	right
and	fill	the	2	right	bits	with	0.

	

																												

																																																																						

	

	

	

Precedence	of	Operators:-

E.	Separators:-

~

!

Bitwise	 unary
NOT

Logical	 unary
NOT

3 *

/

%

Multiplication

Division

Modulus

Left	to	Right

4 +

-

Addition

Subtraction

Left	to	Right

5 >>

>>>

<<

Bitwise	 Right
Shift

Bitwise	 Left
Shift

Bitwise	 Right
Shift	Zero	Fill

Left	to	Right

6 >

>=

<

<=

instanceof

Greater	than

Greater	 than
or	equal	to

Less	than

Less	 than	 or
equal	to

Left	to	Right

7 =	=

!=

Equal	To

Not	Equal	To

Left	to	Right

8 & Bitwise	AND Left	to	Right

9 ^ Bitwise	XOR Left	to	Right

10 | Bitwise	OR Left	to	Right

11 && Logical	AND,
circuit	AND

Left	to	Right

12 || Logical	 OR,
Short	 circuit
OR

Left	to	Right

13 ?: Conditional
operator	(Ternary)

Left	to	Right

14 =

+=

-=

*=

/=

%=

&=

|=

^=

>>=

<<=

>>>=

Assignment

Addition
assignment

Subtraction
assignment

Multiplication
assignment

Division
assignment

Modulus
assignment

Bitwise	 And
assignment

Bitwise	 Or
assignment

Bitwise	 XOR
assignment

Bitwise	 Right
Shift
assignment

Bitwise	 Left
Shift
assignment

Bitwise	 Right
Shift	Zero	Fill
assignment

Right	To	Left

Symbol Name Purpose

() Parenthesis Used	 to	 contain	 list	 of
parameters	 in	 method
definition	 and	 invocation
(calling).	 Also	 used	 for
defining	 precedence	 in
expressions,	 containing
expressions	 in	 control
statements,	 and	 in
typecasting.

{	} Curly	Braces Used	 to	 initialize	 arrays,
Also	used	to	define	a	block
of	 statements,	 for	 classes,
interfaces,	 methods	 and
local	scope.

[] Square
Brackets

To	declare	an	array.

; Semicolon To	terminate	a	statement.

, Comma Separates	 consecutive
identifiers	 in	 a	 variable
declaration,	 Also	 used	 to
chain	 statements	 together
inside	a	dor	statement.

. Period Used	 to	 separate	 package
names	 from	 sub-packages
and	 classes.	 Also	 used	 to
separate	 a	 variable	 or
method	 from	 a	 reference
variable.

	

	

Data	Types-	Data	types	in	Java	can	be	broadly	classified	in	two	categories:

	

1.Primitive	Data	Types/	Simple	Data	Types-

	

Java	is	an	object	oriented	language,	but	the	primitive	data	types	are	not	objects.
They	are	kept	in	Java	for	performance	reason.	They	form	the	basis	for	all	other	types	of
data	that	we	define	in	our	Java	programs.	Java	is	a	strongly	typed	language.

	

									Numeric	Data	Types

	

Integer	Data	Types

	

									byte	(1	byte)																												Range � 	-128	to	127

	

									short	(2	bytes)																												Range � 	-32768	to	32767

	

									int	(4	bytes)																												Range � 	-2147483648	to	2147483647

	

									long	(8	bytes)																												Range � 	-9223372036854775808	to

9223372036854775807

	

Expressions	containing	bytes,	shorts,	int’s	are	automatically	promoted	to	int.

Floating	Point	Data	Types-

	

float	(4	bytes)																												Range � 	1.401298464324817E-45f	to

		3.4028234663852886E38f

	

double	(8	bytes)														Range � 	4.9E-324d	to	1.7976931348623157E308d

	

Boolean	Data	Type-						Boolean

Character	Data	Type-

	

char	(2	bytes)																												Range � 	0	to	65535

	

Note-	The	first	128	characters	of	the	Unicode	set	are	the	same	as	the	128	characters	of	7-
bit	ASCII	character	set	and	the	first	256	characters	of	the	Unicode	correspond	to	the	256
characters	of	the	Extended	ASCII	(8-bit	ISO	Latin-1)	character	set.

	

Java	 characters	 can	 also	 be	 used	 in	 integer	 expressions.	 The	Unicode	 value	 of	 the
character	is	used	when	it	is	part	of	an	integer	expression.

	

	

	

1.	 Non-Primitive	Data	Types/	Derived	Data	Types	or	Reference

	

Data	Types-	Reference	data	types	are	also	called	derived	data	types	as	they
are	derived	from	the	primitive	data	types.

	

									Classes

1.	 Built-In/Library	Classes
2.	 User-Defined	Classes

	

									Interfaces

3.	 Built-In/Library	Classes
4.	 User-Defined	Classes

	

									Arrays	-	Arrays	are	also	treated	as	objects	in	Java.

	

Java’s	Automatic	Conversions	will	take	place	when-

	

1.	The	two	types	are	compatible.

2.	The	destination	type	is	larger	than	the	source	type.

	

Variables-

	

Variables	are	the	name	of	the	memory	locations	that	can	store	values.	A	variable
must	 be	 declared	 before	 we	 can	 store	 value	 in	 it.	 Or	 Variable	 is	 the	 place	 (Memory
Location)	inside	the	main	memory	where	we	can	store	our	data	or	values.

	

There	are	three	kinds	of	variables:

	

									Local	Variables:-	Local	variables	are	used	inside	blocks	or	methods.	Local
variables	 (also	 known	 as	 automatic	 variables)	 are	 not	 initialized	 by	 default.	A
local	variable	must	be	explicitly	 initialized	before	being	used	 for	 the	 first	 time
otherwise	 a	 compile	 time	error	 “Variable	might	not	have	been	 initialized”	will
come.

	

Example

int	a,b=5;

if(b>2)

{

a	=	b;

}

System.out.print(a);

	

	

	

In	 the	 above	 program	 the	 value	 of	 a	 is	 not	 defined	 if	 the	 if	 condition	 is	 false,	 so	 the
compiler	will	give	an	error	“Variable	a	might	not	have	been	initialized”.

In	 Java	we	can	not	define	a	variable	 in	 the	 inner	block	with	 the	 same	name	as	of	outer
block.

	

int	a=5;

{

int	a=7;														//	Error

}

	

									Instance	Variables:-	Instance	variable	are	used	to	define	attributes	or	state	of
an	object.

	

									Class	Variables:-	Class	variables	are	used	to	define	attributes/state,	which	is
common	for	all	the	objects	of	a	class.

	

Library	Methods	of	class	Math-

	

public	static	double
sin(double	x);

Return	the	sine	of	 the	angle	x
in	radians

public	static	double
cos(double	x);

Return	the	cosine	of	the	angle
x	in	radians

public	static	double
tan(double	x);

Return	 the	 tan	 of	 the	 angle	 x
in	radians

public	static	double
asin(double	x);

Return	the	angle	x	of	sine

public	static	double
acos(double	x);

Return	the	angle	x	of	cosine

public	static	double
atan(double	x);

Return	the	angle	x	of	tan

public	static	double
toRadians(double	x);

Convert	degrees	x	to	radians

public	static	double
toDegrees(double	x);

Convert	radians	x	to	degrees

public	static	double
exp(double	x);

Return	e	raised	to	x(ex)

public	static	double
log(double	x);

Return	the	natural	lgorithm	of
x

public	static	double	log10(double
x);

Return	the	natural	lgorithm	of
x	base	10

public	static	double
sqrt(double	x);

Return	the	sqrt	of		x

public	static	double
ceil(double	x);

Return	 the	 smallest	 whole
number	 	greater	 than	or	equal
to	x	(rounding	up)

public	static	double
floor(double	x);

Return	 the	 largest	 whole
number	less	than		or	equal	to	x
(rounded	down)

public	static	double
rint(double	x);

Return	the	rounded	value	of	x

public	static	double
atan2(double	x,	double	y);

Return	the	angle	whose
tangent	is	x/y

public	static	double
pow(double	x,				double	y);

Return	x	raised	to	y(xy)

public	static	int	round(float
x);

Return	the	rounded	value	of	x
in	int

public	static	long
round(double	x);

Return	the	rounded	value	of	x
in	long

public	static	double
random();

Returns	a	random	number
between	0	to
0.999999999999999999

public	static	int	abs(int	x); Return	the	absolute	value	of	x.

public	static	long	abs(long
x);

Return	the	absolute	value	of	x.

public	static	float	abs(float
x);

Return	the	absolute	value	of	x.

public	static	double
abs(double	x);

Return	the	absolute	value	of	x.

public	static	int	max(int	x,
int	y);

Return	the	maximum	of	x	&	y

public	static	long
max(long	x,	long	y);

Return	the	maximum	of	x	&	y

public	static	float
max(float	x,	float	y);

Return	the	maximum	of	x	&	y

public	static	double
max(double	x,	double	y);

Return	the	maximum	of	x	&	y

public	static	int	min(int	x,
int	y);

Return	the	minimum	of	x	&	y

public	static	long	min(long
x,	long	y);

Return	the	minimum	of	x	&	y

public	static	float	min(float
x,	float	y);

Return	the	minimum	of	x	&	y

public	static	double
min(double	x,	double	y);

Return	the	minimum	of	x	&	y

public	static	double
sinh(double	x);

Returns	the	sin	hyperbolic	of
angle	x

public	static	double
cosh(double	y);

Returns	the	cos	hyperbolic	of
angle	x

public	static	double
tanh(double	x);

Returns	the	tan	hyperbolic	of
angle	x

	

Note-	To	use	above	methods	we	have	to	prefix	Math	class	name.

	

	

	

Examples:
	

1.														double	theta1=120.0;

double	theta2=1.312;

System.out.println(theta1+”	degree	is	“+	Math.toRadians(theta1)	+”		radians.”);

System.out.println(theta2		+”		radians	is	“+Math.toDegrees(theta2)	+”	degrees”.);

	

Output:

														120.0		degree	is	2.0943951023931953	radians.

														1.312		radians	is		75.17206272116401	degrees.

	

2.														double	number,root;

number	=25.0;

root=0.0;

root=Math.sqrt(number);

System.out.println(“Sqrt	of	number		”	+	number	+	”	is		”	+	root);

	

Output:

														Sqrt	of	number	25.0		is		5.0	

	

3.														double	x=3,y=3,z=0;

z=Math.pow(x,y);

System.out.println(“Value	of		z		:”+z);

	

Output:

Value	of	z		:27.0

	

4.														double	a=3.0,b=4.0;					//dynamic	initilization

double	c=(Math.sqrt(a*a+b*b));

System.out.println(“Hypotenuse	is	“+c);

	

Output:

														Hypotenuse	is	5.0

Multiple	Choice	Questions:

	
1.														Which	of	the	following	are	Java	keywords?
(a)															array
(b)															boolean
(c)															Integer
(d)															protect
(e)															super

	

2.														Which	identifier	is	invalid?
(a)															_xpoints
(b)															r2d2
(c)															bBb$
(d)															set-flow
(e)															thisisCrazy

	

3.														An	integer,	x	has	a	binary	value	(using	1	byte)	of	10011100.	What	is	the
binary	value	of	z	after	these	statements:	
int	y	=	1	<<	7;
int	z	=	x	&	y;	
(a)															1000	0001
(b)															1000	0000
(c)															0000	0001
(d)															1001	1101
(e)															1001	1100

	

4.														Which	statements	are	accurate:
(a)															>>	performs	signed	shift	while	>>>	performs	an	unsigned	shift.
(b)															>>>	performs	a	signed	shift	while	>>	performs	an	unsigned	shift.
(c)															<<	performs	a	signed	shift	while	<<<	performs	an	insigned	shift.
(d)															<<<	performs	a	signed	shift	while	<<	performs	an	unsigned	shift.

	

5.														Consider	the	two	statements:
1.															boolean	passingScore	=	false	&&	grade	==	70;
2.															boolean	passingScore	=	false	&	grade	==	70;
The	expression	
grade	==	70	
is	evaluated:

(a)															in	both	1	and	2
(b)															in	neither	1	nor	2
(c)															in	1	but	not	2
(d)															in	2	but	not	1
(e)															invalid	because	false	should	be	FALSE

	

6.	 Given	the	variable	declarations	below:	
byte	myByte;
int	myInt;
long	myLong;
char	myChar;
float	myFloat;
double	myDouble;

Which	one	of	the	following	assignments	would	need	an	explicit	cast?
(a)															myInt	=	myByte;
(b)															myInt	=	myLong;
(c)															myByte	=	3;
(d)															myInt	=	myChar;
(e)															myFloat	=	myDouble;
(f)															myFloat	=	3;
(g)															myDouble	=	3.0;

	

7.														Which	of	the	following	Java	reserved	word	has	no	use	as	of	now.

(a)														true																																										(b)														false

(c)														goto																																										(d)														null

	

8.														What	is	the	size	of	data	type	int	in	Java?

(a)														2	bytes																																										(b)														4	bytes

(c)														not	defined																												(d)														2	bytes	or	4	bytes

	

Answer’s:
1														(b,e)														2														(d)														3														(b)														4														(a)													

5														(d)	6														(b,e)														7														(c)														8														(b)

	

Theory	questions:

1.														Why	Java	is	not	100%	pure	object	oriented	language?	
2.														What	are	the	primitive	types	in	Java

3.														Name	four	top-level	elements	that	may	appear	in	a	Java	source	file.

4.														What	other	statement(s)	can	appear	before	a	package	statement?

5.														Name	the	three	Java	reserved	words,	which	are	used	as	literals.

6.														Name	two	Java	reserved	words,	which	are	not	used	in	the	language

7.														Which	primitive	data-types	of	Java	are	not	there	in	C?

8.														Name	three	kinds	of	variables	in	Java.

9.														Briefly	describing	rules	for	Java	identifiers.

10.														What	is	the	purpose	of	comments	in	a	Java	program?

11.														Name	any	four	numeric	data	types	along	with	their	range.

12.														How	arrays	in	Java	are	different	from	C?

13.														What	are	Java	tokens?	Give	brief	description	of	different	types	of	Tokens.

14.														What	are	Java	literals?	Explain	with	examples.

15.														What	are	the	different	data	types	in	Java?	Describe	in	detail.

	

Programming	Exercise:
1.															Write	a	program	which	will	show	the	use	of	all	the	bitwise	operators.

2.														Write	a	program	which	will	show	all	explicit	and	implicit	conversions.

3.														Write	a	program	which	will	solve	some	equations	of	different	data	types
and	display	the	result.

4.														Write	a	program	to	proof	that	name	of	a	inner	scope	variable	can	not	be
same	as	outer	scope	variable.

5.														Write	a	program	to	calculate	area	of	a	circle.	(use	final	to	declare	a	constant).

6.														Write	a	program	to	convert	the	char	to	Unicode.

7.														Write	a	program	to	type	conversion	int	to	float.

8.														Write	a	program	to	calculate	modulus(%)	of	two	float	numbers.

9.															Write	a	program	to	find	the	roots	of	a	quadratic	equation.

	

	 	

CHAPTER
∞	3	∞

(Control	Statement)
	

Introduction-
Control	statements	are	used	to	change	the	flow	of	execution.	Java’s	control	statements

can	be	classified	into	three	categories.

	

1.	 Selection	Statements	(Decision	Control	Structure)	Selection	statement	allows
the	program	to	choose	any	one	path	from	different	set	of	paths	of	execution	based
upon	the	outcome	of	an	expression	or	the	state	of	a	variable.

	

1.	 if
2.	 if	else
3.	 nested	if	else
4.	 if-else-if
5.	 switch

	

(a)														Syntax	of	if																																											(b)Syntax	of	if	else

														if(condition)																																										if(condition)

														{																																																								{

																												statements;																												}

														}																																																														else

																																																																						{

																																																																						}
(c)														Syntax	of	Nested	if	else														(d)Syntax	of	if-else-if	Ladder

	

														if(condition)																																										if(condition1)

														{																																																								{

																												if	(condition)																												}

																												{																																										else	if(condition2)

																												}																																										{

																												else																																										}

																												{																																										else	if(condition3)

																												}																																										{

														}																																																								}

														else																																																								else

{																																																								{

																												if	(condition)																												}

																												{																																																							

																												}																																																																					

																												else																																																																					

																												{																																																																					

																												}

														}
	

(e)														Syntax	of	switch	case

														switch(expression)

														{

																												case	1:

																																										statement	1	sequence;

																																										break;

																												case	2:

																																										statement	2	sequence;

																																										braek;

																												case	3:

																																										statement	3	sequence;

																																										break;

																												—

																												—

																												case	n:

																																										break;

																												default	:

																																										default	statement	sequence;

														}

	

Example	3.1	Program	to	find	max	of	two	numbers	(Max.Java)

	

2.														class	Max

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										int	a,b,max;

7.																																										a	=	10;

8.																																										b	=	20;

9.																																										if(a>b)

10.																																																								max	=	a;

11.																																										else

12.																																																								max	=	b;

13.														System.out.println(“Max	of	two	numbers	is	“	+	max);	//Output

14.																												}

15.														}

	

Output:

Max	of	two	numbers	is	20

	

2.	 Iteration	Statements	(Loop	Control	Structure)	Looping	is	a	process	by	which
we	can	repeat	a	single	statement	or	a	group	of	statements	n	number	of	times.

	

1.	 for
2.	 while
3.	 do	while

	

(a)														Syntax	of	for	loop.

														for(initialize;	condition;	increment/decrement)

														{

statements;

														}

(b)																	Syntax	of	while	loop.

(c)																		

initialize;

														while(condition)

														{

statements;

increment/decrement;

														}

(d)																	Syntax	of	do	while	loop.

	

initialize;

do

{

statements;

increment/	decrement;

}												while(condition);

Note-

The	 condition	 can	 be	 any	 Boolean	 expression.	 The	 body	 of	 the	 loop	 will	 be
executed	 as	 long	 as	 the	 conditional	 expression	 is	 true.	When	 condition	 becomes	 false,
control	pass	to	the	next	line	of	code	immediately	following	the	loop.

Example	3.2

1.														class	Loop1

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										int	n=5;

6.																																										for(int	i=1;i<=n;i++)

7.																																										{

8.																																																								for(int	j=1;j<=i;j++)

9.																																																																						System.out.print(j);

10.																																																								System.out.println();

11.																																										}

12.																												}													}

	

Output:

																												1
																												12

																												123

																												1234

																												12345

	

3.	 Jump	Statements-	It	allows	our	program	to	work	in	a	non-linear	fashion.
1.	 break.
2.	 labeled	break.
3.	 continue.
4.	 labeled	continue.
5.	 return.

	

									Most	of	the	statements	have	same	syntax	as	the	corresponding	statements	in
C/C++.	However	there	are	some	significant	differences.
	

									The	conditional	expressions	used	in	the	if,	for,	while	and	do	statements	must
be	valid	boolean	expressions	i.e.	 their	values	should	be	either	true	or	false.	We

can	not	use	0	instead	of	false	or	a	non-zero	value	instead	of	true	that	is	valid	in
C/C++.

	

									Java	does	not	have	any	goto	statement	although	goto	is	a	reserved	word	in	the
language.	Java	provides	labeled	break	and	labeled	continue	statements	which	are
often	referred	to	as	the	civilized	form	of	goto	as	they	are	supposed	to	be	better
substitutes	of	goto	statement.

	

									In	Java,	switch	expression	can	be	any	integer	expression	except	long	i.e.	the
type	of	the	switch	expression	can	be	byte,	short,	char	or	int.	But	the	Java’s	int	is
of	4	bytes	which	is	same	as	size	of	long	in	C/C++.

	 	 	 	 	 	 	 	 	The	case	labels	are	constant	expressions	as	in	C/C++	but	the	values	of	the
case	labels	must	be	in	the	range	of	the	type	of	the	switch	expression	otherwise
the	program	will	not	compile.

	

	 	 	 	 	 	 	 	 	The	labeled	break	statement	 is	used	 to	 terminate	 the	block	whose	 label	 is
specified	 in	 the	 break	 statement.	 Unlike	 simple	 break	 statement,	 we	 can
terminate	any	block.	For	example,	it	is	possible	to	terminate	the	outermost	loop
from	 inside	 a	deeply	nested	 for	 loop.	The	break	 statement	 can	also	be	used	 to
terminate	a	simple	block	(i.e.	the	block	need	not	be	a	loop	or	switch	statement)

	

	 	 	 	 	 	 	 	 	The	labeled	continue	statement	specifies	the	label	of	the	enclosing	loop	to
continue.	The	label	need	not	correspond	to	the	closest	enclosing	loop.

	

Jump	Statement:-

	

(a)														break

														for(int	i=1;i<=10;i++)

														{

																												if(i	==	5)

																																										break;															//terminate	loop	if	i	is	5

																												System.out.print(i);

														}

	

Output:														1	2	3	4

	

(b)															labled	break

	

boolean	t	=true;

														first	:														{

																												second:	{

																																										third:	{

																												System.out.println(“Before	the	break”);

																												if(t)	break	second;		//break	out	of	second	block

																												System.out.println(“This	will	not	execute”);

}

																												System.out.println(“This	will	not	execute”);

																												}

																												System.out.println(“This	is	after	second	block”);

																												}

	

Output:															Before	the	break

																												This	is	after	second	block

(c)														continue

	

														for(int	i=0;i<10;i++)

														{

																												System.out.print(i	+	“	“);

																												if	(i	%	2	=	=	0)

continue;

																												System.out.println();

														}

													

Note-														This	code	use	the	%	operator	to	check	if	i	is	even.	if	it	is	even	then	the	loop
will	continue	without	printing	a	new	line.

Output:

														0		1

														2		3

														4		5

														6		7

														8		9

	

(d)														labeled	continue

														outer	:	for(int	i=0;i<5;i++)

																												{

																																										for(int	j=0;j<5;j++)

																																										{

																																																								if	(j	>	i)

																																																								{

																																																																						System.out.println();

																																																																						continue	outer;

																																																								}

																																																								System.out.print(“\t”+	(i	*	j));

																																										}

																												}

Output:

																												0													

																												0														1													

																												0														2														4

																												0														3														6														9

																												0														4														8														12														16

	

(e)														return

														int	sum(int	a,	int	b)

														{

																												int	c;

																												c	=	a+b;

																												return(c);

														}

Multiple	Choice	Questions:

1.															Given	the	variables	defined	below:	
int	one	=	1;
int	two	=	2;
char	initial	=	‘2’;
boolean	flag	=	true;

Which	of	the	following	are	valid?
(a)															if(one){}
(b)															if(one	=	two){}
(c)															If(one	==	two){}
(d)															if(flag){}
(e)															switch(one){}
(f)															switch(flag){}
(g)															switch(initial){}

	

2.														If	val	=	1	in	the	code	below:

switch(val)	
{

case	1:	System.out.print(“P”);
case	2:	
case	3:	System.out.print(“Q”);
													break;
case	4:	System.out.print(“R”);
default:	System.out.print(“S”);

}

Which	values	would	be	printed?
(a)	P
(b)	Q
(c)	R
(d)	S

	

3.														Assume	that	val	has	been	defined	as	an	positive	int	for	the	code	below:
if(val	>	4)

System.out.println(“Test	A”);
else	if(val	>	9)

System.out.println(“Test	B”);
else

System.out.println(“Test	C”);

	

	

Which	values	of	val	will	result	in	“Test	C”	being	printed:

(a)	val	<	0	
(b)	val	between	0	and	4	
(c)	val	between	4	and	9	
(d)	val	>	9	
(e)	val	=	0	
(f)	no	values	for	val	will	be	satisfactory

	

4.														For	the	code:
m	=	0;
while(m++	<	2)
										System.out.println(m);

Which	of	the	following	are	printed	to	standard	output?
(a)	0
(b)	1
(c)	2
(d)	3
(e)	Nothing	and	an	exception	is	thrown

	

5.														Consider	the	code	fragment	below:
outer:	for(int	i	=	1;	i	<3;	i++)

inner:	for(j	=	1;	j	<	3;	j++)
{

if(j==2)
									continue	outer;
System.out.println(“i	=	”	+	i	+”,	j	=	”	+	j);

}
Which	of	the	following	would	be	printed	to	standard	output?
(a)	i	=	1,	j	=	1
(b)	i	=	1,	j	=	2
(c)	i	=	1,	j	=	3
(d)	i	=	2,	j	=	1
(e)	i	=	2,	j	=	2
(f)	i	=	2,	j	=	3
(g)	i	=	3,	j	=	1
(h)	i	=	3,	j	=	2

	

	

Answers:														1(c,d,e,f,g)														2(a,b)														3(b)														4(b,c)														5(a,d)
	

	

Theory	Questions:
	

1.															Does	Java	has	“goto”?

2.														What	are	labeled	loops.

	

Programming	Exercises:
	

1.	Write	a	program	to	check	whether	a	given	year	is	leap	or	not.

2.	Write	a	program	to	print	the	number	of	days	in	a	given	month.(using	switch)

3.	Write	a	program	to	print	Fibonacci	series.

4.	Write	a	program	to	check	whether	a	given	number	is	prime	or	not.

5.	Write	a	menu	driven	program	to	calculate	addition,	subtraction,	multiplication	and
division		of	two	numbers.

														1	for	Add

														2	for	Subtract

														3	for	Multiplication

														4	for	Divide

														5	for	Exit														(hint:	do	while	and	switch)

6.	Write	a	program	to	print	the	reverse	of	a	number.	(hint:	1234	will	result	in	4321).

7.	Write	a	program	to	find	the	maximum	of	the	given	three	numbers.

8.	Write	a	program	to	print	first	10	even	numbers	using	jump	statement.

	

	ISBN	13:	978-1500730413.

CHAPTER
∞	4	∞

(Scanner	Class	&	Arrays)
(Command	Line	Arguments)

	
	
	
	
	

	
Introduction-
	
Scanner	class:-
	

This	is	a	new	class	in	Java	added	in	JDK1.5-6-7	version	to	take	input	of	primitive
data	 type	from	the	user.	 It	 is	very	easy	 to	 take	 input	using	 this	class	as	we	have	 to	only
create	an	object	of	this	class	and	have	to	call	a	particular	method.	This	class	is	available	in
java.util	package.

	

	

public	java.util.Scanner(java.io.InputStream);

public	java.util.Scanner(java.io.File)							throws	java.io.FileNotFoundException;

public	java.util.Scanner(java.lang.String);

public	void	close();

public	boolean	hasNext();

public	java.lang.String	next();

To	input	a	string	not	containing	any	space.

public	java.lang.String	nextLine();

To	input	a	string	which	may	contain	space	also.

public	boolean	hasNextBoolean();

public	boolean	nextBoolean();

public	boolean	hasNextByte();

public	byte	nextByte();

public	boolean	hasNextShort();

public	short	nextShort();

public	boolean	hasNextInt();

To	check	whether	next	value	in	input	buffer	is	int	or	not.

public	int	nextInt();

To	input	a	integer	value.

public	boolean	hasNextLong();

public	long	nextLong();

public	boolean	hasNextFloat();

public	float	nextFloat();

public	boolean	hasNextDouble();

public	double	nextDouble();

	

	

	

	

	

Example	4.1:

	

1.														import	java.util.*;

2.														class	SumInput

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Scanner	sc=new	Scanner(System.in);

7.																														int	a,b,sum;

8.																														System.out.print(“Enter	Ist	number”);

9.																														a	=	sc.nextInt();

10.																														System.out.print(“Enter	2nd	number”);

11.																														b	=	sc.nextInt();

12.																														sum	=	a+b;

13.																														System.out.println(“Sum	is	”	+	sum);

14.																						}

15.														}

	

Output:

Enter	Ist	number	45

Enter	2nd	number	55

Sum	is	100

Array-
An	array	in	Java	is	an	ordered	collection	of	the	similar	type	of	variables	or	data

items.	Java	allows	arrays	of	any	dimension.	An	array	in	Java	is	a	bit	different	from	C/C++.
We	can	not	specify	the	size	of	the	array	at	the	time	of	declaration.	The	memory	allocation
is	always	dynamic.	Every	array	 in	Java	 is	 treated	as	an	object	with	one	special	attribute
length,	which	specifies	the	number	of	elements	in	the	array.

	

1.	One-Dimensional	array:-

	

Declaration-

	

type	array_name[];														//	No	memory	allocation	takes	place	in	declaration.

														Or

type	[]	array_name;

	

It	is	important	to	note	that	the	declaration	does	not	actually	create	an	array.	It	only	declares
a	reference	that	can	denote	an	array	object.

	

int		a1	[],	a2	;

int		[]	a3,	a4	;
	

These	 two	 declarations	 declare	 a1,	 a3	 and	 a4	 to	 be	 reference	 variables	 that	 can	 denote
array	of	 int,	but	 the	variable	a2	can	not	denote	an	array	of	 int	value.	 It	 is	 simply	an	 int
variable.	When	the	[]	notation	follows	the	type,	all	variable	in	the	declaration	are	array.
Otherwise	the	[]	notation	must	follows	each	individual	array	name	in	the	declaration.

	

Memory	allocation	with	the	help	of	new	operator:-

	

array_name	=	new	type[SIZE];														//	SIZE	can	be	a	constant	or	a	variable.

	

	

Note1-	All	the	elements	of	array	will	be	automatically	initialized	to	zero	but	to	initialize
the	 array	 with	 different	 values	 we	 can	 initialize	 the	 array	 in	 declaration	 itself.	 Array
declaration,	memory	allocation	and	initialization	steps	can	be	combined	into	one:-

	

int	a[]={5,7,1};
	

Note2-Array	index	starts	from	zero.

	

Note3:-In	 Java,	 all	 arrays	 store	 the	 allocated	 size	 in	 a	 variable	 named	 length.	We	 can
access	the	length	of	the	array	using	the	attribute	length:

	

“array_name.length”.
	

Note4-														int	a[],b[];

																												a	=	b	=	new	int[5];
	

In	 the	 above	 steps	 only	 one	 array	 is	 created	 by	 new,	 the	 reference	 of	 this	 array	will	 be
stored	 first	 in	 b	 &	 then	 a.	 So	 both	 a	 &	 b	 are	 pointing	 to	 a	 single	 array.	 Assigning	 a
reference	does	not	create	a	copy	of	the	object.

	

	

Example	4.2	Sum	of	all	the	numbers	stored	in	an	Array.

1.														class	SumArr

2.														{

3.																						public	static	void	main(String	args[])

4.																						{

5.																														int	a[]={10,50,20,40,30};

6.																														int	n=a.length,sum=0;

7.																														for(int	i=0;i<n;i++)

8.																																						sum+=a[i];

9.																														System.out.println(“Sum	of	numbers	is	”	+	sum);

10.																						}

11.														}

Output:	Sum	of	numbers	is	150

	

Example	4.3	Program	to	sort	an	array	using	selection	sorting	technique.

	

1.														import	java.util.Scanner;

2.														class	Sort

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														int	n;

7.																														Scanner	sc	=	new	Scanner(System.in);

8.																														System.out.println(“Enter	how	many	elements”);

9.																														n	=	sc.nextInt();

10.																														int	a[]	=	new	int[n];

11.																														//input	array

12.																														for(int	i=0;i<n;i++)

13.																														{

14.																																						System.out.print(“Enter	element	”	+	(i+1)	+	”	“);

15.																																						a[i]	=	sc.nextInt();

16.																														}

17.																														//sorting

18.																														for(int	i=0;i<n-1;i++)

19.																																						for(int	j=i+1;j<n;j++)

20.																																														if(a[i]	>	a[j])

21.																																														{

22.																																																						int	t=a[i];

23.																																																						a[i]	=	a[j];

24.																																																						a[j]	=	t;

25.																																														}

26.																														//output

27.																														for(int	i=0;i<n;i++)

28.																																						System.out.println(a[i]);

29.																						}

30.														}

2.	Two-Dimensional	Array-

	

Declaration:-

	

type	array_name[][];

or

type[][]	array_name;

	
Memory	allocation:-

	

array_name	=	new	type[ROWS][COLUMNS];

//ROWS	&	COLUMNS	can	be	constants	or	variables

	

So	far	we	have	discussed	the	array	variables	that	can	store	a	list	of	values.	There
will	be	situation	where	a	table	of	value	will	have	to	be	stored.	Consider	the	following	data
table,	which	show	the	value	of	sales	of	three	items	by	sales	person.

	

The	table	contains	total	12	value,	three	in	each	line.	We	can	think	of	this	table	as
a	matrix	consisting	of	four	row	and	three	columns.	Each	row	represents	the	value	of	sales
by	a	particular	sales	person	and	each	columns	represent	the	value	of	sales	of	a	particular
item.

	

Example	4.4	Program	to	print	the	transpose	of	a	matrix

	

1.														import	java.util.*;

2.														class	Transpose

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										Scanner	sc=new	Scanner(System.in);

7.																																										int	r,c;

8.																																										System.out.print(“Enter	how	many	rows”);

9.																																										r=sc.nextInt();

10.																																										System.out.print(“Enter	how	many	cols.”);

11.																																										c=sc.nextInt();

12.																																									

13.																																										int	m[][]=new	int[r][c];

14.																																										//input

15.																																										for(int	i=0;i<r;i++)

16.																																																								for(int	j=0;j<c;j++)

17.																																																								{

18.														System.out.print(“Enter”	+	“element	”	+	(i+1)	+	“,”	+(j+1));

19.																																																																						m[i][j]=sc.nextInt();

20.																																																								}

21.																																										//transpose

22.																																										for(int	i=0;i<c;i++)

23.																																										{

24.																																																								for(int	j=0;j<r;j++)

25.																																																												System.out.print(m[j][i]+”\t”);

26.																																																								System.out.println();

27.																																										}

28.																												}

29.														}

	

Example	4.5	Program	to	multiply	two	matrices	into	a	3rd	matrix.

	

1.														import	java.util.*;

2.														class	MatrixMult

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										Scanner	sc=new	Scanner(System.in);

7.																																										int	r1,c1;

8.																																										System.out.print(“Enter	how	many	rows”);

9.																																										r1=sc.nextInt();

10.																																										System.out.print(“Enter	how	many	cols.”);

11.																																										c1=sc.nextInt();

12.																																										int	r2,c2;

13.																																										System.out.print(“Enter	how	many	rows”);

14.																																										r2=sc.nextInt();

15.																																										System.out.print(“Enter	how	many	cols.”);

16.																																										c2=sc.nextInt();

17.																																										if(c1	!=	r2)

18.																																										{

19.																																																								System.out.println(“Can’t	mult”);

20.																																																								System.exit(1);

21.																																										}

22.																																										int	m1[][]=new	int[r1][c1];

23.																																										//input	m1

24.																																										for(int	i=0;i<r1;i++)

25.																																																								for(int	j=0;j<c1;j++)

26.																																																								{

27.System.out.print(“Enter”	+	“element	”	+	(i+1)	+	“,”	+	(j+1));

28.																																																																						m1[i][j]=sc.nextInt();

29.																																																								}

30.																																										int	m2[][]=new	int[r2][c2];

31.																																										//input	m2

32.																																										for(int	i=0;i<r2;i++)

33.																																																								for(int	j=0;j<c2;j++)

34.																																																								{

35.														System.out.print(“Enter”	+	“element	”	+	(i+1)	+	“,”	+(j+1));

36.																																																																						m2[i][j]=sc.nextInt();

37.																																																								}

38.																																										int	m3[][]=new	int[r1][c2];

39.																																										//matrix	mult

40.																																										for(int	i=0;i<r1;i++)

41.																																																								for(int	j=0;j<c2;j++)

42.																																																																						for(int	k=0;k<c1;k++)

43.																																																																						m3[i][j]+=m1[i][k]*m2[k][j];

44.																																										//Output	m3

45.																																										for(int	i=0;i<r1;i++)

46.																																										{

47.																																																								for(int	j=0;j<c2;j++)

48.																																																												System.out.print(m3[i][j]+”\t”);

49.																																																								System.out.println();

50.																																										}

51.																												}

52.														}

	

3.Variable	size	Array:

	

Array	treat	multidimensional	array	as	“array	of	array”	it	is	possible	to	declare	a	two-d
array	as	follows

	

int	arr[]	[]	=	new	int	[4][];

arr[0]	=	new	int	[1];

arr[1]	=	new	int	[2];

arr[2]	=	new	int	[3];

arr[3]	=	new	int	[4];
	

This	means	total	4	rows	of	array	and	its	columns	starts	from	1	and	increase	one	by	one.	so
they	are	represented	in	the	memory	as	the	follows:

(Memory	allocation)

	

Note1-	All	the	elements	of	array	will	be	automatically	initialized	to	zero	but	to	initialize
the	 array	 with	 different	 values	 we	 can	 initialize	 the	 array	 in	 declaration	 itself.	 Array
declaration,	memory	allocation	and	initialization	steps	can	be	combined	into	one:-

	

int	a[][]	={		{5,7,1},	{1,7,9},	{4,5,7},	{1,1,1}	};

	

Note2-	In	the	above	array	a.length	will	show	the	number	of	rows	i.e.	4	and	a[0].length	will
show	number	of	columns	in	0th	row	i.e.	3

	

Command	Line	Arguments-
	

Sometimes	we	will	want	to	pass	information	into	a	program	when	we	run	it.	This
is	 accomplished	 by	 passing	 command-line	 arguments	 to	 main().	 A	 command	 line
argument	is	the	information	that	directly	follows	the	program’s	name	on	the	command	line
when	it	is	executed.

	

To	 access	 the	 command-line	 arguments	 inside	 a	 Java	 program	we	 have	 to	 use
String	array	passed	to	main().

	

The	JVM	calls	the	main()	method	and	passes	the	command	line	argument	to	it	as
an	array	of	string.	The	length	of	the	array	(i.e	the	number	of	the	command	line	arguments)
is	obtained	using	attribute	length	in	the	above	example.

The	for	loop	displays	the	command	line	argument	on	the	console/monitor.

	

Example	4.6	Program	to	input	names	from	command	line	arguments.

	

1.														class	Hello

2.														{

3.																						public	static	void	main(String	args[])

4.																						{

5.																														for(int	i=0;i<args.length;i++)

6.																																						System.out.println(“Hello	”	+	args[i]);

7.																						}

8.														}

javac	Hello.java

java	Hello	Ravi	Ajay	Vijay

	

Output:	Hello	Ravi

		Hello	Ajay

		Hello	Vijay

Example	4.7	Program	two	print	sum	of	numbers	input	through	command	line
arguments.

	

1.														class	SumCmd

2.														{

3.																						public	static	void	main(String	args[])

4.																						{

5.																														int	sum=0;

6.																														for(int	i=0;i<args.length;i++)

7.																																						sum+=Integer.parseInt(args[i]);

8.																														System.out.println(“Sum	is	”	+	sum);

9.																						}

10.														}

javac	SumCmd.java

java	SumCmd	5	6

	

Output:

Sum	is	11

	

Example	4.8	Program	to	sort	an	array	input	from	command	line.

	

1.														class	SortCmd

2.														{

3.																						public	static	void	main(String	args[])

4.																						{

5.																																			int	n=args.length;

6.																														int	a[]=new	int[n];

8.																														//copy	args	array	to	a	array

9.																														for(int	i=0;i<n;i++)

10.																																						a[i]	=	Integer.parseInt(args[i]);

11.																														//sorting

12.																														for(int	i=0;i<n-1;i++)

13.																																						for(int	j=i+1;j<n;j++)

14.																																														if(a[i]>a[j])

15.																																														{

16.																																																						int	t=a[i];

17.																																																						a[i]=a[j];

18.																																																						a[j]=t;

19.																																																									}

20.																														//Output	Array

21.																														for(int	i=0;i<n;i++)

22.																																						System.out.print(a[i]+”\t”);

23.																						}

24.														}

javac	SortCmd.java

java	SortCmd	5	4	1	3	2

Output:	1														2														3														4														5

Multiple	choice	questions:
	

1.	If	MyProg.java	were	compiled	as	an	application	and	then	run	from	the
command	line	as:	java	MyProg	I	like	tests
what	would	be	the	value	of	args[1]	inside	the	main()	method?
(a)	MyProg
(b)	“I”
(c)	“like”
(d)	3
(e)	4
(f)	null	until	a	value	is	assigned

	

2.	 After	the	declaration:			char[]	c	=	new	char[100];	
what	is	the	value	of	c[50]?
(a)	50
(b)	49
(c)	‘\u0000’
(d)	‘\u0020’

	

3.	 Which	of	the	following	are	legal	declarations	of	a	two-dimensional	array	of
integers?
(a)	int[5][5]a	=	new	int[][];
(b)	int	a	=	new	int[5,5];	
(c)	int[][]a	=	new	int[5][5];
(d)	int[][]a	=	new	[5]int[5];

	

4.	 Which	of	the	following	are	correct	methods	for	initializing	the	array
“dayhigh”	with	7	values?
(a)	int	dayhigh	=	{	24,	23,	24,	25,	25,	23,	21	};
(b)	int	dayhigh[]	=	{	24,	23,	24,	25,	25,	23,	21	};
(c)	int[]	dayhigh	=	{	24,	23,	24,	25,	25,	23,	21	};
(d)	int	dayhigh	[]	=	new	int[24,	23,	24,	25,	25,	23,	21];
(e)	int	dayhigh	=	new[24,	23,	24,	25,	25,	23,	21];

	

5.														Which	of	the	following	is	a	correct	statement?

(a)														A	Java	array	is	an	Object.

(b)														Memory	allocation	for	arrays	in	Java	is	always	dynamic.

(c)															Java	array	is	initialized	by	default	values	of	the	type	of	its	elements.

(d)														All	of	the	above.

Answer’s:														1(c)														2(e)														3(c)														4(b,	c)														5(d)

	

Programming	Exercise:
	

1.	 Write	a	program	to	search	an	element	in	an	array	using	linear	search.
2.	 Write	a	program	to	search	an	element	in	an	array	using	binary	search.

CHAPTER
∞	5	∞

(Class	and	Objects)
Introduction-
Defining	a	class-

Class	represents	a	ADT	(Abstract	Data	Type).	It	acts	like	a	template	using	which
we	can	create	multiple	objects	(instances).	A	class	declaration	only	creates	a	template,	 it
does	not	create	an	actual	object.	A	class	creates	a	new	data	type	that	can	be	used	to	create
objects.	That	is,	a	class	creates	a	logical	framework	that	defines	the	relationship	between
its	members.	When	we	declare	 an	object	 of	 a	 class,	we	 are	 creating	 an	 instance	of	 that
class.	Thus	a	class	is	a	logical	construct.	An	object	has	physical	reality.	(That	is,	an	object
occupies	space	in	memory.)

modifiers	class		<classname>

{

modifiers	type	variables;

.

.

.

modifiers	type	methodName1(parameter-list)

{

														<body	of	the	method>

}

.

.

}

	

Declaring	Objects-													

	

Student	s1;

	

In	the	above	example	s1	is	not	an	object.	In	C++	s1	will	be	treated	as	object	but
in	Java	s1	is	only	a	variable	which	can	hold	reference	to	an	object	of	type	Student.	This
variable	will	hold	garbage	or	null	 reference	until	we	assign	 reference	of	 some	object	of
class	Student.

	

It	does	not	yet	point	to	an	actual	object.	Any	attempt	to	use	this	variable	at	this
point	will	result	in	a	compile-time	error.	It	is	just	like	a	pointer	to	an	object	in	C/C++.	If
this	variable	is	declared	inside	any	block	or	a	method	then	it	 is	a	 local	variable	and	will
not	be	initialized	to	null,	but	if	it	is	declared	in	a	class	then	it	will	be	an	instance	variable
and	will	automatically	be	initialized	to	null.

	

Allocating	Memory-

	

In	Java	memory	is	allocated	dynamically	with	the	help	of	new	operator.

s1	=	new	Student();

	

In	 the	above	example	new	operator	will	allocate	memory	for	an	object	of	class
Student	and	 return	 its	 reference,	which	 is	 then	assigned	 to	 reference	 type	variable	 s1.	 It
will	also	call	a	default	constructor	to	initialize	member	variables.

	

The	above	two	statements	can	be	combined:-

Student	s1	=	new	Student();

	

Note1-	new	allocates	memory	for	an	object	during	 runtime.	 If	new	 is	unable	 to	allocate
memory	(because	memory	is	finite.)	then	it	generate	a	run	time	exception/error.

	

Note2-	If	we	assign	a	reference	variable	to	another	reference	variable	then	only	reference
(address)	 will	 be	 transferred.	 There	 will	 not	 be	 any	 duplicate	 copy	 of	 the	 object.	 For
example	 if	we	create	another	reference	variable	s2	(Student	s2)	and	then	(s1	=	s2).	This
will	not	create	duplicate	object,	same	object	is	referenced	by	s1	and	s2.

	

Any	 changes	made	 in	 s2	will	 also	be	 reflected	 in	 s1.	No	memory	 allocation	 is
done	with	this	assign.	After	a	few	steps	if	we	assign	null	in	s1	then	that	object	will	not	be
destroyed	as	its	reference	is	with	object	s2.	But	if	both	s1	and	s2	are	assigned	with	a	null
value	then	that	object	will	be	destroyed	by	the	garbage	collector	and	the	memory	occupied
by	that	object	will	be	freed.

Example	5.1	Class	containing	member	variables	only.

	

1.														class	A

2.														{

3.																						int	x;

4.																						int	y;

5.														}

6.														class	ClassTest1

7.														{

8.																						public	static	void	main(String	args[])

9.																						{

10.																														A	a1,a2;		//Reference	Varaibles

11.																														a1	=	new	A();		//Object	Createion

12.																														a2	=	new	A();

13.																														a1.x	=	10;

14.																														a1.y	=	20;

15.																														a2.x	=	5;

16.																														a2.y	=	6;

17.																														System.out.println(a1.x	+	“\t”	+	a1.y);

18.																														System.out.println(a2.x	+	“\t”	+	a2.y);

19.																						}

20.														}

	

Output:

10														20

5														6

	

Example	5.2	class	containing	member	variables	&	member	methods.

	

1.														class	A

2.														{

3.																						private	int	x;

4.																						private	int	y;

5.																						void	setdata(int	x1,	int	y1)

6.																						{

7.																														x	=	x1;

8.																														y	=	y1;

9.																						}

10.																						void	display()

11.																						{

12.																														System.out.println(x	+	“\t”	+	y);

13.																						}

14.														}

15.														class	ClassTest2

16.														{

17.																						public	static	void	main(String	args[])

18.																						{

19.																														A	a1	=	new	A();

20.																														A	a2	=	new	A();

21.																														//a1.x=10;		error	as	x	is	private

22.																														a1.setdata(10,20);

23.																														a2.setdata(5,7);

24.																														a1.display();

25.																																	a2.display();

26.																						}

27.														}

	

Output:

10														20

5														7

	

Note-	We	can	declare	the	object	of	a	class	outside	the	class	as	well	as	inside	the	class.

	

Example	5.3	Defining	objects	of	a	class	in	itself.

	

1.														class	A

2.														{

3.																						private	int	x;

4.																						private	int	y;

5.																						void	setdata(int	x1,	int	y1)

6.																						{

7.																														x	=	x1;

8.																														y	=	y1;

9.																						}

10.																						void	display()

11.																						{

12.																														System.out.println(x	+	“\t”	+	y);

13.																						}

14.																						public	static	void	main(String	args[])

15.																						{

16.																														A	a1	=	new	A();

17.																														A	a2	=	new	A();

18.																														a1.setdata(10,20);

19.																														a2.setdata(5,7);

20.																														a1.display();

21.																														a2.display();

22.																						}

23.														}

	

Output:

														10														20

5														7

Modifiers	/	Visibility	Labels	for	members	of	a	class-

	

The	 visibility	 modifiers	 are	 applicable	 only	 on	 members	 of	 a	 class	 not	 on	 local
variables.

	

1.	 private-	If	we	specify	the	modifier	private	with	a	member	variable	or	method
then	that	member	will	not	be	visible	outside	the	class	in	which	it	is	declared.
This	will	hide	the	member	of	a	class	from	other	classes.

	

2.	 public-	If	we	specify	the	modifier	public	with	a	member	variable	or	method
then	 that	 member	 will	 be	 visible	 to	 all	 the	 classes.	 This	 member	 can	 be
accessed	even	outside	the	package.	main()	method	is	always	defined	as	public
because	the	main()	method	is	accessed	by	the	JVM	which	is	outside	the	class
in	which	main()	method	is	defined.

	

3.	 protected-	 A	 member	 declared	 as	 protected	 can	 be	 accessed	 from	 all	 the
classes	 belonging	 to	 the	 same	 package.	 Protected	 members	 can	 also	 be
accessed	from	any	sub	class	of	other	packages.

	

4.	 default	/	no	modifier-	 If	no	visibility	modifier	 is	specified	before	a	member
declaration	then	that	member	can	be	accessed	from	all	the	classes	in	the	same
package.	That	member	can	not	be	accessed	outside	the	package.

	

Visibility	Modifiers	for	a	class	or	interface-

	

1.	 public-	If	a	class	is	to	be	visible	to	all	the	classes	irrespective	of	their	package,
then	 it	must	 be	 declared	 as	 public	 by	 specifying	 the	modifier	 public,	which
should	appear	before	the	keyword	class.

	

2.	 default	/	no	modifier:-	In	the	absence	of	any	access/visibility	modifier	before
the	class,	its	visibility	is	only	within	the	package(group	of	classes)	in	which	it
is	defined.

	

this	Keyword:-

this	is	a	reference	variable	which	stores	the	reference	of	the	object	currently	used
to	call	the	method.	The	reference	of	this	is	replaced	by	the	reference	of	the	calling	object
at	run-time.	Sometimes	a	method	will	need	to	refer	to	the	object	that	invoked	it.	This	can
be	done	with	 the	help	of	 this.	 this	can	be	used	 inside	any	method	 to	refer	 to	 the	current
object.

	

Note:	local	variable	hides	the	instance	variable,	so	we	have	to	use	this	keyword
explicitly.

	

Instance	Variable	Hiding-

As	we	 know,	 it	 is	 illegal	 in	 Java	 to	 declare	 two	 local	 variables	with	 the	 same
name	inside	the	same	or	enclosing	scopes.	But	we	can	have	local	variables	(parameters	of
member	methods)	having	same	name	as	of	instance	member	variables	of	class.

	

When	 a	 local	 variable	 has	 the	 same	 name	 as	 an	 instance	 variable,	 the	 local
variables	 hides	 the	 instance	 variable.	 But	 this	 keyword	 allows	 us	 to	 refer	 to	 instance
variables	even	if	local	variable	hides	it.

	

Example	5.4	use	of	this	keyword

1.														class	A

2.														{

3.																						private	int	x;

4.																						private	int	y;

5.																						void	setdata(int	x,	int	y)

6.																						{

7.																														this.x	=	x;		//this.x	is	the	class	member	&	x	is	local	variable

8.																														this.y	=	y;			

9.																						}

10.																						void	display()

11.																						{

12.																														System.out.println(x	+	“\t”	+	y);

13.																						}

14.														}

15.														class	ClassTest4

16.														{

17.																						public	static	void	main(String	args[])

18.																						{

19.																														A	a1	=	new	A();

20.																														A	a2	=	new	A();

21.																														a1.setdata(10,20);

22.																														a2.setdata(5,7);

23.																														a1.display();

24.																														a2.display();

25.																						}

26.														}

	

Output:

10														20

5														7

	

	

Method	Overloading:-

	

We	can	have	more	 than	one	method	with	 the	same	name	as	 long	as	 they	differ
either	 in	 numbers	 of	 parameters	 or	 type	 of	 parameters	 or	 order	 of	 parameters.	 This	 is
called	method	overloading.

	

While	 calling	 an	 overloaded	 method	 it	 is	 possible	 that	 type	 of	 the	 actual
parameters	 passed	 may	 not	 match	 exactly	 with	 the	 formal	 parameters	 of	 any	 of	 the
overloaded	methods.	In	that	case	parameter	are	promoted	to	next	higher	type	till	a	match
is	 found.	 If	 no	match	 is	 found	 even	 after	 promoting	 the	 parameters	 then	 a	 compilation
error	occurs.

	

Example	 5.5	 In	 this	 example	 there	 are	 two	 setdata()	 methods	 having	 same	 name	 but
having	different	arguments,	so	this	is	method	overloading.

1.														class	A

2.														{

3.																						private	int	x,y;

4.																						void	setdata(int	x1)

5.																						{

6.																														x	=	y	=	x1;

7.																						}

8.																						void	setdata(int	x1,	int	y1)

9.																						{

10.																														x	=	x1;

11.																														y	=	y1;

12.																						}

13.																						void	display()

14.																						{

15.																														System.out.println(x	+	“\t”	+	y);

16.																						}

17.														}

18.														class	ClassTest5

19.														{

20.																						public	static	void	main(String	args[])

21.																						{

22.																																			A	a1	=	new	A();

23.																														a1.setdata(5);

24.																														a1.display();

25.																														A	a2	=	new	A();

26.																														a2.setdata(10,20);

27.																														a2.display();

28.																						}

29.														}

Output:

														5														5

10														20

Constructors-
	

It	is	very	common	requirement	to	initialize	an	object	immediately	after	creation.
We	can	define	instance	methods	for	this	purpose	but	they	have	to	be	invoked	explicitly.

Java	 has	 a	 solution	 for	 this	 requirement.	 Java	 allows	 objects	 to	 initialize
themselves	when	they	are	created	using	constructors.	It	has	the	same

	

The	syntax	of	the	constructors	is	very	similar	to	that	of	instance	methods.	They
have	the	same	name	as	the	class	and	do	not	have	any	return	type.

This	 is	because	 the	 implicit	 return	 type	of	class’s	constructor	 is	 the	class	 itself.
Constructors	can	be	overloaded	just	like	methods.

	

When	operator	new	is	used	to	create	an	instance/object	of	a	class,	JVM	allocates
memory	for	the	object,	then	initializes	the	instance	variables	to	their	default	initial	values,
and	then	calls	the	appropriate	constructor	to	initialize	the	instance	variables.

	

Note-

The	 name	 constructor	 is	 a	 bit	 confusing.	 It	 appears	 as	 if	 the	 purpose	 of	 the
constructor	is	to	create	an	object/instance.	The	object	is	created	and	instance	variables	and
static	variables	are	initialized	to	their	default	initial	values	before	constructor	is	called.

	

So	the	purpose	of	the	constructor	is	to	initialize	the	instance	variables	with	values
other	than	the	default	values.

	

Type	of	constructors-
	

																						Default	Constructor:-		Every	class	has	a	default	constructor	(if	no
explicit	constructor	is	defined)	that	does	not	take	any	argument	and	its	body
does	 not	 have	 any	 statements.	 The	 compiler	 generates	 the	 default
constructor	automatically.

	

The	 compiler	 stops	 generating	 default	 constructor	 as	 soon	 as	we	 add
our	 own	 constructor.	When	we	 do	 not	 create	 any	 constructor	 in	 the	 class
then	 JVM	 will	 create	 the	 default	 constructor	 and	 initialize	 the	 instance
variable	with	default	values	null	or	zero.

	

	

	

	

Example	5.6	use	of	default	counstructor

1.														class	A

2.														{

3.																						private	int	x;

4.																						private	int	y;

5.																						void	display()

6.																						{

7.																														System.out.println(x	+	“\t”	+	y);

8.																						}

9.														}

10.														class	ClassTest6

11.														{

12.																						public	static	void	main(String	args[])

13.																						{

14.																																												A	a1	=	new	A();

15.																																												a1.display();

16.																						}

17.														}

	

Output:

0														0

	

Note:-Here	we	 have	 not	 created	 any	 constructor	 then	 JVM	create	 automatically	 default
constructor	after	creating	object	and	initialize	the	instance	variables	from	0	or	null.

	

																						Default	Zero	argument	constructors-	We	can	replace	the	default
constructor	with	our	own	zero	argument	constructor.	This	will	allow	us	 to
initialize	the	instance	variables	to	any	value.

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Parameterized	Constructors:-	 A	 constructor	which	 takes
parameters	is	called	as	parameterized	constructors.

	

Note-	It	is	possible	to	overload	the	constructor	just	like	methods.	It	is	called	as	constructor
overloading.

	

Example	5.7	use	of	constructor.

	

1.														class	A

2.														{

3.																						private	int	x;

4.																						private	int	y;

5.																						A()	//Zero	argument	constructor

6.																						{

7.																														x	=	y	=	0;

8.																						}

9.																						A(int	x1)	//Parameterized	one	argument	constructor

10.																						{

11.																														x	=	y	=	x1;

12.																						}

13.																						A(int	x1,	int	y1)	//Parameterized	two	argument	constructor

14.																						{

15.																														x	=	x1;

16.																														y	=	y1;			

17.																						}

18.																						void	display()

19.																						{

20.																														System.out.println(x	+	“\t”	+	y);

21.																						}

22.														}

23.														class	ClassTest7

24.														{

25.																						public	static	void	main(String	args[])

26.																						{

27.																														A	a1	=	new	A();

28.																														a1.display();

29.																														A	a2	=	new	A(5);

30.																														a2.display();

31.																														A	a3	=	new	A(4,7);

32.																														a3.display();

33.																						}

34.														}

	

Output:														0														0

5														5

4														7

	

Example5.8:

	

1.														import	java.util.Scanner;

2.														class	Complex

3.														{

4.																												private	int	real,imag;

5.																												Complex()//zero	arg.	constructor

6.																												{

7.																																										real=imag=0;

8.																												}

9.																												Complex(int	real,	int	imag)

10.																												{

11.																																										this.real=real;

12.																																										this.imag=imag;

13.																												}

14.																												void	getdata()

15.																												{

16.																																										Scanner	sc=new	Scanner(System.in);

17.																																										System.out.print(“Enter	real”);

18.																																										real=sc.nextInt();

19.																																										System.out.print(“Enter	imag”);

20.																																										imag=sc.nextInt();

21.																												}

22.																												void	display()

23.																												{

24.																														if(imag>=0)

25.																																										System.out.println(real+”+”+imag+“i”);

26.																														else

27.																																										System.out.println(real+””+imag+“i”);

28.																												}

29.																												Complex	sum(Complex	c)

30.																												{

31.																																										Complex	t=new	Complex();

32.																																										t.real=real+c.real;

33.																																										t.imag=imag+c.imag;

34.																																										return	t;

35.														//																												or

36.														//																												return	new	Complex(real+c.real,imag+c.imag);

37.																												}

38.																												Complex	mult(Complex	c)

39.																												{

40.																																										Complex	t=new	Complex();

41.																																										t.real=real*c.real-imag*c.imag;

42.																																										t.imag=real*c.imag+imag*c.real;

43.																																										return	t;

44.																												}

45.																												public	static	void	main(String	args[])

46.																												{

47.																																										Complex	c1=new	Complex();

48.																																										Complex	c2=new	Complex();

49.																																										Complex	c3=null,c4=null;

50.													

51.																																										c1.getdata();

52.																																										c2.getdata();

53.																																										c3=c1.sum(c2);

54.																																										System.out.print(“Sum	is	“);

55.																																										c3.display();

56.																																										c4=c1.mult(c2);

57.																																										System.out.print(“Product	is	“);

58.																																										c4.display();

59.																												}		}

finalize	()	Method-
	

Sometimes	 an	 object	 will	 need	 to	 perform	 some	 action	 when	 it	 is	 destroyed.	 For
example,	 if	an	object	 is	holding	some	non-Java	 resource	such	as	a	 file	handler,	 then	we
might	want	to	make	sure	these	resources	are	freed	before	an	object	is	destroyed.

	

To	handle	 such	 situations,	 Java	 provides	 a	mechanism	called	 finalization.	By	using
finalization	we	can	define	specific	actions	that	will	occur	when	an	object	is	just	about	to
be	 reclaimed	 by	 the	 garbage	 collector.	 finalize	 ()	 is	 only	 called	 just	 prior	 to	 garbage
collection.	 It	 is	 not	 called	 when	 an	 object	 goes	 out	 of	 scope.	 In	 C++	 the	 concept	 of
destructor	function	is	used	for	finalization	but	it	is	not	exactly	same	as	finalize	()	in	Java.

	

protected	void	finalize()

{

														//	finalization	code	here.

}

	

Note-Instead	of	protected	modifier	we	can	also	use	public.

	

Type	of	Variables-
	

Java	has	three	kinds	of	variables:

	

1.														Instance	variables-
	

Variable	declared	in	a	class	as	a	member	outside	all	member	methods	are	known	as
instance	variable.	There	will	 be	 as	many	 copies	 of	 that	 variable	 as	 there	 are	 number	 of
objects.

	

There	 is	 no	 need	 to	 initialize	 instance	 variable	 in	 Java	 because	 these	 variables	 are
initialized	 as	 soon	 as	 the	 object	 is	 created	 and	 the	 memory	 is	 allocated	 with	 the	 new
operator.

	

The	 variables	 are	 initialized	 according	 to	 their	 types.	All	 the	 numeric	 variables	 are
initialized	 automatically	 with	 0,	 Boolean	 variable	 with	 false,	 and	 reference	 variables
(objects)	with	null	value.

	

We	can	access	these	variables	by	using	object	name	and	the	dot	(.)	operator.	(Object
reference	variable.instance	variable	name).	We	can	not	use � 	operator	to	separate	object
reference	variable	and	the	instance	variable	as	in	C/C++.

	

	

2.														Local	Variables:-
	

Variables	declared	inside	a	method	is	known	as	Local	variable.	It	is	not	same	as
instance	variable.	There	is	no	automatic	initialization	for	the	Local	variable.

	

3.														Static	Variables:-
	

Static	variables	are	also	declared	outside	methods/blocks	like	instance	variables.
But	 the	 static	 variables	 make	 use	 of	 the	 modifier	 static	 before	 the	 data	 type.	 Static
variables	are	global	to	a	class	and	all	of	its	instances	(objects).

	

They	are	useful	for	keeping	track	of	global	states.	For	example,	a	static	variable
count	 in	 a	 class	 can	 store	 the	 number	 of	 instances/objects	 of	 the	 class	 created	 in	 the
program	at	any	instance	of	time.

	

The	 objects	 can	 communicate	 using	 static	 variables	 just	 like	 C	 functions
communicate	 through	global	variables.	For	static	variables	 there	 is	only	one	copy	of	 the
variable	 irrespective	 of	 number	 of	 instances/objects	 created	 in	 the	 program,	 which	 is
shared	across	all	the	instances.

	

The	dot	(.)	operator	is	used	to	access	the	class	variables	also,	but	we	can	access
the	 static	 variable	 using	 class	 name	 as	 well	 as	 object	 name.	 If	 we	 declare	 to	 different
objects	the	both	will	point	to	same	copy	the	static	variable.

	

Static	variable	is	initialized	automatically	with	their	default	values	(zero,	false	or
null)	as	soon	as	the	class	is	loaded	/	used.

	

They	can	only	call	other	static	methods.	They	must	only	access	static	data.	They
can	not	refer	to	this	or	super	in	any	way.	(The	key	word	super	relates	to	inheritance	and	is
described	later.)

	

Example	5.9

1.														class	A

2.														{

3.																						int	x;										//instance	variable

4.																						static	int	y;			//static	or	class	variable

5.														}

6.														class	ClassTest8

7.														{

8.																						public	static	void	main(String	args[])

9.																						{

10.																														A	a1	=	new	A();

11.																														A	a2	=	new	A();

12.																														A	a3	=	new	A();

13.																														a1.x	=	10;

14.																														a1.y	=	20;

15.																														a2.x	=	11;

16.																														a2.y	=	21;

17.																														a3.x	=	12;

18.																														a3.y	=	22;

19.																														System.out.println(a1.x	+	“\t”	+	a1.y);

20.																														System.out.println(a2.x	+	“\t”	+	a2.y);

21.																														System.out.println(a2.x	+	“\t”	+	a3.y);

22.																						}

23.														}

	

Output:

10														22

11														22

12														22

	

Type	of	Methods:-

	

1.														Instance	methods.

2.														Static	methods.

	

Instance	methods:-

	

These	are	same	as	C++	functions.	Instance	methods	can	be	invoked	only	through
object.	If	we	call	a	instance	method	inside	a	static	method	of	same	class	then	also	we	have
to	use	object	name.

	

Static	Methods:-

	

Static	methods	can	be	invoked	using	object	as	well	as	class	name.	Static	methods
can	access	only	static	members.	Static	methods	can	be	called	directly	(without	object	or
class	name)	from	a	static	method	of	same	class.

	

Example	5.10
1.														class	A

2.														{

3.																						int	x;

4.																						static	int	y;

5.																						static	int	sum(int	a,	int	b)

6.																						{

7.																		//y	=	5;	no	error	static	method	can	access	static	variable

8.																//x	=	10;	error	static	method	can’t	access	instance	variable

9.														//A	a1	=	new	A();

10.										//a1.x	=	10;	No	error	as	static	method	can	access	instance	variable

11.														//through	objects.

12.										//this.x	=	10;	error	as	static	method	can’t	access	this	or	super	keyword

13.																														int	c;

14.																														c	=	a+b;

15.																														return(c);

16.																						}

17.																						static	float	avg(int	a,	int	b)

18.																						{

19.																														return	(float)(a+b)/2;

20.																						}

21.														}

22.														class	ClassTest9

23.														{

24.																						public	static	void	main(String	args[])

25.																						{

26.														System.out.println(A.sum(5,6));	//	static	methods	can	be	called	through

27.																																																										//	class	name

28.																														System.out.println(A.avg(5,6));

29.																														A	a1	=	new	A();

30.														System.out.println(a1.sum(5,6));	//	static	methods	can	also	be	called

31.																																																														//	through	objects
32.																						}

33.														}

	

Output:

11

5.5

11

	

Initialize	&	static	Block-	Initialize	block	is	used	to	initialize	instance	member	variables
of	 the	class	&	static	block	 is	used	 to	 initialize	 static	member	variables	of	 the	class.	But
constructor	is	called	after	these	blocks.

	

Example	5.11:

	
1.														class	A

2.														{

3.																						int	x;

4.																						static	int	y;

5.													

6.																						{							//Inititalize	block	to	initialize	instance	variables

7.																														x	=	10;

8.																						}

9.													

10.																						static		//static	block	to	initialize	static	variables

11.																						{

12.																														y	=	5;

13.																						}

14.														}

15.														class	ClassTest10

16.														{

17.																						public	static	void	main(String	args[])

18.																						{

19.																														A	a1	=	new	A();

20.																														System.out.println(a1.x	+	“\t”	+	a1.y);

21.																						}

22.														}

Output:

10														5

Final	Variables-
	

If	a	variable	 is	declared	as	final	 then	we	can	not	change	its	value	final	(double
PI=3.141;)	final	variable	do	not	occupy	memory	on	a	per	instance	basis.	A	final	variable
is	a	constant	variable	its	value	can	not	be	change.	A	final	variable	reference	type	can	not
change	its	reference.

	

Example	5.12

1.														class	A

2.														{

3.																						void	m1()		

4.																						{

5.																														System.out.println(“Inside	m1()”);

6.																						}

7.														}

8.														class	ClassTest11

9.														{

10.																						public	static	void	main(String	args[])

11.																						{

12.																														final	int	x=10;	//can	not	change

13.																					final	int	y;				//	Variable	y	not	initialized	so	we	can	initialize	y	later

14.														y=20;									//	Now	y	is	initialize	so	after	this	we	can’t	change	its	value

15.																						//						y=30;										Error

16.																														System.out.println(x);

17.																														System.out.println(y);

18.																		final	A	a1=new	A();			//	a1	is	a	constant	reference	so	we	can	not

19.														//	assign	reference	of	any	other	object	in	f1.

20.																														a1.m1();

21.																														A	a2	=	new	A();

22.																					//							a1	=	a2;			error															

23.																						}

24.														}

Output:															10

20

Inside	m1()													

	

Argument	Passing	Mechanism-
	

1.	 Call	by	Value.
2.	 Call	by	reference.

	

When	a	primitive	type	(int,	float,	long	etc.)	is	passed	to	a	method,	it	is	done	by
use	 of	 call-by-value	 approach.	 In	 case	 of	 objects	 what	 is	 actually	 passed	 is	 an	 object
reference.

	

An	 object	 reference	 is	 also	 passed	 by	 using	 call-by-value	 approach.	 However,
since	the	value	being	passed	refers	to	an	object,	the	copy	of	that	value	will	still	refer	to	the
same	object	that	its	corresponding	argument	does.

	

For	 example	 if	we	 pass	 a	 reference	 variable	 a1	which	 stores	 a	 reference	 of	 an
object	into	a	function	and	in	function	a2	is	the	formal	parameter	then	a1	and	a2	both	points
to	the	same	object.

	

Any	changes	in	the	value	of	the	object	through	a2	will	also	be	reflected	in	a1.	But
if	we	assign	a	new	reference	in	a2	then	that	reference	will	not	be	automatically	copied	in
a1.

	

Example	5.13

1.														class	Box

2.														{

3.																						private	int	feet;

4.																						private	int	inches;

5.																						Box()

6.																						{

7.																														feet	=	inches	=	0;

8.																						}

9.																						Box(int	feet,	int	inches)

10.																						{

11.																														this.feet	=	feet;

12.																														this.inches	=	inches;

13.																						}

14.																						void	display()

15.																						{

16.																			System.out.println(“Feet	is	”	+	feet	+”\n”	+	“Inches	is	”	+inches);

17.																						}

18.																						void	swap(Box	obj)

19.																						{

20.																														int	t;

21.																														t	=	feet;

22.																														feet	=	obj.feet;

23.																														obj.feet	=	t;

24.													

25.																														t	=	inches;

26.																														inches	=	obj.inches;

27.																														obj.inches	=	t;

28.																					}

29.														}

30.														class	ClassTest12

31.														{

32.																						public	static	void	main(String	args[])

33.																						{

34.																																Box	b1	=	new	Box(5,6);

35.																																										Box	b2	=	new	Box(7,4);

36.																													b1.swap(b2);	//Object	is	passed	by	reference.

37.																													b1.display();

38.																													b2.display();

39.																						}

40.														}

	

Output:

Feet	is	7

Inches	is	4

Feet	is	5

Inches	is	6

	

Nested	and	Inner	Classes-
	

It	is	possible	to	define	a	class	within	another	class;	such	classes	are	known	as	nested
classes.	The	scope	of	a	nested	class	is	bounded	by	the	scope	of	its	enclosing	class.

	

A	nested	class	has	access	to	the	members,	including	private	members	of	the	class	in
which	it	 is	nested.	However	 the	enclosing	class	does	not	have	access	 to	 the	members	of
the	nested	class.

	

There	are	two	types	of	nested	classes	static	and	non	static.	A	static	nested	class	is	one
which	has	the	static	modifier	applied.	Because	it	is	static,	it	must	access	the	members	of
its	enclosing	class	through	an	object.	That	is,	it	can	not	refer	to	members	of	its	enclosing
class	directly.	Because	of	this	restriction,	static	nested	classes	are	seldom	used.

	

A	non-static	nested	class	has	access	 to	all	of	 the	variables	and	methods	of	 its	outer
class	and	may	refer	to	them	directly	in	the	same	way	that	other	non-static	members	of	the
outer	class	do.

	

	

Example	5.14

	

1.														class	Outer

2.														{

3.																						class	Inner

4.																						{

5.																														int	member_inner=7;

6.																														Inner()

7.																														{

8.																																						member_outer	=	5;

9.																																						System.out.println(member_outer);

10.																															}

11.																						}

12.																						private	int	member_outer;

13.																						Outer()

14.																						{

15.																					//							member_inner	=	9;								error

16.																														Inner	obj	=	new	Inner();

17.																														System.out.println(obj.member_inner);

18.																						}

19.														}

20.														class	ClassTest13

21.														{

22.																																			public	static	void	main(String	args[])

23.																				{

24.																																							Outer	out_obj	=	new	Outer();

25.																																				}

26.														}

	

Output:

5

7

	

Example	5.15:

	

1.														class	Outer

2.														{

3.																						static	class	Inner

4.																						{

5.																														int	member_inner=7;

6.																														Inner()

7.																														{

8.																																						//	member_outer	=	5;	error

9.																																						//	System.out.println(member_outer);	error

10.																																						Outer	obj	=	new	Outer();

11.																																						obj.member_outer	=	5;

12.																																						System.out.println(obj.member_outer);

14.																															}

15.																						}

16.																						private	int	member_outer;

17.																						void	prn()

18.																						{

19.																														Inner	obj	=	new	Inner();

20.																														System.out.println(obj.member_inner);

21.																						}

22.														}

23.														class	ClassTest14

24.														{

25.																						public	static	void	main(String	args[])

26.																						{

27.																														Outer	out_obj	=	new	Outer();

28.																														out_obj.prn();

29.																					}

30.														}

	

Output:

5

7

	

	

Class	Random
Example	5.16:

	

1.														import	java.util.Random;

2.														class	RandomTest

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Random	r1	=	new	Random();

7.																														for(int	i=1;i<=10;i++)

8.																																						System.out.println(Math.abs(r1.nextInt()));

9.																						}

10.														}

	

	

	

	

	

	

	

	

	

Theory	Questions:
	

1.														If	we	want	a	member	variable	to	not	be	accessible	outside	the	current
class	at	all,	what	keyword	should	precede	the	name	of	the	variable	when	declaring
it?

	

2.														In	Java,	how	are	objects	/	values	passed	around.

	

3.														Consider	the	code	below:

public	static	void	main(String	args[])
{

int	a	=	5;
System.out.println(cube(a));

}
int	cube(int	theNum)
{

return	theNum	*	theNum	*	theNum;
}

Explain	the	importance	of	“static”	keyword	
What	will	happen	when	we	attempt	to	compile	and	run	this	code?

	

a)	It	will	not	compile	because	cube	is	already	defined	in	the	java.lang.Math
class.

b)	It	will	not	compile	because	cube	is	not	static.

c)	It	will	compile,	but	throw	an	arithmetic	exception.

d)	It	will	run	perfectly	and	print	“125”	to	standard	output.

	

4.														What	does	a	static	inner	class	mean?	How	is	it	different	from	any	other
static	member

	

5.														How	do	we	declare	constant	values	in	java

	

6.														What	is	the	meaning	of	“final”	keyword?

	

7.														What	is	the	class	variables?

	

	

	

	

Answer:
	
When	we	 create	 a	 number	 of	 objects	 of	 the	 same	 class,	 then	 each	 object	will
share	a	common	copy	of	variables.	That	means	that	 there	 is	only	one	copy	per
class,	no	matter	how	many	objects	are	created	from	it.	Class	variables	or	static
variables	are	declared	with	the	static	keyword	in	a	class.

	

These	variables	are	stored	in	static	memory.	Class	variables	are	mostly
used	 for	 constants,	 variable	 that	 never	 change	 its	 initial	 value.	Static	 variables
are	always	called	by	the	class	name.

	

This	variable	is	created	when	the	program	starts	i.e.	it	is	created	before
the	instance	is	created	of	class	by	using	new	operator	and	gets	destroyed	when
the	programs	stops.	The	scope	of	the	class	variable	is	same	as	instance	variable.

	

The	 class	 variable	 can	 be	 defined	 anywhere	 at	 class	 level	 with	 the
keyword	 static.	 It	 initial	 value	 is	 same	 as	 instance	 variable.	 When	 the	 class
variable	is	defined	as	int	then	it’s	initial	value	is	by	default	zero,	when	declared
boolean	its	default	value	 is	 false	and	null	 for	object	 references.	Class	variables
are	associated	with	the	class,	rather	than	with	any	object.

	

8.														Explain	garbage	collection.

Answer:	 Garbage	 collection	 is	 one	 of	 the	 most	 important	 feature	 of	 Java.
Garbage	 collection	 is	 also	 called	 automatic	 memory	 management	 as	 JVM
automatically	 removes	 the	 unused	 variables/objects	 (value	 is	 null)	 from	 the
memory.	User	program	cann’t	directly	free	the	object	from	memory,	instead	it	is
the	 job	 of	 the	 garbage	 collector	 to	 automatically	 free	 the	 objects	 that	 are	 no
longer	referenced	by	a	program.

	

Every	 class	 inherits	 finalize()	 method	 from	 java.lang.Object,	 the
finalize()	 method	 is	 called	 by	 garbage	 collector	 when	 it	 determines	 no	 more
references	to	the	object	exists.

	

In	Java,	it	is	good	idea	to	explicitly	assign	null	into	a	variable	when	no
more	 in	 use.	 In	 Java	 on	 calling	System.gc()	 and	Runtime.gc(),	 	 JVM	 tries	 to
recycle	 the	unused	objects,	 but	 there	 is	 no	guarantee	when	 all	 the	objects	will
garbage	collected.	

	

9.														Can	we	call	one	constructor	from	another	if	a	class	has	multiple
constructors?

Yes.	Use	this()	to	call	a	constructor	from	an	other	constructor.

10.														What’s	the	difference	between	constructors	and	normal	methods?
Constructors	must	have	the	same	name	as	the	class	and	can	not	return	a	value.	They
are	only	called	once	while	regular	methods	could	be	called	many	times	and	it	can
return	a	value	or	can	be	void.

	

11.														How	we	can	force	the	garbage	collection?
Garbage	collection	automatic	process	and	can’t	be	forced.	We	could	request	it	by
calling	System.gc().	JVM	does	not	guarantee	that	GC	will	be	started	immediately.

	

12.														Which	of	the	following	is	not	a	correct	statement.

	

(a)														Local	variable	in	Java	are	always	initialized	by	default	values.

(b)														Local	variables	in	Java	must	be	initialized	before	use.													

(c)														Local	variables	in	an	inner	block	can	not	have	the	same	name
as	a	local	variable	in	outer	block.

(d)														Local	variables	in	two	blocks	as	the	same	level	can	have	same
name.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	

	
	

CHAPTER
∞	6	∞

(Inheritance)
	

Introduction-
When	the	properties	of	the	one	class	is	transferred	into	another	class	then	it’s	said

to	be	an	 inheritance.	 In	 this	way	 the	 inherited	class	 is	called	 to	be	a	super	class	or	base
class	 or	 parent	 class	 and	 inheriting	 class	 is	 called	 to	 be	 a	 child	 class	 sub	 class	 derived
class.

	

Inheritance	 allows	 us	 to	 extend	 an	 existing	 class	 (Base	 class)	 by	 adding	 the
additional	 features.	 It	 encourages	 the	 code	 reusability,	which	 help	 in	 reducing	 the	 code
size	although	it	may	lead	to	complexity	in	some	cases.

As	an	example	if	we	have	completed	the	code	of	the	simple	calculator.	After	it	we	need	to
develop	the	scientific	calculator	then	we	have	two	alternatives:

	

(i)														Make	a	new	class.(Rewriting	the	class)

(ii)														Extending	the	class.

	

In	the	most	cases	second	alternative	will	be	a	better	choice.	In	this	case	we	have
to	write	the	small	piece	of	code.	At	the	same	time	we	won’t	have	to	spend	much	time	in
debugging	and	testing	as	the	base	class	is	already	tested	and	is	in	use	for	a	long	period	of
time.	 When	 we	 have	 to	 inherit	 one	 class	 into	 another	 class	 then	 we	 have	 to	 use	 the
“extends”	keyword.

Syntax:														class	sub_class	extends	base_class

																																										

	

														Class	A	(super	class	or	base	class	or	parent	class).

														Class	B	(child	class	or	derived	class	or	subclass).

	

The	 sub	 class	 will	 have	 all	 the	 features	 of	 base	 class	 in	 addition	 to	 the	 new	 features
defined	 in	 the	 extended	 class.	 Java	 does	 not	 support	 the	 multiple-inheritance	 but	 its
support	multiple	interface	inheritance	so	sub	class	can	extends	only	one	base	class.

	

Example	6.1:

1.														class	A

2.														{

3.																						int	x;

4.																						void	setX(int	x1)

5.																						{

6.																														x	=	x1;

7.																						}

8.																						void	displayX()

9.																						{

10.																														System.out.println(x);

11.																						}

12.														}

13.														class	B	extends	A

14.														{

15.																						int	y;

16.																						void	setY(int	y1)

17.																						{

18.																														y	=	y1;

19.																						}

20.																						void	displayY()

21.																						{

22.																														System.out.println(y);

23.																						}

24.														}

25.														class	InheritTest1

26.														{

27.																						public	static	void	main(String	args[])

28.																						{

29.																														A	a1	=	new	A();			//	4	bytes

30.																														a1.setX(5);

31.																														a1.displayX();

32.																														B	b1	=	new	B();			//	8	bytes

33.																														b1.setX(10);

34.																														b1.setY(20);

35.																														b1.displayX();

36.																														b1.displayY();

37.																						}

38.														}

	

Output:

5

10

20

	

Member	Hiding:-
	

If	 a	 sub-class	 member	 has	 the	 same	 name	 (and	 same	 signature	 in	 case	 of
methods)	as	that	of	a	super-class	member	then	it	hides	the	super-class	member.

	

Although	both	the	members	might	be	available	in	the	sub-class	but	using	member
name	we	can	only	access	sub-class	member	as	it	hides	the	member	of	the	same	name	in
the	super-class.

	

Using	keyword	super
	

Whenever	a	subclass	needs	to	refer	to	its	immediate	super	class,	it	can	do	so	by
use	of	keyword	super.	super	has	two	general	uses:

	

1.	 Calling	super	class’s	constructor

	

A	subclass	can	call	a	constructor	method	defined	by	 its	super	class	by	use	of	 the
following	form	of	super.															super	(parameter-list);

	

Here,	 parameter-list	 specifies	 any	 parameters	 needed	 by	 the	 constructor	 in	 the
super	 class.	 In	 fact	 super()	must	 always	 be	 the	 first	 statement	 executed	 inside	 a
subclass’s	constructor.

	

2.	 Accessing	a	member	of	the	super	class	that	has	been	hidden	by	a	member	of	a
subclass.

	

The	 keyword	 super	 can	 be	 used	 to	 access	 the	 hidden	 members	 of	 the	 super	 as
follows:

super.member;

Here,	member	can	be	either	a	method	or	a	data	member.

	

Method	Overloading	and	Method	Overriding:-

	

Method	Overloading:-

	

When	two	or	more	methods	having	same	name	but	different	parameters	then	it	is
said	to	be	a	methods	overloading.	Method	overloading	is	used	when	object	are	required	to
perform	similar	task	but	using	different	input	parameters.

	

When	we	 call	 a	method,	 java	matches	 up	 the	method	 name	 first	 and	 then	 the
number	and	type	of	parameters.	To	decide	which	one	of	the	method	definition	is	to	called
is	known	as	polymorphism.

	

Method	Overriding:-

	

We	have	 seen	 that	 a	method	 in	 a	 super	 class	 is	 inherited	by	 its	 subclass	 and	 is
used	by	 the	object	created	by	 the	subclass.	Method	 inheritance	enables	us	 to	define	and
use	 method	 repeatedly	 in	 subclass	 without	 having	 to	 define	 the	 method	 again	 in
subclass.													

	

In	the	class	hierarchy,	when	an	instance	method	in	a	subclass	has	the	same	name
signature	 as	 an	 instance	method	 (non	private)	 in	 its	 super	 class,	 then	 the	method	 in	 the
subclass	is	said	to	override	the	method	in	the	super	class.

When	an	overridden	method	is	called	from	within	a	subclass,	it	will	always	refer
to	the	version	of	that	method	defined	by	the	subclass.	The	version	of	the	method	defined
by	the	super	class	will	be	hidden.

	

	

	

Example	6.2

	

1.														class	A

2.														{

3.																						int	x;

4.																						void	set(int	x1)

5.																						{

6.																														x	=	x1;

7.																						}

8.																						void	display()

9.																						{

10.																														System.out.println(x);

11.																						}

12.														}

13.														class	B	extends	A

14.														{

15.																						int	y;

16.																						void	set(int	x1,int	y1)	//set	method	of	class	B	is	not	overriding	set

17.																																												//	method	of	class	A	as	arguments	are	different

18.																						{

19.																														set(x1);			//This	will	call	set()	of	class	A

20.																														y	=	y1;

21.																						}

22.																						void	display()	//display	method	of	class	B	is	overriding	display

23.																																					//method	of	class	A

24.																						{

25.																												//		display();		This	will	call	display	of	class	B

26.																														super.display();	//	This	will	call	display	of	class	A

27.																														System.out.println(y);

28.																						}

29.														}

30.														class	InheritTest2

31.														{

32.																						public	static	void	main(String	args[])

33.																						{

34.																														B	b1	=	new	B();

35.																														b1.set(10,20);

36.																														b1.display();

37.																						}

38.														}

	

Output:

10

20

	

Java	support	the	following	inheritance:
	

[1]														Single	inheritance.

[2]														Multilevel	inheritance.

[3]														Hierarchical	Inheritance.

	

[1]														Single	inheritance.
	

																																										

Example	6.3:

	

1.														class	A

2.														{

3.																						private	int	x;

4.																						A()

5.																						{

6.																														x	=	0;

7.																						}

8.																						A(int	x1)

9.																						{

10.																														x	=	x1;

11.																						}

12.																						void	display()

13.																						{

14.																												System.out.print(x);

15.																						}

16.														}

17.														class	B	extends	A

18.														{

19.																						private	int	y;

20.																						B()

21.																						{

22.																														super();

23.																									//x=0;			error	as	x	is	private

24.																														y=0;

25.																						}

26.																						B(int	x1,	int	y1)

27.																						{

28.																														super(x1);

29.																														//x	=	x1;	error	as	x	is	private

30.																														y	=	y1;

31.																						}

32.																						void	display()

33.														{

34.																														super.display();

35.																														System.out.print(y);

36.																						}

37.														}

38.														class	InheritTest3

39.														{

40.																						public	static	void	main(String	args[])

41.																						{

42.																														B	b1	=	new	B();

43.																														b1.display();

44.																														B	b2	=	new	B(10,20);

45.																														b2.display();

46.																						}

47.														}

	

Output:

0	0	10	20

	

	

[2]														Multilevel	inheritance.
	

	

	

	

Example	6.4

	

1.														class	A

2.														{

3.																						private	int	x;

4.																						A()

5.																						{

6.																x	=	0;

7.																																				}

8.																						A(int	x1)

9.																						{

10.																														x	=	x1;

11.																						}

12.																						void	display()

13.																						{

14.																														System.out.println(x);

15.																						}

16.														}

17.														class	B	extends	A

18.														{

19.																						private	int	y;

20.																						B()

21.																						{

22.																														super();

23.																														y=0;

24.																						}

25.																						B(int	x1,	int	y1)

26.																						{

27.																														super(x1);

28.																														y	=	y1;

29.																						}

30.																						void	display()

31.																						{

32.																														super.display();

33.																														System.out.println(y);

34.																						}

35.														}

36.														class	C	extends	B

37.														{

38.																						private	int	z;

39.																						C()

40.																						{

41.																														super();

	

42.																														z=0;

43.																						}

44.																						C(int	x1,	int	y1,	int	z1)

45.																						{

46.																														super(x1,y1);

47.																														z	=	z1;

48.																						}

49.																						void	display()

50.																						{

51.																														super.display();

52.																														System.out.println(z);

53.																						}

54.														}

55.														class	InheritTest4

56.														{

57.																						public	static	void	main(String	args[])

58.																						{

59.																														C	c1	=	new	C();

60.																														c1.display();

61.																														C	c2	=	new	C(10,20,30);

62.																														c2.display();

63.																						}

64.														}

	

Output:

														0

0

0

10

20

30

	

	

	

	

[3]														Hierarchical	inheritance.

																																										

	

Order	of	Constructor	calling:-

When	 a	 class	 hierarchy	 is	 created,	 in	 what	 order	 are	 the	 constructors	 for	 the
classes	 that	 make	 up	 the	 hierarchy	 called?	 The	 answer	 is	 that	 in	 a	 class	 hierarchy,
constructors	are	called	in	the	order	of	derivation,	from	super	class	to	subclass.

	

Further,	 since	 super()	 must	 be	 the	 first	 statement	 executed	 in	 a	 subclass’s
constructor;	 this	order	 is	 the	same	whether	or	not	super()	 is	used.	 If	super()	 is	not	used,
then	the	default	or	parameter	less	constructor	of	each	super	class	be	executed.

	

Constructors	 are	 executed	 in	 order	 of	 derivation.	Because	 a	 super	 class	 has	 no
knowledge	of	any	sub	class,	any	initialization	it	needs	to	perform	is	separate	and	possibly
pre-requisite	 to	 any	 initialization	 performed	 by	 the	 sub	 class.	 Therefore	 it	 must	 be
executed	first.

	

The	keyword	super	is	used	subject	to	the	following	conditions.

	

									super()	constructor	may	only	be	called	within	a	subclass	constructor	method.

	

	 	 	 	 	 	 	 	 	The	call	to	super	class	constructor	must	appear	as	the	first	statement	within
the	subclass	constructor.

	

	 	 	 	 	 	 	 	 	The	 parameter	 in	 the	 super	 call	 must	 match	 the	 order	 and	 type	 of	 the
arguments	of	the	super	class	constructor.

	

	

	

Dynamic	Method	Binding	-

(Dynamic	Method	Dispatch	or	Run	Time	Binding):-

	

Method	overriding	forms	the	basis	for	one	of	 java’s	powerful	concept	Dynamic
method	 dispatch	 is	 the	 mechanism	 by	 which	 call	 to	 an	 overridden	 instance	 method	 is
resolved	 at	 run	 time,	 rather	 than	 compile	 time.	 Dynamic	method	 dispatch	 is	 important
because	this	is	how	java	implements	run	time	polymorphism.

	

A	super	class	reference	variable	can	refer	to	a	subclass	objects.	Java	uses	this	fact
to	 resolve	calls	 to	overridden	method	at	 run	 time.	When	an	overridden	method	 is	called
through	a	super	class	reference,	java	determines	which	version	of	that	method	to	execute
based	upon	the	type	of	the	object	being	referred	to	at	the	time	the	call	occurs.

	

Thus	this	determination	is	made	at	run	time,	when	different	types	of	objects	are
referred	to	different	version	of	an	overridden	method	will	be	called.	In	other	words,	it	 is
the	type	of	the	object	being	referred	to	(not	the	type	of	reference)	that	determines	which
version	of	an	overridden	method	will	be	executed.

	

Overridden	 methods	 allow	 Java	 to	 support	 run-time	 polymorphism.
Polymorphism	 is	 essential	 for	OOP	 for	 one	 reason.	 It	 allows	 a	 general	 class	 to	 specify
methods	that	will	be	common	to	all	of	its	derivatives,	while	allowing	sup-classes	to	define
the	specific	implementation	of	some	or	all	of	these	methods.

	

By	combining	inheritance	with	overridden	methods,	a	super	class	can	define	the
general	form	of	method	that	will	be	used	by	all	of	its	sub-classes.	The	ability	of	existing
code	 libraries	 to	 call	 methods	 on	 instances	 of	 new	 classes	 without	 recompiling	 while
maintaining	a	clean	abstract	interface	is	a	profoundly	powerful	tool.

	

Base	class	reference	can	take	the	sub	class	reference	but	subclass	reference	can	not	 take
the	base	class	reference.

	

	

	

	

Example	6.5

	

1.														class	Shape

2.														{

3.																						void	getdata()

4.																						{

5.																														System.out.println(“getdata()	of	Shape”);

6.																						}

7.																						void	area()

8.																						{

9.																														System.out.println(“area()	of	Shape”);

10.																						}

11.																						void	display()

12.																						{

13.																														System.out.println(“display()	of	Shape”);

14.																						}

15.														}

16.														class	Circle	extends	Shape

17.														{

18.																						void	getdata()

19.																						{

20.																														System.out.println(“getdata()	of	Circle”);

21.																						}

22.																						void	area()

23.																						{

24.																														System.out.println(“area()	of	Circle”);

25.																						}

26.																						void	display()

27.																						{

28.																														System.out.println(“display()	of	Circle”);

29.																						}

30.														}

31.														class	Rectangle	extends	Shape

32.														{

33.																						void	getdata()

34.																						{

35.																														System.out.println(“getdata()	of	Rectangle”);

36.																						}

37.																						void	area()

38.																						{

39.																														System.out.println(“area()	of	Rectangle”);

40.																						}

41.																						void	display()

42.																						{

43.																														System.out.println(“display()	of	Rectangle”);

44.																						}

45.														}

46.														class	InheritTest5

47.														{

48.																						public	static	void	main(String	args[])

49.																						{

50.																														//super	reference	variable	can	accept	sub	class	object

51.																														//Dynamic	binding

52.																														Shape	s[]={new	Circle(),	new	Rectangle()};

53.																														for(int	i=0;i<s.length;i++)

54.																														{

55.																																						s[i].getdata();

56.																																						s[i].area();

57.																																						s[i].display();

58.																														}

59.																						}

60.														}

	

Output:

getdata()	of	Circle

area()	of	Circle

display()	of	Circle

getdata()	of	Rectangle

area()	of	Rectangle

display()	of	Rectangle

	

Abstract	Class	&	Abstract	Method:

	

We	have	 seen	 that	 by	making	a	method	 final	we	ensure	 that	 the	method	 is	 not
redefined	 in	 a	 subclass.	 Java	 allows	us	 to	do	 something	 that	 is	 exactly	opposite	 to	 this.
That	is	we	can	indicate	that	a	method	must	always	be	redefined	in	a	subclass,	thus	making
overriding	compulsory.	This	is	done	using	the	modifier	keyword	abstract	 in	the	method
definition.

	

There	are	situations	 in	which	we	will	want	 to	define	a	super	class	 that	declares
the	structure	of	a	given	abstraction	without	providing	a	complete	implementation	of	every
method.

	

That	 is,	 sometimes	 we	 will	 want	 to	 create	 a	 super	 class	 that	 only	 defines	 a
generalized	form	that	will	be	shared	by	all	of	its	subclasses,	leaving	it	to	each	sub	class	to
fill	in	the	details.

	

Such	 a	 class	 determines	 the	 nature	 of	 the	 methods	 that	 the	 sub	 classes	 must
implement.	One	way	 this	situation	can	occur	 is	when	a	super	class	 is	unable	 to	create	a
meaningful	implementation	for	a	method.

	

To	declare	an	abstract	method,	use	this	general	form:

abstract	return_type	name	(parameter-list);

	

Nobody	 is	 present.	Any	 class	 that	 contains	 one	 or	more	 abstract	methods	must	 also	 be
declared	abstract.	To	declare	a	class	abstract,	we	simply	use	the	abstract	keyword	in	front
of	the	class	keyword	at	the	beginning	of	the	declaration.

	

There	can	be	no	object	of	an	abstract	class.	That	is,	an	abstract	class	can	not	be
directly	 instantiated	 with	 the	 new	 operator.	 Such	 objects	 would	 be	 useless,	 because	 an
abstract	class	is	not	fully	defined.

	

Also	 we	 cannot	 declare	 abstract	 constructors	 or	 abstract	 static	 methods.	 Any
subclass	of	 an	 abstract	 class	must	 either	 implement	 all	 of	 the	 abstract	methods	 in	 super
class,	or	be	itself	declared	abstract.

	

Example	6.6:

	

1.														abstract	class	Shape

2.														{

3.																						abstract	void	getdata();

4.																						abstract	void	area();

5.																						abstract	void	display();

6.														}

7.														class	Circle	extends	Shape

8.														{

9.																						void	getdata()

10.																						{

11.																														System.out.println(“getdata()	of	Circle”);

12.																						}

13.																						void	area()

14.																						{

15.																														System.out.println(“area()	of	Circle”);

16.																						}

17.																						void	display()

18.																						{

19.																														System.out.println(“display()	of	Circle”);

20.																						}

21.														}

22.														class	Rectangle	extends	Shape

23.														{

24.																						void	getdata()

25.																						{

26.																														System.out.println(“getdata()	of	Rectangle”);

27.																						}

28.																						void	area()

29.																						{

30.																														System.out.println(“area()	of	Rectangle”);

31.																						}

32.																						void	display()

33.																						{

34.																														System.out.println(“display()	of	Rectangle”);

35.																						}

36.														}

37.														class	InheritTest6

38.														{

39.																						public	static	void	main(String	args[])

40.																						{

41.																														//super	reference	variable	can	accept	sub	class	object

42.																														//Dynamic	binding

43.																														Shape	s[]={new	Circle(),	new	Rectangle()};

44.																														for(int	i=0;i<s.length;i++)

45.																														{

46.																																						s[i].getdata();

47.																																						s[i].area();

48.																																						s[i].display();

49.																														}

50.																						}

51.														}

	

Output:

getdata()	of	Circle

area()	of	Circle

display()	of	Circle

getdata()	of	Rectangle

area()	of	Rectangle

display()	of	Rectangle

	

Final	method:-
	

If	we	don’t	want	a	method	to	be	overridden	by	a	derived	class	method	then	we
can	define	the	base	class	method	as	final.	Any	attempt	to	override	that	method	will	cause	a
compile	time	error.

	

class	A

{

final	void	method1()

{

														–—

}

}

class	B	extends	A

{

void	method1()														//	error

{

														–—

}

}

	

Final	class:-
	

Some	times	we	may	like	to	prevent	a	class	being	further	sub-classed	for	security
reason.	A	class	that	can	not	be	sub	classed	is	called	a	final	class.	This	is	achieved
in	java	using	the	keyword	final	as	follows:

	

final	class	A1

{

														-	-	-	-	-	-

														-	-	-	-	-	-

}

class	B	extends	A																												//	error

{

														-	-	-	-	-	-	-

														-	-	-	-	-	-	-

}

	

Any	attempt	to	inherit	class	A	will	cause	an	error	and	the	compiler	will	not	allow
it.	Declaring	a	class	final	prevents	any	unwanted	extension	to	the	class.

	

It	 also	 allows	 the	 compiler	 to	 perform	 some	optimization	when	 a	method	of	 a
final	class	is	invoked.

	

Theory	Questions:
1.	 What	is	inheritance?
2.	 How	many	types	inheritance	are	available	in	java.
3.	 What	is	difference	between	default	constructor	and	parameterized	constructor?
4.	 What	is	difference	between	final	class	and	final	method?
5.	 What	is	super	class?
6.	 What	is	an	abstract	class?
7.	 What	is	difference	between	compile	time	and	run	time	binding?
8.	 What	is	difference	between	method	overloading	and	method	overriding?

CHAPTER
∞	7	∞

(Object	oriented	programming)
	

Introduction-
	

Object	oriented	programming	v/s	procedural	programming:-

	

All	the	programs	consist	of	two	elements:	process	(logic)	and	data.	There	can	be
two	different	approaches	depending	upon	whether	our	main	focus	is	on	processing	or	data.
The	procedural	programming	languages	(c,	FORTRAN,	PASCAL,	COBOL	etc.)	focus	on
the	processing	part	i.e.	they	give	more	importance	to	“what	is	happening”	(process)	in	the
system	and	less	importance	to	“who	is	being	affected”	(data).

	

The	 procedural	 approach	 becomes	 less	 and	 less	 suitable	 as	 the	 programs
become	 large	 and	 complex.	 The	 object-oriented	 programming	 languages	 were
developed	 to	 overcome	 the	 limitations	 of	 the	 procedural	 programming	 languages.	 The
object-oriented	programming	languages	are	relatively	far	less	complex	as	compared	to	the
similar	programs	within	the	procedural	languages.

	

The	object-oriented	programs	are	organized	around	 the	data	 (i.e.	objects)	and	a
set	of	well	defined	interfaces	(public	methods)	to	that	data.

	

Java	 is	 based	 on	 object	 oriented	 paradigm.	 Java	 is	 almost	 pure	 object	 oriented
programming	 language.	We	 have	 termed	 “almost”	 as	 Java	 also	 supports	 primitive	 data
types	due	to	performance	reasons.

	

The	C++	is	not	a	pure	object	oriented	language.	C++	is	an	extension	to	C	so	 it
uses	 an	 approach,	 which	 is	 a	 mix	 of	 procedure-oriented	 approach	 and	 object-oriented
approach.

	

The	basic	differences	in	the	two	approaches	are	summarized	below:

	

(i)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	The	object-oriented	programs	are	data	 centric	while	 the
programs	written	in	the	procedural	languages	are	process	centric.

	

(ii)	 	 	 	 	 	 	 	 	 	 	 	 	 	The	 object-oriented	 programs	 are	 organized	 around	 data
(objects)	so	they	model	the	real	world	objects	in	a	better	way.

	

(iii)	 	 	 	 	 	 	 	 	 	 	The	degree	of	reusability	and	extensibility	of	the	code	is	very
high	 in	 case	 of	 object-oriented	 approach	 as	 compared	 to	 procedural
approach.	So	code	size	is	less.

	

(iv)	 	 	 	 	 	 	 	 	 	 	 	 	 	The	object-oriented	programs	are	easier	to	maintain,	as	they
are	relatively	less	complex	and	smaller	in	size.

	

(v)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	The	object-oriented	programs	are	based	on	the	bottom-up
design	methodology	while	 the	 procedural	 programs	 are	 based	 on	 the
top-down	design	methodology.

	

	

Basic	concepts	of	OOP	(Object-Oriented	Programming):-

	

Some	 of	 the	 essential	 elements	 of	 the	 object	 oriented	 programming	 are	mentioned
below:

									Abstraction

									Objects	and	classes

									Three	OOP	Principles

Encapsulation

Inheritance
Polymorphism

									Persistence

									Genericity

									Composition	/	Aggregation

	

1.	Abstraction:-

	

The	 abstraction	 is	 one	 of	 the	 essential	 elements	 of	 any	 programming	 language
including	 the	 procedural	 languages.	 The	 concept	 of	 built-in	 data	 type	 is	 also	 an
abstraction.	 The	 feature	 of	 defining	 own	 data	 type	 using	 struct	 in	 C	 language	 further
extends	this	abstraction.

	

The	basic	purpose	of	abstraction	 is	 to	 reduce	complexity	by	hiding	details.	For
example,	 a	 building	 is	 not	 thought	 to	 be	 a	 collection	 of	 building	 material	 but	 a	 well
defined	object	having	unique	features	and	properties.

	

Abstraction	can	be	defined	as	an	act	 for	 identifying	 the	essential	properties	and
behavior	of	an	object	without	going	into	details.	The	properties	and	behaviors	of	an	object
differentiate	it	from	other	objects	of	similar	type	and	also	help	in	classifying	/	grouping	the
objects.

	

The	object	oriented	programming	languages	model	abstraction	using	classes	and
objects.

	

2.	Object	and	Classes:-

	

Object:-An	 object	 is	 a	 physical	 or	 abstract	 entity	 or	 thing,	 which	 can	 be
distinguished	from	other	objects	of	similar	types.	An	object	has	three	characteristics:

	

(i)																	Identification.

(ii)														Properties.	(Attributes)

(iii)											Behaviors.	(Methods	/	Operations	/	Functions)

	

The	object	can	also	be	thought	of	as	an	instance	of	class,	where	class	is	like	a	built-in	data
type	and	the	object	is	the	variable.

	

Class:-A	class	represents	a	category	of	objects	by	abstracting	their	properties	and
behaviors.	A	class	can	be	thought	of	as	a	blueprint	for	creating	objects.	An	object	has	the
properties	and	behaviors	defined	by	its	class.	The	class	can	be	thought	of	as	a	user-defined
data	type	and	object	as	a	variable/instance	of	the	data	type	represented	by	the	class.

	

The	 properties/attributes	 of	 an	 object	 are	 defined	 by	 data	 members	 /	 fields	 in
Java.	 A	 data	 member/field	 in	 a	 class	 is	 a	 variable	 that	 can	 hold	 data.	 The	 behaviors	 /
operations	 of	 an	 object	 are	 defined	 using	 methods	 in	 Java.	 Both	 data	 members	 and
methods	are	referred	to	as	members	of	the	class.

	

A	 class	may	 also	 be	 thought	 of	 as	 a	 user-defined	 data	 type	 and	 an	 object	 as	 a
variable	of	that	data	type.	Once	a	class	has	defined	we	can	create	any	number	of	objects
belonging	to	that	class.

3.	Three	OOP	Principles:-
	

Encapsulation:-	Encapsulation	is	the	mechanism	that	binds	code	and	data	on
which	the	code	acts.	Java	classes	support	this	as	they	allow	us	to	define	the	code	and	data
together.	Encapsulation	also	helps	in	achieving	data	hiding	by	declaring	some	of	the	class
members	as	private	so	that	they	cannot	be	accessed	from	the	code	that	does	not	belong	to
the	class.

	

Inheritance:-	 In	 object-oriented	 programming,	 Inheritance	 refers	 to	 the
properties	of	a	class	being	available	to	other	classes	called	sub-classes	or	derived	classes.
A	sub-class	or	derived	class	is	one	that	is	derived	from	an	existing	class.	It	inherits	all	the
features	 of	 the	 existing	 class	which	 is	 also	 referred	 as	 the	 base-class	 or	 super-class.	 So
inheritance	can	be	defined	as	the	process	of	deriving	a	class	from	a	super-class	or	a	base-
class.	Inheriting	a	class	does	not	introduce	any	changes	in	the	base-class/super-class.	The
derived-class/sub-class	 has	 a	 larger	 set	 of	 properties	 and	 behaviors	 as	 compared	 to	 the
base-class.

	

The	major	advantage	of	the	inheritance	is	code	reusability.	If	the	base	class	is	in
use	for	a	long	time	and	there	is	a	need	to	add	some	extra	attributes	and	methods,	we	can
do	so	by	deriving	another	class.	The	derived	class	will	be	able	to	use	code	of	the	base	class
without	debugging	as	it	is	in	use	for	a	long	time.

Class	Hierarchy:-All	 the	classes	derived	from	a	common	base	class	belong	to	a
family	 and	 form	 a	 class	 hierarchy.	 The	 class	 hierarchy	 can	 be	 compared	 with	 a	 tree
structure	where	one	base	class	is	at	the	root	and	does	not	have	a	super-class.

	

All	other	classes	are	either	derived	from	the	class	at	the	root	of	the	hierarchy	or
from	some	other	 class,	which	 is	derived	 from	 the	 root	 class	directly	or	 indirectly.	More
features	 are	 added	 as	we	go	down	 the	 tree.	The	 classes	 that	 are	 represented	by	 the	 leaf
nodes	do	not	have	any	sub-classes.	The	following	example	shows	some	class	hierarchies.

	
	

	

	

	

	

	

	

	
	
	
	
Polymorphism:-
	

Polymorphism	is	a	feature	that	allows	same	interface	to	be	used	for	a	general	class	of
actions.	 Most	 of	 the	 object-oriented	 languages	 use	 polymorphism	 in	 the	 following
situations.

	

Operator	Overloading.
Method	Overloading.
Method	Overriding.

	

Operator	Overloading:-
	

Most	of	the	languages	use	this	form	of	polymorphism	for	the	built-in	operations.
For	example,	all	the	arithmetic	operators	in	C/C++	or	Java	can	be	used	with	many	types	of
operands	(int,	long,	float,	double	etc.).	So	same	addition	operators	can	be	used	to	add	two
integers	as	well	as	to	add	two	floating	point	numbers.

	

The	C++	allows	the	user	to	overload	the	built	in	operators.	For	example,	we	can
overload	 the	 arithmetic	 operators	 to	 handle	 the	 complex	 numbers	 also.	Although	 Java
uses	 operator	 overloading	 for	 built-in	 operators	 but	 does	 not	 allow	 the	 user	 to
overload	the	operators.

	

Method	Overloading:-
	

This	feature	allows	us	to	write	more	than	one	methods	with	the	same	name.	Both
C++	 and	 Java	 have	 this	 feature.	 The	 methods	 (function	 in	 C++)	 with	 same	 name	 are
differentiated	based	on	the	parameters	(arguments).	The	overloaded	methods	must	either
have	 different	 number	 of	 parameters	 or	 the	 types	 of	 the	 parameters	must	 differ	 if	 their
number	is	same.

	

If	 the	 call	 to	 an	 overloaded	method	 can	 be	 resolved	 at	 compile	 time	 i.e.	 if	 the
compiler	 can	 decide	 which	 of	 the	 overloaded	method	will	 be	 called	 then	 this	 is	 called
static	binding,	which	is	an	example	of	compile	time	polymorphism.

	

If	the	call	to	an	overloaded	method	can	not	be	resolved	at	compile	time	i.e.	if	the
compiler	can	not	decide	which	of	the	overloaded	method	will	be	called	then	this	is	called
dynamic	binding,	which	is	an	example	of	run-time	polymorphism.

	

In	 general	 Java	 resolves	 calls	 to	 overloaded	methods	 at	 run-time	 but	 there	 are
many	situations	where	the	calls	to	overloaded	methods	are	resolved	at	compile-time.

	

Method	Overriding	:-

	

The	sub-class	can	define	a	method	with	the	same	name	as	in	the	super	class,	and
the	same	number	and	type	of	parameters.	This	is	called	method	overriding.

	

The	 compiler	 can	 not	 resolve	 calls	 to	 overridden	methods.	 Java	 normally	 uses
dynamic	binding	to	resolve	calls	to	overridden	methods	i.e.	the	decision	takes	place	at	run-
time.

	

4.	Persistence:-
	

Some	object-oriented	languages	allow	we	to	store	/	retrieve	the	state	of	a	program
to	 /	 from	 a	 persistence	 storage	 media	 i.e.	 a	 permanent	 storage	 media	 like	 secondary
storage.	This	is	called	persistence.

	

Java	allows	us	to	store	any	object	on	the	secondary	storage	and	to	retrieve	it	later
on.	If	we	attempt	to	store	an	object	at	the	top	of	an	object	graph,	all	of	the	other	referenced
objects	are	recursively	located	and	saved.	Similarly	when	the	object	is	retrieved	later	on,
all	of	the	objects	and	their	references	i.e.	the	entire	object	graph	is	correctly	created	in	the
main	memory.

For	example,	it	is	possible	to	save	an	entire	tree	structure	by	just	saving	the	root
of	the	tree.	At	a	later	stage	it	is	possible	to	recreate	the	entire	tree	structure	in	the	memory
by	just	saving	the	root	of	the	tree.	The	C++	does	not	support	this	feature.

	

5.	Genericity:-
	

The	concept	of	defining	an	algorithm	once,	independently	of	any	specific	type	of
data,	 and	 then	 applying	 that	 algorithm	 to	 a	 wide	 variety	 of	 data	 types	 without	 any
additional	effort	is	called	Genericity.	C++	supports	this	feature	using	templates.	Java	also
supports	 this	 feature	 through	Object	 class,	which	 is	 at	 the	 top	of	 any	 class	 hierarchy	 in
Java.

	

For	example,	using	 this	 feature,	we	can	 implement	a	generic	data	 type	stack	so
that	is	possible	to	store	element	of	any	type	in	the	stack.	This	feature	increases	the	degree
of	reusability	to	a	large	extent.

	

6.	Composition	/	Aggregation
	

An	object	might	be	made	up	of	other	objects.	Such	an	object	is	called	Composite
or	Aggregate	object.	For	example,	it	is	appropriate	if	an	object	of	class	vehicle	is	defined
as	a	composite	object	made	up	of	objects	like	Engine,	Body,	Axle,	Seats	etc.

Inheritance	v/s	Composition:-
	

There	are	two	basic	mechanisms	for	deriving	new	classes	from	the	existing	ones:
Inheritance	 and	 composition.	 The	 class	 Bus	 can	 be	 derived	 by	 inheriting	 properties	 of
class	 vehicle.	 Here	 Bus	 is	 a	 kind	 of	 vehicle	 which	 has	 some	 additional	 properties	 /
behaviors	beside	the	properties	and	behaviors	which	are	common	for	all	the	vehicles.

	

In	other	words	class	Bus	has	is-a	relationship	with	the	class	vehicle	as	we	can	say
that	Bus	is	a	vehicle.

	

The	 class	 vehicle	 itself	 might	 be	 derived	 from	 many	 other	 classes	 using
composition.	 For	 example,	 an	 object	 of	 class	 vehicle	 might	 be	 composed	 of	 objects
belonging	 to	 classes	 like	 Engine,	 Gear	 Box,	 Seats,	 Driver’s	 Seat	 Body,	 and	 Steering
Wheel	etc.

	

The	 derived	 class	 in	 this	 case	 has	 whole-part	 relationship	 with	 the	 classes
representing	parts	 of	 the	 composite	 object.	We	can	not	 say	 that	 vehicle	 is	 an	Engine	or
Vehicle	is	a	Gear	Box	as	Vehicle	is	made	up	of	a	number	of	parts.

	

Super	classes	and	Subclasses
Often	an	object	of	one	class	“is	an”	object	of	another	class	as	well.	A

rectangle	certainly	is	a	quadrilateral	(as	are	squares,	parallelograms	and	trapezoids).	Thus,
class	 Rectangle	 can	 be	 said	 to	 inherit	 from	 class	 Quadrilateral.	 In	 this	 context,	 class
Quadrilateral	is	a	superclass,	and	class	Rectangle	is	a	subclass.

A	rectangle	is	a	specific	type	of	quadrilateral,	but	it	is	incorrect	to	claim
that	 a	 quadrilateral	 is	 a	 rectangle	 (the	 quadrilateral	 could	 be	 a	 parallelogram).	 Figure
shows	 several	 simple	 inheritance	 examples	 of	 superclasses	 and	 potential
subclasses.Inheritance	 normally	 produces	 subclasses	 with	 more	 features	 than	 their
superclasses,	so	the	terms	superclass	and	subclass	can	be	confusing.

There	is	another	way,	however,	to	view	these	terms	that	makes	perfectly
good	 sense.	Because	 every	 subclass	 object	 “is	 an”	object	 of	 its	 superclass,	 and	because
one	superclass	can	have	many	subclasses,	the	set	of	objects	represented	by	a	superclass	is
normally	larger	than	the	set	of	objects	represented	by	any	of	that	super	class’s	subclasses.

	

For	example,	 the	superclass	Vehicle	 represents	 in	a	generic	manner	all
vehicles,	such	as	cars,	trucks,	boats,	bicycles	and	so	on.	However,	subclass	Car	represents
only	a	small	subset	of	all	the	Vehicles	in	the	world.Inheritance	relationships	form	tree-like
hierarchical	structures.

A	superclass	exists	 in	a	hierarchical	 relationship	with	 its	 subclasses.	A
class	 can	 certainly	 exist	 by	 itself,	 but	 it	 is	when	 a	 class	 is	 used	with	 the	mechanism	of
inheritance	 that	 the	 class	 becomes	 either	 a	 superclass	 that	 supplies	 attributes	 and
behaviours	 to	 other	 classes	 or	 a	 subclass	 that	 inherits	 those	 attributes	 and	 behaviours.
Frequently,	one	class	is	both	a	subclass	and	a	superclass.

	
Superclass
	

	
Subclasses
	

Student Graduate	student

Under	Graduate
student

Shape Circle

Triangle

Rectangle

Loan Car	Loan

Home	Loan

Education	Loan

Employee Faculty	Member

Staff	Member

Account Checking	Account

Saving	Account

	

	

	

	

	

	

	

	

	 	 	 	

CHAPTER
∞	8	∞

(PACKAGES)
	
	

Introduction-
When	we	work	on	a	project	we	have	to	break	our	program	in	several	classes.	To

organize	our	classes	we	use	Packages.	The	package	is	both	a	naming	and	visibility	control
mechanism.	Package	is	a	collection	of	classes	and	interfaces	which	are	interrelated.	With
the	help	of	package	it	is	possible	to	give	same	names	to	more	than	one	class	provided	they
are	defined	in	different	package.

	

A	single	package	can’t	contain	two	classes	with	same	name.

PROGRAMS	 are	 organized	 as	 sets	 of	 packages.	 Each	 package	 has	 its	 own	 set	 of	 sub-
packages,	which	helps	to	prevent	name	conflicts.	A	top	level	package	is	accessible	outside
the	 package	 only	 if	 it	 is	 declared	 as	 public.	 The	 naming	 structure	 for	 packages	 is
hierarchical.	The	members	of	a	package	are	class	and	interface	types	and	sub-packages.	A
package	 in	 java	 is	 an	 encapsulation	mechanism	 that	 can	be	used	 to	 group	 related	 class,
interface	and	sub-packages.

For	 small	 programs,	 a	 package	 can	 be	 unnamed	or	 have	 a	 simple	 name,	 but	 if
code	is	to	be	widely	distributed,	unique	package	names	should	be	chosen.

This	 can	 prevent	 the	 conflicts	 that	 would	 otherwise	 occur	 if	 two	 development
groups	happened	to	pick	the	same	package	name	and	these	packages	were	later	to	be	used
in	a	single	program.	If	we	do	not	specify	a	package	for	a	java	class	then	that	class	will	be
the	part	of	the	default	package	of	Java	called	as	unnamed	package.	But	this	requires	that
every	class	must	have	a	unique	name	to	avoid	collision.

	

Example	of	the	unnamed	package.

	

class	A

{

														-	-	-	-	-	-	-

														-	-	-	-	-	-	-

}

class	A_demo

{

														public	static	void	main(String	args[])

														{

																												-	-	-	-	-	-

																												-	-	-	-	-	-

														}

}

	

How	to	define	a	package

	

To	create	a	package,	include	a	package	command	as	the	first	statement	in	a	Java
source	file.	Any	class	declared	within	that	file	will	belong	to	the	specified	package.	The
package	 statement	 defines	 a	 name	 space	 in	 which	 classes	 are	 stored.	 If	 we	 omit	 the
package	statement,	 the	class	names	are	put	 into	the	default	package,	which	has	no	name
and	is	called	as	un-named	package.

	

The	package	statement	has	the	following	syntax:

	

package	package_name;

Java	 uses	 file	 system	 directories	 to	 store	 packages.	 Remember	 that	 the	 case	 is
significant,	and	directory	name	must	match	the	package	name	exactly.	More	that	one	file
can	include	the	same	package	statement.

Syntex:

														package	p1;																												//package	declaration

														class	A																																										//class	declaration

														{

																												-	-	-	-	-	-	-														//body	of	class	A

																												-	-	-	-	-	-	-

														}

package	is	a	keyword.	p1	is	the	package	name	in	which	class	A	is	to	be	stored.

Example	8.1:

	

1.														package	p1;

2.														class	A

3.																			{

4.																												public	static	void	main(String	args[])

5.																																			{

6.																																												System.out.println(“First	Package	program.”);

7.																											}

8.																					}

We	have	assumed	that	the	current	folder	is	(c:\javaprg\p1>)

C:\javaprg\p1>javac	A.java

C:\javaprg\p1>java	p1.A

	

Output:

														First	Package	Program

	

Note:-If	we	compile	 the	 above	program	with	–d	“javac	–d	 .	A.java”	 in	 “c:\javaprg>”
then	the	folder	p1	will	be	created	automatically	and	the	 .class	file	of	 the	above	program
will	be	saved	in	this	folder.	But	if	we	do	not	compile	with	–d	option	then	it	is	our	duty	to
create	the	p1	folder	and	place	the	.class	file	in	that	folder.	(.)	directs	the	compiler	to	create
the	p1	folder	in	the	current	folder.	We	can	also	type	the	complete	path	if	we	want	to	create
the	folder	in	some	other	folder	as	javac	–d	c:\javaprg	A.java

	

Importing	packages:

	

All	 the	 inbuilt	 classes	 of	 Java	 are	 stored	 in	 some	 named	 packages;	 no	 class	 is
stored	 in	 the	 unnamed	 default	 package.	 Since	 classes	 within	 packages	 must	 be	 fully
qualified	with	their	package	name	or	names.	It	could	become	tedious	to	type	in	the	long
dot	 separated	 package	 path	 name	 for	 every	 class	we	want	 to	 use.	 For	 this	 reason,	 java
includes	the	import	statement	to	bring	certain	classes,	or	entire	packages,	in	to	visibility.
Once	imported,	a	class	can	be	referred	to	directly,	using	only	its	name.

The	import	statement	is	a	convenience	to	the	programmer	and	is	not	technically
needed	to	write	a	complete	java	program.	If	we	are	going	to	refer	to	a	few	dozen	classes	in
our	application,	then	the	import	statement	will	save	a	lot	of	typing.

	

In	a	java	source	file,	import	statement	occurs	immediately	following	the	package
statement	 (if	 it	 exists)	 and	 before	 any	 class	 definition.	 This	 is	 the	 general	 form	 of	 the
import	statement.

	

import	pkg1[.pkg2].classname;

import	pkg1[.pkg2].*;
Example	8.2

	

1	//Program	to	print	any	10	random	numbers	using	class	Random	of	package

2.														//java.util	without	using	import	statement

3.														class	RandomTest1

4.														{

5.																						public	static	void	main(String	args[])

6.																						{

7.																														java.util.Random	r1	=	new	java.util.Random();

8.																														for(int	i=1;i<=10;i++)

9.																														{

10.																																						System.out.println(Math.abs(r1.nextInt()));

11.																														}

12.																						}

13.														}

	

Output:

1588659525

481996564

210875677

386971039

360473512

1922641171

393055462

889442536

1836112189

320882863

	

Example	8.3

	

1.	//Program	to	print	any	10	random	numbers	using	class	Random	of	package

2.														//java.util	using	import	statement

3.														import	java.util.Random;

4.														class	RandomTest2

5.														{

6.																						public	static	void	main(String	args[])

7.																						{

8.																														Random	r1	=	new	Random();

9.																														for(int	i=1;i<=10;i++)

10.																														{

11.																																						System.out.println(Math.abs(r1.nextInt()));

12.																														}

13.																						}

14.														}

	

	

Output:

686722541

1154462827

452959606

1235134497

1421490552

1065881855

424893046

731473166

1217844570

437181304

	

CLASSPATH:

	

If	we	run	the	above	program	from	any	other	folder	other	than	the	current	folder
then	it	will	not	run.	By	default	the	Java	run-time	system	uses	the	current	working	directory
as	its	starting	point.

	

Thus	 if	our	package	 is	 in	 the	current	directory,	or	a	 subdirectory	of	 the	current
directory,	it	will	be	found.	But	to	run	the	above	program	from	any	other	folder	we	have	to
set	 the	 class	 path	 using	 command	 SET	 CLASSPATH=.;C:\JAVAPRG	 on	 command
prompt.	 CLASSPATH	 is	 a	 environment	 variable.	We	 have	 to	 type	 this	 command	 every
time	 when	 we	 start	 the	 computer	 for	 the	 first	 time.	 But	 if	 we	 put	 this	 command	 in
MyComputer � properties � advanced � 	 Environment	 variables	 then	 there	 is	 no
need	to	type	this	command	again	&	again.

	

We	can	also	run	the	program	without	setting	the	CLASSPATH	environment	variable.	To
do	this	type

java	–classpath	c:\javaprg	p1.A

	

Note4:-We	can	 create	 a	 hierarchy	of	 packages.	To	do	 so,	 simply	 separate	 each	package
name	from	the	one	above	it	by	use	of	a	dot.	The	general	form	of	a	multi-leveled	package
statement	is:

package	package_name1[.package_name2][.package_name3];

	

A	package	hierarchy	must	be	reflected	in	the	file	system	of	Java	development	system.	For
example	package	java.awt.Image	need	to	be	stored	in	java\awt\image	 (WINDOWS)	or
java/awt/image	(UNIX)	or	java:swt:image	(MACINTOSH)	file	system.

	

A	package	hierarchy	represents	an	organization	of	the	java	classes	and	interfaces.
It	does	not	represent	the	source	code	organization	of	the	classes	and	interfaces.

	

Each	 java	 source	 file	 (also	 called	 compilation	 unit)	 can	 contain	 zero	 or	 more
definition	 of	 classes	 and	 interfaces,	 but	 the	 compiler	 produces	 a	 separate	 class	 file
containing	 the	 java	byte-code	for	each	of	 them.	A	class	or	 interface	can	 indicate	 that	 its
java-byte	code	be	placed	in	a	particular	package,	using	a	package	declaration.

	

									The	package	java	has	sub-packages	awt,	applet,	io,	lang,	net,	and	util,	but	no
classes	or	interface.

	

									The	package	java.awt	has	a	sub-package	named	image,	as	well	as	a	number
of	classes	and	interfaces.

	

	 	 	 	 	 	 	 	 	Because	the	package	java.awt	has	a	sub-package	image,	it	cannot	contain	a
declaration	of	a	class	or	interface	type	named	image.

	

	 	 	 	 	 	 	 	 	If	the	fully	qualified	name	of	a	package	is	P,	and	Q	is	a	sub-package	of	P,
then	P.Q	is	the	fully	qualified	name	of	the	sub-package.

	

	 	 	 	 	 	 	 	 	 If	 there	 is	 a	 package	 named	mouse	 and	 a	member	 class	 Button	 in	 that
package	(which	then	might	be	referred	to	as	mouse.Button),	then	there	cannot	be
any	package	with	the	fully	qualified	name	mouse.Button	or	mouse.Button.Click.

	

									At	most	one	package	statement	can	appear	in	a	source	file,	and	it	must	be	the
first	statement	in	the	Java	source	file.

	

Visibility	of	class	member:

	

Class	 and	 package	 are	 both	 means	 of	 encapsulating	 and	 containing	 the	 name
space	and	scope	of	variable	and	methods.	Packages	act	as	containers	for	classes	and	other
subordinate	packages.	Class	act	as	a	container	for	data	and	method	code.

	

The	class	is	java’s	smallest	unit	of	abstraction.	Because	of	the	interplay	between
the	classes	and	packages,	Java	addresses	five	categories	of	visibility	of	class	members.

	

1.	Visibility	within	the	class.

2.	Visibility	in	subclass	in	the	same	packages.

3.	Visibility	in	non	subclass	in	the	same	packages.

4.	Visibility	in	subclasses	in	different	packages.

5.	Visibility	in	subclasses	that	are	neither	in	the	same	package	nor	are	subclass.

	

Note1:-

Top	level	class	and	interface	has	only	two	possible	access	default	and	public.

	

Note2:-If	class	is	declared	public	then	it	is	accessible	by	using	other	code.

	

Note3:-If	class	has	default	access	then	it	can	only	be	accessed	by	other	code	within	the
same	package.

	

Note4:-The	 member	 visibility	 has	 meaning	 only	 if	 the	 class	 is	 visible.	 If	 visibility
modifier	of	the	class	is	default	then	even	public	members	of	the	class	will	be	visible	only
within	the	package.

	

Access	specifiers:

	

	

JAR	files:	(Java	Archive	Files)

	

To	compress	a	file	we	use	some	program	such	as	winzip	in	the	same	way	java’s
JAR	 feature	 can	 also	 be	 used	 to	 compress	 the	 entire	 hierarchy	 of	 a	 Java	 package.	 It
provides	a	better	facility	for	installation.

	

There	is	no	need	to	create	the	file	structure	at	the	customer	location.	We	have	to
just	use	JAR	file	and	 this	 file	will	 restore	 the	entire	 file	structure.	All	 the	package,	sub-
package	and	class	files	will	be	created	automatically	from	the	JAR	file.

	

JAR	 technology	makes	 it	much	 easier	 to	 deliver	 and	 install	 software.	Also	 the
element	 in	a	JAR	file	are	compressed,	which	make	downloading	a	JAR	file	much	faster
than	separately	downloading	several	uncompressed	file.	This	allows	a	consumer	to	be	sure
that	these	elements	were	produced	by	a	specific	organization	or	individual.

There	are	following	option	are	available	for	the	JAR	files:

Option Description

c A	new	archive	is	to	be	created.

C Change	directories	during	command	execution.

f First	element	of	the	file	list	is	the	name	of	the	archive	that	is	to	be	created.

i Index	information	should	be	provided

m The	second	element	in	the	file	list	is	the	name	of	the	external	manifest	file.

M Manifest	file	not	created

t The	archive	contents	should	be	tabulated

u Update	existing	JAR	file.

v Verbose	output	should	be	provided	by	the	utility	as	it	execute.

x Files	are	to	be	extracted	from	the	archive

o Do	not	use	compression

	

Creating	a	JAR	file:

	

c:\javaprg>	jar		-cf		Myjar.jar		pack1													

	

This	will	create	a	JAR	file	“Myjar.jar”	which	will	contain	all	the	files	of	package	pack1	in
compressed	form

Extract	JAR	files:

This	command	used	for	the	extract	the	jar	files.(such	as	unzip)

c:\javaprg>	jar		–xf		Myjar.jar																											
Tabulating	the	Contents	of	a	jar	file:

The	following	commands	list	the	contents	of	Myjar1.jar.

c:\javaprg>	jar		–tf		Myjar.jar

Updating	an	existing	JAR	file:

The	following	command	is	useful	for	the	update	of	the	jar	file.

c:\javaprg>jar		–uf		Myjar.jar		pack1

Creating	an	executable	JAR	file:

														c:\javaprg>jar		–cmf		mainClass	Myjar.jar		pack1

where	mainClass	is	a	text	file	which	contains	“Main-Class:	pack1.pack2.pack3.A”	saved
in	javaprg	folder.

Execute	a	jar	file:

														c:\javaprg>java		–jar		Myjar.jar

Theory	question’s:
	

1.															What	do	we	understand	about	the	packages?

2.	 	 	 	 	 	 	 	 	 	 	 	 	 	Explain	all	 the	modifiers	and	 its	scope	 in	different	packages	and	sub
packages	with	subclass	and	other	class.

3.														What	is	the	use	of	JAR	files?

4.														What	is	the	use	of	the	import	statement?

	

Search	This	book	on	Amazon.com	with	ISBN-	978-1500730413.

CHAPTER
∞	9	∞

(Interface)
	

	
Introduction-

An	 interface	 is	 basically	 kind	 of	 class.	 Like	 classes,	 interface	 contain	methods
and	 variables	 but	with	 a	major	 difference.	 The	 difference	 is	 that	 interface	 defined	 only
abstract	methods	 and	 final	 variables	 (Constants).	This	means	 that	 interface	do	not	write
any	code	to	implements	these	methods	and	data	fields	contain	only	constants.

	

Therefore,	it	is	the	responsibility	of	the	class	to	implement	an	interface	defining
the	 code	 for	 implementation	 of	 these	 methods.	 Interfaces	 are	 syntactically	 similar	 to
classes,	but	they	lack	instance	variables,	and	their	methods	are	declared	without	a	body.	In
practice,	this	means	that	we	can	define	interfaces,	which	do	not	make	assumptions	about
how	they	are	implemented.	The	purpose	of	the	interface	is	to	separate	a	class’s	interface
from	 its	 implementation.	 Interface	 just	 defines	 what	 a	 class	 must	 do	 without	 saying
anything	about	the	implementation.	Interfaces	define	only	method	signatures	and	they	do
not	have	any	instance	variables.

	

A	nested	 interface	 is	any	 interface	whose	declaration	occurs	within	 the	body	of
another	 class	 or	 interface.	 A	 top-level	 interface	 is	 an	 interface	 that	 is	 not	 a	 nested
interface.The	syntax	for	defining	an	 interface	 is	very	similar	 to	 that	 for	defining	a	class.
The	general	form	of	an	interface	definition	is:

	

																												interface	interface_name

																												{

																																										variable	declarations;

																																										methods	declarations;

																												}

	

Here,	 interface	 is	 the	 keyword	 and	 interface_name	 is	 any	 valid	 java	 identifier	 (just	 like
class	name).

	

Note:	When	we	define	an	interface	then	by	default	it	is	public	and	abstract.

	

Interface	Modifiers:

	

The	only	modifier	that	can	be	used	with	the	top-level	interfaces	are	abstract	and
public.	Even	if	we	do	not	use	abstract	modifier,	 the	interface	is	implicitly	declared	to	be
abstract	so	use	of	modifier	abstract	is	not	required.	The	visibility	of	a	top-level	interface
can	be	either	package	or	public	 just	 like	 top-level	class.	 If	no	visibility	modifier	 is	used
then	the	visibility	of	the	interface	is	assumed	to	be	package.

	

Data	Variable	Member	Declarations:

	

Only	constants	can	be	defined	 in	 the	 interface.	All	 the	variables	 in	an	 interface
are	 implicitly	 public,	 final	 and	 static	 meaning	 they	 cannot	 be	 changed	 by	 the
implementing	class.	They	must	also	be	initialized	with	constant	value.

	

public	static	final	type	variable_name=value;

	

The	variable	declared	 in	an	 interface	 is	public,	 static	 and	 final.	 It	means	 it	 is	 a
static	variable	with	public	access.	The	variable	is	also	declared	final,	which	means	that	it
must	be	assigned	a	value	at	 the	time	of	declaration,	which	can	not	be	modified	later	on.
The	keyword	final	is	like	const	in	C/C++.

Methods	Declarations:

	

Methods	 declaration	 will	 contain	 only	 a	 list	 of	 methods	 without	 anybody
statements.	 They	 end	 with	 a	 semicolon	 after	 the	 parameter	 list.	 They	 are	 essentially,
abstract	 methods	 and	 there	 can	 be	 no	 default	 implementation	 of	 any	 method	 specified
within	an	interface.

All	 methods	 in	 the	 interface	 are	 always	 public	 and	 abstract	 modifiers	 by	 default.	 We
cannot	declare	static	methods	in	interfaces.

	

public	abstract	return_type	method_name(parameter_list);

	

Here	is	an	example	of	an	interface	definition	that	contains	two	variables	and	one	methods.

	

interface	item

{

														static	final	int	code	=1001;

														static	final	String	name	=	“Matrix”;

														abstract	void	display();

}

	

Note:-Code	 for	 the	 methods	 is	 not	 included	 in	 the	 interface	 and	 methods	 declaration
simply	ends	with	a	semicolon.

	

Another	example	of	an	interface:

	

interface	area

{

														float	pi	=	3.142f;

														float	compute	(float	x,	float	y);

														void	show();

}

	

Extending	interface:

	

Like	classes,	interface	can	also	be	extended	i.e.	an	interface	can	be	sub-interfaced
from	other	interface.	The	new	interface	will	inherit	all	the	members	of	the	sub	interface	in
the	 manner	 similar	 to	 subclass.	 This	 is	 achieved	 using	 the	 keyword	 extends	 as	 shown
below.

	

interface	interface_1

{

														int	code	=	1001;

														String	name	=	“Matrix”;

}

interface	interface_2	extends	interface_1

{

														void	display();

}

	

The	interface_2	would	inherit	both	the	constant	code	and	name	in	to	it.

	

Note:-

That	 the	 variables	 name	 and	 codes	 are	 declared	 like	 a	 simple	 variable.	 It	 is
allowed	here	but	all	 the	variables	in	the	interface	are	treated	as	constant,	public	&	static
although	the	keywords	public,	static	and	final	are	not	here.

	

We	can	combine	several	interfaces	together	in	to	a	single	interface.	Following	declarations
are	valid.

	

interface	interface_1

{

														int	code	=	1001;

														String	name	=	“Matrix”;

}

interface	interface_2

{

														void	display();

}

interface	interface_3	extends	interface_1,	interface_2

{

														-	-	-	-	-	-	-

														-	-	-	-	-	-	-

}

	

Note:-

Always	remember	that	an	interface	can	not	extend	classes.	This	would	violate	the
rule	that	an	interface	can	have	only	abstract	methods	and	constants.

	

Implementing	Interface:

	

Interfaces	are	used	as	“super-classes”	whose	properties	are	inherited	by	classes.	It
is	therefore	necessary	to	create	a	class	that	inherits	the	given	interface.	Once	interface	has
been	defined,	one	or	more	classes	can	implement	that	interface.

	

To	 implement	 an	 interface,	 include	 the	 implements	 clause	 in	 a	 class	 definition,
and	then	create	the	methods	declared	by	the	interface.

	

The	implementing	class	must	provide	body	of	all	the	methods	in	all	the	interfaces
otherwise	it	must	be	declared	as	abstract.

	

The	 implementing	 class	 may	 also	 extend	 a	 class	 and	 can	 implement	 multiple
interfaces.

	

	

modifier	class<class-name>implements<interface-name>

{

														body	of	the	class

}

	

	

Syntax	of	an	interface	implements	in	the	class

	

interface	interface_name

{

														-	-	-	-	-	-	-

}

class	class	_name	implements		interface_name

{

														Body	of	class

}

Java	does	not	support	multiple	inheritance	but	 it	 support	multiple	 interface	 inheritance
i.e.	a	class	can	implement	more	than	one	interfaces	as	show	below:

modifiers	 class	 <class-name>	 implements	 <interface-1>,<interface-2>,
<interface-3>,	….<interface-n>

{

														body	of	class

}

	

Note:-

When	 we	 implement	 an	 interface	 method,	 it	 must	 be	 declared	 as	 public.	 The
implementing	an	interface	method	is	like	over-riding	so	we	can	not	decrease	the	visibility.

	

Example	9.1

	

1.														interface	interface_1

2.														{

3.																												void	show(int	x);

4.														}

5.														class	class_1	implements	interface_1

6.														{

7.																												public	void	show(int	x);

8.																												{

9.																																										-	-	-	-	-	-	-	-

10.																												}

11.														}													

	

	

Example	9.2	of	abstract	class

	

1.																												interface		common

2.																												{

3.																																										void	push(int	x);

4.																																										int	pop	();

5.																												}

6.																												abstract	class	stack	implements	common

7.																												{

8.																																										void	disp()

9.																																										{

10.																																																								-	-	-	-	-	-	-	-

11.																																										}

12.																												}

	

Here	 the	 class	 stack	 does	 not	 implements	 the	 push()	 and	 pop()	 methods.	 So	 we	 must
declare	 stack	 class	 as	 a	 abstract	 class	 this	 technique	 is	 called	 to	 be	 a	 partial
implementation.

	

Various	form	of	interface	inheritance:-

	

(a)

(single	level	interface	inheritance)

	

(b)

(multilevel	interface	inheritance)

													

(c)

(hierarchical	interface	inheritance)

	

	

(d)

(hybrid	interface	inheritance)

	

	

	

Accessing	Implementing	Class	Objects	Through	Interface	Reference:

	

We	can	declare	variables	as	object	references	that	use	an	interface	rather	than	a
class	 type.	 Any	 instance	 of	 any	 class	 that	 implements	 the	 declared	 interface	 can	 be
referred	to	by	such	a	variable.	When	we	call	a	method	through	one	of	these	reference,	the
correct	version	will	be	called	base	on	the	actual	instance	of	the	interface	being	referred	to.

	

This	is	one	of	the	important	feature	of	interfaces.	The	method	to	be	executed	is
looked	up	dynamically	at	run	time,	allowing	classes	to	be	create	later	than	the	code,	which
calls	methods	on	them.	The	calling	code	can	dispatch	through	an	interface	without	having
to	 know	 anything	 about	 the	 “callee”.	 This	 process	 is	 similar	 to	 using	 a	 super	 class
reference	to	access	a	sub	class	object.

	

Because	dynamic	 lookup	of	a	method	at	 run	 time	 incurs	a	 significant	overhead
when	compared	with	the	normal	method	invocation	in	Java,	we	should	be	careful	not	 to
use	interface	casually	in	performance-critical	code.

	

Example	9.3

1.																												interface	Math_function

2.																						{

3.																																										void	display(int	x);

4.																						}

5.																												class	Sqrt	implements	Math_function

6.																						{

7.																																				public	void	display(int	x)

8.																																												{

9.																																												System.out.println(“sqrt	of	x	=”+Math.sqrt(x));

10.																																												}

11.																					}

12.																												class	Log	implements	Math_function

13.																					{

14.																																				public	void	display(int	x)

15.																																											{

16.																																												System.out.println(“log	of	x	=	“+Math.log(x));

17.																																												}

18.																					}

19.																												class	Math_Demo

20.																					{

21.																																																		public	static	void	main(String	args[])

22.																																											{

23.																																																																	Math_function	f1	=	new	Sqrt();

24.																																																										Math_function	f2	=	new	Log();

25.																																																										f1.display(27);

26.																																																										f2.display(3);

27.																																																																	Math_function	f3;

28.																																												f3=f1;										//polymorphism	(assign	the	reference)

29.																																																										f3.display(30);

30.																																																			f3=f2;										//polymorphism	(assign	the	reference)

31.																																																										f3.display(5);

32.																																												}

33.																						}

	

Output:

																												

Characteristics	of	Interface:
	

									Interface	is	a	keyword.

	

	 	 	 	 	 	 	 	 	Interface	can	be	declared	as	abstract	but	it	is	abstract	default	so	there	is	no
need	to	add	abstract	keyword.

									All	variables	are	always	public	static	&	final.

	

									All	methods	of	interface	must	be	implemented	in	the	class.

	

									All	methods	implemented	by	the	implementing	class	must	be	public.

	

									Interface	includes	declaration	of	the	methods	only.

	

									Interface	methods	can	not	be	declared	as	static.	They	are	always	declared	as
an	instance	methods.

	

	 	 	 	 	 	 	 	 	A	 class	 can	 neither	 narrow	 the	 accessibility	 of	 an	 interface	method	 nor
specify	new	exceptions	in	method’s	throws	clause;	as	attempting	to	do	so	would
amount	 to	 altering	 the	 interfaces	 contract,	 which	 is	 illegal.	 The	 criteria	 for
overriding	methods	also	apply	when	implementing	interface	methods.

	

									All	methods	need	to	be	defined	as	public	in	the	implementing	class.

	

									Partial	implements	are	allowed	here	using	by	abstract	keywords.

	

									Regardless	of	how	many	interfaces	a	class	implements	directly	or	indirectly,
it	only	provides	a	single	implementations	of	a	method	that	might	have	multiple
declarations	in	the	interfaces.

	

	 	 	 	 	 	 	 	 	Method	 prototype	 declarations	 can	 also	 be	 overloaded	 as	 in	 the	 case	 of
classes.

	

	 	 	 	 	 	 	 	 	An	interface	constant	can	be	accessed	by	any	client	 (a	class	or	 interface)
using	 its	 fully	 qualified	 name,	 regardless	 of	 whether	 the	 client	 extends	 or
implements	 its	 interface.	 However,	 if	 a	 client	 is	 a	 class	 that	 implements	 this
interface	or	an	interface	that	extends	this	interface,	then	the	client	can	also	access
such	 constants	 directly	 without	 using	 the	 fully	 qualified	 name.	 Such	 a	 client
inherits	the	interface	constants.

	

									In	the	case	of	multiple	inheritance	of	interface	constants	any	name	conflicts
can	be	resolved	using	fully	qualified	names	for	the	constants	involved.

Interface	Variables:

	

All	variables	in	the	interface	are	always	public	static	and	final	because	they	are
common	part	for	the	access	of	the	data	types	and	methods	for	the	implementing.

	

Memory	Management	of	the	Interface	Variable:

	

Static	variables	always	get	 the	memory	when	our	program	 is	 to	be	 loaded	 they
take	the	separate	memory	and	do	not	share	with	the	any	object’s	memory.	They	are	also
called	as	constant	variables.	They	can	be	accessed	directly	using	 interface	name	and	 the
{.}	dot.

	

Example	9.4													

1.																												interface	Static_Var

2.																												{

3.																																										int	sun=1;

4.																																										int	mon=2;

5.																																										int	tues=3;

6.																																										int	wed=4;

7.																																										int	thurs=5;

8.																																										int	fri=6;

9.																																										int	sat=7;

10.																												}

11.																												class	Week_Day	implements	Static_Var

12.																												{

13.																																										public	static	void	main(String	args[])

14.																																										{

15.																																																								System.out.println(sun);

16.																																																								System.out.println(mon);

17.																																																								System.out.println(tues);

18.																																																								System.out.println(wed);

19.																																																								System.out.println(thurs);

20.																																																								System.out.println(fri);

21.																																																								System.out.println(sat);

22.																																										}

23.																												}

														or

11.																												class	Week_Day

12.																												{

13.																																										public	static	void	main(String	args[])

14.																																										{

15.																																																								System.out.println(Static_Var.sun);

16.																																																								System.out.println(Static_Var.mon);

17.																																																								System.out.println(Static_Var.tues);

18.																																																								System.out.println(Static_Var.wed);

19.																																																								System.out.println(Static_Var.thurs);

20.																																																								System.out.println(Static_Var.fri);

21.																																																								System.out.println(Static_Var.sat);

22.																																										}

23.																												}

	

Output:		1

2

3

4

5

6

7													

	

Example	9.5
1.																												interface	Two_Methods

2.																																			{

3.																																																	void	m1();

4.																																										void	m2();

5.																																		}

6.																												class	Three_Methods	implements	Two_methods

7.																																			{

8.																																																	public	void	m1()

9.																																											{

10.																																																										body	of	the	m1;

11.																																												}

12.																																										public	void	m2()

13.																																															{

14.																																																								body	of	the	m2;

15.																																										}

16.																																										public	void	m3()

17.																																										{

18.																																																								body	of	the	m3;

19.																																										}

20.																												}

21.																												class	Methods_Demo

22.																												{

23.																																										public	static	void	main(String	args[])

24.																																										{

25.																																										Two_methods	tm1	=	new	Three_methods();

26.																																																								tm1.m1();

27.																																																								tm1.m2();

28.																																																								//tm1.m3();														error

29.																												Three_Methods	tm2	=	new	Three_Methods();

30.																																																								tm3.m3();

31.																																										}

32.																												}

Note:-	 	 	 	 	 	 	 	 	 	 	 	 	 	Here	we	 can	not	 call	 the	m3()	 using	 interface	 reference	because	 this
methods		is	not	declared	in	the	interface.	So	interface	reference	can	access	those	methods
which	are	declared	 in	 the	 self	 block.	Otherwise	we	can	call	 the	 same	classes	objects	or
extended	classes	objects.

	

Example	9.6	of	two	interfaces	implemented	in	the	one	class

	

1.														interface	Two_Methods

2.														{

3.																																			void	m1();

4.																												void	m2();

5.														}

6.														interface	One_Method	extends	Two_Methods

7.														{

8.																												void	m3();

9.														}

10.														class	Three_Methods	implements	One_methods,

11.																{

12.																														public	void	m1()

13.																																	{

14.																																															body	of	the	m1;

15.																																	}

16.																												public	void	m2()

17.																				{

18.																																										body	of	the	m2;

19.																												}

20.																												public	void	m3()

21.																												{

22.																																										body	of	the	m3;

23.																												}

24.														}

25.														class	Methods_Demo

26.														{

27.																												public	static	void	main(String	args[])

28.																												{

29.																																										Three_methods	tm1	=	new	Three_methods();

30.																																										tm1.m1();

31.																																										tm1.m2();

32.																																										tm1.m3();													

33.																												}

34.														}

	

Non	 Interface	Methods:	When	 any	 class	 implements	 the	methods	 of	 the	 interface	 and
also	defines	additional	methods	in	the	class	which	are	not	declared	in	the	interface,	 then
we	 can	 say	 that	 the	 additional	 methods	 are	 non	 interface	 methods.	 Using	 reference
variable	of	interface	we	can’t	call	these	additional	methods.

	

Example9.7

	

1.														interface	Two_Methods

2.														{

3.																						void	push(int	x);

4.																						int		pop();

5.														}

6.														class	Stack	implements	Two_Methods

7.														{

8.																																				int	arr[]	=	new	int[5];

9.																																				int	top=	-1;

10.																												public	void	push(int	item)

11.																				{

12.																																		if(top	=	=	4)

13.																																	{

14.																																																	System.out.println(“Overflow”);

15.																																																		return;

16.																																												}

17.																															top++;

18.																															arr[top]=item;

19.																										}

20.																												public	int	pop()

21.																				{

22.																																								if(top	=	=	-1)

23.																																		{

24.																																																															System.out.println(“Underflow”);

25.																																																														return	-1;					

26.																																								}

27.																																				int	item	=	arr[top];

28.																																						top—;

29.																																												return	(item);

30.																												}

31.																												void	disp()

32.																				{

33.																																																for(int	i=top;i>=0;i—)

34.																															{

35.																																																													System.out.println(arr[i]);

36.																																					}

37.																												}

38.														}

39.														class	Stack_Demo

40.						{

41.																																	public	static	void	main(String	args[])

42.																														{

43.																																												Stack	s1=new	Stack();

44.																																												s1.pop();

45.																																												for(int	i=0;i<5;i++)

46.																																																																		s1.push(i+100);

47.																																											s1.push(600);

48.																																										System.out.println(“–-Displaying	All	Item–-“);

49.																																												s1.disp();					//non	interface	methods

50.																																												System.out.println(“–-Removing	All	the	Items–-“);

51.																																												for(int	i=0;i<5;i++)

52.																																				{

53.																										System.out.println(s1.pop());			//-1	for	underflow

54.																																						}

55.																																										Two_Methods	t1=new	Stack();

56.																																										t1.push(10);

57.																																										System.out.println(t1.pop());

58.																																										//t1.disp();														error

59.																														}

60.						}

	

Output:
Underflow

Overflow

–-Display	All	Item–-

104

103

102

101

100

–-Remove	All	Items–-

104

103

102

101

100

10													

	

	

	

	 	 	 	

																		

	

	

CHAPTER
∞	10	∞

(String	and	StringBuffer)
	

	

	
	
Introduction-

In	 java	 Strings	 are	 class	 objects	 and	 implemented	 using	 two	 classes,	 namely
String	 and	StringBuffer.	 Java	 String,	 as	 compared	 to	 C	 strings	 are	 more	 reliable	 and
predictable.	This	 is	 basically	 due	 to	C’s	 lack	 of	 bound	 checking.	A	 java	String	 is	 not	 a
character	array	and	is	not	NULL	terminated.	In	general,	Java	does	not	allow	operators	to
be	applied	to	String	objects.

	

The	one	exception	to	this	rule	is	+	&	+=	operator,	which	concatenates	two	strings
producing	a	String	object	as	a	result.	In	Java	character	array	is	not	treated	as	string.	In	Java
String	class	 is	defined	 to	do	all	 string	operations.	The	class	String	and	StringBuffer	 are
part	of	the	java.lang	package.

	

String	class:

	

String	s1	=	new	String(“matrix”);

String	s2	=	“matrix”;

System.out.println(s1);

System.out.println(s1.length);

System.out.println(“matrix”.length);

The	String	has	the	following	characteristics	in	java:
	
	

[i]														String	is	an	object	in	java:

	

String	 represent	 a	 sequence	of	 characters,	But	unlike	many	other	 language	 that
implements	String	as	character	arrays,	java	implements	string	as	objects	of	type	string.

	

String	 manipulation	 is	 the	 most	 common	 part	 of	 many	 java	 programs.
Implementing	 strings	 as	 built	 in	 objects	 allows	 java	 to	 provide	 a	 full	 complement	 of
features	 that	make	 string	 handling	 convenient.	Also	 string	 objects	 can	 be	 constructed	 a
number	of	ways,	making	it	easy	to	obtain	a	string	when	needed.

	

[ii]														String	is	immutable:

	

String	are	immutable	i.e.	we	cannot	change	the	string	after	creation.	However	a
variable	declared	as	a	String	reference	can	be	change	to	point	some	other	string	object	at
any	time.

	

We	can	still	perform	all	 type	of	string	operation.	Each	 time	we	need	an	altered
version	of	an	existing	string,	a	new	string	object	is	created	that	contains	the	modifications.

	

The	 original	 string	 is	 left	 unchanged.	 This	 approach	 is	 used	 because	 fixed,
immutable	strings	can	be	implemented	more	efficiently	than	changeable	ones.

	

For	those	cases	in	which	a	modified	string	is	desired,	there	is	a	companion	class
called	 StringBuffer,	 whose	 objects	 contain	 strings	 that	 can	 be	 modified	 after	 they	 are
created.

	

[iii]														String	class	is	final:

	

Both	 String	 and	 StringBuffer	 classes	 are	 final.	 It	means	we	 can’t	 extend	 class
String	 in	 any	 other	 class.	This	 allows	 certain	 optimization	 that	 increase	 performance	 of
common	string	operations.

Constructors	&	Methods	of	String	class:
	

1 public	String();

Initializes	 a	 newly	 created	String	object	 so	 that	 it	 represents	 an	 empty	 character
sequence.

String	s1	=	new	String();

2 public	String(String	str);

Initializes	a	newly	created	String	object	so	that	it	represents	the	same	sequence	of
characters	as	 the	argument;	 in	other	words,	 the	newly	created	string	is	a	copy	of
the	argument	string.

String	s1	=	new	String(“Matrix”);

String	s2	=	new	String(s1);

The	 string	 s2	 is	 a	 copy	 of	 string	 s1.	Although	 contents	 are	 same	 but	 s1	 and	 s2
points	to	different	string	objects.

3 public	String(char	ch[]);

Allocated	a	new	String	 so	 that	 it	 represents	 the	 sequence	of	characters	currently
contained	in	character	array	argument.

char	ch[]	=	{‘a’,	‘b’,	‘c’};

String	s1	=	new	String(ch);	//s1	will	hold	“abc”

4 public	String(char	value[],	int	offset,	int	count);

Allocates	a	new	String	that	contains	characters	from	a	sub-array	of	 the	character
array	argument.

char	ch[]	=	{‘a’,	‘b’,	‘c’,	‘d’,	‘e’,	‘f’};

String	s1	=	new	String(ch,2,3);														//s1	will	hold	“cde”

5 public	String(int	value[],	int	offset,	int	count);

Allocates	 a	 new	 String	 that	 contains	 characters	 from	 a	 sub-array	 of	 the	 integer
array	argument	containing	Unicode	of	characters.

int	a[]	=	{97,	98,	99,	100,	101,	102};

String	s1	=	new	String(a,2,3);														//s1	will	hold	“cde”

6 public	String(byte	b[],	int	offset,	int	count);

Constructs	 a	 new	 String	 by	 decoding	 the	 specified	 sub-array	 of	 bytes	 using	 the
platform’s	default	char	set.

byte	b[]	=	{97,	98,	99,	100,	101,	102};

String	s1	=	new	String(b,2,3);														//s1	will	hold	“cde”

7 public	String(byte[]);

Constructs	 a	 new	 String	 by	 decoding	 the	 specified	 array	 of	 bytes	 using	 the
platform’s	default	char	set.

byte	b[]	=	{97,	98,	99};

String	s1	=	new	String(b);	//s1	will	hold	“abc”

Even	though	Java’s	char	type	used	16	bits	to	represent	the	Unicode	character	set,
the	typical	format	for	strings	on	the	Internet	uses	arrays	of	8-bit	bytes	constructed
from	the	ASCII	character	set.	Because	8-bit	ASCII	strings	are	common,	the	String
class	provides	constructors	that	initialize	a	string	when	given	a	byte	array.	In	each
of	 the	 above	 constructors	 the	 byte	 to	 character	 conversion	 is	 done	 by	 using	 the
default	character	encoding	of	the	platform.

8 public	String(StringBuffer);

9 public	int	length();

This	will	display	number	of	characters	of	the	string.

10 public	boolean	isEmpty();

This	will	display	true	if	the	string	is	empty	otherwise	false.

String	s1	=	new	String();

System.out.println(s1.isEmpty());

11 public	char	charAt(int	index);

Returns	the	char	value	at	the	specified	index.	An	index	ranges	from	0	to	length()–
1.	The	first	char				value	of	the	sequence	is	at	index	0,	the	next	at	index	1,	and	so
on,	as	for	array	indexing.	Throws	StringIndexOutOfBoundsException	if	invalid
index	is	specified.

String	s1	=	“matrix”;

System.out.println(s1.charAt(0));	//	will	print	“m”

12 public	void	getChars(int	srcBegin,	int	srcEnd,	char[]	dst,	int	dstBegin);

Copies	 characters	 from	 this	 string	 into	 the	 destination	 character	 array.	 The	 first
character	 to	 be	 copied	 is	 at	 index	 srcBegin,	 the	 last	 character	 to	 be	 copied	 is	 at
index	 srcEnd-1	 (thus	 the	 total	 number	 of	 characters	 to	 be	 copied	 is	 second-
srcBegin).	 The	 characters	 are	 copied	 into	 the	 subarray	 of	 dst	 starting	 at	 index
dstBegin	and	ending	at	index:	dstBegin+(srcEnd	–	srcBegin)–1.	This	method	may
throw	ArrayIndexOutOfBoundException	and	StringIndexOutOfBoundsException.

	

13 public	void	getBytes(int	srcBegin,	int	serEnd,	byte	dst[],	int	dstBegin);

14 public	byte[]	getBytes();

Encodes	this	String	into	a	sequence	of	bytes	using	the	platform’s	default	charset,
storing	the	result	into	a	new	byte	array.	This	method	is	most	useful	when	we	are
exporting	a	string	value	into	an	environment	that	does	not	support	16-bit	Unicode
character.	 For	 example,	 most	 Internet	 protocols	 and	 text	 file	 formats	 use	 8-bit
ASCII	for	all	text	interchange

15 public	boolean	equals(Object);

Compares	 the	 invoking	string	with	 the	 specified	object.	The	 result	 is	 true	 if	 and
only	 if	 the	 argument	 is	 not	 null	 and	 is	 a	 String	 object	 that	 represents	 the	 same
sequence	of	characters	as	the	invoking	string.

16 public	boolean	equalsIgnoreCase(String);

Compares	 the	 invoking	 String	 with	 the	 anotherString,	 ignoring	 case
considerations.

17 public	int	compareTo(String);

Compares	 the	 invoking	 String	 with	 the	 string	 passed	 as	 argument,
lexicographically.

Return	value						Meaning

<0																										The	invoking	string	is	less	than	str

>0																										The	invoking	string	is	greater	than	str

0																												The	two	strings	are	equals

18 public	int	compareToIgnoreCase(String);

Compares	two	strings	lexicographically,	ignoring	case	differences.

19 public	boolean	regionMatches(int	startIndex,	String	str2,	 int	str2StartIndex,
int	len);

Tests	if	two	string	regions	are	equal.

20

Public	 boolean	 regionMatches(Boolean	 ignoreCase,	 int	 startIndex,	 String
str2,	int	str2StartIndex,	int	len);

Tests	 if	 two	string	regions	are	equal.	 It	 ignores	 the	case	difference	 if	 ignoreCase
flag	is	true

21 public	boolean	startsWith(String	prefix,	int	startIndex)

Tests	 if	 this	 string	 starts	 with	 the	 specified	 prefix	 beginning	 at	 specified	 index.
This	method	does	not	return	any	exception	but	returns	false	if	startIndex	is	out	of
bound.

22 Public	boolean	startsWith(String);

Tests	if	this	string	starts	with	the	specified	prefix.

23 public	boolean	endsWith(String	suffix)

Tests	if	this	string	ends	with	the	specified	suffix.

24 public	int	indexOf(char	ch);

Returns	 the	 index	 within	 this	 string	 of	 the	 first	 occurrence	 of	 the	 specified
character.

25 public	int	indexOf(char	ch,	int	fromIndex);

Returns	 the	 index	 within	 this	 string	 of	 the	 first	 occurrence	 of	 the	 specified
character,	starting	the	search	at	the	specified	index.

26 public	int	indexOf(String	str);

Returns	 the	 index	 within	 this	 string	 of	 the	 first	 occurrence	 of	 the	 specified
substring.

27 public	int	indexOf(String	str,	int	fromIndex);

Returns	 the	 index	 within	 this	 string	 of	 the	 first	 occurrence	 of	 the	 specified
substring,	starting	at	the	specified	index.

28 public	int	lastIndexOf(int	ch);

Returns	 the	 index	 within	 this	 string	 of	 the	 last	 occurrence	 of	 the	 specified
character.

29 public	int	lastIndexOf(int	ch,	int	fromIndex);

Returns	 the	 index	 within	 this	 string	 of	 the	 last	 occurrence	 of	 the	 specified
character,	searching	backward	starting	the	at	the	specified	index.

30 public	int	lastIndexOf(String	str);

Returns	 the	 index	 within	 this	 string	 of	 the	 last	 occurrence	 of	 the	 specified
substring.

31 public	int	lastIndexOf(String	str,	int	fromIndex);

Returns	 the	 index	 within	 this	 string	 of	 the	 last	 occurrence	 of	 the	 specified
substring,	searching	backward	starting	at	the	specified	index.

31 public	String	substring(int);

Gives	substring	starting	from	nth	character

32 public	String	substring(int	n,	int	m);

Gives	substring	starting	from	nth	character		up	to	mth	.	(not	including	mth)

33 public	String	concat(String	str);

This	will	concat	the	string	str	at	the	end	of	the	calling	string	object.

34 public	String	replace(char	x,	char	y);

Replace	all	appearance	of	x	with	y

35 public	String	replaceFirst(String,	String);

36 public	String	replaceAll(String,	String);

37 public	String	toLowerCase();

Converts	the	string	to	lowercase

38 public	String	toUpperCase();

Converts	the	string	to	uppercase

39 public	String	trim();

Removes	leading	and	trailing	spaces

40 public	char[]	toCharArray();

Converts	the	invoking	string	to	a	new	character	array.	This	function	is	provided	as
a	convenience,	since	it	is	possible	to	use	getChars()	to	achieve	the	same	result

41 public	static	String	valueOf(Object);

Create	a	string	object	of	the	parameter	p(simple	type	or	object)

	

String	Array:

We	can	also	create	and	use	array	that	contain	strings.

	

Example	10.1

	

1.														import		java.util.Scanner;

2.														class	StringArrSort

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																																										Scanner	sc=new	Scanner(System.in);

7.																																										System.out.print(“Enter	how	many	names	“);

8.																																										int	n=sc.nextInt();

9.																																										String	s[]=new	String[n];

10.																																										//input

11.																																										for(int	i=0;i<n;i++)

12.																																										{

13.																																																								System.out.println(“Enter	name	”	+	(i+1));

14.																																																								s[i]=sc.next();

15.																																										}

16.																																										//sorting

17.																																										for(int	i=0;i<n-1;i++)

18.																																																								for(int	j=i+1;j<n;j++)

19.																																																																						if(s[i].compareTo(s[j])	>	0)

20.																																																																						{

21.																																																																																				String	t=s[i];

22.																																																																																				s[i]=s[j];

23.																																																																																				s[j]=t;

24.																																																																						}													

25																																										//output

26.																																										for(int	i=0;i<n;i++)

27.																																																								System.out.println(s[i]);

28.																												}

29.														}

	

String	Conversion	and	toString()

	

When	 Java	 converts	 data	 into	 its	 String	 representation	 during	 concatenation,	 it
does	so	by	calling	one	of	the	overloaded	versions	of	the	String	conversion	method	valueOf
()	 defined	 by	String	 class.	The	 valueOf()	 is	 a	 static	method	 overloaded	 for	 all	 simple
types	and	for	type	Object.

	

For	the	simple	types,	valueOf()	returns	string	that	contains	the	human-readable
equivalent	of	the	value	with	which	it	is	called.	For	objects,	valueOf()	calls	the	toString()
methods	on	the	object.

	

Every	 class	 inherits	 toString(),	 because	 it	 is	 defined	 by	 the	 Object	 class.
However,	 the	 default	 implementation	 of	 the	 toString()	 is	 seldom	 sufficient.	 It	 displays
name	of	the	class	followed	by	symbol	“@”	and	then	object-id	(e.g.	Box@ab1342),	which
is	normally	of	no	use.	For	most	important	classes	that	we	create,	we	will	want	to	override
toString()	and	provide	our	own	string	representations.

	

Example	10.2:

	

1.														class	A

2.														{

3.																						private	int	x,y;

4.																						A()

5.																						{

6.																														x	=	y	=	0;

7.																						}

8.																						A(int	x1,	int	y1)

9.																						{

10.																														x	=	x1;

11.																														y	=	y1;

12.																						}

13.														}

14.														class	ToStringTest1

15.														{

16.																						public	static	void	main(String	args[])

17.																						{

18.																														A	a1	=	new	A(5,6);

19.																														System.out.println(a1);	//toString()	of	Object	class	is	called

20.																														String	s1=“Object	a1	is	”	+	a1;	//concat	object	with	string

21.																																							//again	toString()	of	Object	is	called

22.																														System.out.println(s1);

23.																						}

24.														}

Output:
A@3e25a5

Object	a1	is	A@3e25a5

	

Example	10.3:-

	

1.														class	A

2.														{

3.																						private	int	x,y;

4.																						A()

5.																						{

6.																														x	=	y	=	0;

7.																						}

8.																						A(int	x1,	int	y1)

9.																						{

10.																														x	=	x1;

11.																														y	=	y1;

12.																						}

13.																						public	String	toString()

14.																						{

15.																														return	(x	+	“,”	+	y);

16.																						}

17.														}

18.														class	ToStringTest2

19.														{

20.																					public	static	void	main(String	args[])

21.													{

22.																A	a1	=	new	A(5,6);

23.																System.out.println(a1);	//toString()	of	A	class	is	called

24.																String	s1=“Object	a1	is	”	+	a1;	//concat	object	with	string

25.																//again	toString()	of	A	class	is	called

26.																System.out.println(s1);

27.														}

28.														}

Output:		5,6

Object	a1	is	5,6

Example	10.4:-

	

1.														import	java.util.*;

2.														class	FindTest

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Scanner	sc=new	Scanner(System.in);

7.																														String	s1,s2;

8.																														System.out.print(“Enter	a	string”);

9.																														s1=sc.next();

10.																														System.out.print(“Enter	string	to	search”);

11.																														s2=sc.next();

12.																														int	ans	=	s1.indexOf(s2);

13.																														if(ans	==	-1)

14.																																						System.out.println(“Not	Found”);

15.																														else

16.																																						System.out.println(“found	at	pos	”	+	ans);

17.																						}

18.														}

	

StringBuffer:

	

StringBuffer	 is	a	peer	class	of	String	 that	provides	much	of	 the	functionality	of
String.	 As	 we	 know,	 String	 represents	 fixed	 length,	 immutable	 character	 sequence.	 In
contrast	 to	 String,	 StringBuffer	 represents	 growable	 and	 writeable	 character	 sequences.
StringBuffer	may	have	characters	and	substrings	inserted	in	the	middle	or	appended	to	the
end.

	

StringBuffer	will	automatically	grow	to	make	room	for	such	additions	and	often
has	more	 characters	 pre-allocated	 than	 are	 actually	 needed,	 to	 allow	 room	 for	 growth.	
Java	 uses	 both	 class	 heavily,	 but	 many	 programmer	 deal	 only	 with	 String	 and	 java
manipulate	StringBuffer	behind	the	scenes	by	using	the	overloaded	+	operator.

	

Few	important	point	related	to	StringBuffer	class

	

									StringBuffer	is	an	Object	like	String.

	

									StringBuffer	class	is	also	final	like	String	class.

	

									StringBuffer	objects	are	mutable	(can	be	modified)	unlike	String	objects.

	

	

	

Constructors	and	Methods	of	StringBuffer	class:-

	

public	StringBuffer();

The	default	constructor	reserves	room	for	16	characters	without	reallocation.

public	StringBuffer(int);

This	constructor	accept	a	integer	argument	that	explicitly	sets	the	size	of	the	buffer.

public	StringBuffer(String);

This	 constructor	 accept	 a	 String	 argument	 that	 sets	 the	 initial	 contents	 of	 the
StringBuffer	object	and	reserves	room	for	16	more	characters	without	reallocation.

public	synchronized	int	length();

Returns	the	current	length	of	the	StringBuffer.

public	synchronized	int	capacity();

Returns	the	current	capacity.	The	capacity	is	the	amount	of	storage	available	for	newly
inserted	characters,	beyond	which	an	allocation	will	occur.

public	synchronized	void	ensureCapacity(int);

Ensures	that	the	capacity	is	at	least	equal	to	the	specified	minimum.	If	we	want	to	pre-
allocate	room	for	a	certain	no.	of	characters	after	a	StringBuffer	has	been	constructed,
we	can	use	ensureCapacity()	method	 to	 set	 the	 size	of	 the	buffer.	This	 is	useful	 if	we
know	 in	 advance	 that	 we	 will	 be	 appending	 a	 large	 number	 of	 small	 strings	 to	 a
StringBuffer.

public	synchronized	void	trimToSize();

This	will	remove	extra	free	space.	Now	Capacity	will	be	equal	to	length.

public	synchronized	void	setLength(int	newLength);

Sets	the	length	of	the	character	sequence.	The	newLength	must	be	non-negative.	When
we	 increase	 the	 size	of	 the	buffer,	null	characters	are	added	 to	 the	end	of	 the	existing
buffer.	 If	 we	 call	 setLength()	 with	 a	 value	 less	 then	 the	 current	 value	 returned	 by
length(),	then	the	characters	stored	beyond	the	new	length	will	be	lost.

public	synchronized	char	charAt(int	index);

Returns	the	char	value	in	this	sequence	at	the	specified	index.

public	 synchronized	 void	 getChars(int	 srcBegin,	 int	 srcEnd,	 char[]	 dst,	 int
dstBegin)

Characters	 are	 copied	 from	 this	 sequence	 into	 the	destination	 character	 array	dst.	The
first	 character	 to	 be	 copied	 is	 at	 index	 srcBegin;	 the	 last	 character	 to	 be	 copied	 is	 at
index	 srcEnd-1.	 The	 total	 number	 of	 characters	 to	 be	 coped	 is	 srcEnd-srcBegin.	 The
characters	are	copied	into	the	subarray	of	dst	starting	at	index	dstBegin.

Note:	Ensure	that	the	destination	or	target	array	is	large	enough	to	hold	the	number	of
character	in	the	specified	substring.

public	synchronized	void	setCharAt(int	index,	char	ch);

The	character	at	the	specified	index	is	set	to	ch.	IndexOutOfBoundsException	occurs	if
index	in	negative	or	greater	than	or	equal	to	length().

public	synchronized	StringBuffer	append(Object);

The	append	method	concatenates	 the	string	representation	of	any	other	 type	of	data	 to
the	end	of	the	invoking	StringBuffer	object.

public	synchronized	StringBuffer	delete(int	start,	int	end);

Removes	characters	from	index	start	to	index	end-1

public	synchronized	StringBuffer	deleteCharAt(int	index);

Removes	the	char	at	the	specified	position

public	synchronized	StringBuffer	replace(int	start,	int	end,	String	str);

Replaces	 the	 characters	 from	 index	 start	 to	 index	 end-1	 with	 the	 characters	 in	 the
specified	String.

public	synchronized	String	substring(int);

Returns	a	new	String	that	contains	a	subsequence	of	character	currently	contained	in	this
character	sequence.	The	substring	begins	at	the	specified	index	and	extends	to	the	end	of
this	sequence.

public	synchronized	String	substring(int	start,	int	end);

Returns	a	new	String	 that	 contains	 a	 subsequence	of	 characters	 currently	 contained	 in
this	character	sequence.	The	substring	begins	at	the	specified	start	index	and	extends	to
the	character	at	index	end-1.

public	synchronized	StringBuffer	insert(int,	Object);

Insert	one	String	in	to	another	String.	It	is	overloaded	to	accept	values	of	all	the	simple
types	plus	Strings	and	Objects.

public	int	indexOf(String);

public	synchronized	int	indexOf(String,	int);

public	int	lastIndexOf(String);

public	synchronized	int	lastIndexOf(String,	int);

public	synchronized	StringBuffer	reverse();

Reverse	the	contents	of	the	StringBuffer.

	
Example	10.5:

	

1.														import	java.util.Scanner;

2.														class	SortStr

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Scanner	sc	=	new	Scanner(System.in);

7.																														System.out.print(“Enter	a	string”);

9.																														StringBuffer	sb1	=	new	StringBuffer(sc.next());

10.																						//Sorting

11.																														for(int	i=0;i<sb1.length()-1;i++)

12.																																						for(int	j=i+1;j<sb1.length();j++)

13.																																												if(sb1.charAt(i)	>	sb1.charAt(j))

14.																																														{

15.																																																						char	t=sb1.charAt(i);

16.																																																						sb1.setCharAt(i,sb1.charAt(j));

17.																																																						sb1.setCharAt(j,t);

18.																																														}

19.																																												System.out.println(sb1);

20.																						}

21.														}

Output:	Enter	a	string		SHIVAM

																																								AHIMSV

	

Example	10.6:	Program	to	count	no.	of	words	in	a	given	sentence.

1.														class	WordCnt

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										String	s1	=	“Mohan	Das		Karam		Chand		Gandhi”;

6.																																										boolean	flag=false;

7.																																										int	cnt=0;

8.																																										for(int	i=0;i<s1.length();i++)

9.																																										{

10.																																																								if(s1.charAt(i)	==	‘	‘)

11.																																																																						flag	=	false;

12.																																																								else

13.																																																								{

14.																																																																						if(flag	==	false)

15.																																																																						{

16.																																																																																				flag	=	true;

17.																																																																																				cnt++;

18.																																																																						}

19.																																																								}

20.																																										}

21.																																										System.out.print(“No.	of	Words=”	+	cnt);

22.																												}

23.														}

Output:	No.	of	Words=5

	

	

	

	
CHAPTER
∞	11	∞

(Exception	Handling)
	

	
Introduction-

An	Exception	is	a	condition	that	is	caused	by	a	run	time	error	in	the	program	that
breaks	the	normal	flow	of	the	program.	When	the	java	interpreter	encounters	an	error	such
as	dividing	an	integer	by	zero,	it	creates	an	Exception	object	and	throws	it.	(i.e.,	inform	us
that	an	error	is	occurred).

A	Java	exception	/	error	is	an	object	of	class	Exception	or	one	of	their	sub-classes
whenever	exception	occurs	at	the	run-time.	The	exception	object	contains	details	about	the

exception	which	can	be	accessed	using	the	public	methods	provided	for	this	purpose.

In	some	older	languages	we	have	to	use	if,	goto	and	return	codes	for	error	handling.

An	exception	 	 is	 an	abnormal	 	 condition	 	 that	 arises	 in	 a	 code	 sequence	at	 run
time.	In	other	words,	an	exception		is	a	runtime	error.	In	computer		languages	that	do		not	
support	 	 exception	 	 handling,	 	 errors	 	 must	 	 be	 checked	 	 and	 	 handled	 	 manually—
typically		through		the	use		of		error		codes,		and		so		on.	

This	 	 approach	 	 is	 	 as	 cumbersome	 	 as	 	 it	 	 is	 	 troublesome.	 	 Java’s	 	 exception
handling	 	 avoids	 	 these	 	 problems	 	 and,	 	 in	 	 the	 	 process,	 brings	 	 run-time	 	 error	
management		into		the		object-	oriented	world.

Exception-Handling	Fundamentals

A		Java		exception		is		an		object		that		describes		an	exceptional	(that	is,	error)
condition	that	has	occurred	in	a		piece		of		code.	When		an		exceptional		condition		arises,
an		object		representing		that		exception		is		created		and	thrown	in	the	method	that	caused
the	error.	That	method	may	choose		to	handle		the	exception		itself,	or	pass		it	on.

Either	way,	at		some		point,		the		exception		is	caught		and	processed.	Exceptions
can	be	generated	by	 	 the	 Java	 run-	 time	system,	or	 	 they	can	be	manually	generated	by
your	code.		Exceptions		thrown		by		Java		relate		to		fundamental	errors		that		violate		the	
rules	 	 of	 	 the	 	 Java	 	 language	 	 or	 	 the	 constraints	 of	 	 the	 Java	 execution	 environment.
Manually	generated		exceptions		are		typically		used		to		report		some	error	condition	to	the
caller	of	a	method.

Java		exception		handling		is		managed		via		five	keywords:	try,		catch,		throw,	
throws,		and	finally.	Briefly,	here		is		how		they		work.		Program		statements		that		you
want	 	 to	monitor	 	 for	 	 exceptions	 	 are	 	 contained	 	within	 	 a	 try	 block.	 If	 an	 exception
occurs	within	the	try	block,	it	is	thrown.	Your	code	can	catch		this	exception	(using	catch)
and	 handle	 it	 in	 some	 rational	 manner.	 System-generated	 exceptions	 are	 automatically
thrown	by	the	Java	runtime	system.		To		manually		throw		an		exception,		use		the	keyword
throw.		Any		exception		that		is		thrown		out		of		a	method		must		be		speci0ed		as		such		by	
a	throws		clause.

Any		code	 	 that	 	absolutely	 	must	 	be	 	executed	 	after	 	a	 try	block	completes	 is	put	 in	a
finally	block.

This		is		the		general		form		of		an		exception-handling	block:

	

This	is	the	general	form	of	an	exception	handling	block:

try	{

//	block	of	code	to	monitor	for	errors

}

catch	(ExceptionType1	exOb)	{

//	exception	handler	for	Exception	Type1

}

//………

finally	{

//	block	of	code	to	be	executed	after	try	block	ends

}

Exception	Types

All		exception		types		are		subclasses		of		the		built-in		class	Throwable.	 	Thus,
Throwable	 	 is	 	 at	 	 the	 	 top	 	 of	 	 the	 exception	 class	 hierarchy.	 Immediately	 below
Throwable	are		two		subclasses		that		partition		exceptions		into		two	distinct		branches.	
One		branch		is		headed		by	Exception.	This		class		is		used		for		exceptional		conditions	
that		user	programs	should	catch.	This	is	also	the	class	that	you	will	subclass		to		create	
your		own		custom		exception		types.

There	 	 is	 	 an	 	 important	 	 subclass	 	 of	 Exception,	 	 called	RuntimeException.	
Exceptions		of		this		type		are	automatically		defined		for		the		programs		that		you		write
and		include		things		such		as		division		by		zero		and		invalid	array	indexing.

The	 	 other	 	 branch	 	 is	 	 topped	 	 by	 Error,	 	 which	 	 defines	 exceptions	 	 that	 	 are	 	 not	
expected		to		be		caught		under	normal		circumstances		by		your		program.		Exceptions		of
type	Error		are		used		by		the		Java		run-time		system		to	indicate		errors		having		to		do	
with	 	 the	 	 run-time	environment,	 itself.	Stack	overflow	is	an	example	of	such	an	 	error.	
This		chapter		will		not		be		dealing		with	exceptions		of		type	Error,		because		these		are	
typically	created		in		response		to		catastrophic		failures		that		cannot	usually	be	handled	by
your	program.

The	top-level	exception	hierarchy	is	shown	here:

Example	11.1

1.														class	ErrorTest1

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										int	a=5,b=2,c=2,d;

6.																														d=a/(b-c);	//ArithmeticException(Divide	by	zero)	occurred

7.																																										System.out.println(d);

8.																																										System.out.println(“This	will	not	be	printed”);

9.																												}

10.														}

Program	will	terminate	during	divide	operation	and	will	not	run	the	remaining	statements.

	

Example	11.2

1.														class	A

2.														{

3.																												void	display()

4.																												{

5.																																										–—

6.																												}

7.														}

8.														class	ErrorTest2

9.														{

10.																												public	static	void	main(String	args[])

11.																												{

12.																																										A	a1=null;

13.																																										a1.display();	//	NullPointerException	occurred

14.																												}

15.														}

In	 the	 above	 program	 NullPointerException	 will	 occur.	 The	 reference	 variable	 is	 not
initialized	with	new.	The	program	gets	terminated	in	this	case	also.

Example	11.3

1.														class	ErrorTest3

2.														{

3.																	public	static	void	main(String	args[])

4.																	{

5.																												int	a[]	=	{10,20,30};

6.																												System.out.println(a[3]);			//	ArrayIndexOutOfBoundsException
occurred

7.																	}

8.														}

In	the	above	case	the	length	of	array	is	3	and	the	index	is	from	0	to	2,	so	if	we	print	a[3]
then	 this	 is	 the	 4th	 element	which	 is	 not	 a	 valid	 index.	 This	will	 generate	 an	 exception
error.	In	C/C++	it	is	allowed	but	not	in	Java.

NOTE-

JDK	 	 7	 	 adds	 	 a	 	 new	 	 form	 	 of	 	 the	 try	 	 statement	 	 that	 supports	 automatic	 	 resource
management.	 	This	 	 new	 form	 	of	 try,	 	 called	 try-with-resources,	 	 is	 described	 	 in	 file
Chapter		in		the	context	of	managing	files	because	files	are	some	of	the	most	commonly
used	resources.

Other	cases	of	Exceptions

1.	 The	file	we	are	trying	to	open	may	not	exist.

2.	 We	want	to	create	a	new	object	but	no	memory	is	available.

3.	 The	class	file	we	want	to	load	may	be	missing	or	in	the	wrong	format.

4.	 The	 String,	 which	 we	 want	 to	 convert	 to	 a	 number,	 is	 having	 invalid
characters	so	that	it	cannot	be	converted	to	a	number.

If	the	exception	object	is	not	caught	and	handled	properly,	the	interpreter	will	display	an
error	message	and	will	terminate	the	program.	If	we	want	to	continue	with	the	execution
with	the	remaining	code,	then	we	should	try	to	catch	the	exception	object	thrown	by	the
error	condition.

This	task	is	known	as	exception	handling.	The	purpose	of	the	exception	handling
mechanism	is	to	provide	a	means	to	detect	a	report	an	“exceptional	circumstance”	so	that
the	appropriate	action	can	be	taken.	This	mechanism	suggests	incorporation	of	a	separate
error	handling	code	that	performs	the	following	tasks:

1.														Find	the	problem.(Exception	occur)

2.														Inform	that	an	error	has	occurred.	(throw	the	exception)

3.														Receive	the	error	information.	(catch	the	exception)

4.														The	corrective	action.	(handle	the	exception)													

Java	Exception	handling	is	managed	via	five	keywords:

try,	catch,	throw,	throws	and	finally.
Program	statements	that	we	want	to	monitor	for	exception	are	contained	within	a

try	block,	and	whenever	an	error	occurs	then	it	is	thrown	to	the	catch	block.	Our	code	can
catch	this	exception	(using	catch)	and	handle	it	in	some	rational	manner.	System	generated
exception	are	automatically	thrown	by	the	java	run	time	system.

To	manually	 throw	an	exception,	use	 the	keyword	 throw.	Any	exception	 that	 is
thrown	 out	 of	 a	 method	 must	 be	 specified	 as	 such	 by	 a	 throws	 clause.	 Any	 code	 that
absolutely	must	be	executed	before	a	method	returns	is	put	in	a	finally	block.

The	 try	 block	 must	 be	 enclosed	 between	 braces	 even	 if	 there	 is	 only	 one
statement	 in	 it.	 There	 can	 be	 one	 or	 more	 catch	 statements	 and	 zero	 or	 one	 finally
statement.	Both	 catch	 and	 finally	 blocks	 are	 optional	 but	 either	 one	 catch	 block	 or	 one
finally	block	is	must.

The	code	in	the	try	block	is	executed	like	any	other	Java	code.	If	the	code	inside
the	try	block	executes	successfully	then	the	control	goes	to	finally	block	if	it	is	present	and
then	the	execution	continues	from	the	statement	just				after	the	end	of	finally	block	(i.e.
after	 the	 end	 of	 try	 statement)	 If	 the	 finally	 block	 is	 not	 present	 then	 the	 execution
continues	 from	 the	 statement	 just	 after	 the	 last	 catch	 block	 (i.e.	 after	 the	 end	 of	 try
statement).

If	 some	 run-time	 error	 occurs	while	 executing	 the	 code	 in	 try	 block	 then	 JVM
throws	an	Exception	Error.	This	means	an	object	of	type	Exception	Error	or	one	of	its	sub-
classes	is	created	depending	on	the	type	of	the	run-time	error.	This	is	then	compared	with
the	Exception/Error	types	of	the	catch	blocks	in	top	to	bottom	order.

If	 a	 matching	 catch	 block	 is	 found	 then	 the	 exception	 /	 error	 is	 handled	 i.e.
program	will	not	terminate.	The	execution	continues	with	the	first	statement	in	the	catch
block.	On	completion	of	the	catch	block,	execution	continues	with	the	statement	just	after
the	end	of	try	&	catch	statement.

At	 the	 most	 one	 catch	 block	 is	 executed	 irrespective	 of	 the	 number	 of	 catch
blocks.	If	exception	/	error	does	not	match	with	exception	/	error	type	of	any	of	the	catch
blocks,	then	we	say	that	it	is	not	handled.

The	 execution	will	 immediately	 return	 from	 try	 block.	 The	 code	 in	 the	 finally
block	will	be	executed	even	if	the	exception	/	error	is	not	handled.

The	 exception	 /	 error	 will	 then	 be	 handled	 by	 outer	 try	 block	 if	 there	 is	 one
otherwise	it	must	be	handled	in	the	method	which	called	the	current	method.

The	exception	/	error	moves	up	the	hierarchy	till	 it	 is	handled	or	 it	 is	passed	to
JVM	unhandled	if	not	handled	even	in	the	main()	method	which	is	the	first	method	from
which	the	execution	starts.

The	JVM	then	simply	terminates	the	program	and	displays	the	exception	/	error
details	on	the	monitor	/	console.

Here	we	have	represent	some	Exception	which	can	be	occur	at	the	execution	time	in	the
program.

Using	try	and	catch-

Although	 	 the	 default	 	 exception	 handler	 provided	 by	 	 the	 Java	 	 run-time	 	 system	 	 is	

useful		for		debugging,		you		will	usually	want		to		handle		an		exception		yourself.	Doing	
so	provides	two	bene0ts.	First,	it	allows	you	to	0x	the	error.

Second,	it		prevents		the		program		from		automatically	terminating.		Most		users		would	
be		confused		(to		say		the	least)		if		your		program		stopped		running		and		printed		a	stack
trace	whenever	an	error	occurred!	Fortunately,	it	is	quite	easy	to	prevent	this.

To	guard	against	and	handle	a		run-time	error,		simply	enclose		the		code		that		you	want		to
monitor	 	 inside	 	 a	 try	block.	 	 Immediately	 	 following	 	 the	 try	 	block,	 	 include	 	 a	catch	
clause		that		speci0es		the		exception		type		that		you	wish		to	catch.

To		illustrate	how	easily		this	can	be	done,	the		following		program		includes		a	try		block	
and		a	catch	clause		that		processes		the	ArithmeticException		generated	by	the	division-
by-zero	error:

class	Exc2	{

public	static	void	main(String	args[])

{

int	d,	a;

try	{															//	monitor	a	block	of	code.

d	=	0;

a	=	42	/	d;

System.out.println(“This	will	not	be	printed.”);

}

catch	(ArithmeticException	e)

{

//	catch	divide-by-zero	error

System.out.println(“Division	by	zero.”);

}

System.out.println(“After	catch	statement.”);

}

}

This	program	generates	the	following	output:

Division	by	zero.

After	catch	statement.

Notice	 that	 the	 call	 to	 println()	 	 inside	 	 the	 try	 block	 	 is	 never	 	 executed.	 	 Once	 	 an	
exception		is		thrown,		program	control	transfers	out	of	the	try	block	into	the	catch	block.

Put		differently,	catch		is		not		“called,”		so		execution		never	“returns”		to		the	try		block	
from		a	catch.	

Thus,		the		line	“This		will		not		be		printed.”		is		not		displayed.		Once		the	catch
statement	 has	 executed,	 program	 control	 continues	 with	 the	 next	 line	 in	 the	 program
following	the	entire	try/	catch	mechanism.

A	 try	 and	 its	 catch	 statement	 form	 a	 unit.	 The	 scope	 of	 the	 catch	 clause	 is
restricted	to	those	statements	specified	by		the		immediately		preceding	try		statement.	

A	catch	statement		cannot		catch		an		exception		thrown		by		another	try	statement
(except	in	the	case	of	nested	try	statements,	described		shortly).		The		statements		that		are	
protected		by	try		must		be		surrounded		by		curly		braces.		(That		is,		they	must	be	within	a
block.)	You	cannot	use	try	on		a		single	statement.

The	goal	of	most	well-constructed	catch	clauses	should	be		to		resolve		the		exceptional	
condition		and		then	continue		on		as		if		the		error		had		never		happened.		For	example,		in	
the		next		program		each		iteration		of		the	for	loop		obtains		two		random		integers.	

Those	 	 two	 	 integers	are	divided	by	each	other,	and	 the	 result	 is	used	 to	divide
the		value		12345.		The	final		result		is		put		into	a.		If		either	division		operation		causes		a	
divide-by-zero		error,		it		is	caught,		the		value		of	a		is		set		to		zero,		and		the		program
continues

//	Handle	an	exception	and	move	on.

import	java.util.Random;

class	HandleError	{

public	static	void	main(String	args[])	{

int	a=0,	b=0,	c=0;

Random	r	=	new	Random();

for(int	i=0;	i<32000;	i++)	{

try	{

b	=	r.nextInt();

c	=	r.nextInt();

a	=	12345	/	(b/c);

}	catch	(ArithmeticException	e)	{

System.out.println(“Division	by	zero.”);

a	=	0;	//	set	a	to	zero	and	continue

}

System.out.println(“a:	”	+	a);

}

}	}.

Displaying	a	Description	of	an	Exception

Throwable		overrides		the	toString()	method		(de0ned		by	Object)	so	that	it	returns	a	string

containing	 a	 description	 of	 	 the	 	 exception.	 	You	 	 can	 	 display	 	 this	 	 description	 	 in	 	 a
println()		statement		by		simply		passing		the		exception		as	an		argument.		For		example,	
the	catch		block		in		the	preceding	program	can	be	rewritten	like	this:
catch	(ArithmeticException	e)

{

		System.out.println(“Exception:	”	+	e);

		a	=	0;	//	set	a	to	zero	and	continue

}

When		this		version		is		substituted		in		the		program,		and	the		program		is		run,		each		divide-by-zero		error		displays	the
following	message:

Exception:	java.lang.ArithmeticException:	/	by	zero
While	 	 it	 	 is	 	of	 	no	 	particular	 	value	 	 in	 	 this	 	context,	 	 the	ability	 	 to	 	display	 	a	 	description	 	of	 	an	 	exception	 	 is
valuable	 	 in	 	other	 	circumstances—particularly	when	 	you	are	 	experimenting	 	with	 	exceptions	 	or	 	when	 	you	 	are
debugging.

Exception	Type Cause	of	the	Exception

ArithmeticException Arithmetic	Error	such	as	-	Division	by	0

ArrayIndexOutOfBoundsException Out	of	limit	of	array	indexes

ArrayStoreException Store	the	wrong	type	of	data	in	an	array

FileNotFoundException Access	a	non-existent	file

IOException Inability	to	read	from	a	file

NullPointerException Caused	by	referencing	a	null	object

NumberFormatException Conversion	between	string	and	number	fails

OutOfMemoryException Not	enough	memory	to	allocate	a	new	object

SecurityException An	 applets	 tries	 to	 perform	 an	 action	 not
allowed	by	the	browser’s	security	setting

StackOverflowException The	System	runs	out	of	stack	space

StringIndexOutOfBoundsException A	program	attempt	to	access	a	nonexistent	character	position	in	a
string

	

Java’s	Built-in	Exceptions

Inside		the		standard		package	java.lang,		Java		defines	several		exception		classes.	A		few	
have		been		used		by		the	preceding		examples.		The		most		general		of		these	exceptions	

are		subclasses		of		the		standard		type	RuntimeException.	

As		previously		explained,		these	exceptions	need	not	be		included		in	any	method’s	throws
list.	 	 In	 	 the	 	 language	 of	 	 Java,	 	 these	 	 are	 	 called	 unchecked	 exceptions	 because	 the
compiler	does	not	check	to	see	if	a		method		handles		or		throws		these		exceptions.		The
unchecked		exceptions		defined		in	java.lang		are		listed		in	Table	-1.	Table	-2		lists		those	
exceptions	defined	by	 java.lang	 that	must	be	 included	 in	a	method’s	 throws	 	 list	 if	 	 that
method	can	generate	one	of		these	exceptions	and	does		not		handle		it		itself.		These		are	
called	checked	exceptions.	Java	defines	several	other	types	of	exceptions	that	relate	to	its
various	class	libraries.

	

	

General	form	of	an	Exception	handling

(Exception	handling	mechanism)

Syntax:

-	-	-	-	-	-	-	-	-	-	-	-

-	-	-	-	-	-	-	-	-	-	-	-

try

{

														statement;														//generates	an	exception

}

catch	(Exception-type	e)

{

														statement;														//process	the	exception

}

-	-	-	-	-	-	-	-	-	-	-	-

-	-	-	-	-	-	-	-	-	-	-	-

	

Multiple	catch	Clauses

In		some	cases,	more		than	one	exception	could	be		raised	by		a		single		piece		of	
code.		To		handle		this		type		of	situation,		you		can		specify		two		or		more	catch		clauses,
each		catching		a		different		type		of		exception.	

When		an	exception	is	 thrown,	each	catch	statement	is	 inspected	in	order,	 	and	
the	0rst		one	whose		type	matches		that		of		the	exception		is		executed.		After		one	catch	
statement	executes,		the		others		are		bypassed,		and		execution	continues		after		the	try		/	
catch		block.		The		following	example	traps	two	different	exception	types:

//	Demonstrate	multiple	catch	statements.

class	MultipleCatches	{

public	static	void	main(String	args[])	{

try	{

int	a	=	args.length;

System.out.println(“a	=	”	+	a);

int	b	=	42	/	a;

int	c[]	=	{	1	};

c[42]	=	99;

}	catch(ArithmeticException	e)	{

System.out.println(“Divide	by	0:	”	+	e);

}	catch(ArrayIndexOutOfBoundsException	e)	{

System.out.println(“Array	index	oob:	”	+	e);

}

System.out.println(“After	try/catch	blocks.”);

}

}

	

This	 	 program	 will	 	 cause	 	 a	 	 division-by-zero	 	 exception	 if	 	 it	 	 is	 	 started	 with	 no	
command-line	 arguments,	 	 since	 a	 will	 equal	 zero.	 It	 will	 survive	 the	 division	 if	 you
provide	a	 	command	line	argument,	 	setting	a	 	 to	 	something		 larger	than		zero.	 	But	 	 it	
will		cause		an	ArrayIndexOutOfBoundsException,		since		the	int		array	c	has		a		length	
of		1,		yet		the		program		attempts		to		assign		a	value	to	c[42].

Here	is	the	output	generated	by	running	it	both	ways:

C:\>java	MultipleCatches

a	=	0

Divide	by	0:	java.lang.ArithmeticException:	/	by	zero

After	try/catch	blocks.

C:\>java	MultipleCatches	TestArg

a	=	1

Array	index	oob:		java.lang.ArrayIndexOutOfBoundsException:42	After	try/catch	blocks.

When		you		use		multiple	catch		statements,		it		is	important		to		remember		that	
exception		subclasses		must	come	before		any	of		their		superclasses.	This		is	because		a
catch		statement		that		uses		a		superclass		will		catch	exceptions	of	that	type	plus	any	of	its
subclasses.

Thus,	a	 subclass	 	would	 	never	 	be	 	 reached	 	 if	 	 it	 	 came	 	after	 	 its	 superclass.
Further,	 in	 Java,	 unreachable	 code	 is	 an	 error.	 For	 example,	 consider	 the	 following
program:

/*	This	program	contains	an	error.

A	subclass	must	come	before	its	superclass	in

a	series	of	catch	statements.	If	not,

unreachable	code	will	be	created	and	a

compile-time	error	will	result.

*/

class	SuperSubCatch	{

public	static	void	main(String	args[])	{

try	{

int	a	=	0;

int	b	=	42	/	a;

}	catch(Exception	e)	{

System.out.println(“Generic	Exception	catch.”);

}

/*	This	catch	is	never	reached	because

ArithmeticException	is	a	subclass	of	Exception.	*/

catch(ArithmeticException	e)	{	//	ERROR	–	unreachable

System.out.println(“This	is	never	reached.”);

}

}

}

If	you	try	 to	compile	 this	program,	you	will	 receive	an	error	message	 	stating	 	 that	 	 the	
second	 catch	 	 statement	 	 is	 unreachable	 	 because	 	 the	 	 exception	 	 has	 	 already	 	 been
caught.	 	 Since	 ArithmeticException	 	 is	 	 a	 	 subclass	 	 of	 Exception,	 	 the	 	 first	 catch	
statement		will		handle		all	Exception-based		errors,		including	ArithmeticException.

This		means		that		the		second	catch		statement		will		never	execute.		To		fix		the		problem,	
reverse		the		order		of		the	catch	statements.

Nested	try	Statements

The	try		statement	can	be	nested.	That		is,	a	try		statement	can		be		inside		the		block		of	
another	try.		Each		time		a	try	statement		is		entered,		the		context		of		that		exception		is
pushed		on		the		stack.	

If		an		inner	try		statement		does		not	have	a	catch	handler	for	a	particular	exception,	the
stack	is		unwound		and		the		next	try		statement’s	catch		handlers	are	inspected	for	a	match.

This	continues	until	one	of	the	catch		statements		succeeds,		or		until		all		of		the	
nested	try	statements		are		exhausted.		If	no	catch		statement	matches,	then	the	Java	run-
time	system	will	handle	the	exception.

Here	is	an	example	that	uses	nested	try	statements:

Multiple	catch	statement

When	there	are	more	than	one	catch	statement	then	it	is	said	to	be	a	multiple	catch
statement.

Example	multiple	catch	statements

try

{

														statement;														//generate	an	exception

}

catch(Exception-type-1	e)

{

														statement	1;														//process	exception	type1

}

catch(Exception-type-2	e)

{

														statement	2;														//process	exception	type2

}

-	-

-	-

catch(Exception-type-n	e)

{

														statement	n;														//process	exception	type	n

}

Example	11.4

1.														class	ErrorTest4

2.								{

3.																						public	static	void	main(String	args[])

4.																											{

5.																																																										int	a=10,b=2,c=2,d;

6.																																																										System.out.println(“Before	Exception	“);

7.																																																										d=a/(b-c);

8.																																																										System.out.println(“After	Exception	“);

9.																						}

10.														}

Output	:

Here	we	are	not	caching	the	exception	so	the	program	will	terminate,	after	displaying	the
message	“Before	Exception”.	Now	we	have	solved	this	problem	using	exception	handling.

	

Example	11.5

1.														class	ErrorTest5

2.														{

3.																												public	static	void	main(String[]	args)

4.																											{

5.																																												int	a=10,b=2,c=2,d;

6.																																										try

7.																																														{

8.																																																												System.out.println(“Before	Exception”);

9.																																																								d=a/(b-c);

10.																																																				System.out.println(“This	Will	Not	Print”);

11.																																												}

12.																																												catch(ArithmeticException	e)

13.																																												{

14.																																												System.out.println(“After	Exception”);

15.																																																	System.out.println(“error	:	Division	by	zero”);

16.																																												}

17.																														}

18.							}

Output:

														

Advantages	of	Exception	Handling-

	

We	can	easily	say	where	the	exception	/	error	will	be	handled.	Exception	/	Errors	
propagate	up	the	call	stack	at	runtime-	first	up	the	enclosing	try	blocks	and	then
back	to	the	calling	method-until	an	exception	handler	catch	them.

The	 location	 of	 the	 exception	 /	 error	 is	 known	 exactly	 as	 entire	 stack	 trace	 is
available	to	the	user.	This	is	very	helpful	in	debugging.

Programmer	gets	a	chance	to	recover	from	the	error	/	abnormal	condition.

Error	handling	code	 is	 separated	 from	 the	normal	program	flow	 to	 increase	 the
readability	and	maintainability

With	 java	 there	 is	 no	 need	 to	 test	 if	 an	 exception	 /	 error	 condition	 happens.
Adding	more	error	/	exception	handler	simply	requires	adding	more	catch	clauses,
but	the	original	program	flow	need	not	be	touched.

Hierarchy	of	Exception	Class-

Root	 class	 of	 all	 Exception	 /	 Error	 class	 is	 the	 throwable	 class,	 which	 is	 an
immediate	 subclass	 of	 the	 object	 class.	 Exceptions/Errors	 are	 also	 objects	 in
Java.	Sub	classes	of	Exception	have	the	suffix	Exception.	

There	are	two	immediate	subclass	of	the	class	throwable.

Error:-The	sub	classes	of	Error	class	are	basically	used	for	signaling	abnormal
system	conditions	like:

1.	 OutOfMemoryError	 signals	 that	 the	 Java	VM	has	 run	 out	 of	memory	 and
that	the	garbage	collector	is	unable	to	claim	any	free	memory.

2.	 StackOverflowError	signals	a	stack	overflow	in	the	interpreter.

The	errors	are,	in	general,	unrecoverable	and	should	not	be	handled.

Exception:-The	 sub	 classes	 of	Exception	 class	 are,	 in	 general	 recoverable.	 For
example,	EOFException	signals	that	a	file	we	have	opened	has	no	more	data	for
reading.	FileNotFoundException	signals	that	a	file	we	want	to	open	does	not	exist
in	the	file	system.

	

	

	

Example	of	the	Error	hierarchy	:

Exception	categorized	in	two	types

-														Checked	Exception.

-														Unchecked	Exception.

Checked	Exception

If	 it	 is	 must	 to	 catch	 an	 exception	 then	 it	 is	 called	 a	 checked	 exception.	 The
program	will	not	compile	if	there	is	a	possibility	of	occurring	checked	exception	in	a	try
block	and	it	is	not	handled.

The	compiler	ensured	that	if	a	method	can	throw	a	checked	exception,	directly	or
indirectly,	then	the	method	must	explicitly	deal	with	it.	The	method	must	either	catch	the
exception	and	take	the	appropriate	action,	or	pass	the	exception	on	to	its	caller.

Note:	Exception	and	all	of	 its	 sub-class	 (Excluding	 run	 time-exception	and	 its	 subclass)
are	checked	and	must	be	caught.

Unchecked	Exception

If	it	is	not	must	to	catch	an	exception	then	its	called	an	unchecked	exception.	The
program	will	compile	even	 if	 the	unchecked	exception	 is	not	handled.	 If	any	unchecked
exception	 occurs	 in	 a	 program	 which	 is	 not	 handled	 then	 the	 program	 execution	 will
terminate	 at	 that	 point.	 But	 if	 exception	 is	 handled	 then	 program	 will	 not	 terminate
because	of	exception.

Note:-Error	and	all	of	its	subclass	are	unchecked	exception	and	need	not	be	caught.	Run-
time	Exception	and	all	of	its	subclass	are	unchecked	exception	and	need	not	be	caught.	All
user	defined	Exception	are	checked.

Methods	available	in	Exception	class-

String	getMessage() To	 obtain	 the	 error	 message	 associated	 with
exception	or	error.

void
printStackTrace()

To	 print	 a	 stack	 trace	 showing	 where	 the
exception/error	occurs.

String	toString() To	 show	 the	 exception/error	 name	 along	 with	 the
message	returned	by	getMessage().

	

Example	11.6

1.														class	ErrorTest6

2.														{

3.																						public	static	void	main(String[]	arr)

4.																											{

5.																																									try

6.																																	{

7.																																															int	a=10,b=2,c=2,d;

8.																																															System.out.println(“Before	Exception”);

9.																																															d=a/(b-c);

10.																																													System.out.println(“This	Will	Not	Print”);

11.																															}

12.																																												catch(ArithmeticException	e)

13.																															{

14.																																													System.out.println(“After	Exception”);

15.																																													System.out.println(“error	:	Division	by	zero”);

16.																																																								System.out.println(e.getMessage());

17.																																													System.out.println(e);		//toString()	is	called.

18.																																													e.printStackTrace();

19.																															}

20.																}

21.								}

Output:
Before	Exception

After	Exception

error	:	Division	by	zero

/	by	Zero

java.lang.ArithmeticException:	/	by	zero

java.lang.ArithmeticException:	/	by	zero

at	ErrorTest6.main(ErrorTest6.java:10)

Example	11.7	Multiple	catches

1.														class	ErrorTest7

2.								{

3.																						public	static	void	main(String	args[])

4.																											{

5.																																										try

6.																																														{

7.																																																												int	a=args.length;

8.																																																												System.out.println(“Before	Exception”);

9.																																																												int	b=58/a;

10.																																																										int	c[]	=	{1};

11.																																																										c[47]=100;

12.																																																										System.out.println(“After	Exception”);

13.																																												}

14.																																												catch(ArithmeticException	e)

15.																																												{

16.																																																										System.out.println(“Divide	by	zero	:”+e);

17.																																												}

18.																																											catch(ArrayIndexOutOfBoundsException	e)

19.																																												{

20.																																																										System.out.println(“Array	Index	oob	:”+e);

21.																																												}

22.																																									System.out.println(“After	try/catch	block”);

23.																													}

24.																			}
Output	1:	When	we	run	the	above	program	as	“java	ErrorTest7”

Before	Exception

Divide	by	zero	:	java.lang.ArithmeticException:	/	by	zero

														After	try/catch		block

Output	2:														When	we	run	the	above	program	as	“java	ErrorTest7	45”

														Before	Exception

														ArrayIndexoob:	java.lang.ArrayIndexOutOfBoundsException:	47

														After	try/catch		block

Nested	try	catch

If	we	 use	 try	 and	 catch	 statements	 in	 another	 try	 block	 then	 it	 is	 said	 to	 be	 a
nested	try	catch.

Syntax

-	-	-	-	-	-	-	-	-	-

try																																										//outer	try

{

-	-	-	-	-

try																																										//inner	try

{

statement	;

}

catch1(-	-	-	-	-	-)																												//inner	catch																																																																																																															

{

statement	;

}

catch2(-	-	-	-	-	-)																												//inner	catch

{

statement	;

}

}

catch(-	-	-	-	-)																												//outer	catch

{

statement	;

}

-	-	-	-	-	-	-	-	-	-	-	-	-

	

Example	11.8		Nested	try	and	catch-

1.														class	Nested

2.														{

3.																						public	static	void	main(String	args[])

4.																									{

5.																																							try

6.																																																		{

7.																																															int	a=args.length;

8.																																															int	b=58/a;

9.																																															System.out.println(“a=	“+a);

10.																																													try

11.																																																						{

12.																																																																				if(a==1)

13.																																																							a=a/(a-a);

14.																																																							if(a==2)

15.																																										{

16.																																																													int	c[]={1};

17.																																																							c[42]=100;

18.																																																						}

19.																																														}

20.																																																		catch(ArrayIndexOutOfBoundsException	e)

21.																																																								{

22.																																																			System.out.println(“ArrayIndex	oob	“+e);

23.																																																				}

24.																																						}

25.																																												catch(ArithmeticException	e)

26.																																						{

27.																																																				System.out.println(e.getMessage());

28.																																						}

29.																														}

30.									}

Output	I:

When	we	run	the	above	program	as	“java	ErrorTest8”	/	by	zero

														Output	II:

When	we	run	the	above	program	as	“java	ErrorTest8			10”

														a=1	/	by	zero													

Output	III:

When	we	run	the	above	program	as	“java	ErrorTest8				10				20”	a=2

ArrayIndex	oob	java.lang.ArrayIndexOutOfBoundsException:	42

	

finally	Statement

Java	 support	 another	 statement	 known	 as	 finally	 statement	 that	 can	 be	 used	 to
handle	 an	 exception	 that	 is	 not	 caught	 by	 any	 of	 the	 previous	 catch	 statement.	 finally
block	can	be	used	to	handle	any	exception	generated	within	a	try	block.	It	will	executed	in
all	 the	 cases	 whether	 error	 occurred	 or	 not.	 It	 may	 be	 added	 immediately	 after	 the	 try
block	or	after	the	last	catch	block	shown	as	follows:

Syntax:

														try

														{

-	-	-	-	-	-

														}

														catch(…)

														{

-	-	-	-	-	-	-

														}

														catch(…)

														{

-	-	-	-	-	-	-

														}

														finally

														{

-	-	-	-	-	-	-	-

														}

	

	

	

Example	11.9	finally	statement

1.														class	ErrorTest9

2.								{

3.																						public	static	void	main(String	args[])

4.																														{

5.																																												int	a[]	=	{5,10};

6.																																												int	b=5;

7.																																												try

8.																																						{

9.																																																				int	x=a[2]/b-a[1];

10.																																	}

11.																																							catch(ArithmeticException	e)

12.																																	{

13.																																															System.out.println(“Division	By	Zero”);

14.																																	}

15.																																												catch(ArrayIndexOutOfBoundsException	e)

16.																																	{

17.																																															System.out.println(“Array	Index	error”);

18.																																	}

19.																																												catch(ArrayStoreException	e)

20.																																	{

21.																																															System.out.println(“Wrong	Data	Type”);

22.																																	}

23.																																												finally																												//always	execute

24.																																	{

25.																																															System.out.println(“Always	Execute”);

26.																																	}

27.																																												int	y=a[1]/a[0];

28.																																												System.out.println(“y	=	“+y);

29.																														}

30.								}

Output:	Array	Index	error

Always	Execute

y	=	2

throw

So	far,	we	are	only	been	catching	exception	that	are	thrown	by	the	java	run-time
system.	However	its	possible	for	our	program	to	throw	an	exception	explicitly,	using	the
throw	statement,	the	general	form	of	throw	is	shown	here:

throw		Throwableinstance;

Here,	Throwableinstance	must	be	an	object	of	type	Throwable	or	a	subclass	of
Throwable.	Simple	 type	such	as	 int	or	char,	 as	well	 as	non-Throwable	classes	 such	as
String	 and	Object,	 cannot	 be	 used	 as	 exception.	 There	 are	 two	ways	we	 can	 obtain	 a
Throwable	 object:	using	a	parameter	 into	a	catch	 clause,	or	 creating	one	with	 the	new
operator

The	 flow	 of	 execution	 stops	 immediately	 after	 the	 throw	 statement;	 any
subsequent	statement	are	not	executed.	The	nearest	enclosing	try	block	is	inspected	to	see
if	it	has	a	catch	statement	that	matches	the	type	of	the	exception.	If	it	does	find	a	match,
control	 is	 transferred	 to	 that	 statement.	 If	 not	 then	 the	 next	 enclosing	 try	 statement	 is
inspected,	 and	 so	on.	 If	 no	matching	catch	 is	 found,	 then	 the	default	 exception	handler
halts	the	program	prints	the	stack	trace.

Here	we	have	taken	a	program	that	creates	and	throws	an	exception.	The	handler
that	catches	the	exception	rethrows	it	to	the	outer	handler.

	

Example	11.10

1.														class	ErrorTest10

2.														{

3.																												int	age;

4.																												void	setAge(int	a)

5.																												{

6.																																										if(a>0)

7.																																																								age	=	a;

8.																																										else

9.																																										{

10.														NullPointerException	e	=	new	NullPointerException(“Invalid	Age”);

11.																												throw	e;

12.																												//throw	new	NullPointerException(“Invalid	Age”);

13.																												}

14.																												}

15.																												public	static	void	main(String	args[])

16.																												{

17.																												ErrorTest10	a1	=	new	ErrorTest10();

18.																												try

19.																												{

20.																												a1.setAge(20);

21.																												a1.setAge(-10);

22.																												}

23.																												catch(NullPointerException	e)

24.																												{

25.																												System.out.println(e.getMessage());

26.																																										}

27.																												}

28.														}

Output:

Invalid	Age

throws

If	 a	method	 is	 capable	of	 causing	 an	 exception	 that	 it	 does	not	 handle,	 it	must
specify	 this	 behavior	 so	 that	 caller	 of	 the	 method	 can	 guard	 themselves	 against	 that
exception.	We	do	this	by	including	a	throws	clause	in	the	method’s	declaration.	A	throws
clause	lists	the	type	of	exception	that	a	method	might	throw.

This	 is	 necessary	 for	 all	 checked	 exceptions.	All	 exceptions	 that	 a	method	 can
throw	must	 be	 declared	 in	 the	 throws	 clause.	 If	 they	 are	 not,	 a	 compile-time	 error	will
result.	 This	 is	 a	 general	 form	 of	 a	 method	 declaration	 that	 includes	 a	 throws
clause:													

Syntax:													

type	method-name(parameter	list)throws	exception-list

{

														//body	of	method

}

Here,	exception	list	is	a	comma-separated	list	of	the	exception	that	a	method	can
throw

	

Example	11.11

0.														import	java.io.*;													

1.														class	ErrorTest11

2.														{

3.																												int	age;

4.																												void	setAge(int	a)	throws	IOException

5.																												{

6.																																										if(a>0)

7.																																																								age	=	a;

8.																																										else

9.																																										{

10.																												IOException	e	=	new	IOException(“Invalid	Age”);

11.																																																		throw	e;

12.																																										}

13.																												}

14.																												public	static	void	main(String	args[])

15.																												{

16.																																										ErrorTest11	a1	=	new	ErrorTest11();

17.																																										try

18.																																										{

19.																																																								a1.setAge(20);

20.																																																								a1.setAge(-10);

21.																																										}

22.																																										catch(IOException	e)

23.																																										{

24.																																																								System.out.println(e.getMessage());

25.																																										}

26.																												}

27.														}

Output:

Invalid	Age

Creating	user-defined	Exception/Error	sub-classes:

Creating	Your	Own	Exception	Subclasses-

This	is	quite	easy	to	do,	just	define	a	sub	class	of	Exception/Error	class.	Our	sub
classes	do	not	need	 to	 actually	 implement	 anything.	The	Exception/Error	 class	does	not
define	any	methods	of	its	own.	It	does,	of	course,	inherit	methods	provided	by	Throwable
class.

Although	 Java’s	 built-in	 exceptions	 handle	most	 common	 errors,	 	 you	 	 will	 	 probably	
want	 	 to	 	 create	 	 your	 	 own	 exception	 	 types	 	 to	 	 handle	 	 situations	 	 specific	 	 to	 	 your
applications.		This		is		quite		easy		to		do:		just		define		a	subclass		of	Exception		(which	
is,		of		course,		a		subclass		of	Throwable).	

Your		subclasses		don’t		need		to		actually	implement		anything—it		is		their		existence		in	
the		type	system	that	allows	you	to	use	them	as	exceptions.

The	Exception	class	does	not	define	any	methods	of	its	own.		It		does,		of		course,		inherit	
those	methods	 	provided	by	Throwable.	Thus,	 all	 exceptions,	 including	 those	 	 that	 you	
create,		have		the		methods		defined		by	Throwable	available		to		them.	

Exception		defines		four		constructors.		Two		support	chained		exceptions,		described		in	
the		next		section.		The	other	two	are	shown	here:

Exception()

Exception(String	msg)

The		first		form		creates		an		exception		that		has		no	description.		The		second		form		lets	
you		specify		a	description	of	the	exception.

Although	 	 specifying	 	 a	 	description	when	 	 an	 	 exception	 is	 	 created	 	 is	 	often	 	useful,	
sometimes	 	 it	 	 is	 	 better	 	 to	override	 toString().	Here’s	why:	The	version	of	 toString()	
defined		by	Throwable		(and		inherited		by	Exception)

first	 	 displays	 	 the	 	 name	 	 of	 	 the	 	 exception	 	 followed	 	 by	 	 a	 colon,	 	which	 	 is	 	 then	
followed	 	 by	 	 your	 	 description.	 	 By	 overriding	 toString(),	 	 you	 	 can	 	 prevent	 	 the	
exception	name	and	colon		from	being	displayed.	This	makes		for	a	cleaner	output,	which
is	desirable	in	some	cases.

Example	11.12

1.														class	AgeException	extends	Exception

2.														{

3.																												AgeException(String	msg)

4.																												{

5.																																										super(msg);

6.																												}

7.														}

8.														class	ErrorTest12

9.														{

10.																												int	age;

11.																												void	setAge(int	a)	throws	InvalidAgeException

12.																												{

13.																																										if(a>0)

14.																																																								age	=	a;

15.																																										else

16.																																										{

17.														AgeException	e	=	new	AgeException(“Invalid	Age”);

18.																																																								throw	e;

19.																																										}

20.																												}

21.																												public	static	void	main(String	args[])

22.																												{

23.																																										ErrorTest12	a1	=	new	ErrorTest12();

24.																																										try

25.																																										{

26.																																																								a1.setAge(20);

27.																																																								a1.setAge(-10);

28.																																										}

29.																																										catch(AgeException	e)

30.																																										{

31.																																																								System.out.println(e.getMessage());

32.																																										}

33.																												}

34.														}

Output:

Invalid	Age

The		following		example		declares		a		new		subclass		of	Exception		and		then		uses		that	
subclass	 	 to	 	 signal	 	 an	 	 error	 condition	 	 in	 	 a	 	method.	 	 It	 	 overrides	 	 the	 toString()
method,		allowing		a		carefully		tailored		description		of		the	exception	to	be	displayed.

	

This		example		defines		a		subclass		of	Exception		called	MyException.	This	subclass		is
quite	 simple:	 	 It	 has	only	 a	 constructor	 	 plus	 	 an	 	 overridden	 toString()	 	method	 	 that
displays		the	value	of		the	exception.

The	ExceptionDemo	class	defines		a	method	named	compute()		that		throws		a
MyException		object.		The		exception		is		thrown		when	compute()’s		integer		parameter	
is	 	 greater	 	 than	 	 10.	 	 The	 main()	 	 method	 	 sets	 	 up	 	 an	 	 exception	 	 handler	 	 for
MyException,		then		calls	compute()		with		a		legal		value	(less		than		10)		and		an		illegal	
one		to		show		both		paths	through	the	code.

Here	is	the	result:

Called	compute(1)

Normal	exit

Called	compute(20)

Caught	MyException[20]

Chained	Exceptions:

The	chained	exception	 feature	allows	us	 to	associate	another	exception	with	an
exception.	This	second	exception	describes	the	cause	of	the	first	exception.	For	example,
imagine	 a	 situation	 in	 which	 a	 method	 throws	 an	 ArithmeticException	 because	 of	 an
attempt	to	divide	by	zero.	However,	the	actual	cause	of	the	problem	was	that	an	I/O	error
occurred,	which	caused	the	divisor	to	be	set	improperly.

Although	the	method	must	certainly	throw	an	ArithmeticException,	since	that	is
the	error	that	occurred	We	might	also	want	to	let	the	calling	code	know	that	the	underlying
cause	was	as	I/O	error.

To	allow	chained	exceptions,	Java	2,	version	1.4	added	two	constructors	and	two
methods	to	Throwable	class.	The	constructors	are	shown	here:

Throwable(Throwable	causeExc)

Throwable(String	msg,	Throwable	causeExc)

In	the	first	form,	causeExc	is	the	exception	occurred.	The	second	form	allows	us
to	 specify	 a	 description	 at	 the	 same	 time	 that	we	 specify	 a	 cause	 exception.	These	 two
constructors	have	also	been	added	to	the	Error,	Exception,	and	RuntimeException	classes.

The	 chained	 exception	 methods	 added	 to	 Throwable	 class	 are	 getCause()	 and
initCause()

Throwable	getCause()

Throwable	initCause(Throwable	causeExc)

The	 getCause()	 method	 returns	 the	 exception	 that	 underlies	 the	 current
exception.	 If	 there	 is	 no	 underlying	 exception,	 null	 is	 returned.	The	 initCause()	method
associates	causeExc	with	the	invoking	exception	and	returns	a	reference	to	the	exception.
Thus,	 we	 can	 associate	 a	 cause	 with	 an	 exception	 after	 the	 exception	 has	 created.
However,	the	cause	exception	can	be	set	only	once.

Thus	we	can	call	initCause()	only	once	for	each	exception	object.	Furthermore,	if
the	cause	exception	was	set	by	a	constructor,	then	we	can	not	set	it	again	using	initCause()
method.	In	general,	 initCause()	is	used	to	set	a	cause	for	legacy	exception	classes	which
do	 not	 support	 the	 two	 additional	 constructors	 described	 earlier.	Most	 of	 Java’s	 built-in
exceptions	do	not	define	the	additional	constructors.	Thus,	we	will	use	initCause()	 if	we
need	to	add	an	exception	chain	to	these	exceptions.

Chained	exceptions	are	not	something	that	every	program	will	need.	However,	in	cases
in	which	knowledge	of	an	underlying	cause	is	useful,	they	offer	an	elegant	solution.

Example11.13

1.														Class	ErrorTest13

2.														{

3.																												int	age;

4.																												void	setAge(int	a)

5.																												{

6.																																										if(a>0)

7.																																																								age	=	a;

8.																																										else

9.																																										{

10.															NullPointerException	e	=	new	NullPointerException(“Admission	Failed”);

11.														e.initCause(new	ArithmeticException(“Age	is	invalid”));

12.														throw	e;

13.																																										}

14.																												}

15.																												public	static	void	main(String	args[])

16.																												{

17.																												ErrorTest13	a1	=	new	ErrorTest13();													

18.																												try

19.																																										{

20.																																																								a1.setAge(20);

21.																																																								a1.setAge(-10);

22.																																										}

23.																																										catch(NullPointerException	e)

24.																																										{

25.																																																								System.out.println(e.getMessage());

26.																																																								System.out.println(e.getCause());

27.																																										}

28.																												}

29.														}

Output:

Admission	Failed

Age	is	Invalid

	

In	this	example,	 the	 	 top-level	 	exception		 is	NullPointerException.	 	To		 it	 	 is	 	added		a	
cause	 	 exception,	 ArithmeticException.	 When	 	 the	 	 exception	 	 is	 	 thrown	 	 out	 of
demoproc(),		it		is		caught		by	main().		There,		the		top-	level	exception		is	displayed,	
followed	by		the	underlying	exception,	which	is	obtained	by	calling	getCause().

Chained	 	exceptions	 	can	 	be	 	carried	 	on	 	 to	 	whatever	depth	 	 is	necessary.	Thus,	 	 the	
cause	 	 exception	 	 can,	 	 itself,	 have	 	 a	 	 cause.	 	Be	aware	 	 that	 	 overly	 	 long	 	 chains	 	of
exceptions	may	indicate	poor	design.	Chained		exceptions		are		not		something		that		every
program		will		need.		However,		in		cases		in		which	knowledge	of	an	underlying	cause	is
useful,	they	offer	an	elegant	solution.

Three	New	JDK	7	Exception	Features	(UPDATED)

JDK		7		adds		three		interesting		and		useful		features		to		the	exception		system.		The		first	
automates	 	 the	 	process	 	of	releasing	a	 	 resource,	 	such	as	a	file,	when	 	 it	 	 is	no	 	 longer
needed.	

It		is		based		on		an		expanded		form		of		the	try	statement		called	try-with-resources,		and	
is		described		in	upcoming	Chapter			when		files		are		introduced.	

The		second		new	feature		is		called	multi-catch,		and		the		third		is		sometimes	referred	
to		as	final		rethrow		or	more		precise		rethrow.	These	two	features	are	described	here.

The	multi-catch	feature	allows	two	or	more	exceptions	to		be		caught		by		the		same	catch	
clause.		It		is		not	uncommon		for		two		or	more		exception		handlers		to		use	the		same	
code		sequence		even		though		they		respond		to	different		exceptions.	

Instead		of		having		to		catch		each	exception		type		individually,		now		you		can		use		a	
single	catch	clause	to	handle	all	of	the	exceptions	without	code	duplication.

To	use	a	multi-catch,	 	 separate	each	exception	 	 type	 	 in	 the	catch	 	clause	with	 	 the	OR	
operator.	Each	multi-catch	parameter	 	 is	 	 implicitly	 final.	 	 (You	 	can	 	explicitly	 	specify
final,		if		desired,		but		it		is		not		necessary.)	

Because	 	 each	multi-catch	 	parameter	 	 is	 	 implicitly	 final,	 	 it	 	 can’t	 	be	assigned	a	new
value.

Here	 	 is	 	 a	 catch	 	 statement	 	 that	 	 uses	 	 the	 	multi-catch	 feature	 	 to	 	 catch	 	 both
ArithmeticException	and	ArrayIndexOutOfBoundsException:

catch(ArithmeticException	|	ArrayIndexOutOfBoundsException	e)	{
The		following	program		shows		the	multi-catch		feature		in	action:

//	Demonstrate	JDK	7’s	multi-catch	feature.

class	MultiCatch	{

public	static	void	main(String	args[])	{

int	a=10,	b=0;

int	vals[]	=	{	1,	2,	3	};

try	{

int	result	=	a	/	b;	//	generate	an	ArithmeticException

//						vals[10]	=	19;	//	generate	an	ArrayIndexOutOfBoundsException

//	This	catch	clause	catches	both	exceptions.

}	catch(ArithmeticException	|	ArrayIndexOutOfBoundsException	e)	{

System.out.println(“Exception	caught:	”	+	e);

}

System.out.println(“After	multi-catch.”);

}	}

The	 program	 will	 generate	 an	 ArithmeticException	 when	 the	 	 division	 	 by	 	 zero	 	 is	
attempted.	 	 If	 	 you	 	 comment	 	 out	 the	 division	 	 statement	 and	 	 remove	 	 the	 comment	
symbol	 from	 	 the	 next	 	 line,	 an	 ArrayIndexOutOfBoundsException	 is	 	 generated.	 	 Both	
exceptions		are		caught		by		the		single	catch	statement.

The	 more	 precise	 	 rethrow	 	 feature	 	 restricts	 	 the	 	 type	 of	 exceptions	 	 that	 	 can	 	 be	
rethrown		to		only		those		checked	exceptions		that		the		associated	try	block		throws,		that	
are	not		handled		by		a		preceding	catch		clause,		and		that		are		a	subtype		or		supertype		of	

the		parameter.	

Although		this	capability	might	not	be	needed	often,	it	is	now	available	for		use.		For		the
more		precise		rethrow		feature		to		be		in	force,	 	 the	catch		parameter		must		be		either	
effectively	 final,	which	means	 	 that	 	 it	must	 	not	 	be	 	assigned	 	a	 	new	value	 inside	 the
catch	block,	or	explicitly	declared	final.

Using	Exceptions

Exception	 	 handling	 	 provides	 	 a	 	 powerful	 mechanism	 	 for	 controlling	 	 complex	
programs		that		have	many		dynamic	run-time		characteristics.		It		is		important		to		think	
of	 try,	 throw,	 	 and	 catch	 	 as	 	 clean	 	ways	 	 to	 	 handle	 	 errors	 	 and	 unusual	 	 boundary	
conditions		in		your		program’s		logic.	Unlike	some	other	languages	in	which	error	return
codes	are		used		to		indicate		failure,	 	Java		uses		exceptions.		Thus,	when	a	method	can
fail,	have	it	throw	an	exception.

This	 is	 a	 cleaner	 way	 to	 handle	 failure	 modes.	 One	 	 last	 	 point:	 	 Java’s	 	 exception-
handling	 	 statements	 should	 	not	 	be	 	 considered	 	 a	 	general	 	mechanism	 	 for	nonlocal	
branching.		If		you		do		so,		it		will		only		confuse	your	code	and	make	it	hard	to	maintain.

Theory	Question:
1.														What	is	an	exception?

2.														How	do	we	define	a	try	block?

3.														How	do	we	define	a	catch	block?

4.														List	some	of	the	most	common	types	of	exception	that	might	occur	in
java.	Give	Example.

5.														Is	it	essential	to	catch	all	types	of	exception?

6.														How	many	catch	blocks	can	we	use	with	one	try	block.

7.														Create	a	try	block	that	is	likely	to	generate	three	types	of	exception	and
then	incorporate	necessary	catch	block	to	catch	and	handle	them	appropriately.

8.														What	is	finally	block?	When	and	how	is	it	used?	Give	a	suitable	example.

9.														Explain	how	Exception	handling	mechanism	can	be	used	for	debugging	a
program.

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	

	

	
CHAPTER
∞	12	∞

(Multi-Threaded	Programming)
	

	
Introduction-

A	 thread	 is	 a	 single	 flow	 of	 control	 within	 a	 program.	 Thread	 is	 very	 much
similar	to	a	process.	In	fact	thread	is	also	called	a	light-weight	process.

Thread	v/s	Process:

Normally	 different	 processes	 occupy	 different	 memory	 space.	 When	 the	 CPU
shifts	 from	one	process	 to	 another	 process,	 the	 state	 of	 the	 currently	 running	process	 is
saved	and	 the	 state	of	 another	process	 is	 restored.	No	useful	work	 is	being	done	during
state	switch.	The	context	switch	time	should	be	as	less	as	possible	to	maximize	the	CPU
utilization.

Threads	are	also	like	independent	processes	but	they	share	the	same	memory	and
state.	The	separate	threads	also	have	separate	state	but	the	state	is	very	small	as	compared
to	 process	 state.	 The	 state	 may	 contain	 just	 program	 counter	 and	 stack	 pointer.	 So
switching	from	one	thread	to	another	thread	takes	very	little	time.	Thus	the	context	switch
time	for	threads	is	very	small	as	compared	to	the	process.	Hence	CPU	utilization	is	high	in
case	of	multiple	threads	as	compared	to	the	utilization	in	case	of	multiple	processes.

Multi-Threaded	program:

A	multi-threaded	program	contains	two	or	more	parts	that	can	run	concurrently.
Each	part	of	such	a	program	is	called	a	thread,	and	each	thread	defines	a	separate	path	of
execution.	Thus,	multi-threading	is	a	specialized	form	of	multi-tasking.

For	example,	a	program	may	have	three	threads:

One	handling	the	printing.

One	handling	the	editing.

One	downloading	a	file	from	the	Internet.

All	these	threads	might	be	running	concurrently	thus	maximizing	the	CPU	utilization.

Process-based	Multi-tasking:

Most	of	the	operating	systems	allow	us	to	run	two	or	more	programs	at	the	same
time.	 It	 is	 referred	 to	 as	 process-bases	 multi-tasking.	 For	 example,	 we	 can	 run	 a	 Java
program	and	 at	 the	 same	 time	we	may	be	 editing	 a	word	document.	The	process-based
multi-tasking	ensures	that	there	will	be	some	program	to	be	executed	most	of	the	time	so	it
increases	the	CPU	utilization.

In	process-based	multi-tasking,	a	program	is	the	smallest	unit	of	code	that	can	be
dispatched	by	the	scheduler.

Thread-based	multi-tasking:

Thread	 is	 the	 smallest	 unit	 of	 execution	 in	 a	 thread-based	 multi-tasking
environment.	A	process	can	be	divided	 into	a	number	of	 threads	executing	concurrently.
This	allows	us	to	handle	more	than	one	task	concurrently	in	a	single	program.

For	example,	we	can	edit	 a	word	document	and	at	 the	 same	 time	print	 another
document.	 Thread-based	multi-tasking	 improves	CPU	utilization	 just	 like	 process-based
multi-tasking.	 But	 at	 the	 same	 time	 it	 effectively	 speeds	 up	 the	 execution	 of	 a	 single
program	by	executing	its	different	parts	concurrently	in	separate	threads.

Thus	process	based	multi-tasking	deals	with	the	“big	picture”,	and	thread-based
multi-tasking	handles	the	details.

The	Java	Thread	Model:

The	Java	run-time	system	depends	on	threads	for	many	things,	and	all	 the	class
libraries	are	designed	with	multi-threading	in	mind.	In	fact,	Java	uses	threads	to	enable	the
entire	environment	 to	be	asynchronous.	This	helps	reduce	inefficiency	by	preventing	the
waste	of	CPU	cycles.

Single-threaded	 systems	 use	 an	 approach	 called	 an	 event	 loop	with	 polling.	 In
this	model,	a	single	thread	of	control	runs	in	an	infinite	loop,	polling	a	single	event	queue
to	decide	what	to	do	next.	In	a	single	threaded	environment,	when	a	thread	blocks	(that	is,
suspends	 execution)	 because	 it	 is	 waiting	 for	 some	 resource,	 the	 entire	 program	 stops
running.

The	benefit	of	Java’s	multi-threading	is	that	the	main	loop/polling	mechanism	is

eliminated.	When	a	thread	blocks	in	Java	program,	only	the	single	thread	that	is	blocked
pauses,	all	other	threads	continue	to	run.

Thread	Life	Cycle	(Thread	States):

Thread	exists	in	several	states.	A	thread	can	be	running.	It	can	be	ready	to	run	as
soon	as	it	gets	CPU	time.	A	running	thread	can	be	suspended,	which	temporarily	suspends
its	activity.	A	suspended	thread	can	then	be	resumed,	allowing	it	to	pick	up	where	it	left
off.	A	 thread	can	be	blocked	when	waiting	 for	a	 resource.	At	any	 time,	a	 thread	can	be
terminated,	 which	 halts	 its	 execution	 immediately.	 Once	 terminated	 a	 thread	 cannot	 be
resumed.

1.	Newborn	State:

When	we	create	a	thread	object,	the	thread	is	born	and	is	said	to	be	in	newborn
state.	The	thread	is	not	yet	scheduled	for	running.

At	this	state,	we	can	do	only	one	of	the	following	things	with	it:

	

1.	 Schedule	it	for	running	using	start()	method.

2.	 Kill	it	using	stop()	method.

If	scheduled,	it	moves	to	runnable	state.	If	we	attempt	to	use	any	other	method	at	this
state,	an	exception	will	be	thrown.

2.	Runnable	State:

The	runnable	state	means	that	the	thread	is	ready	for	execution	and	is	waiting	for
the	availability	of	the	processor.	That	is,	the	thread	has	joined	the	queue	of	threads	that	are
waiting	for	execution.	If	all	threads	are	of	equal	priority,	then	they	are	given	time	slots	for
execution	in	round	robin	fashion.

The	thread	that	relinquishes	control	joins	the	queue	at	the	end	and	again	waits	for
its	 run.	 However,	 if	 we	 want	 a	 thread	 to	 relinquish	 control	 to	 another	 thread	 of	 equal
priority	before	its	turn	comes,	it	can	do	so	by	invoking	the	yield()	method.

3.	Running	State:

Running	 means	 that	 the	 processor	 has	 given	 its	 time	 to	 the	 thread	 for	 its
execution.	A	running	thread	may	relinquish	its	control	in	one	of	the	following	situations:

Its	time-slice	is	over.

It	is	pre-empted	by	a	higher	priority	thread.

It	yields	i.e.	voluntarily	relinquishes	control.

It	has	completed	its	execution.

It	is	stopped	by	some	other	thread.

It	 has	 been	 suspended	 using	 suspend()	 method.	 A	 suspended	 thread	 can	 be
revived	by	using	the	resume()	method.	This	approach	is	useful	when	we	want	to

suspend	a	thread	for	some	time	due	to	certain	reason,	but	do	not	want	to	kill	it.

It	 has	 been	 told	 to	wait	 until	 some	 event	 occurs.	This	 is	 done	 using	 the	wait()
method.	The	thread	can	be	scheduled	to	run	again	using	the	notify()	method.

It	is	performing	some	I/O	operation.

	

4.	Blocked	State:

A	 thread	 is	 said	 to	 be	 blocked	 when	 it	 is	 prevented	 form	 entering	 into	 the
runnable	 state	 and	 subsequently	 the	 running	 state.	 This	 happens	 when	 the	 thread	 is
suspended,	sleeping	or	waiting	in	order	to	satisfy	certain	requirements.	A	blocked	thread	is
considered	“not	runnable”	but	not	dead	and	therefore	fully	qualified	to	run	again.

5.	Dead	State:

Every	 thread	 has	 a	 life	 cycle.	 	 A	 running	 thread	 ends	 its	 life	 when	 it	 has
completed	 executing	 its	 run()	method.	 	 It	 has	 a	 natural	 death.	 	 However,	 we	 kill	 it	 by
sending	the	stop	message	to	it	at	any	state	thus	causing	a	premature	death.		A	thread	can	be
killed	 as	 soon	as	 it	 is	 born,	or	while	 it	 is	 running,	or	 even	when	 it	 is	 in	 “not	 runnable”
(blocked	condition).

Thread	Priorities:

Java	assigns	to	each	thread	a	priority	that	determines	how	that	thread	should	be
treated	with	 respect	 to	 the	 others.	Thread	priorities	 are	 integers	 that	 specify	 the	 relative
priority	of	one	thread	to	another.

As	an	absolute	value,	a	priority	is	meaningless;	a	higher	priority	thread	does	not
run	 any	 faster	 than	 a	 lower-priority	 thread	 if	 it	 is	 the	 only	 thread	 running.	 Instead,	 a
thread’s	priority	is	used	to	decide	when	to	switch	from	one	running	thread	to	next.	This	is
called	a	 context	 switch.	The	 rules	 that	determine	when	a	 context	 switch	 takes	place	are
simple:

A	thread	can	voluntarily	(on	its	own)	relinquish	control.	This	is	done	by	explicitly
yielding,	sleeping	or	blocking	or	pending	I/O.	In	 this	scenario,	all	other	 threads
are	 examined,	 and	 normally	 the	 highest-priority	 thread	 that	 is	 ready	 to	 run	 is
given	the	CPU.

A	 thread	 can	 be	 pre-empted	 by	 a	 higher-priority	 thread.	 In	 this	 case,	 a	 lower
priority	 thread	 that	does	not	yield	 the	processor	 is	simply	pre-empted	no	matter
what	it	is	doing,	by	a	higher	priority	thread.	Basically,	as	soon	as	a	higher-priority
thread	wants	to	run,	it	does.	This	is	called	preemptive	multitasking.

Some	OS	support	non-preemptive	priority	based	scheduling.	In	such	case	a	high
priority	thread	gets	chance	only	when	low	priority	thread	completes.

In	cases	where	two	threads	with	the	same	priority	are	competing	for	CPU	cycles,
the	situation	is	a	bit	complicated.	 	For	OS	such	as	windows98,	 threads	of	equal
priority	must	voluntarily	(on	their	own)	yield	(give	up)	control	 to	their	peers.	If

they	do	not,	the	other	threads	will	not	run.

Note:-	 Problems	 can	 arise	 from	 the	 differences	 in	 the	 way	 that	 O.S.’s	 context-switch
threads	of	equal	priority.

Synchronization:

Because	multi-threading	 introduces	 as	 asynchronous	 behavior	 to	 our	 programs,
there	must	be	a	way	for	us	to	enforce	synchronization	when	we	need	it.		For	example,	if
we	want	 two	 threads	 to	 communicate	 and	 share	 a	 complicated	data	 structure,	 such	 as	 a
linked	list,	we	need	some	way	to	ensure	that	they	do	not	conflict	with	each	other.	

That	is,	we	must	prevent	one	thread	from	writing	data	while	another	thread	is	in
the	middle	of	reading	it.	Java	uses	monitor	for	inter-thread	synchronization.	We	can	think
of	 a	monitor	 as	 a	very	 small	 box	 that	 can	hold	only	one	 thread.	Once	a	 thread	enters	 a
monitor	can	be	used	to	protect	a	shared	asset	from	being	manipulated	by	more	than	one
thread	at	a	time.

Most	multi-threaded	systems	expose	as	objects	that	our	program	must	explicitly
acquire	and	lock.	Java	provides	a	cleaner	solution.

There	is	no	class	“monitor”,	instead,	each	object	has	its	own	implicit	monitor	that
is	automatically	entered	when	one	of	the	object’s	synchronized	method	is	called.		Once	a
thread	 is	 inside	a	synchronized	method,	no	other	 thread	can	call	any	other	synchronized
method	on	the	same	object.	This	enables	us	to	write	very	clear	and	concise	multi-threaded
code,	because	synchronization	support	is	built	into	the	language.

Messaging:	When	programming	with	most	other	languages,	we	must	depend	on	the	O.S.
to	establish	communication	between	threads.

This,	of	course,	adds	overhead.	By	contrast,	Java	provides	a	clean,	low-cost	way
for	 two	 or	 more	 threads	 to	 talk	 to	 each	 other,	 via	 calls	 to	 predefined	 methods	 that	 all
objects	have.	Java’s	messaging	system	allows	a	thread	to	enter	synchronized	method	on	an
object,	and	then	wait	there	until	some	other	thread	explicitly	notifies	to	come	out.

The	Thread	class	and	the	Runnable	interface:

Java’s	multi-threading	system	is	built	upon	the	Thread	class,	its	methods,	and	its
companion	interface,	Runnable.	This	class	belongs	to	package	java.lang	and	hence	there	is
no	need	of	explicitly	importing	it.

Thread	encapsulates	a	thread	of	execution,	since	we	cannot	directly	refer	to	the	internal
state	of	a	running	thread,	we	will	deal	with	it	through	its	proxy,	the	Thread	instance	that
spawned	 it.	 To	 create	 a	 new	 thread	 our	 program	 will	 either	 extend	 Thread	 class	 or
implement	 the	Runnable	 interface.	 	 The	Thread	 class	 defines	 several	methods	 that	 help
manage	threads:

String	getName()									

Returns	this	thread’s	name

int	getPriority()												

Returns	this	thread’s	priority

boolean	isAlive()									

Tests	if	this	thread	is	still	running

void	join()																				

Waits	for	this	thread	to	die	(terminate)

void	run()

If	 this	 thread	 was	 constructed	 using	 a	 separate	 Runnable	 object,	 then	 that	 Runnable
object’s	run	method	is	called;	otherwise,	this	method	does	nothing	and	returns,	if	thread
class	is	extended	and	run()	method	is	overridden	in	sub-class	then	the	overridden	run()
method	is	called.

void	setName(String	name)

Changes	the	name	of	this	thread	to	be	equal	to	the	argument	name

static	void		sleep(long	millis)	throws	InterruptedException

Causes	 the	 currently	 executing	 thread	 to	 sleep	 (temporarily	 cease	 execution)	 for	 the
specified	number	of	milliseconds.(1	sec	=	1000ms)

static	void	sleep(long	millis,	int	nanos)	throws	InterruptedException																						

Causes	 the	 currently	 executing	 thread	 to	 sleep	 (cease	 execution)	 for	 the	 specified
number	of	milliseconds	plus	the	specified	number	of	nanoseconds.

void	start()

Causes	this	thread	to	begin	execution,	the	Java	Virtual	Machine	calls	the	run	method	of
this	thread.

static	void	yield()

Causes	 the	 currently	 executing	 thread	 object	 to	 temporarily	 pause	 and	 allow	 other
threads	to	execute.

static	Thread	currentThread()

Returns	a	reference	to	the	currently	executing	thread	object.

The	main	thread:

When	a	Java	program	starts	up,	one	thread	begins	running	immediately.	This	 is
usually	called	the	main	thread	of	our	program,	because	it	is	the	one	that	is	executed	when
our	program	begins.	The	main	 thread	 is	 the	 thread	from	which	other	“child”	 threads	are

created.

Although	the	main	thread	is	created	automatically	when	our	program	is	started,	it
can	be	controlled	through	a	Thread	object.	To	do	so,	we	must	obtain	a	reference	to	it	by
calling	the	method	currentThread(),	which	is	public	static	member	of	Thread	class.

This	method	returns	a	reference	to	the	thread	in	which	it	is	called.	Once	we	have
reference	to	the	main	method,	we	can	control	it	just	like	any	other	thread.

Example	12.1

The	 following	 example	demonstrates	 how	we	 can	 acquire	 reference	of	main	 thread	 and
then	access	its	properties	using	methods	of	Thread	class.

1.																	class	CurrentThreadTest

2.																	{							

3.																												public	static	void	main	(String	args[])

4.																																			{			

5.																												Thread	t	=	Thread.currentThread();

6.																												System.out.println(“Current	thread:”	+	t);

7.																												System.out.println(“Name:”+	t.getName());

8.																													System.out.println(“Priority:”+	t.getPriority());

9.																											t.setName(“MyThread”);

10.																												t.setPriority(Thread.MAX_PRIORITY);

11.																												System.out.println(“After	name	and	priority	change	:”	+	t);

12.																												System.out.println(“Name:”	+	t.getName());

13.																												System.out.println(“Priority:”	+	t.getPriority());

14.																												for	(int	n=1;	n<=5;	n++)

15.																												{

16.																												System.out.println(n);

17.																												try

18.																												{																																																							

19.																																												Thread.sleep(1000);

20.																																}

21.																																								catch	(InterruptedException	e)

22.																																			{	

23.																																										System.out.println(“Main	thread	interrupted”);

24.																																																	}

25.																																										}

26.																						}

27.														}

Output:

Current	thread:Thread[main,5,main]

Name:main

Priority:5

After	name	and	priority	change	:Thread[MyThread,10,main]

Name:MyThread

Priority:10

1

2

3

4

5

Note	1:	The	sleep()	method	in	Thread	might	throw	an	InterruptedException,	which	is	a
checked	 exception.	 This	 would	 happen	 if	 some	 other	 thread	 wanted	 to	 interrupt	 this
sleeping	one.

Note	2:	Notice	 the	output	produced	when	 t	 (thread	reference)	 is	used	as	an	argument	 to
println().	This	will	display	in	order:	the	name	of	the	thread,	its	priority,	and	the	name	of	its
group.	Its	priority	is	5,	which	is	the	default	value,	and	main	is	also	the	name	of	the	group
of	thread	to	which	this	thread	belongs.	A	thread	group	is	a	data	structure	that	controls	the
sate	of	a	collection	of	threads	as	a	whole.

Creating	a	Thread:

In	 the	most	general	 sense,	we	create	a	 thread	by	 instantiating	an	object	of	 type
Thread.	Java	identifies	two	ways	in	which	this	can	be	accomplished:

1.	 We	can	implement	the	Runnable	interface

2.	 We	can	extends	the	Thread	class,	itself.

Implementing	Runnable:

The	 easiest	 way	 to	 create	 a	 thread	 is	 to	 create	 a	 class	 that	 implements	 the
Runnable	 interface.	 	 To	 implement	 Runnable,	 a	 class	 need	 only	 implement	 a	 single
method	called	run().

														public	void	run()

Inside	run()	method,	we	will	define	the	code	that	constitutes	the	new	thread.	The

run()	can	call	other	methods,	use	other	classes	and	declare	variables,	 just	 like	 the	main
thread.

The	 only	 difference	 is	 that	 run()	 establishes	 the	 entry	 point	 for	 another,
concurrent	 thread	 of	 execution	 within	 our	 program.	 This	 thread	 will	 end	 when	 run()
returns.

After	we	create	a	class	that	implements	Runnable,	we	will	instantiate	an	object	of
type	Thread	from	within	that	class	using	one	of	the	following	constructors:

Thread(Runnable	threadObj)

Thread(Runnable	threadObj,	String	threadName)

Here	threadObj	is	the	object	whose	run	method	is	called	and	threadName	is	the
name	of	the	new	thread.	After	the	new	thread	is	created,	it	will	not	start	running	until	we
call	start()method.

The	start()	method	puts	the	thread	in	the	ready	queue	(runnable	state).	Whenever
the	thread	gets	scheduled	its	execution	will	start	from	the	run()	method.

	

Example12.2

1.														class	A	implements	Runnable

2.														{													

3.																												public	void	run()

4.																												{	

5.																																										for(int	i=1;i<=5;i++)

6.																																										{

7.																																																								System.out.println(“Child	Thread:”	+	i);

8.																																										}

9.																																										System.out.println(“Exiting	child	thread”);

10.																												}

11.														}

12.														class	RunnableTest

13.														{													

14.																												public	static	void	main(String	args[])

15.																												{													

16.																																										A	a1=new	A();

17.																																										Thread	t1	=	new	Thread(a1,”Demo	Thread”);

18.																																										t1.start();

19.																																										System.out.println(“Main	thread	exiting”);

20.																												}

21.														}

Output:

Main	thread	exiting

Child	Thread:1

Child	Thread:2

Child	Thread:3

Child	Thread:4

Child	Thread:5

Exiting	child	thread

Example12.3

1.														class	A	implements	Runnable

2.														{													

3.																												Thread	t;

4.																												A()

5.																												{													

6.																																										t=	new	Thread(this,	“Demo	Thread”);

7.																																										System.out.println(“Child	thread:	“+	t);

8.																																										t.start();

9.																												}

10.																												public	void	run()

11.																												{													

12.																																										for	(int	i=1;	i<=5;	i++)

13.																																										{													

14.																																																								System.out.println(“Child	Thread:	”+	i);

15.																																																								try

16.																																																								{

17.																																																																						Thread.sleep(500);

18.																																																								}

19.																																																								catch	(InterruptedException	e)

20.																																																								{													

21.																																																																						System.out.println(e);

22.																																																								}

23.																																										}

24.																																										System.out.println	(“Exiting	Child	thread”);

25.																												}

26.														}

27.														class	RunnableTest2

28.														{													

29.																												public	static	void	main	(String	args[])

30.																												{													

31.																																										A	a1=new	A();

32.																																										for	(int	i=1;	i<=5;	i++)

33.																																										{

34.																																																								System.out.println	(“Main	Thread:”+	i);

35.																																																								try

36.																																																								{													

37.																																																																						Thread.sleep	(1000);

38.																																																								}

39.																																																								catch(InterruptedException	e)

40.																																																								{

41.																																										System.out.println(“main	thread	interrupted”);

42.																																																								}

43.																																										}

44.																																										System.out.println(“End	of	Main	thread”);

45.																												}

46.														}

Output:

Child	thread:	Thread[Demo	Thread,5,main]

Main	Thread:1

Child	Thread:	1

Child	Thread:	2

Main	Thread:2

Child	Thread:	3

Child	Thread:	4

Main	Thread:3

Child	Thread:	5

Exiting	Child	thread

Main	Thread:4

Main	Thread:5

End	of	Main	thread

Extending	Thread	class:

The	second	way	to	create	a	 thread	is	 to	create	a	new	class	that	extends	Thread,
and	 then	 to	create	an	 instance	of	 that	class.	The	extending	class	must	override	 the	 run()
method,	which	 is	 the	 entry	 point	 for	 the	 new	 thread.	 	 It	must	 also	 call	 start()	 to	 being
execution	of	the	new	thread.

Example12.4

1.														class	A	extends	Thread

2.														{													

3.																												A()

4.																												{													

5.																																										super	(“Test	Thread”);

6.																																										System.out.println	(“Child	thread:”	+	this);

7.																																										start();

8.																												}

9.																												public	void	run	()

10.																												{													

11.																																										for	(int	i=1;	i<=5;	i++)

12.																																										{													

13.																																																								System.out.println(“Child	Thread:”+i);

14.																																																								try

15.																																																								{

16.																																																																						sleep(500);

17.																																																								}

18.																																																								catch(InterruptedException	e)

19.																																																								{

20.														System.out.println(“Child	thread	interrupted”);

21.																																																								}

22.																																										}

23.																																										System.out.println	(“Exiting	Child	thread”);

24.																												}

25.														}

26.														class	ThreadTest

27.														{													

28.																												public	static	void	main(String	args[])

29.																												{													

30.																																										new	A();

31.																																										for	(int	i=1;	i<=5;	i++)

32.																																										{

33.																																																								System.out.println(“Main	Thread:	“+i);

34.																																																								try

35.																																																								{													

36.																																																																						Thread.sleep(1000);

37.																																																								}

38.																																																								catch(InterruptedException	e)

39.																																																								{

40.																																										System.out.println(“Main	thread	interrupted”);

41.																																																								}

42.																																										}

43.																																										System.out.println	(“Main	thread	exiting”);

44.																												}

45.														}

Output:

Child	thread:Thread[Testing	Thread,5,main]

Main	Thread:	1

Child	Thread:1

Child	Thread:2

Main	Thread:	2

Child	Thread:3

Child	Thread:4

Main	Thread:	3

Child	Thread:5

Exiting	Child	thread

Main	Thread:	4

Main	Thread:	5

Main	thread	exiting

Note:-	If	Thread	is	not	assigned	any	name,	it	will	be	something	like:	Thread-1,	Thread-2,
Thread-3	etc.

Choosing	an	Approach:

The	 thread	 class	 defines	 several	 methods	 that	 can	 be	 overridden	 by	 a	 derived
class.		Out	of	these	methods,	the	only	one	that	must	overridden	is	run().		That	is,	of	course
the	same	method	required	when	we	implement	the	Runnable	interface.	

Many	Java	programmers	feel	that	classes	should	be	extended	only	when	they	are
being	enhanced	or	modified	in	some	way.	So,	if	we	will	not	be	overriding	any	of	Thread’s
other	methods,	it	is	probably	best	simply	to	implement	Runnable	interface.

Creating	Multiple	Threads:

Example12.5

1.														class	A	implements	Runnable

2.														{													

3.																												String	name;

4.																												Thread	t;

5.																												A(String	threadName)

6.																												{													

7.																																										name=threadName;

8.																																										t=new	Thread(this,	name);

9.																																										System.out.println(“Child	thread:”+t);

10.																																										t.start();

11.																												}

12.																												public	void	run()

13.																												{													

14.																																										for(int	i=1;i<=5;i++)

15.																																										{													

16.																																																								System.out.println(t.getName()+	“:”	+	i);

17.																																																								try

18.																																																								{														

19.																																																																						Thread.sleep(1000);

20.																																																								}

21.																																																								catch(InterruptedException	e)

22.																																																								{

23.																																																																						System.out.println(e);													

24.																																																								}

25.																																										}

26.																																										System.out.println(name+	“Exiting”);

27.																												}

28.														}

29.														class	MultiThreadTest

30.														{																											

31.																												public	static	void	main(String	args[])

32.																												{													

33.																																										A	a1=new	A(“One”);

34.																																										A	a2=new	A(“Two”);

35.																																										A	a3=new	A(“Three”);

36.																																										try

37.																																										{

38.																																																								Thread.sleep(10000);

39.																																										}

40.																																										catch(InterruptedException	e)

41.																																										{													

42.																																										System.out.println(“main	thread	interrupted”);

43.																																										}

44.																																										System.out.println	(“Main	thread	exiting”);

45.																												}

46.														}

Output:

Child	thread:Thread[One,5,main]

Child	thread:Thread[Two,5,main]

Child	thread:Thread[Three,5,main]

One:1

Two:1

Three:1

One:2

Two:2

Three:2

One:3

Two:3

Three:3

One:4

Two:4

Three:4

One:5

Two:5

Three:5

OneExiting

TwoExiting

ThreeExiting

Main	thread	exiting

Imposing	some	Ordering	by	using	isAlive()	and	join()	Methods:

Often	we	will	want	the	main	thread	to	finish	last.	One	way	to	achieve	this	is	to
call	sleep()	within	main.	This	is	rather	crude	(rough)	way.	Two	ways	exist	 to	determine
whether	a	 thread	has	 finished.	First,	we	can	call	 isAlive()	on	 the	 thread.	This	method	 is
defined	by	Thread,	and	its	general	form	is:

final	boolean	isAlive()

The	 isAlive()	method	 returns	 true	 if	 the	 thread	 upon	which	 it	 is	 called	 is	 still
running.	It	returns	false	otherwise.	While	isAlive()	is	occasionally	useful,	the	method	that
we	will	more	commonly	use	to	wait	for	a	thread	to	finish	is	called	join(),	shown	here:

final	void	join()	throws	InterruptedException

This	method	waits	 until	 the	 thread	 on	which	 it	 is	 called	 terminates.	Additional
forms	of	join()	allows	us	to	specify	a	maximum	amount	of	time	that	we	want	to	wait	for

the	specified	thread	to	terminate.

The	following	example	makes	use	of	join()	to	ensure	that	the	main	thread	is	the
last	to	stop.	It	also	demonstrates	the	isAlive()	method.

	

	

Example12.6

1.														class	A	implements	Runnable

2.														{													

3.																												String	name;

4.																												Thread	t;

5.																												A(String	threadName)

5.																												{													

6.																																										name=threadName;

7.																																										t=new	Thread(this,name);

8.																																										System.out.println(“Child	thread:”+t);

9.																																										t.start();

10.																												}

11.																												public	void	run()

12.																												{													

13.																																										for(int	i=1;i<=5;i++)

14.																																										{													

15.																																																								System.out.println(name	+	“:”+	i);

16.																																																								try

17.																																																								{													

18.																																																																						Thread.sleep(1000);

19.																																																								}

20.																																																								catch(InterruptedException	e)

21.																																																								{													

22.																																																																						System.out.println(e);

23.																																																								}

24.																																										}

25.																																										System.out.println(name	+	“Exiting”);

26.																												}

27.														}

28.														class	DemoJoin

29.														{													

30.																												public	static	void	main(String	args[])

31.																												{													

32.																																										A	ob1=new	A(“One”);

33.																																										A	ob2=new	A(“Two”);

34.																																										A	ob3=new	A(“Three”);

35.														System.out.println(“Thread	One	is	alive?:”+ob1.t.isAlive());

36.														System.out.println(“Thread	Two	is	alive?:”+ob2.t.isAlive());

37.														System.out.println(“Thread	Three	is	alive?:”+ob3.t.isAlive());

38.																																										try

39.																																										{													

40.																																																								ob3.t.join();

41.																																																								ob2.t.join();

42.																																																								ob1.t.join();

43.																																										}

44.																																										catch(InterruptedException	e)

45.																																										{													

46.																												System.out.println(“main	thread	interrupted”);

47.																																										}

48.																												System.out.println(“Thread	One	is	alive?:”+	ob1.t.isAlive());

49.																												System.out.println(“Thread	Two	is	alive?:”+ob2.t.isAlive());

50.																												System.out.println(“Thread	Three	is	alive?:”+ob3.t.isAlive());

51.																												System.out.println	(“Main	thread	exiting”);

52.																												}

53.														}

Output:

Child	thread:Thread[One,5,main]

Child	thread:Thread[Two,5,main]

Child	thread:Thread[Three,5,main]

Thread	One	is	alive?:true

Thread	Two	is	alive?:true

Thread	Three	is	alive?:true

One:1													

Two:1

Three:1													

One:2

Two:2

Three:2

One:3

Two:3

Three:3

One:4

Two:4

Three:4

One:5

Two:5

Three:5

OneExiting

TwoExiting

ThreeExiting

Thread	One	is	alive?:false

Thread	Two	is	alive?:false

Thread	Three	is	alive?:false

Main	thread	exiting

Thread	Priorities:

Thread	 priorities	 are	 used	 by	 the	 thread	 scheduler	 to	 decide	when	 each	 thread
should	be	 allowed	 to	 run.	Higher	 priority	 thread	will	 be	 scheduled	 first	 as	 compared	 to
lower	priority	thread.	A	higher	priority	thread	can	also	preempt	a	lower-priority	one.	For
instance,	 when	 a	 lower-priority	 thread	 is	 running	 and	 a	 higher-priority	 thread	 resumes
from	sleeping	or	waiting	on	I/O,	for	example,	it	will	preempt	the	lower-priority	thread.

In	theory,	threads	of	equal	priority	should	get	equal	access	to	the	CPU.	But	java
is	 designed	 to	 work	 in	 a	 wide	 range	 of	 environments.	 Some	 of	 those	 environment
implements	 multi-tasking	 fundamentally	 different	 than	 others?	 For	 safety,	 threads	 that

share	the	same	priority	should	yield	control	once	in	a	while.

This	ensures	that	all	threads	have	a	chance	to	run	under	a	non-preemptive	OS	In
practice,	 even	 in	 non-preemptive	 environments,	 most	 threads	 inevitably	 (certainly)
encounter	 some	 blocking	 situation,	 such	 as	 waiting	 for	 I/O.	 When	 this	 happens,	 the
blocked	 thread	 is	 suspended	 and	 other	 threads	 can	 run.	 For	 CPU	 intensive	 threads,	 we
should	make	sure	that	it	yields	control	occasionally,	so	that	other	threads	can	run.

To	set	a	thread’s	priority,	use	the	setPriority()	method,	which	is	a	member	of	Thread.	Its
general	form	is:

														final	void	setPriority(int	level)

The	 value	 of	 level	 must	 be	 within	 the	 range	 Thread.MIN_PRIORITY	 and
Thread.MAX_PRIORITY.	Currently,	 these	values	are	1	and	10,	respectively.	To	return	a
thread	to	default	priority,	specify	Thread.NORM_PRIORITY,	which	is	currently	5.	These
priorities	are	defined	as	final	variables	within	Thread	class.

We	 can	obtain	 the	 current	 priority	 setting	 by	 calling	 the	 getPriority()	method	of	Thread
class,	shown	here:

														final	void	getPriority()

Implementations	 of	 Java	 have	 radically	 different	 behavior	 when	 it	 comes	 to
scheduling.	 	 The	 windows	 XP/98/NT/2000	 versions	 work	 more	 or	 less	 as	 we	 would
expect.	However,	other	versions	may	work	quite	differently.	Most	of	 the	 inconsistencies
arise	 when	 we	 have	 threads	 that	 are	 relying	 on	 preemptive	 behavior,	 instead	 of
cooperatively	giving	up	CPU	 time.	The	 safest	way	 to	obtain	predictable,	 cross-platform
behavior	with	Java	is	to	use	threads	that	voluntarily	give	up	control	of	the	CPU.

The	following	example	demonstrates	two	threads	at	different	priorities,	which	do
not	 run	 on	 a	 preemptive	 platform	 in	 the	 same	 way	 as	 they	 run	 on	 a	 non–preemptive
platform.

	

Example12.7

1.														class	Clicker	implements	Runnable

2.														{													

3.																												long	click	=	0;

4.																												Thread	t;

5.																												volatile	boolean	running=true;

6.																												Clicker	(int	p)

7.																												{													

8.																																										t=new	Thread	(this);

9.																																										t.setPriority	(p);

10.																												}

11.																												public	void	run	()

12.																												{													

13.																																										while	(running)

14.																																										{													

15.																																																								click++;

16.																																										}

17.																												}

18.																												void	stop	()

19.																												{													

20.																																										running	=	false;

21.																												}

22.																												void	start	()

23.																												{													

24.																																										t.start	();

25.																												}

26.														}

27.														class	HiLoPri

28.														{													

29.																												public	static	void	main	(String	args[])

30.																												{	

31.														Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

32.														Clicker	hi	=	new	Clicker(Thread.NORM_PRIORITY+1);

33.														Clicker	lo	=	new	Clicker(Thread.NORM_PRIORITY-1);

34.														lo.start();	hi.start();

35.																																										try

36.																																										{													

37.																																																								Thread.sleep	(10000);

38.																																										}

39.																																										catch	(InterruptedException	e)

40.																																										{													

41.																																																								System.out.println(e);

42.																																										}

43.																																										lo.stop();	hi.stop();

44.																																										try

45.																																										{													

46.																																																								hi.t.join();

47.																																																								lo.t.join();

48.																																										}

49.																																										catch	(InterruptedException	e)

50.																																										{													

51.																																																								System.out.println(e);

52.																																										}

53.																																										System.out.println(“Low	:	“	+	lo.click);

54.																																										System.out.println(“High	:	“	+	hi.click);

55.																												}

56.														}

Output:

Low		:	63660819

High	:	2086505403

	

The	higher	priority	thread	gets	more	than	98%	of	the	CPU	time.	But	threads	did
context	 switch,	 even	 though	 neither	 voluntarily	 yielded	 the	 CPU	 nor	 blocked	 for	 I/O.	
When	this	same	program	is	run	under	a	non-preemptive	system,	different	results	will	be	
obtained.

	

Note:-Variable	 running	 is	 preceded	 by	 the	 keyword	 volatile	 to	 ensure	 that	 the	 value	 of
running	is	examined	each	time	the	following	loop	iterates.

while	(running)

														{								

click++;

}

Without	the	use	of	volatile,	Java	is	free	to	optimize	the	loop	in	such	a	way	that	a
local	copy	of	running	is	created.		The	use	of	volatile	prevents	the	optimization,	telling	Java
that	running	may	change	in	ways	not	directly	apparent	in	the	immediate	code.

Synchronization:

When	two	or	more	threads	need	access	to	a	shared	resource,	they	need	some	way
to	ensure	that	the	resource	will	be	used	by	only	one	thread	at	a	time.	The	process	by	which
this	is	achieved	is	called	synchronization.

Key	to	synchronization	is	the	concept	of	the	monitor	(also	called	a	semaphone).
A	monitor	is	an	object	that	is	used	as	a	mutually	exclusive	lock.	Only	one	thread	can	own
a	monitor	at	a	given	time.

When	a	 thread	acquires	a	 lock,	 it	 is	 said	 to	have	entered	 the	monitor.	All	other
threads	attempting	to	enter	the	locked	monitor	will	be	suspended	until	the	first	thread	exits
the	monitor.	These	other	threads	are	said	to	be	waiting	for	the	monitor.	A	thread	that	owns
a	monitor	can	 reenter	 the	same	monitor	 if	 it	 so	desires.	we	can	synchronize	our	code	 in
either	of	two	ways:

(i)														Using		synchronized	methods

(ii)														Using	synchronized	statements

Using	Synchronized	Method:

Synchronization	 is	 easy	 in	 Java,	 because	 all	 objects	 have	 their	 own	 implicit
monitor	 associated	with	 them.	To	 enter	 an	 object’s	monitor,	 just	 call	 a	method	 that	 has
been	modified	with	 the	 synchronized	 keyword.	While	 a	 thread	 is	 inside	 a	 synchronized
method,	all	other	threads	that	try	to	call	it	(or	any	other	synchronized	method)	on	the	same
instance	have	to	wait().	To	exit	the	monitor	and	relinquish	control	of	the	object	to	the	next
waiting	thread,	the	owner	of	the	monitor	simply	returns	from	the	synchronized	method.

Example12.8

Following	program	illustrates	that	output	generated	by	three	threads	gets	mixed-up	as	they
are	running	concurrently.

1.														class	A

2.														{

3.																												void	display(String	msg)

4.																												{

5.																																										System.out.print(“[”	+	msg);

6.																																										try

7.																																										{

8.																																																								Thread.sleep(1000);

9.																																										}

10.																																										catch(InterruptedException	e)

11.																																										{

12.																																																								System.out.println(e);

13.																																										}

14.																																										System.out.println(“]”);

15.																												}

16.														}

17.														class	B	implements	Runnable

18.														{

19.																												A	obj;

20.																												String	msg;

21.																												Thread	t;

22.																												B(A	obj1,	String	m)

23.																												{

24.																																										msg	=	m;

25.																																										obj	=	obj1;

26.																																										t	=	new	Thread(this);

27.																																										t.start();

28.																												}

29.																												public	void	run()

30.																												{

31.																																										obj.display(msg);

32.																												}

33.														}

34.														class	Synch1

35.														{

36.																												public	static	void	main(String	args[])

37.																												{

38.																																										A	a1	=	new	A();

39.																																										B	b1	=	new	B(a1,“Hello”);

40.																																										B	b2	=	new	B(a1,“World”);

41.																																										B	b3	=	new	B(a1,“Matrix”);

42.																												}

43.														}															

Output:

[Hello[World[Matrix]

]

]

As	we	can	see,	by	calling	sleep(),	the	call()	method	allows	execution	to	switch	to	another
thread.	This	results	in	the	mixed-up	output	of	the	three	message	strings.		In	this	program,
nothing	exists	to	stop	all	three	threads	from	calling	the	same	method,	on	the	same	object,
at	the	same	time.

This	is	known	as	a	race	condition,	because	these	three	threads	are	racing	with	each	other
to	 complete	 the	 method.	 This	 example	 uses	 sleep()	 to	 make	 the	 effects	 repeatable	 and
obvious.	In	most	situations,	a	race	condition	is	more	subtle	and	less	predictable,	because
we	cannot	be	sure	when	 the	context	switch	will	occur.	This	can	cause	a	program	to	 run
right	one	time	and	wrong	the	next	time.

To	 do	 this,	 we	 simply	 need	 to	 precede	 method	 display()’s	 definition	 with	 the
keyword	 synchronized.	 This	 prevents	 either	 threads	 from	 entering	 the	 display()	 while
another	thread	is	using	it.

Example12.9

The	 problem	 of	 mixed-up	 is	 solved	 simply	 by	 declaring	 the	 method	 call()	 as	 a
synchronized	method.

1.														class	A

2.														{

3.																												synchronized	void	display(String	msg)

4.																												{

5.																																										System.out.print(“[”	+	msg);

6.																																										try

7.																																										{

8.																																																								Thread.sleep(1000);

9.																																										}

10.																																										catch(InterruptedException	e)

11.																																										{

12.																																																								System.out.println(e);

13.																																										}

14.																																										System.out.println(“]”);

15.																												}

16.														}

17.														class	B	implements	Runnable

18.														{

19.																												A	obj;

20.																												String	msg;

21.																												Thread	t;

22.																												B(A	obj1,	String	m)

23.																												{

24.																																										msg	=	m;

25.																																										obj	=	obj1;

26.																																										t	=	new	Thread(this);

27.																																										t.start();

28.																												}

29.																												public	void	run()

30.																												{

31.																																										obj.display(msg);

32.																												}

33.														}

34.														class	Synch2

35.														{

36.																												public	static	void	main(String	args[])

37.																												{

38.																																										A	a1	=	new	A();

39.																																										B	b1	=	new	B(a1,“Hello”);

40.																																										B	b2	=	new	B(a1,“World”);

41.																																										B	b3	=	new	B(a1,“Matrix”);

42.																												}

43.														}

Output:

[Hello]

[World]

[Matrix]

Note:-Once	a	thread	enters	any	synchronized	method	on	an	instance,	no	other	thread	can
enter	any	other	synchronized	method	on	the	same	instance.		However,	non-synchronized
methods	on	that	instance	will	continue	to	be	callable.	

Using	Synchronized	Statement:

While	creating	synchronized	methods	within	classes	that	we	create	is	an	easy	and
effective	means	of	achieving	synchronization,	it	will	not	work	in	all	cases.		To	understand
why,	consider	the	following.	Imagine	that	we	want	to	synchronize	access	to	objects	of	a
class	 that	 was	 not	 designed	 for	 multi-threaded	 access.	 That	 is,	 the	 class	 does	 not	 use
synchronized	methods.		Further,	this	class	was	not	created	by	we,	but	by	a	third	part;	and
we	do	not	have	access	to	the	source	code.	Thus,	we	cannot	add	modifier	synchronized	to
the	 appropriate	methods	within	 the	 class.	How	 can	 access	 to	 an	 object	 of	 this	 class	 by
synchronized?

The	 solution	 is	 to	 put	 calls	 to	 the	 methods	 defined	 by	 this	 class	 inside	 a
synchronized	block.		The	general	form	of	the	synchronized	statement	is:

synchronized(object)

{													

//statements	to	be	synchronized

}

Here,	 object	 is	 a	 reference	 to	 the	 object	 being	 synchronized.	 	 A	 synchronized
block	 ensures	 that	 a	 call	 to	 a	method	 that	 is	 a	member	 of	 object	 occurs	 only	 often	 the
current	thread	has	successfully	entered	object’s	monitor.

Example12.10	

Alternative	version	of	the	preceding	example,	using	a	synchronized	block	within	the	run()

1.														class	A

2.														{

3.																												void	display(String	msg)

4.																												{

5.																																										System.out.print(“[”	+	msg);

6.																																										try

7.																																										{

8.																																																								Thread.sleep(1000);

9.																																										}

10.																																										catch(InterruptedException	e)

11.																																										{

12.																																																								System.out.println(e);

13.																																										}

14.																																										System.out.println(“]”);

15.																												}

16.														}

17.														class	B	implements	Runnable

18.														{

19.																												A	obj;

20.																												String	msg;

21.																												Thread	t;

22.																												B(A	obj1,	String	m)

23.																												{

24.																																										msg	=	m;

25.																																										obj	=	obj1;

26.																																										t	=	new	Thread(this);

27.																																										t.start();

28.																												}

29.																												public	void	run()

30.																												{

31.																																										synchronized(obj)

32.																																										{

33.																																																								obj.display(msg);

34.																																										}

35.																												}

36.														}

37.														class	Synch3

38.														{

39.																												public	static	void	main(String	args[])

40.																												{

41.																																										A	a1	=	new	A();

42.																																										B	b1	=	new	B(a1,“Hello”);

43.																																										B	b2	=	new	B(a1,“World”);

44.																																										B	b3	=	new	B(a1,“Matrix”);

45.																												}

46.														}

Output:-

[Hello]

[World]

[Matrix]

Multiple	Threads	Invoking	same	Method	on	Different	Objects:

Example12.11

Threads	can	call	the	same	synchronized	instance	method	on	different	objects	of	same	class
concurrently	as	each	object	has	a	different	lock.		This	will	again	lead	to	mixed-up	output.

1.														class	A

2.														{

3.																												synchronized	void	display(String	msg)

4.																												{

5.																																										System.out.print(“[”	+	msg);

6.																																										try

7.																																										{

8.																																																								Thread.sleep(1000);

9.																																										}

10.																																										catch(InterruptedException	e)

11.																																										{

12.																																																								System.out.println(e);

13.																																										}

14.																																										System.out.println(“]”);

15.																												}

16.														}

17.														class	B	implements	Runnable

18.														{

19.																												A	obj;

20.																												String	msg;

21.																												Thread	t;

22.																												B(A	obj1,	String	m)

23.																												{

24.																																										msg	=	m;

25.																																										obj	=	obj1;

26.																																										t	=	new	Thread(this);

27.																																										t.start();

28.																												}

29.																												public	void	run()

30.																												{

31.																																										obj.display(msg);

32.																												}

33.														}

34.														class	Synch4

35.														{

36.																												public	static	void	main(String	args[])

37.																												{

38.																																										A	a1	=	new	A();

39.																																										A	a2	=	new	A();

40.																																										A	a3	=	new	A();

41.																																										B	b1	=	new	B(a1,“Hello”);

42.																																										B	b2	=	new	B(a2,“World”);

43.																																										B	b3	=	new	B(a3,“Matrix”);

44.																												}

45.														}

	

Output:

[Hello[World[Matrix]

]

]

Using	Static	Synchronized	Method:

Example12.12

The	 output	 does	 not	 get	 mixed-up	 in	 the	 following	 example	 although	 we	 are	 calling
display()	method	 on	 different	 objects.	 The	 reason	 is	 that	method	 display()	 is	 static	 and
hence	the	lock	is	obtained	for	the	class	A	as	a	whole	and	not	on	the	individual	objects.

1.														class	A

2.														{

3.																												static	synchronized	void	display(String	msg)

4.																												{

5.																																										System.out.print(“[”	+	msg);

6.																																										try

7.																																										{

8.																																																								Thread.sleep(1000);

9.																																										}

10.																																										catch(InterruptedException	e)

11.																																										{

12.																																																								System.out.println(e);

13.																																										}

14.																																										System.out.println(“]”);

15.																												}

16.														}

17.														class	B	implements	Runnable

18.														{

19.																												A	obj;

20.																												String	msg;

21.																												Thread	t;

22.																												B(A	obj1,	String	m)

23.																												{

24.																																										msg	=	m;

25.																																										obj	=	obj1;

26.																																										t	=	new	Thread(this);

27.																																										t.start();

28.																												}

29.																												public	void	run()

30.																												{

31.																																										obj.display(msg);

32.																												}

33.														}

34.														class	Synch5

35.														{

36.																												public	static	void	main(String	args[])

37.																												{

38.																																										A	a1	=	new	A();

39.																																										A	a2	=	new	A();

40.																																										A	a3	=	new	A();

41.																																										B	b1	=	new	B(a1,“Hello”);

42.																																										B	b2	=	new	B(a2,“World”);

43.																																										B	b3	=	new	B(a3,“Matrix”);

44.																												}

45.														}

Output:-

[Hello]

[World]

[Matrix]

Inter-thread	Communication:
It	 is	 discussed	 earlier,	 multi-threading	 replaces	 event	 loop	 programming	 by

dividing	our	tasks	into	discrete	and	logical	units.		Threads	also	proved	a	secondary	benefit:
they	do	away	with	polling.		Polling	is	usually	implemented	by	a	loop	that	is	used	to	check
some	condition	repeatedly.		Once	the	condition	is	true,	appropriate	action	is	taken.

This	wastes	the	CPU	cycles.		For	example,	consider	the	classic	queuing	problem,
where	 one	 thread	 is	 producing	 some	 data	 and	 another	 is	 consuming	 it.	 	 To	 make	 the
problem	more	 interacting,	 suppose	 that	 the	producer	has	 to	wait	 until	 the	 consumer	has
finished	before	 it	 generates	more	data.	 	 In	 a	 polling	 system,	 the	 consumer	would	waste
many	CPU	cycles	while	 it	waited	 for	 the	producer	 to	produce.	 	Once	 the	producer	was
finished,	 it	 would	 start	 polling,	 wasting	more	 CPU	 cycles	 waiting	 for	 the	 consumer	 to
finish,	and	so	on.

To	 avoid	 polling,	 Java	 includes	 an	 elegant	 (smart)	 inter-process	 communication
mechanism	 via	 the	 wait(),	 notify(),	 and	 notifyAll()	 methods.	 	 These	 methods	 are
implemented	as	final	methods	in	Object	class,	so	all	classes	have	them.		All	three	methods
can	be	called	only	from	within	a	synchronized	context.		There	are	certain	rules	for	using
these	methods.

Wait()	 tells	 the	 calling	 thread	 to	 give	 up	 the	monitor	 and	 go	 to	 sleep	 until	 some	 other
thread		enters	the	same	monitor	and	calls	notify().

Notify()	wakes	up	one	thread	(normally	first	thread)	that	called	wait	on	the	same	object.

notifyAll()	wakes	up	all	the	threads	that	called	wait()	on	the	same	object.		Normally	the
highest	priority	thread	will	run	first.

These	methods	are	declared	within	Object	class,	as	shown	here:

	 final	void	wait()	throws	InterruptedException

final	void	notify()

final	void	notifyAll()

Example	12.13

The	 following	 sample	 program	 incorrectly	 implements	 a	 simple	 form	 of	 the
producer/consumer	problem.	 	 It	consists	 four	classes:	Q,	 the	queue	 that	we	are	 trying	 to
synchronize;	Producer,	the	threaded	object	that	is	producing	queue	entries;	Consumer,	the
threaded	object	that	is	consuming	g	queue	entries;	and	PC,	the	tiny	class	that	creates	the
sing	Q,	Producer,	and	Consumer.

1.														class	Q

2.														{													

3.																												int	n;

4.																												synchronized	int	get()

5.																												{													

6.																																										System.out.println(“Got:”+n);

7.																																										return	n;

8.																												}

9.																												synchronized	void	put(int	n)

10.																												{													

11.																																										this.n=n;

12.																																										System.out.println(“Put:”+n);

13.																												}

14.														}

15.														class	Producer	implements	Runnable

16.														{													

17.																												Q	q1;

18.																												Producer(Q	q2)

19.																												{													

20.																																										q1=q2;

21.																																										new	Thread(this,”Producer”).start();

22.																												}

23.																												public	void	run()

24.																												{														

25.																																										int	i=0;

26.																																										while(true)

27.																																										{													

28.																																																								q1.put(++i);

29.																																										}

30.																												}

31.														}

32.														class	Consumer	implements	Runnable

33.														{													

34.														Q	q1;

35.														Consumer(Q	q2)					{

37.																												q1=q2;

38.																												new	Thread(this,”Consumer”).start();

39.																												}

40.																												public	void	run()

41.																												{													

42.																												while	(true)

43.																																										{													

44.																																										q1.get();

45.																																										}

46.																												}

47.														}

48.														class	PC

49.														{													

50.														public	static	void	main(String	args[])

51.																												{													

52.																												Q	q1=new	Q();

53.																												new	Producer(q1);

54.																												new	Consumer(q1);

55.																												System.out.println(“Press	Control-C	to	stop”);

56.																												}

57.														}

Although	the	put()	and	get()	methods	on	Q	are	synchronized,	nothing	stops	the	producer
from	overrunning	the	consumer,	nor	will	anything	stop	the	consumer	from	consuming	the

same	queue	value	twice.		Thus	we	may	get	erroneous	output	as	shown	below:

Output:	Press	Control-C	to	stop
Put	:1

Put	:2

Put:3

Put:4

Put:5

Put:6

Put:7

Got:7

Got:7

Got:7

Got:7

Got:7

Got:7

Got:7

Got:7

Put:8

Put:9

Put:10

Put:11

Put:12

Put:13

Put:14

Put:15

Got:15

Got:15

Got:15

Got:15

Got:15

Got:15

Got:15

Example12.14

The	proper	way	 to	write	 this	program	in	Java	 is	 to	use	wait()	and	 	notify()	 	 to	signal	 in
both	directions,	as	shown	here:

1.														class	Q

2.														{													

3.																												int	n;

4.																												boolean	valueSet=false;

5.																												synchronized	int	get	()

6.																												{													

7.																																										if(!valueSet)

8.																																										{													

9.																																																								try

10.																																																								{													

11.																																																																						wait();

12.																																																								}

13.																																										catch	(InterruptedException	e)

14.																																																								{													

15.																																										System.out.println	(e);

16.																																																								}

17.																																										}

18.																																										System.out.println(“Got	:”	+	n);

19.																																										valueSet	=	false;

20.																																										notify();

21.																																										return	n;

22.																												}

23.																												synchronized	void	put	(int	n)

24.																												{													

25.																																										if(valueSet)

26.																																										{													

27.																																																								try

28.																																																								{													

29.																																																																						wait();

30.																																																								}

31.																												catch(InterruptedException	e)

32.																																																								{													

33.																												System.out.println(e);

34.																																																								}

35.																																										}

36.																																										this.n=n;

37.																																										valueSet	=true;

38.																																										System.out.println(“Put	:”	+	n);

39.																																										notify	();

40.																												}

41.														}

42.														class	Producer	implements	Runnable

43.														{													

44.																												Q	q1;

45.																												Producer	(Q	q2)

46.																												{													

47.																																										q1	=	q2;

48.																																										new	Thread(this,	“Producer”).start	();

49.																												}

50.																												public	void	run	()

51.																												{													

52.																																										int	i	=	0;

53.																																										while	(true)

54.																																										{													

55.																																																								q1.put	(++i);																											

56.																																										}

57.																												}

58.														}

59.														class	Consumer	implements	Runnable

60.														{													

61.																												Q	q1;

62.																												Consumer	(Q	q2)

63.																												{													

64.																																										q1	=q2;

65.																												new	Thread	(this,	“consumer”).start	();

66.																												}

67.																												public	void	run	()

68.																												{													

69.																																										while	(true)

70.																																										{													

71.																																																								q1.get	();

72.																																										}

73.																												}

74.														}

75.														class	PC2

76.														{													

77.														public	static	void	main	(String	args	[])

78.																												{													

79.														System.out.println(“Press	Control-C	to	stop”);

80.																																										Q	q1	=	new	Q();

81.																																										new	Producer(q1);

82.																																										new	Consumer(q1);

83.																												}

84.														}

	

	

Output:

Press	Control-C	to	stop

Put:1

Got:1

Put:2

Got:2

Put:3

Got:3

Put:4

Got:4

Put:5

Got:5													

Deadlock:
A	special	type	of	error	that	we	need	to	avoid	related	specifically	to	multi-tasking

is	 deadlock,	 which	 occurs	 when	 two	 threads	 have	 a	 circular	 dependency	 on	 a	 pair	 of
synchronized	objects.	For	 example,	 suppose	one	 thread	enters	 the	monitor	on	object	 	X
and	 another	 thread	 enters	 the	monitor	 on	 object	 Y.	 If	 the	 thread	 in	 X	 tries	 to	 call	 any
synchronized	method	on	Y,	it	will	block	as	expected.	However,	if	the	thread	in	Y,	in	turn
tries	to	call	any	synchronized	method	on	X,	the	thread	waits	forever,	because	to	access	X,
it	 would	 have	 to	 release	 its	 own	 lock	 on	 Y	 so	 that	 the	 first	 thread	 could	 complete.
Deadlock	is	a	difficult	error	to	debug	for	two	reasongs:

(i)														In	general,	it	occurs	only	rarely	when	the	two	threads	time-slice	in	just
the	right	way.

(ii)														It	may	involve	more	than	two	threads	and	two	synchronized	objects.

Example	12.15

1.														class	A

2.														{

3.																												synchronized	void	foo(B	b1)

4.																												{

5.														System.out.println(“Method	foo	called	and	then	blocked”);

6.																																										try

7.																																										{

8.																												Thread.sleep(1000);

9.																																										}

10.																												catch(InterruptedException	e)

11.																																										{

12.																												System.out.println(e.getMessage());

13.																																										}							

14.																												System.out.println(“Trying	to	call	b1.last()”);

15.																																										b1.last();

16.																												}

17.																												synchronized	void	last()

18.																												{

19.																												System.out.println(“This	will	not	be	printed”);

20.																												}

21.														}

22.														class	B

23.														{

24.																												synchronized	void	bar(A	a1)

25.																												{

26.														System.out.println(“Method	bar	called	and	then	blocked”);

27.																																										try

28.																																										{

29.																																																								Thread.sleep(1000);

30.																																										}

31.																																										catch(InterruptedException	e)

32.																																										{

33.																																																								System.out.println(e.getMessage());

34.																																										}

35.																																										System.out.println(“Trying	to	call	a1.last()”);

36.																																										a1.last();

37.																												}

38.																												synchronized	void	last()

39.																												{

40.																																										System.out.println(“This	will	not	be	printed”);

41.																												}

42.														}

43														class	DeadLock	implements	Runnable

44.														{

45.																												A	a1=	new	A();

46.																												B	b1	=	new	B();

47.																												DeadLock()

48.																												{

49.																																										Thread	t	=	new	Thread(this);

50.																																										t.start();

51.																																										a1.foo(b1);

52.																												}

53.																												public	void	run()

54.																												{

55.																																										b1.bar(a1);

56.																												}

57.																												public	static	void	main(String	args[])

58.																												{

59.																																										new	DeadLock();

60.																												}\

61.														}

Output:

Method	foo	called	and	then	blocked

Method	bar	called	and	then	blocked

Trying	to	call	b1.last()

Trying	to	call	a1.last()

	

Suspending,	Resuming	and	Stopping	Threads	in	Java	1.1	and	earlier:

Prior	to	Java	2,	suspend()	and	resume()	are	defined	by	Thread	class	to	pause	and
restart	the	execution	of	a	thread.	They	have	the	form	shown	below.

final	void	suspend()

final	void	resume()

Example12.16:

1.														class	A	implements	Runnable

2.														{

3.																												String	name;

4.																												Thread	t;

5.																												A(String	threadname)

6.																												{

7.																																										name	=	threadname;

8.																																										t	=	new	Thread(this,	name);

9.																																										System.out.println(“Child	Thread:	“	+	t);

10.																																										t.start();

11.																												}

12.																												public	void	run()

13.																												{

14.																																										for(int	i=1;	i<=30;i++)

15.																																										{

16.																																																								System.out.println(name	+	“:	“	+	i);

17.																																																								try

18.																																																								{

19.																																																																						Thread.sleep(100);

20.																																																								}

21.																																																								catch(InterruptedException	e)

22.																																																								{

23.																																																																						System.out.println(e);

24.																																																								}

25.																																										}

26.																																										System.out.println(name	+	“	exiting”);

27.																												}

28.														}

29.														class	SuspendResume

30.														{

31.																												public	static	void	main(String	args[])

32.																												{

33.																																										A	ob1	=	new	A(“One”);

34.																																										A	ob2	=	new	A(“Two”);

35.																																										try

36.																																										{

37.																																																								Thread.sleep(1000);

38.																																																								ob1.t.suspend();

39.																												System.out.println(“Suspending	Thread	one”);

40.																																																								Thread.sleep(1000);

41.																																																								ob1.t.resume();

42.																												System.out.println(“Resuming	Thread	one”);

43.																																																								ob2.t.suspend();

44.																												System.out.println(“Suspending	Thread	two”);

45.																																																								Thread.sleep(1000);

46.																																																								ob2.t.resume();

47.																												System.out.println(“Resuming	Thread	two”);

48.																																										}

49.																												catch(InterruptedException	e)

50.																																										{

51.																												System.out.println(e);

52.																																										}

53.																																										try

54.																																										{

55.																												System.out.println(“Waiting	for	threads	to	finish”);

56.																																																								ob1.t.join();

57.																																																								ob2.t.join();

58.																																										}

59.																												catch(InterruptedException	e)

60.																																										{

61.																												System.out.println(e);

62.																																										}

63.																												}

64.														}

Output:

Output:

Child	Thread:	Thread[One,5,main]

Child	Thread:	Thread[Two,5,main]

One:	1

Two:	1

Two:	2

One:	2

Two:	3

One:	3

Two:	4

One:	4

One:	5

Two:	5

Two:	6

One:	6

One:	7

Two:	7

Two:	8

One:	8

One:	9

Two:	9

Two:	10

One:	10

Suspending	Thread	one

Two:	11

Two:	12

Two:	13

Two:	14

Two:	15

Two:	16

Two:	17

Two:	18

Two:	19

Two:	20

Resuming	Thread	one

Suspending	Thread	two

One:	11

One:	12

One:	13

One:	14

One:	15

One:	16

One:	17

One:	18

One:	19

One:	20

Resuming	Thread	two

One:	21

Two:	21

One:	22

Two:	22

One:	23

Two:	23

One:	24

Two:	24

One:	25

Two:	25

One:	26

Two:	26

One:	27

Two:	27

One:	28

Two:	28

One:	29

Two:	29

One:	30

Two:	30

One	exiting

Two	exiting

Waiting	for	threads	to	finish

	

Note:-The	 thread	 class	 also	 defines	 a	 method	 called	 stop()	 that	 stops	 a	 thread.	 Its
signature	is	shown	here:

final	void	stop()

Once	a	thread	has	been	stopped,	it	cannot	be	restarted	using	resume()	method.

Suspending,	Resuming	and	stopping	threads	using	Java	2

Example12.17:

1.														class	A	implements	Runnable

2.														{

3.																												String	name;

4.																												Thread	t;

5.																												boolean	suspendFlag;

6.																												A(String	threadname)

7.																												{

8.																												name	=	threadname;

9.																												t	=	new	Thread(this,	name);

10.																												System.out.println(“Child	Thread:	“	+	t);

11.																												suspendFlag	=	false;

12.																												t.start();

13.																												}

14.																												void	mysuspend()

15.																												{

16.																												suspendFlag	=	true;

17.																												}

18.																												synchronized	void	myresume()

19.																												{

20.																												suspendFlag	=	false;

21.																												notify();

22.																												}

23.																												public	void	run()

24.																												{

25.																																										for(int	i=1;i<=15;i++)

26.																																										{

27.																												System.out.println(name	+	“:	“	+	i);

28.																																																								try

29.																																																								{

30.																												Thread.sleep(200);

31.																																																								}

32.																												catch(InterruptedException	e)

33.																																																								{

34.																												System.out.println(e);

35.																																																								}

36.																												synchronized(this)

37.																																																								{

38.																												if(suspendFlag)

39.																																																																						{

40.																												wait();

41.																																																																						}

42.																																																								}

43.																																										}

44.																												System.out.println(name+	“exiting”);

45.																												}

46.														}

47.														class	SuspendResume1

48.														{

49.																												public	static	void	main(String	args[])

50.																												{

51.																																										A	ob1	=	new	A(“One”);

52.																																										A	ob2	=	new	A(“Two”);

53.																																										try

54.																																										{

55.																																										Thread.sleep(1000);

56.																																										ob1.mysuspend();

57.																																										System.out.println(“Suspending	Thread	one”);

58.																																										Thread.sleep(1000);

59.																																										ob1.myresume();

60.																																										System.out.println(“Resuming	Thread	one”);

61.																																										ob2.mysuspend();

62.																																										System.out.println(“Suspending	Thread	two”);

63.																																										Thread.sleep(1000);

64.																																										ob2.myresume();

65.																																										System.out.println(“Resuming	Thread	two”);

66.																																										}

67.																																										catch(InterruptedException	e)

68.																																										{

69.																																										System.out.println(e);

70.																																										}

71.																																										try

72.																																										{

73.																																										System.out.println(“Waiting	for	threads	to	finish”);

74.																																										ob1.t.join();

75.																																										ob2.t.join();

76.																																										}

77.																																										catch(InterruptedException	e)

78.																																										{

79.																																										System.out.println(e);

80.																																										}

81.																																										System.out.println(“main	exiting”);

82.																																										}	}

Output:

Child	Thread:	Thread[One,5,main]

Child	Thread:	Thread[Two,5,main]

One:	1

Two:	1

One:	2

Two:	2

One:	3

Two:	3

One:	4

Two:	4

One:	5

Two:	5

Suspending	Thread	one

Two:	6

Two:	7

Two:	8

Two:	9

Two:	10

Resuming	Thread	one

One:	6

Suspending	Thread	two

One:	7

One:	8

One:	9

One:	10

Resuming	Thread	two

Two:	11

Waiting	for	threads	to	finish

One:	11

Two:	12

One:	12

Two:	13

One:	13

Two:	14

One:	14

Two:	15

One:	15

Twoexiting

Oneexiting

main	exiting

	

	

	

	
CHAPTER
∞	13	∞

(Modifiers	/	Visibility	modes)
	

Introduction-
Modifiers	are	Java	keywords	that	give	the	compiler	information	about	the	nature

of	code,	data,	classes	or	interfaces.	For	example,	we	have	been	using	visibility	modifiers
public,	private,	protected,	package	public	etc.	 to	specify	 the	visibility	of	class	members.
Beside	visibility	we	have	also	used	the	modifier	static,	final	and	abstract.

For	the	purpose	of	clear	understanding,	modifier	can	be	categorized	as:

1.																								Accessibility	modifiers	for	top-level	classes	and	interfaces.
2.																								Member	accessibility/visibility	modifiers	for	classes.
3.																								Member	accessibility/visibility	modifiers	for	interfaces.
4.																							Other	modifiers	for	top-level	classes.
5.																								Other	modifiers	for	top-level	interfaces.
6.																								Other	modifiers	for	interface	members.
7.																								Other	modifiers	for	class	members.

1.	Accessibility	modifiers	for	top-level	classes	and	interfaces:

public

default	(package)	accessibility

2.	Member	accessibility/visibility	modifiers	for	classes:

By	specifying	member	accessibility	modifiers	a	class	can	control	what	information	is
accessible	 to	 clients	 (i.e.	 other	 classes).	 These	 modifiers	 help	 a	 class	 to	 define	 a
contract	so	that	clients	know	exactly	what	services	are	offered	by	the	class.

Accessibility/visibility	of	members	can	be	one	o	the	following:

public

protected

default	(also	called	package	accessibility)

private

Note:-Member	accessibility	modifiers	only	has	meaning	if	the	class	(or	one	its	subclasses)
is	accessible	to	the	client.	Also	note	that	one	accessibility	modifiers	can	be	specified	for	a
member.

The	discussion	applies	to	both	instance	and	static	members	of	classes.

3.	Member	accessibility/visibility	modifiers	for	interfaces:

The	only	member	accessibility/visibility	modifier	that	can	be	used	with	data	members
and	methods	of	an	interface	is	public.

The	public	is	also	the	implicit	accessibility/visibility	modifier	for	interface	members
i.e.	the	members	are	always	implicitly	assumed	to	be	public	even	if	we	do	not	use	the
modifier	public.

4.	Other	modifiers	for	top-level	classes:

Beside	visibility	modifiers,	we	can	also	use	following	modifiers	before	a	top-class:

	

(a)				abstract

A	 class	 can	 be	 specified	 with	 the	 keyword	 abstract	 to	 indicate	 that	 it	 cannot	 be
instantiated.	 A	 class	 containing	 abstract	 method	 must	 be	 declared	 as	 abstract
otherwise	 it	 won’t	 compile.	 A	 class	 not	 containing	 abstract	 method	 can	 also	 be
declared	abstract.	Such	a	class	can	serve	as	a	base	class	for	a	number	of	sub-classes.

(b)	final

A	class	can	be	declared	 final	 to	 indicate	 that	 it	 cannot	be	extended.	The	 final	 class
marks	 the	 lower	boundary	of	 its	 implementation	 inheritance	hierarchy.	Only	a	class
whose	definition	is	complete	can	be	declared	final.	A	class	cannot	be	both	final	and
abstract	at	the	same	time.

Here	are	few	important	characteristics	of	the	final	class.

All	the	methods	of	a	final	class	are	also	final	i.e.	 they	have	the	concrete	implementation
and	can	not	be	over-ridden.

Some	 type	 checks	 become	 faster	with	 final	 classes.	 In	 fact,	many	 type	 checks

become	 compile	 time	 checks	 and	 errors	 can	 be	 caught	 earlier.	 If	 the	 compiler
encounters	 a	 reference	 to	 a	 final	 class,	 it	 knows	 that	 the	 object	 referred	 to	 is
exactly	of	that	type.
The	 compiler	 is	 able	 to	 perform	 certain	 code	 optimizations	 for	 final	methods,
because	certain	assumptions	can	be	made	about	such	members.
When	a	non-final	method	is	invoked,	the	run	time	system	determines	the	actual
class	of	the	object,	binds	the	method	invocation	to	the	correct	implementation	of
the	method	for	that	type,	and	then	invokes	the	implementation.
In	 case	 of	 a	 final	method	we	 are	 sure	 that	 type	 sub-class	 can	 not	 override	 the
method	so	the	binding	is	done	at	the	compile	time	as	in	case	of	private	and	static
methods,	which	would	definitely	improve	the	performance.
In	case	of	a	final	method	the	compiler	may	replace	an	invocation	with	the	actual
body	of	the	method	like	Macro.	This	mechanism	is	known		as	‘inlining’.	In	C++,
we	have	 the	option	of	declaring	a	 function	as	 inline	 (although	 final	decision	 is
taken	by	the	compiler)	but	in	Java,	the	compiler	takes	the	decision.

5.	Other	modifiers	for	top-level	interfaces:

(a)	abstract

This	 is	 the	 only	 modifier	 other	 than	 visibility	 modifiers,	 which	 can	 be	 used	 with
interface.

Interfaces	just	specify	the	method	prototypes	and	not	any	implementation:	 they	are,
by	their	nature,	implicitly	abstract.	(i.e.	they	can	not	be	instantiated).	We	can	declare
an	interface	as	abstract	but	it	is	redundant	as	interface	is	always	abstract.

6.	Other	modifiers	for	interface	members:

Other	modifiers	for	data	members:

Beside	visibility	modifier	public,	we	can	also	use	modifiers	static	and	final.	Although
we	 can	 use	 these	 modifiers	 but	 it	 is	 redundant	 as	 all	 data	 members	 are	 implicitly
public,	static	and	final.

Other	modifiers	for	methods:

Beside	visibility	modifier	public,	we	can	also	use	modifier	abstract.	Although	we	can
use	 abstract	 modifier	 but	 it	 is	 redundant	 as	 all	 methods	 are	 implicitly	 public,	 and
abstract.

7.	Other	modifiers	for	class	members:-

Certain	 characteristics	 of	 fields	 and/or	 methods	 can	 be	 specified	 in	 their
declarations	by	the	following	keywords:

1.	 static

2.	 final

3.	 abstract

4.	 synchronized

5.	 native

6.	 transient

7.	 volatile

A.	static	modifier:
The	static	members	belong	to	the	class	in	which	they	are	declared,	and	are	not	part	of
any	 instance	 of	 the	 class.	 Depending	 on	 the	 accessibility	 modifiers	 of	 the	 static
members	in	a	class,	client	can	access	these	by	using	the	class	name	or	through	object
references	of	the	class.

static	variables(also	called	class	variables):-

These	variables	only	exist	in	the	class	they	are	defined	in.	When	the	class	is	loaded,
static	 variables	 are	 initialized	 to	 their	 default	 values,	 if	 no	 explicity	 initialization
expression	in	specified.

The	static	member	variables	are	often	used	when	 tracking	global	 information	about
the	instances.

static	methods:

These	are	also	known	as	class	methods.	A	static	method	in	a	class	can	directly	access
other	static	members	in	the	class.	It	cannot	access	instance	(i.e.	non-static)	members
of	the	class,	as	there	is	no	notion	of	an	object	associated	with	a	static	method.

However,	note	that	a	static	method	in	a	class	can	always	use	a	reference	of	the
class’s	type	to	access	its	members	regardless	of	whether	these	members	are	static	or
not.A	 typical	 static	method	might	 perform	 some	 task	 on	 behalf	 of	 the	whole	 class
and/or	objects	of	the	class.

An	instance	in	a	subclass	cannot	override	a	static	method	in	the	superclass.	The
compiler	will	flag	this	with	an	error	(means	a	static	method	in	super	class	cannot	be
overridden	by	non	static	methods	in	subclass).	A	static	method	is	class	specific		and
not	part	of	any	object,	while	overriding	,	methods	are	invoked	on	the	behalf	of	objects
of	the	subclass.	However,	a	static	method	in	a	subclass	can	hide	a	static	method	in	the
superclass.

Methods	declared	as	static	have	several	restrictions:

They	can	only	call	other	static	methods.

The	can	only	access	static	data	members.

They	cannot	refer	to	this	or	super	in	anyway

static	initialization	block:

A	java	class	can	have	one	or	more	static	initialization	block.	The	syntax	of	the	static

initialization	block	is	as	follows:

static

{

code

}

A	 static	 initialization	 block	 can	 be	 though	 of	 as	 a	 static	method,	which	 is	 invoked
implicitly/automatically	as	soon	as	the	class	is	loaded.

The	static	block	can	be	useful	in	the	following	situations:

Dynamic	initialization	of	static	variables.

For	 performing	 one	 time	 activity	 at	 the	 time	 of	 loading	 class.	 For	 example,
loading	jdbc	driver	class.

Loading	 small	 database/configuration	 files	 in	 Hashtable,	 HashMap,	 Properties
etc.

B.	final	modifier:
The	modifier	final	can	be	used	with

Local	variables

Instance	variables/data	members

Static	variables/data	members

Instance	methods

final	variables:

A	final	variable	is	normally	initialized	at	the	time	of	declaration	and	its	value	can	not
be	 modified	 after	 assigning	 once.	 Here	 are	 few	 important	 points	 related	 to	 final
variables:

A	final	variable	is	a	constant,	despite	being	called	a	variable.	Its	value	cannot	be
changed	 once	 it	 has	 been	 initialized.	 This	 applies	 to	 instance,	 static	 and	 local
variables,	including	parameters	that	are	declared	final.

The	final	is	the	only	modifier	applicable	to	local	variables	or	formal	parameters.

A	final	variable	of	a	primitive	data	type	cannot	change	its	value	once	it	has	been
initialized.

A	final	variable	of	a	reference	type	cannot	change	its	reference	value	once	it	has
been	initialized,	but	the	stat	of	the	object	it	denotes	can	still	be	changed.

Normally	a	final	variable	is	initialized	at	the	time	of	declaration	but	it	is	not	must.
Such	a	 final	variable	 is	 also	called	blank	 final	variable,	 and	must	be	 initialized

once	before	it	is	being	used.

The	 final	 static	 variables	 are	 commonly	 used	 to	 define	 named	 constants,	 for
example	Integer.MAX_VALUE,	which	is	the	maximum	int	value.

Local	final	variables:-

Example	13.1

The	 following	 example	 illustrates	 that	 local	 final	 variable	 can	 be	 left	 blank	 as
discussed	above	but	must	be	initialized	before	first	use.	The	variable	x	is	initialized
just	before	displaying	its	value	on	the	monitor.

1.														class	FinalTest1	//	make	use	of	blank	final

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																												final	int	x;														//initialization	at	declaration	time	not	must

6.																																										x	=	50;

7.																																										System.out.println(x);

8.																												}

9.														}

Output:	50

Example13.2

The	following	will	not	compile	as	final	variable	is	initialized	twice.

class	FinalTest2	//	make	use	of	blank	final

1.														{

2.																												public	static	void	main(String	args[])

3.																												{

4.																																										final	int	x;													

5.																																										x=50;

6.																																										System.out.println(x);

7.																																										x	=	60;

8.																												}

9.														}

Instance	final	variables:-

An	instance	final	variable	can	be	left	blank	but	must	be	initialized	before	obtaining	a

reference	of	an	object	of	the	class	containing	final	variable.	So	if	we	do	not	initialize
at	 the	 time	 of	 declaration	 then	 the	 other	 places	 at	 which	 final	 variables	 can	 be
initialized	are:

Constructor

Initialization	block

	

Example	13.3

The	 following	 program	 will	 not	 compile,	 as	 final	 variable	 is	 not	 initialized.	 The
concept	of	 initialization	by	default	value	 is	not	applicable	 to	 final	variables	as	 they
can	not	be	modified	after	initialization.

1.																												class	FinalTest3	//	make	use	of	blank	final

2.																												{

3.														final	int	x;	//	No	default	initialization	for	final	instance	variables

4.																												}

5.																												class	MyClass

6.																												{

7.																																										public	static	void	main(String	args[])

8.																																										{

9.																																																								FinalTest3	f=new	FinalTest3();

10.																																																								System.out.println(f.x);

11.																																										}

12.																												}

Output:

(Compile	time	error):	variable	x	might	not	have	been	initialized.

Example	13.4

The	 following	 program	 will	 also	 not	 compile,	 as	 final	 variable	 is	 initialized	 after
obtaining	a	reference.

1.																												class	FinalTest4

2.																												{

3.																																										final	int	x;

4.																												}

5.																												class	MyClass

6.																												{

7.																																										public	static	void	main(String	args[])

8.																																										{

9.																																																								FinalTest4	f=new	FinalTest4();

10.																																																								f.x	=	10;

11.																																																								System.out.println(f.x);

12.																																										}

13.																												}

Example	13.5

The	 following	 example	 illustrates	 that	 a	 blank	 final	 instance	 variable	 can	 be
initialized	in	the	constructor.

1.																												class	FinalTest5

2.																												{

3.																																										final	int	x;

4.																																										public	static	void	main(String	args[])

5.																																										{

6.																																																								FinalTest5	f=new	FinalTest5();

7.																																																								System.out.println(f.x);

8.																																										}

9.																																										FinalTest5()

10.																																										{

11.																																																								x=10;

12.																																										}

13.																												}

Output:

10

Example	13.6

The	following	program	illustrates	that	a	blank	final	variable	can	be	initialized	with	a
dynamic	value	and	can	be	referred	with	this	keyword.	So	different	objects	of	the	same
class	can	have	different	values	of	the	final	variable.

1.																												class	FinalTest6

2.																												{

3.																																										final	int	x;

4.																																										FinalTest6(int	x1)

5.																																										{

6.																																																								x	=	x1;

7.																																										}

8.																																										public	static	void	main(String	args[])

9.																																										{

10.																																																								FinalTest6	f1=new	FinalTest6(10);

11.																																																								FinalTest6	f2=new	FinalTest6(20);

12.																																																								System.out.println(f1.x);

13.																																																								System.out.println(f2.x);

14.																																										}

15.																												}

Output:

10

20

Initialization	block:-

A	 java	 class	 can	 have	 one	 or	 more	 initialization	 blocks.	 The	 syntax	 of	 the
initialization	block	is	as	follows:

{

														code

}

A	 initialization	 block	 can	 be	 thought	 if	 as	 a	 constructor,	 which	 is	 invoked
implicitly/automatically	as	soon	as	the	object	is	create.	In	fact	if	a	class	contains
initialization	blocks	them	they	are	executed	in	the	order	of	definition	from	top	to
bottom	before	any	constructor.

	

Example	13.7:

1.														class	FinalTest7

2.														{

3.																												final	int	x;

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										FinalTest7	f=new	FinalTest7();

7.																																										System.out.println(f.x);

8.																												}

9.																												{

10.																																										x=20;

11.																												}

12.														}

	

	

The	initialization	block	can	be	useful	in	the	following	situations:

Dynamic	initialization	of	instance	variables.

For	 defining	 code	which	 is	 common	 to	 all	 constructors.	 This	will	 increase	 the
code	reusability	and	reduce	maintenance.

A	static	final	variables:

A	 static	 final	 variables	 can	 be	 left	 blank,	 but	 must	 be	 initialized	 before	 class	 is
available	to	the	program.	So	if	we	do	not	initialize	at	the	time	of	declaration	then	the
only	place	at	which	static	final	variable	can	be	initialized	is:

	

static	Initialization	block

Example	13.8

The	following	example	illustrates	that	the	blank	static	final	variable	can	be	initialized
in	the	static	block.

1.														class	FinalTest8

2.														{

3.																												static	final	int	x;

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										System.out.println(FinalTest8.x);

7.																												}

8.																												static

9.																												{

10.																																										x=20;

11.																												}

12.														}

Output:

20

final	methods:-

A	final	method	in	a	class	is	complete	(i.e.	has	an	implementation)	and	can	not	be
overridden	 in	 any	 subclass.	 Subclasses	 are	 thus	 restricted	 in	 changing	 the
behavior	of	the	method.

The	 compiler	 is	 able	 to	 perform	 certain	 code	 optimizations	 for	 final	methods,
because	 certain	 assumptions	 can	 be	 made	 about	 such	members.	When	 a	 non-
static	method	is	invoked,	the	run	time	system	determines	the	actual	class	of	the
object,	binds	the	method	invocation	to	the	correct	implementation	of	the	method
for	that	type,	and	then	invokes	the	implementation.

In	case	of	a	final	method	we	are	sure	that	sub-class	can	not	override	the	method
so	 the	 binding	 is	 done	 at	 the	 compile	 time	 as	 in	 case	 of	 private	 and	 static
methods,	which	would	definitely	improves	the	performance.

In	case	of	a	final	method	the	compiler	may	replace	an	invocation	with	the	actual
body	of	the	method	like	Macro.	This	mechanism	is	known	as	‘inlining’.	In	C++,
we	have	 the	option	of	declaring	a	 function	as	 inline	 (although	 final	decision	 is
taken	by	the	compiler)	but	in	Java,	the	compiler	takes	the	decision.

C.	abstract	modifier:-

The	abstract	modifier	can	be	used	only	with	 instance	methods.	An	abstract	method
does	not	have	an	 implementation,	 that	 is,	no	method	body	 is	defined	for	an	abstact
method,	only	the	method	prototype	is	provided	in	the	class	definition.

Its	class	is	also	abstract	(i.e.,	incomplete)	and	must	be	explicitly	declared	as	abstract.
Subclasses	 of	 an	 abstract	 class	 must	 then	 provide	 the	 method	 implementation;
otherwise,	they	are	also	abstract.

Here	are	some	important	points	related	to	abstract	methods:

An	 abstract	method	 cannot	 be	 declared	 private.	This	 is	 obvious	 as	we	 can	 not
override	an	private	method,	while	in	case	of	an	abstract	method	body	is	always
provided	in	the	sub-class	by	over-riding	the	abstract	method.
Only	an	instance	method	can	be	declared	abstract	since	static	methods	cannot	be
overridden,	 declaring	 an	 abstract	 static	method	would	make	 no	 sense	 and	will
result	in	compilation	error.
A	final	method	cannot	be	abstract	and	vice-versa.
The	keyword	abstract	cannot	be	combined	with	any	non-accessibility	modifiers
for	methods.
Methods	 specified	 in	 an	 interface	 are	 implicitly	 abstract,	 as	 only	 the	 method
prototypes	are	defined	in	an	interface.

D.	synchronized	modifier:-

The	synchronized	keyword	can	be	used	with	methods	and	code	blocks.Several	thread
can	execute	simultaneously	in	a	program.	They	might	try	to	execute	several	methods
on	 the	same	object	simultaneously	 in	a	program.	They	might	 try	 to	execute	several
methods	on	the	same	object	simultaneously.	If	it	is	desired	that	only	one	thread	at	a
time	can	execute	a	method	in	the	object,	the	methods	can	be	declared	synchronized.
Their	execution	is	the	mutually	exclusive	among	all	threads.

At	any	given	 time,	 at	most	one	 thread	can	be	executing	a	 synchronized	method	on
any	given	 time,	 at	most	one	 thread	can	be	 executing	a	 synchronized	method	on	an
object.	This	discussion	also	applies	to	static	synchronized	methods	of	a	class.

Note-	The	synchronized	modifier	does	not	apply	to	classes	or	member	variables.

E.	native	modifier:-

The	 native	 modifier	 can	 refer	 only	 to	 methods.	 Like	 the	 abstract	 keyword,	 native
indicates	 that	 the	body	of	a	method	 is	 to	be	found	elsewhere.	The	body	of	a	native
method	is	entirely	outside	the	JVM,	in	a	library.	Native	code	is	written	in	a	non-java
language,	 typically	C	or	C++,	and	compiled	 for	a	 single	 target	machine	 type.	Thus
Java’s	 platform	 independence	 is	 violated.	 People	 who	 port	 Java	 to	 new	 platforms
implement	 extensive	 native	 code	 to	 support	 GUI	 components,	 network
communication,	and	a	broad	range	of	other	platform-specific	functionality.	However,
it	is	rare	for	the	application	and	applet	programmers	to	need	to	write	native	code.

F.	transient	modifier:-

Objects	 can	 be	 stored	 using	 serialization.	 Serialization	 transforms	 objects	 into	 an
output	format	that	is	conducive	for	storing	objects.	Objects	can	later	be	retrieved	in
the	same	state	as	when	 they	were	serialized,	meaning	 that	all	 fields	 included	 in	 the
serialization	will	have	the	same	values	as	at	the	time	of	serialization.	Such	objects	as
said	to	be	persistent.

A	field	can	be	specified	as	transient	in	the	class	declaration,	indicating	that	its	value
should	not	be	saved	when	objects	of	the	class	are	written	to	persistent	storage.	class
Experiment	implements	Serializable-

{

														transient	int	currentTemperature;														//transient

double	mass;																																																								//persistent	value

}

Specifying	 the	 transient	 modifier	 for	 static	 variables	 is	 redundant	 and	 therefore,
discouraged.	 The	 static	 variables	 are	 not	 part	 of	 the	 persistent	 state	 of	 a	 serialized
object.

G.	volatile	modifier

During	 execution,	 compiled	 code	 might	 cache	 the	 value	 of	 fields	 for	 efficiency
reasons.	Since	multiple	threads	can	access	the	same	field,	it	is	vital	that	caching	is	not
allowed	to	cause	inconsistencies	when	reading	and	writing	the	value	in	the	field.	The

volatile	modifier	 can	 be	 used	 to	 inform	 the	 compiler	 that	 it	 should	 not	 attempt	 to
perform	optimization	on	the	field,	which	could	cause	unpredictable	results	when	the
field	is	accessed	by	multiple	threads.

	

	

	

	
CHAPTER
∞	14	∞

(Wrapper	Class)
	

	
Introduction-

The	primitive	data	types	in	java	are	not	objects.	If	we	want	to	use	these	data	types
as	objects,	then	we	will	have	to	use	wrapper	classes	for	each	of	these	primitive	data	types
provided	in	java.lang	package.

There	are	many	built-in	classes,	which	cannot	handle	primitive	data	types	as	they
deal	 only	with	 objects.	One	 such	 class	 is	Vector,	which	 is	 used	 to	 store	 a	 collection	 of
objects.	We	can	not	use	 the	Vector	class	 to	directly	store	 the	collection	of	elements	of	a
primitive	data	 typed.	But	we	can	do	so	by	storing	 the	objects	of	wrapper	classes,	which
correspond	to	the	primitive	data	types.

The	Java	has	wrapper	class	corresponding	 to	each	of	 the	primitive	data	 type	as
shown	in	the	following	table:

	

Primitive	Data	Type Wrapper	Class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

	

Number	class:

The	abstract	class	Number	defines	super-class	that	is	implemented	by	the	classes
that	 wrap	 the	 numeric	 type	 byte,	 short,	 int,	 long,	 float,	 and	 double.	 Number	 class	 has
abstract	 methods	 that	 return	 the	 value	 of	 the	 object	 in	 each	 of	 the	 different	 number
formats.	These	methods	are:

byte	byteValue()

Returns	the	value	of	the	specified	number	as	a	byte.

short	shortValue()

Returns	the	value	of	the	specified	number	as	a	short.

abstract	int	intValue()

Returns	the	value	of	the	specified	number	as	an	int.

abstract	long	longValue()

Returns	the	value	of	the	specified	number	as	a	long.

abstract	float	floatValue()

Returns	the	value	of	the	specified	number	as	a	float.

abstract	double	doubleValue()

Returns	the	value	of	the	specified	number	as	a	double.

	

Note-	 The	 values	 returned	 by	 byteValue(),	 shortValue(),	 intValue(),longValue(),
floatValue()	and	doubleValue()	methods	may	involve	rounding	or	truncation.

	

	

Example	14.1

The	 following	 example	 demonstrates	 how	 rounding	 and	 truncation	 takes	 place	 when
invoking	methods	of	class	Number.

1.														class	Wrapper

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																												Integer	iObj	=	new	Integer(128);

6.																												System.out.println(iObj.byteValue());	//truncation

7.																												Long	lObj	=	new	Long(123456789123456789L);

8.																												System.out.println(lObj);

9.																												System.out.println(lObj.doubleValue());

10.																												Float	fObj	=	new	Float(3.99f);

11.																												System.out.println(fObj.intValue());	truncation

12.																												}

13.														}

Output:

-128

123456789123456789

1.23456789123456784E17

3

Converting	 Primitive	 Numbers	 to	 Objects	 using	 Constructors	 of	Wrappers	 Classes	 and
Converting	Numeric	Objects	back	to	Primitive	Numbers:-

Example	14.2

The	following	example	demonstrates	how	primitives	can	be	wrapped	in	objects	and	how
they	can	be	converted	back	to	primitives.

1.														class	Convert

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.	System.out.println(“Converting	primitive	numbers	to	objects	“	+	“using	constructors”);

7.																																										byte	b	=	105;

8.																																										Byte	bObj	=	new	Byte(b);

9.														System.out.println(bObj);	//toString()

10.																																										short	s	=	2015;

11.																																										Short	sObj	=	new	Short(s)

12.																																										System.out.println(sObj);

13.																																										int	i=32717;

14.																																										Integer	iObj	=	new	Integer(i);

15.																																										System.out.println(iObj);

16.																																										long	l	=	234543335565675L

17.																																										Long	lObj	=	new	Long(l);

18.																																										System.out.println(lObj);

19.																																										float	f	=	3.1415f;

20.																																										Float	fObj	=	new	Float(f);

21.																																										System.out.println(fObj);

22.																																										double	d	=	3.1415;

23.																																										Double	dObj	=	new	Double(d);

24.																																										System.out.println(dObj);

25.														System.out.println(“Converting	numeric	objects	to	primitive	numbers”);

26.																																										byte	b1	=	bObj.byteValue();

27.																																										short	s1	=	sObj.shortValue();

28.																																										int	i1	=	iObj.intValue();

29.																																										long	l1	=	lObj.longValue();

30.																																										float	f1	=	fObj.floatValue();

31.																																										double	d1	=	dObj.doubleValue();

32.																																										System.out.println(b1);

33.																																										System.out.println(s1);

34.																																										System.out.println(i1);

35.																																										System.out.println(l1);

36.																																										System.out.println(f1);

37.																																										System.out.println(d1);

38																												}

39.														}

Output:

Converting	primitive	numbers	to	objects	using	constructor

105

2015

32717

234543335565675

3.1415

3.1415

Converting	object	to	primitive	numbers

105

2015

32717

234543335565675

3.1415

3.1415

Converting	 Primitive	 Numbers	 to	 Strings	 using	 toString()	 static	 method	 of	 the
corresponding	Wrapper	Class

Example	14.3:

1.														class	ConvertPrimitiveToString

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.														System.out.println(“Converting	primitive	numbers	to	String	“	+

6.														“using	toString()	static	method	of	corresponding	wrapper	class:”);

7.																																										byte	b	=	105;

8.																																										String	str=Byte.toString(b);

9.																																										System.out.println(str);

10.																																										short	s=303;

11.																																										str	=	Short.toString(s);

12.																																										System.out.println(str);

13.																																										int	i=100;

14.																																										str	=	Integer.toString(i);

15.																																										System.out.println(str);

16.																																										long	l=454444444444l;

17.																																										str	=	Long.toString(l);

18.																																										System.out.println(str);

19.																																										float	f=3.444f;

20.																																										str=Float.toString(f);

21.																																										System.out.println(str);

22.																																										double	d=3.44444;

23.																																										str=Double.toString(d);

24.																																										System.out.println(str);

25.																												}

26														}

Output:

Converting	 primitive	 numbers	 to	 String	 using	 toString()	 static	 method	 of
corresponding	wrapper	class:

105

303

100

454444444444

3.444

3.44444

	

Converting	Numeric	Objects	to	Strings	using	toString()	method	of	the	corresponding
Wrapper	Class:-

Example	14.4

1.														class	ObjectToStringDemo

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.														System.out.println(“Converting	object	numbers	to	Strings	using”	+

“toString()	method	of	corresponding	wrapper	class:”);

7.																																										byte	b=103;

8.																																										Byte	bObj	=	new	Byte(b);

9.																																										String	str=bObj.toString();

10.																																										System.out.println(str);																											

11.																																										short	s=203;

12.																																										Short	sObj=new	Short(s);

13.																																										str	=	sObj.toString();

14.																																										System.out.println(str);													

15.																																										Integer	iObj	=	new	Integer(32000);

16.																																										str	=	iObj.toString();

17.																																										System.out.println(str);

18.																																										str	=	new	Long(4544444444444l).toString();

19.																																										System.out.println(str);

20.																																										str	=	new	Float(3.1444f).toString();

21.																																										System.out.println(str);

22.																																										str	=	new	Double(4.1444).toString();

23.																																										System.out.println(str);

24.																												}

25.														}

Output:

Converting	object	numbers	to	Strings	using	toString()	method	of	corresponding
wrapper	class:

103

203

32000

4544444444444

3.1444

4.1444

Converting	 String	 Objects(Numeric	 Strings)	 to	 Numberic	 Objects	 using	 the	 static
valueOf()	method	of	the	corresponding	Wrapper	Class

Example	14.5

1.														class	StringToNumericObjectDemo

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										String	str=”30”;

6.																																										String	str2=”30.333”;

7.																																										Byte	bObj=Byte.valueOf(str);

8.																																										System.out.println(bObj);

9.														//Byte	bObj1	=	new	Byte(str2);														//NumberFormatException

10.																																										Short	sObj	=	Short.valueOf(str);

11.																																										System.out.println(sObj);

12.																																										Integer	iObj=Integer.valueOf(str);

13.																																										System.out.println(iObj);

14.																																										Long	lObj=Long.valueOf(“344324232432”);

15.																																										System.out.println(lObj);

16.																																										Float	fObj=Float.valueOf(“3.333”);

17.																																										System.out.println(fObj);

18.																																										Double	dObj=Double.valueOf(str2);

19.																																										System.out.println(dObj);

20.																												}

21.														}

Output:

30

30

30

3.44324232432

3.33

30.333

Note:-All	 of	 the	valueOf()	methods	 throw	“NumberFormatException”	 if	 the	 string	does
not	contain	a	parsable	number.

Converting	string	Objects	(Numeric	Strings)	to	Numeric	Objects	using	Constructor
of	the	corresponding	Wrapper	Class

Example	14.6

1.														class	StringToNumericObjectDemo1

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										String	str=new	String(“30”);

6.																																										//String	str=”30”;

7.																																										String	str2=new	String(“30.333”);

8.																																										Byte	bObj	=	new	Byte(str);

9.																																										System.out.println(bObj);

10.														//Byte	bObj=new	Byte(str2);															//NumberFormatException

11.																																										Short	sObj=new	Short(str);

12.																																										System.out.println(sObj);

13.																																										Integer	iObj=new	Integer(str);

14.																																										System.out.println(iObj);

15.																																										Long	lObj=new	Long(str);

16.																																										System.out.println(lObj);

17.																																										Float	fObj=new	Float(str);

18.																																										System.out.println(fObj);

19.																																										Double	dObj=new	Double(str);

20.																																										System.out.println(dObj);

21.																												}

22.														}

Output:

30

30

30

30

30.333

30.333

Note:-	 The	 Above	 constructor	 throw	 “NumberFormatException”	 if	 the	 string	 does	 not
contain	a	parsable	number.

Converting	 String	 Objects	 (Numeric	 Strings)	 to	 Primitive	 Numbers	 using	 parsing
methods	of	the	corresponding	Wrapper	Class

Example	14.7:

1.														class	StringToPrimitiveDemo

2.														{

3.																												public	static	void	main(String	args[])

4.																												{

5.																																										String	str	=	new	String(“30”);

6.																																										//String	str=”30”;

7																																										String	str2=	new	String(“30.333”);

8.																																										byte	b	=	Byte.parseByte(str);

9.																																										System.out.println(b);

10.														//byte	b1=Byte.parseByte(str2);														//NumberFormatException

11.																																										short	s	=	Short.parseShort(str);

12.																																										System.out.println(s);

13.																																										int	i	=	Integer.parseInt(str);

14.																																										System.out.println(i);

15.																																										long	l	=	Long.parseLong(str);

16.																																										System.out.println(l);

17.																																										float	f	=	Float.parseFloat(str2);

18.																																										System.out.println(f);

19.																																										double	d	=	Double.parseDouble(str2);

20.																																										System.out.println(d);

21.																												}

22.														}

Output:

30

30

30

30

30.333

30.333

Note:-parseXXXXX()	methods	 throw	 “NumberFormatException”	 if	 the	 string	 does	 not
contain	a	parsable	number.

Constants	defined	in	classes	Double	and	Float:

MAX_VALUE

MIN_VALUE

NaN

NEGATIVE_INFINITY

POSITIVE_INFINITY

TYPE	(The	class	instance	representing	the	primitive	type	double/float)

SIZE	(The	number	of	bits	used	to	represent	a	double	value).	Since	J2SDK	1.5.

Other	Methods	in	Float	Class:

1.													static	int	compare(float	f1,	float	f2)
2.												Compares	the	two	specified	float	values
3.												int	compareTo(Float	anotherFloat)
4.												Compares	two	Float	objects	numerically.
5.												boolean	equals(Object	obj)
6.												Compares	this	object	against	the	specified	object
7.												int	hashCode()
8.												Returns	a	hash	code	for	this	float	object.
9.												boolean	isInfinite()
10.		 	 	 	 	 	 	 	 	Returns	 true	 if	 this	 Float	 value	 is	 infinitely	 large	 in	 magnitude,	 false
otherwise.
11.	 										static	boolean	isInfinite(float	v)
12.		 	 	 	 	 	 	 	 	Returns	true	if	the	specified	number	is	infinitely	large	in	magnitude,	false
otherwise.
13.										boolean	isNaN()
14.		 	 	 	 	 	 	 	 	Returns	 true	 if	 this	 float	 value	 is	 a	 Not-a-Number	 (NaN)	 value,	 false
otherwise.
15.										static	Boolean	isNaN(float	v)
16.		 	 	 	 	 	 	 	 	Returns	true	if	the	specified	number	is	a	Not-a-Number	(NaN)	value,	false
otherwise.

	

Other	methods	in	double	Class:

Methods	in	Double	class	are	almost	same	as	methods	of	float	Class,	with	use	of
double	and	double	words	instead	of	float	and	Float	words	in	the	previous	table.

Constants	defined	in	classes	Byte,	Short,	Integer	and	Long:

MIN_VALUE

MAX_VALUE

TYPE	(The	class	instance	representing	the	primitive	type	byte/short/int/long)

SIZE	(The	number	of	bits	used	to	represent	a	byte/short/int/long	value	in	two’s
complement	binary	form.)	Since	J2SDK	1.5.

	

Other	Methods	in	Byte	Class:

int	comparesTo(Byte	anotherByte)

Compares	two	Byte	objects	numerically.

static	Byte	decode(String	nm)

Returns	 a	 Byte	 object	 that	 contains	 the	 value	 specified	 by	 the	 string	 nm.	 Accepts
decimal,	hexadecimal,	and	octal	numbers	given	by	the	following	grammer:

	

DecodableString:

[-]	DecimalNumerical

[-]	0x	HexDigits

[-]	0X	HexDigits

[-]	#	HexDigits

[-]	0	OctalDigits

boolean	equals(Object	obj)

Compares	this	object	to	the	specified	object.

int	hashCode()

Returns	a	hash	code	for	this	Byte.

	

Other	Methods	in	Short	Class:

Methods	in	Short	class	are	same	as	methods	of	Byte	class,	with	the	use	of	short	and	Short
words	instead	of	byte	and	Byte	words	in	the	above	table.

Other	Methods	in	Integer	Class:

Some	 methods	 are	 same	 as	 Byte	 or	 Short	 class’s	 methods.	 Some	 other	 methods	 are
described	below:

static	String	toBinaryString(int	i)

Returns	 a	 string	 representation	 of	 the	 integer	 argument	 as	 an	 unsigned
integer	in	base	2.

static	String	toHexString(int	i)

Returns	 a	 string	 representation	 of	 the	 integer	 argument	 as	 an	 unsigned
integer	in	base	16.

static	String	toOctalString(int	i)

Returns	 a	 string	 representation	 of	 the	 integer	 argument	 as	 an	 unsigned
integer	in	base	8.

	

Other	Methods	in	Long	Class:

Methods	in	Long	class	are	almost	same	as	methods	of	Integer	Class.

Character	Class:

The	character	class	wraps	a	value	of	the	primitive	type	char	in	an	object.

Constructor:

Character(char	value)

Constructs	a	newly	allocated	Character	object	that	represents	the	specified	char
value.

Example:	Character	chObj	=	new	Character(‘A’);

Methods:

Some	of	the	methods	of	Character	class	are	described	in	the	following	table:

char	charValue()

Returns	the	value	of	this	Character	object.

static	boolean	isDefined(char	ch)

Determines	if	the	specified	character	in	Unicode.

static	boolean	isDigit(char	ch)

Determines	if	the	specified	character	is	a	digit.

static	boolean	isJavaIdentifierPart(char	ch)

Determines	if	 the	specified	character	may	be	part	of	a	Java	identifier	as	other	than	the
first	character.

static	boolean	isJavaIdentifierStart(char	ch)

Determines	 if	 the	 specified	 character	 is	 permissible	 as	 the	 first	 character	 in	 a	 Java

identifier.

static	boolean	isLetter(char	ch)

Determines	if	the	specified	character	is	a	letter.

static	boolean	isLetterorDigit(char	ch)

Determines	if	the	specified	character	is	a	letter	or	Digit.

static	boolean	isLowerCase(char	ch)

Determines	if	the	specified	character	is	a	lowercase	character.

static	boolean	isSpaceChar(char	ch)

Determines	if	the	specified	character	is	a	Unicode	space	character.

static	boolean	isTitleCase(char	ch)

Determines	if	the	specified	character	is	a	titlecase	character.

static	boolean	isUpperCase(char	ch)

Determines	if	the	specified	character	is	a	uppercase	character.

static	boolean	isWhitespace(char	ch)

Determines	if	the	specified	character	is	a	whitespace	according	to	Java.

static	char	toLowerCase(char	ch)

Converts	the	character	argument	to	lowercase.

static	char	toUpperCase(char	ch)

Converts	the	character	argument	to	uppercase.

static	char	toTitleCase(char	ch)

Converts	the	character	argument	to	Titlecase.

int	compareTo(Character	anotherCharacter)

Compares	two	Character	objects	numerically.

int	hashcode()

Returns	a	hash	code	for	this	Character.

boolean	equals(Object	obj)

Compares	this	object	against	the	specified	object.

	

Boolean	 Class:	The	 Boolean	 class	 wraps	 a	 value	 of	 the	 primitive	 type	 Boolean	 in	 an
object.

	

Constructors:

Boolean(Boolean	value)

Allocates	a	Boolean	object	representing	the	value	argument.

Boolean(String	s)

Allocates	a	Boolean	object	representing	the	value	true	if	the	string	argument	is	not	null
and	is	equal,	ignoring	case,	to	the	string	“true”.

	

Methods	of	Boolean	Class:

boolean	booleanValue()

Returns	the	value	of	this	Boolean	object	as	a	Boolean	primitive.

int	compareTo(Boolean	b)

Compares	this	Boolean	instance	with	another.

boolean	equals(Object	obj)

Returns	 true	 if	 and	 only	 if	 the	 argument	 is	 not	 a	 null	 and	 is	 a	 Boolean	 object	 that
represents	the	same	boolean	value	as	this	object.

static	Boolean	getBoolean(String	name)

Returns	 true	 if	 and	 only	 if	 the	 system	property	 named	by	 the	 argument	 exists	 and	 is
equal	to	the	string	“true”.

int	hashCode()

Returns	a	hash	code	for	this	Boolean	object.

static	boolean	parseBoolean(String	s)

Parses	the	string	argument	as	a	boolean.

String	toString()

Returns	a	String	object	representing	this	Boolean’s	value.

static	String	toString(boolean	b)

Returns	a	String	object	representing	the	specified	boolean.

static	Boolean	valueOf(boolean	b)

Returns	a	Boolean	instance	representing	the	specified	boolean	value.

static	Boolean	valueOf(String	s)

Returns	a	Boolean	with	a	value	represented	the	specified	String.

	

	

	
CHAPTER
∞	15	∞

(Input	/	Output	in	Java)
	

	
Introduction-
Streams-

Java	programs	perform	I/O	through	streams.	A	stream	is	an	abstraction	that	either
produces	or	consumes	information.	A	stream	is	linked	to	a	physical	device	by	the	Java	I/O
system.

	

All	 streams	 behave	 in	 the	 same	manner,	 even	 if	 the	 actual	 physical	 devices	 to
which	they	are	linked	differ.	Thus,	the	same	I/O	classes	and	methods	can	be	applied	to	any
type	of	device.

	

This	means	 an	 input	 stream	can	 abstract	many	different	 kinds	 of	 input:	 from	a
disk	 file,	 a	 keyboard	 or	 a	 network	 socket.	 Likewise	 an	 output	 stream	may	 refer	 to	 the
console,	a	disk	file,	or	a	network	connection.

Streams	are	a	clean	way	 to	deal	with	 input/output	without	having	every	part	of
our	code	understand	the	difference	between	a	keyboard	and	a	network,	for	example.	Java
implements	streams	within	class	hierarchies	defined	in	the	java.io	package.

	

(Relationship	of	Java	Program	with	I/O	Devices)

	

The	concept	of	 sending	data	 from	one	stream	 to	another	 (like	one	pipe	 feeding
into	another	pipe)	has	made	streams	 in	Java	a	powerful	 tool	 for	 file	processing.	We	can
build	a	complex	file	processing	sequence	using	a	series	of	simple	stream	operations.

	

This	 feature	 can	be	used	 to	 filter	data	 along	 the	pipeline	of	 streams	 so	 that	we
obtain	data	 in	a	desired	 format.	For	example,	we	can	use	one	 stream	 to	get	 raw	data	 in
binary	format	and	then	use	another	stream	in	series	to	convert	it	into	integers.

	

Input	and	Output	Streams:-

Java	 streams	 are	 classified	 into	 two	 basic	 types:	 normally	 input	 streams	 and
output	streams.	An	input	stream	extracts	(i.e.	reads)	data	from	the	source	and	sends	it	 to
the	program.

	

The	 program	 connects	 and	 opens	 an	 input	 stream	 on	 the	 data	 source	 and	 then
reads	the	data	serially.	Similarly,	the	program	connects	and	opens	an	output	stream	to	the
destination	place	of	data	and	writes	data	out	serially.	In	both	the	cases,	the	program	does
not	know	the	details	of	end	points	(i.e.	source	and	destination).

	

Byte	Streams	and	Character	Streams-

	

Java2	defines	two	types	of	streams:	Byte	and	Character.	Byte	streams	provide	a
convenient	 means	 for	 handling	 input	 and	 output	 of	 bytes.	 Byte	 streams	 are	 used,	 for
example,	 when	 reading	 or	 writing	 binary	 data.	 Character	 streams	 provide	 a	 convenient
means	for	handling	input	and	output	of	character.

	

They	 use	Unicode	 and	 therefore,	 can	 be	 internationalized.	Also	 in	 some	 cases,
character	streams	are	more	efficient	than	byte	streams.	The	original	version	of	Java	(Java
1.0)	did	not	include	character	streams	and	this,	all	I/O	was	byte	oriented.

	

Character	streams	were	added	by	Java	1.1	and	certain	byte	oriented	classes	and
methods	were	deprecated.

	

Note:	At	the	lowest	level,	all	I/O	is	still	byte	oriented.	The	character-based	streams	simply
provide	a	convenient	and	efficient	means	for	handling	characters.

	

These	two	groups	may	be	further	classified	base	on	their	purposes.	Byte	Stream
and	Character	Stream	classes	contain	specialized	classes	 to	deal	with	 input	and	output
operations	independently	on	various	types	of	devices.

	

We	can	also	cross-group	 the	streams	based	on	 the	 type	of	source	or	destination
they	read	from	or	write	to.	The	source	(or	destination	may	be	memory,	a	file	or	a	pipe.

	

	

	

	

(Classification	of	Java	Stream	Classes)

	

Overview	of	Byte	Stream	Classes:-

	

Byte	stream	classes	are	defined	by	using	two	class	hierarchies.	At	the	top	are	two
abstract	classes:

	

(1)	InputStream	and	(2)	OutputStream

	

Each	of	 these	 abstract	 classes	have	 several	 concrete	 subclasses,	 that	handle	 the
differences	 between	 various	 devices,	 such	 as	 disk	 files,	 network	 connections	 and	 even
memory	buffers.

InputStream	classes

	

InputStream	classes	that	are	used	to	read	8-bit	bytes	include	a	super	class	known
as	InputStream	and	a	number	of	sub-classes	for	supporting	various	input	related	functions.

	

	

	

Hierarchy	of	Input	Stream	Classes.

	

	

	

	

	

Hierarchy	of	Input	Stream	Classes.

	

	

	

	

The	InputStream	class:-

The	 super	 class	 InputStream	 is	 an	 abstract	 class,	 which	 defines	 methods	 for
performing	input	functions	such	as:

	

Reading	bytes.
Closing	stream.
Marking	positions	in	streams.
Skipping	ahead	in	a	stream.
Finding	the	number	of	bytes	in	a	stream.

	

Methods	of	InputStream	class:

	

int	available()

Gives	the	number	of	bytes	available	in	the	input	(must	be	overridden	by	the	subclasses).

The	available	method	for	class	InputStream	always	returns	0.

void	close()

Closes	this	 input	stream	and	releases	any	system	resources	associated	with	the	stream.
The	close	method	of	InputStream	does	nothing.

void	mark(int	readlimit)

Marks	the	current	position	in	this	input	stream.	The	mark	method	of	InputStream	does
nothing.

boolean	markSupported()

Tests	 if	 this	 input	 stream	 supports	 the	 mark	 and	 reset	 methods.	 The	 markSupported
method	of	InputStream	return	false.

abstract	int	read()

Reads	 the	 next	 byte	 of	 data	 from	 the	 input	 stream.	 A	 subclass	 must	 provide	 an
implementation	of	this	method.

int	read(byte[]	b)

Reads	some	number	of	bytes	from	the	input	stream	and	stores	them	into	the	buffer	array
b.	The	number	of	bytes	actually	read	is	returned	as	an	integer.

int	read(byte[]	b,	int	offset,	int	len)

Reads	some	number	of	bytes	from	the	input	stream	and	stores	them	into	the	buffer	array
b	starting	from	position	specified	by	the	parameter	off.	The	nuber	of	bytes	actually	read
is	returned	as	an	integer.

	

void	reset()

Repositions	this	stream	to	the	position	at	the	position	at	the	time	the	mark	method	was

last	 called	 on	 this	 input	 stream.	 The	 reset	 method	 of	 InputStream	 does	 nothing	 and
always	throws	IOException.

	

long	skip(long	n)

Skips	 over	 and	 discards	 upto	 n	 bytes	 of	 data	 from	 this	 input	 stream	 and	 returns	 the
number	of	bytes	actually	skipped.

	

The	DataInput	Interface:

	

The	DataInput	is	an	interface,	which	defines	methods	for	reading	primitives	from
an	InputStream.

	

Methods	of	DataInput	Interface:

	

boolean	readBoolean()

Reads	one	input	byte	and	returns	true	if	that	byte	is	non-zero	and	false	if	that	byte	is
zero.

byte	readByte()

Reads	and	returns	one	byte	input.

char	readChar()

Reads	an	input	character	and	returns	its	value.

double	readDouble()

Reads	eight	input	bytes	and	returns	a	double	value.

float	readfloat()

Reads	four	input	bytes	and	returns	a	double	value.

void	readFully(byte[]	b)

Reads	some	bytes	 from	an	 input	stream	and	stores	 them	in	a	buffer	array	b.	This
method	throws	EOFException	if	this	stream	reaches	the	end	before	reading	all	the
bytes.

void	readFully(byte[]	b,	int	off,	int	len)

Reads	len	bytes	from	an	input	stream	and	stores	them	in	a	buffer	array	b	starting	at

the	position	specified	by	the	off.	This	method	throws	EOFException	if	this	stream
reaches	the	end	before	reading	all	the	bytes.

int	readInt()

Reads	four	input	bytes	and	returns	an	int	value.

String	readLine()

Reads	the	next	line	from	the	input	stream.

long	readLong()

Reads	eight	input	bytes	and	returns	a	long	value.

short	readShort()

Reads	two	input	bytes	and	returns	a	short	value

Strig	readUTF()

Reads	in	a	string	that	has	been	encoded	using	a	modified	UTF-8	format.

int	skipBytes(int	n)

Makes	an	attempt	to	skip	over	n	bytes	of	data	from	the	input	stream,	discarding	the
skipped	bytes.	The	actual	number	of	bytes	skipped	is	returned.

	

	

	

	

	

Summary	of	InputStream	Classes:-

	

A	FilterInputStream	contains	some	other	input	stream,	which	it	uses	as	its	basic
source	 of	 data	 possibly	 transforming	 the	 data	 along	 the	 way	 providing	 additional
functionality.

	

The	 class	 FilterInputStream	 itself	 simply	 overrides	 all	methods	 of	 InputStream
with	 versions	 that	 pass	 all	 requests	 to	 the	 contained	 input	 stream.	 Sub-classes	 of
FilterInputStream	 may	 further	 override	 some	 of	 these	 methods	 and	 may	 also	 provide
additional	methods	and	fields.

	

Note	 that	 the	 class	DataInputStream	extends	FilterInputStream	and	 implements

the	 interface	 DataInput.	 Therefore,	 the	 DataInputStream	 extends	 FilterInputStream	 and
implements	 the	 mewthods	 described	 in	 DataInput	 in	 addition	 to	 using	 methods	 of
InputStream	class.

	

InputStream	classes	summary:

	

InputStream This	abstract	class	is	the	superclass	of	all	classes	representing	an	input	stream
of	bytes.

BufferedInputStream A	bufferedInputStream	adds	functionality	to	another	input	stream-namely,	the
ability	to	buffer	the	input	and	to	support	the	mark	and	reset	method.

ByteArrayInputStream A	 ByteArrayInputStream	 contains	 an	 internal	 buffer	 that	 contain	 bytes	 that
may	be	read	from	the	stream.

DataInputStream A	DataInputStream	lets	an	application	read	the	primitive	Java	data	types	from
an	underlying	input	stream	from	a	machine-independent	way.

FileInputStream A	FileInputStream	contains	input	bytes	from	a	file	in	a	file	system.

FilterInputStream A	 FilterInputStream	 contains	 some	 other	 input	 stream,	 which	 it	 uses	 as	 its
basic	source	of	data,	possibly	transferring	the	data	along	the	way	or	providing
additional	functionality.

PipedInputStream A	PipedInputStream	should	be	connected	to	a	piped	output	stream,	the	piped
input	 stream	 then	 provides	 whatever	 data	 bytes	 are	 written	 to	 piped	 output
stream.

PushbackInputStream A	PushbackInputStream	adds	functionality	to	another	input	stream,	namely	the
ability	to	“pushback”	or	“unread”	one	byte.

	

SequenceInputStream A	SequenceInputStream	represents	the	logical	concentration	of	another	stream.

	

ObjectInputStream An	ObjectInputStreamdeserializs	primitive	data	and	objects	previously	written
using	an	ObjectOutputStream.

	

	

OutputStream	classes-

	

Output	stream	classes	are	derived	from	the	base	class	OutputStream,	which	is	an
abstract	 class	 and	 have	 a	 number	 of	 sub-classes	 for	 supporting	 various	 output	 related
functions.

	

The	OutputStream	class:-

	

The	 super	 class	OutputStream	 is	 an	 abstract	 class,	which	 defines	methods	 for
performing	output	functions	such	as:

	

Writing	bytes
Closing	streams
Flushing	streams

	

(Hierarchy	of	Output	Stream	Classes)

	

Oops	!!	Let’s	see	following	good	quality	picture-

Methods	of	OutputStream	Class:-

	

void	close()

Closes	this	output	stream	and	releases	any	stream	resources	associated	with	this
stream.

void	flush()

Flushes	this	output	stream	and	forces	any	buffered	output	bytes	to	be	written	out.

void	write(byte[]	b)

Writes	b.	length	bytes	from	the	specified	byte	array	to	its	output	stream.

void	write(byte[]	b,	int	off,	int	len)

Writes	len	bytes	from	the	specified	byte	array	starting	at	offset	off	 to	its	output
stream.

abstract	void	write(int	b)

Writes	the	specified	byte	to	its	output	stream.

	

The	DataOutput	Interface:-

	

The	DataOutput	is	an	interface,	which	defines	methods	for	writing	primitives	to
an	OutputStream.

	

	

	

Methods	of	DataOutput	Interface:

	

void	writeBoolean(boolean	v)

Writes	a	boolean	value	to	its	output	stream.

void	writeByte(int	v)

Writes	to	the	output	stream	the	eight	low-	order	bits	of	the	argument	v.

void	writeBytes(string	s)

Writes	the	string	to	the	output	stream.	For	every	character	in	the	string	s,	taken	in	order,
one	byte	is	written	to	the	output	stream.

void	writeChar(int	v)

Writes	a	character	value,	which	is	comprised	of	two	bytes,	to	the	output	stream.

void	writeChars(string	s)

Writes	every	character	in	the	string	s,	to	the	output	stream	in	the	order	of	eight	bytes,	to
the	output	stream.

void	writeDouble(double	v)

Writes	a	double	value,	which	is	comprised	of	eight	bytes,	to	the	output	stream.

void	writeFloat(float	v)

Writes	a	float	value,	which	is	comprised	of	four	bytes,	to	the	output	stream.

void	writeInt(int	v)

Writes	a	int	value,	which	is	comprised	of	four	bytes,	to	the	output	stream.

void	writeLong(long	v)

Writes	a	long	value,	which	is	comprised	of	eight	bytes,	to	the	output	stream.

void	writeShort(int	v)

Writes	a	short	value,	which	is	comprised	of	two	bytes,	to	the	output	stream.

void	writeUTF(String	str)

Writes	two	bytes	of	 length	information	to	the	output	stream,	followed	by	the	modified
UTF-8	representation	of	every	character	in	the	string	s.

	

	

Summary	of	OutputStream	Classes:-

	

The	 DataOutputStream	 is	 a	 counter	 part	 of	 DataInputStream.	 The
DataOutputStream	 class	 implements	 the	 methods	 described	 in	 DataOutput	 interface	 in
addition	to	using	methods	of	OutputStream	class.

	

	

	

	

	

OutputStream	Classes	Summary:-

	

OutputStream This	 abstract	 class	 is	 the	 super	 class	 of	 all	 classes
representing	an	output	stream	of	bytes.

BufferedOutputStream The	class	implements	a	buffered	output	stream.

ByteArrayOutputStream The	class	implements	an	output	stream	in	which	the	data
is	written	into	a	byte	array.

DataOutputStream A	 data	 output	 stream	 lets	 an	 application	 write	 primitive
Java	data	types	to	an	output	stream	in	a	portable	way.

FileOutputStream A	file	output	stream	is	an	output	stream	for	writing	data	to
a	File.

PipedOutputStream A	piped	output	stream	can	be	connected	to	a	piped	input
stream	to	create	a	communications	pipe.

FilterOutputStream A	FilterOutputStream	contains	some	other	output	streams,
which	it	uses	as	its	destination,	possibly	transforming	the
data	 along	 the	 way	 or	 providing	 the	 additional
functionality.

	

PrintStream A	PrintStream	adds	functionality	to	another	output	stream,
namely	the	ability	to	print	representations	of	various	data
values	conveniently.

	

	

Overview	of	Character	Stream	Classes-

	

Character	streams	are	defined	by	using	two	class	hierarchies.	At	the	top	are	two	
abstract	 classes:	 Reader	 and	 Writer.	 These	 abstract	 classes	 handle	 Unicode	 character
streams.

	

The	 Java	has	 several	 concrete	 subclasses	of	 each	of	 these.	The	abstract	Reader
and	Writer	 classes	 define	 several	 key	methods	 that	 the	 other	 stream	 classes	 implement.
Two	of	the	most	important	methods	are	read()	and	write(),	which	read	and	write	characters
of	data,	respectively.	These	methods	are	overridden	by	derived	stream	classes.

	

Reader	stream	classes:-

Reader	stream	classes	are	designed	to	read	character	form	the	files.	Reader	class
is	 the	 base	 class	 for	 all	 other	 classes	 in	 this	 group.	 These	 classes	 are	 functionally	 very
similar	 to	 the	 input	 stream	 classes,	 except	 input	 streams	 use	 bytes	 as	 their	 fundamental
unit	of	information,	while	reader	streams	use	characters.

	

The	 Reader	 class	 contains	 methods	 that	 are	 identical	 to	 those	 available	 in	 the
InputStream	 class.	 Therefore,	 Reader	 classes	 can	 perform	 almost	 all	 the	 functions
implemented	by	the	input	stream	classes.

(Hierarchy	of	Reader	stream	Class)

	

The	Reader	Class:-

	

Reader	is	an	abstract	class	that	defines	Java’s	model	of	streaming	character	input.
All	of	the	methods	in	this	class	will	throw	an	IOException.

	

Methods	of	Reader	Class:-

	

abstract	void	close()

	

Closes	the	stream.	Once	a	stream	has	been	closed,	further	read(),	ready(),	mark(),
or	 reset()	 invocations	 will	 throw	 an	 IOException.	 Closing	 a	 previously	 closed

stream,	however,	has	no	effect.

	

void	mark()

	

Marks	 the	 present	 position	 in	 the	 stream.	 Subsequently	 calls	 to	 reset()	 will
attempt	 to	 reposition	 the	 stream	 to	 this	 point.	 Not	 all	 character	 input	 streams
support	the	mark()	operation.

	

boolean	markSupported()

Tells	whether	this	stream	supports	the	mark()	operation

	

int	read()

Reads	 a	 single	 character	 and	 returns	 the	 integer	 representation	 of	 the	 next
available	 character	 from	 the	 invoking	 input	 stream.	 -1	 is	 returned	when	end	of
file	is	encountered.

int	read(char[]	buffer)

Attempts	to	read	up	to	buffer	length	characters	into	buffer	and	returns	the	actual
number	of	characters	that	are	successfully	read.	-1	is	returned	when	end	of	file	is
encountered.	The	subclasses	of	the	reader	must	implement	this.

abstract	int	read(char[]	buffer,	int	offset,	int	numChar)

Attempts	 to	 read	up	 to	numChar	charbuffer	 starting	at	bufrfer[offset],	 returning
the	number	of	characters	 that	are	 successfully	 read.	 -1	 is	 returned	when	end	of
file	is	encountered.	The	subclasses	of	the	reader	must	implement	this.

boolean	ready()

Tells	whether	this	stream	is	ready	to	be	read.	Returns	true	if	the	next	input	request
will	not	wait,	otherwise	it	returns	a	false.

void	reset()

Reset	the	stream.	This	method	is	not	supported	by	all	character	input	streams.

long	skip(long	n)

Skips	 up	 to	 n	 characters	 and	 returns	 the	 number	 of	 characters	 skipped.	 This
throws	IllegalArgumentException	if	n	is	–ve.

	

	

Summary	of	Reader	Classes:-

	

Reader Abstract	class	for	reading	character	streams

	

BufferedReader Read	text	from	a	character-input	stream,	buffering	characters
so	as	to	provide	for	the	efficient	reading	of	characters,	arrays
and	lines.

	

CharArrayReader This	class	implements	a	character	buffer	that	can	be	used	as	a
character-input	stream.

FileReader Convenience	class	for	reading	character	files.

	

FilterReader Abstract	class	for	reading	filter	character	streams.

	

InputStreamReader An	 InputStreamReader	 is	 a	 bridge	 from	 byte	 streams	 to
character	 stream:	 It	 reads	 bytes	 and	 decodes	 them	 into
characters	using	a	specified	charset.

	

PipedReader Piped	character	input	stream.

	

PushbackReader A	character	stream	reader	that	allows	characters	to	be	pushed
back	into	the	stream.

	

StringReader A	character	stream	whose	source	is	a	string.

Writer	Stream	Class:-

	

Writer	Stream	Classes	are	designed	to	write	character	to	files/output	devices.	The
writer	class	is	an	abstract	class,	which	acts	as	a	base	class	for	all	the	other	writer	stream
class.

	

The	 base	 class	 provides	 support	 for	 all	 output	 operations	 by	 defining	methods
that	are	identical	in	those	in	OutputStream	class.

	

The	Writer	 class	 contains	 methods	 that	 are	 identical	 to	 those	 available	 in	 the
OutputStream	 class.	 Therefore,	 Writer	 classes	 can	 perform	 almost	 all	 the	 functions
implemented	by	the	output	stream	classes.

	

	

	

(Hierarchy	of	Writer	Stream	Classes)

	

	

	

The	Writer	Class:-

	

Writer	 is	an	abstract	class	 that	defines	streaming	character	output.	All	of	 the	methods	in
this	class	return	a	void	value	and	throw	an	IOException	in	the	case	of	errors.

	

Methods	of	Writer	class:

	

abstract	void	close()

Closes	the	stream	flushes	it	first.

	

abstract	void	flush()

Flushes	the	stream.

	

void	write(char[]	cbuf)

Writes	an	array	of	characters.

	

abstract	void	write(char[]	cbuf,	int	off,	int	len)

Writes	 a	portion	of	 an	array	of	 characters	beginning	 from	specified	offset.	The
subclasses	must	implement	this	method.

	

void	write(int	c)

Writes	a	single	character	to	the	invoking	output	stream.	Note	that	the	parameter	is
an	 int,	which	 allows	 you	 to	 call	write	with	 expressions	without	 having	 to	 cast
them	back	to	char.

	

void	write(String	str)

Writes	a	string.

	

void	write(String	str,	int	off,	int	len)

Writes	the	portion	of	the	string	beginning	at	the	specified	offset.

	

	

Summary	of	Writer	Class-

	

Writer Abstract	class	for	writing	to	character	streams.

	

BufferedWriter Writes	text	to	a	character-output	stream,	buffering	characters
so	as	to	provide	for	the	efficient	writing	of	single	characters,
arrays,	and	strings.

	

CharArrayWriter This	class	implements	a	character	buffer	that	can	be	used	as
a	Writer.

	

FileWriter Convenience	class	for	writing	character	files.

	

FilterWriter Abstract	class	for	writing	filtered	character	streams.

	

OutputStreamWriter An	OutputStreamWriter	is	a	bridge	from	character	streams	to
byte	streams:	Characters	written	to	it	are	encoded	into	bytes
using	a	specified	charset.

	

PipedWriter Piped	character-output	streams.

	

PrintWriter Print	 formatted	 representations	 of	 objects	 to	 a	 text-output
stream.

	

StringWriter A	character	stream	that	collects	 its	output	 in	a	string	buffer,
which	can	then	be	used	to	construct	a	string.

	

	

File	Class-

	

Although	most	if	the	classes	defined	by	java.io	operate	on	streams,	the	File	class

does	not.	It	deals	directly	with	files	and	the	file	system.	That	is	,	the	file	class	does	not
specify	how	information	is	retrieved	from	or	stored	in	files.	It	describes	the	properties	of	a
itself.

	

A	file	object	is	used	to	obtain	or	manipulate	the	information	associated	with	a
disk	file,	such	as	the	permissions,	time,	date	and	directory	path,	and	to	navigate	sub-
directory	hierarchies.

Although	there	are	severe	restriction	on	their	use	within	applets	for	security	reasons,	files
are	still	a	central	resource	for	storing	persistent	and	shared	information.

	

A	directory	in	Java	is	treated	simply	as	a	file	with	one	additional	property	–	a	list
of	filenames	that	can	be	examined	by	the	list()	method.

	

public	File(String);

	

public	File(String,	String);

	

public	File(File,	String);

	

public	File(URI);

This	constructor	was	added	by	Java2,	version	1.4

	

public	String	getName();

Returns	the	name	of	the	file	or	directory

	

public	String	getParent();

Returns	the	parent	directory	of	the	file	from	the	path	specified	during	object	creation,	or
null	if	this	pathname	does	not	name	a	parent	directory.

	

public	String	getPath();

Returns	the	relative	path.

	

public	boolean	isAbsolute();

Tests	whether	this	abstract	pathname	is	absolute.

	

public	String	getAbsolutePath();

Returns	the	absolute(complete)	path	starting	from	root.

	

public	boolean	canRead();

Tests	whether	the	application	can	read	the	file	denoted	by	this	abstract	pathname.

	

public	boolean	canWrite();

Tests	whether	the	application	can	modify	the	file	denoted	by	this	abstract
pathname.

	

public	boolean	exists();

Tests	whether	the	file	or	directory	denoted	by	this	abstract	pathname	exists.

	

public	boolean	isDirectory();

Tests	whether	the	file	denoted	by	this	abstract	pathname	is	a	directory.

	

public	boolean	isFile();

Tests	whether	the	file	denoted	by	this	abstract	pathname	is	normal	file.

	

public	boolean	isHidden();

Tests	whether	the	file	named	by	this	abstract	pathname	is	a	hidden	file.

	

public	long	lastModified();

Returns	the	time	that	the	file	denoted	by	this	abstract	pathname	was	last
modified.

	

public	long	length();

Returns	the	length	of	the	file	denoted	by	this	abstract	pathname.

	

public	boolean	createNewFile()							throws	java.io.IOException;

Automatically	creates	a	new,	empty	file	named	by	this	abstract	pathname	if	and
only	if	a	file	with	this	name	does	not	yet	exist.

	

public	boolean	delete();

Deletes	the	file	or	directory	denoted	by	this	abstract	pathname.

	

public	String[]	list();

Returns	an	array	of	strings	naming	the	files	and	directories	in	the	directory
denoted	by	this	abstract	pathname.	Returns	null	if	File	object	corresponds	to	a
file.

	

public	boolean	mkdir();

Creates	the	directory	named	by	this	abstract	pathname.

	

public	boolean	mkdirs();

Creates	the	directory	named	by	this	abstract	pathname	including	any	necessary
but	nonexistent	parent	directories.

	

public	boolean	setLastModified(long);

Sets	the	last	modified	time	of	the	file	or	directory	named	by	this	abstract
pathname.

	

public	boolean	setReadOnly();

Marks	the	file	or	directory	named	by	this	abstract	pathname	so	that	only
readoperations	are	allowed.

	

public	boolean	setWritable(boolean);

public	boolean	setReadable(boolean);

public	boolean	canExecute();

public	long	getTotalSpace();

public	long	getFreeSpace();

public	long	getUsableSpace();

boolean	renameTo(File);

Rename	the	file	denoted	by	this	abstract	pathname.

	

Examples-

	

File	f1	=	new	File(“/”);

File	f2	=	new	File(“/”,”autoexec.bat”);

File	f3	=	new	File(f1,”autoexec.bat”);

	

Note:

Java	 does	 the	 right	 thing	 With	 path	 separators	 between	 UNIX	 and	 Windows
conventions.	If	you	use	a	forward	slash	(/)	on	a	windows	version	of	java,	the	path	will	still
resolve	correctly.

	

Remember,	if	you	are	using	the	windows	convention	(\)	with	a	string.	The	Java
convention	is	to	use	the	UNIX	–	and	URL	style	forward	slash	for	path	separators.

	

File	 defines	many	methods	 that	 obtain	 the	 standard	 properties	 of	 a	File	 object.
The	File	class	however,	is	not	symmetrical.	By	this,	we	mean	that	there	are	main	methods
that	 allow	 you	 to	 examine	 the	 properties	 of	 a	 simple	 file	 object,	 but	 no	 corresponding
function	exists	to	change	these	attributes.

	

Example	15.1:

	

Following	example	demonstrates	several	methods	of	the	class	File

1.														import	java.io.*;

2.														class	FileTest

3.														{

4.																												public	static	void	main(String	args[])	throws	IOException

5.																												{													

6.														File	f	=	new	File(“/javaprog/ch15/15.1/FileTest.java”);

7.																																							if(!f.exists())

8.																																						f.createNewFile();

9.																																				System.out.println(“Length=”+f.length()+”	bytes”);

10.																																										System.out.println(“Name=”+f.getName());

11.																																										System.out.println(“Parent=”+f.getParent());

12.																																										System.out.println(“Path=”+f.getPath());

13.														System.out.println(“Absolute	Path=”+f.getAbsolutePath());

14.														System.out.println(f.exists()	?	“Exists”	:	“Does	not	exist”);

15.														System.out.println(f.isFile()	?	“is	file”	:	“not	a	file”);

16.														System.out.println(f.canRead()	?	“is	readable”	:	“not	readable”);

17.														System.out.println(f.canWrite()	?	“is	writable”	:	“not	writable”);

18.														System.out.println(f.isDirectory()	?	“is	directory”	:	“not	a	directory”);

19.														System.out.println(f.isHidden()	?	“is	hidden”	:	“not	hidden”);

20.														System.out.println(f.isAbsolute()	?	“is	absolute”	:	“is	not	absolute”);

21.														System.out.println(“File	last	modified	:”+f.lastModified());

22.														//f.delete();

23.														File	f3=new	File(“C:/tally72”);

24.														String	nm[]	=	f3.list();

25.														System.out.println(“List	of	Files	&	Sub-Directories	of	c:/tally72”);

26.														for(int	i=0;i<nm.length;i++)

27.																																										{

28.																																																								System.out.print(nm[i]);

29.																																																		File	f4	=	new	File(“c:/tally72/”+nm[i]);

30.																																																								if(f4.isFile()	==	true)

31.																																																																						System.out.println(”	It	is	a	File”);

32.																																																								else

33.														System.out.println(”	It	is	a	Directory”);

34.																																										}

35.																																										File	f5=new	File(“zzz”);

36.																																										f5.mkdir();

37.																																										File	f6=new	File(“yyy/aaa”);

38.																																										f6.mkdirs();

39.																												}

40.														}

	

Output:

Length=1782	bytes

Name=FileTest.java

Parent=\javaprog\ch15\15.1

Path=\javaprog\ch15\15.1\FileTest.java

Absolute	Path=C:\javaprog\ch15\15.1\FileTest.java

Exists

is	file

is	readable

is	writable

not	a	directory

not	hidden

is	not	absolute

File	last	modified	:1236824168000

List	of	Files	&	Sub-Directories	of	c:/tally72

TALLY.REW	It	is	a	File

Tally.ini	It	is	a	File

sentinel.sys	It	is	a	File

sentinel.vxd	It	is	a	File

spnsrv9x.exe	It	is	a	File

spnsrvnt.exe	It	is	a	File

stat.slk	It	is	a	File

tally72.exe	It	is	a	File

tallylic9xserver.exe	It	is	a	File

tallylicserver.exe	It	is	a	File

tallysav.dat	It	is	a	File

tallywin.dat	It	is	a	File

tally.imp	It	is	a	File

Data	It	is	a	Directory

FileInputStream-

	

It	is	a	direct	sub-class	of	the	Input	Stream	class.	To	open	a	file	for	reading,	you
simply	create	an	object	of	FileInputStream	class,	specifying	the	name	of	the	file	(directly
of	indirectly)	as	an	argument	to	the	constructor.

	

public	FileInputStream(String)							throws	FileNotFoundException;

Creates	a	FileInputStream	by	opening	a	connection	to	an	actual	file,	the	file
named	by	the	path	name	filePath	in	the	file	system.

	

public	FileInputStream(File)			throws	FileNotFoundException;

Creates	a	FileInputStream	by	opening	a	connection	to	an	actual	file,	the	file
named	by	the	File	object	file	in	the	file	system.

	

public	native	int	read()							throws	IOException;

public	int	read(byte[])							throws	IOException;

public	int	read(byte[],	int,	int)							throws	IOException;

public	native	long	skip(long)							throws	IOException;

public	native	int	available()			throws	IOException;

public	void	close()			throws	IOException;

	

FileOutputStream-

It	 is	 direct	 sub-class	 of	 the	OutputStream	 class.	 To	 open	 a	 file	 for	writing,	we
simply	create	an	object	of	FileOutputStream	class,	specifying	the	name	of	the	file	(directly
or	indirectly)	as	an	argument	to	the	constructor.

	

public	FileOutputStream(String)				throws	FileNotFoundException;

Creates	an	output	file	stream	to	write	to	the	file	with	the	specified	name.

public	FileOutputStream(String,	boolean)	

throws	java.io.FileNotFoundException;

Create	an	output	file	stream	to	write	to	the	file	with	the	specified	name.

public	FileOutputStream(File)							throws	FileNotFoundException;

Creates	 a	 file	 output	 stream	 to	 write	 to	 the	 file	 represented	 by	 the	 specified	 File
object.

public	FileOutputStream(File,	boolean)	throws	FileNotFoundException;

Creates	a	file	output	stream	to	write	to	the	file	represented	by	the	specified	File
object.

public	native	void	write(int)							throws	java.io.IOException;

public	void	write(byte[])							throws	java.io.IOException;

public	void	write(byte[],	int,	int)							throws	java.io.IOException;

public	void	close()							throws	java.io.IOException;

	

Example	15.2

1.														import	java.io.*;

2.														class	FileRead

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										FileInputStream	fin=null;

7.																																							int	a;

8.																																										try

9.																																										{

10.														fin=new	FileInputStream(args[0]);

11.														System.out.println(“No.	of	characters	to	read=”+fin.available());

12.																																																								fin.skip(3);

13.																																																								a	=	fin.read();

14.																																																								while(a	!=	-1)

15.																																																								{

16.																																																																						System.out.print((char)a);

17.																																																																						a	=	fin.read();

18.																																																								}

19.														System.out.println(“No.	of	characters	to	read=”+fin.available());

20.																																																								fin.close();													

21.																																										}

22.																																										catch(ArrayIndexOutOfBoundsException	e)

23.																																										{

24.																																																								System.out.println(e);

25.																																										}

26.																																										catch(FileNotFoundException	e)

27.																																										{

28.																																																								System.out.println(e);

29.																																										}

30.																																										catch(IOException	e)

31.																																										{

32.																																																								System.out.println(e);

33.																																										}

34.																												}

35.														}

	

Output:

	

java	FileRead	A.txt

No.	of	characters	to	read=20

Matrix	Computers

	

No.	of	characters	to	read=0

	

	

Example	15.3:

	

1.														import	java.io.*;

2.														class	FileCopy

3.														{

4.																												public	static	void	main(String	args[])	throws	IOException

5.																												{

6.																																														FileInputStream	fin=null;

7.																																														FileOutputStream	fout=null;

8.																																										fin=new	FileInputStream(args[0]);

9.																																										fout=new	FileOutputStream(args[1]);

10.																																										int	a;

11.																																										a	=	fin.read();

12.																																										while(a	!=	-1)

13.																																										{

14.																																																								fout.write(a);

15.																																																								a	=	fin.read();

16.																																										}

17.																																										fin.close();fout.close();

18.																												}

19.														}

	

Example	15.4

	

1.														import	java.io.*;

2.														class	CopyFile

3.														{

4.																																				public	static	void	main(String	args[])	throws	IOException

5.																												{													

6.																																										int	n;

7.																																										FileInputStream	fin	=	new	FileInputStream(“A.txt”);

8.																																												FileOutputStream	fout	=	new	FileOutputStream(“B.txt”);

9.																																										byte	b[]=	new	byte[10];

10.																																										n	=	fin.read(b);

11.																																										while(n	!=	-1)

12.																																										{													

13.																																																								fout.write(b,0,n);

14.																																																								n	=	fin.read(b);

15.																																										}

16.																																												fin.close();

17.																																												fout.close();

18.																												}

19.														}

	

	

	

FileReader-

The	FileReader	class	creates	a	Reader	that	you	can	use	to	read	the	contents	of	a
file.	Its	two	most	commonly	used	constructors	are:

FileReader(File	file)-

Creates	a	FileReader	stream	to	read	from	the	specified	file.

FileReader(String	fileName)	-

Creates	a	FileReader	stream	to	read	from	the	specified	file.

Note:	Either	 of	 the	 constructors	 can	 throw	a	FileNotFoundException	 if	 the	 file	 dies	not
exist,	is	a	directory	rather	than	a	regular	file,	or	for	some	other	reason	cannot	be	opened
for	reading.

	

FileWriter

The	FileWriter	class	creates	a	writer	 that	you	can	use	 to	write	 to	a	 file.	 Its	 two
most	commonly	used	constructors	are:

	

Constructors:-

FileWriter(File	file)

Constructors	a	FileWriter	object	to	write	to	the	specified	file.

	

FileWriter(String	fileName)

Constructors	a	FileWriter	object	to	write	to	the	specified	file.

	

FileWriter(File	file,	boolean	append)

Constructors	a	FileWriter	object	to	write	to	the	specified	file	in	the	append		mode.

	

FileWriter(Sring	filename,	boolean	append)

	

Constructors	a	FileWriter	object	 to	write	 to	 the	specified	 file	 in	 the	append	 	mode.	 If
first	two	constructors	are	used	then	always	a	new	file	is	created.	If	file	with	the	specified
name	exists,	it	gets	destroyed.	If	the	last	two	constructors	are	used	and	append	flag	is	false
then	they	behave	like	first	two	constructors.

	

If	the	append	flag	is	true	then	file	is	opened	in	the	append	mode	i.e.	if	file	already
exists	then	file	pointer	is	placed	at	the	end	of	the	file	and	if	file	does	not	exist	then	new	file
is	created.

	

Note:

These	constructors	can	throw	an	IOException	if	the	file	exists	but	is	a	directory
rather	than	a	regular	file,	does	not	exist	but	cannot	be	created,	or	cannot	be	opened	for	any
other	reason.

For	example,	when	you	attempt	to	open	a	read-only	file,	an	IOException	will	be
thrown.

	

Example	15.5

1.														import	java.io.*;

2.														class	FileCopy

3.														{

4.																												public	static	void	main(String	args[])	throws	IOException

5.																												{

6.																																														FileReader	fin=null;

7.																																														FileWriter	fout=null;

8.																																										fin=new	FileReader(args[0]);

9.																																										fout=new	FileWriter(args[1]);

10.																																										int	a;

11.																																												a	=	fin.read();

12.																																												while(a	!=	-1)

13.																																										{

14.																																																				fout.write((char)a);

15.																																																								a	=	fin.read();

16.																																										}

17.																																										fin.close();

18.																																												fout.close();

19.																												}

20.														}

	

RandomAccessFile-

RandomAccessFile	 encapsulates	 a	 random-access	 file.	 The	 RandomAccessFile
enables	us	to	read	and	write	bytes,	text	and	primitive	data	types	from/to	location	in	a	file
(when	 used	 with	 appropriate	 access	 permissions).	 It	 is	 not	 derived	 from	 InputStream.
Instead,	 it	 implements	 the	 interfaces	DataInput	 and	DataOutput,	which	 define	 the	 basic
I/O	methods.	It	also	supports	positioning	requests-	that	is,	you	can	position	the	file	pointer
anywhere	within	the	file

	

The	mode	argument	specifies	the	access	mode	in	which	the	file	is	to	be	opened.
The	permitted	values	and	their	meanings	are:

	

Value														Meaning

	

“r”														Open	for	reading	only.	Invoking	any	of	the	write	methods	of	the
resulting	object	will	cause	an	IOException	to	be	thrown.

	

“rw”														Open	for	reading	and	writing.	If	the	file	does	not	already	exist	then	an
attempt	will	be	made	to	create	it.

	

“rws”														Open	for	reading	and	writing,	as	with	“rw”,	and	also	require	that
every	update	to	the	file’s	content	or	metadata	be	written	synchronously	to	the
underlying	storage	device.

	

“rwd”														Open	for	reading	and	writing,	as	with	“rw”.	And	also	require	that
every	update	to	the	file’s	content	(data)	be	written	synchronously	to	the	underlying
storage	device.

	

Methods	of	RandomAccessFile	class:-

	

Beside	methods	of	the	DataInput	and	DataOutput	interfaces,	some	of	the	commonly	used
methods	of	this	class	are:

	

public	RandomAccessFile(String,	String)	throws	java.io.FileNotFoundException;

Creates	a	random	access	file	stream	to	read	from,	and	optionally	to	write	to,	the	file
specified	name.

public	RandomAccessFile(File,	String)				throws	FileNotFoundException;

Creates	a	random	access	file	stream	to	read	from,	and	optionally	to	write	to,	the	file
specified	by	the	File	argument.

public	native	int	read()							throws	java.io.IOException;

public	int	read(byte[],	int,	int)							throws	java.io.IOException;

public	int	read(byte[])							throws	java.io.IOException;

public	int	skipBytes(int)							throws	java.io.IOException;

public	native	void	write(int)							throws	java.io.IOException;

public	void	write(byte[])							throws	java.io.IOException;

public	void	write(byte[],	int,	int)							throws	java.io.IOException;

public	native	long	getFilePointer()							throws	java.io.IOException;

Returns	the	offset	from	the	beginning	of	the	file,	in	bytes,	at	which	the	next	read	or	write
occurs.

public	native	void	seek(long)							throws	java.io.IOException;

Here,	newPos	specities	the	new	position,	in	bytes	of	the	file	pointer	from	the	beginning
of	the	file.	After	a	call	to	seek(),	the	next	read	or	write	operation	will	occur	at	the	new
file	position.

public	native	long	length()							throws	java.io.IOException;

public	native	void	setLength(long)							throws	java.io.IOException;

Sets	the	length	of	this	file.	This	method	can	be	used	to	lengthen	or	shorten	a	file.	If	the
file	is	lengthened,	the	added	portion	is	undefined.

public	void	close()							throws	java.io.IOException;

public	final	boolean	readBoolean()							throws	java.io.IOException;

public	final	byte	readByte()							throws	java.io.IOException;

public	final	int	readUnsignedByte()							throws	java.io.IOException;

public	final	short	readShort()							throws	java.io.IOException;

public	final	int	readUnsignedShort()							throws	java.io.IOException;

public	final	char	readChar()							throws	java.io.IOException;

public	final	int	readInt()							throws	java.io.IOException;

public	final	long	readLong()							throws	java.io.IOException;

public	final	float	readFloat()							throws	java.io.IOException;

public	final	double	readDouble()							throws	java.io.IOException;

public	final	java.lang.String	readLine()							throws	java.io.IOException;

public	final	java.lang.String	readUTF()							throws	java.io.IOException;

public	final	void	writeBoolean(boolean)							throws	java.io.IOException;

public	final	void	writeByte(int)							throws	java.io.IOException;

public	final	void	writeShort(int)							throws	java.io.IOException;

public	final	void	writeChar(int)							throws	java.io.IOException;

public	final	void	writeInt(int)							throws	java.io.IOException;

public	final	void	writeLong(long)							throws	java.io.IOException;

public	final	void	writeFloat(float)							throws	java.io.IOException;

public	final	void	writeDouble(double)							throws	java.io.IOException;

public	final	void	writeBytes(java.lang.String)							throws	java.io.IOException;

public	final	void	writeChars(java.lang.String)							throws	java.io.IOException;

public	final	void	writeUTF(java.lang.String)							throws	java.io.IOException;

	

Example15.6

	

1.														import	java.io.*;

2.														class	RandomIO

3.														{													

4.																												public	static	void	main(String	args[])	throws	IOException

5.																												{													

6.																																										RandomAccessFile	file	=	null;

7.																																										try

8.																																										{													

9.																																					file	=	new	RandomAccessFile(“rand.dat”,	“rw”);

10.																																																																		file.writeChar(‘X’);

11.																																																								file.writeInt(1999);

12.																																																								file.writeDouble(222.44);

13.																						System.out.println(“File	pointer	Pos:”+file.getFilePointer());

14.																																																								file.seek(0);

15.																																																								System.out.println(file.readChar());

16.																																																								System.out.println(file.readInt());

17.																																																								System.out.println(file.readDouble());

18.																						System.out.println(“File	pointer	Pos:”+file.getFilePointer());

19.																																																								file.seek(2);

20.																								System.out.println(“File	pointer	Pos:”+file.getFilePointer());

21.																																																								System.out.println(file.readInt());

22.																																																								file.seek(file.length());

23.																																																								file.writeBoolean(false);

24.																																																								file.seek(14);

25.																																																								System.out.println(file.readBoolean());

26.																												System.out.println(“File	pointer	Pos:”+file.getFilePointer());

27.																												System.out.println(file.readInt());//EOF	Expecption

28.																																										}

29.																																										catch(EOFException	e)

30.																																										{													

31.																												System.out.println(“Trying	to	read	after	end	of	file”);

32.																																										}

33.																																										finally

34.																																										{

35.																																																								file.close();

36.																																										}

37.

38.																												}

39.														}

	

Output:

	

File	pointer	Pos:14

X

1999

222.44

File	pointer	Pos:14

File	pointer	Pos:2

1999

false

File	pointer	Pos:15

Trying	to	read	after	end	of	file

	

Note:	An	EOFException	occurs	if	attempt	is	made	to	read	after	end	of	file.

ByteArrayInputStream

	

A	ByteArrayInputStream	contains	an	internal	buffer	 that	contain	bytes	that	may
be	read	from	the	stream.	ByteArrayInputStream	is	an	implementation	of	an	input	stream
that	uses	a	byte	array	as	the	source.

	

This	class	has	 two	constructors,	each	of	which	 requires	a	byte	array	 to	provide
the	data	source.

	

A	ByteArrayInputStream	implement	both	mark()	and	reset()	methods.	However,
if	mark()	has	not	been	called,	then	reset()	sets	the	stream	pointer	to	the	star	of	the	stream.

	

public	ByteArrayInputStream(byte[]);

public	ByteArrayInputStream(byte[],	int,	int);

public	synchronized	int	read();

public	synchronized	int	read(byte[],	int,	int);

public	synchronized	long	skip(long);

public	synchronized	int	available();

public	boolean	markSupported();

public	void	mark(int);

public	synchronized	void	reset();

public	void	close()							throws	IOException;

	

	

Example	15.7:

	

1.														import	java.io.*;

2.														class	ByteArrayInputStreamTest

3.														{

4.																						public	static	void	main(String	args[])	throws	IOException

5.																						{

6.																														String	s1=“abcdefghijk”;

7.																														byte	b[]=s1.getBytes();

8.																														ByteArrayInputStream	b1	=	new	ByteArrayInputStream(b);

9.																														int	a;

10.																														while((a=b1.read())!=-1)

11.																														{

12.																																						System.out.print((char)Character.toUpperCase(a));

13.																														}

14.																														b1.close();

15.																						}

16.														}

	

Output:	ABCDEFGHIJK

	

ByteArrayOutputStream-

	

The	class	 implements	an	output	 stream	 in	which	 the	data	 is	written	 into	a	byte
array.	ByteArrayOutputStream	is	an	implementation	of	an	output	stream	that	uses	a	byte
array	as	the	destination.

	

The	 buffer	 is	 hold	 in	 the	 protected	 buf	 field	 of	 ByteArrayOutputStream.	 The
buffer	 size	will	 be	 increased	 automatically,	 if	 needed.	 The	 number	 if	 bytes	 hold	 by	 the
buffer	is	contained	in	the	protected	count	field	of	ByteArrayOutputStream.

	

public	java.io.ByteArrayOutputStream();

Creates	a	new	byte	array	output	stream.	The	buffer	capacity	is	initially	32	bytes,	though
its	size	increases	if	necessary.

public	java.io.ByteArrayOutputStream(int);

Creates	a	new	byte	array	output	stream,	with	a	buffer	capacity	of	the	specified	size,	in
bytes.

public	synchronized	void	write(int);

public	synchronized	void	write(byte[],	int,	int);

public	synchronized	void	writeTo(java.io.OutputStream)		throws
java.io.IOException;

public	synchronized	void	reset();

public	synchronized	byte[]	toByteArray();

public	synchronized	int	size();

public	synchronized	java.lang.String	toString();

public	synchronized	java.lang.String	toString(java.lang.String)	throws
java.io.UnsupportedEncodingException;

public	synchronized	java.lang.String	toString(int);

public	void	close()							throws	java.io.IOException;

	

Example15.8

	

1.														import	java.io.*;

2.														class	ByteArrayOutputStreamTest

3.														{

4.																												public	static	void	main(String	args[])	throws	IOException

5.																																	{

6.														ByteArrayOutputStream	b1	=	new	ByteArrayOutputStream();	

7.																																										b1.write(‘a’);

8.																																										String	s1	=	“abcdefghijk”;

9.																																										byte	arr1[]=	s1.getBytes();

10.																																										b1.write(arr1);

11.																																										System.out.println(b1);			//toString()

12.																																										//Display	using	for	loop

13.																																										byte	arr2[]	=	b1.toByteArray();

14.																																										for(int	i=0;i<arr2.length;i++)

15.																																										{

16.																																																								System.out.print((char)arr2[i]);

17.																																										}

18.																																										System.out.println();

19.																																										//Display	using	for	each	loop

20.																																										for(int	i:arr2)

21.																																										{

22.																																																								System.out.print((char)i);

23.																																										}

24.																																										b1.close();

25.																				}

26.														}

	

Output:

aabcdefghijk

aabcdefghijk

aabcdefghijk

	

CharArrayReader-

	

The	CharArrayReader	 is	 an	 implementation	of	a	 reader	 stream	 that	uses	a	char
array	as	the	source.	This	class	has	two	constructors,	each	of	which	requires	a	char	array	to
provide	the	data	source.

	

Constructors:

	

CharArrayReader(char[]buf)

Crates	a	CharArrayReader	from	the	specified	array	of	chars.

	

CharArrayReader(char[]buf,	int	offset,	int	length)

Crates	a	CharArrayReader	from	the	specified	array	of	chars.	The	resulting	reader	will
start	reading	at	the	given	offset.	The	total	number	of	char	values	that	can	be	read	from	this
reader	will	be	either	length	or	buf.length.

	

Example	15.9

1.														import	java.io.*;

2.														class		CharArrayReaderTest

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										String	tmp	=	“abcdefghijklmnopqrstuvwxyz”;

7.																																										int	length	=	tmp.length();

8.																																										char	c[]	=	new	char[length];

9.																																										tmp.getChars(0,length,c,0);

10.														CharArrayReader	input1	=	new		CharArrayReader(c);

11.														CharArrayReader	input2	=	new		CharArrayReader(c,0,5);

12.																																										int	i;

13.																																										while((i=input1.read())	!=	-1)

14.																																										{													

15.																																																								System.out.print((char)i);

16.																																										}

17.																																										System.out.println();

18.																																										while((i=input2.read())	!=	-1)

19.																																										{													

20.																																																								System.out.print((char)i);

21.																																										}

22.																												}

23.														}

	

Output:

abcdefghijklmnopqrstuvwxyz

abcde

	

CharArrayWriter

CharArrayWriter	 is	an	 implementation	of	a	writer	 stream	that	uses	a	char	array
buffer	as	the	destination.

	

Constructors:

CharArrayWriter()

CharArrayWriter(int	initialSize)

	

In	the	first	form,	a	buffer	with	a	default	size	is	created.	In	the	second,	a	buffer	is
created	with	the	size	equal	to	that	specified	by	the	parameter	initialSize.

	

The	buffer	 is	 hold	 in	 the	buf	 field	 of	CharArrayWriter.	The	buffer	 size	will	 be
increased	automatically,	if	needed.	The	number	if	character	held	by	the	buffer	is	contained
in	the	count	field	of	CharArrayWriter.	Both	buf	and	count	are	protected	fields.

	

Example	15.10

	

1.														import	java.io.*;

2.														class		CharArrayWriterTest

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										CharArrayWriter	f	=	new	CharArrayWriter();

7.																																										String	s	=	“This	should	end	up	in	the	array”;

8.																																										char	buf[]	=	new	char[s.length()];

9.																																										s.getChars(0,s.length(),buf,0);

10.																																										f.write(buf);

11.																																										System.out.println(f.toString());

12.																																										char	c[]	=	f.toCharArray();

13.																																										for(int	i=0;	i<c.length;i++)

14.																																										{													

15.																																																								System.out.print(c[i]);

16.																																										}

17.																																										FileWriter	f2	=	new	FileWriter(“test.txt”);

18.																																										f.writeTo(f2);

19.																																										f2.close();

20.																																										f.reset();

21.																																										System.out.println();

22.																																										System.out.println(“After	reset:”+f.toString());

23.																																										for(int	i=0;i<3;i++)

24.																																																								f.write(‘A’);

25.																																										System.out.println(f.toString());

26.																												}

27.														}

	

Output:

This	should	end	up	in	the	array

This	should	end	up	in	the	array

After	reset:

AAA

	

Push	back	Input	Stream-

	

A	PushbackInputStream	 adds	 functionality	 to	 another	 input	 stream,	 namely	 the
ability	 to	 “pushback”	 or	 “unread”	 one	 byte.	 One	 of	 the	 use	 of	 buffering	 is	 the
implementation	of	pushback.

Pushback	is	used	on	an	input	stream	to	allow	a	byte	to	be	read	and	then	returned
to	 the	 stream.	 Beyond	 the	 familiar	 methods	 of	 the	 InputStream	 class,
PushbackInputStream	provides	unread()	method,	shown	here:

	

public	java.io.PushbackInputStream(java.io.InputStream,	int);

Creates	a	PushbackInputStream	with	a	pushback	buffer	of	the	specified	size,	and	saves
its	argument,	the	input	stream	in,	for	later	use.	This	allows	multiple	bytes	to	be	returned

to	the	input	stream.

public	java.io.PushbackInputStream(java.io.InputStream);

Creates	a	PushbackInputStream	and	saves	its	argument,	the	input	stream	in,	for	later	use.
This	allows	one	byte	to	be	returned	to	the	input	stream.

public	int	read()							throws	java.io.IOException;

public	int	read(byte[],	int,	int)							throws	java.io.IOException;

public	void	unread(int)							throws	java.io.IOException;

Push	back	a	byte	by	copying	it	to	the	front	of	the	pushback	buffer

public	void	unread(byte[],	int,	int)							throws	java.io.IOException;

Push	back	a	portion	of	an	array	of	bytes	by	copying	it	to	the	front	of	the	pushback	
buffer.

public	void	unread(byte[])							throws	java.io.IOException;

Push	back	an	array	of	bytes	by	copying	it	to	the	front	of	the	pushback	buffer.

public	int	available()							throws	java.io.IOException;

public	long	skip(long)							throws	java.io.IOException;

public	boolean	markSupported();

PushbackInputStream	has	the	side	effect	of	invalidating	the	mark()	or	reset()	methods	of
the	InputStream	used	to	create	it.	Use	markSupported()	method	to	check	any	stream	on
which	you	are	going	to	use	mark()/reset().

public	synchronized	void	mark(int);

public	synchronized	void	reset()							throws	java.io.IOException;

public	synchronized	void	close()							throws	java.io.IOException;

	

	

	

Example	15.11:

1.														import	java.io.*;

2.														class	PushbackInputStreamTest

3.														{

4.																						public	static	void	main(String	args[])	throws	IOException

5.																						{

6.																														FileInputStream	fin	=	new	FileInputStream(“A.txt”);

7.																														PushbackInputStream	p1=new	PushbackInputStream(fin);

8.																														int	ch=p1.read();

9.																														System.out.println((char)ch);

10.																														ch=p1.read();

11.																														System.out.println((char)ch);

12.																														ch=p1.read();

13.																														System.out.println((char)ch);

14.																														p1.unread(ch);			//	or	p1.unread(‘z’);

15.																														ch=p1.read();

16.																														System.out.println((char)ch);

17.																						}

18.														}

	

Output:	A.txt	contains	“Matrix	Computers”

m

a

t

t

	

PushbackReader

A	character	stream	reader	that	allows	characters	to	be	pushed	back	into	the
stream.

	

PushbackReader	 class	 allows	 one	 or	more	 character	 to	 be	 returned	 to	 the	 input	 stream.
This	allows	you	to	look	ahead	in	the	input	stream.

	

public	java.io.PushbackReader(java.io.Reader,	int);

Creates	 a	 pushback	 reader	 with	 a	 pushback	 buffer	 of	 the	 given	 size.
PushbackReader	 class	 provides	 unread()	 method,	 which	 returns	 one	 or	 more
characters	to	the	myoking	input	stream.

public	java.io.PushbackReader(java.io.Reader);

Creates	a	pushback	reader	with	a	on-character	pushback	buffer.

public	int	read()							throws	java.io.IOException;

public	int	read(char[],	int,	int)							throws	java.io.IOException;

public	void	unread(int)							throws	java.io.IOException;

Push	back	a	single	character.

public	void	unread(char[],	int,	int)							throws	java.io.IOException;

Push	back	a	portion	of	an	array	of	characters	by	copying	it	to	the	front	of	the
pushback		buffer.

public	void	unread(char[])							throws	java.io.IOException;

Push	back	an	array	by	copying	it	to	the	front	of	the	pushback	buffer.

public	boolean	ready()							throws	java.io.IOException;

public	void	mark(int)							throws	java.io.IOException;

public	void	reset()							throws	java.io.IOException;

public	boolean	markSupported();

public	void	close()							throws	java.io.IOException;

public	long	skip(long)							throws	java.io.IOException;

	

Note:-	An	IOException	will	be	thrown	if	there	is	an	attempt	to	return	a	character	when	the
pushback	buffer	is	full.

	

Example15.12:

1.														import	java.io.*;

2.														class	PushbackReaderTest

3.														{

4.																						public	static	void	main(String	args[])	throws	IOException

5.																						{

6.																														FileReader	fr	=	new	FileReader(“A.txt”);

7.																														PushbackReader	pr=new	PushbackReader(fr);

8.																														int	ch=pr.read();

9.																														System.out.println((char)ch);

10.																														ch=pr.read();

11.																														System.out.println((char)ch);

12.																														ch=pr.read();

13.																														System.out.println((char)ch);

14.																														pr.unread(ch);

15.																														ch=pr.read();

16.																														System.out.println((char)ch);

17.																						}

18.														}

	

Output:															m

														a

														t

														t

SequenceInputStream:-

The	SequenceInputStream	class	 is	a	byte	stream	that	allows	you	 to	concatenate
multiple	InputStreams.	The	construction	of	a	sequence	InputStream	is	different	from	any
other	InputStream.	A	SequenceInputStream	constructor	uses	either	a	pair	of	InputStream
classes	or	an	Enumeration	of	InputStream	classes	as	its	argument:

SequenceInputStream(InputStream	is1,	InputStream	is2)

Initializes	 a	 newly	 created	 SequenceInputStream	 by	 remembering	 the	 two
arguments,	which	will	be	read	 in	order,	 first	 is1	and	 then	 is2,	 to	provide	 the	bytes	 to	be
read	from	this	SequenceInputStream.

SequenceInputStream(Enumeration	e)

Initializes	a	newly	created	SequenceInputStream	by	remembering	the	argument,
which	must	be	an	Enumeration	that	produces	objects	whose	run-time	type	is	InputStream.

Operationally,	 the	 class	 fulfills	 read	 requests	 from	 the	 first	 InputStream	until	 it
runs	 out	 and	 then	 switches	 over	 to	 the	 second	 one.	 In	 the	 case	 of	 Enumeration,	 it	will
continue	through	all	of	the	InputStreams	until	end	of	the	last	one	is	reached.

Example	15.13	In	the	following	example	give	the	file	names	as	Command	line	arguments:

1.														import	java.io.*;

2.														class	SequenceInputStreamTest

3.														{													

4.																												public	static	void	main(String	args[])	throws	IOException

5.																												{													

6.																												FileInputStream	f1	=	new		FileInputStream(args[0]);

7.																												FileInputStream	f2	=	new		FileInputStream(args[1]);

8.																												FileOutputStream	f3	=	new		FileOutputStream(args[2]);

9.														SequenceInputStream	sis	=	new	SequenceInputStream(f1,f2);

10.																																										int	c;

11.																																										while((c	=	sis.read())	!=	-1)

12.																																										{													

13.																																																								f3.write(c);

14.																																										}

15.																																										f3.close();f1.close();f2.close();

16.																												}

17.														}

Output:

java	SequenceInputStreamTest	A.txt	B.txt	C.txt

	

PrintStream:-

	

It	 is	 a	 byte	 stream	 class,	which	 extends	 the	 FilterOutputStream.	A	PrintStream
adds	functionality	to	another	output	stream,	namely	the	ability	to	print	representations	of
various	data	values	conveniently.

	

Optionally,	a	PrintStream	can	be	created	so	as	to	flush	automatically;	this	means

that	 the	 flush	method	 is	 automatically	 invoked	 after	 a	 byte	 array	 is	written,	 one	 of	 the
println	methods	is	invoked,	or	a	newline	character	or	byte(‘\n’)	is	written.

	

All	 characters	 printed	 by	 a	 PrintStream	 are	 converted	 are	 converted	 into	 bytes
using	 the	platform’s	default	character	encoding	and	 then	written	 to	 the	OutputStream	or
File	specified	in	the	constructor.

	

PrintStream	 supports	 the	 print()	 and	 println()	 methods	 for	 all	 types,	 including
object.	If	an	argument	is	not	a	simple	type,	the	PrintStream	methods	will	call	the	object’s
toString()	method	and	then	print	the	result.

	

Constructors:	

PrintStream(File	file)

	

Creates	a	new	print	stream,	without	automatic	line	flushing,	with	the	specified	file.

	

PrintStream(String	fileName)

Creates	 a	 new	print	 stream,	without	 automatic	 line	 flushing,	with	 the	 specified
file	name.

	

PrintStream(OutputStream	out)

Creates	a	new	print	stream,	commented	to	the	specified	OutputStream.

	

PrintStream(OutputStream	out,	bolean	autoFlush)

Creates	a	new	print	stream,	connected	to	the	specified	OutputStream.

	

	

Example15.14

	

1.														import	java.io.*;

2.														class	PrintStreamTest

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																												PrintStream	ps	=	new	PrintStream(System.out,	true);

7.																																												ps.println(“This	is	a	string”);

8.																																										int	i	=	-7;

9.																																										ps.println(i);

10.																																										double	d	=	4.5e-7;

11.																																										ps.println(d);

12.																												}

13.														}

	

Output:

This	is	a	string

-7

4.5E-7

	

	

	

Example	15.15

	

1.														import	java.io.*;

2.														class	PrintStreamTest2

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																												FileOutputStream	fout	=	new	FileOutputStream(“test.dat”);

7.																																										PrintStream	ps	=	new	PrintStream(fout,	true);

8.																																												ps.println(“This	is	a	string”);

9.																																										int	i	=	-7;

10.																																										ps.println(i);

11.																																										double	d	=	4.5e-7;

12.																																										ps.println(d);

13.																												}

14.														}

	

	

	

	

	

	

	

PrintWriter:-

Although	using	System.out	to	write	to	the	console	is	still	permissible	under	Java,
its	use	is	recommended	mostly	for	debugging	purpose	or	for	sample	programs.

	

For	 real-world	 programs,	 the	 recommended	 method	 of	 writing	 to	 the	 console
when	using	java	is	through	a	PrintWriter	stream.	PrintWriter	is	one	of	the	character-based
classes.	Using	a	character-based	class	for	console	output	makes	it	easier	to	internationalize
your	program.

	

Constructors:-

PrintWriter(File	file)

Creates	 a	 new	 PrintWriter,	 without	 automatic	 line	 flushing,	 for	 writing	 to	 the
specified	file.

	

PrintWriter(String	fileName)

Creates	 a	 new	 PrintWriter,	 without	 automatic	 line	 flushing,	 for	 writing	 to	 the
specified	file.

	

PrintWriter(OutputStream	out)

Creates	 a	 new	 PrintWriter,	 without	 automatic	 line	 flushing,	 for	 writing	 to	 the
specified	OutputStream.

	

PrintWriter(OutputStream	out,	boolean	autoFlush)

Creates	a	new	PrintWriter	for	writing	to	the	specified	OutputStream.

	

PrintWriter(Writer	out)

Creates	 a	 new	 PrintWriter,	 without	 automatic	 line	 flushing,	 for	 writing	 to	 the
specified	Writer.

	

PrintWriter(Writer	out,	Boolean	autoFlush)

Creates	a	new	PrintWriter	for	writing	to	the	specified	Writer.

	

The	most	commonly	used	constructor	is:

	

PrintWriter(OutputStream	os,	boolean	flushOnNewLine)

	

Here,	 os	 is	 an	 object	 of	 type	 OutputStream,	 and	 flushOnNewLine	 controls
whether	 Java	 flushes	 the	 output	 stream	 every	 time	 a	 println()	 method	 is	 called.	 If
flushOnNewLine	 is	 true,	 flushing	 automatically	 takes	 place.	 If	 false,	 flushing	 is	 not
automatic.

	

PrintWriter	support	print()	and	println()	methods	for	all	 types	including	objects.
If	 an	 argument	 is	not	 a	 simple	 type,	 the	PrintWriter	methods	 call	 the	object’s	 toString()
method	and	then	print	the	result.

To	write	 the	 console	 by	 using	 a	 PrintWriter,	 specify	 System.out	 for	 the	 output
stream	and	flush	the	stream	after	each	new	lime.	For	example,	this	line	of	code	creates	a
PrintWriter	that	is	connected	to	console	output.

	

PrintWriter	pw	=		new	PrintWriter(System.out,	true)

	

Example15.16

	

1.														import	java.io.*;

2.														class	PrintWriterTest

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																												PrintWriter	pw	=		new	PrintWriter(System.out,	true);

7.																																												pw.println(“This	is	a	string”);

8.																																										int	i	=	-7;

9.																																										pw.println(i);

10.																																										double	d	=	4.5e-7;

11.																																										pw.println(d);

12.																												}

13.														}

	

Output:

This	is	a	string

-7

4.5E-7

	

Example	15.17

	

1.														import	java.io.*;

2.														class	PrintWriterTest1

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																																												FileWriter	fout	=	new	FileWriter(“test.dat”);

7.																																										PrintWriter	pw	=		new	PrintWriter(fout,	true);

8.																																										pw.println(“This	is	a	string”);

9.																																										int	i	=	-7;

10.																																										pw.println(i);

11.																																										double	d	=	4.5e-7;

12.																																										pw.println(d);

13.																												}

14.														}

	

	

	

Example15.18

	

1.														import	java.io.*;

2.														class	PrintWriterTest2

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																																										PrintWriter	pw	=		new	PrintWriter(“test.dat”);

7.																																												pw.println(“This	is	a	string”);

8.																																										int	i	=	-7;

9.																																										pw.println(i);

10.																																										double	d	=	4.5e-7;

11.																																										pw.println(d);

12.																																										pw.close();

13.																												}

14.														}

	

PipedInputStream	and	PipedOutputStream:-

	

A	 piped	 output	 stream	 can	 be	 connected	 to	 a	 piped	 input	 stream	 to	 create	 a
communications	 pipe.	The	 piped	 output	 stream	 is	 the	 sending	 end	 of	 the	 pipe.	A	 piped
input	 stream	should	be	connected	 to	a	piped	output	 stream;	 the	piped	 input	 stream	 then
provides	whatever	data	bytes	are	written	to	the	piped	output	stream.

	

Typically,	data	is	read	from	a	PipedInputStream	object	by	one	thread	and	data	is
written	to	the	corresponding	PipedOutputStream	by	some	other	thread.	Attempting	to	use
both	objects	from	a	single	thread	is	not	recommended	as	it	may	deadlock	the	thread.	The
piped	 input	 stream	 contains	 a	 buffer,	 decoupling	 read	 operations	 from	write	 operations,
within	limits.

	

Constructors:-

PipedInputStream()

Creates	a	PipedInputStream	so	that	it	is	not	yet	connected.

	

PipedInputStream(PipedInputStream	src)

Creates	a	PipedInputStream	so	that	it	is	connected	to	the	output	stream	src.

	

PipedOutputStream()

Creates	a	Piped	output	stream	that	is	not	yet	connected	to	a	piped	input	stream.

	

PipedOutputStream(PipedInputStream	snc)

Creates	a	piped	output	stream	connected	to	the	specified	piped	input	stream.

	

Example	15.19

1.														import	java.io.*;

2.														class	TextGenerator	extends	Thread

3.														{													

4.																												OutputStream	out;

5.																												TextGenerator(OutputStream	out)

6.																												{													

7.																																										this.out	=	out;

8.																												}

9.																												public	void	run()

10.																												{													

11.																																										try

12.																																										{													

13.																																																								try

14.																																																								{													

15.																																																																						for(byte	b	=	65;	b<=90;	b++)

16.																																																																																				out.write(b);

17.																																																								}

18.																																																								finally

19.																																																								{													

20.																																																																						out.close();

21.																																																								}

22.																																										}

23.																																										catch(IOException	e)														

24.																																										{

25.																																																								System.out.println(e);

26.																																										}

27.																												}

28.														}

29.														class	Pipe

30.														{													

31.																												public	static	void	main(String	args[])	throws	IOException

32.																												{													

33.																												PipedOutputStream	out	=	new	PipedOutputStream();

34.																																										PipedInputStream	in	=	new	PipedInputStream(out);

35.																																										TextGenerator	data	=	new	TextGenerator(out);

36.																																										data.start();

37.																																										int	ch;

38.																																										while((ch	=	in.read())	!=	-1)

39.																																						System.out.print((char)	ch);

40.																												}

41.														}

	

Output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

	

PipedReader	and	PipedWriter:-

Their	functionality	is	same	as	that	of	PipedInputStream	and	PipedOutputStream
with	the	only	difference	that	they	are	character	streams.

	

Constructors:-

PipedReader()

Creates	a	PipedReader	so	that	it	is	not	yet	connected.

	

PipedReader(PipedWriter	src)

Creates	a	PipedReader	so	that	it	is	connected	to	the	piped	writer	src.

	

PipedWriter()

Creates	a	Piped	writer	that	is	not	yet	connected	to	a	piped	reader.

	

PipedWriter(PipedReader	snk)

Creates	a	piped	writer	connected	to	the	specified	piped	reader.

	

	

Example	15.20

	

1.														import	java.io.*;

2.														class	TextGenerator	extends	Thread

3.														{													

4.																												Writer	out;

5.																																				TextGenerator(Writer	out)

6.																												{													

7.																																										this.out	=	out;

8.																												}

9.																												public	void	run()

10.																												{													

11.																																										try

12.																																										{													

13.																																																								try

14.																																																								{													

15.																																																												for(char	c	=	‘a’;	c<=‘z’;	c++)

16.																																																																																				out.write(c);

17.																																																								}

18.																																																								finally

19.																																																								{													

20.																																																																						try

21.																																																																						{														

22.																																																																																				Thread.sleep(2000);														

23.																																																																						}													

24.																																																																						catch(Exception	e)	{}

25.																																																												System.out.println(“aaaaaaaaaaaaa”);

26.																																																												if(true)

27.																												return;								//	IOException:	pipe	Broken

28.																							out.close();				//IOException:	Write	end	dead

29.																												}														//OK	if	thread	finishes	after	closing	the	pipe

30.																																										}

31.																																										catch(IOException	e)															{	System.out.println(e);}

32.																												}

33.														}

34.														class	Pipe2

35.														{													

36.																												public	static	void	main	(String	argv[])	throws	IOException

37.																												{													

38.																																										PrintStream	ps	=	new	PrintStream(System.out);

39.																																										PipedWriter	out	=	new	PipedWriter();

40.																																										PipedReader	in	=	new	PipedReader(out);

41.																																										TextGenerator	data	=	new	TextGenerator(out);

42.																																										data.start();	int	ch;

43.																																										while((ch	=	in.read())	!=	-1)

44.																																																		System.out.print((char)	ch);

45.																												}

46.														}													

	

Output:

abcdefghijklmnopqrstuvwxyzaaaaaaaaaaaaa

Exception	in	thread	“main”	java.io.IOException:	Pipe	broken

at	java.io.PipedReader.read(Unknown	Source)

at	Pipe2.main(Pipe2.java:43)

	

The	Filtered	Byte	Streams:-

	

The	 filtered	 streams	 are	 simply	 wrappers	 around	 underlying	 input	 or	 output
streams	that	transparently	provide	some	extended	level	of	functionality.	typical	extensions
are	 buffering,	 zip/unzip	 etc.	 The	 filtered	 byte	 streams	 are	 FilterInputStream,
FilterOutputStream.	Their	constructors	are:

	

FilterInputStream(InputStream	in)

Creates	a	FilterInputStream	by	assigning	the	argument	in	to	the	field	this.in	so	as
to	remember	it	for	later	use.

	

FilterOutputStream(OutputStream	out)

	

Creates	 an	 output	 Stream	 filter	 built	 on	 top	 of	 the	 specified	 underlying	 output
stream.

The	methods	provided	in	these	classes	are	identical	to	those	in	InputStream	and
OutputStream.

	

	

Buffered	Byte	Streams:-

	

For	the	byte-oriented	streams,	a	buffered	stream	extends	a	filtered	stream	class	by
attaching	a	memory	buffer	to	the	I/O	streams.	This	buffer	allows	Java	to	do	I/O	operations
on	more	than	a	byte	at	time,	hence	increasing	performance.

	

Because,	 the	buffer	 is	 available,	 skipping,	marking,	 and	 resetting	of	 the	 stream
become	 possible.	 The	 buffered	 byte	 stream	 classes	 are	 BufferedInputStream	 and
BufferedOutputStream.	PushbackInputStream	also	implements	a	buffered	stream.

	

The	BufferedInputStream:-

Buffering	 I/O	 is	 a	 very	 common	 performance	 optimization.	 Java’s
BufferedInputStream	class	allows	you	to	“wrap”	any	InputStream	into	a	buffered	stream
and	achieve	this	performance	improvement.

BufferedInputStream		has	two	constructors:

	

BufferedInputStream(InputStream	in)

creates	 a	BufferedInputStream	 and	 saves	 its	 argument,	 the	 input	 stream	 in,	 for

later	use.	an	internal	buffer	array	is	created	and	stored	in	buf.

	

BufferedInputStream(InputStream	in,	int	size)

Creates	 a	 BufferdInputStream	 with	 the	 specified	 buffer	 size,	 and	 saves	 its
argument,	the	input	stream	in,	for	later	use.

	

Buffering	 an	 input	 stream	 also	 provides	 the	 foundation	 required	 to	 support
moving	 backward	 in	 the	 available	 buffer.	 Beyond	 the	 read()	 and	 skip()	 methods
implemented	in	any	Input	Stream,	BufferedInputStream	also	supports	mark()	and	reset()
methods.	this	support	is	reflected	by	BufferedInputStream.markSupported()	returning	true.

	

	

	

	

	

	

Example	15.21

1.														import	java.io.*;

2.														class	BufferedInputStreamTest

3.														{

4.																												public	static	void	main(String	args[])throws	IOException

5.																												{

6.																																										FileInputStream	fin=new	FileInputStream(“A.txt”);

7.														BufferedInputStream	b1	=	new	BufferedInputStream(fin);

8.																																										for(int	i=1;i<=10;i++)

9.																																										{

10.																																																								System.out.print((char)b1.read());

11.																																										}

12.																																										System.out.println();

13.																																										if(b1.markSupported())

14.																																										{

15.																																																								b1.mark(500);

16.																																																								for(int	i=1;i<=10;i++)

17.																																																								{

18.																																																																						System.out.print((char)b1.read());

19.																																																								}

20.																																																								System.out.println();

21.																																																								b1.reset();

22.																																																								for(int	i=1;i<=10;i++)

23.																																																								{

24.																																																																						System.out.print((char)b1.read());

25.																																																								}

26.																																										}

27.																																										else

28.														System.out.println(“Marking	option	is	not	availabel”);

29.																																										b1.close();

30.																																										fin.close();

31.																												}

32.														}

	

Output:

matrix	Res

earch	And

earch	And

	

Note:

mark(32)	preserves	the	mark	for	the	next	32	bytes	read	(which	is	enough	for	all
entity	reference).	Use	of	mark	is	restricted	to	access	within	the	buffer.	This	means	that	you
can	only	specify	a	parameter	to	mark()	that	is	smaller	than	the	buffer	size	of	the	stream.

	

	

BufferedOutputStream:-

	

Unlike	buffered	input,	buffering	output	does	not	provide	additional	functionality.
It	is	used	only	to	improve	performance.

	

Here	are	the	two	available	constructors:

	

BufferedOutputStream(OutputStream	out)

	

Creates	 a	 new	buffered	 output	 stream	 to	write	 data	 to	 the	 specified	 underlying
output	stream.	it	uses	a	buffer	of	size	512	bytes.

	

BufferedOutputStream(OutputStream	out,	int	size)

	

Creates	 a	 new	buffered	 output	 stream	 to	write	 data	 to	 the	 specified	 underlying
output	stream	with	the	specified	buffer	size.

	

Example	15.22

	

1.														import	java.io.*;

2.														class	BufferedOutputStreamTest

3.														{													

4.																																				public	static	void	main(String	args[])	throws	IOException

5.																												{													

6.	BufferedOutputStream	f	=	new	BufferedOutputStream	(System.out,100);

7.byte	buf[]	=	“This	will	not	be	displayed	without	flush()\n”.getBytes();

8.																																										f.write(buf);

9.																																										f.write(buf);

10.																																										System.out.println(“testing…”);

11.																																										f.write(buf);

12.																																										//f.flush();	or

13.																																										//f.close();

14.																												}

15.														}

	

Output:

testing…

	

This	will	not	be	displayed	without	flush()

This	will	not	be	displayed	without	flush()

This	will	not	be	displayed	without	flush()

	

BufferedReader:-

The	 BufferedReader	 improves	 performance	 by	 buffering	 input.	 It	 has	 two
constructors:

	

BufferedReader(Reader	in)

Creates	a	buffering	character-input	stream	that	uses	a	default-sized	input	buffer.

	

BufferedReader(Reader	in,	int	sz)

Creates	a	buffering	character-input	stream	that	uses	an	input	buffer	of	the	specified	size.

	

Example	15.23

1.														import	java.io.*;

2.														class	BufferedReaderTest

3.														{

4.																												public	static	void	main(String	args[])throws	IOException

5.																												{

6.																																												FileReader	fr=new	FileReader(“A.txt”);

7.																																												BufferedReader	b1	=	new	BufferedReader(fr);

8.																																										for(int	i=1;i<=10;i++)

9.																																										{

10.																																																								System.out.print((char)b1.read());

11.																																										}

12.																																										System.out.println();

13.																																										if(b1.markSupported())

14.																																										{

15.																																																								b1.mark(5);

16.																																																								for(int	i=1;i<=10;i++)

17.																																																								{

18.																																																																						System.out.print((char)b1.read());

19.																																																								}

20.																																																								System.out.println();

21.																																																								b1.reset();

22.																																																								for(int	i=1;i<=10;i++)

23.																																																								{

24.																																																																						System.out.print((char)b1.read());

25.																																																								}

26.																																										}

27.																																										else

28.																												System.out.println(“Marking	option	is	not	availabel”);

29.																																										b1.close();

30.																														fr.close();

31.																												}

32.														}

	

Output:

matrix	Res

earch	And

earch	And

BufferedWriter:

	

Using	a	BufferedWriter	an	increase	performance	by	reducing	the	number	of	times
data	is	actually	physically	written	to	the	output	stream.

	

Constructors:

	

BufferedWriter(Writer	out)

Creates	a	buffered	character-output	stream	that	uses	a	default-sized	output	buffer.

	

BufferedWriter(Writer	out,	int	sz)

Creates	a	buffered	character-output	stream	that	uses	an	output	buffer	of	the	given
size.

	

Example	15.24

1.														import	java.io.*;

2.														class	BufferedWriterTest

3.														{													

4.																												public	static	void	main(String	args[])	throws	IOException

5.																																				{

6.			BufferedWriter	f	=	new	BufferedWriter(new	PrintWriter(System.out));

7.																																												String	s		=	“This	will	not	be	displayed	without	flush()\n”;

8.																																												char	buf[]	=	new	char[s.length()];

9.																																										s.getChars(0,s.length(),buf,0);

10.																																										f.write(buf);

11.																																										f.write(buf);

12.																																												System.out.println(“testing…”);

13.																																										f.write(buf);

14.																																										//f.flush();

15.																																										//f.close();

16.																												}

17.														}

	

Output:

testing…

	

Handling	Primitive	Data	Types	Using	Byte	Streams:-

	

The	basic	 input	and	output	 stream	provide	 read/write	methods	 that	can	only	be
used	for	reading/writing	bytes	or	characters.

	

If	we	want	to	read/write	the	primitive	data	types	such	as	integers	and	double,	we
can	use	filter	classes	as	wrappers	on	existing	input	and	output	streams	to	filter	data	in	the

original	stream.

	

The	 two	 filter	 classes	 used	 for	 creating	 “data	 streams”	 for	 handling	 primitive
types	 are	 DataInputStream	 and	 DataOutputStream.	 These	 classes	 use	 the	 concept	 of
multiple	inheritance	as	shown	below	and	implement	all	the	methods	contained	in	both	the
parent	class	and	the	interface.

	

	

	

A	data	stream	for	input	from	a	file	can	be	created	as	follows:

	

FileInputStream	fis	=	new	FileInputStream(infile);

DataInputStream	dis	=	new	DataInputStream(fis);

	

These	statements	basically	wrap	dis	on	fis	and	use	it	as	a	“filter”.	Similarly	the	following
statements	create	the	output	data	stream	dos	and	wrap	it	over	the	output	file	stream	fos.

	

FileOutputStream	fos	=	new	FileOutputStream(outfile);

DataOutputStream	dos	=	new		DataOutputStream(fos);

	

Example15.25

	

The	following	program	demonstrates	the	reading	and	writing	of	primitive	data.

	

1.														import	java.io.*;

2.														class	ReadWritePrimitive

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																												File	primitive	=	new	File(“prim.dat”);

7.																																												FileOutputStream	fos	=	new	FileOutputStream(primitive);

8.																														DataOutputStream	dos	=	new	DataOutputStream(fos);

9.																																										dos.writeInt(1999);

10.																																										dos.writeDouble(222.44);

11.																																										dos.writeBoolean(false);

12.																																												dos.writeChar(‘X’);

13.																																										dos.close();

14.																																										fos.close();

15.																																												FileInputStream	fis	=	new	FileInputStream(primitive);

16.																																										DataInputStream	dis	=	new	DataInputStream(fis);

17.																																										System.out.println(dis.readInt());

18.																																										System.out.println(dis.readDouble());

19.																																										System.out.println(dis.readBoolean());

20.																																										System.out.println(dis.readChar());

21.																																										dis.close();

22.																																										fis.close();

23.																												}

24.														}

	

Output:

1999

222.44

false

X

	

Pre-defined	Streams:-

	

System	class	contains	three	pre-defined	stream	variables-	in,	out,	and	err.	These	fields	are
declared	as	 	public	and	static	within	System	class.	This	means	 that	 they	can	be	used	by
any	other	part	of	your	program	and	without	reference	to		a	specific	object.

	

System.out	 refers	 to	 the	 standard	 output	 stream.	 By	 default,	 this	 is	 the	 console.
System.out	is	an	object	of	type	PrintStream.

	

System.in	 refers	 to	 standard	 input,	 which	 is	 the	 keyboard	 by	 default.	 System.in	 is	 an
object	of	type	InputStream.

	

System.err	 refers	 to	 standard	 error	 stream,	 which	 also	 is	 the	 console	 by	 default.
System.err	is	an	object	of	type	PrintStream.

	

These	are	byte	streams,	even	though	they	typically	are	used	to	read	and	write	characters
from	and	to	the	console.	You	can	wrap	these	within	character-based	streams,	if	desired.

InputStreamReader:

	

An	 InputStreamReader	 is	 a	 bridge	 from	 byte	 streams	 to	 character	 streams;	 it
reads	bytes	and	decodes	them	into	character	using	a	specified	charset.	The	charset	that	it
uses	may	be	specified	explicitly,	or	the	platform’s	default	charset	may	be	accepted.

	

Constructors:

	

InputStreamReader(InputStream	in)

Create	an	InputStreamReader	that	uses	the	default	charset.

	

InputStreamReader(InputStream	in,	String	charsetName)

Create	an	InputStreamReader	that	uses	the	named	charset.

	

Example	15.26

1.														import	java.io.*;

2.														class	InputStreamReaderTest

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																																										char	c;

7.														InputStreamReader	is	=	new	InputStreamReader(System.in);

8.														System.out.println(“Enter	characters,	‘q’	to	quit”);

9.																																												c	=(char)is.read();

10.																																												while(c!=‘q’)

11.																																										{													

12.																																																								System.out.print(c);

13.																																																				c	=(char)is.read();

14.																																										}

15.																												}

16.														}

	

Output:

Enter	characters,	‘q’	to	quit

abcd

abcd

q

	

Example15.27

	

Previous	example	is	modified	to	make	use	of	buffering	to	improve	performance.

	

1.														import	java.io.*;

2.														class	BufferedReaderTest

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										char	c;

7.														BufferedReader	br	=	new	BufferedReader(new	InputStreamReader

(System.in));

8.																																												System.out.println(“Enter	characters,	‘q’	to	quit”);

9.																																												c	=(char)br.read();

10.																																												while(c!=‘q’)

11.																																										{													

12.																																																								System.out.print(c);

13.																																																								c	=	(char)br.read();

14.																																										}

15.																												}

16.														}

	

Output:

Enter	characters,	‘q’	to	quit

abcd

abcd

q

	

Example	15.28

	

The	InputStreamReader	does	not	provide	readLine()	method,	hence	InputStreamReader	is
linked	to	BufferedReader	that	provides	the	readLine()	method.

	

1.														import	java.io.*;

2.														class	BufferedReaderTest1

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.		BufferedReader	br	=	new	BufferedReader(new	InputStreamReader	(System.in));

7.																																												System.out.println(“Enter	‘stop’	to	quit”);

8.																																												String	str	=	br.readLine();

9.																																												while(!str.equals(“stop”))

10.																																										{													

11.																																																				System.out.println(“Your	Name:”+str);

12.																																																								str	=	br.readLine();

13.																																										}

14.																												}

15.														}

	

Output:

Enter	‘stop’	to	quit

Harry	Feat

Your	Name:Harry	Feat

stop

	

OutputStreamWriter:

	

An	 OutputStreamWriter	 is	 a	 bridge	 from	 character	 streams	 to	 byte	 streams:
characters	written	to	it	are	encoded	into	bytes	using	a	specified	charset.	The	charset	that	it
uses	may	be	specified	explicity,	or	the	platform’s	default	charset	may	be	accepted.

	

Constructors:

	

OutputStreamWriter(OutputStream	out)

Create	an	OutputStream	that	uses	the	default	character	encoding.

	

OutputStreamWriter	(OutputStreamout,	String	charsetName)

Create	an	OutputStream	that	uses	the	named	charset.

	

Reading	Console	Input:

	

In	Java	1.0	the	only	way	to	perform	console	input	was	to	use	a	byte	stream,	and
older	code	that	uses	this	approach	persists.

	

Today,	using	a	byte	stream	to	read	console	input	is	still	technically	possible,	but
doing	 so	 may	 require	 the	 use	 of	 a	 deprecated	 method,	 and	 this	 approach	 is	 not
recommended.

	

In	 Java,	 console	 input	 is	 accomplished	by	 reading	 from	System.in.	To	obtain	 a
character-based	 stream	 that	 is	 attached	 to	 console,	 you	 wrap	 System.in	 in	 a
InputStreamReader	object,	which	can	be	further	wrapped	 in	a	BufferedReader	object,	 to
improve	performance.

	

Example	15.29

	

This	example	demonstrates	that	we	can	read	directly	from	System.in.

	

1.														import	java.io.*;

2.														class	ReadFromConsole

3.														{													

4.																												public	static	void	main	(String	arg[])	throws	IOException

5.																												{													

6.																																										char	c;

7.																																												System.out.println(“Enter	characters,	‘q’	to	quit”);

8.																																										c	=			(char)	System.in.read();

9.																																												while(c!=‘q’)

10.																																										{													

11.																																																								System.out.print(c);

12.																																																								c	=	(char)	System.in.read();

13.																																										}

14.																												}

15.														}

	

Output:

Enter	characters,	‘q’	to	quit

abcd

abcd

xyzq

xyz

	

The	 proper	 way	 of	 reading	 from	 console	 is	 to	 wrap	 the	 System.in	 in
InputStreamReader	and	to	further	wrap	it	to	BufferedReader	to	improve	performance	and
to	 input	 one	 line	 at	 a	 time.	The	 appropriate	 examples	have	 already	been	 covered	 in	 the
earlier	section	related	to	InputStreamReader	class.

Writing	Console	Output:

	

Console	 output	 is	 most	 easily	 accomplished	 with	 print()	 and	 println().	 These

methods	are	defined	by	the	class	PrintStream	(which	is	the	type	of	the	object	referenced
by	 System.out).Even	 though	 System.out	 is	 a	 byte	 stream,	 using	 it	 for	 simple	 program
output	is	still	acceptable.

	

However,	 a	 character-based	 alternative	 is	 the	 right	 choice.Because	 PrintStream	 is	 an
output	 stream	 derived	 from	 OutputStream,	 it	 also	 implements	 the	 low-level	 method
write().	Thus,	write()	 can	 be	 used	 to	write	 to	 the	 console.	The	 simplest	 form	of	write()
defined	by	PrintStream	is:

	

void	write(int	byteval)

	

This	method	writes	to	the	stream,	the	byte	specified	by	byteval.	Although	byteval
is	declared	as	an	integer,	only	the	low-order	eight	bits	are	written.

	

Example	15.30

	

1.														import	java.io.*;

2.														class	WriteTest

3.														{													

4.																												public	static	void	main	(String	argv[])	throws	IOException

5.																												{													

6.																																										int	b;

7.																																												b	=	‘A’;

8.																																										System.out.write(b);

9.																																										//	System.out.flush();to	flush

10.																																												System.out.write(‘\n’);//to	flush

11.																												}

12.														}

	

Output:

A

	

Note:-

You	 will	 not	 often	 use	 write()	 to	 perform	 console	 output,	 because	 print()	 and

println()	are	substantially	easier	to	use.

	

Serialization:

	

Serialization	is	the	process	of	writing	the	state	of	an	object	to	a	byte	stream.	This
is	useful	when	you	want	to	store	the	state	of	an	object	to	a	byte	stream.	This	is	also	useful
when	you	want	to	save	the	state	of	your	program	to	a	persistent	storage	area,	such	as	file.
At	a	later	time,	you	may	restore	these	objects	by	using	the	process	of	deserialization.

	

Serialization	is	also	needed	to	implement	RMI.	RMI	allows	a	java	object	on	one
machine	 to	 invoke	a	method	of	a	 java	object	on	a	different	machine.	An	object	may	be
supplied	as	an	argument	to	the	remote	method.	The	sending	machine	serializes	the	object
and	translates	it.	The	receiving	machine	deserializes	it.

	

If	 you	 attempt	 to	 serialize	 an	 object	 at	 the	 top	 of	 an	 object	 graph,	 all	 of	 the	 other
referenced	objects	are	recursively	located	and	serialized.

	

Similarly,	 during	 the	 process	 of	 deserialization,	 all	 of	 these	 objects	 and	 their
references	 are	 correctly	 stored.	Variables	 that	 are	 declared	 as	 transient	 or	 static	 are	 not
saved	by	the	serialization	facilities.

	

Externalizable	interface:

	

The	Java	facilities	for	serialization	and	deserialization	have	been	designed	so	that
much	of	the	work	to	save	and	restore	the	state	of	an	object	occurs	automatically.

	

However,	there	are	cases	in	which	the	programmer	may	need	to	have	control	over
these	 processes.	 For	 example,	 it	 may	 be	 desirable	 to	 use	 compression	 or	 encryption
techniques.	 The	 externalizable	 interface	 is	 designed	 for	 these	 situations.	 The	 objects	 of
class	implementing	Externalizable	interface	can	also	be	serialized	and	deserialized.

	

But	 the	control	 is	with	 the	user	 i.e.	user	 can	decide	which	part	 to	 serialize	and
deserialize.	The	serialization	code	is	written	in	readExternal()	method	and	deserialization
code	is	written	in	writeExternal()	method.

Methods	in	Externalizable	interface:

	

void	readExternal(ObjectInput	in)

	

The	object	implements	the	readExternal	method	to	restore	its	contents	by	calling
the	methods	of	DataInput	for	primitive	types	and	readObject	for	object,	strings	and	arrays.

	

void	writeExternal(ObjectOutput	out)

	

The	object	 implements	 the	writeExternal	method	 to	save	 its	contents	by	calling
the	 methods	 of	 DataOutput	 for	 its	 primitive	 values	 or	 calling	 writeObject	 method	 of
ObjectOutput	for	objects,	strings	and	arrays.

	

ObjectOutput	Interface:

	

The	ObjectOutput	interface	extends	the	DataOutput	interface	and	supports	object
serialization.	 Beside	 methods	 defined	 in	 DataOutput	 interface,	 objectOutput	 interface
define	only	method.

	

Void	writeObject(Object	object)

	

This	 is	called	 to	serialize	an	object.	All	methods	of	ObjectOutput	 interface	will
throw	an	IOException	on	error	conditions.

	

ObjectOutputStream:

The	 ObjectOutputStream	 class	 extends	 the	 OutputStream	 class	 and	 implements	 the
ObjectOutput		interface.	It	is	responsible	for	writing	objects	to	a	stream.

	

Constructor:

	

ObjectOutputStream(OutputStream	out)

	

Creates	 an	ObjectOutputStream	 that	writes	 to	 the	 specified	OutputStream.	 The
argument	out	is	the	output	stream	to	which	serialized	objects	will	be	written.

Method	to	write	object:

	

void	writeObject(Object	obj)

Write	an	object	to	the	underlying	storage	or	stream.

	

	

ObjectInput	Interface:-

	

The	 ObjectInput	 interface	 extends	 the	 DataInput	 interface.	 It	 supports	 object
serialization.	Beside	methods	defined	in	DataInput	interface,	ObjectInput	interface	defines
only	one	method:

	

	

Object	readObject()

This	is	called	to	deserialize	an	object.

	

ObjectInputStream:

The	ObjectInputStream	 class	 extends	 the	 InputStream	 class	 and	 implement	 the
ObjectInput	interface.	ObjectInputStream	is	responsible	for	reading	object	from	a	stream.

	

Constructor:

	

ObjectInputStream(InputStream	in)

Creates	 an	 ObjectInputStream	 that	 reads	 from	 the	 specified	 InputStream.	 The
argument	in,	is	the	input	stream	from	which	serialized	objects	should	be	read.

	

The	method	for	deserializing	is	:

	

Object	readObject()

Read	an	object	from	the	ObjectInputStream.

	

Example	15.31

1.														import	java.io.*;

2.														class	SerializationTest

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										try

7.																																										{

8.																																																				MyClass	object1	=	new	MyClass(“Hello”,	123,	1.3e3);

9.																																																				MyClass	object2	=	new	MyClass(“Hello1”,	1,	2);

10.																																																								System.out.println(object1);

11.																																																								System.out.println(object2);

12.														FileOutputStream	fos	=	new	FileOutputStream(“serial.dat”);

13.														ObjectOutputStream	oos	=	new	ObjectOutputStream(fos);

14.																																																								oos.writeObject(object1);

15.																																																								oos.writeObject(object2);

16.																																																								oos.flush();

17.																																																								oos.close();

18.																																										}

19.																																										catch(Exception	e)

20.																																										{													

21.																																																								System.out.println(e);

22.																																										}

23.																																										try

24.																																										{													

25.																																																								MyClass	object3,	object4;

26.														FileInputStream	fis	=	new	FileInputStream(“serial.dat”);

27.														ObjectInputStream	ois	=	new	ObjectInputStream(fis);

28.																																																								object3	=	(MyClass)	ois.readObject();

29.																																																								object4	=	(MyClass)	ois.readObject();

30.																																																								ois.close();

31.																																																				System.out.println(“After	deserialization”);

32.																																																								System.out.println(object3);

33.																																																								System.out.println(object4);

34.																																										}

35.																																										catch(Exception	e)

36.																																										{													

37.																																																								System.out.println(e);

38.																																										}

39.																												}

40.														}

41.														class	MyClass	implements	Serializable

42.														{													

43.																												String	s;

44.																												int	i=100;

45.																												double	d;

46.																												MyClass(String	s,	int	i,	double	d)

47.																												{													

48.																																										this.s	=	s;

49.																																										this.i	=	i;

50.																																										this.d	=	d;

51.																												}

52.																												public	String	toString()

53.																												{													

54.																														return	“s	=	“+	s	+”;	i	=	“+	i	+	”	;	d	=	”	+d;

55.																												}

56.														}

	

Output:

s	=	Hello;	i	=	123	;	d	=	1300.0

s	=	Hello1;	i	=	1	;	d	=	2.0

After	deserialization

s	=	Hello;	i	=	123	;	d	=	1300.0

s	=	Hello1;	i	=	1	;	d	=	2.0

	

Note:	we	can	save	more	than	one	object	of	the	same	type	in	a	file	and	can	also	save	object
of	different	types	in	the	same	file.

	

Example15.32

This	example	demonstrates	that	the	transient	and	static	variables	are	not	persisted	during
serialization.

1.														import	java.io.*;

2.														class	SerializationTest2

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										try

7.																																										{

8.																																																				MyClass	object1	=	new	MyClass(“Hello”,	123,	1.3e3);

9.																																																				MyClass	object3	=	new	MyClass(“Hello1”,	1,	2);

10.																																																								object3.x	=	200;

11.																																																								A	object5	=	new	A();

12.																																																								System.out.println(object1);

13.																																																								System.out.println(object3);

14.																																																								System.out.println(object5);

15.														FileOutputStream	fos	=	new	FileOutputStream(“serial.dat”);

16.														ObjectOutputStream	oos	=	new	ObjectOutputStream(fos);

17.																																																								oos.writeObject(object1);

18.																																																				oos.writeObject(object3);

19.																																																								oos.writeObject(object5);

20.																																																								object3.x	=	400;

21.																																																								oos.flush();

22.																																																								oos.close();

23.																																										}

24.																																										catch(Exception	e)

25.																																										{													

26.																																																								System.out.println(e);

27.																																										}

28.																																										try

29.																																										{													

30.																																																								MyClass	object2,	object4;

31.																																																								A	object6;

32.														FileInputStream	fis	=	new	FileInputStream(“serial.dat”);

33.														ObjectInputStream	ois	=	new	ObjectInputStream(fis);

34.																																																				object2	=	(MyClass)	ois.readObject();

35.																																																								object4	=	(MyClass)	ois.readObject();

36.																																																								object6	=	(A)	ois.readObject();

37.																																																								ois.close();

38.																																																								fis.close();

39.																																																								System.out.println(“After	deserialization”);

40.																																																								System.out.println(object2);

41.																																																								System.out.println(object4);

42.																																																								System.out.println(object6);

43.																																										}

44.																																										catch(Exception	e)

45.																																										{													

46.																																																								System.out.println(e);

47.																																										}

48.																												}

49.														}

50.														class	MyClass	implements	Serializable

51.														{													

52.																												String	s;

53.																												transient	private	int	i=100;

54.																												public	static	int	x	=	10;

55.																												double	d;

56.																												MyClass(String	s,	int	i,	double	d)

57.																												{													

58.																																										this.s	=	s;

59.																																										this.i	=	i;

60.																																										this.d	=	d;

61.																																										x	=	100;

62.																												}

63.																												public	String	toString()

64.																												{													

65.																																												return	“s	=	”	+	s	+	“;	i	=	“+	i	+	”	;d	=	”	+	d	+”;	x	=	“+	x;

66.																												}

67.														}

68.														class	A	implements	Serializable

69.														{													

70.																												public	String	toString()

71.																												{													

72.																														return	“Class	A”;

73.																												}

74.														}

	

Example	15.33

	

Using	Externalizable

	

1.														import	java.io.*;

2.														class	SerializationTest1

3.														{													

4.																												public	static	void	main	(String	args[])	throws	IOException

5.																												{													

6.																																										try

7.																																										{

8.																																																				MyClass	object1	=	new	MyClass(“Hello”,	99,	123.45);

9.																																																								System.out.println(object1);

10.														FileOutputStream	fos	=	new	FileOutputStream(“serial.dat”);

11.														ObjectOutputStream	oos	=	new	ObjectOutputStream(fos);

12.																																																				System.out.println(“before	writing	object”);

13.																																																								oos.writeObject(object1);

14.																																																				System.out.println(“after	writing	object”);

15.																																																								oos.flush();

16.																																																								oos.close();

17.																																										}

18.																																										catch(Exception	e)

19.																																										{													

20.																																																								System.out.println(e);

21.																																										}

22.																																										try

23.																																										{													

24.																																																								MyClass	object2;

25.																												FileInputStream	fis	=	new	FileInputStream(“serial.dat”);

26.																												ObjectInputStream	ois	=	new	ObjectInputStream(fis);

27.																																																		System.out.println(“before	reading	object”);

28.																																																		object2	=	(MyClass)	ois.readObject();

29.																																																				System.out.println(“after	reading	object”);

30.																																																								ois.close();

31.																																																								System.out.println(object2);

32.																																										}

33.																																										catch(Exception	e)

34.																																										{													

35.																																																								System.out.println(e);

36.																																										}

37.																												}

38.														}

39.														class	MyClass	implements	Serializable

40.														{

41.																												String	s;

42.																												int	i=100;

43.																												double	d;

44.																												public	MyClass()	{};//	It	is	must

45.																												public	MyClass(String	s,	int	i,	double	d)

46.																												{													

47.																																										this.s	=	s;

48.																																										this.i	=	i;

49.																																										this.d	=	d;

50.																												}

51.																												public	String	toString()

52.																												{													

53.																																												return	“s	=	“+	s	+”;	i	=	“+	i	+	”	;d	=	”	+d;

54.																												}

55.														public	void	writeExternal(ObjectOutput	oos)	throws	IOException

56.																												{													

57.																																												System.out.println(“Inside	writeExternal”);

58.																																										oos.writeObject(s);

59.																																										oos.writeInt(i);

60.																																										oos.writeDouble(d);

61.																												}

62.	public	void	readExternal(ObjectInput	ois)	throws	ClassNotFoundException,

IOException

63.																												{													

64.																																												System.out.println(“Inside	readExternal”);

65.																																										s	=	(String)	ois.readObject();

66.																																										i	=	ois.readInt();

67.																												}

68.														}													

Output:

s	=	Hello;	i	=	99	;d	=	123.45

before	writing	object

after	writing	object

before	reading	object

after	reading	object

s	=	Hello;	i	=	99	;d	=	123.45

	

Note:

During	 deserialization,	 object	 will	 be	 constructed	 using	 default	 constructor
(unlike	 serializable	 interface)	 and	 then	 the	 initialization	will	 take	 place.	 Testoring	 state
should	be	done	in	readExternal().	Similarly	during	serialization	only	class	identification	is
saved.	Any	state	must	be	saved	explicitly	in	writeExternal().

	

	

	

	

	

	

	

	

	 	 	 	

	

	

CHAPTER
∞	16	∞
(Applet)

	

Introduction-
	

An	applet	is	an	application	designed	to	travel	over	the	Internet	and	to	be	executed	on
the	client	machine	by	a	Java	Compatible	web	browser	like	Internet	Explorer	or	Netscape
Navigator.	Applets	are	also	Java	programs	but	they	reside(stored)	on	the	servers.

An	 applet	 cannot	 be	 executed	 like	 standalone	 application.	 Applet	 can	 be	 executed
only	by	embedding	it	into	an	HTML	page	like	an	image	or	sound	file.	To	run	an	applet	we
need	to	access	an	HTML	page	which	has	applet	embedded	into	it.	When	the	web	browser
downloads	such	an	HTML	page,	it	subsequently	loads	the	executable	file,	which	contains
applet	code	and	then	executes	it	on	the	local	machine.

After	an	applet	arrives	on	the	client,	it	has	limited	access	to	resources,	so	that	it	can
produce	 an	 arbitrary	multi-media	 user	 interface	 and	 run	 complex	 computations	without
introducing	the	risk	of	viruses	or	breaching	(breaking)	data	integrity.

Applet	Architecture:

Applets	are	different	from	normal	Java	programs.

Applets	are	GUI	based	(window-based)	programs

Applets	are	event-driven

When	a	normal	 Java	program	 (which	 is	 not	GUI	based)	needs	 input	 it	 prompts	 the

user	and	then	calls	some	input	method,	such	as	readLine()	i.e.	 the	interaction	is	initiated
by	the	program.

This	 is	 not	 the	 way	 in	 which	 GUI-based	 programs	 behave.	 The	 user	 initiates
interaction	with	the	program	rather	than	program	initiating	the	action.

For	 example,	 in	 a	 word	 processing	 software,	 user	 initiates	 action	 by	 clicking	 on
different	buttons,	which	generates	an	event	and	some	piece	of	code	is	executed	as	a	result
and	accordingly	some	action	takes	place.

Applets	 use	 awt	 package	 (Abstract	 Windows	 Toolkit)	 for	 providing	 GUI	 and	 for
event-handling.	The	awt	is	called	so	because	it	totally	depends	on	the	functionality	of	the
underlying	operating	system.

An	applet	resembles	a	set	of	interrupt	service	routines.	An	applet	waits	until	an	event
occurs.	 The	 awt	 notifies	 the	 applet	 about	 an	 event	 by	 calling	 an	 event	 handler	 that	 has
been	provided	by	the	applet.

Once	 this	 happens,	 the	 applet	must	 take	 appropriate	 action	 and	 then	 quickly	 return
control	to	the	AWT.

This	 is	 a	 crucial	 point.	 For	 the	most	 part,	 our	 applet	 should	 not	 enter	 a	 “mode”	 of
operation	 in	which	 it	maintains	control	 for	an	extended	period.	 Instead,	 it	must	perform
specific	actions	in	response	to	events	and	then	return	control	to	the	AWT	run	time	system.

In	those	situations	in	which	our	applet	needs	to	perform	a	repetitive	task	on	its	own
(for	 example,	 displaying	 a	 scrolling	 message	 across	 its	 window),	 we	 must	 start	 an
additional	thread	of	execution.

Writing	an	Applet:

	

All	 applets	 are	 sub	 classes	 of	 Applet	 class.	 The	 Applet	 class	 is	 contained	 in	 the
package	java.applet.	The	hierarchy	of	the	Applet	class	is	as	follows:

	

																																										java.lang.Object

																																																								|

																																										java.awt.Component

																																																								|

																																										java.awt.Container

																																																								|

																																										java.awt.Panel

																																																								|

																																										java.applet.Applet

The	applet	class	provides	all	necessary	support	for	applet	execution,	such	as	starting
and	stopping.

It	 also	 provides	 methods	 that	 load	 and	 display	 images.	 It	 also	 provides	 necessary
support	for	all	the	window-based	activities.

Our	sub	class	extending	the	applet	class	must	always	be	declared	as	public	as	it	is
instantiated	(creating	object)	and	executed	by	the	web	browser.

The	browser	makes	use	of	no	argument	constructor	when	instantiating	the	applet	so	it
is	must	to	provide	no-argument	public	constructor	with	the	public	visibility.

It	 is	 recommended	 that	we	do	not	provide	constructor	 in	 the	Applet	class	as	 in	 that
case	compiler	will	provide	the	default	no	argument	constructor.

We	can	make	use	of	the	init()	method	for	initialization.	While	writing	applet	code	we
normally	 override	 some	 of	 the	 methods	 of	 the	 Applet	 class,	 which	 are	 invoked
automatically	during	applet	execution.

It	 is	 very	 common	 to	 override	 the	 paint()	method.	 The	 code	 in	 the	 paint()	method
mainly	displays	the	output	in	the	Applet	window.

Example	16.1	(App1.java)	The	following	program	illustrates	a	simple	applet,	which	just
displays	“Hello	World”	inside	a	window.	Whatever	we	draw/display	in	the	applet’s	paint
method,	it	appears	in	the	applet’s	window.

	

In	the	following	example,	the	background	color	of	the	applet	window	is	set	to	red	and	the
foreground	color	 is	 set	 to	green	so	 the	background	would	appear	as	 red	and	 text	“Hello
Word”	would	be	displayed	in	green	color.

1.														import	java.awt.*;

2.														import	java.applet.Applet;

3.														/*<applet	code=	“App1”	width	=500	height=100></applet>*/

4.														public	class	App1	extends	Applet

5.														{													

6.																												public	void	init()

7.																												{

8.																																														setBackground(Color.red);

9.																																										setForeground(Color.green);

10.																												}

11.																												public	void	paint(Graphics	g)

12.																												{													

13																																										g.drawString(“Hello	World”,20,20);

14.																												}

15.														}

	

Output:

	

Executing	an	Applet:

	

Applets	 are	 not	 executed	 by	 the	 console-based	 Java	 run-time	 interpreter.	There	 are
two	ways	in	which	we	can	run	an	applet	.

1.														Executing	the	applet	within	a	Java	compatible	web	browser.

2.														Using	an	appletviewer,	such	as	the	standard	SDK	tool,	appletviewer.	An
appletviewer	executes	our	applet	 in	a	window.	This	 is	 fastest	and	easiest	way	 to
test	our	applet.

Executing	Applet	in	a	web	browser:

	

We	need	to	write	a	short	HTML	text	file	that	contains	the	appropriate	APPLET	tag.
The	applet	tag	must	include	at	least	following	three	attributes:

Code

Width

Height

The	 attribute	 code’s	 value	 specifies	 the	 name	of	 the	 class	 containing	 applet’s	 code.
The	 attribute	 width	 and	 height	 specify	 the	 width	 and	 height	 of	 the	 applet’s	 windows
respectively.

Here	the	HTML	file	RunApp.Html	with	applet	“App1”	embedded	into	it.

<html>

<head>

<title>Simple	Applet</title>

</head>

<body>

<h1>Simple	“Hello	World”	Application	</h1>

<applet	code=	“App1”	width	=500	height=100>

</applet>

</body>

</html>

	

You	can	execute	 the	applet	by	opening	file	RunApp.html	 in	web	browser.	The	 file
can	be	on	local	file	system	or	can	also	be	loaded	from	a	web	server.

Executing	Applet	using	appletviewer:

	

However,	 a	 more	 convenient	 method	 exists	 that	 we	 can	 use	 to	 speed	 up	 testing.
Simply	include	a	comment	 in	your	 java	source	code	file	 that	contains	 that	APPLET	tag.
By	doing	so,	our	code	is	documented	with	a	prototype	of	the	necessary	HTML	statements,
and	we	can	test	your	compiled	output	merely	by	starting	the	appletviewer	with	our	Java
source	code	file.	if	we	use	this	method,	then	after	compiling	we	can	execute	the	applet	as
follows:

appletviewer	SimpleApplet.Java

	

Applet	Life	cycle	Methods:

	

Applet	 overrides	 a	 set	 of	methods	 that	 provides	 the	 basic	mechanism	by	which	 the
browser	or	appletviewer	interfaces	to	the	applet	and	controls	its	execution.

These	methods	are	also	called	lifecycle	methods	because	the	browser	or	applet	viewer
calls	 them	 automatically	 during	 different	 stages	 of	 applet	 lifecycle.	 In	 all	 there	 are	 five
lifecycle	methods:

public	void	init	()
public	void	start	()
public	void	stop	()
public	void	destroy	()
public	void	paint	(Graphics	g)

Four	 of	 these	methods:	 init(),	 start(),	 stop(),	 and	destroy()	 are	 defined	 in	 the	 applet
class.

The	paint(),	 is	defined	by	 the	awt	Component	class,	default	 implementations	 for	all
these	methods	are	provided.	Applets	do	not	need	 to	override	 those	methods	 they	do	not
use.	However,	very	simple	applets	will	not	need	to	define	them.

Applet	Initialization	and	Termination:

When	an	applet	begins,	the	following	methods	are	called	in	sequence

1.	 init()

2.	 start()

3.	 paint()

When	an	applet	is	terminated,	the	following	sequence	of	method	calls	takes	place:

4.	 stop()

5.	 destroy()

The	init()	Method:

	

This	is	the	first	method	to	be	called.	This	is	where	we	should	initialize	variables
and	write	code	for	other	initialization	activities.	This	method	is	called	only	once	during	the
life	cycle	of	our	applet	immediately	after	instantiation.

	

The	start()	Method:

	

The	start()	method	is	called	after	init().	It	is	also	called	to	restart	an	applet	after	it
has	been	stopped.	Where	init()	is	called	once	the	first	time	an	applet	is	loaded,	start()	is
called	each	time	an	applet’s	HTML	document	is	displayed	on	screen.	So,	if	a	user	leaves	a
web	page	and	comes	back,	the	applet	resumes	execution	at	start().

The	paint()	Method:

	

The	 paint()	 is	 called	 after	 the	 init()	 and	 start()	 method	 when	 the	 applet	 begins
execution.	 The	 paint()	 method	 is	 also	 called	 each	 time	 our	 applet’s	 output	 must	 be
redrawn.	This	situation	can	occur	for	several	reasons.	For	example,	the	window	in	which
the	applet	 is	running	may	be	overwritten	by	another	window	and	then	uncovered.	or	 the
applet	window	may	be	minimized	and	then	restored.

The	Stop()	Method:

	

The	 stop()	method	 is	 called	when	 a	web	 browser	 leaves	 the	HTML	 document
containing	the	applet	when	it	goes	to	another	page,	for	example.	When	stop()	is	called,	the
applet	is	probable	running.

We	should	use	stop()	to	suspend	threads	that	do	not	need	to	run	when	the	applet	is	not
visible.	We	can	restart	them	when	start()	is	called	if	the	user	returns	to	the	page.	We	can
also	free	any	costly	resource	and	acquire	it	again	in	the	start()	method.

The	destroy	()	Method:

	

The	 destroy	 ()	 method	 is	 called	 when	 the	 environment	 determines	 that	 our	 applet
needs	 to	 be	 removed	 completely	 from	 memory.	 At	 this	 point,	 we	 should	 free	 up	 any

resources	the	applet	may	be	using.	The	stop()	method	is	always	called	before	destroy().

Example	 16.2	A	 simple	 applet	 that	 sets	 the	 background	 color	 to	 cyan,	 the	 foreground
color	 to	 red,	and	displays	a	message	 that	 illustrates	 the	order	 in	which	 the	 init(),	 start(),
and	paint()	methods	are	called	when	an	applet	starts	up.

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														/*<applet	code=	“App2”	width	=500	height=100></applet>*/

4.														public	class	App2	extends	Applet

5.														{													

6.																												String	msg=””;

7.																	public	void	init()

8.																												{													

9.																																										System.out.println(“Inside	init”);

10.																																														setBackground(Color.cyan);

11.																																										setForeground(Color.red);

12.																																										msg	=	“Inside	init	()—”;

13.																												}

14.																												public	void	start()

15.																												{													

16.																																										System.out.println	(“Inside	start”);

17.																																										msg	+=	“Inside	start	()—”;

18.																												}

19.																												public	void	stop()

20.																												{													

21.																																										System.out.println(“Inside	Stop”);

22.																																										msg	+=	“Inside	stop	()—”;

23.																												}

24.																												public	void	paint	(Graphics	g)

25.																												{													

26.																																										System.out.println	(“Inside	paint”);

27.																																										msg	+=	“Inside	paint	()—”;

28.																																										g.drawString(msg,10,30);

29.																												}

30.																												public	void	destroy()

31.																												{

32.																																										System.out.println	(“Inside	destroy”);

33.																												}

34.														}

Output:

Dynamic	Applet:

The	output	displayed	in	the	Applet’s	window	can	be	made	dynamic.	For	example,	we
can	display	a	moving	banner.	The	applet	can	also	be	used	in	applications	like	displaying
score	and	other	statistics	related	to	a	Cricket	match	by	retrieving	from	server;	displaying
stock	prices	etc.

Example16.3

The	 following	 example	 displays	 a	 moving	 banner.	 It	 demonstrates	 use	 of
repaint()	method	 to	 refresh	 the	display.	This	applet	 scrolls	a	message,	 from	right	 to	 left,
across	the	applet’s	window.

	

Since	 the	 scrolling	 of	 the	 message	 is	 a	 repetitive	 task,	 it	 is	 performed	 by	 a
separate	thread,	created	by	the	applet	when	it	is	initiated.	This	program	also	demonstrates
that	 the	resources	can	be	freed	in	the	stop()	method	and	can	be	re	acquired	in	the	start()
method.

1.														import		java.awt.*	;

2.														import	java.applet.*;

3.														/*<applet	code=“App3”	width=500	height=100></applet>*/

4.														public	class	App3	extends	Applet	implements	Runnable

5.														{													

6.																												String	msg=“A	Simple	Moving	Banner.”	;

7.																												Thread	t	=	null;

8.																												boolean	stopFlag;

9.																												public	void	init	()

10.																												{													

11.																																										setBackground(Color.cyan);

12.																																										setForeground(Color.red);

13.																												}

14.																												public	void	start()

15.																												{													

16.																																										t=new	Thread(this);

17.																																										stopFlag	=	false	;

18.																																										t.start	();

19.																												}

20.																												public	void	stop()

21.																												{													

22.																																										stopFlag=true;

23.																																										t=null;

24.																												}

25.																												public	void	paint(Graphics	g)

26.																												{													

27.																																										g.drawString(msg,50,30);

28.																												}

29.																												public	void	run()

30.																												{														

31.																																										for	(;;)

32.																																										{

33.																																																								repaint();

34.																																																								try

35.																																																								{

36.																																																																						Thread.sleep(250);

37.																																																								}

38.																																																								catch(InterruptedException	e)

39.																																																								{

40.																																																																						System.out.println(e);

41.																																																								}

42.																																																								msg	=	msg.substring	(1)	+	msg.charAt(0);

43.																																																								if	(stopFlag)

44.																																																																						break;

45.																																										}

46.																												}

47.														}

	

Output:

Using	the	status	window:

In	 addition	 to	 displaying	 information	 in	 its	 window,	 an	 applet	 can	 also	 output	 a
message	to	the	status	windows	of	the	browser	or	appletviewer	on	which	it	is	running.

To	do	so	call	showStatus()	with	the	string	that	we	want	to	display.	The	status	window
is	a	good	place	 to	give	 the	user	 feedback	about	what	 is	occurring	 in	 the	applet,	 suggest
options,	or	possible	report	some	types	of	errors.

The	status	window	also	makes	an	excellent	debugging	aid	(help),	because	it	gives	us
an	easy	way	to	output	information	about	our	applet.

Example	16.4:	The	following	example	demonstrate	how	to	use	of	the	status	window.

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														/*<applet	code=“App4”	width=500	height=100></applet>*/

4.														public	class	App4	extends	Applet

5.														{													

6.																												public	void	init()

7.																												{													

8.																																										setBackground(Color.cyan);

9.																												}

10.																												public	void	paint(Graphics	g)

11.																												{													

12.														g.drawString(“This	is	in	the	applet	window”,10,20);

13.														showStatus(“This	is	shown	in	the	status	window”);

14.																												}

15.														}

	

Output:

	

	

The	HTML’s	APPLET	TAG:

The	APPLET	tag	is	used	to	start	an	applet	from	both	an	HTML	document	and	from	an
appletviewer.

An	appletviewer	will	 execute	 each	APPLET	 tag	 that	 it	 finds	 in	 a	 separate	window;
while	web	browsers	like	Netscape	Navigator,	and	Internet	Explorer	allow	many	applets	on
a	single	page.

The	syntax	for	the	standard	APPLET	tag	is	:

<	APPLET

														CODE=applet	class	name

														CODEBASE=codebase	URL

														ALT=alternate	Text,

NAME=appletInstancename

														WIDTH=pixels

														HEIGHT=pixels

														ALIGN=alignment

														VSPACE=vertical	space	in	pixels

HSPACE=horizontal	space	in	pixels

>

<PARAM		NAME=attributeName-1		VALUE=Attribute	Value-1>

<PARAM		NAME=attributeName-2		VALUE=Attribute	Value-2>

––––-

<PARAM		NAME=attributeName-N		VALUE=Attribute	Value-N>

………HTML	displayed	in	the	absence	of	Java………

</APPLET>

	

	

CODE:

CODE	is	a	 required	attribute	 that	gives	 the	name	of	 the	file	containing	our	applet’s
compiled	class	file.	This	file	is	relative	to	the	CODEBASE	URL	of	the	applet,	which
is	the	directory	that	the	html	file	was	in	or	directory	indicated	by	CODEBASE	if	set.

CODEBASE:

CODEBASE	 is	 an	 optional	 attribute	 that	 specifies	 the	 base	URL	of	 the	 applet
code,	which	is	the	directory	that	will	be	searched	for	the	applet’s	executable	class	file
(specified	by	the	CODE	tag).

The	HTML	document’s	URL	directory	is	used	as	the	CODEBASE	if	this	attribute	is
not	 specified.	 The	 CODEBASE	 does	 not	 have	 to	 be	 on	 the	 host	 from	 which	 the
HTML	document	was	read.

ALT:	The	ALT	tag	is	an	optional	attribute	used	to	specify	a	short	text	message	that
should	be	displayed	if	the	browser	understands	the	APPLET	tag	but	can	not	currently
run	 Java	applet.	This	 is	distinct	 from	 the	 alternate	HTML	we	provide	 for	browsers
that	do	not	support	applets.

NAME:	 NAME	 is	 an	 optional	 attribute	 used	 to	 specify	 a	 name	 for	 the	 applet
instance.	Applets	must	be	named	in	order	for	other	applets	on	the	same	page	to	find
them	 by	 name	 and	 communicate	 with	 them.	 To	 obtain	 an	 applet	 by	 name,	 use
getApplet(),	which	is	defined	by	the	Applet	Context	interface.

WIDTH	and	HEIGHT:	Size	of	applet’s	display	area	in	pixels.

ALIGH:	ALIGN	is	an	optional	attributes	that	specifies	the	alignment	of	the	applet.
This	 attribute	 is	 treated	 the	 same	 way	 as	 the	 HTML’S	 IMG	 tag	 with	 following
possible	values:

LEFT,	 RIGHT,	 TOP,	 BOTTOM,	 MIDDLE,	 BASELINE,	 TEXTTOP,
ABSMIDDLE,	AND	ABSBOTTOM.

VSPACE	and	HSPACE:	These	attributes	are	optional	VSPACE	specifies	the	space,
in	pixels,	above	and	below	the	applet.	HSPACE	specifies	the	space,	in	pixels	on	each
side	of	 the	 applet.	They	are	 treated	 the	 same	as	 IMG	 tag’s	VSPACE	and	HSPACE
attributes.

The	PARAM	Tag

The	PARAM	 tag	 allows	we	 to	 specify	 applet	 specific	 arguments	 in	 an	HTML
page.	Applets	 access	 their	 attributes	with	 the	getparameter()	method.	PARAM	tag
has	two	attributes	:	NAME	and	VALUE.

	

	

Example	 16.5	 This	 example	 demonstrates	 how	 to	 pass	 parameters	 to	 Applet	 from	 the
HTML	page.

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														/*<applet	code=“App5”	width=500	height=100>

5.														<param	name=“fontName”	value=“Arial”>

6.														<param	name=“fontSize”	value=“30”>

7.														</applet>*/

8.														public	class	App5	extends	Applet

9.														{														

10.																												String	fName;

11.																												int	fSize;

12.																												public	void	init	()

13.																												{

14.																																										fName	=	getParameter(“fontName”);

15.																																										if	(fName	==	null)

16.														fName	=	“Courier”;

17.														fSize	=	Integer.parseInt(getParameter(“fontSize”));

18.														Font	f1=	new	Font(fName,	Font.PLAIN,	fSize);

19.																																										setFont(f1);

20.																												}

21.																												public	void	paint	(Graphics	g)

22.																												{														

23.														g.drawString	(“Font	Name	:	”	+	fName,	0,	25);

24.																																										g.drawString	(“Font	Size	:	”	+	fSize,	0,	50);

25.																																										g.drawString	(“Hello	world”,	0,75);

26.																												}

27.														}

Output:

	

Getting	DocumentBase	and	CodeBase:

	

Often,	we	will	create	applets	that	will	need	to	explicitly	load	media	and	text.	Java
will	allow	the	applet	to	load	data	from	the	directory	holding	the	HTML	file	that	started	the
applet	 (the	 docoument	 base)	 and	 the	 directory	 from	 which	 the	 applet’s	 class	 file	 was
loaded	(the	code	base).

	

These	directories	are	returned	as	URL	objects.	They	can	be	concatenated	with	a
string	 that	name	 the	 file	we	want	 to	 load.	To	actually	 load	another	 file,	we	will	use	 the
showdocument()	method	defined	by	the	Applet	context	interface.

	

Example	 16.6	 The	 following	 example	 demonstrates	 how	 	 we	 can	 obtain	 the	 document
base	and	code	base	in	the	applet	code.

	

App6.java

	

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														import	java.net.URL;

4.														public	class	App6	extends	Applet

5.														{

6.																												public	void	paint	(Graphics	g)

7.																												{

8.																																										URL	u1	=	getCodeBase();

9.																																										g.drawString	(“Code	base:-”	+	u1,	10,20);

10.																																										URL	u2	=	getDocumentBase();

11.																																										g.drawString	(“Document	base:-“+u2,	10,40);

12.																												}

13.														}

	

	

	

App6.html

	

1.														<html>

2.																												<body>

3.														<applet	code=“App6”	width=500	height=200></applet>

4.																												</body>

5.														</html>

	

Output:

	

AppletContext	and	Show	Document():

	

One	 application	 of	 Java	 is	 to	 use	 active	 image	 and	 animation	 to	 provide	 a
graphical	means	of	navigating	 the	web	 that	 is	more	 interesting	 than	 the	underlined	blue
words	used	by	hypertext.	To	allows	our	applet	to	transfer	control	to	another	URL,	we	must
use	the	showDcoument()	method	defined	by	the	Applet	Context	interface.

	

The	Applet	Context	is	an	interface	that	lets	us	get	information	from	the	applet’s
execution	environment.	The	context	of	the	currently	executing	applet	is	obtained	by	a	call
to	the	getAppletContext()	method	defined	by	the	applet	class.

	

Within	 an	 applet,	 once	 we	 have	 obtained	 the	 applet’s	 context,	 we	 can	 bring
another	 document	 into	 	 view	 by	 calling	 showDocument()	method.	 This	method	 has	 no
return	 value	 and	 returns	 no	 exception	 if	 it	 fails	 so	 use	 it	 carefully.	 There	 are	 two
showDocument()	methods.

	

void														ShowDocument(URL	url)

	

Replaces	the	Web	page	currently	being	viewed	with	the	given	URL

	

void														ShowDocument	(URL	url,	String	where)

	

Displays	 the	 specified	 document	 at	 the	 specified	 loacation	within	 the	 browser	window.
Valid	arguments	for	“where’	are:

	

														“_self”(show	in	the	current	frame)

														“_parent”	(show	in	the	parent	frame)

														“_top”	(show	in	topmost	frame),	and

														“_blank”(show	in	new	browser	window)

	

	

	

	

	

Example	16.7

The	 following	 applet	 demonstrates	 use	 of	 Applet	 Context	 and	 showDocument().	 Upon
execution,	it	obtains	the	current	applet	context	and	uses	that	context	to	transfer	control	to	a
file	 called	A.html.	 This	 file	must	 be	 in	 the	 same	 directory	 as	 the	 applet.	 Test.html	 can
contain	any	valid	hypertext	that	your	like.

	

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														import	java.net.*;

4.														public	class	App7	extends	Applet

5.														{	

6.																												AppletContext	ac;

7.																												URL	u1;

8.																												public	void	init()

9.																												{

10.																																										setBackground(Color.cyan);

11.																												}

12.														public	void	start()

13.														{

14.																												ac	=	getAppletContext();

15.																												u1	=	getCodeBase();

16.																												try

17.																												{

18.														Thread.sleep(3000);

19.														ac.showDocument(new	URL(u1	+	“A.html”),“_blank”);

20.																												}

21.																												catch(MalformedURLException	e)

22.																												{	

23.																																										showStatus(“Invalid	URL”);

24.																																										e.printStackTrace()	;

25.																												}

26.																												catch(InterruptedException	e)

27.																												{	

28.																																										showStatus(“Invalid	URL”);

29.																																										e.printStackTrace	()	;

30.																												}

31.														}

32.														public	void	paint	(Graphics	g)

33.														{

34.																												g.drawString(u1+“A.html”,20,20);

35.																												try

36.																												{

37.																																										Thread.sleep(3000);

38.																												}

39.																												catch(InterruptedException	e)

40.																												{

41.																																										System.out.println(e);

42.																												}

43.														}

44.}

	

App7.html

	

1.														<html>

2.																						<head>

3.																														<Title>Applet	Context	Demo</Title>

4.																						</head>

5.																						<body>

6.																														<applet	code=“App7”	width=200	height=200></applet>

7.																						</body>

8.														</html>

	

A.html

	

1.														<html>

2.																						<head>

3.																														<title>New	Page</title>

4.																						</head>

5.																						<body	bgcolor=blue	text=red>

6.																														<h1>matrix</h1>

7.																						</body>

8.														</html>

	

Example16.8

	

1.														import	java.applet.*;

2.														import	java.awt.*;

3.														import	java.awt.event.*;

4.														/*<Applet	code=“CopyApp”	width=500	height=200></applet>*/

5.														public	class	CopyApp	extends	Applet	implements	ActionListener

6.														{

7.																												TextField	tf1,tf2;

8.																												Button	b1;

9.																												public	void	init()

10.																												{

11.																																										setForeground(Color.red);

12.																																										Font	f1=new	Font(“Arial”,

13.																																										Font.BOLD+Font.ITALIC,20);

14.																																										tf1=new	TextField(8);

15.																																										tf2=new	TextField(8);

16.																																										tf1.setFont(f1);

17.																																										tf2.setFont(f1);

18.																																										b1=new	Button(“Copy”);

19.																																										b1.addActionListener(this);

20.																																										b1.setFont(f1);

21.																																										add(tf1);

22.																																										add(tf2);

23.																																										add(b1);

24.																												}

25.																												public	void	paint(Graphics	g)

26.																												{

27.																																										g.drawString(“Matrix”,0,150);

28.																												}

29.																												public	void	actionPerformed(ActionEvent	ae)

30.																												{

31.																																										String	s1=tf1.getText();

32.																																										tf2.setText(s1);

33.																												}

34.														}

	

Output:

	

	

Example	16.9	Sum	of	2	numbers	using	Applet

	

1.														import	java.applet.*;

2.														import	java.awt.*;

3.														import	java.awt.event.*;

4.														/*<applet	code	=	“SumApplet”	width=400	height=400></applet>		*/

5.														public	class	SumApplet	extends	Applet	implements	ActionListener

6.														{

7.																												TextField	tf1,tf2,tf3;

8.																																				Label	l1,l2,l3;

9.																																				Button	b1;

10.																																				public	void	init()

11.																																				{

12.																																										setLayout(new	GridLayout(4,2));

13.																																												l1	=	new	Label(“No.	1”);

14.																																												l2	=	new	Label(“No.	2”);

15.																																												l3	=	new	Label(“Result”);

16.																																												tf1	=	new	TextField(8);

17.																																												tf2	=	new	TextField(8);

18.																																												tf3	=	new	TextField(8);

19.																																												b1	=	new	Button(“Sum”);

20.																																												b1.addActionListener(this);

21.																																												add(l1);add(tf1);

22.																																												add(l2);add(tf2);

23.																																												add(l3);add(tf3);

24.																																												add(b1);

25.																																				}

26.																																				public	void	actionPerformed(ActionEvent	ae)

27.																																				{

28.																																												Button	abc	=	(Button)ae.getSource();

29.																																												if(abc	==	b1)

30.																																												{

31.																																																				int	a,b,c;

32.																																																				a	=	Integer.parseInt(tf1.getText());

33.																																																				b	=	Integer.parseInt(tf2.getText());

34.																																																				c	=	a	+	b;

35.																																																				tf3.setText(String.valueOf(c));

36.																																													}

37.																						}

38.														}

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	

	

	

	
CHAPTER
∞	17	∞

(Abstract	Windows	Toolkit	-	AWT)
	

	
Introduction-

Java	 provides	 a	 large	 number	 of	 built-in	 classes,	 which	 help	 us	 in	 designing
graphical	user	interface	(GUI).	Most	of	these	classes	belong	to	the	package	java.awt	and
are	collectively	known	as	Abstract	Windows	Toolkit	(AWT).

We	 are	 familiar	 with	 software	 like	MS-WORD,	MS-EXCEL	 etc.	 All	 of	 these
software	have	a	GUI	i.e.	when	we	run	these	software,	we	see	graphical	user	interface.

We	access	various	features	of	this	software	by	selecting	different	options	through
keyboard	or	mouse.	Lot	of	programming	is	needed	to	display	the	user	interface.

Three	important	parts	of	AWT,	which	help	in	designing	graphical	user	interfaces,	are

Components

Containers

Layout	Managers

All	of	the	above	play	an	important	role	in	designing	the	GUI.

Components:

Components	 are	 Java’s	 building	 blocks	 for	 creating	GUI’s.	A	 component	 is	 an
object	 having	 graphical	 representation	 that	 can	 be	 displayed	 on	 the	 screen	 and	 that	 can
interact	with	the	user.	Examples	of	components	are	the	buttons,	check	boxes	and	scrollbars
of	a	 typical	graphical	user	 interface.	The	 java.awt.Component	class	 is	 the	abstract	 super
class	of	 the	non-menu	related	AWT	components.	Class	component	can	also	be	extended
directly	 to	 create	 lightweight	 component.	 A	 lightweight	 is	 a	 component	 that	 is	 not
associated	with	a	native	opaque	window.

Some	components	types,	such	as	buttons	and	scrollbars,	are	used	directly	for	GUI
control.	Other	kinds	of	components	(those	 that	 inherit	 from	the	Container	class)	provide
special	organization.	While	the	components	like	TextField,	TextArea,	List	etc,	are	used	to
accept	input	from	the	user.	The	label	is	a	different	type	of	component	whose	purpose	is	to
simply	display	the	appropriate	label	to	identify	other	components.

Java’s	 components	 are	 implemented	by	 the	many	 subclasses	of	 the	 java.awt.Component
and	java.awt.Menu	component	super	classes.

One	 way	 to	 organize	 this	 fairly	 large	 number	 of	 classes	 is	 to	 divide	 them	 into
categories:

Visual	components

Container	components

Menu	components

Component	hierarchy:	The	following	diagram	shows	AWT	the	component	hierarchy.

	

Containers:

The	following	diagram	describes	the	container	hierarchy

All	 the	window–based	applications	start	with	a	 top-level	window	visible	on	 the
screen.

Similarly	 all	 GUI	 based	 java	 applications	 also	 start	 with	 a	 top-level	 window,
which	is	referred	to	as	top-level	container	in	java’s	terminology.

Containers	 are	 also	 java	 components	 that	 can	 contain	 other	 components.	 A
component	 can	 be	 made	 visible	 only	 by	 adding	 it	 to	 a	 container	 or	 putting	 it	 inside	 a
container.

All	 java	GUI’s	reside	either	 in	an	applet	or	 in	a	Frame.	The	applets	and	frames
are	the	two	top-level	containers	in	java.

The	applet	is	the	top-level	container	for	applets	so	the	components	must	be	added
to	it.	Similarly	the	frame	is	the	top-level	component	for	the	standalone	applications.

For	more	complicated	GUI’s	it	is	convenient	to	divide	the	applets	or	frame	into
smaller	regions.	These	regions	might	constitute,	for	example,	a	toolbar	or	a	matrix	of	radio
buttons.	 In	 java,	 GUI	 sub-regions	 are	 implemented	 most	 commonly	 with	 the	 panel
container.

Panels,	 just	 like	 applets	 and	 frames	 can	 contain	 other	 components	 such	 as
buttons,	 canvas,	 checkboxes,	 scrollbars,	 scrollpanes,	 text	 areas,	 textfields,	 and	 other
panels.

Complicated	GUI’s	sometimes	have	very	complicated	containment	hierarchies	of
panels	with	in	panels	within	panels.	And	so	on,	down	through	many	layers	of	containment.

As	 containers	 are	 also	 components	 so	 the	 methods	 available	 for	 components	 are	 also
available	for	containers	due	to	inheritance.

The	most	commonly	used	method	for	the	containers	is	add()	method	using	which
the	components	are	added	the	container	its	general	form	is.

void	add	(Component	comp);

All	the	components	are	the	sub-classes	of	the	component	class	so	any	component	can	be
added	to	the	container	using	the	add()	method.

Layout	Manager:

While	 adding	 components	 to	 	 a	 containers,	 one	 important	 issue	 is	 related	 to	 the
position	 and	 size	 of	 the	 component.	 The	 components	 position	 can	 be	 specified	 in	 two
ways.

(i)																	Absolute	positioning.

(ii)														Relative	positioning.

In	absolute	positioning,	we	specify	the	exact	location	at	which	the	component	should
be	added.	This	method	gives	us	fine	control	and	may	be	the	best	choice	if	we	design	the
GUI		for	just	one	platform.

	

For	 example,	 a	 component	 can	 be	 added	 in	 middle	 of	 container	 along	 horizontal
direction,	by	specifying	the	co-ordinates	of	top-left	corner	of	the	component.

	

We	can	calculate	these	co-ordinates	based	on	the	container	width	and	the	component
width.	But	the	component	will	not	be	left	in	the	middle.	If	the	container	width	changes	or
the	size	of	the	component	changes.

	

The	other	approach,	 relative	positioning,	may	not	allow	us	 to	 specify	 the	exact
location	of	 the	components	but	may	be	 suitable	 in	 the	 situation	where	we	want	 that	 the
component	should	always	be	in	the	middle	of	the	container	along	the	horizontal	direction.

We	can	achieve	this	by	specifying	the	relative	position	of	the	component	like	left,
right,	 center	 etc.	 it	 is	 very	 common	 to	 center	 headings	 in	 documents	 using	 word
processors.	The	headings	remain	centered	even	if	the	width	of	the	page	changes	this	is	an
example	or	relative	positioning.

In	java	it	is	possible	to	use	absolute	positioning	but	it	is	not	advisable.	The	AWT	
is	 designed	 to	 use	 relative	 positioning.	We	 can	 specify	 component	 layouts	with	 relative
specifications,	 such	 as	 the	 component	 will	 be	 added	 to	 the	 right	 of	 the	 previous
component,	 the	 component	will	 be	 added	below	 some	other	 component,	 the	 component
will	 appear	 at	 top,	 size	 of	 the	 component	 will	 be	 ¼th	 of	 the	 container	 width	 etc.	 such
specifications	are	useful	even	without	knowledge	of	component	sizes.

Java	encourages	 relative	positioning	because	 it	 is	platform	 independent	and	 the
same	GUI	should	work	on	a	wide	variety	of	platforms	without	modifications.

Built-in	java	classes	called	layout	managers	handle	the	task	of	mapping	relative	positions
to	actual/physical	positions.	Java	supports	many	types	of	layout	managers,	we	will	discuss
about	following	layout	mangers.

	

1.	 FlowLayout

2.	 GridLayout

3.	 BorderLayout

4.	 CardLayout

5.	 GridBagLayout

Two	Observations	when	working	with	layout	managers:

We	do	not	have	to	bear	the	burden	of	specifying	the	exact	position	and
dimension	of	each	component.

We	 no	 longer	 had	 the	 power	 to	 specify	 the	 exact	 position	 and
dimensions	of	each	component.

Why	Java	uses	layout	managers?

There	are	two	reasons:

1.	 The	 theory	 lies	 in	 the	 position	 that	 precise	 layout	 (that	 is,	 specification	 in	 pixels	 of
each	 component’s	 size	 and	 position)	 is	 a	 repetitious	 and	 often	 performed	 task;
therefore,	according	to	OOP’s	layout	functionality	ought	to	be	encapsulated	into	one
or	more	classes	to	automate	the	task.

Certainly	 the	 layout	 managers	 eliminate	 a	 lot	 of	 development	 tedious.	 Many
programmers	dislike	 the	 idea	of	 layout	managers	first,	but	come	to	appreciate	 them
more	and	more	as	tedious	choices	are	eliminated.

2.	 The	 practical	 reason	 for	 having	 layout	 manager	 stems	 from	 java’s	 platform
independence.	 In	 java,	AWT	 components	 borrow	 their	 behaviour	 from	 the	window
system	of	the	underlying	hardware	on	which	the	JVM	is	running.

Thus	on	a	Macintosh,	an	AWT	buttons	 tools	 like	any	other	Mac	button;	on	a	motif
platform,	a	java	button	looks	like	any	other	motif	button,	and	so	on.	The	problem	here
is	 that	 buttons	 and	 other	 components	 have	 different	 sizes	 when	 instantiated	 on
different	platforms.

If	 java	 encouraged	precise	pixel-level	 sizing	 and	positioning,	 there	would	be	 lot	 of
java	 GUI’s	 that	 looked	 exquisite	 on	 their	 platform	 of	 origin	 and	 terrible	 or	 even
unusable,	on	other	platforms.

As	discussed	above,	layout	managers	solve	the	problem	by	using	relative	positioning.

Layout	policy:

Every	 java	component	has	preferred	 size.	The	preferred	 size	 expresses	how	big	 the
component	 would	 like	 to	 be,	 barring	 conflict	 with	 a	 layout	 manager.	 Preferred	 size	 is
generally	 the	 smallest	 size	 necessary	 to	 render	 the	 component	 in	 a	 visually	meaningful
way	for	example,	a	button’s	preferred	size	is	the	size	of	its	label	text,	plus	a	little	border	of
empty	space	around	the	text,	plus	the	shadowed	decorations	that	mark	the	boundary	of	the
button	 thus	 a	 buttons	 preferred	 size	 is	 “just	 big	 enough”.	 Preferred	 size	 is	 platform

dependent	since	component	boundary	decorations	vary	from	system	to	system.

When	a	 layout	manager	 lays	out	 its	container’s	child	components,	 it	has	 to	balance
two	considerations;

(i)																	layout	policy	and

(ii)														each	component’s	preferred	size

First	priority	goes	to	enforcing	layout	policy.	If	honoring	a	component’s	preferred
size	 would	 mean	 violating	 the	 layout	 policy,	 then	 the	 layout	 manager	 overrules	 the
component’s	preferred	size.	Understanding	a	layout	manager	means	understanding	where
it	will	place	a	component	and	also	how	it	will	treat	a	component’s	preferred	size.

1.	FlowLayout:

The	 functionality	 of	 the	 flow	 layout	 manager	 is	 encapsulated	 in	 the	 class
java.awt.FlowLayout.

The	 Flow	 Layout	Managers	 arranges	 components	 in	 horizontal	 rows.	 It	 is	 the
default	layout	manager	type	for	panels	and	applets.

The	flow	layout	manager	fits	as	many	components	as	possible	 into	 the	 top	row
and	moves	the	other	component	into	second	row.	If	no	space	is	left	in	the	second	row,	the
component	will	move	to	the	third	row,	and	so	on.	This	is	quite	similar	to	typing	text	in	a
document.

	

When	we	reach	at	 the	end	of	 the	current	 line,	 the	next	word	moves	 to	 the	next
line,	and	so	on.	If	we	change	the	width	or	height	of	the	document,	the	entire	document	is
re-formatted.

	

The	 components	 always	 appear,	 left	 to	 right,	 in	 the	 order	 in	 which	 they	 were
added	to	their	container.

	

By	default,	the	flow	layout	manager	leaves	a	gap	of	five	pixels	between	components
in	both	 the	horizontal	and	vertical	directions.	This	default	can	be	changed	by	calling	an
overloaded	version	of	 the	FlowLayout	constructor,	and	passing	 in	 the	desired	horizontal
and	vertical	gaps.

	

Within	every	row,	the	components	are	evenly	spaced,	and	the	cluster	of	components	is
centered.	 The	 alignment	 (sometimes	 called	 “justification”)	 of	 the	 clustering	 can	 be
controlled	by	passing	a	parameter	to	the	Flow	Layout	constructor.	The	possible	values	are
:

	

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

Example	17.1:

1.														import	java.awt.*;

2.														class	MyFrame1

3.														{													

4.																												public	static	void	main(String	args[])

5.																												{													

6.																																										Frame	f=new	Frame();

7.																																										FlowLayout	flow=new	FlowLayout();

8.																																										f.setLayout(flow);

9.																																										Label	l1	=	new	Label(“Name	:	“);

10.																																										f.add(l1);

11.																																												TextField	tf1=new	TextField(“Matrix”);

12.																																										f.add(tf1);

13.																																										tf1.setBackground(Color.green);

14.																																										tf1.setForeground(Color.red);

15.																																										Button	b1	=	new	Button(“ok”);

16.																																										Font	f1	=	new	Font(“Arial”,	Font.BOLD,	24);

17.																																										b1.setFont(f1);														

18.																																										f.add(b1);

19.																																										f.setSize(500,100);

20.																																										f.setVisible(true);

21.																												}

22.														}

Note:-If	we	 reduce	 the	 size	 of	 the	 above	window	and	 three	 components	 do	 not	 fit	 in	 a
single	row	then	components	are	moved	in	the	next	row	starting	from	last	component.

Output:

	

	

Example	17.2

1.														import	java.awt	.*;

2.														public	class	MyFrame2	extends	Frame

3.														{													

4.																												public	static	void	main	(String	args	[])

5.																												{													

6.																																										MyFrame2	f=new	MyFrame2();

7.														f.setLayout(new	FlowLayout(FlowLayout.CENTER));

8.																																														System.out.println(f.paramString());

9.																																										Label	l1=new	Label(“Name	:”);

10.																																										f.add(l1);

11.																																										TextField	tf1=new	TextField(“Sample	Program”);

12.																																										f.add(tf1);

13.																																										tf1.setBackground(Color.GREEN);

14.																																										tf1.setForeground(Color.RED);

15.																																										Button	b1=new	Button(“OK”);

16.																																										b1.setFont(new	Font(“Serif”,Font.BOLD,24));

17.																																										//b1.setEnabled(false);

18.																																										Dimension	d	=	b1.getSize();

19.														System.out.println(“Button	Size	:”	+	d.width	+	”	”	+	d.height);

20.																																										f.add(b1);

21.																																										//	f.setResizable(false);

22.																																										//	f.setUndecorated(true);

23.																																										f.setVisible(true);

24.																																										Dimension	d1=b1.getSize();

25.														System.out.println(“Button	Size:	”	+	d1.width	+	”	”	+	d1.height);

26.																																										Dimension	d2=f.getSize();

27.														System.out.println(“Frame	Size:	”	+	d2.width	+	”	”	+	d2.height);

28.																																										try

29.																																										{														

30.																																																								Thread.sleep(5000);

31.																																										}

32.																																										catch(InterruptedException	e)	{	}

33.																																										f.setVisible(false);

34.																																										f.setSize(500,100);

35.																																										f.setVisible(true);

36.																																										try

37.																																										{														

38.																																																								Thread.sleep(5000);

39.																																										}

40.																																										catch(InterruptedException	e){	}

41.																																										f.setVisible(false);

42.																																										f.setBounds(20,	20,	100,	100);

43.																																										f.setVisible(true);

44.																																										Dimension	d3=f.getSize();

45.														System.out.println(“Frame	Size	:	”	+	d3.width	+	”	”	+	d3.height);

46.																												System.out.println(f.paramString());

47.																												}

48.														}

	

Output:

	

frame0,0,0,0x0,invalid,hidden,layout=java.awt.FlowLayout,title=,resizable,normal

Button	Size	:0	0

Button	Size:	52	35

Frame	Size:	123	34

Frame	Size	:	123	100

frame0,20,20,123x100,layout=java.awt.FlowLayout,title=,resizable,normal

Example	17.3

	

The	components	will	be	left	aligned,	if	we	change	the	line:

f.setLayout(new	FlowLayout(FlowLayout.CENTER));

in	the	above	program	to

f.setLayout(new	FlowLayout(FlowLayout.LEFT));

	

Output:

Example	17.4:

The	components	will	be	right	aligned,	if	we	change	the	line:

f.setLayout(new	FlowLayout(FlowLayout.LEFT));

	

in	the	above	program	to

f.setLayout(new	FlowLayout(FlowLayout.RIGHT));

	

Output:

	

	

Example	17.5:-We	can	change	the	gap	between	components	in	a	row	(horizontal	gap)	and
the	gap	between	rows	(vertical	gap)	by	using	the	overloaded	constructor	while	setting	the
layout:

	

f.setLayout(new	FlowLayout(FlowLayout.CENTER,	20	,20))

																																																																					

	

																												vgap(between	rows)							hgap(between	components)

Output:

	

	

	

	

3.	 GridLayout:													

The	 functionality	 of	 the	 Grid	 Layout	 Manager	 is	 encapsulated	 in	 the	 class
java.awt.GridLayout.	 The	 Grid	 Layout	 Manager	 arranges	 components	 in	 tabular
format	in	row	and	columns.

	

We	can	think	of	container	space	as	a	grid	of	rows	and	columns.	We	have	to	specify
the	number	of	rows	and	columns	while	specifying	the	layout.

	

The	Grid	Layout	Manager	fits	as	many	components	as	the	size	of	the	row	(number	of
columns	 specified	 in	 the	 layout)	 into	 the	 top	 row	 and	moves	 the	 other	 component	 into
second	row,	and	so	on.	This	is	like	the	spreadsheet,	which	is	divided	into	fixed	number	of
rows	and	columns.

	

The	 flow	 layout	 manager	 always	 honors	 a	 component’s	 preferred	 size.	 The
GridLayout	manager	 takes	 the	 opposite	 extreme:	 when	 it	 performs	 a	 layout	 in	 a	 given
space,	it	ignores	a	component’s	preferred	size.

	

Each	row	and	column	in	a	gird	layout	will	be	the	same	size,	the	overall	area	available
to	the	layout	is	divided	equally	between	the	number	of	rows	and	between	the	number	of
columns.The	grid	layout	uses	“row	major”	notation,	i.e.	components	appear	in	the	order	in
which	they	were	added,	from	left	to	right,	row	by	row.

	

GridLayout	 manger	 behaves	 strangely	 when	 we	 add	 few	 components	 (that	 is,
significantly	fewer	than	the	number	of	rows	times	the	number	of	columns)	or	very	many
components	(that	is,	more	than	the	number	of	rows	times	the	number	of	columns).

	

If	 the	 same	 components	 are	 to	 be	 laid	 in	 a	 taller,	 narrower	 frame,	 then	 every
component	is	proportionally	taller	and	narrower	and	vice-versa.

	

Example	17.6:

1.														import	java.awt.*	;

2.														public	class	MyFrame6	extends	Frame

3.														{													

4.																												public	static	void	main(String	args[])

5.																												{													

6.																																										Frame	f	=	new	MyFrame6();

7.																																										f.setLayout(new	GridLayout(5,3));

8.																																										for(int	row=0;	row<5;	row++)

9.																																										{														

10.																																																								f.add(new	Label(“Label”	+	row));

11.																																																								f.add(new	Button(“Button”	+	row));

12.																																																								f.add(new	TextField(“TextField”	+	row));

13.																																										}

14.																																										f.setSize(500,200);

15.																																										f.setVisible(true);

16.																												}

17.														}

Output:

	

4.	 Border	Layout:

	

The	 functionality	 of	 the	 BorderLayout	 manager	 is	 encapsulated	 in	 the	 class
java.awt.BorderLayout.	The	BorderLayout	manager	is	the	default	manager	for	frames,	so
sooner	or	later	application	programmers	are	certain	to	come	to	grips	with	it.

	

It	enforces	a	very	useful	layout	policy,	but	it	is	possibly	less	intuitive	than	either	the
flow	 or	 grid	 layout	 managers.	 The	 Flow	 layout	 manger	 always	 honor’s	 a	 component’s
preferred	 size;	 the	 Grid	 layout	 	 manager	 never	 does.	 The	 Border	 layout	 manager	 does
something	in	between.

	

The	 Border	 Layout	 Manager	 divides	 the	 available	 container	 space	 into	 five	 parts:
North,	South,	East,	West	and	Center.	We	can	add	one	component	to	each	region.

	

Each	 of	 the	 five	 regions	may	be	 empty	 or	may	 contain	 one	 component	 (that	 is,	 no
region	 is	 required	 to	 contain	 a	 component,	 but	 the	 regions	 can	 only	 contain	 one
component).

	

The	 Border	 layout	 manager	 honors	 the	 preferred	 height	 of	 the	 North	 and	 South
components,	and	forces	them	to	be	exactly	as	wide	as	the	container.	The	North	and	South
regions	are	useful	for	toolbars,	status	lines,	and	any	other	controls	that	ought	to	be	as	wide
as	possible,	but	no	higher	than	necessary.

	

The	East	and	West	regions	are	the	opposite	of	North	and	South.	In	East	and	West,	a
component	gets	its	preferred	width	but	has	its	height	contained.

	

	

Here	 a	 component	 Extends	 vertically	 up	 to	 the	 bottom	 of	 the	North	 component	 (if
there	is	one)	or	to	the	top	of	the	container	(if	there	is	no	North	component).

	

Similarly	the	component	extends	vertically	down	to	the	South	component	(if	there	is
one)	or	to	the	bottom	of	the	container	(if	there	is	no	South	component).

	

We	 can	 only	 put	 a	 single	 component	 in	 each	 region	 well,	 if	 that	 component	 is	 a
container,	 then	 we	 can	 get	 multiple	 components	 displayed.	 The	 Border	 layout	 is	 not
affected	by	the	order	in	which	we	add	components.	Instead,	we	must	specify	which	of	the
five	regions	will	receive	the	component	we	are	adding.

	

The	overloaded	version	of	add()	takes	two	parameters:

	

First,	the	component	being	added,	and

Second,	an	object

Proper	use	of	Border	layout	manager	requires	that	the	second	parameter	be	a	constant
defined	 in	 the	Border	Layout	class	 itself.	The	 five	constants	 that	we	should	know	about
are:

	

									BorderLayout.NORTH

									BorderLayout.SOUTH

									BorderLayout.EAST

									Border	Layout.WEST

									Border	Layout.CENTER

The	 fifth	 region	 that	 a	 Border	 layout	 manager	 controls	 is	 called	 Center.	 Center	 is
simply	the	part	of	a	container	that	remains	after	North,	South,	East,	and	West	have	been
allocated.

	

When	adding	a	component	to	center,	it	is	legal	but	very	unwise,		to	emit	the	second
parameter	to	add	()	call.	In	Java	Platform,	the	Border	layout	manager	will	assume	that	We
mean	center;

	

However,	in	older	versions,	the	behavior	was	unpredictable,	and	typically	resulted	in
the	component	being	entirely	invisible.

	

	

Example	17.7

	

1.														import	java.awt.*;

2.														public	class	MyFrame7

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										Frame	f=new	Frame();

7.														Scrollbar	sbRight=new	Scrollbar(Scrollbar.VERTICAL);

8.																																										f.add(sbRight,	BorderLayout.EAST);

9.														Scrollbar	sbLeft=new	Scrollbar(Scrollbar.VERTICAL);

10.																																										f.add(sbLeft,	BorderLayout.WEST);

11.																																										Label	labelTop=new	Label(“This	is	North”);

12.														labelTop.setFont(new	Font(“Serif”,	Font.ITALIC,	36));

13.																																										labelTop.setForeground(Color.white);

14.																																										labelTop.setBackground(Color.black);

15.																																										f.add(labelTop,	BorderLayout.NORTH);

16.																																										Label	labelBottom=new	Label(“This	is	south”);

17.														labelBottom.setFont(new	Font(“Monospaced”,	Font.BOLD,	18));

18.																																										labelBottom.setForeground(Color.white);

19.																																										labelBottom.setBackground(Color.black);

20.																																										f.add(labelBottom,	BorderLayout.SOUTH);

21.																																										f.setSize(500,200);

22.																																										f.setVisible(true);

23.																												}

24.														}

	

	

Output:

	

	

	

Example	17.8:

	

1.														import	java.awt.*;

2.														public	class	MyFrame8	extends	Frame

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										Frame	f=new	MyFrame8();

7.																																										//f.setLayout(new	BorderLayout());

8.																																										f.add	(new	Button(“N”),	BorderLayout.NORTH);

9.																																										f.add	(new	Button(“S”),	BorderLayout.SOUTH);

10.																																										f.add	(new	Button(“E”),	BorderLayout.EAST);

11.																																										f.add	(new	Button(“W”),	BorderLayout.WEST);

12.																																										Panel	p=new	Panel();

13.																																										p.setBackground(Color.green);																												

14.																																										f.add	(p,	BorderLayout.CENTER);

15.																																										//f.add	(p);		default	is	center

16.																																										f.setSize(300	,300);

17.																																										f.setVisible(true);

18.																												}

19.														}

	

Output:

	

	

	

Example	17.9:

	

1.														import		java.awt.*;

2.														class	BorderLayout3	extends	Frame

3.														{

4.																												public	static	void	main	(String	args[])

5.																												{

6.																																										Frame	f=new	BorderLayout3();

7.																																										//	f.setLayout(new	BorderLayout());

8.																																										Panel	toolbar=new	Panel();

9.																												toolbar.setLayout(new	FlowLayout(FlowLayout.LEFT));

10.																																										toolbar.setBackground(Color.lightGray);

11.																																										toolbar.add(new	Button	(“This”));

12.																																										toolbar.add(new	Button	(“Is”));

13.																																										toolbar.add(new	Button	(“The”));

14.																																										toolbar.add(new	Button	(“Toolbar”));

15.																																										f.add(toolbar,BorderLayout.NORTH);

16.																																										TextField	status=new	TextField(“Status.”);

17.																												status.setFont(new	Font(“Monospaced”,Font.BOLD,48));

18.																																										f.add	(status,BorderLayout.SOUTH);																												

19.																																										f.setSize(300,300);

20.																																										f.setVisible(true);

21.																												}

22.														}

	

Output:

	

	

CardLayout:-

In	CardLayout	we	can	 store	many	cards	but	one	 card	will	 be	 shown	at	 a	 time.
Only	one	card	will	be	visible	at	a	 time,	but	you	can	flip	from	one	card	 to	another.	Here
card	means	a	Panel.

If	 we	 want	 to	 show	 two	 cards	 one	 at	 a	 time	 then	 we	 have	 to	 create	 first	 two

Panels	one	for	each	card	and	one	main	Panel	for	containing	these	two	cards.	This	can	be
useful	for	user	interfaces	with	optional	components	that	can	be	dynamically	enabled	and
disabled	upon	user	input.

Constructors:

CardLayout();													

creates	a	new	card	layout	with	gaps	of	size	0.

CardLayout(int,	int);

Creates	a	new	Card	Layout	with	the	specified	horizontal	and	vertical	gaps.	The
horizontal	gaps	are	placed	at	the	left	and	right	edges.	The	vertical	gaps	are	placed	at	the
top	and	bottom	edges.

From	other	layouts	the	CardLayout	requires	a	bit	more	work.	The	cards	are	held
typically	in	an	object	of	type	panel.	When	cards	are	added	to	the	panel,	they	are	usually
given	a	name.	Thus	we	will	use	the	add()	method	when	adding	cards	to	a	panel.

void	add(Component	objpanel,	Object	objname)

Here,	objname	is	a	string	that	specifies	the	name	of	the	card	whose	panel	is	specified	by
objpanel.

Methods:

void	first(Container	parent)

Goes	to	the	first	card	of	the	container.

void	next(Container	parent)

Goes	to	the	next	card	of	the	given	container.	If	the	currently	visible	card	is	the
last	one,	this	method	flips	to	the	first	card	in	the	layout.

void	previous(Container	parent)

Goes	to	the	previous	card	of	the	given	container.	If	the	currently	visible	card	is
the	first	one,	this	method	flips	to	the	last	card	in	the	layout.

void	last(Container	parent)

Goes	to	the	last	card	of	the	container

void	show(Container	parent,	String	name)

Goes	to	the	component	that	was	added	to	the	layout	with	the	given	name.	If	no
such	component	exists,	then	nothing	happens.

The	following	steps	are	used	to	creates	a	CardLayout

1,														Creates	a	new	Panel	object	and	an	object	of	CardLayout.

2.														Set	the	layout	for	Panel	object	as	CardLayout	using	its	instance	created	in
first	steps.

3.														Now	for	each	card,	creates	a	separate	Panel	object	and	add	whatever
components	we	want	to	add	to	that	Panel	like	buttons,	checkboxes,	etc.

4.														Each	Panel	object	created	in	steps	3	is	added	to	the	main	Panel	object
created	in	step	1,	giving	a	unique	card	name	for	each	card.

5.														Finally	the	main	panel	is	added	to	the	applet	window.

Example17.10:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														import	java.applet.*;

4.	/*<applet	code=“CardLayoutTest”	width=500	height=100></applet>*/

5.public	class	CardLayoutTest	extends	Applet	implements	ActionListener,

MouseListener

6.														{

7.																												Panel	mp;

8.																												CardLayout	c1;

9.																												public	void	init()

10.																												{

11.																																										Button	b1=new	Button(“First”);

12.																																										Button	b2=new	Button(“Second”);

13.																																										b1.addActionListener(this);

14.																																										b2.addActionListener(this);

15.																																										add(b1);

16.																																										add(b2);

18.																																										Panel	p1=new	Panel();

19.																																										Label	l1=new	Label(“INDIA”);

20.																																										p1.add(l1);

22.																																										Panel	p2=new	Panel();

23.																																										Label	l2=new	Label(“USA”);

24.																																										p2.add(l2);

26.																																										mp=new	Panel();

27.																																										c1=new	CardLayout();

28.																																										mp.setLayout(c1);

29.																																										mp.add(p1,“Country1”);

30.																																										mp.add(p2,“Country2”);

31.																																										add(mp);

32.																																										addMouseListener(this);

33.																												}

34.																												public	void	actionPerformed(ActionEvent	ae)

35.																												{

36.																																										Button	b=(Button)ae.getSource();

37.																																										if(b.getLabel().equals(“First”))

38.																																																								c1.show(mp,“Country1”);

39.																																										else

40.																																																								c1.show(mp,“Country2”);

41.																												}

42.																												public	void	mousePressed(MouseEvent	me)

43.																												{

44.																																										c1.next(mp);

45.																												}

46.																												public	void	mouseReleased(MouseEvent	me){}

47.																												public	void	mouseClicked(MouseEvent	me){}

48.																												public	void	mouseEntered(MouseEvent	me){}

49.																												public	void	mouseExited(MouseEvent	me){}

50.														}

Output:

GridBagLayout-

The	GridBagLaout	is	the	most	complex	and	flexible	of	the	standard	layout
managers.	Although	it	sounds	like	it	should	be	a	subclass	of	GridLayout,	but	it	is	different
entirely.	With	GridLayout,	elements	are	arranged

Example17.11:

AWT	components	can	be	classified	as:

	

1.	 Visual	Components.

2.	 Container	Components.

3.	 Menu	Components.

Visual	Components	 and	Container	 components	both	 are	part	of	 the	 component
hierarchy	starting	with	the	class	java.awt.Component.

	

1.	 Methods	of		java.awt.Component	class

Several	methods	are	implemented	by	all	the	visual	and	container	components,	by
virtue	of	inheritance		from	java.awt.component.	(The	menu	components	extend	from
java.awt.MenuComponent,	So	they	do	not	inherit	the	same	super	class	functionality).
These	methods	are	discussed	below:

	

Dimension														getSize()

	

Returns	the	size	of	this	component	in	the	form	of	a	Dimension	object,	which	has
public	data	members	height	and		width	of	type	int.

	

void	setBackground	(Color	c)

	

Sets	 the	background	color	of	a	component.	Generally	background	color	 is	used
for	rendering	the	non-	textual	area	of	the	component.

	

void	setForeground	(Color	c)

	

Sets	 the	 foreground	 color	 of	 a	 component.	 Generally	 foreground	 color	 of	 a
component	 is	 used	 for	 rendering	 text.	 If	 We	 do	 not	 explicitly	 set	 a	 component’s
foreground	or	background	color,	the	component	uses	the	foreground	and	background

color	of	its	immediate	container.

	

void	setFont	(Font	f)

	

The	setFont	()	method	determines	the	font	 that	a	component	will	use	for	rendering
any	text	 that	 it	needs	 to	display.	If	We	do	not	explicitly	set	a	component’s	font,	 the
component	uses	the	font	of	its	container.

	

void	setEnabled(Boolean	b)

	

If	 the	 argument	 is	 true,	 then	 the	 component	 has	 its	 normal	 appearance.	 If	 the
argument	 is	 false,	 then	 the	 component	 is	 grayed	 out	 and	 does	 not	 respond	 to	 user
input.

	

void	setSize	(Dimension	d)

	

Sets	the	size	of	the	component.

	

void	setSize	(int	width,	int	height)

	

Sets	the	size	of	the	component.

void	setBounds	(int	x,	int	y,	int	width,	int	height)

	

Attempts	 to	move	and	 resize	 the	 component.	The	new	 location	of	 the	 top-	 left
corner	is	specified	by	x	and	y	,	and	the	new	size	is	specified	by	width	and	height.

	

void	setVisible	(Boolean	b)

	

This	method	takes	a	Boolean	argument	that	dictates	whether	the	component	is	to
be	seen	on	the	screen.	This	method	is	generally	used	for	frames.

	

Note-

if	We	have	tried	calling	setSize	()	or	setBounds	()	methods,	we	know	that	it	is
usually	futile.	The	size	and	position	that	we	attempt	to	give	a	component	is	overruled
by	a	layout	manager.

	

In	 fact,	 these	 two	 methods	 exist	 mostly	 for	 the	 use	 of	 layout	 managers.	 The
major	 exception	 to	 this	 rule	 is	 the	Frame	 class,	which	 is	 not	 under	 the	 thumb	of	 a
layout	manager	and	is	perfectly	willing	to	have	we	set	its	size	or	bounds.

	

Visual	Components:

	

The	visual	components	are	the	ones	that	users	can	actually	see	and	interact	with.	The
AWT	supports	the	following	visual	components.

	

									Button

									Canvas

									Checkbox

									Choice

									FileDialog

									Label

									List

									ScrollPane

									Scrollbar

									TextArea

									TextField

To	 use	 one	 of	 these	 components	 in	 a	 GUI,	 we	 first	 create	 an	 instance	 by	 calling	 the
appropriate	constructor.	Then	we	add	the	component	to	a	container.

	

Button:

The	Button	class,	implements	a	push	button.

	

Constructors

Button()

Button(String)

The	 constructor	 takes	 a	 string	 parameter	 that	 specifies	 the	 text	 of	 the	 button’s
label.	When	a	button	is	pushed	it	sends	an	Action	event.

	

Methods:

	

String																												getLabel	()

																												Gets	the	label	of	this	button.

	

void																												setLabel	(String	label)

																												Sets	the	button’s	label	to	be	the	specified	string.

	

void																												addActionListener	(ActionListener	1)

Adds	 the	 specified	 action	 listener	 to	 receive	 action	 events
from	this	button.

	

Example	17.12

1.														import	java.awt.*;

2.														class	ButtonTest

3.														{

4.																												public	static	void	main(String	args[])													

5.																												{

6.																																										Frame	f=new	Frame(“Testing	Button	Component”);

7.																																										f.setLayout(new	FlowLayout());

8.																																										Font	f1=new	Font(“Arial”,Font.BOLD,40);

9.																																										Color	c1=new	Color(255,0,0);

10.																																										Color	c2=new	Color(0,255,0);

11.																																										Button	b1	=	new	Button();

12.																																										Button	b2	=	new	Button(“Cancel”);

13.																																										b1.setForeground(c1);

14.																																										b2.setForeground(c1);

15.																																										b1.setBackground(c2);

16.																																										b2.setBackground(c2);

17.																																											b1.setFont(f1);

18.																																										b2.setFont(f1);

19.																																										b1.setLabel(“Ok”);

20.																																										System.out.println(b2.getLabel());

21.																																										f.add(b1);

22.																																										f.add(b2);													

23.																																										f.setSize(500,200);

24.																																										f.setVisible(true);

25.																												}

26.														}

Output:

	

Canvas:

	

A	 Canvas	 is	 a	 component,	 which	 has	 no	 default	 appearance	 or	 behavior.	 We	 can
subclass	 canvas	 to	 create	 custom	 drawing	 regions,	 work	 areas,	 components	 and	 so	 on.
Canvases	 receive	 input	 events	 from	 the	 mouse	 and	 the	 keyboard,	 it	 is	 up	 to	 the
programmer	to	transform	those	inputs	into	a	meaningful	look	and	feel.

	

The	default	size	(or,	more	properly,	the	preferred	size)	of	a	canvas	is	uselessly	small.
One	way	to	deal	with	this	problem	is	to	use	a	layout	manager	that	will	resize	the	canvas.
Another	way	is	to	call	setSize	()	on	the	canvas	ourself,	canvases	are	a	rare	case	where	this
might	actually	work	because	 the	value	we	send	 into	 the	setSize	()	method	becomes	 the
canvas’s	preferred	size.

Example	17.13

1.														import	java.awt.*;

2.														class	CanvasTest

3.														{													

4.																												public	static	void	main	(String	args	[])

5.																												{													

6.																																										Frame	f	=	new	Frame()	;

7.																																										f.setLayout(new	FlowLayout());

8.																																											Canvas	c=new	MyCanvas();

9.																																										c.setSize(100,	100);

10.																													f.add(c)	;

11.																													f.setSize(300,	300);

12.																													f.setVisible(true);

13.														}

14.}													

15.														class	MyCanvas	extends	Canvas

16.{														

17.																												public	void	paint(Graphics	g)

18.															{													

19.																																										setBackground(Color.green);

20.																													g.setColor(Color.red);

21.																													g.drawLine(0,	0,	99,	99);

22.															}

23.}

	

Output:

	

	

Checkbox:

A	 check	 box	 is	 a	 two	 state	 button.	 The	 two	 states	 are	 true	 (checked)	 and	 false
(unchecked).	The	three	basic	forms	of	the	checkbox	constructors	are:

	

Constructors-

	

Checkbox()

Creates	a	check	box	with	an	empty	string	for	its	label.

	

Checkbox	(String	label)

Creates	a	check	box	with	the	specified	label.

	

Checkbox(String	label,	boolean	state)

Creates	a	check	box	with	the	specified	label	and	sets	the	specified	state.	If	we	do
not	specify	and	initial	state,	the	default	is	false.

	

Methods:

	

String															getLabel	()

														Gets	the	label	of	this	check	box.

	

void														setLabel	(String	label)

														Sets	this	check	box’s	label		to	be	the	string	argument.

	

bolean														getState	()

														Determines	whether	this	check	box	is	in	the	“on”	or	“off	“state.
	

void														setState	(boolean	state)

														Sets	the	state	of	this	check	box	to	the	specified	state.

	

void														addItemListener	(ItemListener)

Adds	the	specified	item	listener	to	receive	item	events	from	this	check
box.

Example	17.14

1.														import	java.awt.*;

2.														class	CheckboxTest

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.														Frame	f	=	new	Frame(“Testing	Checkbox	Component”);

7.																																										f.setLayout(new	GridLayout(3,1));

8.																																										Checkbox	c1=new	Checkbox();

9.																																										Checkbox	c2=new	Checkbox(“Lunch”,true);

10.																																										Checkbox	c3=new	Checkbox(“Dinner”);

11.																																										c1.setLabel(“BreakFast”);

12.																																										c3.setState(true);

13.																																										f.add(c1);f.add(c2);f.add(c3);

14.																																																							

15.																																										if(c1.getState())

16.																																																								System.out.println(c1.getLabel());

17.																																										if(c2.getState())

18.																																																								System.out.println(c2.getLabel());

19.																																										if(c3.getState())

20.																																																								System.out.println(c3.getLabel());

21.																																																																					

22.																																										f.setSize(100,100);

23.																																										f.setVisible(true);

24.																												}}

Output:

Another	Example-

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	CheckboxTest	extends	Frame	implements	ItemListener

4.														{

5.																												Checkbox	c1;

6.																												TextField	tf1;

7.																												CheckboxTest()

8.																												{

9.																																										setLayout(new	GridLayout(2,1));

10.																																										c1=new	Checkbox(“Red”);

11.																																										c1.addItemListener(this);

12.																																										add(c1);

13.																																										tf1=new	TextField();

14.																																										add(tf1);

15.																																										setSize(100,100);

16.																																										setVisible(true);

17.																												}

18.																												public	static	void	main(String	args[])

19.																												{

20.																																										new	CheckboxTest();

21.																												}

22.																												public	void	itemStateChanged(ItemEvent	ie)

23.																												{

24.																																										if(c1.getState())

25.																																																								tf1.setBackground(Color.red);

26.																																										else

27.																																																								tf1.setBackground(Color.white);

28.																												}

29.														}

Radio	button:

	

Checkboxes	 can	 be	 grouped	 together	 into	 checkbox	 groups,	 which	 have	 radio
behavior.	With	radio	behavior,	only	one	member	of	a	check	box	group	can	be	true	at	any
time;	 selecting	 a	 new	member	 changes	 the	 state	 of	 the	 previously	 selected	 member	 to
false.	Many	windows	systems	(Motif	for	example)	implement	radio	groups	as	components
in	their	own	right.

	

We	can	implement	radio	behavior	by	creating	multiple	checkboxes	and	grouping	them
using	java.awt.	Checkbox	Group	Class.	In	Java	the	java.Awt.CheckboxGroup	class	is	not
a	component;	it	is	simply	a	non-	visible	class	that	organizes	checkboxes.	This	means	that
Java	imposes	no	restrictions	on	the	spatial	relationships	among	members	of	a	check	box
group.

	

If	 we	want	 to,	 we	 could	 put	 one	member	 of	 a	 group	 in	 the	 upper	 left	 corner	 of	 a
frame,	another	member	in	the	lower-right	corner,	and	a	third	member	in	a	different	frame
altogether.	Of	course,	the	result	would	probably	be	contrary	to	both	reason	and	most	GUI
style	guides.

	

Two	methods	of	the	Checkbox	Group	class	support	getting	and	setting	the	currently
selected	member	or	the	group.

	

Checkbox																												getSelectedCheckbox()

																												Gets	the	current	choice	from	this	check	box	group.

	

void																												setSelectedCheckbox	(Checkbox	box)

Sets	 the	 currently	 selected	 check	 box	 in	 this	 group	 to	 be
specified	check	box.

	

Example	17.15

1.														import	java.awt.*;

2.														class	CheckboxGroupTest

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.														Frame	f	=	new	Frame(“Testing	RadioButton	Component”);

7.																																										f.setLayout(new	GridLayout(3,1));

8.																																										CheckboxGroup	cbg=new	CheckboxGroup();

9.																																										Checkbox	c1=new	Checkbox(“BreakFast”,false,cbg);

10.																																										Checkbox	c2=new	Checkbox(“Lunch”,true,cbg);

11.																																										Checkbox	c3=new	Checkbox(“Dinner”,false,cbg);

12.																																										c3.setState(true);

13.																																										f.add(c1);f.add(c2);f.add(c3);

14.																																									

15.																																										if(c1.getState())

16.																																																								System.out.println(c1.getLabel());

17.																																										else	if(c2.getState())

18.																																																								System.out.println(c2.getLabel());

19.																																										else	if(c3.getState())

20.																																																								System.out.println(c3.getLabel());

21.																																																																					

22.																																										f.setSize(100,100);

23.																																										f.setVisible(true);

24.																												}

25.														}

Output:

	

Choice:

	

A	choice	is	a	pull	–down/drop-down	list.

	

Methods:

void																												add	(String	item)

																												Adds	an	item	to	this	Choice	menu.

	

void																												addItemListener	(ItemListener	i)

Adds	 the	 specified	 item	 listener	 to	 receive	 item	events	 from
this	choice	menu.

	

String																												getItem	(int	index)

																												Gets	the	String	at	the	specified	index	in	this	Choice	menu.

int																																										getItemCount	()

																												Returns	the	number	of	items	in	this	Choice	menu.

	

int																																										getSelectedIndex	()

																												Returns	the	index	of	the	currently	selected	item.

	

String																												getSelectedItem	()

																												Gets	a	representation	of	the	current	choice	as	a	string.

void																												insert	(String	item,	int	index)

																												Inserts	the	item	into	this	choice	at	the	specified	position.

void																												remove	(int	position)

																												Removes	the	first	occurrence	of	item	form	the	choice	menu.

void																												remove(String	item)

																												Removes	the	first	occurrence	of	item	from	the	Choice	menu.

void																													removeAll	()

																												Removes	all	items	from	the	choice	menu.

	

void																												select	(int	pos)

Sets	the	selected	item	in	this	choice	menu	to	be	the	item	at	the
specified	position.

	

void																												select	(String	Str)

Sets	 the	 selected	 item	 in	 this	 Choice	 menu	 to	 be	 the	 item
whose	name	is	equal	to	the	specified	string.

	

Example	17.16

1.														import	java.awt.*;

2.														class	ChoiceTest

3.														{

4.														public	static	void	main(String	args[])	throws	InterruptedException

5.																												{

6.																																										Frame	f	=	new	Frame(“Testing	Choice	Component”);

7.																																										f.setLayout(new	FlowLayout());

8.																																										f.setSize(100,100);

9.																																										f.setVisible(true);

10.																																										Choice	c1=new	Choice();

11.																																										c1.add(“BreakFast”);

12.																																										c1.add(“Lunch”);																																																																					
													

13.																																										c1.add(“Dinner”);

14.																																										f.add(c1);

15.																																										c1.select(“Dinner”);	//	c1.select(2);

16.																																										Thread.sleep(1000);

17.																																										System.out.println(c1.getSelectedItem());

18.																																										System.out.println(c1.getSelectedIndex());

19.																																										System.out.println(c1.getItemCount());

20.																																										System.out.println(c1.getItem(0));

21.																																										c1.insert(“Brunch”,1);

22.																																										c1.remove(2);	//	c1.remove(“Lunch”);

23.																												}

24.														}

Output:

	

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	CheckboxItemTest	extends	Frame	implements	ItemListener

4.														{

5.																												TextField	tf1;

6.																												Choice	c1;

7.																												CheckboxItemTest()

8.																												{

9.																																										setLayout(new	FlowLayout());

10.																																										c1=new	Choice();

11.																																										c1.add(“red”);

12.																																										c1.add(“green”);

13.																																										c1.add(“blue”);

14.																																										tf1	=	new	TextField(8);

15.																																										tf1.setBackground(Color.red);

16.																																										c1.addItemListener(this);

17.																																										add(c1);

18.																																										add(tf1);

19.																																										setSize(200,200);

20.																																										setVisible(true);

21.																												}

22.																												public	static	void	main(String	args[])

23.																												{

24.																																										new	CheckboxItemTest();

25.																												}

26.																												public	void	itemStateChanged(ItemEvent	ie)

27.																												{

28.																																										String	s=(String)ie.getItem();

29.																																										if(s.equals(“red”))

30.																																																								tf1.setBackground(Color.red);

31.																																										else	if(s.equals(“green”))

32.																																																								tf1.setBackground(Color.green);

33.																																										else	if(s.equals(“blue”))

34.																																																								tf1.setBackground(Color.blue);

35.																												}

36.														}

	

Label:

	

The	 simplest	 visible	 AWT	 component	 is	 label.	 Labels	 are	 not	 generally	 used	 to
respond	to	user	input,	or	to	send	out	events.

	

Constructors:

	

Label	()																											

Constructs	an	empty	label.

	

Label	(String	text)

Constructs	a	new	label	with	the	specified	string	of	text,	left	justified.

	

Label	(String	text,	int	alignment)

Constructs	a	new	label	that	present	the	specified	string	of	text	with	the	specified
alignment.

	

The	default	alignment	for	labels	is	to	the	left.	To	set	the	alignment,	use	the	third
from	of	the	constructor	and	pass	in	one	of	the	following:

	

Lable.LEFT
Label.CENTER
Label.RIGHT

	

Methods:

	

String																												getText	()

																												Gets	the	text	of	the	this	label.

	

void																												setText	(String	text)

																												Sets	the	text	for	this	label	to	the	specified	text.

	

Example	17.17

	

1.														import	java.awt.*;

2.														class	LabelTest

3.														{

4.																												public	static	void	main(String	args[])

5.																												{

6.																																										Frame	f	=	new	Frame(“Testing	Label	Component”);

7.																																										f.setLayout(new	GridLayout(3,3));

8.																																										f.setFont(new	Font(“Arial”,Font.PLAIN,	20));

9.																																										Label	l1	=	new	Label(“India”,Label.LEFT);

10.																																										Label	l2	=	new	Label(“Pakistan”,Label.LEFT);

11.																																										Label	l3	=	new	Label(“UK”,Label.LEFT);

13.																																										Label	l4	=	new	Label(“India”,Label.CENTER);

14.																																										Label	l5	=	new	Label(“Pakistan”,Label.CENTER);

15.																																										Label	l6	=	new	Label(“UK”,Label.CENTER);

17.																																										Label	l7	=	new	Label(“India”,Label.RIGHT);

18.																																										Label	l8	=	new	Label(“Pakistan”,Label.RIGHT);

19.																																										Label	l9	=	new	Label(“UK”,Label.RIGHT);

21.																																										l3.setText(“USA”);

22.																																										System.out.println(l1.getText());

24.																																										f.add(l1);f.add(l4);f.add(l7);

25.																																										f.add(l2);f.add(l5);f.add(l8);

26.																																										f.add(l3);f.add(l6);f.add(l9);

28.																																										f.setSize(500,200);

29.																																										f.setVisible(true);

30.																												}

31.														}													

Output:

													

List:

A	 list	 is	 a	 collection	of	 text	 items,	 arranged	vertically.	 If	 a	 list	 contains	more	 items
than	it	can	display,	it	automatically	acquires	a	vertical	scroll	bar.

	

	

Constructors:

	

List	()

Creates	a	new		Scrolling	list.	This	constructor	does	not	specify	number	of	visible

rows	but	produces	a	default	preferred	height	of	 four	 rows.	Of	course,	 in	many
cases	the	actual	height	of	a	list	will	be	dictated	by	a	layout	manager.

	

List	(int	rows)

Creates	a	new	scrolling	list	initialized	with	the	specified	number	of	visible	lines.

	

List	(int	rows,	boolean	multipleMode)

Creates	a	new	scrolling	list	initialized	to	display	to	specified	number	of	rows	and
allows	multiple	selections.

	

Example	17.18

	

1.														import	java.awt.*;

2.														class	ListTest

3.														{

4.																												public	static	void	main(String	args[])

5.																												{													

6.																																										Frame	f	=	new	Frame	()	;

7.																																										f.setLayout	(new	FlowLayout	());

8.																																												List	l1=new	List(3,true);

9.																																												l1.add(“India”);

10.																																												l1.add(“Nepal”);

11.																																												l1.add(“Shri	Lanka”);

12.																																												l1.add(“USA”);

13.																																												l1.add(“UK”);

14.																																												f.add(l1);

15.																																										System.out.println(l1.getRows());

16.																																										f.setSize(300,	300);

17.																																										f.setVisible(true);

18.																												}

19.														}

	

Output:

The	List	has	five	items	but	only	3	visible	rows,		so	a	scroll	bar	is	automatically
provided	to	give	access	to	the	bottom	two	lines.

	

Note:	Selecting	an	item	in	a	list	causes	the	list	to	send	an	Item	event;	double-	clicking	an
item	sends	an	Action	Event.

	

void																												add(String	item)

														Add	the	specified	item	to	the	end	of	scrolling	list.

	

void																												add	(String	item,	int	index)

Adds	the	specified	item	to	the	scrolling	list	at	the	position	indicated	by
the	index.

	

void																												addActionListener	(ActionListener	i)

														Adds	the	specified	item	listener	to	receive	action	events	form																												
this	list.

	

void																												addItemListener	(ItemListener	i)

Adds	the	specified	item	listener	to	receive	item	events	form	this	list.

	

String																												getItem	(int	index)

														Gets	the	item	associated	with	the	specified	index.

	

int																												getItemCount	()

														Gets	the	number	of	items	in	the	list.

	

String[]																												getItems()

														Gets	the	items	in	the	list.

	

int																												getRows	()

														Gets	the	number	of	visible	lines	in	this	list.

	

	

int																												getSelectedIndex	()

														Gets	the	index	of	the	selected	item	in	the	list.

	

int[]																												getSelectedIndexes	()

														Gets	the	selected	indexes	in	the	list.

	

String																												getSelectedItem	()

														Gets	the	Selected	item	in	this	scrolling	list.

	

String[]																												getSelectedItems	()

														Gets	the	selected	items	in	this	scrolling	list.

	

void																												remove	(int	position)

Removes	the	item	at	the	specified	position	from	this	scrolling	list.

	

void																												remove	(String	item)

														Removes	the	first	occurrence	of	an	item	from	the	list.

	

void																												removeAll	()

														Removes	all	items	from	this	list.

	

void																												replaceItem	(Sring	newValue,	int	index)

Replaes	the	item	at	the	specified	index	in	the	scrolling	list	with	the	new
string.

	

void																												select	(int	index)

														Selects	the	item	at	the	specified	index	in	the	scrolling	list.

	

void																												setMultipleMode	(boolean	b)

Sets	 the	 flag	 that	 determines	 whether	 this	 list	 allows	 multiple

selections.

	

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	ListTest	extends	Frame	implements	ActionListener

4.														{

5.																												Button	b1,b2,b3,b4,b5,b6;

6.																												List	l1,l2;

7.																												TextField	tf1,tf2;

8.																												ListTest()

9.																												{

10.																																										setLayout(new	GridLayout(3,3));

11.																																										l1=new	List(3,true);

12.																																										l2=new	List(3,true);

13.																																										b1=new	Button(“>”);

14.																																										b2=new	Button(“>>”);

15.																																										b3=new	Button(“<”);

16.																																										b4=new	Button(“<<”);

17.																																										b5=new	Button(“Add”);

18.																																										b6=new	Button(“Add”);

19.																																										b1.addActionListener(this);

20.																																										b2.addActionListener(this);

21.																																										b3.addActionListener(this);

22.																																										b4.addActionListener(this);

23.																																										b5.addActionListener(this);

24.																																										b6.addActionListener(this);

25.																																										tf1=new	TextField();

26.																																										tf2=new	TextField();

27.																																										Panel	p1=new	Panel();

28.																																										p1.setLayout(new	GridLayout(4,1));

29.																																										p1.add(b1);

30.																																										p1.add(b2);

31.																																										p1.add(b3);

32.																																										p1.add(b4);

33.																																										add(l1);add(p1);add(l2);

34.																																										add(tf1);add(new	Label());add(tf2);

35.																																										add(b5);add(new	Label());add(b6);

36.																																										setSize(300,300);

37.																																										setVisible(true);

38.																												}

39.																												public	static	void	main(String	args[])

40.																												{

41.																																										new	ListTest();

42.																												}

43.																												public	void	actionPerformed(ActionEvent	ae)

44.																												{

45.																																										Button	b=(Button)ae.getSource();

46.																																										if(b==b1)

47.																																										{

48.																																																								String	s[]=l1.getSelectedItems();

49.																																																								for(int	i=0;i<s.length;i++)

50.																																																								{

51.																																																																						l2.add(s[i]);

52.																																																																						l1.remove(s[i]);

53.																																																								}													

54.																																										}

55.																																										else	if(b==b2)

56.																																										{

57.																																																								String	s[]=l1.getItems();

58.																																																								for(int	i=0;i<s.length;i++)	{

59.																																																																						l2.add(s[i]);

60.																																																																						l1.remove(s[i]);

61.																																																								}													

62.													

63.																																										}

64.																																										else	if(b==b3)

65.																																										{

66.																																																								String	s[]=l2.getSelectedItems();

67.																																																								for(int	i=0;i<s.length;i++)

68.																																																								{

69.																																																																						l1.add(s[i]);

70.																																																																						l2.remove(s[i]);

71.																																																								}													

72.																																										}

73.																																										else	if(b==b4)

74.																																										{																											

75.																																																								String	s[]=l2.getItems();

76.																																																								for(int	i=0;i<s.length;i++)

77.																																																								{

78.																																																																						l1.add(s[i]);

79.																																																																						l2.remove(s[i]);

80.																																																								}													

81.																																										}

82.																																										else	if(b==b5)

83.																																										{

84.																																																								l1.add(tf1.getText());

85.																																										}

86.																																										else	if(b==b6)

87.																																										{

88.																																																								l2.add(tf2.getText());

89.																																										}

90.																												}

91.														}

	

TextField	and	TextArea:

	

The	 Text	 Field	 and	 Text	 Area	 classes	 implement	 one-dimensional	 and	 two-
dimensional	components	for	text	input,	display	and	editing.	Both	classes	extend	from	the
TextComponent	super	class.

	

Object � Component	� 		TextComponent	� 	(TextField	,	TextArea)

	

Both	classes	(TextField	and	TextArea)	have	a	variety	of	constructors,	which	offer	the
option	of	specifying	or	not	specifying	an	initial	string	or	preferred	size.	The	constructors
that	 do	 not	 specify	 a	 preferred	 size	 are	 most	 appropriate	 for	 situations	 where	 a	 layout
manager	will	ignore	the	component’s	preferred	size.

Constructors	of	Text	Field	Class:

	

TextField()

Constructs	a	new	text	filed.

	

TextField(int	columns)

Constructs	a	new	empty	text	field	with	the	specified	number	of	columns.

	

TextField(String	text)

Constructs	a	new	text	field	initialized	with	the	specified	text.

	

TextField(String	text,	int	columns)

Constructs	 a	 new	 text	 field	 initialized	with	 the	 specified	 text	 to	 be	 displayed,	 and
wide	enough	to	hold	the	specified	number	of	columns.

	

Constructors	of	Text	Area	Class:

	

TextArea	()

Constructs	a	new	text	area	with	the	empty	string	text.

	

TextArea	(int	rows,	int	columns)

Constructs	 a	 new	 text	 area	 with	 the	 specified	 number	 of	 row	&	 columns	 and	 the
empty	string	as	text.

	

TextArea	(String	text)

Constructs	a	new	text	area	with	the	specified	text.

	

TextArea	(String	text,	int	rows,	int	columns)

Constructs	a	new	text	area	with	the	specified	text,	and	with	the	specified	number	of
rows	and	columns.

	

TextArea	(String	text,	int	rows,	int	columns,	int	ScrollbarPolicy)

Constructs	a	new	text	area	with	the	specified	text,	and	with	the	rows,	columns,	and
scroll	bar	policy	as	specified.

	

The	 text	Area	class	defines	several	constants	 that	can	be	supplied	as	values	 for	 the
scrollbar	Policy	argument.

	

SCROLLBARS_BOTH,

SCROLLBARS_VERTICAL_ONLY,

SCROLLBARS_HORIZONTAL_ONLY,

SCROLLBARS_NONE.

	

For	 both	 classes,	 there	 are	 some	 surprising	 issues	 to	 the	 number	 of	 columns
parameter.

First,	the	number	of	columns	is	a	measure	of	width	in	terms	of	columns	of	text,
as	 rendered	 in	 a	 particular	 front.	 A	 25-columns	 text	 area	 with	 a	 tiny	 will	 be	 very
narrow,	while	a	5-columns	text	area	with	a	huge	font	will	be	extremely	wide.

	

Next,	 there	 is	 the	 problem	 of	 proportional	 fonts.	 For	 a	 fixed	 width	 font,	 it	 is
obvious	what	the	column	width	should	be.	For	proportional	font,	the	column	width	is
taken	 to	be	 the	 average	of	 all	 the	 font’s	 character	widths.	This	 average	 is	 a	 simple
average	 of	 all	 the	 characters	 in	 the	 set;	 it	 does	 not	 take	 into	 account	 frequency	 of
characters	 use.	 So	 in	 most	 cases,	 text	 components	 that	 contain	 largely	 lowercase
letters	will	display	more	than	the	requested	number	of	characters.

	

Methods	in	text	Component	Class:

	

String														getSelectText	()

Returns	 the	 selected	 text	 from	 the	 text	 that	 is	 presented	 by	 this	 text

component.

	

String														getText	()

														Returns	the	text	that	is	presented	by	this	text	component.

	

void														SetEditable(Boolean	b)

Sets	 the	 flag	 that	 determines	 whether	 or	 not	 this	 text	 component	 is
editable.

	

void														setText	Srting	t)

Sets	the	text	that	is	presented	by	this	text	component	to	be	the	specified
text.

	

Example	17.19

import	java.awt.*;

1.														class	TextFieldTest

2.														{													

3.																												public	static	void	main(String	args[])

4.																												{													

5.																																										Frame	f=new	Frame()	;

6.																																										f.setLayout(new	FlowLayout	());

7.																																										TextField	tf1=new	TextField();

8.																																										TextField	tf2=new	TextField(8);

9.																																										TextField	tf3=new	TextField(“matrix”);

10.																																										TextField	tf4=new	TextField(“matrix”,20);

11.																																										TextArea	ta1=new	TextArea();

12.																																										TextArea	ta2=new	TextArea(3,8);

13.																																										TextArea	ta3=new	TextArea(“abc\nxyz\naaa”);

14.																																										TextArea	ta4=new	TextArea(“abc\nxyz\naaa”,2,2);

15.																																										TextArea	ta5=new	TextArea(“abc\nxyz\naaa”,4,20,

																												TextArea.SCROLLBARS_BOTH);

16.																																																									f.add(tf1);f.add(tf2);f.add(tf3);f.add(tf4);

17.																																																				f.add(ta1);f.add(ta2);f.add(ta3);f.add(ta4);

18.																																										f.add(ta5);

19.																																										tf1.setText(“abc”);

20.																																										System.out.println(tf3.getText());

21.																																										tf3.setEditable(false);

22.																																										f.setSize(800,	400);

23.																																										f.setVisible(true);

24.																												}

25.														}

	

	

Output:

	

FileDialog:

	

This	 class	 represents	 a	 file	 open	 or	 file	 save	 dialog.	 A	 file	 dialog	 is	 a	 modal
dialog,	which	means	input	from	the	dialog’s	parent	frame	will	be	directed	exclusively	to
the	 dialog,	 as	 long	 as	 dialog	 remains	 visible	 on	 the	 screen.	The	 dialog	 is	 automatically
removed	when	 the	use	 specifies	 a	 file	 or	 clicks	 the	 cancel	 button.	The	most	 useful	File
dialog	constructor	has	the	following	form:

FileDialog(Frame	parent,	String	title,	int	mode)

The	 dialog’s	 parent	 is	 the	 frame	over	which	 the	 dialog	will	 appear.	The	 title	 string
appears	in	the	dialog’s	title	bar.

	

The	mode	should	be	either.

	

FileDialog.LOAD	or

FileDialog.SAVE

After	the	user	has	specified	a	file,	the	name	of	the	file	or	its	directory	can	be	retrieved
with	the	following	methods.:

	

String																												getDirectory	()

																												Gets	the	selected	directory	of	this	file	dialog.

	

String																												getFile	()	Gets	the	selected	file	of	this	file	dialog.

Example	17.20

1.														import	java.awt.*;

2.														public	class	FileDialogTest

3.														{													

4.																												public	static	void	main(String	args[])

5.																												{													

6.																																										Frame	f=new	Frame()	;

7.																																											f.setLayout(new	FlowLayout());

8.																																											f.setSize(200,	200);

9.																																										f.setVisible(true);

10.															FileDialog	fd=new	FileDialog	(f,	“Load	file”,	FileDialog.LOAD);

11.																													fd.setVisible(true);

12.																													System.out.println(fd.getFile());

13.																														System.out.println(fd.getDirectory());

14.															}

15.	}

	

ScrollPane:

	

A	scrollPane	can	contain	a	single	component,	which	may	be	taller	or	wider	than
the	scroll	pane	itself.

	

If	 the	 container	 component	 is	 larger	 than	 the	 scroll	 pane,	 then	 the	 default
behavior	 of	 the	 scroll	 pane	 is	 to	 acquire	 horizontal	 and/	 or	 vertical	 scroll	 bars	 as

needed.

	

There	are	two	constructors	for	this	class:

	

ScrollPane()

Create	a	new	scroll	pane	container	with	a	scrollbar	display	policy	of	“as	needed”.

	

ScrollPane(int	scrollbarDisplayPolicy)

Create	 	 a	 new	 scrollpane	 container	with	 the	 specified	 scroll	 bar	 behavior.	 The
scroll	pane	display	policy	should	be	one	of:

	

																												ScrollPane.SCROLLBARS_AS_NEEDED	(default)

																												ScrollPane.SCROLLBARS_ALWAYS

																												ScrollPane.SCROLLBARS_NEVER

	

The	Code	 listed	below	creates	a	 scroll	pane	with	default	 (As_NEEDED)	scroll
bar	 behavior.	 The	 scroll	 pane	 contains	 a	 very	 large	 button;	 So	 the	 scroll	 bars	will
definitely	be	needed.

	

	

	

Example	17.21

1.														import	java.awt.*;

2.														class	SPaneTest

3.														{													

4.																												public	static	void	main(String	args[])

5.																												{													

6.																																										Frame	f=new	Frame();

7.																																										f.setLayout(new	GridLayout(1,2));

8.																																										f.setSize(250,	150);

9.																																										ScrollPane	spane=new	ScrollPane();

10.																																										spane.setBackground(Color.green);

11.																																										f.add(spane);

12.																																										f.add(new	TextArea());

13.																																												Button	b1=new	Button(“Push	Me	!”);

14.																																										b1.setFont(new	Font(“Serif”,	Font.ITALIC,	100));

15.																																										spane.add(b1);

16.																																										f.setVisible(true);

17.																												}

18.														}

Output:

	

	

Scrollbar-

	

The	 Scrollbar	 component	 that	 adjusts	 lists	 and	 scroll	 panes	 is	 available	 as	 a
component	in	its	own	right.	There	are	three	constructors:

	

Scrollbar	()

Constructs	a	new	vertical	scroll	bar.

	

Scrollbar	(int	orientation)

Constructs	a	new	scroll	bar	with	he	specified	orientation.

	

Scrollbar	 (int	 orientation,	 int	 initialValue,	 int	 sliderSize,	 int	 minValue,	 int
maxValue)

	

Constructs	 a	 new	 scroll	 bare	with	 the	 specified	 orientation	 initial	 value,	 slider
size,	and	minimum	and	maximum	values.	The	sliderSize	parameter	controls	the	size
of	the	slider,	but	not	in	pixel	units.

For	constructors	that	take	an	orientation	parameter,	this	value	should	be	one	of:

Scrollbar.HORIZONTAL

Scrollbar.VERTICAL

Example	17.22

	

1.														import	java.applet.*;

2.														import	java.awt.*;

3.														import	java.awt.event.*;

4.														/*<applet	code	=	“RGB”	width=500	height=200></applet>		*/

5.														public	class	RGB	extends	Applet	implements	AdjustmentListener

6.														{

7.																												TextField	tf1;

8.																																			Scrollbar	sb1,sb2,sb3;

9.																																			public	void	init()

10.																																		{

11.																																										setLayout(new	GridLayout(4,1));

12.														sb1	=	new	Scrollbar(Scrollbar.HORIZONTAL,0,10,0,255);

13.																																											sb2	=	new	Scrollbar(Scrollbar.HORIZONTAL,0,10,0,255);

14.																																											sb3	=	new	Scrollbar(Scrollbar.HORIZONTAL,0,10,0,255);

15.																																											sb1.addAdjustmentListener(this);

16.																																											sb2.addAdjustmentListener(this);

17.																																											sb3.addAdjustmentListener(this);

18.																																											tf1	=	new	TextField(8);

19.																																											add(tf1);add(sb1);

20.																																											add(sb2);add(sb3);

21.																																			}

22.																																			public	void	adjustmentValueChanged(AdjustmentEvent	ae)

23.																																			{

24.																																											int	a=0,b=0,c=0;

25.																																											a	=	sb1.getValue();

26.																																																	b	=	sb2.getValue();

27.																																										c	=	sb3.getValue();

28.																																											Color	c1	=	new	Color(a,b,c);

29.																																											tf1.setBackground(c1);

30.																																			}

31.														}

	

	

	 	 	 	

	

	

	
CHAPTER
∞	18	∞

(INTRODUCTION	TO	AWT	EVENTS)
	

	
Introduction-
	

When	a	normal	Java	program	(which	is	not	GUI	based)	needs	input,	 it	prompts
the	 user	 and	 then	 calls	 some	 input	 method,	 such	 as	 readline()	 i.e.	 the	 interaction	 	 is
initiated	by	 the	program.	This	 is	not	 the	way	 in	which	gui-based	programs	behave.	The
user	initiates	interaction	with	the	program	rather	than	program	initiating	the	action.

For	example	,	in	a	word	processing	software,	user	initiates	action	by	clicking	on
different	buttons,	which	generates	an	event	and	some	piece	of	code	is	executed	as	a	result
and	 accordingly	 some	 action	 takes	 place.	 The	 clicking	 on	 save	 button	 will	 invoke	 the
method	which	saves	the	contents	to	a	file.

	

Interface Event(Methods) class Methods

ActionListener actionPerformed() ActionEvent	ae getSource

ItemListener itemStateChanged() ItemEvent	ie getItem

AdjustmentListener adjustmentValueChanged() AdjustmentEvent	ae getAdjustable()

MouseListener

MouseAdapter

mouseEntered

mouseExited

mouseClicked

mousePressed

mouseReleased

MouseEvent	me getX()

getY()

getPoint()

getClickCount()

getButton()

getModifiersEx()

getModifiersExText()

MouseMotionListener

MouseMotionAdapter

mouseMoved

mouseDragged

MouseEvent	me same	as	prev.

KeyListener

KeyAdapter

keyTyped

keyPressed

keyReleased

KeyEvent	ke getKeyChar()

getKeyCode()

FocusListener

FocusAdapter

focusGained

focusLost

FocusEvent	fe getSource()

WindowListener

WindowAdapter

windowOpend

windowClosing

windowClosed

windowActivated

windowDeactivated

windowIconified

windowDeiconified

WindowEvent	we getWindow()

	

Java	 uses	 event	 delegation	 model	 for	 event	 handling.	 In	 the	 event	 delegation
model	a	component	may	be	told	which	object	or	should	be	notified	when	the	component
generates	a	particular	kind	of	event.

If	a	component	is	not	interested	in	an	event	type,	then	events	of	that	type	will	not
be	propagated.	The	delegation	model	is	based	on	the	following	key	concepts:

Event	classes.

Event	listeners.

Adapters.

Event	classes:

Clicking	 on	 a	 button	 results	 in	 an	 event.	 The	 event	 has	 lot	 of	 information
associated	with	it,	like:	time,	component	generating	the	event,	co-ordinates	of	the	point	at
which	clicking	took	place	etc.

This	information	is	put	inside	an	event	class.	The	concept	is	similar	to	exception
handling.	 Whenever	 an	 exception	 occurs	 an	 object	 of	 appropriate	 exception	 class	 is
created	and	all	the	exception	related	information	is	put	into	this	object.

We	have	hierarchy	of	event	classes,	which	is	some	what	similar	to	the	hierarchy
of	 exception	 classes.	 Whenever	 some	 event	 occurs,	 it	 is	 detected	 by	 event	 handling,
mechanism,	which	creates	objects	of	appropriate	event	class	and	puts	all	the	event	related
information	into	it.

Event	listeners:

Event	 listeners	 are	 responsible	 for	 taking	 appropriate	 action	 when	 an	 event
occurs.	 An	 event	 listener	 is	 an	 object	 to	 which	 a	 component	 has	 delegated	 the	 task	 of
handling	a	particular	kind	of	event	.

When	 the	 component	 experiences	 input,	 an	 event	 of	 the	 appropriate	 type	 is
constructed,	the	event	is	then	passed	as	the	parameter	to	a	method	call	on	the	listener.	A
listener	must	implement	the	interface	that	contains	that	event	handling	method.

We	 can	 compare	 the	 event	 listeners	 with	 the	 catch	 blocks	 for	 handling	 the
exceptions.	 We	 need	 to	 provide	 a	 catch	 block	 corresponding	 to	 the	 exception	 to	 be
handled.	Similarly	if	we	want	to	handle	an	event	generated	by	some	component,	we	need
to	provide	appropriate	listener.

The	listeners	are	associated	with	the	components.	Different	events	have	different
listeners.	When	event	occurs,	an	appropriate	listener	method	is	called	and	event	object	is
passed	as	parameter.

Adapters:

The	 listeners	 defined	 in	 the	 language	 are	 interfaces	 only.	We	 need	 to	 provide
implementation	of	the	appropriate	listener.	Some	listeners	have	2	or	more	methods.

To	 implement	 a	 listener	 having	 more	 than	 one	 method,	 we	 need	 to	 provide
implementation	 of	 all	 the	 methods	 even	 if	 we	 are	 interested	 only	 in	 one	 method.	 the
adapter	classes	provide		the	solution	to	this	problem.

An	adapter	class	provides	dummy	implementation	of	all	the	methods	of	a	listener.
This	 helps	 in	 reducing	 programming	 efforts.	 If	 we	 want	 to	 use	 just	 one	 method	 of	 a
listener	class	containing	say	5	methods	 then	we	can	simply	extent	 the	adapter	class	and
override	the	desired	method.

Event	hierarchy:

The	AWT	has	a	well-defined	event	hierarchy.	Normally	the	classes	corresponding
to	leaf	nodes	in	the	event	hierarchy	represent	the	actual	events.	While	non-leaf	classes	act
as	base	classes	and	encapsulate	.

AWT	event	hierarchy	is	described	in	the	following	diagram.

The	java.util.eventObject	class:

This	is	the	top	most	super	class	of	all	the	event	classes.	It	is	a	very	general	class,
with	only	one	method	of	interest,	which	returns	the	object	that	originated	the	event.

Object	getsource()

The	java.awt.AWTEvent	Class:

One	sub	class	of	event	object	is	java.awt.AWTEvent	,	which	is	the	super	class	of
all	the	delegation	model	event	classes.		Again,	there	is	only	one	method	of	interest,	which
return	the	id	of	the	event.

int	getID()

An	event’s	ID	is	an	int	that	specifies	the	exact	nature	of	the	event.	For	example,
an	instance	of	the	mouseevent	class	can	represent	one	of	seven	occurrences:	click	,	Drag,
Entrance,	Move,	Exit,	Press,	Release.	Each		of	these	possibilities	is	represented	by	an	int
MouseEvent	.	MOUSE_CLICKED,	MouseEvent.MOUSE_DRAGGED,	and	so	on.

The	sub	classes	of	java.awt.AWTEvent	represent	the	various	event	types	that	can
be	 generated	 by	 the	 various	 AWT	 components,	 and	 contain	 all	 necessary	 information
relating	to	the	activity	that	triggered	the	event.

The	non-super	class	event	types(i.e	those	that	are	actually	fired	by	component)	are:

1.	 ActionEvent:	general	by	activation	of	components	for	example	.it	is	generated	on
button	click,	on	double-click	on	list	item	and	on	pressing	enter	in	a	TextField.

2.	 AdjustmentEvent:	 generated	 by	 adjustment	 of	 adjustable	 components	 such	 as
scroll	bars.

3.	 ContainerEvent:	 generated	when	components	 are	 added	 to	or	 removed	 from	a
container.

4.	 FocusEvent:	generated	when	a	component	receives	or	loses	input	focus.
5.	 ItemEvent:	generated	when	an	item	is	selected	from	a	list,	choice,	or	checkbox.
6.	 KeyEvent	:	generated	by	keyboard	activity.
7.	 MouseEvent:	generated	by	mouse	activity.
8.	 MouseWheelEvent:	An	event,	which	indicates	that	the	mouse	wheel	was	rotated

in	a	component.
9.	 WindowEvent:	 generated	 by	 window	 activity	 (such	 as	 iconifying	 or

deiconifying.)
10.	 TextEvent:	generated	when	a	text	component	is	modified.

The	java.awt.event	package:

This	package	provides	the	interfaces	and	classes	for	dealing	with	different	types
of	 events	 fired	 by	 AWT	 components.	 The	 events	 are	 fired	 by	 event	 sources.	 An	 event
listener	 registers	 with	 an	 event	 source	 to	 receive	 notifications	 about	 the	 events	 of	 a
particular	type.

This	 package	 defines	 events	 and	 event	 listeners,	 as	 well	 as	 event	 listener
adapters,	 which	 are	 convenience	 classes	 to	 make	 easier	 the	 process	 of	 writing	 event
listeners.

Event	Listener	Interfaces:

Each	event	class	has	a	corresponding	listener	interface	and	defines	one	or	more
methods.	 The	 most	 commonly	 used	 listener	 interfaces	 are	 described	 in	 the	 following
sections.

The	Action	Listener	Interface:

This	 is	 the	 listener	 interface	 for	 receiving	 action	 events.	 The	 class	 that	 is
interested	in	processing	an	action	event	implement	 	 this	 interface,	and	the	object	created
with	that	class	is	registered	with	a	component,	using	the	component’s	addActionListener()
method.	When	the	action	event	occurs,	the	action	listener’s	action	performed()	method	is
invoked	whose	signatures	are:

void actionPerfomed	(ActionEvent	e)

Invoked	when	an	action	occurs.

	

The	AdjustmentListerner	Interface:

This	is	the	listener	interface	for	receiving	adjustment	events.

void adjustmentValueChanged	(Adjustment	event	e)

Invoked	when	the	value	of	the	thumb/slider	changes.

	

The	ContainerListener	interface:

This	 is	 the	 listener	 interface	 for	 receiving	 events	 when	 a	 component	 is	 added	 to	 or
removed	from	a	container.

Methods:

void

	

componentAdded	(containerEvent	e)

Invoked	when	a	component	is	added	to	the	container.

void componentRemoved	(containerEvent	e)

Invoked	when	a	component	is	removed	from	the	container.

	

The	FocusListener	Interface:

This	is	the	listener	interface	for	receiving	events	when	a	component	gains	or	loses	focus.

Methods:

void focusGained(focusEvent	e)

Invoked	when	a	component	gains	the	keyboard	focus.

void focusLost	(focusEvent	e)

Invoked	when	a	component	loses	the	keyboard	focus.

	

The	ItemListener	Interface:

This	is	the	listener	interface	for	receiving	item	events.

Method:

void														itemStateChanged	(ItemEvent	e)

Invoked	when	an	item	has	been	selected	or	deselected	by	the	user.

The	keyListener	Interface:

This	is	the	listener	interface	for	receiving	keyboard	events(keystrockes)

void keyPressed(KeyEvent	e)

Invoked	when	a	key	is	pressed.

void key	Released	(KeyEvent	e)

Invoked	when	a	key	is	released.

void keyTyped	(KeyEvent	e)

Invoked	when	a	key	is	typed	(pressed	and	released.)

	

The		MouseListener	Interface:

This	is	the	listener	interface	for	receiving	mouse	events(press	,	release.	Click,	enter,	and
exit)	on	a	component.

Method:

void																												mouseClicked(MouseEvent	e)

Invoked	when	the	mouse	button	is	clicked	(pressed	and	released)	on	a
Component.													

void																												mouseEntered(MouseEvent	e)

														Invoked	when	the	mouse	enters	a	component.

void																												mouseExited(MouseEvent	e)

														Invoked	when	a	mouse	exits	a	component.

void																												mousePressed(MouseEvent	e)

														Invoked	when	a	mouse	button	is	pressed	on	a	component.

void																												mouseReleased(MouseEvent	e)

														Invoked	when	a	mouse	button	is	released	on	a	component.

MouseMotionListener:

This	 is	 the	 listener	 interface	 for	 receiving	mouse	motion	 events	 (move	 and	 drag)	 on	 a
component.

Method:

void																												mouseDragged(MouseEvent	e)

Invoked	when	a	mouse	button	is	pressed	on	a	component	and	then
dragged.

void																												mouseMoved(MouseEvent	e)

Invoked	 when	 a	 mouse	 cursor	 is	 moved	 over	 a	 component	 but	 no
buttons	is	pushed.

The	MouseWheelListener	Interface:

This	is	the	listener	interface	for	receiving	mouse	wheel	events	on	a	component.

Method:

void																												mouseWheelMoved(MouseEvent	e)

														Invoked	when	the	mouse	wheel	is	rotated.

The	WindowListener	Interface:

when	the	window’s	status	changes	by	virtue	of	being	opened,	closed,activated	or
deactivated,	iconified	or	deiconified,	the	relevant	method	in	the	listener	object	is	invoked,
and	the	windowevent	is	passed	to	it.

Methods:

void																												windowAcitvated(WindowEvent	e)

														Invoked	when	the	window	is	set	to	be	the	active	window.

void																												windowClosed(WindowEvent	e)

Invoked	 when	 the	 window	 has	 been	 close	 as	 the	 result	 of	 calling
Dispose	on	the	window.

void																												windowClosing(WindowEvent	e)

Invoked	 when	 the	 user	 attempts	 to	 close	 the	 window	 from	 the
window’s	system	menu.

void																												windowDeactivated(WindowEvent	e)

														Invoked	when	a	window	is	no	longer	the	active	window.

void																												windowDeiconified(WindowEvent	e)
																												invoked	when	a	window	is	changed	from	a	minimized	to	a

normal	state.											

void																												windowIconified(WindowEvent	e)

Invoked	 when	 a	 window	 is	 changed	 from	 a	 normal	 to	 a	 minimized
state.

void																												windowOpended	(WindowEvent	e)

														Invoked	the	first	time	a	window	is	made	visible.

Handling	ActionEvent:
Example18.1

The	 following	 example	 explains	 how	 to	 handle	 the	 actionevnet	 generated	 as	 a	 result	 of
clicking	on	a	button.

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A1

4.														{					

5.																												public	static	void	main(String	args[])

6.																																		{										

7.																																										Frame	f=new	Frame();

8.																																																	f.setLayout(new	FlowLayout());

9.																																											f.setSize(500,100);

10.																																											Button	b1=new	Button(“Push	me”);

11.																																							Button	b2=new	Button(“Click	me”);

12.																																							b1.addActionListener(new	B());

13.																																																			b2.addActionListener(new	C());

14.																																							f.add(b1);

15.																																										f.add(b2);

16.																																											f.setVisible(true);

17.																												}

18.														}

19.														class	B	implements	ActionListener

20.														{												

21.																												public	void	actionPerformed(ActionEvent	ae)

22.																												{

23.																																										System.out.println(“Button	Pushed”);

24.																												}

25.														}

26.														class	C	implements	ActionListener

27.														{												

28.																												public	void	actionPerformed(ActionEvent	ae)

29.																												{

30																																										System.out.println(“Button	Clicked”);

31.																												}

32.														}

Output:

Example	18.2:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A2	implements	ActionListener

4.														{					

5.																												static	Button	b1=null,b2=null;

6.																												public	static	void	main(String	args[])

7.																																		{										

8.																																										Frame	f=new	Frame();

9.																																			f.setLayout(new	FlowLayout());

10.																																											f.setSize(500,100);

11.																																											b1=new	Button(“Push	me”);

12.																																											b2=new	Button(“Click	me”);

13.																																											b1.addActionListener(new	A2());

14.																																										b2.addActionListener(new	A2());

15.																																											f.add(b1);

16.																												f.add(b2);

17.																																											f.setVisible(true);

18.																												}

19.																												public	void	actionPerformed(ActionEvent	ae)

20.																												{

21.																												if(ae.getSource()	==	b1)													

22.																												System.out.println(“Button	Pushed”);

23.																																										else

24.																												System.out.println(“Button	Clicked”);

25.																												}

26.														}

Output:	Same	as	Previous	Example.

Example	18.3:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A3	implements	ActionListener

4.														{					

5.														Button	b1=null,b2=null;

6.																												A3()

7.																												{

8.																												Frame	f=new	Frame();

9.																																			f.setLayout(new	FlowLayout());

10.																																											f.setSize(500,100);

11.																																											b1=new	Button(“Push	me”);

12.																																											b2=new	Button(“Click	me”);

13.																																											b1.addActionListener(this);

14.																																										b2.addActionListener(this);

15.																																											f.add(b1);

16.																												f.add(b2);

17.																																											f.setVisible(true);

18.																												}																											

19.																												public	static	void	main(String	args[])

20.																												{										

21.																												new	A3();

22.																												}

23.																												public	void	actionPerformed(ActionEvent	ae)

24.																												{

25.																												if(ae.getSource()	==	b1)													

26.																												System.out.println(“Button	Pushed”);

27.																																										else

28.																												System.out.println(“Button	Clicked”);

29.																												}

30.														}										

Output:	Same	as	Previous	Example.

Example	18.4

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A4	implements	ActionListener

4.														{					

5.																												static	Button	b1=null,b2=null;

6.																												static	TextField	tf1=null,tf2=null,	tf3=null;

7.																												public	static	void	main(String	args[])

8.																																		{										

9.																																										Frame	f=new	Frame();

10.																																																	f.setLayout(new	GridLayout(4,2));

11.																																											f.setSize(500,300);

12.																																										Label	l1	=	new	Label(“No1.”);

13.																																										Label	l2	=	new	Label(“No2.”);

14.																																										Label	l3	=	new	Label(“Result”);

15.																																										tf1	=	new	TextField();

16.																																										tf2	=	new	TextField();

17.																																										tf3	=	new	TextField();

18.																																											b1=new	Button(“Sum”);

19.																																											b2=new	Button(“Avg”);

20.																																											b1.addActionListener(new	A4());

21.																																										b2.addActionListener(new	A4());

22.																																										f.add(l1);f.add(tf1);

23.																																										f.add(l2);f.add(tf2);

24.																																										f.add(l3);f.add(tf3);

25.																																											f.add(b1);f.add(b2);

26.																																											f.setVisible(true);

27.																												}

28.																												public	void	actionPerformed(ActionEvent	ae)

29.																												{

30.																																										int	a,b,c;

31.																																										float	av;

32.																																										a=Integer.parseInt(tf1.getText());

33.																																										b=Integer.parseInt(tf2.getText());

34.																																										if(ae.getSource()	==	b1)													

35.																																																								tf3.setText(””	+(a+b));

36.																																										else

37.																																																								tf3.setText(””	+	(a+b)/2.0f);

38.																												}	}

Output:

Note:	a	component	may	have	multiple	listeners	associated	with	it	.	there	is	no	guarantee
that	listeners	will	be	notified	in	the	order	in	which	they	were	added.

There	is		also	no	guarantee	that	all	listener	notification	will	occur	in	the	same	thread,
thus,	listeners	must	take	precautions	against	corrupting	shared	data.

An	event	listener	may	be	removed	from	a	component’s		list	of	listeners	by	calling
remove	XXXListener()	method,	passing	in	the	listener	to	be	removed.

For	example	,code	below	removes	action	listener	al	from	button	btn:

btn.removeActionListener(al);

Handling	window	events

	

Example	18.5:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A5

4.														{																	

5.																												public	static	void	main(String	args[])

6.																												{										

7.																																										Frame	f=	new	Frame();

8.																																							f.setLayout(new	FlowLayout());

9.																																											f.setSize(300,300);

10.																																							f.addWindowListener(new	B());

11.																																							f.setVisible(true);

12.																												}

13.														}

14.														class	B	implements	WindowListener

15.														{												

16.																												public	void	windowOpened	(WindowEvent	we)

17.																												{													

18.																																										System.out.println	(“Window	Opened”);

19.																												}

20.																												public	void	windowActivated(WindowEvent	we)

21.																												{																												

22.																																										System.out.println	(“Window	Activated”);

23.																												}																																										

24.																												public	void	windowDeactivated(WindowEvent	we)																												

25.																												{														

26.																																										System.out.println	(“window	Deactivated”);

27.																												}

28.																												public	void	windowClosing(WindowEvent	we)

29.																												{													

30.																																										System.out.println(“Window	Closing”);

31.																																										Frame	f	=	(Frame)	we.getWindow();

32.																																										f.dispose();

33.																												}

34.																												public	void	windowClosed(WindowEvent	we)

35.																												{														

36.																																										System.out.println(“Window	Closed”);

37.																												}

38.																												public	void	windowIconified(WindowEvent	we)

39.																												{													

40.																																										System.out.println(“Window	Iconified”);

41.																												}

42.																												public	void	windowDeiconified(WindowEvent	we)

43.																												{													

44.																																										System.out.println(“Window	Deiconified”);

45.																												}

46.														}

Adapters:

Some	 of	 the	 event	 listener	 interfaces	 have	 several	 methods.	 The	 largest	 interface,
WindowListener	has	seven	methods.	Suppose	we	want	to	catch	window	Closing	()	event,
so	that	the	code	for	closing	window	can	be	executed.	Although	we	need	only	one	method
window	 Closing	 ()	 in	 the	 class	 implementing	 Window	 Listener	 but	 we	 will	 have	 to
provide	dummy	implementation	for	all	the	methods.

The	 java.awt.event	 package	 provides	 several	 adapter	 classes,	 one	 for	 each	 listener
interface	that	defines	more	than	just	a	single	method.

An	 adapter	 is	 simply	 a	 class	 that	 implements	 an	 interface	 by	 providing	 do	 nothing
methods.	 For	 example,	 the	 Window	 Adapter	 class	 implements	 the	 Window	 Listener
interface	with	seven	do-	nothing	methods.													

Adapter	classes	and	Their	Interfaces:

Adapter	Class																												Listener	Interfaces

ContainerAdapter																												ContainerListener

FocusAdapter																												FocusListener

KeyAdapter																																										KeyListener

MouseAdapter																												MouseListener

MouseMotionAdapter														MouseMotionListener

WindowAdapter																												WindowListener

Example	18.6	Use	of	the	WindowAdapter	Class.

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A6

4.														{													

5.																												public	static	void	main	(String	args[])

6.																										{										

7.																																										Frame	f=	new	Frame();

8.																																														f.setLayout(new	FlowLayout());

9.																																														f.setSize(300,300);

10.																																							f.addWindowListener(new	B());

11.																																							f.setVisible(true);

12.																												}

13.														}

14.														class	B	extends	WindowAdapter

15.														{												

16.																												public	void	windowClosing(WindowEvent	we)

17.																												{														

18.																																										System.out.printIn(“Window	Closing”);

19.																																											Frame	f	=	(Frame)	we.getWindow	();

20.																																																				f.dispose();

21.																												}

22.														}

The	InputEvent	class:

This	 is	 the	 root	 event	 class	 for	 all	 component	 level	 input	 events.	 Input	 events	 are
delivered	 to	 listeners	 before	 they	 are	 processed	 normally	 by	 the	 source	 where	 they
originated.	 This	 allows	 listeners	 and	 component	 subsclasses	 to	 “consume”	 the	 event	 so
that	 the	 source	will	 not	 process	 them	 in	 their	 default	manner.	 For	 example,	 consuming
mouse	 pressed	 events	 on	 a	 Button	 component	 will	 prevent	 the	 Button	 from	 being
activated.

Methods:

void														consume()

Consumes	 this	 event	 so	 that	 it	 will	 not	 be	 processed	 in	 the	 default
manner	by	the	source	that	originated	it.

int																												getModifiers	()

														Returns	the	Modifier	mask	for	this	event.

int																												getModifiersEx	()

														Returns	the	extended	modifier	mask	for	this	event.

static	String														getModifiersExText	(int	modifiers)

Returns	a	String	describing	the	extended	modifier	Keys	such	as	“shift”,
“Ctrl	+	Shift”	etc.

long																												getWhen	()

														Returns	a	timestamp	of	when	this	event	occurred.

boolean														isAltDown	()

														Returns	whether	or	not	the	Alt	modifier	is	down	on	this	event.

boolean														isConsumed	()

																														Returns	whether	or	not	this	event	has	been	consumed.

boolean														isControlDown	()

														Returns	whether	or	not	the	Control	modifier	is	down	on	this	event.

boolean														isShiftDown	()

														Returns	whether	or	not	the	shift	modifier		is	down	on	this	event.

The	Mouse	Event	Class:

This	 is	 sub-	 class	 of	 Input	 Event	 class.	 This	 event	 indicates	 that	 a	 mouse	 action
occurred	in	a	component.	A	mouse	action	is	considered	to	occur	in	a	particular	component
if	and	only	if	the	mouse	cursor	is	over	the	un-obscured	part	of	the	component’s	children	or
by	a	menu		or	by	a	top-	level	widow.

This	event	is	used	both	for	Mouse	events	(click,	enter,	press,	exit,	release)	and	Mouse
motion	events	(move	and	drag).

Methods:

int																																										getButton()

Returns	 which,	 if	 any,	 of	 the	 mouse	 buttons	 has	 changed
state.

int																																										getClickCount()

Returns	 the	 number	 of	 mouse	 clicks	 associated	 with	 this
event.

static	String															getMouseModifiersText	(int	modifiers)

Returns	a	String	describing	the	modifier	Keys	that	were	down
during	the	event,	such	as	“Shift”,	or	“Ctrl	+	shift”.

point																												getPoint	()

Returns	 the	 x,	 y	 position	 of	 the	 event	 relative	 to	 the	 source
component.

int																																										getX	()

Returns	 the	horizontal	x	position	of	 the	event	 relative	 to	 the
source	component.

int																																										getY	()

Returns	 the	 vertical	 y	 position	 of	 the	 event	 relative	 to	 the
source	component.

boolean																												isPopupTrigger	()

Returns	whether	or	not	 this	mouse	event	 is	 the	popup	menu
trigger	event	for	the	platform.

Note:	 Popup	 menus	 are	 triggered	 differently	 on	 different	 systems.	 Therefore,
isPopupTrigger	 ()	 should	 be	 checked	 in	 both	 mouse	 Pressed	 and	 mouse	 Released	 for
proper	cross-platform	functionality.

Handling	Mouse	Events:

Example	18.7

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A7

4.														{																	

5.																												public	static	void	main(String	args[])

6.																												{										

7.																																										Frame	f=	new	Frame();

8.																																										f.setLayout(new	FlowLayout());

9.																																																	f.setSize(300,300);

10.																																										Button	b1	=	new	Button(“Push	Me”);

11.																																										b1.addMouseListener(new	B());

12.																																										b1.addMouseMotionListener(new	C());

13.																																										b1.addActionListener(new	D());

14.																																										f.add(b1);

15.																																										f.setVisible(true);

16.																												}

17.														}

18.														class	B	implements	MouseListener

19.														{												

20.																												public	void	mouseEntered(MouseEvent	me)

21.																												{														

22.																																										System.out.println(“Mouse	Entered…”);

23.																																										System.out.println(me.getX());

24.																																										System.out.println(me.getY());

25.																												}

26.																												public	void	mouseExited(MouseEvent	me)

27.																												{														

28.																																										System.out.println(“Mouse	Exited…”);

29.																																										Point	p1=me.getPoint();

30.																																										System.out.println(p1.x);

31.																																										System.out.println(p1.y);

32.																												}

33.																												public	void	mousePressed(MouseEvent	me)

34.																												{														

35.																																										System.out.println(“Mouse	pressed…”);

36.																																										int	ms	=	me.getModifiersEx();

37.																																										String	s	=	me.getModifiersExText(ms);

38.																																										System.out.println(s);

39.																												}

40.																												public	void	mouseReleased(MouseEvent	me)

41.																												{														

42.																												System.out.println(“Mouse	Released…”);

43.																												System.out.println(“ClickCount—>”	+	me.getClickCount());

44.																												}

45.																												public	void	mouseClicked(MouseEvent	me)

46.																												{														

47.																																										System.out.println(“Mouse	Clicked…”);

48.																																										System.out.println(“Button—>”+me.getButton());

49.																												}													

50.														}

51.														class	C	implements	MouseMotionListener

52.														{												

53.																												public	void	mouseMoved(MouseEvent	me)

54.																												{														

55.																																										System.out.println(“Mouse	Moved…”);

56.																												}

57.																												public	void	mouseDragged(MouseEvent	me)

58.																												{													

59.																																										System.out.println(“Mouse	Dragged…”);

60.																												}

61.														}

62.														class	D	implements	ActionListener

63.														{														

64.																												public	void	actionPerformed(ActionEvent	ae)

65.																												{													

66.																																										System.out.println	(“Button	Pressed…”);

67.																												}	}

The	ActionEvent	Class:

It	 is	 a	 semantic	 event,	which	 indicates	 that	 a	 component	–	defined	action	occurred.
This	 high	 level	 event	 is	 generated	 by	 a	 component	 (such	 as	 a	 Button)	 when	 the
component-	specific	action	occurs	(Such	as	being	pressed).	The	event	is	passed	to	every
Action	Listener	object	 that	 registered	 to	 receive	 such	 events	using	 the	 component’s	 add
action	Listener	method.

The	object	that	implements	the	Action	Listener	interface	gets	this	Action	Event	when
the	 event	 occurs.	 The	 listener	 is	 therefore	 spared	 the	 details	 of	 processing	 individual
mouse	movements	and	mouse	clicks,	and	can	instead	process	a	“meaningful”	(semantic)
event	like	“button	pressed”.

Note	:	To	invoke	an	ActionEvent	on	a	Button	using	the	Keyboard,	use	the	space	bar.

Methods:

String														getAction	(Command)

														Returns	the	command	string	associated	with	this	action.

int																												getModifiers	()

														Returns	the	modifier	Keys	held	down	during	this	action	event.

long														getWhen	()

														Returns	the	time	stamp	of	when	this	event	occurred.

Example	18.8:

This	example	illustrates	how	we	can	identify	the	key	modifiers	effective	when	and	Action
Event	occurs.

1.		import	java.awt.*;

2.		import	java.awt.event	*;

3.		public	class	KeyModifierDemo	extends	Frame	implements	ActionListener

4.														{														

5.																												Button	b;

6.																												KeyModifierDemo	()

7.																												{													

8.																																										b	=	new	Button	(“Button”);

9.																																										b.addActionListener	(this);

10.																																										setLayout	(new	FlowLayout	());

11.																																											add	(b);

12.																																											setBounds	(100,100,200,200);

13.																																											setVisible	(true);

14.																													}

15.																												public	static	void	main	(String	args[])

16.																												{														

17.																																										new	KeyModifierDemo	();

18.																												}

19.																												public	void	actionPerformed	(ActionEvent	ae)

20.																												{														

21.																																										System.out.println	(“Button	Pressed”);

22.																																										int	ms	=	ae.getModifiers	();

23.																																											if	(ms	&	InputEvent.CTRL_	DOWN_MASK)!=0)

24.																																											{																												

25.																												System.out.println	(“CTRL	key	was	pressed”);

26.																																											}

27.																												if	(ms	&	InputEvent.SHIFT_	DOWN_	MASK)!=0)

28.																																											{														

29.																												System.out.println	(“Shift	Key	was	pressed”);

30.																																											}

31.																												if	(ms	&	InputEvent.ALT_DOWN_MASK)!=0)

32.																																											{													

33.																												System.out.println	(“ALT	key	was	pressed”);

34.																																											}

35.																																}

36.														}

Handling	Multiple	Action	Commands:

Action	 events	 are	 the	 simplest.	 When	 we	 find	 out	 that	 a	 scroll	 bar	 has	 sent	 an
adjustment	event,	the	obvious	question	is,	“Now	what	is	the	scroll	bar’s	value?”.	When	we
find	out	that	the	mouse	has	been	clicked,	it	is	natural	to	wonder,	“What	are	the	mouse’s		x
and	y	coordinates?”	But	when	we	 find	out	 that	a	button	has	sent	an	Action	event,	 there
does	not	seem	to	be	any	additional	information	to	seek;	the	button	has	been	clicked,	and
that	seems	to	be	all	there	is	to	Know.

However,	there	is	an	extra	piece	of	information	associated	with	an	Action	event.	This
information	 is	 a	 string,	know	as	 an	Action	command.	We	can	extract	 an	Action	event’s

Action	command	with	the	getActionCommand	()	method.If	an	Action	event	was	sent	by	a
text	field,	getActionCommand	()	returns	the	current	contents	of	the	text	field.	(A	text	field
sends	an	Action	event	when	the	user	types	the	Enter	Key.).	If	an	Action	event	was	sent	by
a	button,	the	default	behavior	is	for	getActionCommand	()	to	return	the	string	that	is	the
button’s	 label.	However,	we	can	explicitly	 set	 a	button’s	ActionCommand	by	calling	 its
setActionCommand	(String)	method.

Button	btn	=	new	Button	(“Hello”);

btn.setActionCommand	(“Hello”);

The	 benefit	 of	 Action	 commands	 for	 buttons	 is	 apparent	 when	 a	 button’s	 Action
listener	needs	to	decide	how	to	react	to	an	Action	event.	It	is	common	for	a	single	listener
to	 act	 as	 a	 listener	 for	 several	 components	 ;	 in	our	 context,	 a	 single	object	might	be	 an
Action	listener	for	several	or		many	button.	In	this	situation,	the	object’s	actionPerformed	(
)	 method	 must	 being	 by	 determining	 which	 button	 was	 hit	 .The	 following	 example,
demonstrates	this:

Example	18.9:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	ButtonRefTest

4.														{

5.																												Button	b1,b2,b3;

6.																												ButtonRefTest()

7.																												{														

8.																																										Frame	f=new	Frame();

9.																																										f.setLayout(new	FlowLayout	());

10.																																										f.setSize(300,300);

11.																																										b1=new	Button(“Push	Me”);

12.																																										b2=new	Button(“Click	Me”);

13.																																										b3=new	Button(“Hit	Me”);

14.																																										f.add(b1);															f.add(b2);															f.add(b3);

15.																																										B	obj=	new	B(b1,b2,b3);

16.																																										b1.addActionListener(obj);

17.																																										b2.addActionListener(obj);

18.																																										b3.addActionListener(obj);

19.																																										f.setVisible(true);

20.																												}

21.																												public	static	void	main(String	args	[])

22.																												{													

23.																																										new	ButtonRefTest();

24.																												}

25.														}

26.														class	B	implements	ActionListener

27.														{													

28.																												Button	b4,b5,b6;

29.																												B(Button	b1,	Button	b2,	Button	b3)

30.																												{

31.																																										b4	=	b1;

32.																																										b5	=	b2;

33.																																										b6	=	b3;

34.																												}

35.																												public	void	actionPerformed(ActionEvent	ae)

36.																												{														

37.																																										Button	b=(Button)ae.getSource();

38.																																										if(b==b4)

39.																												System.out.println(“First	Button	was	pressed”);

40.																																										else	if(b==b5)

41.																												System.out.println(“Second	Button	was	pressed”);

42.																																										else	if(b==b6)

43.																												System.out.println(“Third	Button		was	pressed”);

44.																												}

45.														}

	

Example	18.10:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	GetLabelTest

4.														{

5.																												Button	b1,b2,b3;

6.																												GetLabelTest()

7.																												{														

8.																																										Frame	f=new	Frame();

9.																																										f.setLayout(new	FlowLayout	());

10.																																										f.setSize(300,300);

11.																																										b1=new	Button(“Push	Me”);

12.																																										b2=new	Button(“Click	Me”);

13.																																										b3=new	Button(“Hit	Me”);

14.																																										f.add(b1);															f.add(b2);															f.add(b3);

15.																																										B	obj=	new	B();

16.																																										b1.addActionListener(obj);

17.																																										b2.addActionListener(obj);

18.																																										b3.addActionListener(obj);

19.																																										f.setVisible(true);

20.																												}

21.																												public	static	void	main(String	args	[])

22.																												{													

23.																																										new	GetLabelTest();

24.																												}

25.														}

26.														class	B	implements	ActionListener

27.														{													

28.																												public	void	actionPerformed(ActionEvent	ae)

29.																												{														

30.																																										Button	b=(Button)ae.getSource();

31.																																										String	s=b.getLabel();													

32.																																										if(s.equals(“Push	Me”))

33.																												System.out.println(“First	Push	Me	Button	was	pressed”);

34.																																										else	if(s.equals(“Click	Me”))

35.																												System.out.println(“Second	Push	Me	Button	was	pressed”);

36.																																										else	if(s.equals(“Hit	Me”))

37.																												System.out.println(“Third	Push	Me	Button		was	pressed”);

38.																												}

39.														}

Example	18.11:	Using	setActionCommand()	method	to	set	the	Action	Command.

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	ActionCommandTest

4.														{

5.																												Button	b1,b2,b3;

6.																												ActionCommandTest()

7.																												{														

8.																																										Frame	f=new	Frame();

9.																																										f.setLayout(new	FlowLayout());

10.																																										f.setSize(300,300);

11.																																										b1=new	Button(“Push	Me”);

12.																																										b2=new	Button(“Push	Me”);

13.																																										b3=new	Button(“Push	Me”);

14.																																										b1.setActionCommand(“First”);

15.																																										b2.setActionCommand(“Second”);

16.																																										b3.setActionCommand(“Third”);

17.																																										f.add(b1);															f.add(b2);															f.add(b3);

18.																																										B	obj=	new	B();

19.																																										b1.addActionListener(obj);

20.																																										b2.addActionListener(obj);

21.																																										b3.addActionListener(obj);

22.																																										f.setVisible(true);

23.																												}

24.																												public	static	void	main(String	args	[])

25.																												{													

26.																																										new	ActionCommandTest();

27.																												}

28.														}

29.														class	B	implements	ActionListener

30.														{													

31.																												public	void	actionPerformed(ActionEvent	ae)

32.																												{														

33.																																										Button	b=(Button)ae.getSource();

34.																																										String	s=b.getActionCommand();													

35.																																										if(s.equals(“First”))

36.																												System.out.println(“First	Push	Me	Button	was	pressed”);

37.																																										else	if(s.equals(“Second”))

38.																												System.out.println(“Second	Push	Me	Button	was	pressed”);

39.																																										else	if(s.equals(“Third”))

40.																												System.out.println(“Third	Push	Me	Button		was	pressed”);

41.																												}

42.														}

Handling	Key	Events

Example	18.12:

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	KeyTest	extends	Frame	implements	KeyListener

4.														{													

5.																												String	msg	=	””;

6.																												int	x=50,y=100;

7.																												public	static	void	main	(String	arg[])

8.																												{													

9.																																										Frame	f=	new	KeyTest();

10.																																										f.setSize(300,	300);

11.																																										f.addKeyListener((KeyTest)f);

12.																																										f.setVisible	(true);

13.																												}

14.																												public	void	keyReleased(KeyEvent	ke)

15.																												{													

16.																																										System.out.println(“Key	Up…”);

17.																												}

18.																												public	void	keyTyped(KeyEvent	ke)

19.																												{														

20.																																										System.out.println(“Key	Typed…”);

21.																																										msg	=	msg	+	ke.getKeyChar();

22.																																												repaint();

23.																												}

24.																												public	void	keyPressed(KeyEvent	ke)

25.																												{													

26.																																										System.out.println(“Key	Pressed…”);

27.																																										int	key	=	ke.getKeyCode();

28.																																										switch(key)

29.																																										{													

30.																																																								case	KeyEvent.VK_F1:

31.																																																																						msg	=	msg	+	“<F1>”;	break;

32.																																																								case	KeyEvent.VK_F2:

33.																																																																						msg	=	msg	+	“<F2>”;	break;

34.																																																								case	KeyEvent.VK_F3:

35.																																																																						msg	=	msg	+	“<F3>”;	break;

36.																																																								case	KeyEvent.VK_PAGE_DOWN:

37.																																																																						msg	=	msg	+	“<PgDn>”;	break;

38.																																																								case	KeyEvent.VK_PAGE_UP	:

39.																																																																						msg	=	msg	+	“<PgUp>”;	break;

40.																																																								case	KeyEvent.VK_LEFT:

41.																																																																						msg	=	msg	+	“<Left	Arrow>”;	break;

42.																																																								case	KeyEvent.VK_RIGHT:

43.																																																																						msg	=	msg	+	“<Right	Arrow>”;	break;

44.																																																								case	KeyEvent.VK_CONTROL:

45.																																																																						msg	=	msg	+	“<Ctrl>”;	break;

46.																																										}

47.																																										repaint();

48.																												}

49.																												public	void	paint(Graphics	g)

50.																												{																												

51.																																										g.setColor(Color.red);

52.																																										g.drawString(msg,x,y);

53.																												}

54.														}

Example	18.13:	Demonstration	of	FocusListener	Color	of	TextField	changes	on	focus
lost	or	gained

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	FocusTest	extends	Frame	implements	FocusListener

4.														{

5.																																				static	TextField	tf1,tf2;

6.																																				public	static	void	main(String	args[])

7.																												{

8.																																										FocusTest	f	=	new	FocusTest();

9.																																												f.setLayout(new	FlowLayout());

10.																																												tf1	=	new	TextField(8);

11.																																												tf1.setBackground(Color.blue);

12.																																												tf1.addFocusListener(f);										

13.																																												tf2	=	new	TextField(8);

14.																																												tf2.setBackground(Color.blue);

15.																																												tf2.addFocusListener(f);

16.																																												f.add(tf1);

17.																																												f.add(tf2);

18.																																												f.setSize(200,200);

19.																																												f.setVisible(true);

20.																						}

21.																						public	void	focusGained(FocusEvent	fe)

22.																						{

23.																																												TextField	tf=(TextField)fe.getSource();

24.																																												tf.setBackground(Color.red);

25.																						}

26.																						public	void	focusLost(FocusEvent	fe)

27.																						{

28.																																												TextField	tf=(TextField)fe.getSource();

29.																																												tf.setBackground(Color.blue);

30.																						}

31.														}

Example	18.14:	Demonstration	of	requestFocus()	We	can’t	use	WindowListener	in	same
class	so	we	defined	two	classes	one	for	frame	&	another	for	WindowListener.

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	A	extends	Frame	implements	ActionListener

4.														{

5.																						static	TextField	tf1,tf2;

6.																						static	Button	b1;

7.																						public	static	void	main(String	args[])

8.																						{

9.																																												A	f	=	new	A();

10.																																												f.setLayout(new	FlowLayout());

11.																																												f.addWindowListener(new	B());

12.																																												tf1	=	new	TextField(8);

13.																																												tf2	=	new	TextField(8);

14.																																												b1	=	new	Button(“Set”);

15.																																												b1.addActionListener(f);

16.																																												f.add(tf1);

17.																																												f.add(tf2);

18.																																												f.add(b1);

19.																																												f.setSize(200,200);

20.																																												f.setVisible(true);

21.																																				}

22.																																				public	void	actionPerformed(ActionEvent	ae)

23.																																				{

24.																																												tf2.requestFocus();

25.																												}

26.														}

27.														class	B	extends	WindowAdapter

28.														{

29.																												public	void	windowClosing(WindowEvent	we)

30.																																				{

31.																																												Frame	f=(Frame)we.getWindow();

32.																																												f.dispose();

33.																																				}

34.														}					

Example	18.15	Displaying	a	dialog	box

1.														import	java.awt.*;

2.														class	DialogTest

3.														{

4.														public	static	void	main(String	args[])	throws	InterruptedException

5.																						{

6.																																												Frame	f1	=	new	Frame();

7.																																										f1.setSize(300,300);

8.																																										f1.setVisible(true);

9.																																												Dialog	d1	=	new	Dialog(f1);

10.																																												d1.setSize(100,100);

11.																																												d1.setVisible(true);

12.																																												Thread.sleep(3000);

13.																																												d1.dispose();

14.																						}

15.														}

Example	18.16	Demonstration	of	Menu	Bar

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.	class	MyMenu	extends	Frame	implements	ActionListener,	WindowListener,

ItemListener

4.														{

5.																												TextField	tf1;

6.																																				String	msg=””;

7.																																				CheckboxMenuItem	item4;

8.																						MyMenu()

9.																																				{

10.																																												super(“Matrix”);

11.																																												setLayout(new	FowLayout());

12.																																												tf1	=	new	TextField(8);

13.																																												add(tf1);

14.																																												MenuBar	mbar	=	new	MenuBar();

15.																																												Menu	file	=	new	Menu(“File”);

16.																																												MenuItem	item1	=	new	MenuItem(“New…”);

17.																																												item1.addActionListener(this);

18.																																												file.add(item1);

19.																																												MenuItem	item2	=	new	MenuItem(“Open…”);

20.																																												item2.addActionListener(this);

21.																																												file.add(item2);

22.																														Menu	sub	=	new	Menu(“Sub	Menu”);

23.																														MenuItem	item3	=	new	MenuItem(“Option1”);

24.																																												sub.add(item3);

25.																														file.add(sub);

26.																																												item4	=	new	CheckboxMenuItem(“TextBox”,true);

27.																																												item4.addItemListener(this);

28.																																												file.add(item4);

29.																																												mbar.add(file);

30.																																												addWindowListener(this);

31.																																												setMenuBar(mbar);

32.																											setSize(400,400);

33.																																												setVisible(true);

34.																																			}

35.																																			public	void	paint(Graphics	g)

36.																																			{

37.																																												g.drawString(msg,150,250);

38.																																			}

39.																																			public	void	actionPerformed(ActionEvent	ae)

40.																																			{

41.																																												String	s1=(String)ae.getActionCommand();

42.																																												if(s1.equals(“New…”))

43.																																												{

44.																																																				tf1.setText(“New	Selected”);

45.																																																				msg=“New	Selected”;

46.																																												}

47.																																												else	if(s1.equals(“Open…”))

48.																																												{

49.																																																				tf1.setText(“Open	Selected”);

50.																																																				msg=“Open	Selected”;

51.																																												}

52.																																												repaint();

53.																																			}

54.																																			public	void	windowClosing(WindowEvent	we)

55.																																			{

56.																																												Frame	f	=	(Frame)we.getWindow();

57.																																												f.dispose();

58.																																			}

59.																																			public	void	windowClosed(WindowEvent	we){}

60.																																			public	void	windowActivated(WindowEvent	we){}

61.																																			public	void	windowDeactivated(WindowEvent	we){}

62.																																			public	void	windowIconified(WindowEvent	we){}

63.																																			public	void	windowDeiconified(WindowEvent	we){}

64.																																			public	void	windowOpened(WindowEvent	we){}

65.																																			public	void	itemStateChanged(ItemEvent	ie)

66.																																			{

67.																																												tf1.setVisible(item4.getState());

68.																																			}

69.																																			public	static	void	main(String	args[])

70.																																			{

71.																																												new	MyMenu();

72.																																			}

73.														}

Example	18.17	Demonstration	of	Listbox

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	ListTest	extends	Frame	implements	ActionListener

4.														{

5.																						static	List	l1,l2;

6.																																				public	static	void	main(String	args[])

7.																																				{

8.																																												ListTest	f	=	new	ListTest();

9.																																												f.setLayout(new	FlowLayout());

10.																																												l1	=	new	List(3,true);

11.																																												l1.add(“India”);

12.																																												l1.add(“Pakistan”);

13.																																												l1.add(“USA”);

14.																																												l1.add(“UK”);

15.																																												l1.add(“China”);

16.																																												l2	=	new	List(3,true);

17.																																												Button	b1	=	new	Button(“Transfer”);

18.																																												b1.addActionListener(f);

19.																																												f.add(l1);

20.																																												f.add(l2);

21.																																												f.add(b1);

22.																																												f.setSize(200,200);

23.																																												f.setVisible(true);

24.																							}

25.																							public	void	actionPerformed(ActionEvent	ae)

26.																							{

27.																																										/*		for(int	i=l1.getItemCount()-1;	i>=0;	i—)

28.																																																																								{

29.																																																																																l2.add(l1.getItem(i));

30.																																																																																l1.remove(i);

31.																																																																				}

32.																																										*/

33.																																										String	s1[]	=	l1.getSelectedItems();

34.																																										for(int	i=0;i<s1.length;i++)

35.																																												{

36.																																																								l2.add(s1[i]);

37.																																																				l1.remove(s1[i]);

38.																																												}

39.																												}

40.														}

Example	18.18	Sum	of	two	numbers	using	frame

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	Sum	implements	ActionListener

4.														{

5.																																				static	Button	b1,b2;

6.																																				static	TextField	tf1,tf2,tf3;

7.																																				static	Frame	f;

8.																																				public	static	void	main(String	args[])

9.																																				{

10.																																												f	=	new	Frame();

11.																																												Sum	s1	=	new	Sum();

12.																																												f.setLayout(new	GridLayout(4,2));

13.																																												Label	l1	=	new	Label(“Enter	No.	1:”);

14.																																												tf1	=	new	TextField(8);

15.																																												Label	l2	=	new	Label(“Enter	No.	2:”);

16.																																												tf2	=	new	TextField(8);

17.																																												Label	l3	=	new	Label(“Result					:”);

18.																																												tf3	=	new	TextField(8);

19.																																												b1	=	new	Button(“Sum”);

20.																																												b2	=	new	Button(“Close”);

21.																																												b1.addActionListener(s1);

22.																																												b2.addActionListener(s1);

23.																																												f.add(l1);

24.																																												f.add(tf1);

25.																																												f.add(l2);

26.																																												f.add(tf2);

27.																																												f.add(l3);

28.																																												f.add(tf3);

29.																																												f.add(b1);

30.																																												f.add(b2);

31.																																												f.setSize(200,200);

32.																																												f.setVisible(true);

33.																						}

34.																						public	void	actionPerformed(ActionEvent	ae)

35.																						{

36.																																												Button	b=(Button)ae.getSource();

37.																																												if(b==b1)

38.																																												{

39.																																																				int	n1=Integer.parseInt(tf1.getText());

40.																																																				int	n2=Integer.parseInt(tf2.getText());

41.																																																				tf3.setText(String.valueOf(n1+n2));

42.																																												}

43.																																												if(b	==	b2)

44.																																												{

45.																																																				f.dispose();

46.																																												}

47.																							}

48.														}

	

	

	

Example	18.19	Displaying	an	image	on	Applet

1.														import	java.awt.*;

2.														import	java.net.*;

3.														import	java.applet.*;

4.														/*<Applet	code=“ScrollPane1”	width=200	height=200></applet>*/

5.														public	class	ScrollPane1	extends	Applet

6.														{

7.																												Image	img1;

8.																																				URL	file1;

9.																						public	void	init()

10.																												{

11.																																												try

12.																																												{

13.																																						file1	=	new	URL(“FILE:///c:/javaprg/a.jpg”);

14.																																												}

15.																																												catch(MalformedURLException	e)

16.																																												{

17.																														System.out.print(e);

18.																																												}

19.																																												img1=getImage(file1);

20.																						}

21.																						public	void	paint(Graphics	g)

22.																						{

23.																																												g.drawImage(img1,0,0,this);

24.																						}

25.														}

	

	

	

Example	18.20	Demonstration	of	moving	circle

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.														class	Circle1	extends	Frame	implements	MouseListener,Runnable

4.														{

5.																												int	x,y,w,h;

6.																																				static	Circle1	f;

7.																																				public	void	run()

8.																																				{

9.																																												y=50;

10.																																												w=50;

11.																																												h=50;

12.																																										for(x=0;x<500	;x+=10)

13.																																												{

14.																																																								try

15.																																																				{

16.																																																	Thread.sleep(500);

17.																																																			}

18.																																																				catch(InterruptedException	e)

19.																																																				{

20.																																																												System.out.println(e);

21.																																																			}

22.																																																				repaint();

23.																																										}

24.																						}

25.																																				public	static	void	main(String	args[])

26.																						{

27.																																												f	=	new	Circle1();

28.																																												Thread	t=new	Thread(f);

29.																																												t.start();

30.																																												f.addMouseListener(f);

31.																																												f.setSize(500,500);

32.																																												f.setVisible(true);

33.																																				}

34.																																				public	void	paint(Graphics	g)

35.																						{

36.																														g.setColor(Color.RED);

37.																																												g.drawOval(x,y,w,h);

38.																																												g.setColor(Color.BLUE);

39.																														g.fillOval(x+1,y+1,w-1,h-1);

40.																																				}

41.																																				public	void	mousePressed(MouseEvent	me)

42.																						{

43.																														x	=	me.getX();

44.																																												y	=	me.getY();

45.																																												w=50;

46.																																												h=50;

47.																														Graphics	g=f.getGraphics();

48.																																												g.clearRect(0,0,200,200);

49.																																												paint(g);

50.																																				}

51.																																				public	void	mouseReleased(MouseEvent	me){}

52.																																				public	void	mouseClicked(MouseEvent	me){}

53.																																				public	void	mouseEntered(MouseEvent	me){}

54.																																				public	void	mouseExited(MouseEvent	me){}

55.														}

	

	

	

	

	 	 	 	

	

	

	
CHAPTER
∞	19	∞

(Painting	in	AWT)
	

Introduction-
Many	types	of	AWT	components	(buttons	and	scrollbars,	for	example)	have	their

appearance	 dictated	 by	 the	 underlying	window	 system.	Other	 component	 types	 notably
applets,	frames,	panels	and	canvases	have	no	intrinsic	appearance.	If	we	use	any	of	these
classes	other	than	simply	as	containers	and	want	our	component	to	look	at	all	useful,	we
will	have	to	provide	the	code	that	implements	the	components	appearance.

Every	component	has	a	graphics	context	associated	with	it.	The	graphics	context
correspondence	to	the	frame	buffer	related	to	the	component.

We	 can	 draw	 on	 the	 component	 	 using	 methods	 supported	 by	 the	 Graphics
Context.	Anything	drawn	on	the	Graphics	context	appears	on	the	component.

The	 correct	 approach	 for	 painting	 on	 any	 component	 is	 to	 override	 its	 paint()
method	and	provide	the	appropriate	code.

The	 paint()	method	 has	 one	 argument	 of	 type	Graphics,	 which	 represents	 the
Graphics	Context	of	the	component.	It	is	also	possible	to	draw	on	the	component	without
using	paint	()	method	although	this	approach	is	not	recommended.

The	paint	()	method	and	the	Graphics	Context	:

One	interesting	point	about	the	frame	in	the	following	example	is	that	no	explicit

calls	made	to	the	paint()	method;	the	method	is	simply	provided.	The	environment	seems
to	do	a	good	job	of	calling	paint()	at	the	right	moment.

Painting	on	a	component	is	accomplished	by	making	calls	to	a	Graphics	context,	which
is	an	instance	of	the	Graphics	class.	A	graphics	context	knows	how	to	render	onto	a	single
target.	The	three	media	a	Graphics	Context	can	render	onto	are:

1.	 Components.

2.	 Images.

3.	 Printers.

Any	 Kind	 of	 component	 can	 be	 associated	 with	 a	 Graphics	 context.	 The
association	is	permanent;	a	context	cannot	be	reassigned	 to	a	new	component.	Although
we	can	use	graphics	contexts	to	paint	onto	any	kind	of	component,	it	is	unusual	to	do	so
with	components	that	already	have	an	appearance.

Buttons,	Choices,	Checkboxes,	Labels,	Scrollbars,	TextFields,and	TextAreas	do
not	often	require	programmer	level	rendering.	Most	often,	these	components	just	use	the
version	of	paint()	that	they	inherit	from	the	component	super	class.

This	 version	 does	 nothing;	 the	 components	 are	 rendered	 by	 the	 underlying
window	 system.	 However,	 there	 are	 four	 classes	 of	 “blank”	 components	 that	 have	 no
default	appearance	and	will	show	up	as	empty	rectangles,	unless	they	are	sub-	classed	and
given	paint	()	methods.

	

These	four	component	classes	are:

Applet.

Canvas.

Frame.

Panel.

Example19.1	 The	 Frame	Class	 is	 extended	 and	 paint()	 	methods	 is	 over-ridden	 to
change	the	appearance	of	the	frame.

1.														import	java.awt.*;

2.														public	class	SimplePaint	extends	Frame

3.														{													

4.																												public	static	void	main	(String	args[])

5.																												{													

6.																																										Frame	f=new	SimplePaint();

7.																																										f.setSize(200,200);

8.																																										f.setVisible(true);

9.																												}

10.																												public	void	paint	(Graphics	g)

11.																												{														

12.																																										g.setColor(Color.white);

13.																																												g.fillRect(0,0,300,300);

14.																																										g.setColor(Color.grey);

15.																																										g.fillOval(30,30,50,50);

16.																												}

17.														}

	

Output:

When	 we	 subclass	 a	 component	 class	 and	 give	 the	 sub	 class	 its	 own	 paint()
method,	the	environment	calls	that	method	at	appropriate	times,	passing	in	an	appropriate
instance	of	Graphics.

Operations	supported	by	the	graphics	class

The	four	major	categories	of	operations	provided	by	the	graphics	class	(graphics
context)	are:

Selecting	a	color.

Selecting	a	font.

Drawing	and	filling.

Clipping.

Selecting	a	color:

Colors	 are	 selected	 by	 calling	 the	 setcolor()method.	The	 required	 argument	 is	 an
instance	of	the	color	class.

There	 are	 13	 pre-defined	 colors,	 accessible	 as	 static	 final	 variables	 of	 the	 color
class.

(The	 variables	 are	 themselves	 instance	 of	 the	 color	 class.	 Which	 makes	 some
people	uneasy,	but	java	has	no	trouble	with	such	things.)	The	pre-defined	colors	are:

1.	 Color.black

2.	 Color.blue

3.	 Color.cyan

4.	 Color.darkGray

5.	 Color.gray

6.	 Color.green

7.	 Color.lightGray

8.	 Color.magenta

9.	 Color.orange

10.	 Color.pink

11.	 Color.red

12.	 Color.white

13.	 Color.yellow

If	we	want	 a	 color	 that	 is	 not	 on	 this	 list,	we	 can	 construct	 our	 own.	There	 are	 several
version	of	the		color	constructor,the	simplest	is:

Color(int	redLevel,	int	greenLevel,	int	blueLevel)

The	three	parameters	are	intensity	level	on	a	scale	of	0	to	255	,	for	the	primary	colors.
The	colors	are	additive,	which	means	they	mix	like	light,	not	like	paint.

new	Color(0,0,0)																										black(absence	of	light)

new	Color(255,0,0)																						red	(only	red	hue	is	included)

new	Color(255,255,255)														white	(all	colors	shining	at	once)

Code	fragment	below	lists	 the	first	part	of	a	paint()	method	that	sets	the	color	of	its
graphics	context	to	pale	green:

	

public	void	paint(Graphics	g)

{													

Color	c=	new	Color(170,255,170);

g.setColor(c)	;

}

After	 call	 to	 setColor()	 in	 the	 above	 code	 all	 graphics	 will	 be	 painted	 in	 pale
(light)green,	 until	 the	 next	 g.setColor()	 call.	 Calling	 g.setColor(0	 does	 not	 change	 the
color	of	anything	that	has	already	been	drawn;	it	only	affect	subsequent	operations.

Selecting	a	Font:

Setting	 the	 font	of	a	graphics	context	 is	 like	 setting	 the	color	 subsequent	 string
drawing	operations	will	use	the	new	font,	while	previously	drawn	strings	are	not	affected.
Before	we	can	set	a	font,	we	have	to	create	one.	The	constructor	for	the	font	class	looks
like	this:

Font(string	fontName,	int	style,	int	size)

The	 first	 parameter	 is	 the	 name	 of	 the	 font.	 Font	 availability	 is	 platform
dependent.	We	can	get	a	list	of	available	font	names,	returned	as	an	array	of	strings	,	by
calling	the	getFontList()method	on	our	toolkit	like	this:

String	fontNames[]=	Toolkit.getDefaultToolkit().getFontList();

There	are	 three	font	names	 that	are	platform	independent	and	 that	we	are	encouraged	 to
use:

1.	 “Serif”

2.	 “Sansserif”

3.	 “Monospaced”

On	 1.0.X	 releases	 of	 the	 JDK	 these	 were	 called,	 respectively
“TimesRoman”,”Helvetica”and	“Courier”.

The	style	parameter	can	be	sent	to	any	of	the	following	int	constant:

1.	 Font.PLAIN

2.	 Font.BOLD

3.	 Font.ITALIC

The	code	fragment	below	sets	the	fonts	of	graphics	context	gc	to	24	point	bold	sansserif:

Font	f	=new	Font(“SansSerif”,Font.BOLD,24);

gc.setFont(f);

We	can	specify	combinations	of	styles,	for	example	a	bold	italic	font,	by	passing	the	sum
if	styles,	like	this:

								Font.BOLD	+	Font.ITALIC

Drawing	and	filling:

All	 the	 rendering	methods	 of	 graphics	 class	 specify	 pixel	 co-ordinate	 positions
for	the	shapes	they	render	every	component	has	its	won	co-ordinate	space,	with	the	origin
in	the	component’s	upper-left	corner,	x	increasing	to	the	right	and	y	increasing	downward.
Following	figure	shows	the	component	co-ordinate	system:

The	graphics	context	 class	does	not	have	an	extensive	 set	of	painting	methods.
(Sophisticated	rendering		is	handled	by	extended	APIs	such	as	2d,3d,and	animation.)

	

The	methods	in	the	graphic	context	class	that	we	need	to	know	about	are:

void	drawLine(int	x1,int	y1,	int	x2,	int	y2)

Draws	a	 line,	using	 the	current	color,	between	 the	points	 (x1,y1)	and	 (x2,	y2)	 in	 this
graphics	context’s	coordinate	system.

	

void	drawRect(int	x,	int	y,	int	width,	int	height)

Draws	the	outline	of	the	specified	rectangle.

	

void	fillRect	(int	x,	int	y,	int	width,	int	height)

Fills	the	specified	rectangle.

	

void	drawOval(int	x,	int	y,	int	width,	int	height)

Draws	the	outline	of	an	oval	bounded	by	he	specified	rectangle.

	

void	fillOval(intx,int	y,	int	width,	int	height)

Fills	an	oval	bounded	by	the	specified	rectangle	with	the	current	color.

An	oval	is	specified	by	a	rectangular	bounding	box.	The	oval	lies	inside	the	bounding
box	and	is	tangent	to	each	of	the	box’s	sides	at	the	mid-point	as	shown	below:

	

To	 draw	 a	 circle,	 use	 a	 square-bounding	 box.	 Note	 that	 the	 painting	 only	 draws
foreground	pixels,	not	background,	so	the	space	inside	the	bounding	box	but	outside	the
oval	is	left	unchanged.	Here	x	and	y	are	the	co-ordinates	of	the	upper	left	corner	of	the
bounding	box,	and	width	and	height	are	the	width	and	height	of	the	box.

	

void	drawArc(int	x,	int	y,	int	width,	int	height,	int	startAngle,	int	arcAngle)

Draw	the	outline	of	a	circular	or	elliptical	arc	covering	the	specified	rectangle.

	

void	fillArc(int	x,	int	y,	int	width,	int	height,	int	startangle,	int	arcangle)

Fills	a	circular	or	elliptical	arc	covering	the	specified	rectangle.

	

An	arc	is	segment	of	an	oval.	The	specify	an	arc,	we	first	specify	the	oval’s	bounding
box,	just	as	we	do	with	drawOval()	and	fillOval()	.	We	also	need	to	specify	the	starting
and	ending	pints	of	the	arc,	which	we	do	ny	specifying	an	starting	angle	and	the	angle
swept	out	by	the	arc.

	

A	filled	arc	is	region	bounded	by	the	arc	itself	and	the	two	radii	from	the	center	of	the
oval	to	the	end	points	of	the	arc.

	

void	drawPolygon(int[]xPoints,	int[]yPoints	int	nPoints)

Draws	a	closed	polygon	defined	by	arrays	of	x	and	y	coordinates.

	

void	fillPolygon	(int[]	xPoints	,	int[]	yPoints,	int	nPoints)

Fills	a	closed	polygon	defined	by	arrays	of	x	and	y	coordinates.

A	 polygon	 is	 a	 closed	 figure	 with	 an	 arbitrary	 number	 of	 vertices.	 The	 vertices	 are
passed	to	the	drawPolygon()	and	fillPolygon()	methods	as	two	int	arrays.	The	first	array
contains	the	x	co-ordinates	of	the	vertices,	the	second	array	contains	the	y	co-ordinates.
A	third	parameter	specifies	the	number	of	vertices.

Note:	end	point	is	joined	with	the	first	point.

	

void	drawPolyLine(int[]	xPoints,	int[]	yPoints	,	int	nPoints)

Draws	a	sequence	of	connected	lines	defined	by	array	of	x	and	y	coordinates.

A	polyline	 is	 similar	 to	a	polygon	 ,	but	 it	 is	open	 rather	 that	 closed.	There	 is	no	 line
segment	connecting	the	last	vertex	to	the	first.

	

void	drawString(String	str,	int	x,	int	y)

Draws	the	text		given	by	the	specified	string,	using	this	graphics	context’s	current	font
and	color.	The	x	,	y	parameters	specify	the	left	edge	of	the	baseline	of	the	string.	The

characters	with	descenders(g.	j,	p,q,	and	y	in	most	fonts)extend	below	the	baseline.

	

The	fact	that	text-coordinates		are	relative	to	the	baseline	is	important.	In	a	simple	text,
for	example,	we	might	try	to	draw	a	string	at	(0,0)	expecting	it	to	appear	at	the	top	left
of	the	space.	However,	because	of	the	baseline,	we	will	only	see	the	descenders	of	the
string,	which	might	mean	that	we	see	nothing	at	all.

By	default,	a	graphics	context	uses	the	font	of	the	associated	component	however,	we
can	set	a	different	font		by	calling	the	graphics	context’s	setFont	()	method.

	

boolean	drawImage	(Image	img,	int	x,	int	y,	ImageObserver	observer)

Draws	as	much	of	the	specified	image	as	is	currently	available.

	

Here,	 im	 is	 the	 image	 to	 be	 rendered,	 and	 x	 and	 y	 are	 the	 coordinates	 within	 	 the
destination	component	of	the	upper-left	corner	of	the	image.	The	image	observer	must
be	an	object	that	implements	the	imageobserver	interface.

An	 image	 is	 an	 off-screen	 representation	 of	 a	 rectangular	 collection	 of	 pixel	 values.
Java’s	image	support	is	complicated.

	

For	now,		assume	that	we	have	somehow	obtained	an	image	(that	is,	an	instance	of	class
java.awt,image)	 that	we	want	 to	render	 to	 the	screen	using	a	certain	graphics	context.
The	way	to	do	this	is	to	call	the	graphics	context’s	drawImage()method.

	

Example19.2:

This	 example	 illustrates	 how	 to	 create	 an	 image	 and	 then	 draw	 on	 it	 using	 its
graphics	 context	 .	 the	 image	 can	 then	 be	 displayed	 in	 the	 applet	 window	 using
drawImage()method.

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														import	java.net.URL;

4.														/*<applet	code=“PaintImage”	width=200	height=100></applet>*/

5.														public	class	PaintImage	extends	Applet

6.														{							

7.																												private	Image	im;

8.																																		public	void	init()

9.																												{										

10.																																										im	=	createImage(100,50);

11.																																											Graphics	imgc=im.getGraphics();

12.																																										imgc.setColor(Color.gray);

13.																																											imgc.fillRect(0,0,100,50);

14.																														imgc.setColor(Color.black);

15.																																										imgc.fillOval(0,0,50,40);

16.																												}

17.																												public	void	paint(Graphics	g)

18.																												{					

19.																																										g.drawImage(im,10,10,this);

20.																												}

21.														}

	

Output:

Example19.3:

This	example	illustrates	how	to	create	an	image	object	from	an	existing	image.	The
image	can	then	be	displayed	in	the	applet	window	using	drawimage()	method.

1.														import	java.awt.*;

2.														import	java.applet.*;

3.														import	java.net.*;

4.														/*

5.														<applet	code=”PaintImage”	width=500	height=500>

6.														</applet>

7.														*/

8.														public	class	PaintImage	1	extends	Applet

9.														{							

10.														private	Image	im;

11.																				public	void	init()

12.																												{	

13.														try

14.																																										{										

15.																												im=getImage(new	URL(“FILE:///c:/matrix/logo.gif”));

16.																												//im=getImage(newURL(“http://127.0.0.1:8008/logo.gif”));

17.																																												}

18.																												catch	(Malformed	URLExpection	e)

19.																																										{								

20.																												System.out.println(e);

21.																																												}

22.																												}

23.																												public	void	paint(Graphics	g)

24.																												{																	

25.																												g.drawImage(im,10,10,this);

26.																												}

27.														}

Clipping:

Most	calls	that	programmers	make	on	graphics	context	involve	color	selection	or
drawing	and	 filling.	A	 less	common	operation	 is	 clipping.	Clipping	 is	 simply	 restricting
the	region	that	a	graphics	context	can	modify.

Every	 graphics	 context	 that	 is,	 every	 instance	 of	 the	 graphics	 class	 has	 a	 clip
region,	which	defines	all	or	part	of	 the	associated	component.	When	we	call	one	of	 the
drawXXX()	or	fillXXX()	method	of	the	graphics	class,	only	those	pixels	that	lie	within	the
graphics	context’s	clip	region	are	modified.

The	default	clip	 region	for	a	graphics	context	 is	 the	entire	visible	 region	of	 the
associated	component.	There	are	methods	that	retrieve	and	modify	a	clip	region.	Consider
the	following	paint	method.

Example	19.4:

1.														import	java.awt.*;

2.														class	Clip	extends	Frame

3.														{

4.																												public	static	void	main(String	args[])

5.																												{									

kindle:embed:002P?mime=image/jpg
http://127.0.0.1:8008/logo.gif

6.																																										Frame	f=new	Clip();

7.																																										f.setSize(300,330);

8.																																										f.setVisible(true);

9.																												}

10.																												public	void	paint(Graphics	g)

11.																												{				

12.																																										for(int	i=0;	i<300;	i=i+100)

13.																																										{

14.																																																								for(int	j=30;	j<330;	j=j+100)

15.																																																								{		

16.																																																																						g.fillOval(i,j,100,100);

17.																																																								}

18.																																										}

19.																												}

20.														}

Output:

The	paint	()	method	of	above	program	draws	a	dot	pattern.	Consider	what	happens	when
this	 is	 the	 paint()	 method	 of	 an	 applet/	 frame	 that	 is	 200	 *	 200	 pixels.	 Because	 loop
counters	go	all		the	way	up	to	500,	the	method	attempts	to	draw	outside	the	bounds	of	the
applet/	frame.

This	is	not	a	problem,	because	the	graphics	context	by	default		has	a	clip	region
that	coincides	with	the	applet	/	frame	itself.

To	set	a	retangular	clip	region	for	a	graphics	context,	we	can	call	the	set	Clip	(x,y,
width,	 height)	 method,	 passing	 in	 four	 ints	 that	 describe	 the	 position	 and	 size	 of	 the

desired	clip	rectangle.

For	example,	the	code	above	could	be	modified	as	follows:

Example	19.5:

1.														import	java.awt.*;

2.														class	Clip2	extends	Frame

3.														{

4.																												public	static	void	main(String	args[])

5.																												{									

6.																												Frame	f=new	Clip2();

7.																												f.setSize(300,330);

8.																												f.setVisible(true);

9.																												}

10.																												public	void	paint(Graphics	g)

11.																												{				

12.																												g.setClip(50,80,200,200);

13.																												for(int	i=0;	i<300;	i=i+100)

14.																																										{

15.																												for(int	j=30;	j<330;	j=j+100)

16.																																																								{		

17.																												g.fillOval(i,j,100,100);

18.																																																								}

19.																																										}													

20.																												g.drawString	(“Hello!	Kamal”,	50,50);

21.																												g.drawString	(“Bye!	Kamal”,	120,150);

22.																												}	}

Output:

	

Now	painting	is	clipped	to	a	200	*	200	rectangle	in	the	center	of	the	300	*	300
applet	frame	as	shown	above.

	

Clipping	is	good	to	Know	about	in	its	own	right.	Clipping	also	comes	into	play
when	the	environment	needs	to	repair	exposed	portions	of	a	component.

Summary	about	the	paint	()	method	and	the	graphics	context:

A	Graphics	context	is	dedicated	to	single	component.	To	Paint	on	a	component,
we	call	 the	graphics	context’s	drawXXXX	()	and	fillXXXX	()	methods.	To	change	the
color	or	font	of	graphics	operations,	we	call	the	graphics	context’s	setColor	()	or	setFont	(
)	methods,	respectively.

GuI	Thread	and	painting:

The	Java	runtime	environment	creates		and	controls	its	own	threads	that	operate
behind	the	screanes,	and	one	of	the	threads	is	responsible	for	GUI	management.

The	GUI	thread	is	the	environment’s	tool	for	accepting	user	input	events	and	for
calling	the	paint	()	method	of	components	that	need	painting.

Call	 to	paint	 ()	 are	not	 all	 generated	by	 the	 environment.	 Java	programs	 can	of	 course
make	their	own	calls,	either	directly	or	indirectly	via	the	repaint	()		method.

It	is	also	possible	to	draw	on	a	component	using	its	graphics	context.	There	is	no	need	to
call	paint	()	or	repaint	()	method	in	this	approach.

Different	approaches	for	drawing	on	a	component	are	as	follows:

(i)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Directly	drawing	after	obtaining	Graphics	Context	the
component.

(ii)	 	 	 	 	 	 	 	 	 	 	 	 	 	 Spontaneous	 painting	 (paint	 ()	 method	 is	 called
implicitly/	automatically	by	GUI	thread)

(iii)											Explicitly	invoking	paint	()	method

(iv)	 	 	 	 	 	 	 	 	 	 	 	 	 	Explicitly	 invoking	 repaint	 ()	method,	which	 then
indirectly	invokes	he	paint	()	method	().

Directly	drawing	after	obtaining	Graphics	Context	of	the	component:

Since	it	is	possible	to	get	a	reference	to	a	component’s	Graphics	context	using	the
method	getGraphics	(),	it	is	tempting	to	believe	that	one	can	simply	draw		to	a	component
from	any	convenient	method.	Generally	this	approach	is	seriously	flawed.

Suppose	we	have	an	applet	 that	wants	 to	draw	a	 red	dot	at	 the	point	of	 the	most	 recent
mouse	click.	T

he	remainder	of	 the	applet	should	be	yellow.	Assume	that	 the	applet	 is	handling	its	own
mouse	events.	We	might	consider	creating	an	event	handler	like	this:

Example	19.6:

	

1.														import	java.awt.*;

2.														import	java.awt.event.	*;

3.														class	PaintApproach	extends	Frame	implements	MouseListener

4.														{													

5.																												public	static	void	main	(String	args	[])

6.																												{													

7.																																										PaintApproach	f	=	new	PaintApproach	();

8.																																											f.setSize	(300,300);

9.																																											f.addMouseListener(f);

10.																																											f.setVisible(true);

11.																													}

12.																													public	void	mouseEntered	(MouseEvent	e)															{	}

13.																													public	void	mouseExited	(MouseEvent	e)															{	}

14.																													public	void	mousePressed	(MouseEvent	e)															{	}

15.																													public	void	mouseReleased	(MouseEvent	e)														{	}

16.																													public	void	mouseClicked	(MouseEvent	e)														

17.																													{													

18.																																										System.out.println	(“Mouse	Clicked…”);

19.																																										Graphics	g	=	getGraphics	();

20.																																										g.setColor(Color.yellow);

21.																																											g.fillRect(0,0,	getSize().width,	getSize().height);

22.																																											g.setColor	(Color.Red);

23.																																											g.fillOval	(e.getX()	–10,	e.getY()–10,20,20);

24.																													}

25.														}														

If	 this	applet	ever	gets	covered	and	exposed,	the	GUI	thread	will	implicitly	call
paint	 (),	 unfortunately,	 paint	 ()	 does	not	Know	about	 the	 red	 circle	 that	was	drawn	 in
method	mouse	Clicked	(),	so	the	red	circle	will	not	be	repaired.

The	proper	place	for	all	drawing	operations	is	 in	paint	(),	or	 in	methods	called
from	paint	 ();	 this	 technique	ensure	 that	 the	GUI	 thread	will	be	able	 to	 repair	exposure
damage.	The	GUI	thread	expects	paint	()	to	be	able	to	correctly	reconstruct	the	screen	at
any	arbitrary	moment.

One	 possible	 way	 to	 achieve	 this	 is	 to	 remove	 all	 drawing	 code	 from	 event
handlers	and	othe	arbitrary	methods	and	place	that	code	into	the	paint	()	method.

Next,	 when	 a	 method	 needs	 to	 draw,	 arrange	 for	 it	 to	 write	 to	 variables	 that
describe	the	describe	the	desired	drawing,	so	that	those	variable	are	accessible	to	the	paint
()method	and	can	be	used	by	the	paint	()	method	to	perform	the	drawing.

Now	 when	 the	 paint	 ()	 methods	 gets	 called,	 whether	 by	 one	 of	 our	 general
methods,	or	by	the	GUI	thread,	it	can	draw	whatever	was	originally	intended.

Spontaneous	 Painting	 (paint()	 method	 is	 called	 implicitly/automatically	 by	 GUI
thread):

Spontaneous	 painting	 is	 not	 an	 official	 Java	 term,	 but	 it	 gets	 the	 point	 across.
Some	painting	happens	by	itself,	with	no	impetus	by	the	program.	For	example,	as	every
introductory

Java	book	explains,	when	a	browser	starts-	up	an	applet,	shortly	after	the	init	()
method	completes,	call	is	made	to	the	paint	()	method.	Also,	when	part	or	all	of	a	browser
or	a	frame	is	covered	by	another	window	and	then	becomes	exposed	a	call	is	made	to	the
paint	()	method	so	as	to	refresh	the	applet	window.

It	 is	 the	 GUI	 thread	 that	 executes	 these	 calls	 to	 paint	 ().	 Every	 applet	 and	 every
application	that	has	a	GUI,	has	a	GUI	thread.

The	GUI	thread	spontaneously	calls	paint	()	whenever	all	or	part	of	a	component	needs
redrawing	after	any	of	the	following	events:

After	exposure.

After	de-	iconification.

After	first	display.

When	a	browser	returns	to	a	previously	page	containing	an	applet,	provided	that
applet	 is	 at	 least	 partially	 visible.When	 the	GUI	 thread	 calls	 paint	 (),	 it	must	 supply	 a
graphics	 context,	 since	 the	 paint	 ()	 method’s	 input	 	 parameter	 is	 an	 instance	 of	 the
Graphics	class.

An	earlier	section	(“clipping”)	discussed	the	fact	that	every	graphics	context	has
a	 clip	 region.	 The	GUI	 thread	makes	 sure	 that	 the	 graphics	 contexts	 that	 get	 passed	 to
paint	 ()	 have	 their	 clip	 regions	 appropriately	 set.	Most	 often,	 the	 default	 clip	 region	 is
appropriate.

However,	 when	 a	 component	 is	 exposed,	 the	 clip	 region	 is	 set	 to	 be	 just	 that
portion	of	the	component	that	requires	repair.	If	only	a	small	piece	of	the	component	was
exposed,	then	the	clip	region	ensures	that	no	time	is	wasted	drawing	pixels	that	are	already
the	correct	color.

If	an	exposed	region	is	non-	rectangular,	then	multiple	calls	to	paint	()	might	occur,	with
the	clip	region	of	each	successively	building	up	to	ensure	that	the	whole	exposed	area	gets
repainted	eventually.

Explicitly	invoking	paint	()	method:

The	 component	 may	 not	 get	 refreshed	 if	 the	 drawing	 operations	 on	 it	 are
performed	 	 in	a	method	other	 than	 the	paint	 ()	method.	 If	drawing	 is	done	 in	 the	paint
method	()	 then	it	gets	displayed	when	we	call	 the	paint	()	method	explicitly	as	well	as
when	the	paint	()	method	is	called	implicitly	GUI	thread.

The	 mouse	 Clicked	 ()	 method	 of	 the	 previous	 example	 is	 rewritten	 so	 that	 it	 simply
modifies	the	instance	variables	mouse	X	and	mouse	Y	whenever	mouse	click	happens.

The	red	do	is	drawn	in	the	paint	()	method	only	so	that	it	gets	repaired	even	if	applet	gets
covered	and	exposed.

Example	19.7:

The	 example	 in	 the	 previous	 section	 is	 modified	 so	 that	 the	 components	 display	 gets
refreshed	in	the	situations	described	above.	This	happens	because	the	red	dot	is	drawn	in
the	paint	()	method.

1.														import	java.awt.*;

2.														import	java.awt.event.*;

3.		public	class	PaintApproach1	extends	Frame	implements	MouseListener

4.														{													

5.																												int	mouseX,	mouseY;

6.																												public	static	void	main	(String	arg[])

7.																												{													

8.																																										PaintApproach1	f	=	new	PaintApproach2	();

9.																																										f.setSize	(300,	300);

10.																																										f.addMouseListener(f);

11.																																										f.setVisible(true);

12.																												}

13.																												public	void	mouseEntered	(MouseEvent	e)				{}

14.																												public	void	mouseExited	(MouseEvent	e)				{}

15.																												public	void	mousePressed	(MouseEvent	e)				{}

16.																												public	void	mouseReleased	(MouseEvent	e)				{}

17.																												public	void	mouseClicked	(MouseEvent	e)			

18.																												{													

19.																																										System.out.println	(“Mouse	Clicked…”);

20.																																										mouseX	=	e.getX();

21.																																										mouseY	=	e.getY();

22.																																										Graphics	g	=	getGraphics	();

23.																																										paint(g);

24.																												}

25.																																										public	void	paint	(Graphics	g)

26.																												{													

27.																																										g.setColor	(Color.yellow);

28.																																										g.fillRect(0,0,	getSize().width,	getSize().height);

29.																																										g.setColor(Color.red);

30.																																										g.fillOval(mouseX–10,mouseY–10,20,20);

31.																												}

32.														}

Explicitly	 invoking	 repaint()	 method,	 which	 then	 indirectly	 invokes	 the	 paint(
)method:

Invoking	paint	()	method	explicitly	may	also	lead	to	two	serious	problems.

The	 first	 problem	 is	 that	 the	GUI	 thread	 is	 calling	 the	paint	 ()	method	 as	 and
when	 it	 needs	 to	 It	 occurs	 when	 exposure	 needs	 to	 be	 handled.	 This	 can	 cause	 thread
interaction	issues.

To	be	 fair,	we	will	 see	 that	we	might	 have	 to	 handle	 some	of	 these	 issues	 any
way,	even	when	using	the	preferred	approach,	since	the	paint	()	method	will	use	data	that
we	are	modifying	 in	other	 threads.	However,	we	will	minimize	 the	problem	if	we	allow
paint	()	to	be	called	only	in	the	GUI	thread.

The	Second	problem	is	one	of	CPU	usage.	Consider	this	scenario:	our	program	is
getting	 regular	 notification	 that	 it	 should	 update	 the	 display	 with	 the	 next	 frame	 of	 an
animation	or	similar	continuously	moving	graphic.

Also	suppose	that	the	drawing	is	complex	and	time-	consuming.	It	we	simply	call
the	whole	paint	()	method,	we	might	be	only	part	way	through	the	drawing	when	frame
trigger	occurs.

This	would	 result	 in	 our	 program	 spending.	Or	 trying	 to	 spend,	 all	 its	 time	 in
drawing	Further,	the	drawing	would	get	further	and	further	behind	where	it	should	be.

These	problems	can	be	dealt	 simply	by	using	 the	preferred	method	of	handling
program	 initiated	 drawing.	 The	 idea	 is	 that	 the	 main	 program	 maintains	 data	 set	 that
describes	 the	drawing	 that	should	be	presented	 to	 the	user,	but	does	not	directly	call	 the
drawing	routines.

Instead,	 the	 program	 requests	 that	 the	 GUI	 thread	 should	 run	 the	 painting
routines,	in	broadly	the	same	way	that	thread	would	do	if	it	were	handling	exposure.

The	GUI	thread	uses	the	data	set	presented	by	main	program	to	decide	what	and
how	to	draw.

To	 support	 this	 approach,	 the	GUI	 system	provides	 a	method	 called	 repaint().
This	method	is	defined	in	the	Component	class,	and	so	is	available	on	anything	visible	in	a
GUI.	When	we	call	this	method,	we	are	issuing	a	request	to	the	GUI	thread	that	it	should
perform	the	painting	system	routines.

The	GUI	 thread	does	so	within	a	 reasonable	 time	scale,	although	 this	might	be
limited	 by	 other	 high-	 priority	 thread	 activity.This	 approach	 ensures	 that	 the	 thread
interactions	between	the	GUI	thread	and	user	threads	are	minimized.

We	must,	naturally,	ensure	that	our	data	set	is	never	used	by	the	GUI	thread	while
that	data	is	in	an	inconsistent	state.	However,	this	can	be	achieved	quite	easily	using	either
synchronization	or	double	buffering	technique.

Another	consequence	of	this	behavior	is	that,	no	matter	haow	much	drawing	the
program	tries	to	do,	the	system	generally	remains	synchronized	with	current	frame.

This	happens	because	 if	we	 call	 the	 repaint	 ()	method	 ten	 times,	 for	 example,
before	 the	 GUI	 thread	 is	 able	 to	 service	 the	 first	 call,	 then	 the	 result	 will	 be	 a	 single
execution	of	the	painting	system.

Therefore,	 in	 overloaded	 conditions,	 the	 painting	 system	 automatically	 skips
frames	that	 the	host	CPU	simply	cannot	deal	with.	This	means	that	 the	programmer	can
write	code	that	reliably	gets	the	best	available	video	performance	on	a	given	platform,	but
still	works	tolerably	well	on	any	other	platform.	The	following	code	implements	this	kind
of	scheme.

Example	19.8:

1.														import	java.awt.*;

2.														import	java.awt.event	.*;

3.		public	class	PaintApproach2	extends	Frame	implements	MouseListener

4.														{														

5.																												int	mouseX,	MouseY;

6.																												public	static	void	main	(String	args	[])

7.																												{														

8.																																										PaintApproach2	f	=	new	PaintApproach2();

9.																																										f.setSize	(300,300);

10.																																										f.addMouseListener	(f);

11.																																										f.setVisible(true);

12.																												}

13.																												public	void	mouseEntered	(MouseEvent	e)														{	}

14.																												public	void	mouseExited	(MouseEvent	e)														{	}

15.																												public	void	mouse	Pressed	(Mouse	Event	e)														{	}

16.																												public	void	mouse	Released	(Mouse	Event	e)														{	}

17.																												public	void	mouseClicked(MouseEvent	e)													

18.																												{														

19.																																										System.out.println	(“Mouse	Clicked	…	“);

20.																																										mouseX	=	e.getX	();

21.																																										mouseY	=	e.get	Y	();

22.																																										repaint	();

23.																												}

24.																												public	void	paint	(Graphics	g)

25.																												{

26.																																										g.setColor	(Color.white);

27.																																										g.fillRect	(0,0,getSize	().width,	getSize	().height);

28.																																										g.setColor	(Color.gray);

29.																																										g.fillOval	(MouseX-10	,	mouseY	–10,20,20);

30.																												}

31.														}

Notice	that	repaint	()	call	has	replaced	the	direct	handling	of	painting.	Now,	regardless	of
how	frequently	the	event	handler	is	called,	calls	to	paint	()	will	not	outstrip	the	system’s
ability	to	draw,	and	the	program	can	not	fall	increasingly	behind.

The	 previous	 code	 shows	 the	 essence	 of	 the	 preferred	 approach	 to	 program
initiated	drawing.	The	main	program	stores	information	in	istance	variables	and	then	calls
the	repaint	()	method.

The	repaint	()	method	requests	that	the	GUI	thread	draws	the	screen.	The	GUI
thread	uses	 the	paint	 ()	method	 to	do	 the	drawing,	and	 that	method	should	perform	the
drawing	according	to	the	information	in	the	instance	variable.

The	benefits	of	this	approach	are:

The	screen	is	correctly	repaired	when	the	environment	spontaneously	calls	paint	(
).

The	 thread	 interactions,	between	 foreground	 threads	 trying	 to	draw	and	 the	GUI	 thread,
are	controlled	and		predictable.

The	virtual	machine	is	never	overwhelmed	by	painting.

When	 all	 the	 code	 is	 written	 this	 way,	 there	 are	 no	 surprises	 for	 other
programmers	trying	to	debug	the	code.

Although	 this	 approach	 works	 well,	 there	 is	 a	 situation	 where	 still	 further
improvement	is	needed:	animation.	If	we	use	the	approach	exactly	as	described,	we	will
probably	notice	that	an	animation	flickers	unpleasantly	while	it	runs.

Smooth	Animation:

One	 feature	of	 the	default	behavior	of	 the	 repainting	mechanism	 that	we	might
not	always	want	 is	 that	 the	 system	clears	our	drawing	area	as	part	of	 the	preparation	 to
respond	 to	 our	 call	 to	 repaint	 ().	 This	 can	 make	 animations	 and	 another	 	 real	 time
drawings	 flicker	 unpleasantly.	 It	 turns	 out	 that	when	we	 call	 repaint(),	 the	GUI	 thread
does	 not	 call	 	 paint	 ();	 instead	 it	 calls	 the	 update	 ()	method.	 The	 default	 behavior	 of
update	()	is	to	do	two	things.	Clear	the	background	and	then	call	paint.	Like	this:

public	void	update	(Graphics	g)

{													

g.clearRect	(0,0,width,	height);

paint(g);

}

We	might	 reasonably	 ask	 why	 repaint	 ()	 starts	 by	 clearing	 the	 window	 if	 this
causes	 flickering.	Well,	 in	many	 cases,	 drawings	 are	 done	 using	 lines,	 rectangles,	 ovals
and	so	forth	drawn	on	a	background.

If	we	are	trying	to	make	a	spinning	stick,	we	need	to	remove	the	old	line	before
we	draw	the	new	one.	Another	way	to	think	about	this	is	to	consider	that	if	we	are	trying
to	draw	a	new	drawing,	we	should	first	erase	the	old	one.

So,	how	can	we	arrange	for	 the	new	drawing	 to	appear	without	having	 to	clear
the	whole		display	first	?	We	simply	need	to	find	another	way	to	remove	the	old	drawing.
The	general	approach	is	to	ensure	that	we	draw	the	whole	drawing-	both	background	and
foreground	 each	 time	we	draw	a	 frame.	 If	we	 can	 arrange	 this,	 then	we	do	not	 need	 to
clear	the	component,	and	the	flickering	goes	away.

To	 prevent	 the	 component	 being	 cleared	 before	 paint	 ()	 is	 called,	 we	 simply
override	the	update	()	method	so	that	it	calls	paint	directly,	as	shown	below:

public	void	update	(Graphics	g)

{														

paint	(g);

}

This	 is	 a	 standard	 technique	 and	 works	 perfectly,	 provided	 that	 our	 paint	 ()
method	 does	 indeed	 refresh	 all	 the	 pixels	 of	 the	 display.	 On	 particularly	 easy	 way	 to
handle	this	is	to	use	an	off	screen	image	to	store	a	drawing	of	what	should	be	shown	on
the	display.

This	technique	is	not	always	the	most	efficient,	in	either	speed	or	memory	terms,
but	 it	 is	 simple	 and	 easy	 to	 implement,	 and	 generally	 well	 understood	 by	 Java
programmers.

	

	

	

	

	

	

	

	

	 	 	 	

	

	
CHAPTER
∞	20	∞

(Java.Lang.Object	Class)
	

	
	

Introduction-
The	Object	class	of	java.lang	package	is	the	root	of	all	the	hierarchies	in	Java.	All

classes	extend	the	Object	class,	either	directly	or	indirectly.

Even	 if	 you	 write	 a	 simple	 class	 (i.e.	 it	 is	 not	 extending	 any	 base-class),	 it
implicity	extend	built-in	Object	class.	Thus	the	features	of	this	class	will	be	available	in	all
the	classes.

Methods	in	Object	class:

The	object	class	defines	following	methods,	which	are	inherited	by	all	the	classes.

1.	 public	int	hashCode()
2.	 public	boolean	equals(Object	obj)
3.	 public	final	Class	getClass()
4.	 public	String	toString()
5.	 protected	void	finalize()	throws	Throwable
6.	 protected	Object	clone()	throws	CloneNotSupportedException

7.	 public	final	void	wait(long	timeout)	throws	InterrputedException
8.	 public	final	void	wait(long	timeout,	int	nanos)	throws	InterrputedException
9.	 public	final	void	wait()	throws	InterrputedException
10.	 public	final	void	notify()
11.	 public	final	void	notifyAll()

	

1.														public	int	hashCode():

When	storing	objects	 in	hash	 tables,	 this	method	can	be	used	 to	get	a	hash	value	 for	an
object.	This	value	is	guaranteed	to	be	consistent	during	the	execution	of	the	program.

2.														boolean	equals(Object	obj):

If	every	object	is	to	be	considered	unique,	then	it	is	not	necessary	to	override	the	equals()
method	of	the	Object	class.	This	method	comares	object	reference	for	equality.

3.														final	Class	getClass():

Returns	 the	 runtime	 class	 of	 the	 object,	 which	 is	 represented	 by	 an	 object	 of	 the	 class
java.lang.Class	at	runtime.

Example	20.1:The	following	example	 illustrates	 that	 this	method	can	be	used	 to	get	 the
Class	object	corresponding	to	any	java	object.	We	can	then	use	methods	of	the	class	Class
to	get	information	about	the	object’s	class	using	reflection/introspection.	getMethods()	and
getFields()	 will	 display	 all	 the	 public	 members	 only,	 but	 get	 DeclaredMethods()	 and
getDeclaredFields()	will	display	all	the	members.

1.														import	java.lang.reflect.Method;

2.														import	java.lang.reflect.Field;

3.														class	DispClassMembers1

4.														{

5.																												public	static	void	main(String	args[])

6.																												{

7.																																										String	s	=	new	String(“Hello”);

8.																																										Class	c	=	s.getClass();

9.																																										Method	m[]	=	c.getMethods();

10.														System.out.println(“……Public	Methods	(”	+	m.length	+	“)……”);

11.																												for(int	i=0;	i	<	m.length;	i++)

12.																																																								System.out.println(m[i]);

13.																												Field	f[]	=	c.getFields();

14.																												System.out.println(“……Public	Fields	(“	+	f.length	+	”)……”);

15.																																										for(int	i=0;	i<	f.length;	i++)

16.																												System.out.println(f[i]);

17.																																										m	=	c.getDeclaredMethods();

18.														System.out.println(“……Declared	Methods	(“	+	m.length	+	”)……”);

19.																																										for(int	i=0;	i<	m.length;	i++)

20.																																																								System.out.println(m[i]);

21.																																										f	=	c.getDeclaredFields();

22.														System.out.println(“……Declared	Fields	(“	+	f.length	+	”)……”);

23.																																										for(int	i=0;	i<	f.length;	i++)

24.																																																								System.out.println(f[i]);

25.																												}

26.														}

Output:

……Public	Methods	(72)……

public	int	java.lang.String.hashCode()

public	int	java.lang.String.compareTo(java.lang.String)

public	int	java.lang.String.compareTo(java.lang.Object)

public	int	java.lang.String.indexOf(int,int)

public	int	java.lang.String.indexOf(int)

public	int	java.lang.String.indexOf(java.lang.String)

public	int	java.lang.String.indexOf(java.lang.String,int)

public	boolean	java.lang.String.equals(java.lang.Object)

public	java.lang.String	java.lang.String.toString()

public	char	java.lang.String.charAt(int)

public	int	java.lang.String.codePointAt(int)

public	int	java.lang.String.codePointBefore(int)

public	int	java.lang.String.codePointCount(int,int)

public	int	java.lang.String.compareToIgnoreCase(java.lang.String)

public	java.lang.String	java.lang.String.concat(java.lang.String)

public	boolean	java.lang.String.contains(java.lang.CharSequence)

public	boolean	java.lang.String.contentEquals(java.lang.StringBuffer)

public	boolean	java.lang.String.contentEquals(java.lang.CharSequence)

public	static	java.lang.String	java.lang.String.copyValueOf(char[])

public	static	java.lang.String	java.lang.String.copyValueOf(char[],int,int)

public	boolean	java.lang.String.endsWith(java.lang.String)

public	boolean	java.lang.String.equalsIgnoreCase(java.lang.String)

public	static	java.lang.String	java.lang.String.format(java.lang.String,java.lang.Object[])

public	static	java.lang.String
java.lang.String.format(java.util.Locale,java.lang.String,java.lang.Object[])

public	byte[]	java.lang.String.getBytes()

public	byte[]	java.lang.String.getBytes(java.nio.charset.Charset)

public	byte[]	java.lang.String.getBytes(java.lang.String)	throws
java.io.UnsupportedEncodingException

public	void	java.lang.String.getBytes(int,int,byte[],int)

public	void	java.lang.String.getChars(int,int,char[],int)

public	native	java.lang.String	java.lang.String.intern()

public	boolean	java.lang.String.isEmpty()

public	int	java.lang.String.lastIndexOf(int)

public	int	java.lang.String.lastIndexOf(java.lang.String)

public	int	java.lang.String.lastIndexOf(java.lang.String,int)

public	int	java.lang.String.lastIndexOf(int,int)

public	int	java.lang.String.length()

public	boolean	java.lang.String.matches(java.lang.String)

public	int	java.lang.String.offsetByCodePoints(int,int)

public	boolean	java.lang.String.regionMatches(boolean,int,java.lang.String,int,int)

public	boolean	java.lang.String.regionMatches(int,java.lang.String,int,int)

public	java.lang.String
java.lang.String.replace(java.lang.CharSequence,java.lang.CharSequence)

public	java.lang.String	java.lang.String.replace(char,char)

public	java.lang.String	java.lang.String.replaceAll(java.lang.String,java.lang.String)

public	java.lang.String	java.lang.String.replaceFirst(java.lang.String,java.lang.String)

public	java.lang.String[]	java.lang.String.split(java.lang.String,int)

public	java.lang.String[]	java.lang.String.split(java.lang.String)

public	boolean	java.lang.String.startsWith(java.lang.String,int)

public	boolean	java.lang.String.startsWith(java.lang.String)

public	java.lang.CharSequence	java.lang.String.subSequence(int,int)

public	java.lang.String	java.lang.String.substring(int,int)

public	java.lang.String	java.lang.String.substring(int)

public	char[]	java.lang.String.toCharArray()

public	java.lang.String	java.lang.String.toLowerCase()

public	java.lang.String	java.lang.String.toLowerCase(java.util.Locale)

public	java.lang.String	java.lang.String.toUpperCase()

public	java.lang.String	java.lang.String.toUpperCase(java.util.Locale)

public	java.lang.String	java.lang.String.trim()

public	static	java.lang.String	java.lang.String.valueOf(boolean)

public	static	java.lang.String	java.lang.String.valueOf(char[],int,int)

public	static	java.lang.String	java.lang.String.valueOf(int)

public	static	java.lang.String	java.lang.String.valueOf(long)

public	static	java.lang.String	java.lang.String.valueOf(float)

public	static	java.lang.String	java.lang.String.valueOf(double)

public	static	java.lang.String	java.lang.String.valueOf(char[])

public	static	java.lang.String	java.lang.String.valueOf(java.lang.Object)

public	static	java.lang.String	java.lang.String.valueOf(char)

public	final	native	java.lang.Class	java.lang.Object.getClass()

public	final	void	java.lang.Object.wait(long,int)	throws	java.lang.InterruptedException

public	final	void	java.lang.Object.wait()	throws	java.lang.InterruptedException

public	final	native	void	java.lang.Object.wait(long)	throws	java.lang.InterruptedException

public	final	native	void	java.lang.Object.notify()

public	final	native	void	java.lang.Object.notifyAll()

……Public	Fields	(1)……

public	static	final	java.util.Comparator	java.lang.String.CASE_INSENSITIVE_ORDER

……Declared	Methods	(70)……

public	int	java.lang.String.hashCode()

public	int	java.lang.String.compareTo(java.lang.String)

public	int	java.lang.String.compareTo(java.lang.Object)

public	int	java.lang.String.indexOf(int,int)

public	int	java.lang.String.indexOf(int)

public	int	java.lang.String.indexOf(java.lang.String)

public	int	java.lang.String.indexOf(java.lang.String,int)

static	int	java.lang.String.indexOf(char[],int,int,char[],int,int,int)

public	boolean	java.lang.String.equals(java.lang.Object)

public	java.lang.String	java.lang.String.toString()

public	char	java.lang.String.charAt(int)

private	static	void	java.lang.String.checkBounds(byte[],int,int)

public	int	java.lang.String.codePointAt(int)

public	int	java.lang.String.codePointBefore(int)

public	int	java.lang.String.codePointCount(int,int)

public	int	java.lang.String.compareToIgnoreCase(java.lang.String)

public	java.lang.String	java.lang.String.concat(java.lang.String)

public	boolean	java.lang.String.contains(java.lang.CharSequence)

public	boolean	java.lang.String.contentEquals(java.lang.StringBuffer)

public	boolean	java.lang.String.contentEquals(java.lang.CharSequence)

public	static	java.lang.String	java.lang.String.copyValueOf(char[])

public	static	java.lang.String	java.lang.String.copyValueOf(char[],int,int)

public	boolean	java.lang.String.endsWith(java.lang.String)

public	boolean	java.lang.String.equalsIgnoreCase(java.lang.String)

public	static	java.lang.String	java.lang.String.format(java.lang.String,java.lang.Object[])

public	static	java.lang.String
java.lang.String.format(java.util.Locale,java.lang.String,java.lang.Object[])

public	byte[]	java.lang.String.getBytes()

public	byte[]	java.lang.String.getBytes(java.nio.charset.Charset)

public	byte[]	java.lang.String.getBytes(java.lang.String)	throws
java.io.UnsupportedEncodingException

public	void	java.lang.String.getBytes(int,int,byte[],int)

void	java.lang.String.getChars(char[],int)

public	void	java.lang.String.getChars(int,int,char[],int)

public	native	java.lang.String	java.lang.String.intern()

public	boolean	java.lang.String.isEmpty()

public	int	java.lang.String.lastIndexOf(int)

public	int	java.lang.String.lastIndexOf(java.lang.String)

public	int	java.lang.String.lastIndexOf(java.lang.String,int)

public	int	java.lang.String.lastIndexOf(int,int)

static	int	java.lang.String.lastIndexOf(char[],int,int,char[],int,int,int)

public	int	java.lang.String.length()

public	boolean	java.lang.String.matches(java.lang.String)

public	int	java.lang.String.offsetByCodePoints(int,int)

public	boolean	java.lang.String.regionMatches(boolean,int,java.lang.String,int,int)

public	boolean	java.lang.String.regionMatches(int,java.lang.String,int,int)

public	java.lang.String
java.lang.String.replace(java.lang.CharSequence,java.lang.CharSequence)

public	java.lang.String	java.lang.String.replace(char,char)

public	java.lang.String	java.lang.String.replaceAll(java.lang.String,java.lang.String)

public	java.lang.String	java.lang.String.replaceFirst(java.lang.String,java.lang.String)

public	java.lang.String[]	java.lang.String.split(java.lang.String,int)

public	java.lang.String[]	java.lang.String.split(java.lang.String)

public	boolean	java.lang.String.startsWith(java.lang.String,int)

public	boolean	java.lang.String.startsWith(java.lang.String)

public	java.lang.CharSequence	java.lang.String.subSequence(int,int)

public	java.lang.String	java.lang.String.substring(int,int)

public	java.lang.String	java.lang.String.substring(int)

public	char[]	java.lang.String.toCharArray()

public	java.lang.String	java.lang.String.toLowerCase()

public	java.lang.String	java.lang.String.toLowerCase(java.util.Locale)

public	java.lang.String	java.lang.String.toUpperCase()

public	java.lang.String	java.lang.String.toUpperCase(java.util.Locale)

public	java.lang.String	java.lang.String.trim()

public	static	java.lang.String	java.lang.String.valueOf(boolean)

public	static	java.lang.String	java.lang.String.valueOf(char[],int,int)

public	static	java.lang.String	java.lang.String.valueOf(int)

public	static	java.lang.String	java.lang.String.valueOf(long)

public	static	java.lang.String	java.lang.String.valueOf(float)

public	static	java.lang.String	java.lang.String.valueOf(double)

public	static	java.lang.String	java.lang.String.valueOf(char[])

public	static	java.lang.String	java.lang.String.valueOf(java.lang.Object)

public	static	java.lang.String	java.lang.String.valueOf(char)

……Declared	Fields	(7)……

private	final	char[]	java.lang.String.value

private	final	int	java.lang.String.offset

private	final	int	java.lang.String.count

private	int	java.lang.String.hash

private	static	final	long	java.lang.String.serialVersionUID

private	static	final	java.io.ObjectStreamField[]	java.lang.String.serialPersistentFields

public	static	final	java.util.Comparator	java.lang.String.CASE_INSENSITIVE_ORDER

Example	20.2:

The	previous	example	is	modified	so	as	to	read	the	fully	qualified	class	name	as	command
line	argument	and	then	display	the	information	about	the	class’s		methods	and	fields	using
reflection/introspection.

1.														import	java.lang.reflect.Method;

2.														import	java.lang.reflect.Field;

3.														class	DispClassMembers2

4.														{													

5.	public	static	void	main(String	args[])	throws	ClassNotFoundException

6.																												{													

7.																																										Class	c	=	Class.forName(args[0]);

8.																																										Method	m[]	=	c.getMethods();

9.														System.out.println(“……Public	Methods	(”	+	m.length	+	“)……”);

10.																																										for(int	i=0;	i<	m.length;	i++)

11.																																																								System.out.println(m[i]);

12.																																										Field	f[]	=	c.getFields();													

13.														System.out.println(“……Public	Fields	(”	+	f.length	+	“)……”);

14.																																										for(int	i=0;	i<	f.length;	i++)

15.																																																								System.out.println(f[i]);

16.																																										m	=	c.getDeclaredMethods();													

17.														System.out.println(“……Declared	Methods	(“	+	m.length	+	”)……”);

18.																																										for(int	i=0;	i<m.length;	i++)

19.																																																								System.out.println(m[i]);

20.																																										f	=	c.getDeclaredFields();													

21.														System.out.println(“……Declared	Fields	(“	+	f.length	+	”)……”);

22.																																										for(int	i=0;	i<	f.length;	i++)

23.																																																								System.out.println(f[i]);

24.																												}

25.														}

Output:

Same	as	previous	but	pass	the	class	name	“String”	from	commandline	arguments.

javac	DispClassMembers2.java

java	DispClassMembers2		String

4.														String	toString():

If	a	sub	class	does	not	override	this	method,	it	returns	a	textual	representation	of
the	object,	which	has	the	following	format:

“<name	of	the	class>@<hash	code	value	of	object>”

The	method	is	usually	overridden	and	used	for	debugging	purposes.	The	method
call	 System.out.println(Objref)	 will	 implicitly	 convert	 its	 argument	 to	 a	 textual
representation	using	toString()	method.

Example	20.3:

This	example	demonstrates	what	gets	displayed	if	we	try	to	display	object	of	class	Box.
the	object	is	converted	to	the	textual	representation	using	the	toString	method	of	the	object
class.

1.														class	Box

2.														{

3.																												double	w,h,d;

4.																												Box(double	w,	double	h,	double	d)

5.																												{

6.																												this.w=w;														this.h=h;																												this.d=d;

7.																												}

8.														}

9.														class	ToStringDemo1

10.														{

11.																												public	static	void	main(String	args[])

12.																												{

13.																																										Box	b=	new	Box(10,12,14);

14.																																										String	s=”Box	b:”+b;

15.																																										System.out.println(b);

16.																																										System.out.println(s);

17.																												}

18.														}

Output:

Box1@82b41

Box1	b:	Box1@82b41

Example	20.4:

This	example	demonstrate	that	if	we	override	the	toString()	method	in	the	Box	class	then
the	overridden	method	is	used	to	convert	the	object	to	its	textual	representation.

1.														class	Box

2.														{													

3.																												double	w,h,d;

4.																												Box(double	w,	double	h,	double	d)

5.																												{													

6.																																										this.w=w;														this.h=h;														this.d=d;

7.																												}

8.																												public	String	toString()

9.																												{													

10.																												return	“Dimensions	are	”+	w	+	“	by	”+	h	+	“	by	”	+	d	+	“.”;

11.																												}

12.														}

13.														class	ToStringDemo2

14.														{													

15.																												public	static	void	main(String	args[])

16.																												{													

17.																												Box	b=	new	Box(8,11,13);

18.	String	s=”Box	b:”	+	b;														//concatenates	box	object	&	calling		toString()	method

19.System.out.println(b);															//	Calling	toString()	method

20.	System.out.println(s);

21.																												}

22.														}

Output:

Dimension	are	8.0	by	11.0	by	13.0

Box	b:	Dimension	are	8.0	by	11.0	by	13.0

5.														protected	void	finalize()	throws	Throwable

It	is	called	on	an	object	just	before	it	is	garbage	collected,	so	that	any	cleaning	up
can	 be	 done.	 However,	 the	 default	 finalize()	 method	 in	 the	 object	 class	 does	 not	 do
anything	 useful.	 This	 may	 be	 useful	 for	 releasing	 non-java	 resources	 but	 not
recommended.	It	is	possible	that	finalize()	method	may	never	be	called	if	enough	memory
is	available	and	in	that	case	resources	may	never	be	released.

6.														protected	Object	clone()	throws	CloneNotSupportedException

New	objects	 that	 are	 exactly	 the	 same	 (i.e.	 have	 identical	 states)	 as	 the	 current
object	can	be	created	by	the	clone()	method,	that	is,	primitive	values	and	reference	values
are	copied,	this	is	called	shallow	cloning.

A	class	can	override	the	clone()	method	to	provide	its	own	notion	of	cloning.	For
example,	cloning	a	composite	object	by	recursively	cloning	the	constituent	object	is	called
deep	cloning.	When	overridden,	the	method	in	the	subclass	is	usually	declared	public	to
allow	any	client	to	clone	objects	of	the	class.

If	overriding	clone()	method	relies	on	the	clone()	method	in	the	Object	class,	then
the	subclass	must	implement	the	cloneable	marker	interface	to	indicate	that	its	objects	can
be	safely	cloned.	Otherwise,	the	clone()	method	in	the	Object	class	will	throw	a	checked
CloneNotSupportedException.

Using	clone()	and	the	Cloneable	interface:

The	clone()	method	generates	a	duplicate	copy	of	the	object	on	which	it	is	called.
These	are	few	important	facts	related	to	clone()	method:

Only	 classes	 that	 implement	 the	 Cloneable	 interface	 can	 be	 cloned.	 The
Cloneable	interface	defines	no	members.	It	is	used	to	indicate	that	a	class	allows	a	bit-wise
copy	of	an	object	(that	is,	a	clone)	to	be	made.

If	you	try	to	call	clone()	on	object	of	a	class	that	does	not	 implement	cloneable
interface,	CloneNotSupportedException	is	thrown.

Cloneable	interface	is	an	empty	interface.	Such	an	interface	is	called	marker/tag
interface.	When	a	clone	is	made,	the	constructor	for	the	object	being	cloned	is	not	called.

A	 clone	 is	 simply	 an	 exactly	 copy	 of	 the	 original.	 Cloning	 is	 potentially	 a
dangerous	action,	because	it	can	cause	unintended	side	effects.

For	 example,	 if	 the	 object	 being	 cloned	 contains	 a	 reference	 variable	 called
objRef,	then	when	the	clone	is	made	the	objRef	in	clone	will	refer	to	the	same	object	as
does	objRef	in	original.	If	the	clone	makes	a	change	to	the	contents	of	the	object	referred
to	by	objRef,	then	it	will	be	changed	for	the	original	object,	too.

Example20.5:

The	following	example	demonstrates	the	use	of	clone()	method.	The	CloneDemo1	class	is
making	clone	of	 the	object	of	 class	TestClone1	by	 indirectly	 calling	 the	clone()	method
through	clone2()	method.

1.														class	TestClone1	implements	Cloneable

2.														{

3.																												int	a;

4.																												float	b;

5.														public	TestClone1	clone2()	throws	CloneNotSupportedException

6.																												{

7.														return	(TestClone1)	clone();

8.																												}

9.														}

10.														class	CloneDemo1

11.														{

12.		public	static	void	main(String	a[])	throws	CloneNotSupportedException

13.																												{

14.																																										TestClone1	tc1	=	new	TestClone1();

15.																																										TestClone1	tc2;

16.																																										tc1.a	=	8;	tc1.b	=	4.5f;

17.																																										tc2	=	tc1.clone2();

18.																																										System.out.println(tc2.a);

19.																																										System.out.println(tc2.b);

20.																												}

21.														}

Output:

8

4.5

Here,	the	method	clone2()	calls	clone()	of	Object	class	and	returns	the	result.	Notice	that
the	object	returned	by	clone()	must	be	cast	into	its	appropriate	type	i.e.	TestClone1.

Example	20.6:In	the	following	example,	the	clone()	method	is	overridden	so	that	it	can	be
called	from	code	outside	of	its	class.	To	do	this,	its	access	modifier	must	be	public.

1.														class	TestClone2	implements	Cloneable

2.														{

3.																												int	a;

4.																												float	b;

5.																																				public	Object	clone()	throws	CloneNotSupportedException

6.																												{

7.																																										return	super.clone();

8.																												}

9.														}

10.														class	CloneDemo2

11.														{

12.			public	static	void	main(String	args[])	throws	CloneNotSupportedException

13.																												{

14.																																										TestClone2	tc1	=	new	TestClone2();

15.																																										TestClone2	tc2;

16.																																										tc1.a	=	8;	tc1.b	=	4.5f;

17.																																										tc2	=	(TestClone2)	tc1.clone();

18.																																										System.out.println(tc2.a	+	“	,	”	+	tc2.b);

19.																												}

20.														}

Output:			8	,	4.5

Example	20.7:	 In	 the	 following	 example,	 the	 clone()	method	 is	 overridden	 such	 that	 it
does	 not	make	 use	 of	 the	 clone()	method	 of	 the	Object	 class.	We	 are	writing	 our	 own
clone()	method.

1.														class	TestClone3

2.														{

3.																												int	a;

4.																												float	b;

5.																																				public	Object	clone()

6.																												{

7.																																										TestClone3	tc	=	new	TestClone3();

8.																																										tc.a	=	a;

9.																																										tc.b	=	b;

10.																																										return	tc;

11.																												}

12.														}

13.														class	CloneDemo3

14.														{

15.																												public	static	void	main(String	args[])

16.																												{

17.																																										TestClone3	tc1	=	new	TestClone3();

18.																																										TestClone3	tc2;

19.																																										tc1.a	=	8;

20.																																										tc1.b	=	4.5f;

21.																																										tc2	=	(TestClone3)	tc1.clone();

22.																																										System.out.println(tc2.a	+	“	,	”	+	tc2.b);

23.																												}

24.														}

Output:

8	,	4.5

Note:	 You	 need	 not	 declare	 CloneNotSupportedException	 and	 need	 not	 implement
Cloneable	interface	if	implementing	you	own	clone()	method.

	
Side	Effect	of	Cloning-
The	side	effects	caused	by	cloning	are	sometimes	difficult	to	see	at	first.	It	is	easy	to	think
that	a	class	is	safe	for	cloning	when	it	actually	is	not.

In	 general,	 you	 should	 not	 implement	 Cloneable	 interface	 for	 any	 class	 without	 good
reason.

Example20.8:	This	example	demonstrates	the	side	effect	of	cloning.

1.														class	TestShallowClone	implements	Cloneable

2.														{													
3.																												int	a;

4.																												float	b;

5.																												int	c[];

6.																																				public	Object	clone()	throws	CloneNotSupportedException

7.																												{													

8.																												return	super.clone();

9.																												}

10.														}

11.																												class	ShallowCloneDemo

12.														{													

13.														public	static	void	main(String	arg[])	throws	CloneNotSupportedException

14.																												{													

15.																												TestShallowClone	tc1	=	new	TestShallowClone();

16.																												TestShallowClone	tc2;

17.																												tc1.a	=	8;

18.																												tc1.b	=	4.5f;

19.																																										int	c[]	=	new	int[4];

20.																																										for(int	i=0;	i<4;	i++)

21.																																										c[i]	=	i;

22.																																										tc1.c	=	c;

23.																																										for(int	i=0;	i<4;	i++)

24.																																										System.out.println(“tc1.c[”	+	i	+	“]=”	+	tc1.c[i]);

25.																																										tc2	=	(TestShallowClone)	tc1.clone();

26.																																										System.out.println(“tc2.a”+tc2.a);

27.																																										System.out.println(“tc2.b”+tc2.b);

28.																																										for(int	i=0;	i<4;	i++)

29.																																										System.out.println(“tc2.c[”	+	i	+	“]=”	+	tc2.c[i]);

30.																																										for(int	i=0;i<4;i++)

31.																																										tc2.c[i]	=	i+4;													

32.																																										for(int	i=0;	i<4;	i++)

33.																																										System.out.println(“tc2.c[”	+	i	+	“]=”	+	tc2.c[i]);

34.																																										for(int	i=0;	i<4;	i++)

35.																																										System.out.println(“tc1.c[”	+	i	+	“]=”	+	tc1.c[i]);

36.																												}

37.														}

Output:

tc1.c[0]=0

tc1.c[1]=1

tc1.c[2]=2

tc1.c[3]=3

tc2.a=8

tc2.b=4.5

tc2.c[0]=0

tc2.c[1]=1

tc2.c[2]=2

tc2.c[3]=3

tc2.c[0]=4

tc2.c[1]=5

tc2.c[2]=6

tc2.c[3]=7

tc1.c[0]=4

tc1.c[1]=5

tc1.c[2]=6

tc1.c[3]=7

	

Example	20.9:The	following	code	eliminates	the	problem	faced	in	the	previous	example	by	implementing	deep	cloning.

1.														class	TestDeepClone	implements	Cloneable

2.														{													

3.																												int	a;

4.																												float	b;

5.																												int	c[];

6.																																				public	Object	clone()	throws	CloneNotSupportedException

7.																												{													

8.																																										TestDeepClone	tc	=	(TestDeepClone)super.clone();

9.																																										int	d[]	=	new	int[4];

10.																																										for(int	i=0;	i<4;	i++)

11.																																																								d[i]	=	c[i];

12.																																										tc.c	=	d;													

13.																																										return	(tc);

14.																												}		}

16.														class	DeepCloneDemo

17.														{													

18.														public	static	void	main(String	arg[])	throws	CloneNotSupportedException

19.																												{													

20.																												TestDeepClone	tc1	=	new	TestDeepClone();

21.																												TestDeepClone	tc2;

22.																																										tc1.a	=	8;

23.																																										tc1.b	=	4.5;

24.																																										int	c[]	=	new	int[4];

25.																																										for(int	i=0;	i<4;	i++)

26.																																										c[i]	=	i;

27.																																										tc1.c	=	c;

28.																																										for(int	i=0;	i<4;	i++)

29.																																										System.out.println(“tc1.c[”+	i	+”]=”	+	tc1.c[i]);

30.																																										tc2	=	(TestDeepClone)	tc1.clone();

31.																																										System.out.println(“tc2.a”+tc2.a);

32.																																										System.out.println(“tc2.b”+tc2.b);

33.																																										for(int	i=0;	i<4;	i++)

34.																																										System.out.println(“tc2.c[”	+	i	+	“]=”	+	tc2.c[i]);

35.																																										for(int	i=0;	i<4;	i++)

36.																																										tc2.c[i]	=	i+4;

37.																																										for(int	i=0;	i<4;	i++)

38.																																										System.out.println(“tc2.c[”	+	i	+	“]=”	+	tc2.c[i]);

39.																																										for(int	i=0;	i<4;	i++)

40.																																										System.out.println(“tc1.c[”	+	i	+	“]=”	+	tc1.c[i]);

41.																												}			}

Output:														tc1.c[0]=0

tc1.c[1]=1

tc1.c[2]=2

tc1.c[3]=3

tc2.a=8

tc2.b=4.5

tc2.c[0]=0

tc2.c[1]=1

tc2.c[2]=2

tc2.c[3]=3

tc2.c[0]=4

tc2.c[1]=5

tc2.c[2]=6

tc2.c[3]=7

tc1.c[0]=0

tc1.c[1]=1

Methods	useful	in	multi-threaded	environment:

In	addition	to	methods	discussed	above,	object	class	provides	support	for	thread
communication	 in	 synchronized	 code	 through	 the	 following	 methods:	 Causes	 current
thread	to	wait	until	another	thread	invokes	the	notify()	method	or	the	notifyAll()	method
for	this	object.

8.		final	void	wait(long	timeout)	throws	InterruptedException

9.		final	void	wait(long	timeout,	long	nanos)	throws	InterruptedException

Causes	 current	 thread	 to	 wait	 until	 either	 another	 thread	 invokes	 the	 notify()
method	 or	 the	 notifyAll()	 method	 for	 this	 object.	 or	 some	 other	 thread	 interrupts	 the

current	thread,	or	the	specified	amount	of	time	has	elapsed.

10.	final	void	notify()

Wakes	up	a	single	thread	that	is	waiting	on	this	object’s	monitor.

11.	final	void	notifyAll()

Wakes	up	all	thread	that	are	waiting	on	this	object’s	monitor.	A	thread	waits	on	an
object’s	monitor	by	calling	one	of	the	wait	methods.

A	thread	invokes	these	methods	on	the	object	whose	lock	it	holds.	A	thread	waits
for	notification	by	another	thread.

	

	 	 	 	

	

	

	
CHAPTER
∞	21	∞

(Collection	Framework)
	

	

Introduction-
The	Java	Collections	framework	standardizes	the	way	in	which	group	of	objects

are	handled	by	your	programs.	Prior	to	Java2,	Java	provided	ad	hoc	classes	such	as	Vector,
Stack,	Dictionary,	Hashtable	and	Properties	to	store	and	manipulate	groups	of	objects.

Although	 these	classes	were	quite	useful,	 they	 lacked	a	central	unifying	 theme.
The	way	that	we	use	Vector	was	different	from	the	way	that	we	use	properties	class,	Also,
the	 previous	 ad	 hoc	 approach	 was	 not	 designed	 to	 be	 easily	 extensible	 or	 adaptable.
Collections	are	an	answer	to	these	(and	other)	problems.

The	 Collection	 framework	 was	 designed	 keeping	 into	 consideration	 the	 following
objectives:

The	 Framework	 has	 to	 be	 high-performance.	 The	 implementations	 for	 the
fundamental	collections	(dynamic	arrays,	linked	lists,	trees,	and	hash	tables)	are
highly	efficient.

The	Framework	has	 to	allow	different	 types	of	collections	 to	work	 in	a	similar
manner	and	with	a	high	degree	of	interoperability.

Extending	and/or	adapting	to	a	collection	had	been	easy.
To	achieve	the	above	goals,	the	collection	framework	design	the	following	features:

Entire	Collection	framework	is	designed	around	a	set	of	standard	interfaces.	The
several	standard	implementations	of	these	interfaces	are	provided.	We	may	also
implement	our	own	collection.

Another	 item	created	by	 the	collections	 framework	 is	 the	 Iterator	 interface.	An
Iterator	gives	you	a	general-purpose,	standardized	ways	of	accessing	the	element
within	a	collection,	one	at	a	time.

Thus,	an	Iterator	provides	a	means	of	enumerating	 the	contents	of	a	collection.
Because	each	collection	implement	Iterator,	 the	elements	if	any	collection	class
can	be	accessed	 through	the	methods	defined	by	Iterator.	This,	with	only	small
changes,	the	code	that	cycle	through	a	set	can	also	be	used	to	cycle	through	a	list,
for	example.

In	 addition	 to	 collections,	 the	 framework	 defines	 several	 map	 interfaces	 and
classes.	Maps	 store	key/value	pairs.	Although	maps	 are	not	 “collection”	 in	 the
proper	use	of	the	term,	they	are	fully	integrated	with	collections.

In	the	language	of	the	collection	framework,	we	can	obtain	a	collection	view	of
map.	 Such	 a	 view	 contains	 the	 elements	 form	 the	map	 stored	 in	 a	 collection.
Thus,	we	can	process	the	contents	of	a	map	as	a	collection,	if	you	choose.

The	collection	mechanism	was	retrofitted	to	some	of	the	original	classes	defined
by	java.util	package,	so	that	they	too	could	be	integrated	into	the	new	system.

It	is	important	to	understand	that	although	the	addition	of	collections	altered	the
architecture	 of	 many	 of	 the	 original	 utility	 classes,	 it	 did	 not	 cause	 the
deprecation	 of	 any.	 Collections	 simply	 provide	 a	 better	 way	 of	 doing	 several
things.

	

	

The	Collection	Interfaces:

The	 collections	 framework	 defines	 several	 interfaces.	 The	 concrete	 classes
simply	 provide	 different	 implementations	 of	 the	 standard	 interfaces.	 The	 interfaces	 that
underpin	collections	are:

Collection

Enable	you	to	work	with	group	of	objects;	it	is	at	the	top	of	the	collections	hierarchy.

List

Extends	collection	to	handle	sequences	(lists	of	objects).

Set

Extends	collection	to	handle	sets,	which	must	contain	uniqye	elements.

SortedSet

Extends	collection	to	handle	sorted	sets.

In	 addition	 to	 the	 collection	 interfaces,	 collections	 also	 use	 the	 Comparator,
Iterator	 and	 RandomAccess	 interfaces.	 The	 comparator	 defines	 how	 two	 objects	 are
compared;	Iterator	and	ListIterator	enumerate	the	objects	within	a	collection.

By	 implementing	 RandomAccess,	 a	 list	 indicates	 that	 it	 supports	 efficient,
random	access	to	its	elements.	To	provide	the	greatest	flexibility	in	their	use,	the	collection
interfaces	allow	some	methods	to	be	optional.

The	 optional	 methods	 enable	 you	 to	 modify	 the	 contents	 of	 a	 collection.
Collections	that	support	these	methods	are	called	modifiable.	Collections	that	do	not	allow
their	contents	to	be	changed	are	called	unmodifiable.

If	an	attempt	is	made	to	use	one	of	these	methods	on	an	unmodifiable	collection
an	UnsupportedOperationExceprin	is	thrown.	All	the	built-in	collections	are	modifiable.	

	

The	Iterator	Interface:	Iterator	interface	defines	the	following	methods:

Boolean hasNext()

returns	true	if	the	iteration	has	more	elements.

Object next()

returns	the	next	element	in	the	iteration.

void remove()

Removes	from	the	underlying	collection	the	last	element	returned	by	the
iterator	(may	not	allow	to	do	so	in	some	circumstances	as	in	EJB’s).	it	is
an	optional	operation	,	so	it	may	throw	UnsupportedOperationException,
if	iterator	does	not	support	this	operation.

	

Iterators	differ	from	enumerations	in	two	ways:

Iterators	 allow	 the	 caller	 to	 remove	 elements	 from	 the	 underlying	 collection
during	the	iteration	with	well-defined	semantic.

Method	names	have	been	improved.

The	ListIterator	Interface	:

This	is	a	sub	interface	of	Iterator.

public	interface	ListIterator	extends	Iterator

It	is	an	iterator	for	lists	that	allows	the	programmer	to	traverse4	the	list	in	either
direction,	modify	 the	 list	during	 iteration,	and	obtain	 the	 iteator’s	current	position	 in	 the
list.

Method	summary:

void	add(Object	obj)

Inserts	the	specified	element	into	the	list	(optional	operation).

	

boolean	hasNext()

Returns	true	if	this	list	iterator	has	more	elements	when	traversing	the	listin	the	forward
direction.

	

boolean	hasPrevious()

Returns	true	if	this	list	iterator	has	more	elements	when	traversing	the	listin	the	reverse
direction.

	

	

Object	next()

Return	the	next	element	in	the	list.

	

int	nextIndex()

Returns	the	index	if	the	element	that	would	be	returned	by	a	subsequent	call	to	next.

	

Object	previous()

Return	the	previous	element	in	the	list.

	

int	previousIndex()

Returns	 the	 index	 if	 the	 element	 that	 would	 be	 returned	 by	 a	 subsequent	 call	 to
previous.

	

void	remove()

Remove	from	the	list	 the	last	element	that	was	returned	by	next	or	previous	(optional
operation).

	

void	set(Object	obj)

Replaces	 the	 last	 element	 returned	 by	 next	 or	 previous	 with	 the	 specified	 element
(optional	operation).

	

RandomAccess	Interface:

This	 is	a	marker	 interface	used	by	List	 implement	 to	 indicate	 that	 they	 support
random	access.	The	ArrayList	and	Vector	implement	this	interface.

The	Comparator	Interface:

Comparators	 are	 used	 to	 control	 the	 order	 of	 certain	 data	 structures(such	 as	 TreeSet	 of
TreeMap).

Methods:

Int compare(Object	o1,Object	o2)

Compares	its	twoarguments	for	order.

Boolean equal(Object	obj)

Indicate	whather	some	other	object	is	“equal	to”	this		Comparator.

The	Collection	Interface:

The	collection	interface	is	the	foundation	upon	which	the	collections	framework
is	built.	It	declares	the	core	methods	that	all	collections	will	have.	Because	all	collections
implement	 collection	 interface,	 familiarity	 with	 its	 methods	 is	 necessary	 fir	 a	 clear
understanding	 of	 the	 framework.	 Several	 if	 thse	 methods	 can	 throw	 an
UnsupportedOperationException.	A	ClassCastException	 is	generated	when	one	object	 is
incompatible	with	another,	such	as	when	an	attempt	is	made	to	add	an	incompatible	object

to	a	collection.

Methods	in	the	Collection	Interface:

boolean		add(Object	obj)

Ensures	 that	 this	 collection	 contains	 the	 specified	 element	 (optional	 operation).	Adds
object	 to	 the	 invoking	 collection.	 Returns	 trueif	 ekement	 obj	 was	 added	 to	 the
collection.	Returns	false	if	element	obj	ios	already	a	member	of	the	collection	and	the
collection	does	not	allow	duplicate.

	

boolean		addAll(Collection	c)

Adds	all	of	the	elements	in	the	specified	collection	to	this	collection(optional	operation)

	

void	clear()

Removes	all	if	the	element	from	this	collection	(optional	operation).

	

boolean			contain(Object	o)

Return	true	if	this	collection	contains	the	specified	collection.

	

boolean			containAll(Collection	c)

Return	true	if	this	collection	contains	all	of	the	elements	in	the	specified	collection.

	

boolean			equal(Object	o)

Compares	the	specified	object	with	this	collection	for	equality.

	

int	hashCode()

Returns	the	hash	cide	value	for	this	collection.

	

boolean		isEmpty()

Returns	true	if	this	collection	contains	no	elements.

	

Iterator	iterator()

Returns	an	iterator	over	the	elements	in	this	collection.

	

boolean	remove(Object	o)

Removes	a	single	instance	of	the	specified	element	from	this	collection,	if	it	is	present
(optional	operation)

	

boolean	removeAll(Collection	c)

Removes	all	 the	element	 that	 are	 also	contained	 in	 the	 specified	 	 collection	 (optional
operation)

	

boolean	retainAll(Collection	c)

Retains	 	 the	 element	 of	 this	 collection	 that	 are	 contained	 in	 the	 specified	 collection
(optional	operation).

	

int	size()

Returns	the	number	of	elements	in	this	collection.

	

Object[]	toArray()

Returns	an	array	containing	all	of	the	elements	in	this	collection.

	

	

Two	collections	 can	be	compared	 for	 equality	by	calling	equals()	method.	The
precise	meaning	of	“equality”	may	differ	from	collection	to	collection.

For	 example,	 you	 can	 implement	 equals()	 so	 that	 it	 compares	 the	 values	 of
elemens	stored	 in	 the	collection.	Alternatively,	equals()	can	compare	 references	 to	 these
elements.

The	List	Interface:

A	list	is	an	ordered	collection	aksi	known	as	sequence.	The	List	interface	extends
Collection	and	declares	the	behavior	of	a	collection	that	stores	a	sequence	of	elements.

Elements	 can	 be	 inserted	 or	 accessed	 by	 their	 position	 in	 the	 list,	 using	 a	 zero
based	index.	A	list	may	contain	duplicate	elements.	In	addition	to	the	methods	defied	by
collection,	List	defines	some	of	its	own.

Methods	in	the	List	Interface:

	

boolean	add(Object	o)

	

Appends	the	specified	element	to	the	end	of	this	list	(optional	operation).	The	method	is
defined	 in	 the	 Collection	 interface	 but	 as	 part	 of	 the	 List	 interface	 it	 should	 be
implemented	so	as	to	always	add	the	element	at	the	end	of	the	list.

	

	

void	add(int	index,	Object	element)

Inserts	 the	 specified	element	 at	 the	 specified	position	 in	 this	 list	 (optional	operation).
Any	pre-existing	elements	 at	or	beyond	 the	point	of	 insertion	 are	 sifted	up.	Thus,	no
elements	are	overwritten.

	

boolean	addAll(Collection	c)

Appends	all	of	the	element	in	the	specified	collection	to	the	end	of	this	list,	in	the	order
that	 thet	 are	 returned	 by	 the	 specified	 collections	 iterator(optional	 operation).	 The
method	is	defined	in	the	Collection	interface	but	as	part	of	the	List	interface	it	should	be
implemented	so	as	to	always	add	the	element	at	the	end	of	the	list.

	

boolean	addAll(int	index,	Collection	c)

inserts	 all	 of	 the	 elements	 in	 the	 specified	 collection	 into	 this	 list	 at	 the	 specified
position	(optional	operation).	Returns	true	if	the	invoking	list	changes	and	returns	false
otherwise.

	

boolean	addAll(int	index,	Collection	c)

Inserts	 all	 of	 the	 elements	 in	 the	 specified	 collection	 into	 this	 list	 at	 the	 specitied
position	(optional	operation).	Returns	true	if	the	invoking	list	changes	and	returns	false
otherwise.

	

Object	get(int	index)

Returns	the	element	at	the	specified	position	in	this	list.

	

int	indexOf(Object	o)

Returns	the	index	in	this	list	of	the	first	occurrence	of	the	specified	element,	or	-1	if	list
does	not	contain	the	element.

int	lastIndexOf(Object	o)

Returns	the	index	in	this	list	of	the	last	occurrence	of	the	specified	element,	or	-1	if	list
does	not	contain	the	element.

	

ListIterator	iterator()

Returns	a	list	iterator	of	elements	in	this	list	(in	proper	sequence).

	

ListIterator	iterator(int	index)

Returns	 a	 list	 iterator	 of	 elements	 in	 this	 list	 (in	 proper	 sequence),	 starting	 at	 the
specified	position	in	this	list.

	

Object	remove(int	index)

Removes		the	elements	at	the	specified	position	(optional	operation)	and	returns	deleted
element.	The	resulting	list	is	compacted.	That	is,	the	indexes	of	subsequent	element	are
decremented	by	one.

	

Object	set(int	index,	Object	element)

Replaces	 the	 element	 at	 the	 specified	 position	 in	 this	 list	 with	 the	 specified	 element
(optional	operation).

	

List	subList(int	fromIndex,	int	toIndex)

Returns	a	list	that	includes	elements	from	start	to	end-1	in	the	invoking	list.	Elements	in
the	returned	list	are	also	referenced	by	the	invoking	object.

	

Note:	that	several	of	these	methods	will	throw	an	UnsupportedOperationException	if	the
collection	can	not	be	modified,	and	a	ClassCastException	is	generated,	when	an	object	is
incompatible	object	to	a	collection.

Semantics	 of	 add(Object	 o)	 and	 addAll(Collection	 c)	 methods	 defined	 by	 collection
interface	is	changed	by	list	so	that	they	add	elements	to	the	end	of	the	list.

The	Set	interface:

The	Set	interface	defines	a	set.	It	extends	Collection	and	declares	the	behavior	of
a	collection	that	does	not	allow	duplicate	elements.

Therefore,	add()	method	return	false	if	an	attempt	is	made	to	add	duplicate	elements	to	a
set.	It	does	not	define	any	additional	methods	of	its	own.

The	SortedSet	Interface:

The	SortedSet	interface	extends	Set	and	declares	the	behavior	of	a	set	sorted	in	ascending
order.

Comparator	comprator()

Returns	 the	 coparator	 associated	 with	 this	 sorted	 set,	 or	 null	 if	 it	 uses	 its	 elements
natural	ordering.

	

Object	first()

Return	the	first	element	in	this	sorted	set.

	

SortedSet	headSet(Object	toElement)

Returns	 a	 view	of	 the	 portion	 of	 this	 sorted	 set	whose	 elements	 are	 strictly	 less	 than
toElement.

	

Object	last()

Returns	the	last	element	in	this	sorted	set.

	

SortedSet	subSet(Object	fromElement,	Object	toElement)

Returns	 a	 view	 of	 the	 portion	 of	 this	 sorted	 set	 whose	 elements	 range	 from
fromElement,	inclusive,	to	toElement,	exclusive.

	

SortedSet	tailSet(Object	fromElement)

Returns	a	view	of	the	portion	of	this	sorted	set	whose	elements	are	greater	than	or	equal
to	fromElement.

	

	

Several	 methods	 throw	 a	 NoSuchElementException	 when	 no	 items	 array
contained	 in	 the	 invoking	 set.	 A	 ClassCastException	 is	 thrown	 when	 an	 object	 is

incompatible	with	the	elements	in	a	set.	A	NullPointerException	is	thrown	if	an	attempt
is	made	to	use	a	null	object	and	null	is	not	allowed	in	the	set.

Collection	Classes:

Some	of	 the	collection	classes	provede	 full	 implementation	 that	 can	used	as	 is.
Others	are	abstract,	providing	skeleton	implementation	that	are	used	as	starting	points	for
creating	concrete	collection

None	of	the	collection	classes	are	synchronized	versions.

The	standard	collection	classes	are:

AbstractCollection	Implements	most	of	the	Collection	interface.

	

AbstractList	Extends	AbstractCollection	and	implement	most	of	the	List	interface.

AbstractSequenceList	Extends	AbstractList	for	use	by	a	collection	that	uses	sequential
rather	than	random	access	of	its	elements.

	

AbstractSet	Extends	AbstractCollection	and	implements	the	Set	interface.

	

LinkedList	Implements	a	linked	lest	by	extending	AbsractSuquentialList.

	

ArrayList	 Impelments	 a	 dynamic	 array	 by	 extending	 AbstractList.	 It	 uses	 random
access	of	elements.

	

HashSet	Extend	AbstractSet	for	use	with	a	hash	table.

LinkedHashSet	Extends	HashSet	to	allow	insertion-order	iterations.

	

TreeSet	Extends	AbstractSet	and	implement	SortedSet	interface.	It	uses	binary	search
tree	to	store	elements	in	sorted	order.

	

Note:-	 In	 addition	 to	 collection	 classes,	 several	 legacy	 classes,	 such	 as	 Vector	 Stack,
Hashtable	have	been	reengineered	to	support	collections.

Accessing	an	Collection	via	Iterator	and	ListIterator:

Often,	 you	will	want	 to	 cycle	 through	 the	 elements	 in	 a	 collection.	By	 far,	 the
easiest	way	to	do	this	is	to	employ	an	iterator,	an	object	that	implements	either	the	Iterator
or	the	ListIterator	interface.

Iterator	 enables	 you	 to	 cycle	 through	 a	 collection	 obtaining	 or	 removing	 elements.
ListIterator	extends	Iterator	to	allow	bi-directional	traversal	of	a	list,	and	the	modification
of	elements.

Before	you	can	access	a	collection	through	an	iterator,	you	must	obtain	one.	Each
of	the	collection	classes	provides	an	iterator()	method	that	returns	an	iterator	to	the	star	of
the	collection.	By	using	this	iterator	object,	you	can	access	each	element	in	the	collection,
one	element	at	a	time.

For	 collections	 that	 implement	 List,	 you	 can	 also	 obtain	 an	 iterator	 by	 calling
ListIterator.	 A	 list	 iterator	 gives	 you	 the	 ability	 to	 access	 the	 collection	 in	 either	 the
forward	or	backward	direction	and	you	can	modify	an	element.	Otherwise,	ListIterator	is
used	just	like	Iterator.

ArrayList	Class:

The	ArrayList	class	extends	AbstractList	and	implements	the	List	interface.	The
ArrayList	supports	dynamic	arrays	that	can	grow	as	needed.	In	java,	standard	array	are	of
a	fixed	length.

After	arrays	are	created,	they	cannot	grow	or	shrink,	which	means	that	we	must
know	in	advance	how	many	elements	an	array	will	hold.	But,	sometimes,	we	don’t	know
size	of	an	array	until	run-time.	To	handle	this	situation,	the	collections	framework	defines
ArrayList.

An	ArrayList	is	a	variable-length	array	of	object	references	that	is,	an	ArrayList
can	dynamically	increase	or	decrease	in	size.	Array	lists	are	created	with	an	initial	size.

When	the	size	is	exceeded,	the	collection	is	automatically	enlarged,	when	objects
are	 removed,	 the	 array	may	 shrunk.	Using	 generics	 	 feature	 introduced	 in	 J2SE	5,	 it	 is
possible	to	restrict	the	type	of	elements	to	be	added	in	the	ArrayList.

Note:-	The	legacy	class	Vector	also	supports	dynamic	arrays.

Constructors	&	Methods	of	ArrayList	class:

public	ArrayList(int);

Constructs	 an	 empty	 list	 with	 the	 specified	 initial	 capacity.	 The	 capacity	 grows
automatically	as	elements	are	added	to	an	array	list.

	

public	ArrayList();

Constructs	an	empty	list	with	an	initial	capacity	of	ten.

	

public	ArrayList(Collection);

Constructs	a	 list	containing	 the	elements	of	 the	specified	collection.	 In	 the	order	 they
are	returned	by	the	collection’s	Iterator.

	

public	void	trimToSize();

Conversely,	 if	 we	 want	 to	 reduce	 the	 size	 of	 the	 array	 that	 underlines	 an	 ArrayList
object	so	that	it	is	precisely	as	large	as	the	number	of	items	that	it	is	currently	holding
call	trimTosize()	method.

	

	

public	void	ensureCapacity(int);

Although	 the	 capacity	 of	 an	 ArrayList	 object	 increases	 automatically	 as	 objects	 are
stored	 in	 it,	we	 can	 increase	 the	 capacity	 of	 an	ArrayList	 object	manually	 by	 calling
ensureCapacity()		method.	By	increasing	its	capacity	once,	at	the	start,	we	can	prevent
several	 reallocation	 later.	Because	 reallocation	are	costly	 in	 terms	of	 time,	preventing
unnecessary	ones	improves	performance.

	

public	int	size();

	

public	Boolean	isEmpty();

	

public	Object	clone();

	

public	Object[]	toArray();

Obtaining	an	array	from	an	ArrayList	when	working	with	ArrayList,	we	will	sometimes
want	 to	obtain	an	actual	array	 that	contain	 the	comtents	 if	 the	 list.	We	can	do	 this	by
calling	toArray()	method.

	

Several	reasons	exist	why	we	might	want	to	convert	a	collection	into	an	array	such	as:

To	obtain	faster	processing	times	for	certain	operations.
To	pass	an	array	to	a	method	that	is	not	overload	to	accept	a	collection.
To	 integrate	 our	 newer,	 collection-based	 code	with	 legacy	 code	 that	 does	 not
understand	collection.

public	Object[]	toArray(Object[]);

public	Object	get(int);

public	Object	set(int,	Object);

public	boolean	add(Object);

public	void	add(int,	Object);

public	Object	remove(int);

public	boolean	remove(Object);

public	void	clear();

public	boolean	addAll(Collection);

public	boolean	addAll(int,	Collection);

public	boolean	contains(Object);

public	int	indexOf(Object);

public	int	lastIndexOf(Object);

	

Example	21.1

1.						import	java.util.*;

2.						class	ArrayListTest

3.						{

4.													public	static	void	main(String	args[])

5.													{

6.	ArrayList	a1	=	new	ArrayList();//can	store	different	type	of	objects	capacity	is	10

7.																							System.out.println(“Initial	size	of	a1	:	“+	a1.size());

8.																							a1.add(“A”);

9.																							a1.add(“C”);

10.																					a1.add(new	Integer(56));

11.																					a1.add(“E”);

12.																					a1.add(“F”);

13.																					a1.add(1,“B”);

14.																					System.out.println(“Size	of	a1	after	additions:	“+	a1.size());

15.																					System.out.println(“Contents	of	a1	:	“+	a1);

16.																					a1.remove(“F”);

17.																					a1.remove(2);

18.																					System.out.println(“Size	of	a1	after	deletions:	“+	a1.size());

19.																					System.out.println(“Content	of	a1		“+	a1);

20.																												ArrayList<String>	a2	=	new	ArrayList<String>(20);

21.																												//can	add	only	String	objects	capacity	is	20

22.																					a2.ensureCapacity(25);	//increase	the	capacity	from	20	to	25.

23.				a2.ensureCapacity(22);	//capacity	will	not	change	as	already	more	than

24.																					a2.add(“A”);

25.																					a2.add(“B”);

26.																														a2.add(“C”);

27.																													a2.add(“D”);

28.																													a2.add(“E”);														

29.																					//a2.add(new	Integer(5));//will	not	compile

30.																					System.out.println(“Contents	of	a2	:	“+	a2);

31.																					a2.remove(“D”);

32.																					System.out.println(a2);

33.																					a2.remove(0);

34.																					System.out.println(a2);

35.																					a2.clear();

36.																									System.out.println(a2);

37.

38.		ArrayList<Integer>	a3	=	new	ArrayList<Integer>();	//can	add	only	Integer	objects

39.																					a3.add(new	Integer(1));

40.																					a3.add(new	Integer(2));

41.																					a3.add(new	Integer(3));

42.																					a3.add(4);	//Auto	Boxing

43.																					System.out.println(“Contents	of	a3	:	“+	a3);

44.																					for(int	i=0;i<a3.size();i++)

45.																																						System.out.print(a3.get(i)+	”	“);

46.																					System.out.println();

48.																					Object	b[]=a3.toArray();

49.																					for(int	i=0;i<b.length;i++)

50.																					System.out.print((Integer)b[i]+	”	“);

51.																					System.out.println();

52.																					System.out.println(“Contents	of	a3	using	iterator:	“);

53.																					Iterator	itr	=	a3.iterator();

54.																					while(itr.hasNext())

55.																					{

56.																													int	x	=	((Integer)itr.next()).intValue();

57.																													System.out.print(x	+	”	“);

58.																					}

59.																					System.out.println();

60.

61.																												//Changing	the	list	using	ListIterator

62.																												ListIterator<Integer>	litr	=	a3.listIterator();

63.																												while(litr.hasNext())

64.																																	{													

65.																																										Integer	element	=	litr.next();

66.																																										litr.set(element	+	10);

67.																																	}

68.																											

69.														//Printing	the	list	in	reverse	Order	will	work	only	after	reaching	the	end.

70.																												while(litr.hasPrevious())

71.																												{													

72.																																										Integer	element	=	litr.previous();

77.																																										System.out.print(element	+	”	“);

74.																												}																																

75.																												System.out.println();

76.																									System.out.println(“Contents	of	a3	using	for	each	loop”);

77.																	for(int	i	:	a3)	//Auto	Unboxing

78.																	System.out.print(i	+	”	“);

79.																	System.out.println();

80.

81.																	Integer	ia[]	=	new	Integer[a3.size()];

82.																	a3.toArray(ia);

83.																	int	sum=	0;

84.																	for(int	i=0;	i<ia.length;	i++)

85.																		sum	=	sum	+	ia[i].intValue();

86.																	System.out.println(“Sum	is		”	+	sum);

87.																									a3.trimToSize();

88.														}

89.		}							

	

Output	:

Initial	size	of	a1	:	0

Size	of	a1	after	additions:	6

Contents	of	a1	:	[A,	B,	C,	56,	E,	F]

Size	of	a1	after	deletions:	4

Content	of	a1		[A,	B,	56,	E]

Contents	of	a2	:	[A,	B,	C,	D,	E]

[A,	B,	C,	E]

[B,	C,	E]

[]

Contents	of	a3	:	[1,	2,	3,	4]

1	2	3	4

1	2	3	4

Contents	of	a3	using	iterator:

1	2	3	4

14	13	12	11

Contents	of	a3	using	for	each	loop

11	12	13	14

Sum	is		50
The	LinkedList	Class:

The	 LinkedList	 class	 extends	 AbstractSequentialList	 and	 implements	 the	 List	 interfaces.	 It	 provides	 a
linked-list	data	structure.

Constructors	&	Methods

public	LinkedList();

Constructs	an	empty	list.

public	LinkedList(Collection);

Constructs	a	list	containing	the	elements	if	the	specifiedcollection,	in	the	order	they	are
returned	by	the	collection’s	Iterator.

public	Object	getFirst();

public	Object	getLast();

public	Object	removeFirst();

public	Object	removeLast();

public	void	addFirst(Object);

public	void	addLast(Object);

public	boolean	contains(Object);

public	int	size();

public	boolean	add(Object);

public	boolean	remove(Object);

public	boolean	addAll(Collection);

public	boolean	addAll(int,	Collection);

public	void	clear();

public	Object	get(int);

public	Object	set(int,	Object);

public	void	add(int,	Object);

public	Object	remove(int);

public	int	indexOf(Object);

public	int	lastIndexOf(Object);

public	Object	element();

public	Object	remove();

public	boolean	removeFirstOccurrence(Object);

public	boolean	removeLastOccurrence(Object);

public	ListIterator	listIterator(int);

public	Iterator	descendingIterator();

public	Object	clone();

public	Object[]	toArray();

public	Object[]	toArray(java.lang.Object[]);

	

Example	21.2

1.						import	java.util.*;

2.						class	LinkedListTest

3.						{

4.														public	static	void	main(String	args[])

5.														{

6.																						//Create	a	linked	list.

7.																						LinkedList<String>	l1	=	new	LinkedList<String>();

8.

9.																						//Add	elements	to	the	linked	list.

10.																					l1.add(“F”);

11.																					l1.add(“B”);

12.																					l1.add(“D”);

13.																					l1.add(“E”);

14.																					l1.add(“C”);

15.																					l1.addLast(“Z”);

16.																					l1.addFirst(“A”);

17.																					l1.add(1,	“A2”);

18.																					System.out.println(“Original	Contents	of	l1	:	“+	l1);

20.																					//Remove	element	from	the	linked	list.

21.																					l1.remove(“F”);

22.																					l1.remove(2);

23.																					System.out.println(“Contents	of	l1	after	deletion:”	+l1);

25.																					//Remove	the	first	and	last	elements.

26.																					l1.removeFirst();

27.																					l1.removeLast();

28.																					System.out.println(“l1	after	deleting	first	and	last	:”	+l1);

30.																					//	Get	and	set	a	value.

31.																					String	val	=	l1.get(2);

32.																					l1.set(2,	val	+	“Changed”);

33.																					System.out.println(“l1	after	change:”	+l1);

35.																					Iterator	itr=l1.descendingIterator();

36.																					while(itr.hasNext())

37.																					{

38.																								System.out.println(itr.next());

39.																					}	}	}

Output:-Original	Contents	of	l1	:	[A,	A2,	F,	B,	D,	E,	C,	Z]

Contents	of	l1	after	deletion:[A,	A2,	D,	E,	C,	Z]

l1	after	deleting	first	and	last	:[A2,	D,	E,	C]

l1	after	change:[A2,	D,	EChanged,	C]

C

EChanged

D

A2

Note-	Because	LinkedList	 implements	 the	List	 interface,	 call	 to	add(Object	obj)	append
items	to	the	end	of	the	list,	as	do	calls	to	addLast().	To	insert	items	at	a	specific	location
use	the	add(int	index,	Object	obj)	form	of	add.

The	HashSet	Class:

The	 HashSet	 class	 extends	 AbstractSet	 and	 implements	 the	 Set	 interface.	 It
creates	a	collection	that	uses	a	hash	table	for	storage

The	advantage	of		hashing	is	that	it	allows	the	execution	time	of	basic	operations,
such	as	add(),	contains(),	remove(),	and	size()	to	remain	constant	even	for	large	sets.

Constructors	&	Other	Methods:

HashSet()

Constructs	 a	 new,	 empty	 set,	 the	 backing	 HashMap	 instance	 has	 default	 initial
capacity(16)	and	load	factor(0.75).

HashSet(Collection	c)

Constructs	a	new	set	containing	the	elements	in	the	specified	collection.

HashSet(int	initialCapacity)

Constructs	a	new,	empty	set,	the	backing	HashMap	instance	has		specified	initial	capacity
and	load	factor	which	is	0.75.

HashSet(int	initialCapacity,	float	fillRatio)

Constructs	a	new,	empty	set,	the	backing	HashMap	instance	has	specified	initial	capacity
and	the	specified	load	factor.	The	fill	ratio	must	be	between	0.0	and	1.0

public	java.util.Iterator	iterator();

public	int	size();

public	boolean	isEmpty();

public	boolean	contains(java.lang.Object);

public	boolean	add(java.lang.Object);

public	boolean	remove(java.lang.Object);

public	void	clear();

public	java.lang.Object	clone();

The	HashSet	does	not	guarantee	the	order	of	its	elements,	because	the	process	of
hashing	 does	 not	 usually	 lend	 itself	 to	 the	 creation	 of	 sorted	 sets.	 If	 you	 need	 sorted
storage,	then	another	collection	such	as	TreeSet,	is	a	better	choice.

Example	21.3

1.														import	java.util.*;

2.														class	HashSetTest

3.														{													

4.																												public	static	void	main	(String	args[])

5.																												{													

6.																																										HashSet<String>	hs	=	new	HashSet<String>();

7.																																										hs.add(“B”);

8.																												hs.add(“A”);

9.																												hs.add(“E”);

10.																												hs.add(“C”);

11.																												hs.add(“F”);

12.																												System.out.println(hs);

13.																												}

14.														}

Output:

[E,	F,	A,	B,	C]

The	elements	are	not	stored	in	sorted	order,	and	the	precise	output	may	very.

The	LinkedHashSet	Class:

The	LinkedHashSet	class	extends	HashSet	and	adds	no	members	of	its	own.	The
LinkedHashSet	class	maintains	a	linked	list	of	the	entries	in	the	set,	in	the	order	in	which
they	were	inserted.

This	 is	 also	 the	 order	 in	 which	 they	 are	 contained	 in	 the	 string	 returned	 by
toString()	 method	 when	 called	 on	 a	 LinkedHashSet	 object.	 To	 see	 the	 effect	 of
LinkedHashSet,	 try	 substituting	 LinkedHashSet	 for	 HashSet	 in	 the	 preceding	 program.
The	output	will	be:	[B,	A,	E,	C,	F]	Which	is	the	order	in	which	the	elements	were	inserted.

The	TreeSet	Class:

The	TreeSet	provides	an	implementation	of	the	Set	interface	that	uses	a	tree	for
storage.	Objects	are	stored	in	sorted,	ascending	order.	Access	and	retrieval	times	are	quite
fast,	 which	 makes	 TreeSet	 an	 excellent	 choice	 when	 storing	 large	 amounts	 of	 sorted
information	that	must	be	found	quickly.

Constructors

It	has	the	following	constructors:

TreeSet()

Constructs	a	new,	empty	set,	sorted	according	to	the	elements	natural	order.

TreeSet(Collection	c)

Constructs	 a	 new	 set	 containing	 the	 elements	 in	 the	 specified	 collection	 sorted
according	to	the	elements’	natural	order.

TreeSet(Comparator	c)

Constructs	a	new,	empty	set,	sorted	according	to	the	comparator.

TreeSet(SortedSet	ss)

Constructs	a	new	set	containing	the	elements	in	the	specified	sorted	according	to
the	same	ordering.

public	java.util.Iterator	iterator();

public	java.util.Iterator	descendingIterator();

public	int	size();

public	boolean	isEmpty();

public	boolean	contains(java.lang.Object);

public	boolean	add(java.lang.Object);

public	boolean	remove(java.lang.Object);

public	void	clear();

public	boolean	addAll(java.util.Collection);

public	java.lang.Object	clone();

Example	21.4

1.														import	java.util.*

2.														class	TreeSetTest

3.														{													

4.																												public	static	void	main	(String	args[])

5.																												{													

6.																																										TreeSet<String>	hs	=	new	TreeSet<String>();

7.																																										ts.add(“C”);

8.																												ts.add(“A”);

9.																												ts.add(“D”);													

10.																												ts.add(“E”);

11.																												ts.add(“F”);

12.																												ts.add(“B”);

13.																												System.out.println(ts);

14.																												}

15.														}

Output:	[A,	B,	C,	D,		E,	F]

Both	 TreeSet	 and	 TreeMap	 store	 elements	 in	 sorted	 order.	 However,	 it	 is	 the
comparator	that	defines	precisely	what	“sorted	order”	means.

By	 default,	 these	 classes	 store	 their	 elements	 by	 using	 what	 java	 refers	 to	 as
“natural	ordering”	,	which	is	usually	the	ordering	that	we	would	expect.If	we	want	to	order
elements	in	a	different	way,	then	specify	a	comparator	object	when	you	construct	the	set	or
map.	Doing	 so	 gives	 us	 the	 ability	 to	 govern	 precisely	 how	 elements	 are	 stored	within
sorted	collections	maps.

The	 comparator	 interface	 defines	 two	 methods:	 compare()	 and	 equals	 ()	 as
discussed	earlier.	The	compare	()	method,	compares	two	elements	for	order:

int	compare(T	obj1,	T	obj2)

obj1	and	obj2	are	the	objects	to	be	compared.

This	method	returns	zero	if	the	objects	are	equal.

It	returns	a	positive	value	if	obj1	is	greater	than	obj2.

It	returns	a	negative	value	if	obj1	is	less	than	obj2.

	

The	methods	can	throw	a	ClassCastException	if	the	type	of	objects	are	not	compatible	for
comparison.

By	overriding	compare(),	you	can	alter	the	way	that	objects	are	ordered.

For	 example,	 to	 sort	 in	 reverse	 order,	 you	 can	 create	 a	 comparator	 that	 reverses	 the
outcome	of	a	comparison.

The	equals()	method,	tests	whether	an	object	equal	the	invoking	comparator.

boolean	equals(Object	obj)

Example	21.5

1.														import	java.util.*;

2.														class	CompTest

3.														{													

4.																												public	static	void	main	(String	args[])

5.																												{													

6.																																										TreeSet	ts	=	new	TreeSet(new	MyComp());

7.																																										ts.add(“C”);

8.																												ts.add(“A”);

9.																												ts.add(“D”);													

10.																												ts.add(“E”);

11.																												ts.add(“F”);

12.																												ts.add(“B”);

13.																												//	Display	the	elements.

14.																												Iterator	i=	ts.iterator();

15.																												while(i.hasNext())

16.																												{													

17.																																										Object	o	=	i.next();

18.																																										System.out.println(o	+	“	”);

19.																												}

20.																												}

21.														}

22.														class	MyComp	implements	Comparator

23.														{													

24.																												public	int	compare(Object	a,	Object	b)

25.																												{													

26.																																										String	aStr,	bStr;

27.																																										aStr	=	(String)	a;

28.																																										bStr	=	(String)	b;

29																																										//Reverse	the	comparison.

30.																																										return	bStr.compareTo(aStr);

31.																												}

32.														}

	

	

Output:	F	E	D	C	B	A

	

Working	with	Maps:

A	map	is	an	object	that	stores	associations	between	keys	and		values,	or	key/value
pairs.	Given	a	key,	we	can	find	its	value.

Both	keys	and	values	are	objects.	The	keys	must	be	unique,	but	the	value	may	be
duplicated.	Some	maps	can	accept	a	null	key	and	null	values,	other	cannot

Map	Interfaces:

Map	classes	based	on	the	following	interfaces:

Map	Maps	unique	keys	to	values.

	

Map.Entry	Describes	an	element	(a	key/value	pair)	in	a	map.

	

SortedMap	Extends	Map	so	that	the	keys	are	maintained	in	ascending	order.

	

The	Map	Interface:

The	Map	interface	maps	unique	keys	to	values.	Given	a	key	and	value	you	can	store	the
value	in	a	Map	object.	After	the	value	is	stored,	you	can	retrieve	it	by	using	its	key.

	

	

Method		summary:

void	clear()

Removes	all	mappings	from	this	map	(optional	operation).

boolean	containsKey(Object	key)

Returns	true	if	this	map	contains	a	mapping	for	the	specified	key.

boolean	containsValue(Object	value)

Returns	true	if	this	map	maps	one	or	more	keys	to	the	specified	value.

Set	entrySet()

Returns	 a	 set	 that	 contains	 the	 entries	 in	 the	 map.	 The	 set	 contains	 objects	 of	 type
Map.Entry.	this	method	provides	a	set	view	of	the	invoking	map.

boolean	equals(Object	o)

Returns	true	if	o	is	Map	and	contains	the	entries,	otherwise,	returns	false.

Object	get(Object	key)

Returns	the	value	to	which	this	map	maps	the	specified	key.

int	hashCode()

Returns	the	hash	code	value	for	this	map.

boolean	isEmpty()

Returns	true	if	this	map	contains	no	key-value	mappins.

Set	keySet()

Returns	a	set	view	of	the	keys	contained	in	this	map.

Object	put(Object	key,	Object	value)

Associates	 the	 specified	value	with	 the	 specified	key	 in	 this	map(optional	operation),
overwriting	any	previous	value	associated	with		the	key.	Retruns	null	if	the	key	did	not
already	exist.	Otherwise,	the	pervious	value	linked	to	the	key	is	returned.

void	putAll(Map	m)

Copies	all	of	the	mappings	from	the	specified	map	to	this	map(optional	operation).

Object	remove(Object	key)

Removes	the	mapping	for	this	key	from	this	map	if	it	is	present(optional	operation).

int	size()

Returns	the	number	of	key-value	mappings	in	this	map.

Collection	values()

Returns	a	collection	view	of	the	values	contained	in	this	map.

	

Several	methods	throw	a	NoSuchElementException	when	no	items	exist	in	the
invoking	map.	A	ClassCastException	is	thrown	when	an	object	is	incompatible	with	the
elements	in	a	map.

A	NullPointerException	is	thrown	if	an	attempt	is	made	to	use	a	null	object	and
null	is	not	allowed	in	the	Map.	An	UnsupportedOperationException	is	thrown	when	an
attempt	is	made	to	change	an	unmodifiable	map.

Map	resolve	around	two	basic	operations	get()	and	put().

Maps	are	not	collections	because	they	do	not	implement	the	Collection	interface,
but	we	can	obtain	a	collection-view	of	the	map.	Collection-view	means	by	which	maps	are
integrated	into	the	collections	framework..

The	SortedMap	Interface:

The	SortedMap	interface	extends	Map.	In	ensures	that	the	entries	are	maintained
in	ascending	order.

Method	Summary:

Comparator	comparator()

Returns	 the	 xomparator	 associated	 with	 this	 sorted	 map,	 or	 null	 if	 it	 uses	 its	 keys’
natural	ordering.

	

Object	firstKey()

Returns	the	first	key	in	this	sorted	map.

	

SortedMap	headMap(Object	toKey)

Returns	a	view	of	the	portion	of	this	sorted	map	whose	keys	are	strictly	less	than	toKey.

	

Object	lastKey()

Returns	the	last	key	in	this	sorted	map.

	

SortedMap	subMap(Object	fromKey,	Object	toKey)

Returns	a	view	of	the	portion	of	this	sorted	map	whose	keys	are	greater	than	equal	to	to
Key.,	exclusive

	

SortedMap	tailMap(Object	fromKey)

Returns	a	view	of	the	portion	of	this	sorted	map	whose	keys	are	greater	than	or	equal	to
fromKey.

Several	methods	 throw	a	NoSuchElementException	when	no	 items	are	 in	 the	 invoking
map.	A	ClassCastException	is	thrown	when	an	object	is	incompatible	with	the	elements
in	a	map.

A	NullPointerException	is	thrown	if	an	attempt	is	made	to	use	a	null	object	and
null	is	not	allowed	in	the	Map.

The	Map.Entry	Interface:

The	Map.Entry	 interface	enables	you	 to	work	with	a	map	entry.	Recall	 that	 the
entrySet()	method	declared	by	the	Map	interface	returns	a	set	containing	the	map	entries.
Each	of	these	set	elements	is	a	Map.Entry	object.

Method	Summary:

boolean	equals(Object	o)

Compares	 the	 specified	 object	 with	 this	 entry	 for	 equality.	 Returns	 true	 if	 o	 is	 a
Map.Entry	object,	whose	key	and	value	are	equal	to	that	of	the	invoking	object.

	

Object	getKey()

Returns	the	key	corresponding	to	this	entry.

	

Object	getValue()

Returns	the	Value	corresponding	to	this	entry.

	

int	hashCode()

Returns	the	hash	code	value	for	this	map	entry.

	

Object	setValue(Object	value)

Replaces	 the	 value	 corresponding	 to	 this	 entry	 with	 the	 specified	 value	 (optional
operation).	A	ClassCastException	 is	 thrown	 if	 value	 is	 not	 of	 the	 correct	 type	 of	 the
map.

	

A	NullPointerException	is	thrown	if	value	is	null	and	the	map	does	not	permit	null	key.
An	UnsupportedOperationException	is	thrown	if	the	map	cannot	be	changed.

	

	

The	Map	classes:

Several	classes	provide	implementation	of	the	map	interfaces.

AbstractMap	This	class	provides	a	 skeleton	 implementation	of	 the	map	 interface,	 to
minimize	the	efforts	required	to	implement	this	interface.

	

HashMap	Hash	table	based	implementation	of	the	map	interface.	Extends	AbstractMap
class.

TreeMap	Extends	AbstractMap	and	implements	SortedMap	interface	to	use	a	tree.

	

LinkedHashMap	Extends	HashMap	to	allow	insertion-order	iteration.

AbstractMap	is	a	super	class	for	all	concrete	map	implementations.

The	HashMap	class:

The	HashMap	class	uses	a	hash	table	to	implant	 the	Map	interface.	This	allows
the	execution	time	of	basic	operations,	such	as	get()	and	put()	to	remain	constant	even	for
large	sets.

Constructors:

The	HashMap	has	the	following	constructors:

HashMap()

Constructs	 an	 empty	 HashMap	 with	 the	 default	 capacity(16)	 and	 default	 load
factor	(0.75)

HashMap(int	initialCapacity)

Constructs	an	empty	HashMap	with	the	specified	initial	capacity	and	default	load
factor	(0.75)

HashMap(Map	m)

Construct	a	new	HashMap	with	the	same	mapping	as	the	specified	Map.

The	 HashMap	 class	 extends	 AbstractMap	 and	 implements	 Map.	 It	 does	 not	 add	 any
methods	of	its	own.	You	should	note	that	a	hash	map	does	not	guarantee	the	order	of	its
elements.

	

Example	21.6

1.						import	java.util.*;

2.						class	HashMapTest

3.						{

4.														public	static	void	main	(String	args[])

5.														{

6.				HashMap<String,Integer>	hm	=	new	HashMap<String,Integer>();

7.																						hm.put(“C”,1000);

8.																						hm.put	(“C++”,1000);

9.																						hm.put	(“Java”,1500);

10.																					Set	s	=	hm.entrySet();

11.																					Iterator	itr	=	s.iterator();

12.																					while(itr.hasNext())

13.																					{

14.																								Map.Entry	me	=	(Map.Entry)	itr.next();

15.																								System.out.print(me.getKey()	+	“:	”);

16.																								System.out.println(me.getValue());

17.																					}

18.																					System.out.println();

19.																					int	fees	=	((Integer)hm.get(“Java”)).intValue();

20.																					hm.put(“Java”,	fees	+	1000);

21.																					System.out.println(“New	Fees	of	Java:”+hm.get(“Java”));

22.													}

23.					}

Output:				C:	1000

C++:	1000

Java:	1500

										New	Fees	of	Java:2500

	

	

The	TreeMap	class:

The	TreeMap	class	implements	the	Map	interface	by	using	a	tree.	A	TreeMap	provides
an	efficient	means	of	storing	key/value	pair	in	sorted	order,	and	tree	map	guarantees	that
its	elements	will	be	sorted	in	ascending	key	order.

Constructors:

The	TreeMap	has	the	following	constructors:

TreeMap()

Constructs	an	empty	map,	sorted	according	to	the	key’s	natural	order.

TreeMap(Comparator	c)

Constructs	a	new,	empty	map,	sorted	according	to	the	given	comparator.

TreeMap	(Map	m)

Construct	a	new	map	with	containing	the	same	mapping	as	the	given	map,	sorted
according	to	the	keys’	natural	order.

TreeMap(SortedMap	m)

Construct	a	new	map	with	containing	the	same	mapping	as	the	given	SortedMap,
sorted	according	to	the	same	ordering.

TreeMap	 implements	 SortedMap	 and	 extends	 AbstradtMap.	 It	 does	 not	 define	 any
additional	methods	of	its	own.

Example	21.7

The	following	program	reworks	the	preceding	example	so	that	it	uses	TreeMap.	The	keys
will	be	sorted	by	first	name.	it	is	possible	to	alter	this	behavior	by	specifying	a	comparator
when	 the	map	 is	 created,	 so	 that	keys	may	be	 sorted	on	 last	 name	or	 any	other	desired
order.

1.						import	java.util.*;

2.						class	TreeMapTest

3.						{

4.														public	static	void	main	(String	args[])

5.														{

6.																							TreeMap	<String,Integer>	tm	=	new	TreeMap<String,Integer>();

7.																							tm.put(“C”,1000);

8.																							tm.put(“C++”,1000);

9.																							tm.put(“Java”,1500);

10.																					Set<Map.Entry<String,Integer>>	s	=	tm.entrySet();

11.																					for(Map.Entry<String,Integer>	me	:	s)

12.																					{

13.																								System.out.print(me.getKey()	+	“:	”);

14.																								System.out.println(me.getValue());

15.																					}

16.																					System.out.println();

17.																					int	fees	=	tm.get(“Java”);

18.																					tm.put(“Java”,	fees	+	1000);

19.																					System.out.println(“New	fees	of	Java:”+tm.get(“Java”));

20.													}

21.					}

Output:

C:	1000

C++:	1000

Java:	1500

New	fees	of	Java:2500

	

The	LinkedHashMap	Class:

Java	2,	version	1.4	adds	the	LinkedHashMap	class.	This	class	extends	HashMap.
LinkedHashMap	maintains	 a	 linked	 list	 of	 the	 entries	 in	 the	map,	 in	 the	order	 in	which
they	were	inserted.

This	 allows	 insertion-order	 iteration	 over	 the	 map.	 That	 is,	 when	 iterating	 a
LinkedHashMap,	the	elements	will	be	returned	in	the	order	in	which	they	were	inserted.

Legacy		Classes	and	Interfaces

The	 original	 version	 of	 java.util	 did	 not	 include	 the	 collection	 framework.
Instead,	 it	 defined	 several	 classes	 and	 an	 interface	 that	 provided	 an	 ad	 hoc	 method	 of
storing	object.	With	 the	addition	of	Collection	by	 Java	2,	 several	of	 the	original	 classes
were	reengineered	to	support	the	Collection	interfaces.

Thus,	 they	 are	 fully	 compatible	 with	 the	 framework.	 While	 no	 classes	 have
actually	been	deprecated,	one	has	been	obsolete.	Of	course,	where	a	collection	duplicates
the	functionality	of	legacy	class,	you	will	usually	want	to	use	the	collection	for	new	code.
In	general,	the	legacy	classes	are	supported	because	there	is	still	code	that	uses	them.

														Some	of	the	collection	classes	are	synchronized,	but	all	the	legacy	classes	are
synchronized.	This	action	may	be	important	in	some	situations.	Of	course,	we	can	easily
synchronize	collections	too.

The	Enumeration	Interface:

Enumeration	interface	defines	the	methods	by	which	you	can	enumerate	(obtain
one	 at	 a	 time)	 the	 elements	 in	 a	 collection	 of	 objects.	 The	 legacy	 interface	 has	 been
superceded	by	Iterator.

Although	 not	 deprecated,	 Enumeration	 is	 considered	 obsolete	 for	 new	 code.
However,	 it	 is	 used	 by	 several	 methods	 used	 by	 legacy	 classes	 (such	 as	 Vector	 and
Properties),	 is	 used	 by	 several	 other	API	 classes,	 and	 is	 recently	 in	wide	 spread	 use	 in
application	code.

Enumeration	specifiers	the	following	two	methods:

Boolean	hasMoreElements()

Tests	 if	 this	enumeration	contains	more	elements.	This	method	must	return	 true
while	there	are	still	more	elements	to	extract.	And	false	when	all	the	elements	have	been
enumerated.

Object	nextElement()

Returns	 the	 next	 element	 of	 this	 enumeration	 if	 this	 enumeration	 object	 has	 at
least	one	more	element	to	provide.

The	Vector	class

Vector	 implements	 a	 dynamic	 array.	 It	 is	 similar	 to	 ArrayList,	 but	 with	 two
differences:

Vector	is	synchronized,	and	Vector	contains	many	legacy	methods	that	are	not	part	of	the
collections	framework.

With	 the	 advent	 of	 collections,	 Vector	 was	 reengineered	 to	 extend	 AbstractList	 and	 to
implement	the	List	interface.

This	 means	 that	 Vector	 is	 fully	 compatible	 with	 collections,	 and	 a	 vector	 can	 have	 its
contents	iterated	by	the	enhanced	for	loop.

Constructors:

The	Vector	has	the	following	constructors:

Vector()

Constructor	an	empty	vector	so	that	its	internal	data	array	has	size	10	and	its	standard
capacity	increment	is	zero.

Vector(Collection	c)

Constructs	a	vector	containing	the	elements	of	the	specified	xollection	in	the	order	they
are	returned	by	the	collection’s	iterator.

Vector(int	initialCapacity)

Constructs	 an	 empty	 vector	 with	 the	 specified	 initial	 capacity	 and	 with	 its	 capacity
increment	equal	to	zero.

Vector(int	initialCapacity,	int	capacityIncrement)

Constructs	an	empty	vector	with	the	specified	initial	capacity	and	capacity	increment.

The	size	of	extra	space	allocated	during	each	reallocation	is	determined	by	the	specified
increment.	 If	 you	 do	 not	 specify	 an	 increment,	 the	 vector’s	 size	 is	 doubled	 by	 each
allocation	cycle.	Vector	defines	three	protected	data	members:

protected	int	capacityIncrement

The	amount	by	which	the	capacity	of	the	vector	is	automatically	incremented	when	its
size	becomes	greater	than	its	capacity.

	

protected	int	elementCount

The	number	of	valid	components	in	this	Vector	object.

	

protected	Object[]	elementData

The	array	buffer	into	which	the	components	of	the	vector	are	stored.

	

	

In	addition	 to	 the	collection	methods	defined	by	 list,	Vector	class	defines	several	 legacy
methods.

Method	Summary:

void	addElement(Object	obj)

Adds	the	specified	components	to	the	end	of	this	vector,	increasing	its	size	by	one.

	

int	capacity()

Returns	the	current	capacity	of	this	vector.

	

Object	clone()

Returns	a	clone	of	this	vector.

	

void	copyInto(Object[]	anArray)

Copies	the	components	of	this	vector	into	the	specified	array.

	

Object	elementAt(int	index)

Returns	the	component	at	the	specified	index.

	

Enumeration	elements()

Returns	an	enumeration	of	the	components	of	this	vector.

	

void	ensureCapacity(int	minCapacity)

Increase	the	capacity	of	this	vector,	if	necessary,	to	ensure	that	it	can	hold	at	least	the
number	of	components	specified	by	the	minCapacity	Argument.

	

Object	firstElement()

Returns	the	first	component	(the	item	at	index	0)	of	this	vector.

	

int	indexOf(Object	element)

Searches	for	 the	first	occurrence	of	 the	given	argument,	 testing	for	equality	using	 the
equals	methods.

	

int	indexOf(Object	element,	int	index)

Searches	for	the	first	occurrence	of	the	given	argument,	beginning	the	search	at	index,
and	testing	for	equality	using	the	equals	methods.

	

void	insertElementAt(Object	obj,	int	index)

Inserts	the	specified	object	as	a	component	in	this	vector	at	the	specified	index.

	

boolean	isEmpty()

Tests	if	this	vector	has	no	components.

	

Object	lastElement()

Returns	the	last	components	of	the	vector.

int	lastIndexOf(Object	element)

Returns	the	index	of	the	last	occurrence	of	the	specified	object	in	this	vector.

int	lastIndexOf(Object	element,	int	index)

Searches	 backwards	 for	 the	 specified	 object,	 starting	 from	 the	 specified	 index,	 and
returns	an	index	to	it.

	

void	removeAllElements()

Removes	all	components	from	this	vector	and	sets	its	size	to	zero.

	

boolean	removeElement(Object	obj)

Removes	the	first	(lowest-indexed)	occurrence	of	the	argument	from	this	vector.

	

void	removeElementAt(int	index)

Deletes	the	component	at	the	specified	index.

	

protected	void	removeRange(int	fromIndex,	int	toIndex)

Removes	from	this	list	all	of	the	elements	whose	index	is	between	fromIndex	inclusive
and	toIndex	exclusive.

	

void	setElementAt(Object	obj,	int	index)

Sets	the	component	at	the	specified	index	of	this	vector	to	be	the	specified	object.

	

void	setSize(int	newSize)

Sets	the	size	of	this	vector.	If	the	new	size	is	less	than	the	old	size,	elements	are	lost.	If
the	new	size	is	larger	than	the	old,	null	elements	are	added.

	

int	size()

Returns	the	number	of	components	in	this	vector.

	

List	subList(int	fromIndex,	int	toIndex)

Returns	 a	 view	 of	 the	 portion	 of	 this	 list	 between	 fromIndex	 inclusive,	 and	 toIndex
exclusive.

	

Object[]	toArray()

Retums	an	array	containing	all	of	the	elements	in	this	vector	in	the	correct	order.

	

String	toArray()

Returns	a	string	representation	of	this	vector,	containing	the	string	representation	of	each
element.

	

void	trimToSize()

Sets	the	vector’s	capacity	equal	to	the	number	of	elements	that	it	currently	holds.

	

Because	 vector	 implement	 List,	 you	 can	 use	 a	 vector	 just	 like	 you	 use	 an	 ArrayList
instance.	You	can	also	manipulate	a	vector	using	legacy	methods.

Example21.8

1.														import	java.util.*;

2.														class	VectorTest

3.														{

4.																												public	static	void	main(String	args[])

5.																																				{

6.																												Vector<Integer>	v1	=	new	Vector<Integer>();

7.	 	 System.out.println(“Size	 is	 ”	 +	 v1.size()	 +	 ”	 Capacity	 is	 ”	 +
v1.capacity());

8.																																												for(int	i=1;i<=15;i++)

9.																																																		v1.addElement(i);

10.	 	 System.out.println(“Size	 is	 ”	 +	 v1.size()	 +	 ”	 Capacity	 is	 ”	 +
v1.capacity());

11.																																												Iterator	itr=v1.iterator();

12.																																										while(itr.hasNext())

13.																																												{

14.																																																				System.out.print(itr.next()	+	”	“);

15																																												}

16.																																							System.out.println();

17.																																										for(int	i:v1)

18.																																																				System.out.print(i	+	”	“);

19.																																												System.out.println();

20.																																												Enumeration	e=v1.elements();

21.																																												while(e.hasMoreElements())

22.																																												{

23.																																																				System.out.print(e.nextElement()	+	”	”);

24.																																												}

25.																																			System.out.println();

26.																																												Integer	a[]=new	Integer[v1.size()];

27.																																												v1.copyInto(a);

28.																																												for(int	i=0;i<a.length;i++)

29.																																																		System.out.print(a[i]	+	”	“);

30.																																										System.out.println();

31.														System.out.println(“First	Element=	”	+	v1.firstElement());

32.																								System.out.println(“Last	Element=	”	+	v1.lastElement());																						

33.																					}

34.														}

Output:

Size	is	0	Capacity	is	10

Size	is	15	Capacity	is	20

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

First	Element=	1

Last	Element=	15

	

The	Stack	Class:

The	 stack	 is	 a	 subclass	 of	Vector	 that	 implements	 a	 standard	LIFO	 stack.	 The	 Stack
only	 defines	 the	 default	 constructor,	 which	 creates	 an	 empty	 stack.	 Stack	 includes	 all
methods	defined	by	Vector,	and	adds	several	of	its	own.

Methods	Summary:

boolean	empty()

Tests	if	the	stack	is	empty.

	

Object	peek()

Returns	the	object	at	the	top	of	this	stack	without	removing	it	from	the	stack.

	

Object	pop()

Removes	the	object	at	the	top	of	this	stack	and	returns	that	object	as	the	value	of	this
methods.	An	EmptyStackException	is	thrown	if	the	stack	is	empty.

	

Object	push(Object	item)

Pushes	an	item	onto	the	top	of	this	stack.

	

int	search(Object	o)

Returns	the	1-based	position	where	an	object	is	on	this	stack.

	

	

Example21.9:

The	 following	 example	 creates	 a	 stack,	 pushes	 several	 Integer	 objects	 onto	 it	 and	 pops
them	off	again:

1.														import	java.util.*;

2.														class	StackTest

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Stack<Integer>	st=new	Stack<Integer>();

7.																														st.push(10);

8.																														st.push(20);

9.																														st.push(30);

10.																													System.out.println(“Stack	is	”	+	st);

11.																														System.out.println(“30	is	at	pos	”	+	st.search(30));

12.																														try

13.																														{

14.																																						Integer	iobj=st.pop();

15.																																						System.out.println(“Popped	value	is	”	+	iobj.intValue());

16.																																						iobj	=	st.peek();

17.																																						System.out.println(“Peek	value	is	”	+	iobj.intValue());

18.																														}

19.																														catch(EmptyStackException	e)

20.																														{

21.																																						System.out.println(e);

22.																														}

23.																				}

24.														}

Output:

Stack	is	[10,	20,	30]

30	is	at	pos	1

Popped	value	is	30

Peek	value	is	20

The	Dictionary	Class:

Dictionary	 is	 an	 abstract	 class	 that	 represents	 a	 key/value	 storage	 repository	 and
operates	 much	 like	 Map.	 Given	 a	 key	 and	 value	 pair,	 you	 can	 store	 the	 value	 in	 a
dictionary	object	once	the	value	is	stored,	you	can	retrieve	it	by	using	its	key.

Thus,	 like	a	map,	dictionary	can	be	thought	of	as	a	list	of	key/value	pairs.	Although	not
actually	deprecated	by	java	2,	Dictionary	is	classified	as	obsolete,	because	it	is	superceded
by	Map.

The	abstract	methods	defined	by	Dictionary	class	are:

Enumeration	elements()

Returns	an	enumeration	of	the	values	in	this	dictionary.

	

Object	get(Object	key)

Returns	the	value	to	which	the	key	is	mapped	in	this	dictionsry.

	

boolean	isEmpty()

Tests	if	this	dictionary	maps	no	keys	to	value.

	

Enumeration	keys()

Returns	an	enumeration	of	the	keys	in	this	dictionary.

	

Object	put(Object	key,	Object	value)

Maps	the	specified	key	to	the	specified	value	in	this	dictionary.

	

Object	remove(Object	key)

Removes	the	key	(and	its	corresponding	value)	from	this	dictionary.

	

int	size()

Returns	the	number	of	entries	(distinct	keys)	in	this	dictionary.

	

	

The	Hashtable	Class:

The	Hashtable	was	part	of	the	original	java.util	and	is	a	concrete	implementation	of	a
Dictionary.	However,	 Java	2	 reengineered	Hashtable	 so	 that	 it	 also	 implements	 the	Map
interface.

Thus,	 Hashtable	 is	 now	 integrated	 into	 the	 collections	 framework.	 It	 is	 similar	 to
HashMap,	but	is	synchronized.	Like	HashMap.

Hashtable	stores	key/value	pairs	in	a	hash	table.	When	using	a	Hashtable,	you	specify	an
object	that	is	used	as	a	key,	and	the	value	that	you	want	to	linked	to	that	key.

The	key	is	then	hashed,	and	the	resulting	hash	code	is	used	as	the	index	at	which	the	value
is	stored	within	the	table.

A	hash	table	can	only	store	objects	that	override	the	hashcode()	and	equals()	methods
that	are	defined	by	the	Object	class.	Mostly	string	object	is	used	as	the	key,	which	already
implements	both	hashCode()	and	equals().

Constructors:

The	Hashtable	has	the	following	constructors:

Hashtable()

Constructs	 a	 new,	 empty	Hashtable	 	 with	 the	 default	 initial	 capacity(11)	 and	
load	factor,	which	is	0.75.

Hashtable(int	initialCapacity)

Constructs	a	new,	empty	Hashtable	with	the	specified	initial	capacity	and	default
load	factor	(0.75)

Hashtable(int	initialCapacity,	float	loadFactor)

Constructs	 a	 new,	 empty	 Hashtable	 with	 the	 specified	 initial	 capacity	 and
specified	load	factor.

Hashtable(Map	m)

Construct	a	new	hashtable	with	the	same	mapping	as	the	specified	Map.

	 	

Hashtable	also	defines	the	legacy	methods:

void	clear()

Clears	this	hashtable	with	that	it	contains	no	keys.

	

Object	clone()

Creates	a	shallow	copy	of	this	hashtable.

	

boolean	contains(Object	value)

Tests	if	some	key	maps	into	the	specified	value	in	this	hashtable.

	

boolean	containsKey(Object	key)

Tests	if	the	specified	object	is	a	key	in	this	hashtable.

	

boolean	containsValue(Object	value)

Returns	true	if	this	Hashtable	maps	one	or	more	keys	to	this	value.

	

Enumeration	elements()

Returns	an	enumeration	of	the	values	in	this	hashtable.

	

Set	entrySet()

Returns	a	Set	view	of	the	entries	contained	in	this	Hashtable.

	

boolean	equals(Object	o)

Compares	the	specified	Object	with	this	map	for	equality.

	

Object	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped	in	this	hashtable.

	

int	hashCode()

Returns	the	hash	code	value	for	this	Map	as	per	the	definition	in	the	Map	interface.

	

boolean	isEmpty()

Tests	if	this	hashtable	maps	no	keys	to	value.

	

Enumeration	keys()

Returns	an	enumeration	of	the	keys	in	this	hashtable.

	

Set	keySet()

Returns	a	set	view	of	the	keys	contained	in	this	hashtable.

	

Object	put(Object	key,	Object	value)

Maps	the	specified	key	to	the	specified	value	in	this	hashtable.

	

void	putAll(Map	m)

Copies	all	of	the	mappings	from	the	specified	Map	to	this	Hashtable	these	mappings
will	replace	any	mappings	that	this	Hashtable	had	for	any	of	the	keys	currently	in	the
specified	Map.

	

Protected	void	rehash()

Increase	the	size	of	the	hash	table	and	rehashes	all	of	its	keys.

	

Object	remove(Object	key)

Removes	the	key	(and	its	corresponding	value)	from	this	hashtable.

	

int	size()

Returns	the	number	of	entries	(distinct	keys)	in	this	hashtable.

	

String	toString()

Returns	a	string	representation	of	this	hashtable	object	in	the	form	of	a	set	of	entries,
enclosed	in	braces	and	separated	by	the	ASCII	character	“,”	(comma	and	space).

	

Collection	values()

Returns	a	collection	of	the	values	contained	in	this	Hashtable.

	

	

Example21.10:

The	following	example	uses	a	Hashtable	to	store	the	name	of	depositors	and	their	current
balance.

1.														import	java.util.*;

2.														class	HashtableTest

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.														Hashtable<String,Integer>	ht=new	Hashtable<String,Integer>();

7.																														ht.put(“C”,1000);

8.																														ht.put(“Java”,1500);

9.																														ht.put(“Vb”,1500);

10.																														//Display	List	using	Enumeration

11.																														Enumeration<String>	courses;

12.																														courses=ht.keys();

13.																														while(courses.hasMoreElements())

14.																														{

15.																																						String	s1=courses.nextElement();

16.																	System.out.println(“Course=	”	+	s1	+	”	Fees=	”	+	ht.get(s1));

17.																														}

18.																														//Display	List	using	for	each

19.																														Set	s=ht.keySet();

20.																														for(Object	ob:s)

21.		System.out.println(“Course=	”	+	(String)ob		+	”	Fees=	”	+	ht.get((String)ob));

22.																														Integer	fees=ht.get(“Java”);

23.																														ht.put(“Java”,fees+1000);

24.																														System.out.println(“After	Update	“);

25.																														//Display	List	using	Iterator

26.																														Iterator	itr=s.iterator();

27.																														while(itr.hasNext())

28.																														{

29.																																						String	s1=(String)itr.next();

30.														System.out.println(“Course=	”	+	s1	+	“Fees=	”	+ht.get(s1));

31.																														}

32.																						}						}

Output:
Course=	Java	Fees=	1500

Course=	Vb	Fees=	1500

Course=	C	Fees=	1000

Course=	Java	Fees=	1500

Course=	Vb	Fees=	1500

Course=	C	Fees=	1000

After	Update

Course=	JavaFees=	2500

Course=	VbFees=	1500

Course=	CFees=	1000

The	Properties	Class:

The	Properties	is	a	subclass	of	Hashtable.	It	is	used	to	maintain	list	of	values	in
which	 the	key	 is	 a	String	and	 the	value	 is	 also	a	 string.	The	properties	 class	 is	used	by
many	other	Java	classes.

For	 example,	 it	 is	 the	 type	 of	 object	 returned	 by	 System	 getProperties()	 when
obtaining	environmental	values.

Properties	class	defines	the	following	instance	variable:

Properties	defaults

The	variable	holds	a	default	property	list	associated	with	a	Properties	object.

Constructors:

The	Properties	has	the	following	constructors:

Properties()

Creates	an	empty	property	list		with	no	default	values.

Properties(Properties	defaults)

Creates	an	empty	property	list	with	the	specified	defaults.

In	addition	to	the	methods	that	properties	inherits	from	Hashtable,	Properties	defines	some
more	methods.	Properties	also	contains	one	deprecated	method	save().	This	was	replaced
by	store()	because	save()	did	not	handle	errors	correctly.

Method	summary:

String	getProperty(String	key)

Returns	the	value	associated	with	key.	A	null	object	is	returned	if	key	is	neither	in	the
list	nor	in	the	default	property	list.

	

String	getProperty(String	key,	String	defaultValue)

Returns	the	value	associated	with	key.	A	default	property	is	returned	if	key	is	neither
in	the	list	nor	in	the	default	property	list.

	

void	list(PrintStream	out)

Prints	this	property	list	out	to	the	specified	output	stream.

void	list(PrintWriter	out)

Prints	this	property	list	out	to	the	specified	output	stream.

	

void	load(InputStream	inStream)

Reads	a	property	list	(key	and	element	pairs)	from	the	input	stream.

	

Enumeration	propertyNames()

Returns	an	enumeration	of	all	the	keys.	This	includes	those	keys	found	in	the	default
property,	too.

	

void	save(OutputStream	out,	String	comments)

Deprecated.	This	method	does	not	throw	an	IOException	if	an	I/O	error	occurs	while
saving	 the	 property	 list.	 The	 preferred	way	 to	 save	 a	 properties	 list	 is	 via	 the	 store
(OutputStream	out,	String	comments)	method.

	

Object	setProperty(String	key,	String	value)

Calls	the	Hashtable	method	put.	Returns	previous	value	associated	with	key,	or	null	if
no	such	association	exists.

	

void	store(OutputStream	out,	String	comments)

Writes	this	property	list	(key	and	element	pairs)	 in	this	properties	table	to	the	output
stream	in	a	format	suitable	for	loading	into	a	Properties	table	using	the	load	method.

	

Example21.11:

The	following	program	creates	a	property	list	in	which	the	keys	are	the	course	names	and
the	values	are	the	duration	of	the	courses.

1.														import	java.util.*;

2.														class	PropertiesTest

3.														{

4.																						public	static	void	main(String	args[])

5.																						{

6.																														Properties	def=new	Properties();

7.																														def.put(“C”,“2	months”);

8.																														def.put(“C++”,“3	months”);

9.																														Properties	courses=new	Properties(def);

10.																														courses.put(“Java”,“4	months”);

11.																														courses.put(“Dot	Net”,“6	months”);
12.	System.out.println(“Duration	of	Java	is	”	+	courses.getProperty(“Java”,“Not	Found”));

13.	System.out.println(“Duration	of	C	is	”	+	courses.getProperty(“C”,“Not	Found”));

14.	System.out.println(“Duration	of	VB	is	”	+

courses.getProperty(“VB”,“Not	Found”));

15.																														System.out.println(“List	of	all	Courses:-“);

16.																														Set	s=courses.keySet();

17.																														for(Object	ob:s)

18.																																	{

19.														System.out.println(“Duration	of	Course	”	+	(String)ob	+	”	is	”	+

courses.getProperty((String)ob,“not	found”));

20.																														}

21.																														Iterator	itr	=	s.iterator();

22.																														while(itr.hasNext())

23.																														{

24.																																						String	s1=(String)itr.next();

25.																																						System.out.println(“Duration	of	Course	”	+	s1	+	”	is	”	+

courses.getProperty(s1,“Not	Found”));

26.																														}

27.																							}

28.														}

Output:

Duration	of	Java	is	4	months

Duration	of	C	is	2	months

Duration	of	VB	is	Not	Found

List	of	all	Courses:-

Duration	of	Course	Java	is	4	months

Duration	of	Course	Dot	Net	is	6	months

Duration	of	Course	Java	is	4	months

Duration	of	Course	Dot	Net	is	6	months

	

Using	store()	and	load()

One	of	the	most	useful	aspects	of	Properties	is	that	the	information	contained	in	a
Properties	object	can	be	easily	stored	to	or	loaded	from	disk	with	the	store()	and	load().

At	any	time,	you	can	write	a	Properties	object	 to	a	stream	or	read	it	back.	This
makes	property	lists	especially	convenient	for	implementing	simple	databases.

For	 example,	 the	 following	 program	 use	 a	 property	 list	 to	 create	 a	 simple
computerized	 telephone	 book	 that	 stores	 names	 and	 phone	 numbers.	To	 find	 a	 person’s
number	you	enter	his	or	her	name.

The	 program	 uses	 the	 store()	 and	 load()	methods	 to	 store	 and	 retrieve	 the	 list.
When	the	program	executes,	it	first	tries	to	load	the	list	from	a	file	called	phonebook.dat.
if	this	file	exists,	the	list	is	loaded.	You	can	then	add	to	the	list.

	

	

	

	

	

	 	

	

	 	 	 	

CHAPTER
∞	22	∞

Java	8	Features	for	Developers
Lambdas,	Functional	interface,

	

	

Java	8	is	released	in	18th	March	2014,	so	it’s	high	time	to	look	for	the	Java	8	features	for
the	developers.	And	no	enogh	material	is	available	for	java	8.	But	here	after	a	lots	of	hard
work	i	am	writing	Some	of	the	important	features	introduced	in	Java	8	that	I	am	looking
forward	to	are:

	

1.																			forEach()	method	in	Iterable	interface.
2.																		default	and	static	methods	in	Interfaces.
3.																		Functional	Interfaces	and	Lambda	Expressions.
4.																		Java	Stream	API	for	Bulk	Data	Operations	on	Collections.
5.																		Java	Time	API.
6.																		Collection	API	improvements.
7.																		Concurrency	API	improvements.
8.																		Java	IO	improvements.
9.																		Miscellaneous	Core	API	improvements.

Let’s	 have	 a	 brief	 look	 on	 these	 Java	 8	 features.	 I	will	 provide	 some	 code	 snippets	 for
better	understanding,	so	if	you	want	to	run	programs	in	Java	8,	you	will	have	to	setup	Java
8	environment	by	following	steps.

Download	 JDK8	 and	 install	 it.	 Installation	 is	 simple	 like	 other	 java	 versions.	 JDK
installation	is	required	to	write,	compile	and	run	the	program	in	Java.

NOTE:	 Current	 Eclipse	 IDE	 doesn’t	 support	 Java8,	 so	 you	 will	 have	 to	 download	 it
from	efxclipse.org	Eclipse	for	Java	8.	There	are	different	versions	for	Mac	OS,	Windows
and	Linux	systems	with	stable	builds,	so	download	the	latest	one	for	most	features.

I	just	checked	today	(28-July-2014)	and	Eclipse	Kepler	4.3.2	SR2	package	can	be	used	for
Java	8.	You	need	to	download	it	first	and	then	install	“Java	8	support	for	Eclipse	Kepler
SR2″	plugin	from	Eclipse	Marketplace.	I	have	tried	this	and	it	seems	to	be	working	fine.

1.	forEach()	method	in	Iterable	interface-

Whenever	we	need	to	traverse	through	a	Collection,	we	need	to	create	an	Iterator	whose
whole	purpose	is	to	iterate	over	and	then	we	have	business	logic	in	a	loop	for	each	of	the
elements	in	the	Collection.	We	might	get	ConcurrentModificationException	if	iterator	is
not	used	properly.

Java	 8	 has	 introduced 	 FOREACH 	method	 in	 java.lang.Iterable	 interface	 so	 that	 while
writing	 code	 we	 focus	 on	 business	 logic	 only.	 FOREACH	 method
takes	 java.util.function.Consumer	object	 as	 argument,	 so	 it	 helps	 in	having	our	business
logic	 at	 a	 separate	 location	 that	 we	 can	 reuse.	 Let’s	 see	 forEach	 usage	 with	 simple
example.

	

Java8ForEachExample.java

	
package 	com.journaldev.java8.foreach;

	

import 	java.util.ArrayList;

import 	java.util.Iterator;

import 	java.util.List;

import 	java.util.function.Consumer;

import 	java.lang.Integer;

public 	class 	Java8ForEachExample	{

	

public 	static 	void 	main(String[]	args)	{

//creating	sample	Collection

List<Integer>	myList	=	new 	ArrayList<Integer>();

for(int 	i=0;	i<10;	i++)	myList.add(i);

	 	

//traversing	using	Iterator

Iterator<Integer>	it	=	myList.iterator();

while(it.hasNext()){

Integer	i	=	it.next();

System.out.println(“Iterator	Value::”+i);

}

//traversing	through	forEach	method	of	Iterable	with	anonymous	class

myList.forEach(new 	Consumer<Integer>()	{

	

public 	void 	accept(Integer	t)	{

System.out.println(“forEach	anonymous	class	Value::”+t);

}

});	 	

//traversing	with	Consumer	interface	implementation

MyConsumer	action	=	new 	MyConsumer();

myList.forEach(action);

}

}

//Consumer	implementation	that	can	be	reused 	class 	MyConsumer	implements 	Consumer<Integer>{

public 	void 	accept(Integer	t)	{

System.out.println(“Consumer	impl	Value::”+t);

}

}

	

The	 number	 of	 lines	 might	 increase	 but	 forEach	 method	 helps	 in	 having	 the	 logic	 for
iteration	and	business	logic	at	separate	place	resulting	in	higher	separation	of	concern	and
cleaner	code.

2.	default	and	static	methods	in	Interfaces-

If	you	read	forEach	method	details	carefully,	you	will	notice	 that	 it’s	defined	 in	 Iterable
interface	but	we	know	that	interfaces	can’t	have	method	body.	From	Java	8,	interfaces	are
enhanced	 to	have	method	with	 implementation.	We	can	use	 ‘DEFAULT‘	 and	 ‘STATIC‘
keyword	to	create	interfaces	with	method	implementation.

For	each	method	implementation	in	Iterable	interface	is:

	

default 	void 	forEach(Consumer<?	super 	T>	action)	{
Objects.requireNonNull(action);

for 	(T	t	:	this)	{
action.accept(t);

}

}

	

Remember	:

We	know	that	Java	doesn’t	provide	multiple	 inheritance	 in	Classes	 because	 it
leads	 to	 Diamond	 Problem.	 So	 how	 it	 will	 be	 handled	 with	 interfaces	 now,	 since
interfaces	are	now	similar	to	abstract	classes.

The	 solution	 is	 that	 compiler	will	 throw	exception	 in	 this	 scenario	 and	we	will
have	to	provide	implementation	logic	in	the	class	implementing	the	interfaces.

	

	

	

Interface1.java

	

package 	com.journaldev.java8.defaultmethod;

	@FunctionalInterface

public 	interface 	Interface1	{

void 	method1(String	str);	 	

default 	void 	log(String	str){

System.out.println(“I1	logging::”+str);

}				 	

static 	void 	print(String	str){

System.out.println(“Printing	“+str);

}				 	
//trying	to	override	Object	method	gives	compile	time	error	as

//“A	default	method	cannot	override	a	method	from	java.lang.Object”				 	

//		default	String	toString(){

//						return	“i1”;

//		}				 	

}

	

Interface2.java

package 	com.journaldev.java8.defaultmethod;

	
@FunctionalInterface

public 	interface 	Interface2	{

void 	method2();				 	

default 	void 	log(String	str){
System.out.println(“I2	logging::”+str);

}

	
}

Notice	that	both	the	interfaces	have	a	common	method	log()	with	implementation	logic.

MyClass.java

package 	com.journaldev.java8.defaultmethod;

public 	class 	MyClass	implements 	Interface1,	Interface2	{

	
@Override

public 	void 	method2()	{

} 	

@Override

public 	void 	method1(String	str)	{
}
//MyClass	won’t	compile	without	having	it’s	own	log()	implementation

				@Override

public 	void 	log(String	str){
System.out.println(“MyClass	logging::”+str);

Interface1.print(“abc”);

}

}

	

As	you	can	see	that	Interface1	has	static	method	implementation	that	is	used	in
MYCLASS.LOG()	 method	 implementation.	 Java	 8	 uses	 default	 and	 static	 methods
heavily	 in	 Collection	 API	 and	 default	 methods	 are	 added	 so	 that	 our	 code	 remains
backward	compatible.

If	 any	 class	 in	 the	 hierarchy	 has	 a	 method	 with	 same	 signature,	 then	 default
methods	become	irrelevant.	Since	any	class	implementing	an	interface	already	has	Object
as	superclass,	if	we	have	equals(),	hashCode()	default	methods	in	interface,	it	will	become
irrelevant.	 Thats	 why	 for	 better	 clarity,	 interfaces	 are	 not	 allowed	 to	 have	Object	 class
default	methods.

For	complete	details	of	interface	changes	in	Java	8,	please	read	Java	8	interface
changes	Below.

Java	 8	 Interface	 Changes	 –	 static	 methods,	 default	 methods,	 functional
Interfaces-

One	of	the	biggest	design	change	in	Java	8	is	with	the	concept	of	interfaces.	Prior
to	Java	7,	we	could	have	only	method	declarations	in	the	interfaces.	But	from	Java	8,	we
can	have	default	methods	and	static	methods	in	the	interfaces.

Designing	 interfaces	 have	 always	 been	 a	 tough	 job	 because	 if	we	want	 to	 add
additional	methods	in	the	interfaces,	it	will	require	change	in	all	the	implementing	classes.

As	interface	grows	old,	the	number	of	classes	implementing	it	might	grow	to	an
extent	 that	 it’s	 not	 possible	 to	 extend	 interfaces.	 That’s	 why	 when	 designing	 an
application,	 most	 of	 the	 frameworks	 provide	 a	 base	 implementation	 class	 and	 then	 we
extend	it	and	override	methods	that	are	applicable	for	our	application.	Let’s	look	into	the
default	and	static	interface	methods	and	the	reasoning	of	their	introduction.

Interface	Default	Method-

For	creating	a	default	method	in	the	interface,	we	need	to	use	“default”	keyword	with	the

method	signature.	For	example,

	

Interface1.java

package	com.journaldev.java8.defaultmethod;

public	interface	Interface1	{

void	method1(String	str);

default	void	log(String	str){

System.out.println(“I1	logging::”+str);

print(str);

}

}

	

Notice	that	log(String	str)	is	the	default	method	in	the	Interface1.	Now	when	a	class	will
implement	Interface1,	it	is	not	mandatory	to	provide	implementation	for	default	methods.
This	feature	will	help	us	in	extending	interfaces	with	additional	methods,	all	we	need	is	to
provide	 a	 default	 implementation.	 Let’s	 say	 we	 have	 another	 interface	 with	 following
methods:

	

Interface2.java

	

package	com.journaldev.java8.defaultmethod;

public	interface	Interface2	{

void	method2();				

default	void	log(String	str){

System.out.println(“I2	logging::”+str);

}

}

	

We	 know	 that	 Java	 doesn’t	 allow	 us	 to	 extend	multiple	 classes	 because	 it	will
result	in	the	“Diamond	Problem”	where	compiler	can’t	decide	which	superclass	method	to
use.	With	the	default	methods,	the	diamond	problem	would	arise	for	interfaces	too.

Because	 if	 a	 class	 is	 implementing	 both	 Interface1	 andInterface2	 and	 doesn’t

implement	the	common	default	method,	compiler	can’t	decide	which	one	to	chose.

Extending	multiple	interfaces	are	an	integral	part	of	Java,	you	will	find	it	in	the
core	 java	classes	as	well	as	 in	most	of	 the	enterprise	application	and	 frameworks.	So	 to
make	 sure,	 this	 problem	 won’t	 occur	 in	 interfaces,	 it’s	 made	 mandatory	 to	 provide
implementation	for	common	default	methods.

So	 if	 a	class	 is	 implementing	both	 the	above	 interfaces,	 it	will	have	 to	provide
implementation	for	log()	method	otherwise	compiler	will	throw	error.	A	simple	class	that
is	implementing	both	Interface1	and	Interface2	will	be:

	

MyClass.java

package	com.journaldev.java8.defaultmethod;

public	class	MyClass	implements	Interface1,	Interface2	{

@Override

public	void	method2()	{

}

@Override

public	void	method1(String	str)	{

}

@Override

public	void	log(String	str){

System.out.println(“MyClass	logging::”+str);

Interface1.print(“abc”);

}

}

	

Important	points	about	interface	default	methods:

									Default	methods	will	help	us	in	extending	interfaces	without	having	the	fear
of	breaking	implementation	classes.

	 	 	 	 	 	 	 	 	Default	methods	has	bridge	down	 the	differences	between	 interfaces	 and
abstract	classes.

	 	 	 	 	 	 	 	 	Default	methods	will	 help	 us	 in	 avoiding	 utility	 classes,	 such	 as	 all	 the
Collections	class	method	can	be	provided	in	the	interfaces	itself.

	 	 	 	 	 	 	 	 	Default	methods	will	help	us	in	removing	base	implementation	classes,	we
can	 provide	 default	 implementation	 and	 the	 implementation	 classes	 can	 chose
which	one	to	override.

	 	 	 	 	 	 	 	 	One	of	the	major	reason	for	introducing	default	methods	is	to	enhance	the
Collections	API	in	Java	8	to	support	lambda	expressions.

									If	any	class	in	the	hierarchy	has	a	method	with	same	signature,	then	default
methods	 become	 irrelevant.	 A	 default	 method	 cannot	 override	 a	 method
from	java.lang.Object.

The	reasoning	is	very	simple,	it’s	because	Object	is	the	base	class	for	all
the	 java	 classes.	 So	 even	 if	 we	 have	 Object	 class	methods	 defined	 as	 default
methods	in	interfaces,	it	will	be	useless	because	Object	class	method	will	always
be	used.	That’s	why	to	avoid	confusion,	we	can’t	have	default	methods	that	are
overriding	Object	class	methods.

	 	 	 	 	 	 	 	 	Default	 methods	 are	 also	 referred	 to	 as	 Defender	 Methods	 or	 Virtual
extension	methods.

Interface	static	methods	-

Static	methods	are	similar	to	default	methods	except	that	we	can’t	override	them
in	the	implementation	classes.	This	feature	helps	us	in	avoiding	undesired	results	incase	of
poor	implementation	in	child	classes.	Let’s	look	into	this	with	a	simple	example.

MyData.java

package	com.journaldev.java8.staticmethod;

public	interface	MyData	{

	

default	void	print(String	str)	{

if	(!isNull(str))

System.out.println(“MyData	Print::”	+	str);

}

static	boolean	isNull(String	str)	{

System.out.println(“Interface	Null	Check”);

return	str	==	null	?	true	:	””.equals(str)	?	true	:	false;

}

}

Now	 let’s	 see	 an	 implementation	 class	 that	 is	 having	 isNull()	 method	 with	 poor
implementation.

	

MyDataImpl.java

package	com.journaldev.java8.staticmethod;

public	class	MyDataImpl	implements	MyData	{

public	boolean	isNull(String	str)	{

System.out.println(“Impl	Null	Check”);

return	str	==	null	?	true	:	false;

}					

public	static	void	main(String	args[]){

MyDataImpl	obj	=	new	MyDataImpl();

obj.print(””);

obj.isNull(“abc”);

}

}

	

Note	 that	 isNull(String	 str)	 is	 a	 simple	 class	 method,	 it’s	 not	 overriding	 the	 interface
method.

For	 example,	 if	we	will	 add	@Override	annotation	 to	 the	 isNull()	method,	 it
will	 result	 in	 compiler	 error.	 Now	when	we	will	 run	 the	 application,	 we	 get	 following
output.

	

Interface	Null	Check

Impl	Null	Check

If	we	make	the	interface	method	from	static	to	default,	we	will	get	following	output.

1

2

3

Impl	Null	Check

MyData	Print::

Impl	Null	Check

	

The	 static	 methods	 are	 visible	 to	 interface	 methods	 only,	 if	 we	 remove	 the

isNull()	 method	 from	 theMyDataImpl	 class,	 we	 won’t	 be	 able	 to	 use	 it	 for
the	MyDataImpl	 object.	 However	 like	 other	 static	methods,	we	 can	 use	 interface	 static
methods	using	class	name.	For	example,	a	valid	statement	will	be:

1 boolean	result	=	MyData.isNull(“abc”);

	

Important	points	about	interface	static	methods:

									Interface	static	methods	are	part	of	interface,	we	can’t	use	it	for
implementation	class	objects.

									Interface	static	methods	are	good	for	providing	utility	methods,	for	example
null	check,	collection	sorting	etc.

									Interface	static	method	helps	us	in	providing	security	by	not	allowing
implementation	classes	to	override	them.

									We	can’t	define	static	methods	for	Object	class	methods,	we	will	get	compiler
error	as	“This	static	method	cannot	hide	the	instance	method	from	Object”.	This
is	because	it’s	not	allowed	in	java,	since	Object	is	the	base	class	for	all	the
classes	and	we	can’t	have	one	class	level	static	method	and	another	instance
method	with	same	signature.

									We	can	use	static	interface	methods	to	remove	utility	classes	such	as
Collections	and	move	all	of	it’s	static	methods	to	the	corresponding	interface,
that	would	be	easy	to	find	and	use.

Functional	Interfaces	-

Before	 I	 conclude	 the	 topic,	 I	 would	 like	 to	 provide	 a	 brief	 introduction	 to
Functional	 interfaces.	 An	 interface	 with	 exactly	 one	 abstract	 method	 is	 known	 as
Functional	Interface.

A	new	annotation	@FunctionalInterface	has	been	introduced	to	mark	an	interface
as	Functional	Interface.	@FunctionalInterface	annotation	 is	a	facility	 to	avoid	accidental
addition	of	abstract	methods	in	the	functional	interfaces.	It’s	optional	but	good	practice	to
use	it.

Functional	 interfaces	 are	 long	 awaited	 and	much	 sought	 out	 feature	 of	 Java	 8
because	 it	 enables	 us	 to	 use	 lambda	 expressions	 to	 instantiate	 them.	 A	 new
package	java.util.function	with	bunch	of	functional	interfaces	are	added	to	provide	target
types	for	lambda	expressions	and	method	references.

3.	Functional	Interfaces	and	Lambda	Expressions	-

If	 you	 notice	 above	 interfaces	 code,	 you	 will	 notice
@FunctionalInterface	annotation.	 Functional	 interfaces	 are	 new	 concept	 introduced	 in

Java	8.	An	interface	with	exactly	one	abstract	method	becomes	Functional	Interface.

We	don’t	 need	 to	 use	@FunctionalInterface	 annotation	 to	mark	 an	 interface	 as
Functional	 Interface.	 @FunctionalInterface	 annotation	 is	 a	 facility	 to	 avoid	 accidental
addition	of	abstract	methods	in	the	functional	interfaces.

You	 can	 think	 of	 it	 like	@Override	 annotation	 and	 it’s	 best	 practice	 to	 use
it.	 java.lang.Runnablewith	 single	 abstract	method	 run()	 is	 a	 great	 example	 of	 functional
interface.

One	of	the	major	benefits	of	functional	interface	is	the	possibility	to	use	lambda
expressions	to	instantiate	them.	We	can	instantiate	an	interface	with	anonymous	class	but
the	code	looks	bulky.
	

Runnable	r	=	new 	Runnable(){
@Override

public 	void 	run()	{
System.out.println(“My	Runnable”);

}};

Since	functional	interfaces	have	only	one	method,	lambda	expressions	can	easily
provide	the	method	implementation.

We	just	need	to	provide	method	arguments	and	business	logic.	For	example,	we
can	write	above	implementation	using	lambda	expression	as:

Runnable	r1	=	()	->	{

System.out.println(“My	Runnable”);

};

	

If	you	have	single	statement	in	method	implementation,	we	don’t	need	curly	braces	also.
For	 example	 above	 Interface1	 anonymous	 class	 can	 be	 instantiated	 using	 lambda	 as
follows:

	

Interface1	i1	=	(s)	->	System.out.println(s);

i1.method1(“abc”);

	

So	 lambda	 expressions	 are	 means	 to	 create	 anonymous	 classes	 of	 functional
interfaces	easily.	There	are	no	runtime	benefits	of	using	lambda	expressions,	so	I	will	use
it	cautiously	because	I	don’t	mind	writing	few	extra	lines	of	code.

A	 new	 package	 java.util.function	 has	 been	 added	 with	 bunch	 of	 functional
interfaces	to	provide	target	types	for	lambda	expressions	and	method	references.

Lambda	expressions	are	a	huge	topic,	I	will	write	a	separate	+	(Note)	on	that	in
future	(Next	Edition	of	this	Book).	You	can	read	complete	tutorial	below	Java	8	Lambda
Expressions	Tutorial.

Java	8	Lambda	Expressions	and	Functional	Interfaces	Tutorial-

Java	 has	 always	 been	 an	Object	 Oriented	 Programming	 language.	 What	 is
means	 that	 everything	 in	 java	 programming	 revolves	 around	 Objects	 (except	 some
primitive	types	for	simplicity).	We	don’t	have	only	functions	in	java,	they	are	part	of	Class
and	we	need	to	use	the	class/object	to	invoke	any	function.

If	we	look	into	some	other	programming	languages	such	as	C++,	JavaScript;	they
are	 called	 functional	 programming	 language	 because	we	 can	write	 functions	 and	 use
them	when	 required.	Some	of	 these	 languages	support	Object	Oriented	Programming	as
well	as	Functional	Programming.

Being	 object	 oriented	 is	 not	 bad,	 but	 it	 brings	 a	 lot	 of	 verbosity	 to	 the	 program.	 For
example,	 let’s	 say	 we	 have	 to	 create	 an	 instance	 of	 Runnable.	 Usually	 we	 do	 it	 using
anonymous	classes	like	below.

	

1

2

3

4

5

Runnable	r	=	new	Runnable(){

@Override

public	void	run()	{

System.out.println(“My	Runnable”);

}

};

	

If	you	look	at	the	above	code,	the	actual	part	that	is	of	use	is	the	code	inside	run()
method.	Rest	all	of	the	code	is	because	of	the	way	java	programs	are	structured.

Java	8	brings	us	the	concept	of	Functional	Interfaces	and	Lambda
Expressions	to	avoid	writing	all	the	useless	code	that	we	can	easily	avoid	by	making	our
java	compiler	intelligent.

Functional	Interface	-

An	 interface	 with	 exactly	 one	 abstract	 method	 is	 called	 Functional	 Interface.
@FunctionalInterfaceannotation	 is	 added	 so	 that	we	can	mark	an	 interface	as	 functional
interface.	 It	 is	 not	 mandatory	 to	 use	 it,	 but	 it’s	 best	 practice	 to	 use	 it	 with	 functional
interfaces	 to	 avoid	 addition	 of	 extra	 methods	 accidentally.	 If	 the	 interface	 is	 annotated
with	@FunctionalInterface	annotation	and	we	try	to	have	more	than	one	abstract	method,
it	throws	compiler	error.

The	 major	 benefit	 of	 functional	 interface	 is	 that	 we	 can	 use	 lambda
expressions	to	instantiate	them	and	avoid	using	bulky	anonymous	class	implementation.

Java	8	Collections	API	has	rewritten	and	new	Stream	API	is	provided	that	uses	a
lot	 of	 functional	 interfaces.	 Java	 8	 has	 defined	 a	 lot	 of	 functional	 interfaces
in	 java.util.function	 package,	 some	 of	 the	 useful	 ones
areConsumer,	 Supplier,	 Function	 and	 Predicate.	 You	 can	 find	 more	 detail	 about	 them
in	Java	8	Stream	Example.

java.lang.Runnable	 is	 a	 great	 example	 of	 functional	 interface	 with	 single	 abstract
method	run().

Below	code	snippet	provides	some	guidance	for	functional	interfaces:

	

interface	Foo	{	boolean	equals(Object	obj);	}

//	Not	functional	because	equals	is	already	an	implicit
member	(Object	class)

interface	Comparator<T>	{

	boolean	equals(Object	obj);

	int	compare(T	o1,	T	o2);

}

//	Functional	because	Comparator	has	only	one	abstract
non-Object	method

interface	Foo	{

int	m();

Object	clone();

}

//	Not	functional	because	method	Object.clone	is	not
public

interface	X	{	int	m(Iterable<String>	arg);	}

interface	Y	{	int	m(Iterable<String>	arg);	}

interface	Z	extends	X,	Y	{}

//	Functional:	two	methods,	but	they	have	the	same
signature

interface	X	{	Iterable	m(Iterable<String>	arg);	}

interface	Y	{	Iterable<String>	m(Iterable	arg);	}

interface	Z	extends	X,	Y	{}

//	Functional:	Y.m	is	a	subsignature	&	return-type-
substitutable

interface	X	{	int	m(Iterable<String>	arg);	}

interface	Y	{	int	m(Iterable<Integer>	arg);	}

interface	Z	extends	X,	Y	{}

//	Not	functional:	No	method	has	a	subsignature	of	all
abstract	methods

interface	X	{	int	m(Iterable<String>	arg,	Class	c);	}

interface	Y	{	int	m(Iterable	arg,	Class<?>	c);	}

interface	Z	extends	X,	Y	{}

//	Not	functional:	No	method	has	a	subsignature	of	all
abstract	methods

interface	X	{	long	m();	}

interface	Y	{	int	m();	}

interface	Z	extends	X,	Y	{}

//	Compiler	error:	no	method	is	return	type	substitutable

interface	Foo<T>	{	void	m(T	arg);	}

interface	Bar<T>	{	void	m(T	arg);	}

interface	FooBar<X,	Y>	extends	Foo<X>,	Bar<Y>	{}

//	Compiler	error:	different	signatures,	same	erasure

Lambda	Expressions	-

Lambda	Expressions	 are	 the	way	 through	which	we	 can	 visualize	 functional
programming	in	the	java	object	oriented	world.	Objects	are	the	base	of	java	programming
language	and	we	can	never	have	a	function	without	an	Object,	that’s	why	Java	language
provide	support	for	using	lambda	expressions	only	with	functional	interfaces.

Since	there	is	only	one	abstract	function	in	the	functional	interfaces,	there	is	no
confusion	in	applying	the	lambda	expression	to	the	method.	Lambda	Expressions	syntax
is	 (argument)	 ->	 (body).	Now	 let’s	 see	 how	we	 can	write	 above	 anonymous	Runnable
using	lambda	expression.

	

1 Runnable	r1	=	()	->	System.out.println(“My	Runnable”);

	

									Let’s	try	to	understand	what	is	happening	in	the	lambda	expression	above.

									Runnable	is	a	functional	interface,	that’s	why	we	can	use	lambda	expression

to	create	it’s	instance.

	 	 	 	 	 	 	 	 	Since	run()	method	takes	no	argument,	our	lambda	expression	also	have	no
argument.

									Just	like	if-else	blocks,	we	can	avoid	curly	braces	({})	since	we	have	a	single
statement	 in	 the	method	 body.	 For	multiple	 statements,	we	would	 have	 to	 use
curly	braces	like	any	other	methods.

Why	do	we	need	Lambda	Expressions	-

1.	Reduced	Lines	of	Code	–

One	of	the	clear	benefit	of	using	lambda	expression	is	that	the	amount	of	code	is	reduced,
we	have	already	seen	that	how	easily	we	can	create	instance	of	a	functional	interface	using
lambda	expression	rather	than	using	anonymous	class.

2.	Sequential	and	Parallel	Execution	Support	-

Another	benefit	of	using	 lambda	expression	 is	 that	we	can	benefit	 from	the	Stream	API
sequential	 and	 parallel	 operations	 support.	 To	 explain	 this,	 let’s	 take	 a	 simple	 example
where	we	need	to	write	a	method	to	test	if	a	number	passed	is	prime	number	or	not.

Traditionally	we	would	write	 it’s	 code	 like	 below.	 The	 code	 is	 not	 fully	 optimized	 but
good	for	example	purpose,	so	bear	with	me	on	this.

	

1

2

3

4

5

6

7

8

//Traditional	approach

private	static	boolean	isPrime(int	number)	{							

if(number	<	2)	return	false;

for(int	i=2;	i<number;	i++){

if(number	%	i	==	0)	return	false;

}

return	true;

}

	

The	problem	with	above	code	is	that	it’s	sequential	in	nature,	if	the	number	is	very	huge
then	it	will	take	significant	amount	of	time.	Another	problem	with	code	is	that	there	are	so
many	exit	points	and	it’s	not	readable.	Let’s	see	how	we	can	write	the	same	method	using
lambda	expressions	and	stream	API.

	

1

2

3

//Declarative	approach

private	static	boolean	isPrime(int	number)	{							

return	number	>	1

4

5

6

&&	IntStream.range(2,	number	-	1).noneMatch(

index	->	number	%	index	==	0);

}

	

IntStream	is	a	sequence	of	primitive	int-valued	elements	supporting	sequential	and	parallel
aggregate	 operations.	 This	 is	 the	 int	 primitive	 specialization	 of	 Stream.	 For	 more
readability,	we	can	also	write	the	method	like	below.

	

1

2

3

4

5

6

7

private	static	boolean	isPrime(int	number)	{

IntPredicate	isDivisible	=	index	->	number	%	index	==	0;				

return	number	>	1

&&	IntStream.range(2,	number	-	1).noneMatch(

isDivisible);

}

	

If	 you	 are	 not	 familiar	with	 IntStream,	 it’s	 range()	method	 returns	 a	 sequential	 ordered
IntStream	 from	 startInclusive	 (inclusive)	 to	 endExclusive	 (exclusive)	 by	 an	 incremental
step	 of	 1.	 noneMatch()	 method	 returns	 whether	 no	 elements	 of	 this	 stream	 match	 the
provided	predicate.

It	 may	 not	 evaluate	 the	 predicate	 on	 all	 elements	 if	 not	 necessary	 for	 determining	 the
result.

3.	Passing	Behaviors	into	methods	-

Let’s	see	how	we	can	use	lambda	expressions	to	pass	behavior	of	a	method	with	a	simple
example.	Let’s	say	we	have	to	write	a	method	to	sum	the	numbers	in	a	list	if	they	match	a
given	criteria.	We	can	use	Predicate	and	write	a	method	like	below.

	

1

2

3

4

5

public	static	int	sumWithCondition(List<Integer>	numbers,	Predicate<Integer>
predicate)	{

return	numbers.parallelStream()

.filter(predicate)

.mapToInt(i	->	i)

.sum();

6 }

	

Sample	usage:

	

1

2

3

4

5

6

//sum	of	all	numbers

sumWithCondition(numbers,	n	->	true)

//sum	of	all	even	numbers

sumWithCondition(numbers,	i	->	i%2==0)

//sum	of	all	numbers	greater	than	5

sumWithCondition(numbers,	i	->	i>5)

	

4.	Higher	Efficiency	with	Laziness	-

One	more	advantage	of	using	lambda	expression	is	 the	lazy	evaluation,	for	example
let’s	say	we	need	to	write	a	method	to	find	out	the	maximum	odd	number	in	the	range	3	to
11	and	return	square	of	it.	Usually	we	will	write	code	for	this	method	like	this:

	

1

2

3

4

5

6

7

8

9

private	static	int	findSquareOfMaxOdd(List<Integer>	numbers)	{

int	max	=	0;

for	(int	i	:	numbers)	{

if	(i	%	2	!=	0	&&	i	>	3	&&	i	<	11	&&	i	>	max)	{

max	=	i;

}

}

return	max	*	max;

}

	

Above	program	will	always	run	in	sequential	order	but	we	can	use	Stream	API	to	achieve
this	 and	 get	 benefit	 of	 Laziness-seeking.	 Let’s	 see	 how	 we	 can	 rewrite	 this	 code	 in
functional	programming	way	using	Stream	API	and	lambda	expressions.

	

public	static	int	findSquareOfMaxOdd(List<Integer>	numbers)	{

return	numbers.stream()

.filter(NumberTest::isOdd)						//Predicate	is	functional	interface	and

.filter(NumberTest::isGreaterThan3)	//	we	are	using	lambdas	to	initialize	it

.filter(NumberTest::isLessThan11)			//	rather	than	anonymous	inner	classes

.max(Comparator.naturalOrder())

.map(i	->	i	*	i)

.get();

}

	

public	static	boolean	isOdd(int	i)	{

return	i	%	2	!=	0;

}

public	static	boolean	isGreaterThan3(int	i){

return	i	>	3;

}

public	static	boolean	isLessThan11(int	i){

return	i	<	11;

}

	

If	you	are	surprised	with	the	double	colon	(::)	operator,	it’s	introduced	in	Java	8	and	used
for	method	references.	Java	Compiler	takes	care	of	mapping	the	arguments	to	the	called
method.	 It’s	 short	 form	 of	 lambda	 expressions	 i	 ->	 isGreaterThan3(i)	 or	 i	 ->
NumberTest.isGreaterThan3(i).

Lambda	Expression	Examples	-

Below	I	am	providing	some	code	snippets	 for	 lambda	expressions	with	small	comments
explaining	them.

1

2

3

4

5

6

7

()	->	{}																					//	No	parameters;	void	result	

()	->	42																					//	No	parameters,	expression	body

()	->	null																			//	No	parameters,	expression	body

()	->	{	return	42;	}									//	No	parameters,	block	body	with	return

()	->	{	System.gc();	}							//	No	parameters,	void	block	body

	

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

//	Complex	block	body	with	multiple	returns

()	->	{

if	(true)	return	10;

else	{

int	result	=	15;

for	(int	i	=	1;	i	<	10;	i++)

result	*=	i;

return	result;

}

}																									

(int	x)	->	x+1													//	Single	declared-type	argument

(int	x)	->	{	return	x+1;	}	//	same	as	above

(x)	->	x+1																	//	Single	inferred-type	argument,	same	as	below

x	->	x+1																			//	Parenthesis	optional	for	single	inferred-type	case

(String	s)	->	s.length()			//	Single	declared-type	argument

(Thread	t)	->	{	t.start();	}	//	Single	declared-type	argument

s	->	s.length()														//	Single	inferred-type	argument

t	->	{	t.start();	}										//	Single	inferred-type	argument

(int	x,	int	y)	->	x+y						//	Multiple	declared-type	parameters

(x,y)	->	x+y															//	Multiple	inferred-type	parameters

(x,	final	y)	->	x+y								//	Illegal:	can’t	modify	inferred-type	parameters

(x,	int	y)	->	x+y										//	Illegal:	can’t	mix	inferred	and	declared	types

Method	and	Constructor	References	-

A	 method	 reference	 is	 used	 to	 refer	 to	 a	 method	 without	 invoking	 it;	 a	 constructor
reference	is	similarly	used	to	refer	to	a	constructor	without	creating	a	new	instance	of	the
named	class	or	array	type.

Examples	of	method	and	constructor	references:

	

1

2

3

System::getProperty

System.out::println

“abc”::length

4

5

ArrayList::new

int[]::new

	

That’s	all	for	Functional	Interfaces	and	Lambda	Expression	Tutorial,	I	would	strongly
suggest	to	look	into	using	it	because	this	syntax	is	new	to	Java	and	it	will	take	some	time
to	grasp	it	and	use	it	in	a	better	way.

	

4.	Java	Stream	API	for	Bulk	Data	Operations	on	Collections	-

A	new	java.util.stream	has	been	added	in	Java	8	to	perform	filter/map/reduce	like
operations	 with	 the	 collection.	 Stream	 API	 will	 allow	 sequential	 as	 well	 as	 parallel
execution.

This	is	one	of	the	best	feature	for	me	because	I	work	a	lot	with	Collections	and
usually	with	Big	Data,	we	need	 to	 filter	out	 them	based	on	some	conditions.	Collection
interface	 has	 been	 extended	 with	 STREAM()	 and	 PARALLELSTREAM()	 default
methods	to	get	the	Stream	for	sequential	and	parallel	execution.	Let’s	see	their	usage	with
simple	example.

StreamExample.java

package 	com.journaldev.java8.stream;

	 import 	java.util.ArrayList;

import 	java.util.List;

import 	java.util.stream.Stream;

	

public 	class 	StreamExample	{

public 	static 	void 	main(String[]	args)	{

	 	

List<Integer>	myList	=	new 	ArrayList<>();

for(int 	i=0;	i<100;	i++)	myList.add(i);								 	

//sequential	stream

Stream<Integer>	sequentialStream	=	myList.stream();

	 	

//parallel	stream

Stream<Integer>	parallelStream	=	myList.parallelStream();

	 	

//using	lambda	with	Stream	API,	filter	example

Stream<Integer>	highNums	=	parallelStream.filter(p	->	p	>	90);

//using	lambda	in	forEach

highNums.forEach(p	->	System.out.println(“High	Nums	parallel=”+p));

	 	

Stream<Integer>	highNumsSeq	=	sequentialStream.filter(p	->	p	>	90);

highNumsSeq.forEach(p	->	System.out.println(“High	Nums	sequential=”+p));

}

}

If	you	will	run	above	example	code,	you	will	get	output	like	this:

	

High	Nums	parallel=91

High	Nums	parallel=96

High	Nums	parallel=93

High	Nums	parallel=98

High	Nums	parallel=94

High	Nums	parallel=95

High	Nums	parallel=97

High	Nums	parallel=92

High	Nums	parallel=99

High	Nums	sequential=91

High	Nums	sequential=92

High	Nums	sequential=93

High	Nums	sequential=94

High	Nums	sequential=95

High	Nums	sequential=96

High	Nums	sequential=97

High	Nums	sequential=98

High	Nums	sequential=99

	

Notice	that	parallel	processing	values	are	not	in	order,	so	parallel	processing	will	be	very
helpful	while	working	with	huge	collections.	Covering	everything	about	Stream	API	is	not
possible	in	this	topic,	you	can	read	everything	about	Stream	API	at	Java	8	Stream	API
Tutorial	in	next	chapter.

CHAPTER
∞	23	∞

Java	8	Stream	And	Time	API
	

Java	8	Stream	API	Example	Tutorial	-

In	the	last	topics	,	we	looked	into	Java	8	Interface	Changes	and	Functional	Interfaces
and	Lambda	Expressions.

Now	we	will	look	into	one	of	the	major	API	introduced	in	Java	8	–	Java	Stream	API.

1.																			Stream	API	Overview.
2.																		Collections	and	Streams.
3.																		Commonly	used	Functional	Interfaces	in	Stream.

1.																														Function	and	BiFunction.
2.																														Predicate	and	BiPredicate.
3.																														Consumer	and	BiConsumer.
4.																														Supplier.

4.																		java.util.Optional.
5.																		java.util.Spliterator.
6.																		Intermediate	and	Terminal	Operations.
7.																		Short	Circuiting	Operations.
8.																		Java	Stream	Examples.

1.																														Creating	Streams.

2.																														Converting	Stream	to	Collection	or	Array.
3.																														Stream	Intermediate	Operations.
4.																														Stream	Terminal	Operations.

9.																		Java	Stream	API	Limitations.

Stream	API	Overview	-

Before	we	look	into	Java	8	Stream	API	Examples,	let’s	see	why	it	was	required.	Suppose
we	want	to	iterate	over	a	list	of	integers	and	find	out	sum	of	all	the	integers	greater	than
10.	Prior	to	Java	8,	the	approach	to	do	it	would	be:
	

1

2

3

4

5

6

7

8

9

10

11

private	static	int	sumIterator(List<Integer>	list)	{

Iterator<Integer>	it	=	list.iterator();

int	sum	=	0;

while	(it.hasNext())	{

int	num	=	it.next();

if	(num	>	10)	{

sum	+=	num;

}

}

return	sum;

}

	

There	are	three	major	problems	with	the	above	approach:

1)							We	just	want	to	know	the	sum	of	integers	but	we	would	also	have	to	provide
how	the	 iteration	will	 take	place,	 this	 is	also	called	external	 iteration	because
client	program	is	handling	the	algorithm	to	iterate	over	the	list.

2)	 	 	 	 	 	 	The	 program	 is	 sequential	 in	 nature,	 there	 is	 no	way	we	 can	 do	 this	 in
parallel	easily.

3)							There	is	a	lot	of	code	to	do	even	a	simple	task.

To	 overcome	 all	 the	 above	 shortcomings,	 Java	 8	 introduces	 Stream	 API.	 We	 can	 use
Stream	API	 to	 implementinternal	 iteration,	 that	 is	 better	 because	 java	 framework	 is	 in
control	of	the	iteration.	Internal	iteration	provides	several	features	such	as	sequential	and
parallel	execution,	filtering	based	on	the	given	criteria,	mapping	etc.

Most	 of	 the	 Stream	 API	 method	 arguments	 are	 functional	 interfaces,	 so	 lambda
expressions	work	very	well	with	them.	Let’s	see	how	can	we	write	above	logic	in	a	single
line	statement.

1

2

3

private	static	int	sumStream(List<Integer>	list)	{

return	list.stream().filter(i	->	i	>	10).mapToInt(i	->	i).sum();

}

	

Notice	 that	 above	 program	 utilizes	 java	 framework	 iteration	 strategy,	 filtering	 and
mapping	methods	 and	would	 increase	 efficiency.	 First	 of	 all	we	will	 look	 into	 the	 core
concepts	 of	Stream	API	 and	 then	we	will	 go	 through	 some	examples	 for	 understanding
most	commonly	used	methods.

Collections	and	Streams-

A	collection	 is	 an	 in-memory	data	 structure	 to	 hold	 values	 and	before	we	 start
using	collection,	all	 the	values	should	have	been	populated.	Whereas	a	Stream	 is	a	data
structure	that	is	computed	on-demand.

Stream	doesn’t	store	data,	it	operates	on	the	source	data	structure	(collection	and
array)	and	produce	pipelined	data	that	we	can	use	and	perform	specific	operations.	Such	as
we	can	create	a	stream	from	the	list	and	filter	it	based	on	a	condition.

Stream	 operations	 use	 functional	 interfaces,	 that	 makes	 it	 a	 very	 good	 fit	 for
functional	programming	using	lambda	expressions.	As	you	can	see	in	the	above	example
that	using	lambda	expressions	make	our	code	readable	and	short.

Stream	internal	iteration	principle	helps	in	achieving	lazy-seeking	in	some	of	the
stream	 operations.	 For	 example	 filtering,	 mapping,	 or	 duplicate	 removal	 can	 be
implemented	lazily,	allowing	higher	performance	and	scope	for	optimization.

Streams	are	consumable,	 so	 there	 is	no	way	 to	create	a	 reference	 to	 stream	 for
future	 usage.	 Since	 the	 data	 is	 on-demand,	 it’s	 not	 possible	 to	 reuse	 the	 same	 stream
multiple	times.

Stream	support	sequential	as	well	as	parallel	processing,	parallel	processing	can
be	very	helpful	in	achieving	high	performance	for	large	collections.

All	 the	 Stream	 API	 interfaces	 and	 classes	 are	 in	 the	 java.util.stream	 package.
Since	 we	 can	 use	 primitive	 data	 types	 such	 as	 int,	 long	 in	 the	 collections	 using	 auto-
boxing	and	these	operations	could	take	a	lot	of	time,	there	are	specific	classes	for	these	–
	IntStream,	LongStream	and	DoubleStream.

Commonly	used	Functional	Interfaces	in	Stream-

Some	of	the	commonly	used	functional	interfaces	in	the	Stream	API	methods	are:

1.	Function	and	BiFunction:

Function	 represents	 a	 function	 that	 takes	 one	 type	 of	 argument	 and	 returns	 another
type	 of	 argument.	 Function	 is	 the	 generic	 form	where	 T	 is	 the	 type	 of	 the	 input	 to	 the
function	and	R	is	the	type	of	the	result	of	the	function.	For	handling	primitive	types,	there
are	specific	Function	interfaces-

ToIntFunction,	 ToLongFunction,	 ToDoubleFunction,	 ToIntBiFunction,

ToLongBiFunction,ToDoubleBiFunction,	 LongToIntFunction,	 LongToDoubleFunction,
IntToLongFunction,	IntToDoubleFunctionetc.

Some	of	the	Stream	methods	where	Function	or	it’s	primitive	specialization	is	used	are:

									<R>	Stream<R>	map(Function<?	super	T,	?	extends	R>	mapper)

									IntStream	mapToInt(ToIntFunction<?	super	T>	mapper)	–	similarly	for	long
and	double	returning	primitive	specific	stream.

									IntStream	flatMapToInt(Function<?	super	T,	?	extends	IntStream>	mapper)	–
similarly	for	long	and	double

									<A>	A[]	toArray(IntFunction<A[]>	generator)

									<U>	U	reduce(U	identity,	BiFunction<U,	?	super	T,	U>	accumulator,
BinaryOperator<U>	combiner)

2.	Predicate	and	BiPredicate:

It	represents	a	predicate	against	which	elements	of	the	stream	are	tested.	This	is	used
to	filter	elements	from	the	stream.	Just	like	Function,	there	are	primitive	specific	interfaces
for	int,	long	and	double.

Some	of	the	Stream	methods-	where	Predicate	or	BiPredicate	specializations	are	used	are:

Stream<T>	filter(Predicate<?	super	T>	predicate)
boolean	anyMatch(Predicate<?	super	T>	predicate)
boolean	allMatch(Predicate<?	super	T>	predicate)
boolean	noneMatch(Predicate<?	super	T>	predicate)

3.	Consumer	and	BiConsumer:

It	represents	an	operation	that	accepts	a	single	input	argument	and	returns	no	result.	It	can
be	 used	 to	 perform	 some	 action	 on	 all	 the	 elements	 of	 the	 stream.Some	 of	 the	 Stream
methods	where	Consumer,	BiConsumer	or	it’s	primitive	specialization	interfaces	are	used
are:

Stream<T>	peek(Consumer<?	super	T>	action)
void	forEach(Consumer<?	super	T>	action)
void	forEachOrdered(Consumer<?	super	T>	action)

4.	Supplier:	Supplier	represent	an	operation	through	which	we	can	generate	new	values	in
the	stream.	Some	of	the	methods	in	Stream	that	takes	Supplier	argument	are:

									public	static<T>	Stream<T>	generate(Supplier<T>	s)

	 	 	 	 	 	 	 	 	 <R>	 R	 collect(Supplier<R>	 supplier,BiConsumer<R,	 ?	 super	 T>
accumulator,BiConsumer<R,	R>	combiner)

java.util.Optional	-

Optional	is	a	container	object	which	may	or	may	not	contain	a	non-null	value.	If	a	value	is
present,isPresent()	 will	 return	 true	 and	 get()	 will	 return	 the	 value.	 Stream	 terminal

operations	return	Optional	object.	Some	of	these	methods	are:

	

Optional<T>	reduce(BinaryOperator<T>	accumulator)
Optional<T>	min(Comparator<?	super	T>	comparator)
Optional<T>	max(Comparator<?	super	T>	comparator)
Optional<T>	findFirst()
Optional<T>	findAny()

java.util.Spliterator-

For	 supporting	 parallel	 execution	 in	 Stream	 API,	 Spliterator	 interface	 is	 used.
Spliterator	trySplit	method	returns	a	new	Spliterator	that	manages	a	subset	of	the	elements
of	the	original	Spliterator.

Intermediate	and	Terminal	Operations-

Stream	 API	 operations	 that	 returns	 a	 new	 Stream	 are	 called	 intermediate
operations.	Most	of	 the	 times,	 these	operations	are	 lazy	in	nature,	so	 they	start
producing	new	stream	elements	and	send	 it	 to	 the	next	operation.	 Intermediate
operations	are	never	the	final	result	producing	operations.

Commonly	 used	 intermediate	 operations	 are	 filter	 and	 map.Stream	 API
operations	 that	 returns	 a	 result	 or	 produce	 a	 side	 effect.	 Once	 the	 terminal
method	 is	 called	 on	 a	 stream,	 it	 consumes	 the	 stream	 and	 after	 that	 we	 can’t
use	 stream.	 Terminal	 operations	 are	 eager	 in	 nature	 i.e	 they	 process	 all	 the
elements	in	the	stream	before	returning	the	result.

Commonly	 used	 terminal	 methods	 are	 forEach,	 toArray,	 min,	 max,	 findFirst,
anyMatch,	 allMatch	 etc.	 You	 can	 identify	 terminal	 methods	 from	 the	 return
type,	they	will	never	return	a	Stream.

Short	Circuiting	Operations-

An	 intermediate	 operation	 is	 called	 short	 circuiting,	 if	 it	 may	 produce	 finite
stream	 for	 an	 infinite	 stream.	 For	 example	 limit()	 and	 skip()	 are	 two	 short	 circuiting
intermediate	operations.

A	terminal	operation	 is	called	short	circuiting,	 if	 it	may	 terminate	 in	finite	 time
for	 infinite	stream.	For	example	anyMatch,	allMatch,	noneMatch,	 findFirst	and	 findAny
are	short	circuiting	terminal	operations.

Java	Stream	Examples-

I	have	covered	almost	all	the	important	parts	of	the	Java	Stream	API.	It’s	exciting	to	use
this	new	API	features	and	let’s	see	it	in	action	with	some	examples.

Creating	Streams-

There	are	several	ways	through	which	we	can	create	a	stream	from	array	and	collections.
Let’s	look	into	these	with	simple	examples.

1.	We	can	use	Stream.of()	to	create	a	stream	from	similar	type	of	data.	For	example,	we

can	create	Stream	of	integers	from	a	group	of	int	or	Integer	objects.

	

1 Stream<Integer>	stream	=	Stream.of(1,2,3,4);

	

2.	 We	 can	 use	 Stream.of()	 with	 an	 array	 of	 Objects	 to	 return	 the	 stream.	 Note	 that	 it
doesn’t	support	autoboxing,	so	we	can’t	pass	primitive	type	array.

	

1

2

3

4

5

Stream<Integer>	stream	=	Stream.of(new	Integer[]{1,2,3,4});

//works	fine

	

Stream<Integer>	stream1	=	Stream.of(new	int[]{1,2,3,4});

//Compile	time	error,	Type	mismatch:	cannot	convert	from	Stream<int[]>	to
Stream<Integer>

	

3.	 We	 can	 use	 Collection	 stream()	 to	 create	 sequential	 stream	 and	 parallelStream()	 to
create	parallel	stream.

	

1

2

3

4

5

6

List<Integer>	myList	=	new	ArrayList<>();

for(int	i=0;	i<100;	i++)	myList.add(i);									

//sequential	stream

Stream<Integer>	sequentialStream	=	myList.stream();									

//parallel	stream

Stream<Integer>	parallelStream	=	myList.parallelStream();

	

4.	We	can	use	Stream.generate()	and	Stream.iterate()	methods	to	create	Stream.

	

1

2

Stream<String>	stream1	=	Stream.generate(()	->	{return	“abc”;});

Stream<String>	stream2	=	Stream.iterate(“abc”,	(i)	->	i);

	

5.	Using	Arrays.stream()	and	String.chars()	methods.

	

1

2

LongStream	is	=	Arrays.stream(new	long[]{1,2,3,4});

IntStream	is2	=	“abc”.chars();

Converting	Stream	to	Collection	or	Array-

There	are	several	ways	through	which	we	can	get	a	Collection	or	Array	from	a	Stream.

1.	We	can	use	Stream	collect()	method	to	get	List,	Map	or	Set	from	stream.

	

1

2

3

4

5

6

Stream<Integer>	intStream	=	Stream.of(1,2,3,4);

List<Integer>	intList	=	intStream.collect(Collectors.toList());

System.out.println(intList);	//prints	[1,	2,	3,	4]

intStream	=	Stream.of(1,2,3,4);	//stream	is	closed,	so	we	need	to	create	it	again

Map<Integer,Integer>	intMap	=	intStream.collect(Collectors.toMap(i	->	i,	i	->	i+10));

System.out.println(intMap);	//prints	{1=11,	2=12,	3=13,	4=14}

2.	We	can	use	stream	toArray()	method	to	create	an	array	from	the	stream.

	

1

2

3

Stream<Integer>	intStream	=	Stream.of(1,2,3,4);

Integer[]	intArray	=	intStream.toArray(Integer[]::new);

System.out.println(Arrays.toString(intArray));	//prints	[1,	2,	3,	4]

Stream	Intermediate	Operations-	Let’s	look	into	commonly	used	Stream
intermediate	operations	example.

1.	 Stream	 filter()	 example:	 We	 can	 use	 filter()	 method	 to	 test	 stream	 elements	 for	 a
condition	and	generate	filtered	list.

	
	

1

2

3

4

	

5

6

List<Integer>	myList	=	new	ArrayList<>();

for(int	i=0;	i<100;	i++)	myList.add(i);

Stream<Integer>	sequentialStream	=	myList.stream();

Stream<Integer>	highNums	=	sequentialStream.filter(p	->	p	>	90);	//filter	numbers
greater	than	90

System.out.print(“High	Nums	greater	than	90=”);

highNums.forEach(p	->	System.out.print(p+”	“));

7 //prints	“High	Nums	greater	than	90=91	92	93	94	95	96	97	98	99	“

	

2.	Stream	map()	example:	We	can	use	map()	 to	apply	functions	to	an	stream.	Let’s	see
how	we	can	use	it	to	apply	upper	case	function	to	a	list	of	Strings.

	

1

2

3

4

5

Stream<String>	names	=	Stream.of(“aBc”,	“d”,	“ef”);

System.out.println(names.map(s	->	{

return	s.toUpperCase();

}).collect(Collectors.toList()));

//prints	[ABC,	D,	EF]

	

3.	Stream	sorted()	example:	We	can	use	sorted()	to	sort	the	stream	elements	by	passing
Comparator	argument.

	

1

2

3

4

5

6

7

Stream<String>	names2	=	Stream.of(“aBc”,	“d”,	“ef”,	“123456”);

List<String>	reverseSorted	=
names2.sorted(Comparator.reverseOrder()).collect(Collectors.toList());

System.out.println(reverseSorted);	//	[ef,	d,	aBc,	123456]

Stream<String>	names3	=	Stream.of(“aBc”,	“d”,	“ef”,	“123456”);

List<String>	naturalSorted	=	names3.sorted().collect(Collectors.toList());

System.out.println(naturalSorted);	//[123456,	aBc,	d,	ef]

	

4.	Stream	flatMap()	example:	We	can	use	flatMap()	to	create	a	stream	from	the	stream	of
list.	Let’s	see	a	simple	example	to	clear	this	doubt.

	

1

2

3

4

5

6

Stream<List<String>>	namesOriginalList	=	Stream.of(

Arrays.asList(“Pankaj”),

Arrays.asList(“David”,	“Lisa”),

Arrays.asList(“Amit”));

//flat	the	stream	from	List<String>	to	String	stream

Stream<String>	flatStream	=	namesOriginalList

7

8

.flatMap(strList	->	strList.stream());

flatStream.forEach(System.out::println);

Stream	Terminal	Operations-

Let’s	look	at	some	of	the	terminal	operations	example.

1.	Stream	reduce()	example:	We	can	use	reduce()	to	perform	a	reduction	on	the	elements
of	 the	 stream,	using	an	associative	accumulation	 function,	 and	 return	an	Optional.	Let’s
see	how	we	can	use	it	multiply	the	integers	in	a	stream.

1

2

3

Stream<Integer>	numbers	=	Stream.of(1,2,3,4,5);

Optional<Integer>	intOptional	=	numbers.reduce((i,j)	->	{return	i*j;});

if(intOptional.isPresent())	System.out.println(“Multiplication	=	“+intOptional.get());
//120

	

2.	Stream	count()	example:	We	can	use	 this	 terminal	operation	 to	count	 the	number	of
items	in	the	stream.

	

1

2

Stream<Integer>	numbers1	=	Stream.of(1,2,3,4,5);

System.out.println(“Number	of	elements	in	stream=”+numbers1.count());	//5

	

3.	Stream	forEach()	example:	This	can	be	used	for	iterating	over	the	stream.	We	can	use
this	in	place	of	iterator.	Let’s	see	how	to	use	it	for	printing	all	the	elements	of	the	stream.

1

2

Stream<Integer>	numbers2	=	Stream.of(1,2,3,4,5);

numbers2.forEach(i	->	System.out.print(i+”,”));	//1,2,3,4,5,

	

4.	Stream	match()	examples:	Let’s	 see	 some	of	 the	examples	 for	matching	methods	 in
Stream	API.

1

2

3

4

5

6

Stream<Integer>	numbers3	=	Stream.of(1,2,3,4,5);

System.out.println(“Stream	contains	4?	“+numbers3.anyMatch(i	->	i==4));

//Stream	contains	4?	true

Stream<Integer>	numbers4	=	Stream.of(1,2,3,4,5);

System.out.println(“Stream	contains	all	elements	less	than	10?	“+numbers4.allMatch(i	->
i<10));

7

8

9

10

//Stream	contains	all	elements	less	than	10?	true

Stream<Integer>	numbers5	=	Stream.of(1,2,3,4,5);

System.out.println(“Stream	doesn’t	contain	10?	“+numbers5.noneMatch(i	->	i==10));

//Stream	doesn’t	contain	10?	true

	

5.	Stream	findFirst()	example:	This	is	a	short	circuiting	terminal	operation,	let’s	see	how
we	can	use	it	to	find	the	first	string	from	a	stream	starting	with	D.

1

2

3

4

5

Stream<String>	names4	=	Stream.of(“Pankaj”,“Amit”,“David”,	“Lisa”);

Optional<String>	firstNameWithD	=	names4.filter(i	->	i.startsWith(“D”)).findFirst();

if(firstNameWithD.isPresent()){

System.out.println(“First	Name	starting	with	D=”+firstNameWithD.get());	//David

}

Java	Stream	API	Limitations	-

Stream	 API	 brings	 a	 lot	 of	 new	 stuffs	 to	 work	 with	 list	 and	 arrays,	 but	 it	 has	 some
limitations	too.

1.	Stateless	lambda	expressions:	If	you	are	using	parallel	stream	and	lambda	expressions
are	stateful,	it	can	result	in	random	responses.	Let’s	see	it	with	a	simple	program.

StatefulParallelStream.java

1

2

3

4

5

6

7

8

9

10

11

12

13

package	com.journaldev.java8.stream;

import	java.util.ArrayList;

import	java.util.Arrays;

import	java.util.List;

import	java.util.stream.Stream;

public	class	StatefulParallelStream	{

public	static	void	main(String[]	args)	{

List<Integer>	ss	=	Arrays.asList(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);

List<Integer>	result	=	new	ArrayList<Integer>();								

Stream<Integer>	stream	=	ss.parallelStream();									

stream.map(s	->	{

synchronized	(result)	{

if	(result.size()	<	10)	{

14

15

16

17

18

19

20

result.add(s);

}

}

return	s;

}).forEach(e	->	{});

System.out.println(result);		

}				}

	

If	we	 run	 above	 program,	 you	will	 get	 different	 results	 because	 it	 depends	 on	 the	way
stream	is	getting	iterated	and	we	don’t	have	any	order	defined	for	parallel	processing.	If
we	use	sequential	stream,	then	this	problem	will	not	arise.

2.	Once	a	Stream	is	consumed,	it	can’t	be	used	later	on.	As	you	can	see	in	above	examples
that	every	time	I	am	creating	a	stream.

3.	There	are	a	lot	of	methods	in	Stream	API	and	the	most	confusing	part	is	the	overloaded
methods.	It	makes	the	learning	curve	time	taking.

That’s	all	for	Stream	API	in	Java.	I	am	looking	forward	to	use	this	feature	and	make	the
code	readable	with	better	performance	through	parallel	processing.

5.	Java	Time	API	-

It	has	always	been	hard	to	work	with	Date,	Time	and	Time	Zones	in	java.	There
was	 no	 standard	 approach	 or	 API	 in	 java	 for	 date	 and	 time	 in	 Java.	 One	 of	 the	 nice
addition	in	Java	8	is	the	java.time	package	that	will	streamline	the	process	of	working	with
time	in	java.

Just	by	looking	at	Java	Time	API	packages,	I	can	sense	that	it	will	be	very	easy	to
use.	 It	 has	 some	 sub-packages	 java.time.format	 that	 provides	 classes	 to	 print	 and	 parse
dates	and	times	and	java.time.zoneprovides	support	for	time-zones	and	their	rules.

The	new	Time	API	prefers	enums	over	integer	constants	for	months	and	days	of
the	week.	One	of	the	useful	class	is	DateTimeFormatter	for	converting	datetime	objects	to
strings.

6.	Collection	API	improvements	-

We	have	 already	 seen	 forEach()	method	and	Stream	API	 for	 collections.	Some
new	methods	added	in	Collection	API	are:

									Iterator	default	method	for-	EachRemaining(Consumer	action)	to	perform	the
given	action	for	each	remaining	element	until	all	elements	have	been	processed
or	the	action	throws	an	exception.

	 	 	 	 	 	 	 	 	Collection	default	method-	 removeIf(Predicate	 filter)	 to	 remove	all	of	 the
elements	of	this	collection	that	satisfy	the	given	predicate.

	 	 	 	 	 	 	 	 	Collection	 spliterator()	method-	 returning	Spliterator	 instance	 that	 can	be

used	to	traverse	elements	sequentially	or	parallel.

									Map	replaceAll(),	compute(),	merge()	methods.

7.	Concurrency	API	improvements	-

Some	important	concurrent	API	enhancements	are:

a)	 	 	 	 	 	ConcurrentHashMap	compute(),	 forEach(),	 forEachEntry(),	 forEachKey(),
forEachValue(),	merge(),	reduce()	and	search()	methods.

b)	 	 	 	 	 	CompletableFuture	that	may	be	explicitly	completed	(setting	its	value	and
status).

c)	 	 	 	 	 	 	Executors	newWorkStealingPool()	method	to	create	a	work-stealing	thread
pool	using	all	available	processors	as	its	target	parallelism	level.

8.	Java	IO	improvements	-

Some	IO	improvements	known	to	me	are:

d)	 	 	 	 	 	 	Files.list(Path	dir)	 that	 returns	a	 lazily	populated	Stream,	 the	elements	of
which	are	the	entries	in	the	directory.

e)							Files.lines(Path	path)	that	reads	all	lines	from	a	file	as	a	Stream.

f)	 	 	 	 	 	 Files.find()	 that	 returns	 a	 Stream	 that	 is	 lazily	 populated	 with	 Path	 by
searching	for	files	in	a	file	tree	rooted	at	a	given	starting	file.

g)							BufferedReader.lines()	that	return	a	Stream,	the	elements	of	which	are	lines
read	from	this	BufferedReader.

9.	Miscellaneous	Core	API	improvements	-

Some	misc	API	improvements	that	might	come	handy	are:

h)						ThreadLocal	static	method	withInitial(Supplier	supplier)	to	create	instance
easily.

i)	 	 	 	 	 	 	Comparator	 interface	has	been	 extended	with	 a	 lot	 of	 default	 and	 static
methods	for	natural	ordering,	reverse	order	etc.

j)	 	 	 	 	 	 	min(),	 max()	 and	 sum()	 methods	 in	 Integer,	 Long	 and	 Double	 wrapper
classes.

k)						logicalAnd(),	logicalOr()	and	logicalXor()	methods	in	Boolean	class.

l)	 	 	 	 	 	 	ZipFile.stream()	method	to	get	an	ordered	Stream	over	the	ZIP	file	entries.
Entries	appear	in	the	Stream	in	the	order	they	appear	in	the	central	directory	of
the	ZIP	file.

m)						Several	utility	methods	in	Math	class.

That’s	all	for	major	improvements	in	Java	8.

	

Both	Physical	Paperback	and	Digital	Editions	Are	Available	on	LuLu.com		&

Amazon.com	(Paperback	Editions)	
Google	Books	&	Google	Play	Book	Stores	(PDF)

Order	today	and	Get	a	Discounted	Copy.
Join	me	on	Facebook-	https://www.facebook.com/harry.novelist

https://www.facebook.com/CaptainHarrychoudhary?ref=hl

	

	
CHAPTER
∞	24	∞

	
Key	Features	that	Make	Java

More	Secure	than	Other	Languages.
	

Today,	Java	is	driving	more	than	$100	billion	of	business	annually.	If	we	take	a	look	at	the
enterprise	 side,	 more	 than	 $2.2	 billion	 are	 being	 spent	 by	 the	 enterprises	 in	 Java
application	server.

There	is	no	denying	that	Java	is	used	extensively	for	developing	Java	enterprise
applications	 reason	being	Security.	 Java	brings	 some	of	 the	most	 fascinating	 features	or
benefits	that	are	impossible	to	find	in	any	other	programming	languages	or	platforms.

https://www.facebook.com/harry.novelist
https://www.facebook.com/CaptainHarrychoudhary?ref=hl

Security	 is	an	 important	aspect	and	Java’s	security	model	 is	one	of	 the	key	architectural
features	 that	make	 it	most	 trustful	 choice	when	 it	 comes	 to	 developing	 enterprise-level
applications.	Security	becomes	critical	when	software	is	downloaded	across	network	and
executed	locally,	and	Java	easily	mitigates	the	security	vulnerabilities	associated	with	the
projects	 or	 applications.	 Don’t	 believe	 this?	 Have	 a	 look	 at	 a	 few	 arguments	 (security
measures/features)	that	showcase	how	secure	Java	platform	is.

Java’s	security	model

Java’s	 security	 model	 is	 intended	 to	 help	 and	 protect	 users	 from	 hostile	 programs
downloaded	from	some	un-trusted	resource	within	a	network	through	“sandbox”.	It	allows
all	the	Java	programs	to	run	inside	the	sandbox	only	and	prevents	many	activities	from	un-
trusted	resources	including	reading	or	writing	to	the	local	disk,	creating	any	new	process
or	even	loading	any	new	dynamic	library	while	calling	a	native	method.

No	use	of	pointers

C/C++	language	uses	pointers,	which	may	cause	unauthorized	access	 to	memory	blocks
when	other	programs	get	 the	pointer	values.	Unlike	conventional	C/C++	 language,	 Java
never	uses	any	kind	of	pointers.	Java	has	its	internal	mechanism	for	memory	management.
It	only	gives	access	to	the	data	to	the	program	if	has	appropriate	verified	authorization.

Exception	handling	concept

The	 concept	 of	 exception	 handling	 enables	 Java	 to	 capture	 a	 series	 of	 errors	 that	 helps
developers	to	get	rid	of	risk	of	crashing	the	system.

Defined	order	execution

All	the	primitives	are	defined	with	a	predefined	size	and	all	the	operations	are	defined	in	a
specific	 order	 of	 execution.	 Therefore,	 the	 code	 executed	 in	 different	 Java	 Virtual

Machines	won’t	have		a	different	order	of	execution.

Byte	code	is	another	thing	that	makes	Java	more	secure

Every	time	when	a	user	compiles	the	Java	program,	the	Java	compiler	creates	a	class	file
with	Bytecode,	which	are	tested	by	the	JVM	at	the	time	of	program	execution	for	viruses
and	other	malicious	files.

Tested	code	re-usability

The	 Java	 object	 encapsulation	 provides	 support	 for	 the	 concept	 of	 “programming	 by
contract”.	This	allows	the	developers	to	re-use	the	code	that	has	already	been	tested	while
developing	Java	enterprise	applications.

Access	Control	functionality

Java’s	 access-control	 functionality	 on	 variables	 and	methods	within	 the	 objects	 provide
secure	program	by	preventing	access	to	the	critical	objects	from	the	un-trusted	code.

Protection	from	security	attacks

It	allows	developers	to	declare	classes	or	methods	as	FINAL.	We	all	know	that	any	class
or	method	declared	as	 final	can’t	be	overridden,	which	helps	developers	 to	protect	code
from	security	attacks	like	creating	a	subclass	and	replacing	it	with	the	original	class	and
override	methods.

Garbage	collection	mechanism

Garbage	collection	mechanism	aids	more	 to	 the	security	measures	of	Java.	 It	provides	a
transparent	storage	allocation	and	recovering	unutilized	memory	rather	than	de-allocating
memory	 through	 manual	 action.	 It	 will	 help	 developers	 to	 ensure	 the	 integrity	 of	 the
program	 during	 its	 execution	 and	 avoids	 any	 JVM	 crash	 due	 to	 incorrect	 freeing	 of
memory.

Type-safe	reference	casting	in	JVM

Whenever	 you	 use	 an	 object	 reference,	 the	 JVM	 monitors	 you.	 If	 you	 try	 to	 cast	 a
reference	to	a	different	type,	it	will	make	the	cast	invalid.	

Apart	 from	all	 these,	 structured	error	handling	contributes	a	 lot	 to	 the	security	model	of
Java	 by	 helping	 to	 enhance	 the	 robustness	 of	 the	 programs.	 The	 above	 arguments
definitely	prove	 that	 the	projects	developed	 in	 Java	are	more	 secure	as	compared	 to	 the
other	programming	language.	However,	it	is	the	responsibility	of	the	developers	to	follow
some	best	practices	while	developing	enterprise-level	Java	applications.

	

