STUDENT TEXT
E3ABR30534E 000
: KDA 3032

Technical Training

'ELECTRONIC COMPUTER AND SWITCHING SYSTEMS SPECIALIST

COMPUTER UNITS AND COM-TRAN 10 .

 JUNE 1981

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group
Keesler Air Force Base, Mississippi

— Designed For ATC Course Use —

" Keesler 1-3354

DO NOT USE ON THE JoOB

CONTENTS
TITLE - PAGE

Ghapter I - Computer Units and Programming....cecceseeeesssssscccsesosasssssanssnnss
Computer Units and Data FlOW..ceueeoeeetesoossosooscsossasonnsssesssesnsassanss
DAL FLOW. etesensrnsonnsosssssnsonsansssssonsosscsosonssssenssnssoscnssaans
Data FlOW SUMMATY .. e eueeeaeseonnasasosasaassceeosassassssansassoncansssans
Review QUeStions L1=l..cceeeeesoseecracssesssssoncsassaosasssssssscsnasassosnsas
MemOTY UNitSeeeeeeoeseoosssooesosseesssnsoscessssosesassssnasasenssanassesssnsassas
MOAE OFf ACCESS .ttt eenntonesasearoasennsanesassseesanensosocenassansnnosessd
ACCESS TimMe.usu oo orontosanssosesssssossnsesossassseesnnsnsennssansasnsonas
CaPACIE Yt teeeooesenoesnnssesesssssssosssssasnessessssssssssassessasssnnansas
PeImMANENCE .t e vt eeeseeotosesnsssesssosssoscessesosasssossassssssasssssasssssas
Volatilityeeeeeeseeeeeeoanaesenesassssesssnsseacsnssnsssossassassnsnnsssanas
StOrage DeVIiCES.veeeereorsssoscessssssssnsesssssossssssssssssssossanssssasssssas
Magnetic Storage SyStemMS..ceeeeteesseersseseesssssossssessseaososnsasssssnssnnsss
Hysteresis LOOD..seeseoeeseseeersosssossesssssossssoassasssssssssssonesnses
Ferrite Core MemOT Y. eeeeeeesenusoastssossssesonssssnoasossssssassossssssssans
Magnetic DIrum MemMOTy ... ueveoeosseseasooessssesasssessssssosensssssssssnses 22
Magnetic Tape MemOT Y. coseeeosessssasssoscsssisssssasassosssssanssesancencas 25
REVIEW QUESEIONS 124 st envaeeeenonooaesonoesosesoassesonasssnssnssssnssnenes 28
Terminal EqUIpment. ..o eeeeeseeesesceoosoceneassssosassssoscssssssossssanssssnns 28,
Card REAAETr..vueeseeenersoeseassessssonssssssisasesensssassssasessscnsasssss 29
Card PUNCR. v e eteeevtennnranenseaenssesossoenesnsesnsonosasesnsssenassenns 30
Line Printer..oeeseeeeesssssosscasessassssssssasssassassssscnssssasssssses 30
Tape Drive Undlt.ceieieereeeeeoetoceasonossosesesssasassscsnascsssasosanens - 32
FleROWrite e e eeteseeessoasosenssoossasassssssssassonsassssssnscshabosassas 34
Display EqUIipMENnt.s cuoeeuseosacasosaseosserosasssssssosssssssnsasssssesssns 34
Review QUeStions 1=3. iuerietesssasscssesosssassessesasessccsasssassaesoanssesanns 40
Computer Operation and Familiarization...eeeceseosesesessasssssansasonsosssans 41
Individualism of the COM-TRAN TEN COMPULEY SYSteM..veeserenveosansasaannonanns 43
Operating the CompPULeTeeeetseetteeseseiisessassssnenssossssssssasssssessassans 45
Controls and SwitcChesS...eieieieirieerententoneenssesnerssnsossonsonosnsons 45
Computer Registers and Display Panel....c.seeeeceesesasstssasssscsssanssns 49
Hexadecimal ReVIeW. cveeeeeeetesessooorossasscsosssssasosssosssssssssassansons 52
Manual InpUt ProCEAUIE. st et e asesenesossossossaetossaesasosesasannoeasasns 58
Manual Output ProCedUIE...ceeseeeceescssoanssssonssssssssssssssasssssnssans 60"
Review QUeStions 1=d....ieiiiieieneeeneasaenoneensensssoncasossansasssasansass 62
PrOgrammMiTige s oo eeeessosesassssassesesssassssanosssssosssssnssssssessssnsasssss 64
Type Of InStrUCtIiON. e e eettiosesvessoseassosssssosscsssosssasssnsassnnnnns 65
Instruction RepPertoire. e iereeeeseesoeerssessesseasesscesseconssscscsasonns 65
Instruction FOrmat.eeeeeeeosceseavecoaseestossosnsssonsenssassanesasassaasans 72
Addressing Upper Memory..eceeeeeeernosonasossocnsosooersossanesnsassaasans 72

OWNNNOOOODUUS~EWWN R

IndeXIing e eeeesesosostesonssosseassssassesossssssossssesssssssnsossesnssnssnasass 72
NUMbET RePIESENTALLON. ¢ s oo vesessoarooososssnsssassonssssssanssoscsnasnans 73
InStrUCEIONS cvvseessesssessasssssassssinnssssseassssnsssssssssssssssasssssas 73
Review QUeStIons 1=5. .. ceeeresesessoecsosssasssssensssssssssosssassssssssssenss 80
Review QUESEIONS L1=6.useerecsisoassooessssesassessssssossssssassasassosssassasssio 85

Review QUeSEIOonS 1=7. v ieceressesrsosesseossossessssnsssosssassessssoassssssssssns 89
Review QUestions L1=8...ieeeirstsseserocaososesessssosnsssssssssssssassessassessasse 94
Review QUestions 1=9...eviereteresvsossasnsssasnsssssnnsessssssssanssssssssasnsaes 101
Procedures for Writing Programs....ceceiecsedososstenssonoeseccastsnsassensnss 104
Programming ProblemM..iceeeesevectseteesessasssossosssssasossssasssssosssnssansnns 107
Alphabetical Summary of InNStrUCtioNS....ceeeeecsecccossesosssosasesonsaasossess. 109
Numerical Summary of INStrUCLIiONS..ieeieeeescesossoccsssssssnssssasssssossansocs 110
COMPULEY TeXMS GLOSSAT Y+ vt eueseeeasennresoasasassssssnssssesssssasssssassansans 112

Supersedes KDA-3032, June 1977 : -

Chapter II -~ Computer Units Logic AnalysSis...ceeeetesessesesssssssscsnsssanassnane
Special CoOmPONENtS.:eeescsosessaassocesnsossssssssosessosassossssassssssssssassssanss
Phantom OR—GALE. .. cvseseesesssssessassassasnsssssssscnossssssssssssasssnnsas
NOR~Gate LatCheeeeeeeeeeeoeeeeeesssossoanssassssscssossssasssssssssssssssas

~ D=Type Flip=FlOoP:eeeeurserseeseneeonsocnesuasisossoesssssocssssssasssassssasss
Single Shot (SN74121) .cieuesaeesoacensossesossasosossasonsnssesnsaseasssonnes
PoSitive AND=Driver.cuiceeteeeensesesaneessnssssnessesasossssnasssonsanasns
Special Component Summary...
Review QUeSEIions 2=l...cuueetostonatosancosasasassoeasasasencanannannansesnenns
Computer UnditS.ceeeeeeoeeeeeasesnssscoscsessnsssscsnsnsssnsanssosssossssnssssnnsncs

Key to Logic DiagramS..cceeeeeeeeeeeesceasssesssesnsoanssssasnsssssssssonse

Review QUeStIionS 2=2..ivietesntssoncessssesossosoasnssssossesssssssassnssnnnaa
CloCK: et ertennenoedaionesosnoaseausssesassasssnocessassosssssssasnssanssns
Review QUestions 2-3...iieireetteceectenoeececcscaaciossnsesasssasssasascnassas

D REBISEeT et cvereerssonsasocsesossoscesseasoscssisesosesasnsnssssasssnsssanons

Review QUESLIOoNS 2=f..ceeeeesetesesessassssessoasssssstasescssssnassnsossanssus

Input RegISter.cuieeeseeeeesvoseeseesesnsecncssncsssnsnsncnsnsansannanssos

Review QUEStIONS 2=5..ceeteeeeeeecseotoceensnscsssaiosnsssssesnsasosnssasanssns
B RE IS et aeeineteeesesioesonnosaaessesseanssansassansossssocnsoseasnns
REVIEW QUESTIONS 2764 ¢ e e e evaeeeseeesoossacsecsesoasoessonsnsesseasnssasnsanons
Memory Module...
REVIEW QUESEIONS 2m7 . et et nnenreeeseanaeeeassosesasassneossneeessnneosessannnns
M- REBIS e i eseseseesicssesssessaseesossesscssssssassssssssssssssssnnsonsas
Review Questions 2-8...eieeriretaetttieoceosntnesnsecossosesencssassasossnsnsns
X RegIS e e caevreeacrnenoisoensssssssooscssssssssssssssasssasasssnsssncsnnns
Review Questions 2-0...iuciievieereoreenceocneontocasesassnstensasessnsnnasasas

P RO LSO e ¢ e/t veevesaaeeatoeeoeisesnensnennsnnnonenssssnceiosssssssnsonnns

Review QUeStions .2=10...ceeesteeeesssecsasooesacsssesessessssonssssasasosscansas

A-Register (ACCUMULALOT) .t oeuueneseresoioasnnnasansnsnsscssensessananesnss
Review QUEStIions 2=1l.uiieeoesesssossssnassssossssasssesssassssssasassssansssse
ALU MOQULE. ¢4 e vee st osaaneesosnensessesioannesssnsasnssesaneesnsansassasnss
Review QUeSLIONS 2-12...seeuuuneeeeecssnsososnsesseeosnssssosssonscnasineeenns
Q- RegiSter . it ittt tereerecoeeionenseosesssnessamossssessssssassasssssonssasos
Review QUESLIONS 2=13. . ieereeroeencesensosassssssesssssnsssscessassiaassssassss
(O Y = = o=

Review QUeSEIONS 2=1ld...vueieteereessoocacoceescoacenssacoaceensenscsssananans

S RE IS e et ererocsssnsessescassassscnnssnsssssssoassassssssssssscanansos
o
Review QUESTEIONS 2=15.cueieensecensoseeeionnesosososnssosossnsscsasasasnsanans

Program Instruction Logic AnalysSiS.i.ieeeieseerseneseosrionsessnassssocnascsnses
Logic Timing Supplement....sseieerseceeetoressseiseesaonsssnconscntsassansns
Acquisition Phase and DPA PUlSES...veicrescesiiiocsosessccsaseissansoncanes

Review Questions 2-16...
EXECULION PhaS@ . e e eeeneaneneeeeaeenonneesessessasaseesassessenanssesesnes

Review Questions 2—17...

Chapter III —-Computer System Maintenance;.......;......J........,..............{;
Computer Diagnostic ProgramsS..cecesecseeccseessssossstessscssssssssessesonsonss
Purpose of Diagnostic ProgramS..iceceecesecsesoessscssssssosssssssnsssasases

Basic ReqUirementS.ceeeeeiescesesscsesescsscsosssnssanscssosasessoscsssasscass

Review QUEeSEIOons 3=l....ieteesetecosassososnsasaasiosssnsessssanassssansansensnse

Computer System TroublesShOOting. .eveteeiveneeaceesneesonsesssesscanssisnasnnss
Troubleshooting TeChNiqUeS:.setesieseteoesossnssossosanesssesssssosassacss

Troubleshooting EXAmple OME..eueeseeesssssesossasossssssssuossnsancsassions.

- Review QUESEIONS 3=2..iiieieretieeseerosasoncacnsonssssacsssscaseionsassannense
Troubleshooting Example TwWo.eeieeoeooseteeesassososssscassssnossessoaansons

di

PAGE

125
125 -
125
126

128
129
130
132
134
137
137
138
138 ~
144

" 144

148
148
150
150

© 152

153
154
155
158

- 158 |

160
160
162
162
164
164
166
166 .
167
168
170.
170
172
172
173
173
176
178
226

230
230
230,

1232
233
235
235
237
249
252

PAGE

Review Questions R TN 264
Chapter REVIEW.:..ceeeeeteooesersssseasstscsossansossssssscsasnsssssssscsnannsnse 266
Signal Name GloSSaTy.eesseeseotsoosancassnssasssacessensssossssasssssnssosnsons 269

iii

CHAPTER 1

COMPUTER UNITS AND PROGRAMMING

In past blocks you learned numbering systems and computer circuits. These are all
put together to look at the computer as a whole. You will not be separating the com-
puter into the circuits, but into functional parts. You will learn how to operate the
COM-TRAN TEN trainer and how to make the computer do what you want. You will learm to
program the COM-TRAN TEN. A computer can only do what it is told. Now start with the
basic computer block diagram.

COMPUTER UNITS AND DATA FLOW

Figure 1-1 is a block diagram of a basic computer. It is made up of 5 blocks. Each
block has a distinct function. All digital computers are made of these five basic
blocks. Different computers can use different combinations of computer circuits to do
each of these five functions. Refer to figure 1-1.

© INPUT - The Input Unit of a computer accepts information in various forms and con-
verts it to a form which can be used by other units of the computer.

. @ OUTPUT - The Output Unit accepts information from the computer and sends it to the
output devices. These outputs can be in a form readable by man or in a form for
the computer to use later.

@ MEMORY - The Memory Unit stores information until it is needed by the computer.
Memory locations are addressed so the machine can find the right information when
it needs it, much like you would use a house address to find the right house. The
most commonly used memory is magnetic core. It is a fast memory and will retain -
any information that it has in case of a power failure.

INPUT DEVICES

A

Card Reader INPUT MEMORY

Teletypewriter . A
Paper Tape Reader
Magnetic Tape Reader
Magnetic Drum
Display Input Keyboards CONTROL
Optical Reader
Disk

OUTPUT DEVICES ol *
< OUTPUT ARITHMETIC

Card Punch l———

Line Printer

Teletypewriter

Paper Punch) j

Magnetic Tape RDA26-418

Magnetic Drum

CRT Displays

Plotter

~Disk

Figure 1-1
1

@ ARITHMETIC - Arithmetic Unit performs all arithmetic and logical operations.
Arithmetic units usually do nothing more than add and shift. To multiply, it does
a series of adds and shifts. v

® CONTROL - The Control Unit generates all the signals at the proper time to do what
needs to be done. It controls all the other computer units.
Data Flow

Before tracing the flow of data among the five units of a computer, it is necessary
to understand the definition of the following terms:

1. Computer Word - A group of binary bits, handled by the computer as a single
unit. Commonly referred to as the content of a memory
~leeation-.

2. Machine Cycle — The length of time which is required to acquire an instruc-

tion from memory, decode the instruction and execute it.

3. Program‘Time -~ (Acquisition Time) The portion of a machine cycle when the
instruction is read from memory, decoded, and prepared for
/f g/<*»ﬂ. execution,

4, Operate Time - (Execution Time) The portion of a machine cycle when the
instruction is actually performed.

5. Instruction Word - A computer word having two parts; instruction code (Op-Code)
and data address (Operand). The Op-Code tells the machine
what to do and the Operand tells the machine where and with
what data to do it.

6. Data Word - A computer word containing information or arithmetic value to
be used in computations.

7. Program - A series of instruction words in logical order to solve a
given problem.

With an understanding of these terms we can now discuss computer operation and data
flow. Computer words, both instruction words and data words, are entered into the com—
puter's Input unit by some external device. The Input unit puts these words into
binary or some other - numbering system format that is recognizable by the computer. The
Input unit then transfers these computer words to the Memory unit for storage. The
instruction words would be stored in logical order to form a program that would control
the operations to be performed.

The Memory unit, now containing all instructions and data, can be used to output
arithmetic and logical operations to the Arithmetic unit and receive the results of
those operations from the Arithmetic unit. Those results can then be sent to the Output
unit where they are put into a format recognized by the external output device.

Of course, all operations of the machine and the sequence of all data transfers are
controlled by the Control unit. The instruction words are transferred to the Control
unit from the Memory unit. The Control unit decodes these instructions into commands.
The Control unit, operating under a timed sequence, causes a series of events to execute
any command that it decodes.

t

Data Flow Summary

Information comes into the computer through the Input unit. This Input is controlled
by the Control unit. The information is put into Memory. The Control unit works with
the Memory unit and the Arithmetic unit to solve whatever problem you have told it to do.
When the computer gets the answer, it will put it in Memory. Then, the Control unit will
control the output of the answer through the Output unit. All of this is controlled by
you up to a point. You ‘tell the computer where to get information and what to do with
it. You will learn how to do this later in the block.

REVIEW QUESTIONS 1-1

BASIC DIGITAL COMPUTER BLOCK DIAGRAM

Objective

Given a block diagram of a basic computer and a list of units and functions, label
the units, match the functions to the units and trace data flow between the units.

—_— A > B _—
] 13
<*+—1 D g | E
RDA26-419
Figure 1-2

1. Analyze the basic computer block diagram (figure 1-2) and- list the name of each
unit to correspond with the label in the appropriate block.

a. i b.

c. : d.

e.

2. Using the following list, match the basic computer unit with its applicable
functional descriptions.

a. Input b. Output c. Memory
d. Control e. Arithmetic
Stores information until it is needed.
Performs all arithmetic operations.

Accepts information in various forms and converts it to
a form used by the computer.

Generates signals needed to do the work.
Performs logical operations;

Accepts information from the computer and sends
it to an output device.

Works with all other parts of the computer.

3. Draw all the necessary lines to properly connect the units below.

Input Memory
Control
Output Arithmetic
4. Give the function of each of the following: RDA26-420
Input-
Outpﬁt-
Control-
Arithmetic-
Memory-

MEMORY UNITS

The difference between a memory unit and a memory (or storage) device is an impor-
tant distinction. Any device which is capable of holding binary information for a period
of time may be correctly called a storage device. A memory unit, on the other hand, is
a complete unit composed of many storage devices and the associated circuitry which con-
trols and operates the unit. A memory unit may be used as the memory element (central
memory) of a computer system or as an auxiliary storage unit for either the input ele-
ment or output element (or both elements). The most common memory devices used are

- magnetic cores, magnetic tapes, magnetic disk, magnetic drum, punched cards, and punched

tape.

Only the central memory is used for all operations going on inside the computer. If
additional data, or even a specialized program, is required, then access is made to large
blocks of data in an auxiliary memory are transferred to main memory in a single opera-
tion. If main memory fills up its available storage space with intermediate results or
output data, then a large block of data may be sent to auxiliary memory from the main
memory. Such transfers between the central memory and an auxiliary memory are called
I/0 operations.

I1/0 operations are started by the computer through program contrul. After starting
the transfer operation, some computers continue with their original task while the I/0
operation continues. I/0 transfers may be from the input element to the memory element,

from the memory element to the output element, or from the central memory to an auxiliary
memory which serves both the input and output elements.

To understand the reasons why some storage units are used as central memory and other
storage units are used as auxiliary, you must be able to define and use the following
terms as they apply to memories: mode of access, access time, capacity, permanence,
volatility, and computer word.

Mode of Access

Any memory unit that stores more than one item of information must have some system
to identify and select a particular item for use by some other part of the computer.
Normally, each separate item of data is stored in a separate '"location" in the memory
unit, and each location has a specific address. It is common practice to number storage
locations serially in octal notation. The method used to gain access to a specific loca-
tion in a storage unit (central or auxiliary) is referred to as "mode of access.'" There
are two major modes of access: random and sequential.

RANDOM ACCESS. A random access memory system is one in which any location in the
storage unit is equally easy to use; it takes the same amount of time to address any
specific location in memory and use the data stored there. Any addressing scheme which
is independent of previous addresses or that can address locations out of sequence is
usually a random access system. Random access memories provide fast access to any par—
ticular item of information stored in them, and they normally have a fixed access time.

SEQUENTIAL: ACCESS. A sequential access memory system is one in which access to
memory locations occurs in series. The system must check all addresses between the
present memory location and the desired location before the desired location can be used.
In a sequential address system, the access time will vary depending on how many loca-
tions must be '"passed through" before the needed location is found. Sequential access
memories are further broken down into two groups: cyclic and progressive.

Sequential Cyclic. The sequential cyclic mode is a mode of access in which each
location occurs in series and is available at a given fixed interval. Sequential cyclic
memories normally have some rotating storage device so that the sequence of addresses
and time until the needed location reappears is permanent.

Sequential Progressive. The sequential progressive mode is a mode of access in which
each location occurs in series, but the system may move from location to location by the
shortest route. A sequential progressive system does not move constantly in one direc-
tion as does the sequential cyclic mode; rather, it may "search" in either direction to
locate the desired memory location. The time required to find a given address in a
sequential progressive system varies depending on the distance from the starting point
to the needed address.

Access Time égcigf

Access time is measured from the time information is requested to the time that
information becomes available. It is the time which determines the speed of the memory
system. In most applicatioms, it is desirable to have as short an access time as pos-
sible. The central memory of a computer will always have a short access time; however,
any auxiliary memories used in the system may have a relatively longer access time if
they provide some other desirable feature.

In random access memory systems, the access time will be the same no matter what

address (location) is selected. Sequential access system, however, will have different
access times for each piece of information requested. " In sequential access systems the

5

access time is given in maximum, minimum, and average times. For example, in a sequen-
tial cyclic mode, if the desired location is close to the starting point, the access time
will be very short; if the desired location was passed just before the request was made,
then the system must wait almost a complete cycle before the information is available.
The average access time for a sequent1a1 system is the mean time between the minimum

and maximum access times. .

Capacity

The capacity of storage may be given in terms of binary bits, characters, or com-
puter words that can be stored. Storage devices of small capacity, such as flip-flop
registers, are usually rated according to their bit capacity. When describing the
storage capacity of large devices, such as magnetic tapes or drums, the "word" capacity
rather than "bit" capacity is usually given. In such cases the number of bits in a word
must be stated if a useful comparison is to be made between different storage units.

Access time and capacity are the two most important characteristics of any memory
system. They are determined by the type of storage device used. No one memory unit, in
current production, combines the desired capability of large capacity and short access
time. 1In fact, it will be found that most large capacity storage units have a long access
time; most low capacity units have a fast access time. Therefore, a combination of stor-
age units is usually used in a computer system.

Permanence

Permanence is the characteristic which determines whether the data in a memory unit
may be erased. A magnetic memory is erasable since any selected '"word" can be changed
or altered without physically changing the memory unit or any of its parts. Some
storage devices, however, are not erasable; that is, the stored data cannot be changed
without physically replacing the storage device. For example, to alter the information
stored in punched cards, new cards must be punched and used as replacements for the old
cards. '

Volatility

If information is lost when power is removed from a storage unit, the memory system
is said to be volatile. A flip-flop register is volatile; a punch card "deck" is non-
volatile. If a computer system uses a volatile storage system, positive steps must be
taken to preserve the stored information if it is not available elsewhere in the system.
Therefore, valuable information is normally stored in a non-volatile unit and put into
volatile storage only when it is to be operated on. In this way, critical data is pre-
served in the event there is a power fault. Ferrite cores are non-volatile.

Since both data (information) words and instruction words are stored in memory and
are not distinguishable in form from one another, some means is needed to separate
instructions from data.” This can be done by restricting instructions (the program) to
the area of memory or by allowing access to memory on a time-sharing basis. In a time-
sharing system, memory words accessed by specific timing pulses are automatically assumed
to be instructions. The time in which an instruction is transferred to the control
element from memory is called the acquisition time. Acquisition time is then followed
immediately by execution time in which the instruction is obeyed. 1If a memory word is
accessed during execution time, it is automatically assumed to be data. A sequence of
acquisition-execution time is called a machine cycle.

COMPUTER STORAGE DEVICES
DEVICE ACCESS ACCESS
NAME CAPACITY MODE TIME PERMANENCE | VOLATILE? FUNCTION
FERRITE 8 to 100K RANDOM ¥ to 10 ERASABLE NO High Speed internal
CORES WORDS microseconds . Central Memory
MAGNETIC 20 to 2,000K SEQUENTIAL 10 to 100 ERASABLE NO Medium Speed
DRUMS WORDS CYCLIC microseconds Buffer or Bulk Storage
MAGNETIC 20 to 20,000K [SEQUENTIAL 10 to 1,000 ERASABLE NO Medium Speed External
DISCs WORDS microseconds Input/Output Operations
MAGNETIC 20 to 20,000K | SEQUENTIAL 1 to 100 ERASABLE NO Slow Speed External
TAPES WORDS PROGRESSIVE Seconds Input/Output Operations
THIN 1 to 256 RANDOM .1 to .5 ERASABLE NO Very High Speed internal
FILM WORDS microseconds Scratch-Pad Memory
DELAY 5 to 10K SEQUENTIAL 1 to 1,000 ERASABLE YES -Medium Speed internal
LINES WORDS CYCLIC microseconds Temporary Storage (Display)
ELECTRO- 5 to 50K RANDOM 1 to 20 ERASABLE YES High Speed internal
STATIC WORDS microseconds Central Memory or Buffer
PUNCHED 80 to 90 SEQUENTIAL | 50 to 150 | PERMANENT NO Slow Speed external
CARDS A WORDS /CARD PROGRESSIVE | microseconds Bulk Storage or I/0
PUNCHED 1 to 1,000K SEQUENTIAL 10 to 150 PERMANENT NO Slow Speed external
TAPE WORDS PROGRESSIVE | milliseconds Bulk Storage or 1/0
SEMI- 1 to 4,096 RANDOM .01 to .5 ERASABLE Some Very High Speed internal
CONDUCTOR WORDS microseconds Types Central Memory or Scratch

RDA26-421

Figure 1-3. Storage Device Characteristics

STORAGE DEVICES

There are many storage devices available for use in computer systems. Some have
been popular in the past and are now almost forgotten; others have been--and will con-
tinue to be--used in almost every computer system made. Some new storage devices have
been invented but have not yet found their way into operational computer systems.
Figure 1-3 provides information on the characteristics of many of the storage devices
used in USAF computer systems.

MAGNETIC STORAGE SYSTEMS

Ferromagnetic materials make many excellent binary storage devices for use in com—
puters. The "polarity" (N-S direction) of a magnetic field can represent a one or zero.
This fact, coupled with the close relationship between electric current and magnetism,
is the reason ferromagnetic materials are used so often as computer storage devices. In

fact, magnetic storage systems are the most common way of storing large amounts of com-
puter data.

Magnetic storage systems may use tiny cores (doughnuts) of magnetic material, long
strips (tapes) of magnetic material, rotating drums coated with magnetic materials, or
rotating discs coated with magnetic materials. 1In many cases, the actual area needed
to store one binary bit is as small as the head of a pin. This means that quite a lot of
information can be stored in a small area. For example: a 5-inch cube of magnetic cores
can store 150,000 bits of computer data; a standard 2,400-foot reel of 1/2 inch wide
computer tape can hold over 2 million bits of computer data.

Hysteresis Loop
All magnetic storage systems utilize a physical phenomenon known as residual mag-
netism. Residual magnetism means that a piece of ferromagnetic material will keep a giver

"polarity" after the magnetizing force is removed; ferromagnetic materials will store a

7

bit of binary data as a magnetic field. This phenomenon can be shown on a graph of
magnetic flux density (B) versus magnetizing force (H). This graph is called a B-H
curve and, for ferromagnetic materials, becomes a hysteresis loop. A thorough and com-
plete understanding of the hysteresis loop, or curve, will help you to maintain ferrite
core memories, tape storage units, magnetic drums, and magnetic discs. In addition,
knowledge of the hysteresis loop will assist your career progression when you are faced
with SKTs (Skill Knowledge Tests).

Figure 1-4 plots the values of flux density (strength and direction of magnetiza-
tion) "B" versus magnetizing force "H" applied to a magnetic material. We can start our
examination of the curve by locating point "X" in the center of the loop. This point
represents the material in a neutral or unmagnetized condition. If a magnetizing force
with a value of +Hm is then applied to the material, its flux density and direction will
be forced to point +Bm. Fortunately, with most magnetic materials, any increase in the
magnetizing force above +Hm will not increase the flux density above +Bm. When the
material is at point +Bm, it is said to be saturated; its flux density in one direction
is maximum and cannot increase. This fact will cause the hysteresis curve to become a
loop. If the magnetizing force (+Hm) is now removed, the flux density of the material
will drop only slightly to point +Br (residual magnetism). This slight drop, instead of
the large drop common to most metals, is due to the high retentivity of ferromagnetic
materials. Point +Br now represents a stable flux density and direction that can be
called a binary one or zero, according to its application.

{’ U!ﬂf/

{.«

MAGNETIZING | - - ey e
Wk;!lé.
TRCE _leTo T ApekE 12| L
=fm m

~Bm FLUX

DENSITY

RDA26-416

Figure 1-4. Hysteresis Loop

If we now desire to store the opposite binary number in the magnetic material, it is
necessary to apply a magnetizing force of -Hm (equal in magnitude to +Hm but opposite in
direction). The application of force -Hm will cause the flux density to swiftly decrease
to zero and then move on to a maximum negative value, point -Bm. Again, if a force
greater than -Hm is applied, the flux density cannot become greater than -Bm. The.
material has now become saturated with a magnetic flux density equal to +Bm but in the
opposite direction. Once the force has been removed, the material will stabilize with

its residual magnetism at point -Br. If point +Br was assigned to a value of binary one,
then point -Br would be a binary zero.

The application of a force of +Hm to the magnetic material at the -Br point will
cause it to switch to the +Bm point. Notice that this completes the hysteresis loop and
completely bypasses point x. The only way to return the magnetic material to its unmag-
netized condition is to apply an AC sine wave decreasing to @ volts. An examination of
the hysteresis loop will reveal that, in normal operation, ferromagnetic material will
remain at either point +Br (one state) or -Br (zero state). The application of magne-
tizing force is required to make magnetic material change states (switch from one state
to another).

In some applications of magnetic storage materials, the material will be moved
rapidly under a small coil; this movement of magnetic fields past a coil will induce a
current flow in the coil. The direction of current flow will indicate the direction of
magnetization of the material, and the magnetic field will not be changed in any way.
The data stored as two different directions of magnetic fields may be "read" over and
over again. This type of nondestructive readout is often used for magnetic drums, mag- .
netic tapes, and magnetic discs. Of course, if it is desired to change the stored infor-
mation, the use of the coil must be changed. To write on drums, tapes, or discs, the coil
is connected to a current source; current flow through the coil produces a magnetizing
force that can be used to store data in magnetic material.

One other form of magnetic storage device is a small core of ferromagnetic material
that has several small wires passing through it. A single bit of information may be
stored in or read from a single core. These cores are quite small, perhaps 15 to 5§
thousandths of an inch in outer diameter. To produce a useful computer memory device,
several thousand cores and their wires are placed in a frame (plane) about 6 inches
square by 1/2 inch thick. These planes can be stacked together to make a memory array
that will hold anywhere from 150,000 to 2 million bits of computer data.)

Ferrite Core Memory

A ferrite core memory cannot be moved past a coil to sense the state of the cores;
therefore, other electronic systems must be used to read out data from ferrite core
arrays. Unfortunately, most of these systems involve destructive readout of the data
stored in the cores. Destructive readout of ferrite cores takes advantage of the fact
that the collapse of a magnetic field that surrounds a wire will induce current flow
into the wire. Core memories are physically small and simple-—compared to the motors and
other mechanical parts needed with drums, tapes, and discs--but they have complicated
electronic circuits needed to control the writing into, reading from, and restoring of
data into the cores. Not all "core" memories consist of individual cores:that are
threaded by wires and assembled into planes. Some memory systems use ferrite plates with
a series of holes through which the wires needed to read and write data pass. The plate
is so constructed that each of the areas around the holes acts as a single core. The
ferrite plate has characteristics similar to a plane of ferrite cores.

COINCIDENT CURRENT ADDRESSING, In order to use a ferrite core, the computer must be
able to write information into any given core and also to read information from any given
core. The techniques used for writing into or reading from a selected core or group of
cores (a computer word) are called address selection techniques. The address selection
technique that this SG explains is one of a number of techniques that are available to
manufacturers of ferrite core memories. The technique explained is the "coincident
current technique" and is the most commonly used system of getting data into or from a
magnetic core.

The basic concept of the coincident current selection technique is that two wires
are used to supply the magnetizing force (-Hm) required to make a ferrite core change

9

states. This magnetizing force is in the form of current passing through a pair of wires.
(Current flow through a wire sets up a magnetic field around the wire, which is directly
proportional in strength to the current flow through the wire.) A combined current which
produces a magnetizing force of tHm on the hysteresis curve is called a full-select cur-
rent. Each wire carries a "half-select" current; that is, a current with a magnitude of
H/2. 1f, and only if, a core receives the effect of a "full-select" current will it com-
pletely change states. This means that a wire carrying a half-select current can be
threaded through many cores, but the only core affected by this half-select current will
be the one core that is receiving an additional half-select current from another wire
that is also threaded through many unaffected cores.

After the ferrite core is completely saturated in one direction and the magnetizing
currents removed, the retained flux will be almost that of saturation, and the direction
of magnetization can be considered the one state. If and when the half-select currents
are reversed to magnetize the core in the opposite direction, then the core will be con-
sidered to be in the zero state. In the coincident current addressing technique, each
half-select drive current applied to the wires is of such a value that each current alone
does not provide enough magnetizing force to "switch" the core or cause it to reverse
flux direction. However, with both half-select drive currents applied, there is suffi-
cient magnetizing force to cause the core to switch and retain, through its residual
magnetism, the new condition after the drive currents are removed.

Assume that the cores are designed to switch when approximately 0.350 ampere drive
current (}Hm) is felt by the core. Each drive line carries approximately 0.250 ampere.
Either of the drive lines alone does not carry a sufficient current (magnetizing force)
to switch the core. However, a combination of the two drive currents (0.25 ampere
+ 0.25 ampere) will exceed the required switching value and cause the core to switch,
providing that it is not already in the desired state.

+B
+Bm
+Br™1* —
] 1 7
| i
| A
! /1
, ! / |
MAGNETIZING : /o
FORCE | |/ I .
. =Hm m
—H/2 ~H/2 |+H/2 I +H/2
|
|
|
|
|
|
L//é [}
~Br0¥
- FLUX
Bm DENSITY |-B
RDA26-417

Figure 1-5. Detailed Hysteresis Loop

10 .

The operation of the coincident current addressing technique can best be explained by
a more detailed study of the hysteresis loop of a ferrite core. (Refer to figure 1-5.)
In the initial application of selection drive currents to the core, consider the core to
be demagnetized (point "x"). As positive half-select drive currents are applied, mag-
‘netization will take place. One half-select current will not be enough to saturate the
core and place it at point +Bm; however, an additional half-select current will saturate
the core and place it at point +Bm. As the drive currents fall from maximum positive to
zero, the core's retentivity will allow only a slight drop in its flux density. When the
drive currents fall to zero, the flux will remain stable at point +Br. At this time the
core is in the one state.

If the core is stable at point +Br and a negative pulse of current is then applied
to both half-select drive lines simultaneously, the core will switch to point -Bm. As
the drive currents decay, the core flux density will come to rest at point -Br, and the
core will remain in the zero state. The important thing to notice is that if the core
is in a residual state (IBr) and only a single half-select drive current (H/2) is applied
and removed, the state of the core will not be changed. The square shape of the hysteresis
loop shows that a certain current or magnetizing force must be applied to a ferrite core
to cause it to change states. If less than a minimum force is felt by the ferrite core,
it will remain in its pfeviously established stable state.

FLUX
DIRECTION

f CURRENT
G4

RDA26-414

Figure 1-6. Magnetic Fields in Core

X AND Y SELECTION LINES. To understand how drive current flowing in wires threaded
through a ferrite core can produce one and zero states in the core, refer to figure 1-6.
This illustration shows that current flow into the page would produce cores with a
counterclockwise magnetic field. Current flow out of the page (toward you) would pro-
duce cores with a clockwise magnetic field. These fields are in agreement with the
"left hand rule" which was mentioned briefly when you studied the basics of magnetism in
the electronic principles course. One direction of the core's magnetic field is assigned
the value of binary one and the opposite direction of magnetic field is assigned the value
of binary zero. Notice that the core's magnetic field completely surrounds the wire
passing through it; a collapse of the magnetic field--or the switch from one direction to
another--will cause current to flow in a wire passing through the ferrite core.

11

Y-LINEW

~
-
x-l.ll—rje> 5
—
U

RDA26-415

Figure 1-7. Core Address Lines

Most of the ferrite cores used to store computer data do not have a single wire
applying magnetizing force to the cores. Instead they use two wires, each carrying a
half-select drive current. For convenience, these address selection lines are usually
called the X (horizontal) and Y (vertical) address lines. Figure 1-7 shows a single core
threaded by X and Y address selection lines. Of course, each X line and each Y line
passes through several other cores. Figure 1-8 shows a typical ferrite core plane with
its X and Y selection lines.

The ferrite core plane in figure 1-8 contains 16 cores number 0 through 17 (octal).
Each core is threaded by two address selection drive lines; each wire will carry a half-
select current. Only the core that receives a magnetizing force from two wires (coinci-
dent X and Y currents) will be selected. Each core has its own unique pair of X and Y
lines that will make it become a selected core. It is standard practice to label cores
by their X-Y address. For example, core 11(8) would be identified as address X2Y1;
core 11(8) has a location of X2Y1.

RDA26-412

Eigure 1-8. Ferrite Core Plane
12 ’

Figure 1-9 shows four cores arranged in a very simple plane. Each core is threaded
with two lines, X and Y. Assume that all cores are in the zero state and we want to
write a one into core X@Yl. If a full select current with a value of +Hm is applied to
the X@ line, then both cores X¢Y@ and X@Y1l will be switched to the one state. If a full-
select current of value +Hm is applied to the Y1l line, then both cores X$Y1 and X1Y1
will be affected. This is not quite what we want to do.

Y-SELECT
(READ & WRITE) I
Q
~
X-SELECT
(READ & WRITE) [~
e TO
\ SENSE
AMPL
1 (READ ONLY)
INHIBI T:
(WRITE ONLY)
—_ RDA26-413
RDA26-422
Figure 1-9. Address Selection Figure 1-10. Ferrite Core

If, however, half-select currents of +H/2 are applied to the X@ and Y1l lines at the
same time, then only core X@Yl will receive the effect of a full-select current (+Hm).
Each of the other cores along the X@ and Yl lines will receive only a half-select cur-
rent. Therefore, only core X@Y1l will be switched to the one state, and the other three
cores in the plane will remain in the zero state. Two cores (X@Y@ and X1Y1l) receive half-
select current, which is not enough to cause them to switch, and one core (X1Y@) receives
no current at all. Any one of the four cores in this sample plane may be selected by
pulsing the correct combination of X and Y lines with simultaneous half-select currents.

INHIBIT WINDING. Notice that the selection of a core that was in the zero state by
positive half-select currents caused it to switch to the one state. The application of
negative half-select currents to a core can be used to switch it from the one to the zero
state. However, sometimes we need to select a core but leave the state of that core un-
changed. This need to select, but not change, usually is the result of wanting to
"write a zero." "Writing a zero" requires that we add another wire to the simple core
plane, an inhibit winding. The inhibit winding will carry current that opposes one of
the positive half-select currents and prevents the address selected core from switching
to the one state. Since only one core from a plane can be selected at any one time, a
single inhibit winding can be threaded through all the cores on a plane and energized
only when it is necessary to "write a zero" into the selected core. In figure 1-10
the inhibit winding is parallel to the Y select wire.

13

SENSE WINDING. If information is stored in a ferrite core, we need some way of
sensing or removing that information. This is usually done by adding yet another wire to
the simple core plane, a sense winding (see figure 1-10). The sense winding is used to
observe the current produced when a magnetic core is changed from the one to the zero
state. The use of a sense winding requires that we apply negative half-select currents
to the core in an attempt to put it in the zero state. If the core was in the one state
and it is switched to the zero state, then the sense winding will receive the current
produced by the collapse of the core's magnetic field. If the core was already in the
zero state when the negative half-select currents were applied, there will be no change
in the core's magnetic field and no current flow in the sense winding. Unfortumately,
this sensing technique removes the stored "ome" from the ferrite core; we are using what
is called destructive readout. Again, since only one core on the plane can be selected
at one time, only one sense winding per plane is required. This single sense winding
can be looped through all the cores in a plane in such a way that the "noise'" produced by
the half-select current present in the plane will not affect the sense winding output.

Ferrite cores are very sensitive to temperature changes, operating ideally at room
temperature (70° to 80°). The hysteresis loop changes shape as a function of tempera-
ture. The "B" dimension of the loop decreases as temperature decreases. Because of the
curtailed dimension of the loop along the "B" axis, the voltage generated on the sense
line would not be sufficient to represent a one. Decrease in temperature also widens
the dimension of the loop along the "H" or horizontal axis. This increased loop dimen-
sion reduces the possibllity of core switching by the full select current, since the
large magnetizing force would be required. Eventually, the width of the "H" dimension
may be large enough to make it impossible to drive the core to its new state. Tempera-
ture increases cause the "H" dimension at the loop to become narrow, and flux density
along axis "B" increases. As the "H" dimension becomes shorter the core is switched by’
smaller currents. The core no longer discriminates, and it switches at signals below
the full select current. In short, at low temperatures, the core switches less readily,
and at high temperatures it is inclined to switch on any pulse.-

CORE MEMORY PLANE. Figure 1-11 illustrates a complete coincident current core memory .
plane with all its address selection wires and windings. Any core in this plane may be
selected and a one or zero written into the core. Or, the state of any core may be
sensed by applying the correct half-select currents to one of the X address selection
lines and one of the Y address selection lines simultaneously. It may be seen that half-
select write pulses (+H/2) on both a selected X line and Y line will write a one in a
single selected core. For instance, if the X@ and Y3 address lines are pulsed with a
positive half-select current, only the core at X@¢Y3 will receive the effect of a full
write current. When a negative half-select read current is applied to a pair of X and
Y selection lines, an output may be sensed by the sense windings when the selected core
switches from the one to the zero state. :

Read Operation. Because core memory systems use a destructive readout, it should be
clear that in the operation of a coincident current core memory the read operation will
occur first. The read operation makes use of the sense line threaded through all the
cores of a plane to determine if the selected core was in the one state. If a negative
half-select read pulse (-H/2) is applied to an X address line and a negative half-select
current read pulse (~H/2) is applied to a Y address line simultaneously, the core that
receives the effect of a full-select read current will be put to the zero state. If
this core was in the one state, it will reverse its direction of magnetization and create
a large change in flux density. This change in flux density surrounding a sense wire
will cause current to flow in the sense line, resulting in a detected output by the
sense amplifier. Therefore, it is only the selected core which is capable of producing
a binary output. When a certain core is selected, the output of the sense amplifier will
represent the state of only the selected core. If at the time of application of the
half-select read current there is no output from the sense amplifier, this indicates
that the core was, and still is, in the zero state; if an output is sensed, then the core
was in the one state, now the core is in the zero state.

14

Write Operation. After the selected core has been put to the zero state by the read
operation, the write operation can then either put a one into the core or leave it in the
zero state. A separate inhibit line is threaded through all the cores on the plane so
that a current pulse in the line will oppose one of the address lines. There is also a
driver for the inhibit winding which can be gated on or off, depending on whether a zero
or one is to be written into the selected core of the plane. The value of the current
through the inhibit winding is the same as a half~select current used in the X and Y
address lines.

Yg Y1 Y2 Y3
/]\ A
—_ =
7
Xg s
1 1
: i 1 !
X1
r— Ce-P -
] - - — r-—-
|]
X2 T
] 1 |
! l : i po|
| |
X3
1 74N
L L_— —J
ID

RDA26-410

Figure 1-11. Core Memory Plane

Since the total write currents applied to the selected core by the X and Y address
selection lines and the pulse from the inhibit driver oppose each other, if all these
currents are applied at the same time, the total current through the selected core will
only be equal to a half-select current, which is not enough to switch a core to the one
state. A one or zero may therefore be written into the selected core by first clearing
the core during the read operation and then turning the inhibit driver on when a zero
is needed and turning it off when a one is needed, while applying half-select pulses
to the X and Y address lines. Notice that this inhibit technique for writing ones and
zeros into a core requires that the core be cleared to zeros before the write opera-
tion begins.

CORE MEMORY ARRAY. A complete coincident current, ferrite core memory consists of a
number of planes stacked together in a rectangular array. (See figure 1-12.) The X
address selection lines and the Y selection lines of each plane are comnected in series.
This means that a pulse fed to the X@ winding of the first plane must travel through the
X@ winding of the second plane, and so on, until it passes through the X@ winding of the
last plane in the array. Figure 1-12 illustrates an array with four core planes in
which each plane contains 16 cores. In this array a half-select pulse (read or write)
would have to travel through 16 cores, four cores on each plane. '

15

=
Nw

\ "4

T
“Ni

oj0 O

PLANE 3 I
' (e

o
PLANE 4 o
: O

T

00O
— / RDA26-411

Figure 12. Core Memory Array

Each plane has its own sense winding (not shown in figure 1-12); however, the sense
windings are not connected together in any way. Instead, a sense amplifier is connected
to the sense winding from each plane to indicate if a one or zero was stored in the
selected core of that plane. Each plane also has an inhibit winding that is not shown in
figure 1-12. The inhibit winding is used during a write operation when it is necessary
to "write a zero" into the selected core of that plane.

When using this type of array, there will be as many core planes in the array as
there are bits in the computer word. Each plane will have its own sense line for read-
ing the bits of the word and its own inhibit line to control the writing of ones and
zeros into the bits of the word. The number of cores in any one plane will determine the
number of computer words that the array can store. The array shown in figure 1-12 can
hold 16 four-bit computer words.

CORE MEMORY TIMING. The same timing sequence is used whether the computer is to
read information from the core memory or write information into the core memory. The
total time taken by the complete timing sequence is called the "memory cycle," and it is
one of the principal speed determining factors for a ferrite core memory. Each memory
cycle consists of two portions, the first of which is called the read portion and the
second of which' is called the write portion. Figure 1-13 shows the sequence for all the
pulses that could occur during a memory cycle. Whether we want to read from or write
into memory will control which pulses are generated and used. It should be noted that
the 8 microsecond memory cycle time is only an example and will vary from system to
system.

The READ PULSE will be used to control the timing of the negative half-select pulses
applied to the X and Y address selection lines. The READ SAMPLE PULSE will be used to
turn on the sense amplifiers of each plane at the time when the flux change in the selec-
ted core of the plane will be at its greatest (if the core was in the one state). The
INHIBIT PULSE is fed to the inhibit drivers for each plane; it will control the timing
of the inhibit drivers if we intend to "write a zero" into the selected core on that
plane. The WRITE PULSE will be used to control the timing of the positive half-select
pulses applied to the X and Y address selection lines.

16

|Q'—_MEMORY CYCLE 8 MICROSECONDS-—-—.I
4 USEC 4 USEC
'Q—READ PORTION—+—WRITE PORTION—Dl
. —FI "—1 MICROSECOND

" READ PULSE

READ SAMPLE ‘
PULSE

INHIBIT PULSE

WRITE PULSE

RDA26-403

Figure 1-13. Memory Cycle Timing

Read Memory Cycle. Assume that at the beginning of the read memory cycle, core loca-
tion X@Y3 has been selected by external circuits to be read from. The read portion of
the memory cycle in figure 1-13 will generate both the read pulse and the read sample
pulse. The read pulse will cause the X and Y3 address selection lines to be pulsed
with negative half-select read currents. This will cause the selected core in all four
planes to be set to the zero state. If a large signal is received by the sense ampli-
fier connected to a given plane at this time, the selected core in that plane contained
a one; if a small signal is received, the selected core in that plane contained a zero.
(A small current flow in the sense winding would be caused by noise or circuit unbalance
"and can be disregarded.) The read sample pulse "strobes" the sense amplifiers at the
time when current flow in the sense windings should be at a maximum. If planes 1 and 3
produce ones and planes 2 and 4 do not, the computer word that was previously stored was
(MSD) 0101 (LSD). This word will be fed out to external circuits and also be written
back into the memory array. The output of each sense amplifier is used to set a stor-
age device to the one state during the read portion of a memory cycle (providing a sense
amplifier output is present), and the contents of these storage devices is then used to
control the inhibit drivers during the write portion of a read memory cycle. In our
example, only the inhibit drivers connected to planes 2 and 4 will be enabled by signals
from their respective storage devices and conduct during the write portion. The selec-
ted cores in these planes will remain in the zero state while the selected cores in
planes 1 and 3 will be set to the one state by positive half-select address selection
pulses applied to all four planes as a result of the write pulse. Thus, after the write
portion of the read memory cycle, the selected cores will again contain 0101, just as
they did before the memory cycle began. In addition, the computer word 0101 will still
be in the external storage devices and available for use by the computer.

Write Memory Cycle. Let us now change the data that is stored in location X@Y3 to

(MSD) 1101 (LSD). Again external circuits are used to select address lines X@ and Y3,
and they are then forced to generate the negative half-select read currents by the read

17

pulse. However, during the read portion of a write memory cycle, the read sample pulse
is not generated and, as the selected core in the plames go to zero state, the sense
amplifiers will not reflect the ones and zeros stored in memory. Therefore, the storage
devices connected to the sense amplifiers will not be changed; the storage devices will
keep the 1101 that we want to write into memory. As the write portion of the memory
cycle begins the storage devices will allow the inhibit pulse to turn on the inhibit
drivers. The inhibit driver for plane 2 will be turned ON and the inhibit drivers for
planes 1, 3, and 4 will remain OFF. When the write pulse is generated, the positive
half-select write currents applied to planes 1, 3, and 4 will cause theilr selected cores
to go to the one state. However, in plane 2, the combination of positive half-select
write currents and a negative inhibit current will leave the selected core still in the
zero state. At the end of the write memory cycle, the computer word 1101 has been writ-
ten into location X@Y3.

Figure 1-14 shows the current flows required for the storage of information into a
ferrite core during the write portion of any memory cycle (read or write). During the
read portion of any memory cycle, we read all cores at the selected location by apply-
ing two negative half-select current whose timing is controlled by the read pulse.
During the write portion of any memory cycle, we attempt to store ones in the selected
cores by applying two positive half-select currents whose timing is controlled by the
write pulse. However, the inhibit pulse is available as an opposing current flow to
prevent the writing of a binary one if that is what we want. The primary difference
between a read memory cycle and a write memory cycle is the generation or absence of the
read sample pulse.

[<e-READ PORTION-B{aWRITE PORTIONS|

I +H/2 l
X LINE :
| —H/2 ‘ { "

Y LINE
| ~H/2 I
INHIBIT
. : I ~H/2 I

(A) STORE ZERO

'@-READ PORTION-B®WRITE PO RTEONB"

+H/2 I
X LINE

~H/2 1 !
1 |

=
Y LINE——I I ' 2 L——

~H/2 H
]
]

INHIBIT b

(B) STORE ONE
' - RDA26-405

Figure 1-14. Memory Current Flows

18

MEMORY ADDRESS REGISTER (MAR). The computer controls the selection of specific X and
Y drive lines in the ferrite core memory by use of a storage register called the memory
address register (MAR). The configuration in the MAR is fed to decoders which select
1 X and 1 Y drive line in the array. The X and Y signals are combined with either the
read or write pulse to produce half-select currents needed to read or write into the
ferrite core memory. Intersection of these signals will pick out specific cores on a
plane. The selected cores on all planes make up the computer word. Figure 1-15 illus-
trates, in block diagram form, the operation of an address selection system for a ferrite
core memory with a sixteen word capacity.

MEMORY ADDRESS REGISTER (MAR)

T S C S C S c S
FF-1 - - 4 S
0 ; o FF=2 | G FF=3 G FF=4]
X COUNT Y COUNT
DETECTOR DETECTOR
~ READ
S PULSE
_ _WRITE
T ~< PULSE
RwD/ \rRWD/ SRwD/ \RWD RWD RwD/ N\RWD RWD,
FERRITE
CORE
MEMORY
ARRAY
(16 WORDS)
RDA26-407

Figure 1-15. Core Memory Addressing

Flip-flops are generally used as the storage devices in the memory address register
(MAR). For a memory with 16 locations (addresses), four flip-flops would be needed to
give 16 different binary combinations. The input to the MAR may come from several dif-
ferent parts of the computer: a sequence counter (program counter) used to step through
a series of memory locations from part of a previously read computer word, or from
special registers. The memory address register may be divided into two parts - the least
significant half to feed the X count decoders and the most significant half to feed the

Y decoders.

Detector Matrices. The outputs_of the MAR are comnected to count detectors which.
produce independent signals for each separate count in the memory address register.

19

Decoder matrices may be constructed of AND gates, transistors, diodes, or special purpose
magnetic cores. Whatever device is used, the function of the detector matrices is the
same; one output line is selected for each different combination of inputs from the MAR
flip-flops. The X count detector decodes the two least significant bits of the MAR, and
the Y count detector decodes the two most significant bits of the MAR.

The Read-Write Drivers. The Read-Write Drivers (RWD) feed a particular X and Y
address selection line with both negative (read) and positive (write) half-select cur-
rents. Each RWD has three inputs: a unique X or Y count decode, a read pulse, and a
write pulse. The X or Y count decode enables the read-write driver and permits it to
generate current, with direction and timing determined by whether a read or write pulse
is strobing the RWD. During any memory cycle, the read pulse will occur first and cause
the enabled RWDs (one X and one Y) to produce negative half-select pulses of current
which will put all the cores at the MAR address to the zero state. When the write pulse
occurs in the second portion of the memory cycle, the enabled RWDs will produce positive
half-select pulses of current that could put all the cores at the MAR address to the one
state, The current supplied by a typical read-write driver is on the order of 1/4
ampere.

- The operation of the memory address register and its associated circuitry causes a
single core in each plane of a memory array to receive the effect of a full read current
and then a full write current. The address stored in the MAR is decoded, and this
decoded output is used to turn on selected read-write drivers. The timing and direc-
tion of current flow from the RWDs is controlled by read and write pulses generated in
memory timing circuits.

MEMORY INFORMATION REGISTER (MIR). The memory information register (MIR) is a flip-
flop register that is used to store the binary read from or to be written into a ferrite
core memory. The MIR has one flip-flop for each plane in the core array; therefore,
the size of the memory information register is equal to the number of bits in the core
memory word. Binary data stored in the MIR as a result of a read memory cycle can be
used by many different circuits in the computer; many different parts of the computer
may provide the new data to be written into core memory. The MIR in the COM~TRAN TEN
computer is called the Buffer or B register.

READ
SAMPLE SENSE
PULSE IAMPLlHER
SENSE e IsA
WINDING g | MIR FLIP=FLOP (n)
s] MIR (n) -
EXTERNAL
NEW T » CIRCUITS
DATA C R
l INHIBIT INHIBIT
S AR GATE DRIVER
PULSE ‘ ‘
16 INHIBIT
— WINDING
INHIBIT
PULSE B——
RDA26-404

Figure 1-16. MIR Flip-Flop Circuit

20

Figure 1-16 shows one flip-flop of a memory information register and its associated
circuitry. ZEach flip-flop in an MIR has identical circuitry.

The individual flip-flops in a memory information register receive a clear pulse (and
sometimes new information) before the actual memory cycle begins. As the read portion
of the memory cycle occurs, the read sample pulse is used to "strobe" the sense ampli-
fier and allow the sense amplifier to enter the core data into the MIR flip-flop. During
the write portion of a memory cycle, the zero side output of the MIR flip-flop is used
to turn the inhibit driver ON or OFF.

Read Memory Cycle. Before a read memory cycle begins, the location (address) of the
word to be read from memory is loaded into the memory address register (MAR), and the
memory information register (MIR) is cleared. During the read portion of the read memory
cycle, the selected core in each plane receives two half-select read current pulses and
is set to the zero state. The read sample pulse allows the transfer of the ones stored
in core memory through the sense amplifiers to the MIR. If the selected core in the
plane contains a one, current flows in the sense winding; this current flow is detected
by the sense amplifier, and is then used to set a one in the memory information regis—
ter flip-flop. If the selected core in the plane contained a zero, the current received
by the sense amplifier is small and no pulse appears at the output of the sense ampli-
fier; therefore, the MIR flip-flop remains in the zero state. The selected core in the
plane is. still in the zero state.

During the write portion of the read memory cycle, the selected core in the plane
will receive two half-select write currents that attempt to switch the core to the one
state. However, the data bit now stored in the memory information register flip-flop
will control the final state of the selected core. If the MIR flip-flop contains a zero,
its zero side output will turn ON the inhibit driver feeding the plane. The current from
the inhibit driver will oppose the current flow through one of the address selection
lines and prevent the core from switching to the one state. If the MIR flip-flop con=-
tains a one, the lack of a zero side output will prevent the inhibit driver from opposing
the current flow in the address selection line, and the two half-select write currents
will switch the selected core to the one state. As a result of the data placed in the
MIR during the read portion of a read memory cycle, a complete read memory cycle will
return the original core information back into the cores. The original core data will
also remain in the memory information register for use by the external circuits of the
computer.

Write Memory Cycle. Before a write memory cycle begins, the location of the word to
be written into is loaded into the memory address register (MAR). The memory informa-
tion register (MIR) is cleared and then loaded with the new data. During the read por-
tion of the write memory cycle, the selected core in each plane receives two half-select
current read pulses and is set to the zero state. However, no read sample pulse is
present during the read portion of a write memory cycle. The sense current will not get
past the sense amplifier, and the new data entered into the MIR before the write memory
cycle began is not changed.

During the write portion of the write memory cycle, the selected core in the plane
will receive two half-select write currents that attempt to switch the core to the one
state. At this time, the new data loaded into the MIR before the write cycle began will
control the final state of the selected cores. If the MIR flip-flop contains a one, the
binary zero from the zero side output of the flip-flop will prevent the inhibit driver
from producing current to oppose one of the half-select currents, and the core will switch
to the one state. If the MIR flip-flop contains a zero, its zero side output will turn
the inhibit driver ON, and this current flow will oppose one of the half-select write
currents, preventing the core from switching. The new data placed into the memory in-
formation register before the write memory cycle began destroys.the .old core information,
and the new data will be stored in the selected address. This new data will remain in
the MIR for further use by the external circuits of the computer.

21

CORE MEMORY SUMMARY. The small memory unit described here is typical of random
access, ferrite core, coincident current memories now in use by the USAF except for its
size. Most memories now in use contain several thousand cores as a minimum. While the
fundamentals of such memories are the same, the circuitry used to control and address
them will, of necessity, differ in details.

The memory cycle times vary with different machines, but most machines have memory
cycles in the 1- to 8-microsecond region. Some faster memories have access times of less
than 1 microsecond and it is possible to build ferrite core memories that operate in the
0.1~ to O0.3-microsecond region.

A memory cycle is divided into two portions: a read portion and a write portion.
The read portion obtains data from the cores by setting them to the zero state. This is
called destructive readout. Those cores that switched from the one to the zero state
will produce current flow in a sense winding that can be detected and the data trans-
ferred to storage flip-flops in the MIR. The write portion of a memory cycle attempts to
set all addressed cores to the one state; the data stored in the MIR will control whether
ones or zeros are written into the selected cores by controlling inhibit drivers.

The selection of which cores are to be read from and written into is done by a
memory address register and its associated decoders and read-write drivers. They supply
half-select currents whose coincidence at particular cores decides which cores will be
affected. The read-write drivers can supply both positive and negative half-select
currents.

The method of reading and writing discussed here is but one of several possible ways
to use a ferrite core memory. It has been described in general terms so that the prin-
ciples can be applied later to a specific equipment. The terminology used in this book
may be slightly different from that which will be used on actual equipment. However, if
you understand the basic principles of addressing, reading, writing, and inhibiting as.
used in this basic ferrite core memory unit, you should have no trouble transferring this
knowledge to the 'real world."

Magnetic Drum Memory

The ferrite core memory unit uses the principle of setting an essentially bistable
device to one of its two states. It provides very fast access time and sufficient capa-
city for use as the central memory element of a computer. Unfortunately, the ferrite
core memory unit has complete electronic circuits used to read from or write into core
storage. These circuits increase the cost and reduce the reliability of storing a large
number of bits in a core memory unit. While large core memories which can store a
million bits have been constructed, some large machines require the storage of 1012 bits.
This would require the use of 10,000 core memories. Fortunately, there are several
units which can store large amounts.of data and still provide reasonable access time and
low cost per bit. The magnetic drum storage unit is one of these devices.

The magnetic drum storage system is presently the most common type of endless track
memory. Its most important components are a rotating drum and a set of stationary heads.
In general, the capacity of a drum is proportional to its surface area, but an important
factor which must be taken into consideration is the head separation. Direct contact of
the read-write heads and the drum surface will produce the largest output and, hence the
least chance for error. However, this situation would cause great friction and the drum
would have only a short life span. In moving the head slightly (.00l to .002 inch) away
from the drum surface, life of the unit is increased but capacity is decreased, and the
possibility of cross-talk is introduced.

MAGNETIC DRUM CONSTRUCTION. A magnetic drum consists basically of a rotating cylinder
coated with a thin layer of magnetic material which has a hysteresis loop similar to that

22

of the material used in magnetic cores. A number of read-write heads are mounted along
the surface of the drum. These heads are used to store information by magnetizing very
small areas on the drum surface or to read information by sensing the passage of the mag-
netic field from previously recorded information. Figure 1-17 shows a drum with only a
few read-write heads for the purposes of clarity. Standard magnetic drums used in com-
puter systems have up to several hundred read-write heads scattered about their surface.

READ-WRITE

TRACKS
RDA26-423
Figure 1-17. Magnetic Drum Storage

As the drum rotates, a small area continually passes under the heads. The area under
a single head is known as a track or chammel. One track extends completely around the
circumference of the drum and can hold many bits of data. The space in a track required
to store one binary bit is known as a cell. The size of a cell depends on the design of
the read-write head, its spacing from the drum surface, and the speed of rotation of the
drum. A group of tracks is called a field. All the cells which are under a set of
read-write heads at the same time are called a register. In some drum memory units, a
track is subdivided into sectors. (A sector is an angular subdivision of the circum-
ference of the drum.) Figure 1-18 is a graphical representation of a cell, track, field,
register, and sector.

FIELD #1

SECTOR RDA26-409

Figure 1-18. Drum Organization

23

Generally, one or more of the tracks is used to provide timing signals for the drum's
control circuits. A series of timing signals is permanently recorded around the timing
track, and each signal defines a time unit for the system. The timing track is then used
to determine the location of each set of storage cells around the tracks. For instance,
if the timing track is 60 inches in length and timing pulses are recorded at a-density of
100 per inch, there will be 6,000 locations for bits (cells) around each of the tracks.
If the drum has 30 tracks plus the timing track, the drum will have the capacity to store
a total of 180,000 bits.

Information is written onto the drum by passing current through a winding on the
write heads. This current causes flux to be created through the core material of the
head. Some drum systems use separate heads for reading and writing, and others use com-
bined read-write heads. The head consists of material of high permeability around which
a coil is wound. When information is to be written on the surface of the drum, pulses
of current are driven through the winding. The direction of flux through the head, and
in turn the polarization of the magnetic field recorded on the surface of the drum,
depends upon the direction of current through the coil.

The gap in the core presents a relatively high reluctance path to the flux generated
by the current through the coil. Since the magnetic material on the surface of the drum
is passing near the gap, some of the flux passes through this material. This causes a
small area of the drum surface to be magnetized and, since the material used to coat the
surface of the drum has a relatively high retentivity, the magnetic field remains after
the area has passed from under the head, or the current through the coil is discon-
tinued. It should be noted that the head does not actually touch the surface of the
drum. Instead, to prevent wear, the heads are located very close to the drum surface
but not touching it. The drum must, therefore, be of a very constant diameter or the’
distance between the heads and the drum will vary. If the head moves farther from the
surface of the drum, the signal recorded will become weaker.

The signals recorded on the surface of the drum are read in a similar manner. When
the areas which have been magnetized pass under the head, some of the magnetic flux is
coupled into the head and changes the current flow in the head. This flux induction is
changed to signals in the windings. These signals are then amplified and interpreted.

The size and storage capacities of magnetic drums vary greatly. Some drums with
capacities of less than 25,000 bits have been constructed. Drums of this size generally
have from 15 to 25 tracks and from 15 to 50 heads. 1In order to decrease access time,
heads are sometimes located in sets around the periphery of the drum; a drum with 15
tracks may have 30 heads divided into two sets of 15 heads, each at a specific angular
distance from the other. For very fast access time, there may be even more than two
sets of heads.

Much larger drums can store up to 15 million bits and may have from 300 to 400 tracks.
The larger drums are generally rotated much more slowly than small drums, and speeds vary
from 120 RPM to 75,000 RPM. The access times obviously decrease as the drum speeds
increase; however, there is another important factor--the packing density-.along the
track. Most present-day drums have a packing density of from 100 to 300 bits per inch
although, by maintaining the heads very close to the drum surface and rotating the drum
slowly, packing densities in excess of 1000 bits per inch may be achieved.

PARALLEL OPERATION. It is possible to operate a drum in either a serial of parallel
mode. For parallel operation, all the bits of a word may be written simultaneously and
read in the same manner. If the basic computer word contains 40 bits, the drum might
read from 41 tracks (one for timing) simultaneously, thus reading an entire computer
word in 1-bit time. When the drum is 'read from" and "written into" in parallel, a
separate read and write amplifier is required for each track used.

24

Notice that the words in a parallel system may be located by means of a timing track.
If each track contains 8192 bits, a 13-bit counter may be set to zero at the same posi-
tion each time the drum revolves, and stepped by one each time a timing pulse appears.
In this way, location 1096 will be the 1096th cell around the track from the zero loca-
tion. If the address of the word to be read is located on a register, signals from the
drum can be gated into the computer when the counter agrees with the register's content.
In this way words may be located on the drum.

SERIAL OPERATION. A magnetic drum may also be operated in a serial mode. In this
case only one track will be read from or written into at a given time. Since there are
a number of tracks on each drum, the correct read-write head, as well as the location of
the desired bits around the track, must be selected.

Each track is assigned a number; in addition, each track is divided into sectors,
each sector containing one full computer word. For instance, if the basic computer word
is 20 bits in length and 640 bits can be recorded around each track of the drum, each
track would be divided into 32 sectors. Each sector would then contain one 20-bit com~
puter word.

In order to specify the address of a word on a magnetic drum operated serially, both
the track number and sector number must be given. Consider a drum with 32 tracks plus
a timing track and 32 words (sectors) around each track. The address of a word on the
drum in a binary machine will consist of 10 bits, 5 bits to specify the track and 5 bits
the sector. When written as the address section of a computer instruction word, the
address will contain 10 bits.

The five flip-flops containing the track number may be connected to a decoder matrix
similar to the onme used in the magnetic core memory, which will then select the correct
read-write head.

Several techniques involving the timing tracks may be used to locate the selected
sector. One technique involves the use of several timing tracks instead of one. One of
the tracks contains a set of signals indicating the location of each bit around the
tracks. The second track contains a set of pulses with a pulse at the beginning of each
word time. The word time signals illustrated are 20 bits apart so the basic word would
be 20 bits in length. In addition, the sector number of the next word around the drum
is recorded around a third timing track. The computer reads sector numbers from this
track, and when the number read agrees with the sector number in the address, the com-
puter can then read the selected word from the next sector beginning with the next word
time pulse.

ADDRESSING. Addressing the drum means nothing more than selecting the proper memory
cell or cells at the correct time for reading or writing. Many different methods are
used for addressing the drum.

Magnetic Tape Memory

When we speak of tapes, we generally mean "magnetic tapes." Perforated tapes are
used but they are less common. Another item that is brought to mind when tapes are
discussed is the tape drive unit. Of course, the tapes are useless without the drive
unit and vice versa. Actually, the magnetic tape is the medium where information is
stored. The tape drive is the mechanism which writes information on a tape and reads
it off. The process of storing information on a tape is called writing and the process
of detecting stored information is called reading.

TAPE CONSTRUCTION. ' Magnetic tape is a thin flexible plastic strip with a uniform
coating of ferrous oxide on one side. A typical tape is about 2,000 feet in length, .

25

% to 2 inches wide, and has a word density of 40 or more computer words per inch. Infor-
mation is stored on the tape in the form of a pattern of magnetic bits. In one form of
tape recording, a magnetized spot or bit may represent a binary 1l; a nonmagnetized spot
may represent a binary 0. Another system may require that both 1l's and 0's be expressed
as magnetic bits. This is done by recording 1l's with a north-south magnetic alignment
and 0's with a south-north alignment. The number of magnetized areas across the width of
the tape are called tracks. The number of recording tracks used is determined by the
code that is used to represent numeric and alphabetic characters. Figure 1-19 illus-
trates a tape system using a six~bit character code. There are seven tracks across the
tape. The seventh track is for maintaining synchronous operation between the tape drive
and the computer.

A B CDEVF GHI J XKL MNO®P QRS T Track
X X X X X X X X X X #1
X X X X X X X X X X #2
X X X X X X X X X #3
X #4 (sync)
X X X X X X X X #5
X X X X X X #6
X X X X X #7
1 2 3 4 5.6 7 8 9 1011 1213 14 15 16 17 18 19 20 Characters
RDA26-424

Figure 1-19. Magnetic Tape Six-Bit Alpha Code

TAPE FORMAT. Tape format may vary from system to system. For this reason we will
discuss a typical tape format using a six-bit character code. If the computer's word
length is 30 bits long, then a word would contain five characters (30/6 = 5). Words are
written on the tape with no space between them. One or more words written together is a
record and there is a recording gap between records (see figure 1-20). A group of
records is called a file. Now let's apply this to what we have learned previously. A
group of binary bits handled by the computer as a single unit is a computer word. 1In
this case five characters on tape. A computer word can be either a data word or an
instruction word. If instruction words were written together on tape, they would be
considered a record. A series of instruction words written in logical order to solve a
given problem is a program. Therefore, a record on tape could represent a program while
a file could represent a group of programs.

WRITING AND READING MAGNETIC TAPE. Writing on magnetic tape occurs as the tape is
moved across the magnetic gap of a recording or write head. The number of recording
tracks in a write head is determined by the alphanumeric code used by the tape. Elec—
trical pulses are sent through recording head coils at desired intervals. The oxide
coating is magnetized by these pulses. These magnetized areas may be sensed as a 0 or a
1. To establish a given code, current will not flow through all the coils at the same
time. These patterns represent the data sent from the computer.

The tape moves at high speeds across the write head. Typical speeds are 75 inches
per second and 112.5 inches per second. The write pulses to the write heads are fast
enough that the magnetized spots are almost the same as if the tape were still, for the
period that the pulse is present,

26

RECORD
ONE OR MORE
WORDS

¥3LDVIVHD

WORD, OR
ONE WORD
RECORD
FILE
ONE OR MORE
RECORDS RDA26-408

Figure 1-20. Tape Format

There are two types of read-write heads used in magnetic tape units. One type has a
single gap for each channel. Both reading and writing occur at the same gap. The other
newer types use two magnetic gaps for each channel. One gap is used for writing and the
other is used for reading. Figure 1-21 shows both types of read-write heads.

PLASTIC‘BASE

WRITE GAP TAPE MOTION READ GAP
——

GAP
R=W HEAD MAGNETIC
OXIDE
<" ——C’D ;-
—— b [« fr—— >
q] b

g
Y
N/

o o
\ /
-READ=WRITE COILS
RDA26-385

Figure 1-21. Read-Write Heads

27

The principles of reading and writing are the same for both type heads. However, the
two-gap head has the advantage of being able to read the data shortly after it is written.
This allows the data to be checked for errors. To read from the magnetic tape, the tape
is passed over the read head. As the magnetized spot passes the gap, small electrical
currents are generated in the coill of the read head. The pulses represent the data that
is sent into the computer. Writing on the magnetic tape erases old information from the
tape.. Reading does not do this, so the tape can be read over and over.

Tapes are generally used as large-capacity, slow access memory storage. They may be
considered input-output devices since they are used to initially load information into
the computer and receive information from the computer.

REVIEW QUESTIONS 1-2
1. What is the difference between a storage device and a memory unit?
2. How many portions make up a memory cycle?
3. Which memory cycle is used as an input for new information?
4. What is the difference between a read and a write memory cycle?
5. Where will programs and data be stored?
6. Define volatility.
7. Why is the sense line used in a ferrite core memory?
8. What is the purpose of the inhibit line?
9. How may the number planes of a ferrite core memory be determined?
10. Which two registers are used when the computer communicates with memory?
11. Why are most core memory units called coincident current memories?
12. What is the purpose of the inhibit pulse?
13. How may a zero be written into a selected core?
14. Why are X and Y decoders used?
15. Why are line drivers used?

16. What is meant by permanence?

17. What is meant by the term "full select current'"?

TERMINAL EQUIPMENT

Terminal equipment may be broadly defined as "all input and/or output devices."
This broad definition is broken down into two categories: simple and complex. Equip-
ment in the complex category is capable of both input and output; that is, it can send
information into the memory element of a computer and receive information from the mem-
ory element. Equipment in the simple category may handle input or output but not both.
This calls for another breakdown: simple input devices and simple output devices.

28

Simple input devices can put data into memory; simple output devices can receive data
from memory. Terminal equipment may also be referred to as Peripheral equipment, or
I/0 equipment.

There are many types of terminal equipment. Let's list a few: card punch, card
reader, line printer, magnetic tape units, magnetic drum units, various electric type-
writers (Flexowriters), and communications buffers that connect to telephone lines.
These are called data link buffers, and are complex pieces of terminal equipment. Any
other devices waich manufacturers produce that are capable of transferring digital
information can become terminal equipment. Many units of terminal equipment have a com-
patibility package or control unit that arranges the data in proper word format or
converts logic levels to insure correct data transfer between units made by different
manufacturers.

Figure 1-22 lists some terminal devices and shows the classification of each. In
many systems most of these devices can be controlled manually by the operator or auto-
matically under program control by the computer. All of the equipment in figure 1-22
has dual capability except tapes and drums; these are generally controlled only by the
computer.

NAME SIMPLE INPUT SIMPLE OUTPUT COMPLEX
CARD READER X !

CARD PUNCH X
LINE PRINTER X
PAPER TAPE READER X
PAPER TAPE PUNCH X
FLEXOWRITER
TELETYPEWRITER
MAG TAPE UNIT
MAG DRUM

DATA LINK BUFFER
[CcrT X

paf e e e

‘RDA26-425
Figure 1-22. Terminal Devices Classification

Time and space do not permit a detailed coverage of all terminal equipment. This
discussion will acquaint you with a representative cross-section of terminal devices.
The card reader, line printer, magnetic tape unit, and Flexowriter have been chosen for
this purpose. We will take these in the order listed and discuss some of the leading
particulars of each unit. We will also discuss a special input-output device used in
air defense computers. :

Card Reader

The purpose of the punch card reader is to provide a means of transferring data from
punch cards to the computer system. The card reader has an input hopper for holding the
cards to be read, a feed mechanism which sends the cards through the read station where
the data bits are detected, and a stacker for holding the cards that have been read.

. The input hopper is located on the right side of figure 1-23. The cards are placed in
the hopper face down, with column 1 toward the read station. The input hopper holds
approximately 500 cards. The feed knife sends one card at a time into the read station.
In the read station, there are 12 solar cells (each with an exciter lamp) which read the
holes in the punch cards. In addition, there are two solar cells (with exciter lamps)
for sensing the position of the card as it moves through the read station. After the

29

card is read, it drops into the stacker on the left side of the card reader. The stacker
can hold approximately 500 cards. The card reader can read approximately 200 cards per
minute. The lower part of the card reader cabinet has 21 storage bins for various punch
card decks that are used frequently by programmers or maintenance personnel.

STATIC
STACKER STACKER - FRONT

BAR REAR CD2 : FEED
SWiTCH ARRESTER ROLLERcp) | < .READ ROLLERTHROAT HOPPER

STATION AREA SWITCH KNIFE

e

REAR = A

k
N
b
».
i

' FRONT

S
®

" " e » IR
SLI_IDE INPUT
DIRECTION OF CARD TRAVEL HOPPER

- RDA26-426

Figure 1-23. Card Reader

. Card Punch

Card punches may be operated directly by the computer to produce decks of punched
cards under computer control, or they may be used by different personnel to produce
punched cards that will be used to enter data into the computer.

Figure 1-24 is a photograph of an IBM computer-controlled card punch used as an out-
put device. A machine similar to this one makes the cards for your paychecks, medical
appointments, and WAPS testing. It is approximately 36 inches high and 24 inches deep.
The magazine is at the upper left and the stacker is the dark opening in. the front

center. Blank cards are placed in the magazine (hopper) and the machine is made ready
by the operator.

The card punch, acting on programmed instructions from the computer, moves the cards
from the hopper to the stacker. Between these two points there is a punch station with
90 punches. The card comes to rest 12 different times under the punch station. At each
stop a row of the card is under the punches. The computer controls the punching action.

Line Printer

A line printer is a "simplex'" piece of terminal equipment that performs an output
function only. The line printer records output information, usually in alphanumeric
form, The term "line" indicates that the printer is capable of printing one entire line
of characters simultaneously. The line printer does not print the line simultaneously;
it ripples. Due to the printing mechanism being slightly slanted, it appears to be

30

simultaneous and the printing is done in a straight line across the paper. The speed of
line printers varies from 100 lines per minute to 1,000 lines per minute. The number of
characters (alpha or numeric) per line also varies, depending on the manufacturer. The
line printer in figure 1-25 operates at approximately 600 lines per minute, printing 120
characters per line.

Main Line Program

Switch Program Column Pressure Roll

Control Unit Indicator Release Lever
Lever

Card Stacker
<+—— Card Hopper

Function Control
Switches

f.*lM!ﬂ!ﬂi!ﬂ!!‘.W!F!!!l!li.ﬂﬂﬂmw' il
Board [! h'h and Fuses .

Figure 1-24., Card Punch

This line printer has a print roll with fonts of characters (a font for each column
of printout, 120, engraved in relief on its curved surface), and a row of solenoid
actuated print hammers (a hammer for each column of printout, 120). In operation, the
print roll turns continuously above the print hammers. When a required character turns
into printing position, the corresponding hammer is actuated. The memory in the lower
right corner of the line printer stores the data for a line of printout. One complete
rotation of the print roll is required to print one line of characters. Each of the 120
hammers will be actuated only once per revolution of the print roll--when its desired
character is in printing position. When the printing of one line is completed, then the

31

equipment's internal memory will request another line of output data from the memory ele-
ment of the computer. The printer we have been discussing is the impact type printer.
The non-impact printer is an electrochemical printer which uses a burn process to print.
As the paper, which is a specially made paper with-magnetic crystals embedded into it,
passes over a stylus, electrical energy burns the outline of the characters into the

Printers of this type-have obtained speeds of 36,000 lines per minute. While

paper.
The paper is expensive and they

having the advantage of speed, they are very costly.
cannot make carbomns.

TRANSPARENT COVER

RIGHT-HAND
CONTROL PANEL

p LEFT-HAND
CONTROL PANEL

OCTAL CODE
TEST SWITCHES

LOGIC GATE ASSEMBLY

ON-OFF
INTERFACE POWER
SUPPLIES AND

RELAY PANEL

: 4“"—7———— RELAY K80
il REMOVABLE
2.1 ENCLOSURE PANEL
3| l) WITH RFI SHIELDING

/1

PRINTER ASSEMBLY
PAPER SUPPLY TRUCK —.
MULTIPLE POWER |

SUPPLY ASSEMBLY
(+6,-6, AND-18 VOLTS) J

MEMORY

7\\ INTERFACE ASSEMBLY

RDA26-428

. FRONT VIEW

. Figure 1-25. BUIC Line Printer

Tape Drive Unit

Figure 1-26 is a typical magnetic tape drive unit. This unit is similar to a home
tape recorder, but it records 7 to 9 channels instead of the 2-4 tracks used in home
The tape drive unit controls the tape movement and provides the read and
write operations. Since a magnetic tape may either receive or send informatiom, it
is a complex input-output terminal device. In many cases, a compatibility package
or control unit (controller) is needed to synéhronize timing and arrange information

into the proper word formats.

recorders.

32

Figure 1-26. Tape Drive Unit

B e

FILE

SN tagne

|_~upepe
REEL \ MAIN PLATE
Sk o
LowER ~| {EAD ASSEMBLY
PLATE
/-VACUUM
L Swirches Aewo REwN
. 1 ORIVE DRIVE
CAPSTAN CAPSTAN
v
VACUUM
COLUNNS 9
N ® TapE~ | |y TAPE
\ VACUUM SWITCH
. AR HOLES -
W T \
RDA26-430 RDA26-431

Figure 1-27. Vital Parts Figure 1-28. Tape Path

of the Tape Drive Unit

33

MECHANICAL OPERATION. Figure 1-27 gives some additional details on the mechanical
functions of the tape drive. The "file reel" is one of the many reels of computer data
" stored in the computer room. The operator selects the desired reel from its storage
file, places it in the tape drive unit, threads it through the vacuum columns and head
assembly, and connects it to the machine reel. The "machine reel" is the take-up reel.
The vacuum columns provide the proper slack in the tape to prevent damage during high-
speed movement of the tape from reel to reel, The head assembly contains one read-
write head for each of the channels on the tape. Figure 1-28 gives a detailed view of
the tape path and the mechanical parts needed to move the tape through the read-write
assembly.

Flexowriter

The Flexowriter (a trademark of the Frieden Corporation) is a two-way (both input
and output) complex terminal device which provides a means of communication between
the operator and the computer system. The Flexowriter requires a control unit to pro-
vide a compatible interface between it and the computer input-output elements. The
Flexowriter is an electro-mechanical typewriting device which provides an electrical
means of communication with the computer, plus a hard copy on paper of all data
exchanged.

The Flexowriter has internal circuits which convert the mechanical motion of keys
into electrical signals for entry into the computer or convert electrical signals from
the computer into the mechanical motion of keys to produce printed copy. In addition,
it has a paper tape punch and paper tape reader on the left side to produce or read

‘storage media. It is normally used by maintenance persomnel to run maintenance pro-
grams and receive status reports from the computer. Figure 1-29 is a photograph of the
Flexowriter modified for use in the BUIC System. The Teletypewriter is basically the
same, it was simply made by a different manufacturer. You will become quite familiar
with it through your future lab projects.

‘Display Equipment

The display equipment of a computer system is part of both the input and output
elements. Information may be transmitted from a digital computer and displayed visually
in a direct readable form. For example, a computer used in air defense accepts air
defense intelligence and evaluates or summarizes this intelligence for presentation by
a display system. In addition, the display equipment provides a means for the opera-
tor to enter data into the computer.

The prime purpose of air defense is to provide flight path instructions for inter-
ceptor air weapons. To accomplish this mission effectively, a clear picture of the air
situation must be available to personnel who are to direct retaliatory air defense.

A display system provides this picture. It presents relevent air surveillance
intelligence on specially constructed cathode-ray tubes. Since the information from
the central computer system is in a binary form, one important function of the display
system is to convert such information into a form that can be easily interpreted by
operating personnel. It does this by changing the binary information to visual intelli-
gence that consists of letters, numerals, vectors, and special symbols in a prearranged
format. These are visually displayed on a cathode-ray tube.

The operator of the display equipment can then use his equipment to accept, modify,
or reject the information displayed. He may also enter new data into the system. Any
action taken by the operator must be converted from switch actions, light pen respomses,
etc., back to binary form for entry into the computer. In this way, display equipment

34

I 12 14

24743 /1

Figure 1-29.

START READ switch
STOP READ switch
ENTER REQ switch
ENTER indicator
PUNCH ON switch
TAPE FEED switch
OFF LINE switch

DELETE CODE switch
DELETE key lever
CAR RET key lever
NORM key levers
SHIFT key levers
POWER switch
BLANK key lever

RDA26-432

Control Panel and Keyboard Layout of "Flexowriter" Unit

35

used in USAF Command and Control Systems becomes a two-way, man-machine interface allow-
ing the computer to talk to the operator and the operator to talk back to the computer.

Some displays show the conditions of operation within the computer rather than infor-
- mation in the final output. These use neon and filament-type lamp indicators and special
tubes to visually represent data or some particular condition.

‘DATA DISPLAY CONSOLE. The data display console (DDC) (refer to figure 1-30) is used
to provide a visual presentation to an operator so that he may monitor and evaluate an
air defense situation within a given geographical area. More than one console is required
to monitor the air defense for a given location. For example, suppose that an installa-
tion is in the area of Cape Kennedy, Florida. One console may be assigned to the southern
portion of Florida and others will be assigned to other geographical areas in and around
Florida. The functions performed by the consoles may vary, and there are functions that
need to bes duplicated due to the limited amount of information that can be presented on
one CRT. .

1 ‘ 3 4+ 5§71

1817 16

RDA26-~384

Figure 1-30. Data Display Console

A data display console can be divided into three basic sections. There are the
situation display section, which consists of a large CRT (left side of figure 1-30); a
. tabular display section, which consists of a small CRT (center of the figure); and the
manual intervention section, which is used to communicate with the computer system
(lower right of figure). The situation display section is used to process and display
such information as aircraft movement, boundaries, radar data, and air base locatioms.
The tabular display section is used to process and provide the operator with the infor-
mation he has requested, or provide tabulation of information that pertains to the
function the operator is performing. The manual intervention section is used to inter-
rupt the computer system when the operator requests more information or desires to
insert information into the system.

All functions performed by the computer system are to process data so that it can be
displayed at the data display consoles. The DDC can display two basic types of infor-
mation--symbols and vectors. Symbols are numbers, letters, and special characters used
to denote specific functions. Vectors are used to draw geographic boundaries and indi-
cate the relative speed and direction of an aircraft track. Vectors will only be

36

displayed by the situation display CRT. All data displayed on the tabular (Tab) CRT
will be symbols!

The information received at the console is either forced or selected. Forced data
is received at a console and cannot be rejected by the operator. Forced data is received
and displayed when new data is received at the computer and this data is needed to update
the information being displayed at a console. The operator may request additional infor-
mation from the computer when it is needed to interpret track messages or make a decision
1nvolv1ng defensive action.

Al]l data received at the data display console must first be processed by the com-—
puter system before it can be used by the console. Data received into the computer sys-
tem is in the form of radar signals and the data console cannot process raw radar data
as it is received from the radar site.

After proper processing, the received data is displayed in usable form on CRTs such
as the typotron and charactron.

DISPLAY TUBES. The main component in most visual display equipment is the cathode-
ray tube. The cathode-ray tube (CRT) operates on the same basic principles as the tubes
commonly used for oscilloscopes or picture displays. Additional elements have been
added to these CRTs to further control and direct the electron stream for character dis-
play. These are the charactron and the typotron tube.

CHARACTRON. Since the charactron tube presents the plan position maps of the air
situation or portions of it, the display is referred to as a situation display.

Information pertaining to radar tracks, flight plans, geographical boundaries and
locations, and weapons sites as presented on this tube is shown in figure 1-31 in the
form of letters, numbers, special symbols, and vectors. The letters and numbers are
assembled in short encoded messages that are displayed adjacent to certain points and
targets to give identification and other descriptive data.

AEW
01

oo . J:;.SLKAE.O hqk\hph "
5 e N

(3]

Q
HR AR
Q R UZNIO:EE : | LGo2 th
) N o | FA)
: R q
SN oura AT eopel a
"8 T
2
5 Jw] NED;Q“‘QQ h“h““
1 D DAB 09 Q" hh CAT 02
DAB 10 h Qcaros
(e RZVLFS.) 2
1y &
% N
:n"s‘igf:{?;/\u - Q“ “"_’" 2 .
Ryypad? LN
o O\ e
o6 GF1
Ricar| ome Q
. ¥ % ligao
1 E b& LGoo :
- Q
X]
ayat®
~ I;l“E'L%’:':z‘DA’A $ TART S TART
w ' s TR s Taar
01 wa6— W8S
02
u@ -
10 st’:.:gic‘o DATA /,/’ pic °/IN
: o Gk
west R
RDA26-433

Figure 1-31. Typical Charactron Display

37

- TYPOTRON. The typotron cathode-ray tube is similar in operation to the charactron
tube. The typotron displays information, as shown in figure 1-32, that is too detailed

for situation display. This type of display presents digital information in the form of
charts and therefore is referred to as a digital display.

OXN<DZLeTD
OXDENOXON
Q@XP>x-TVr IO

—~O VDNV AWN -

qQPox<cox—-m>

<
<
<

~
I
1
]
1

ja@en
4 ADAD

DD CRT FACE PLATE RDA26"434

Figure 1-32. Typical Typotron Characters

D>

RDA26-388

Figure 1-33. Neon Indicator

OUTPUT INDICATORS. In addition to displays intended for use by operators, most
computer systems have smaller display areas intended for use by maintenance men. These
displays may be gathered together in one central panel, or they may be scattered around
the machine in strategic locations. Normally, these maintenance displays show the state
of important flip-flops or registers in the machine. Occasionally, these displays will
decode the count in significant counters or registers.

NEON INDICATORS. Neon indicators are used in computers to display directly the
information contained in various registers and counters. As shown in figure 1-33, an
amplifier is usually needed to increase the small voltage output of a flip-flop to a
value sufficient to fire the neon lamp. The input to the neon amplifier is from the
one side of the flip-flop. The amplifier will cause the neon indicator to light when

the flip-flop is in the one state and to extinguish when the flip-flop is in the zero
state.

INCANDESCENT INDICATORS. Many of the newer computer systems using integrated cir-
cuits have incandescent indicators rather than neon indicators. 1In most cases, the
incandescent lamps are special-purpose bulbs that draw very little current and, there-
fore, do not require the use of an amplifier between the flip-flop and the indicator.

38

Figure 1-34. Nixie Tubes

NIXIE TUBES. The Nixie tube, a registered trademark of the Burroughs Corporation, is

designed to display any one of several characters rather than simply indicate the state
of a flip-flop.

The tube 1s gas filled and contains 10 cold cathodes and one common anode. Each of
the cathodes is shaped to form a character, either alpha or numeric. When the correct
voltage is applied between the anode and one of the cathodes, ionization of the gas
occurs and causes a glow to surround the selected cathode. Because the catheode is
shaped like a letter or number, we see a 6, a 2, an A, etc.

The use of Nixie tubes with cathodes in the form of letters or symbols is a design
consideration and only for special purposes. For our purposes, we will comsider that the
cathodes are in the form of numbers only. The tubes are available in a variety of sizes
ranging from % inch in diameter to several inches in diameter. Figure 1-34 shows 2
sizes of Nixie tubes.

Unlike the neon indicator which takes an output directly from a flip-flop, the Nixie
tube requires a decoding system to select the desired cathode. Figure 1-35 shows the
decode network for a count of five from a three stage up counter. The counter is made
up of flip-flops A, B, and C. Gate 1 detects a count of five in the counter. The
inverter amplifier provides a voltage of proper ‘polarity to drive the cathode of the
Nixie tube. Each cathode, except 8 and 9, would need a count detecting gate and driver
like the one shown for cathode 5 to display all possible counts in the counter.

—{T C

.)
o8
97
-0 6
Fos| R_
o4 | AAMV—o +
-0 3
- 2
G 1

0 N\

NE
RDA26-390

INPUT

|
-,
YYYY%YYY

Figure 1-35. Nixie Tube Decoder Network

39

REVIEW QUESTIONS 1-3

1. What is the function of the input unit?
2. What is the function of the output unit?
3. What is meant by the term ''ComputerWord"?
4. How does a computer distinguish an instruction word from a data word?
5. Why is a machine cycle broken down into acquisition time and execution time?
6. How many bits are used in the COM-TRAN TEN computer word?

a. Binary bits

b. Hexadecimal bits

7. What are the three positions on the main POWER switch for the teletypewriter?

8. What position should the POWER switch be in to allow the use of the teletypewriter
without accessing the COM-TRAN TEN?

9. What are the three positions of the tape reader switch?

10. What position should the tape reader switch be in to allow reading of. the tape?

11. List the four switches on the tape punch unit.

12. State the purpose of the "BACKSPACE" switch on the tape punch unit.

13. What type of code is used by the teletypewriter?

14. What is the purpose of the following keys on the keyboard of the teletypewriter?
a. CTRL (Control)
b. LINE FEED

c. RETURN
40

COMPUTER OPERATION AND FAMILIARIZATION

In the first part of this chapter you learned the five basic blocks of all digital
‘computers. Now, you are going to learn the block diagram of the COM-TRAN TEN. As you go
through this material relate the COM-TRAN TEN block diagram to the basic block diagram.
Look for the elements of the COM-TRAN TEN block diagram that make up the units of the
basic block diagram. This will help you understand the flow of information through the
COM-TRAN TEN block diagram.

The block diagram of the COM-TRAN TEN is foldout 1-1. First, look at the block
diagram and note that there are Bus Lines. These are nothing more than conductors. They
are called Bus Lines because information can be put on or taken off in many different
places. There are four Buses in the COM-TRAN TEN; F-Bus, G-Bus, Y-Bus and Z-Bus. The
data on the F, G, and Y Buses are in true form (High = 1 and Low = 0), while the data on
the Z-Bus is in the one's complement form (DATA). Notice that the F and G Buses have
only ‘one route; F-Bus between the ALU and the A-Register, G-Bus between the Index Adder
and the M-Register. The Y-Bus receives its data from the selector and transfers this data
to many different registers. Only one register will receive this data during any of the
transfers. Information can be transferred to the Z-Bus from six different registers
(I-Reg, P-Reg, Memory, X-Reg, A-Reg, and Q-Reg); however, only one of these registers can
transfer data to the Z-Bus at a time. This information can go to the Buffer Register,
to the Two's Complementer, or the Memory Address Register. Buses are nothing more than
conductors (such as wire) that carry information around inside the machine.

Look at the left-hand side of the block diagram. There you will see a block labeled
Input Switch. These are sixteen switches that are used to manually input information
into the computer. Figure 1-37 shows the control panel of the COM-TRAN TEN. The Input
Switches are the ten switches labeled Input and sixteen Hexadecimal switches in a four
by four configuration just below the Input Switch. The outputs of these switches go to
the Input Register in binary form. This means your Hex inputs are changed to Binary as
you input them.

The Input Register is a 10-bit storage register. It is used to hold the values
which you input from the Input Switch. It can also be used to hold information that is
being manually output from the computer. The Input Register can put information on the
Z bus, or take it from the Y bus (Manual Output), or take it from the Input Switch. The
Input Register can also transfer information through the Selector to the Y bus for
manually loading the registers. Refer to figure 1-37; the switches labeled A, B, C, D,
S, M, P, Q, and X are used to manually transfer the data in the Input Register to the
other registers in the COM-TRAN TEN.

The Buffer Register is an 8-bit storage register, and is loaded from the Z bus. All
information going to Memory or coming from Memory must go through the Buffer Register.
Many of the data transfers through the computer go through the Buffer Register. Its
output goes to the Selector, which decides which of three inputs will be placed on the
Y bus. The three inputs are from the Buffer, the Two's Complementer, or the Input Regis-
ter. The Selector output goes to the Y bus. The normal output of the Selector is the
Buffer; however, the Input Register or the Two's Complementer will be selected when
necessary.

The Two's Complementer is a circuit that does just what its name implies. It per-
forms the two's complement on positive or negative numbers. It can also do a one's com-
plement. The circuit used in the Two's Complementer is an adder. It receives data from
the Z bus, and since the Z bus is in the one's complement form, a two's complement can be
- performed by adding a 1 and one's complement by adding a O.

The next element of the block diagram is the Program Address Register. This is a
10-bit storage register used to hold the address of the next instruction to be done by

41

the computer. It can be loaded from the Input Register or the Memory Address Register.
The output of the Program Address Register goes on the Z bus to the Memory Address
Register.

The Op Code (S) Register is an 8-bit storage register. It holds the code for the
. instruction that is being performed. In other words, if you are doing an add, the code
for an add will be in the Op Code Register. This will cause the computer to add two
numbers together. The input to the Op Code Register comes from the Buffer or Input Reg-
ister by way of the Y bus. The output goes to an Instruction Decoding Network.

The Decoder decides what instruction is to be performed, and it will generate the
signals necessary to perform that instruction. If the ADD code is in the Op Code
Register, the Decoder will decode this count that tells the computer to add. The output
of the Decoder is sent to the proper places to make the computer add two registers to-
gether. There are many instructions: such as one to tell the computer to get a number
out of Memory and put it into a register. Instructions are put together by a program-
mer in a logical, sequential way called a program. The program will do the job the pro-
grammer wanted done. A program is put into the computer's Memory. From Memory, the
computer takes out instructions and decodes them. It then performs each instruction.
The computer does this until it decodes an instruction that tells it to stop. The Pro-
gram Address Register holds the Memory Address of the next instruction to be performed.

The Memory is used to store numbers, which can be decoded as instructions or data,
but they must be in Hex form. If you want to add values of 26 and 73, the numbers and
the add instruction must be in Memory. You also need a way to get the number when you
want it. To do this, each Memory location has an address. If you were told to go get
Joe Smith, but you didn't know where he was, you would have some difficulty finding him.
If you were told he was in room 327 you could get him. Room 327 is like the Memory
address. It tells the computer where to go to find the number you want. Note that the
address and the number in that address are not necessarily the same, just as 327 is not
the same thing as Joe Smith. The COM-TRAN TEN uses a random access IC chip memory made
up of 1024(10) or 400(16) 8-bit-words. Data input is from the Y bus. Data is output in
complemented form to the Z bus. The IC chip is a volatile storage device. If power is
‘removed from the chip, then the data in memory is no longer accurate. The COM-TRAN TEN
is designed to maintain power to the IC chip memory after the power has been turned off
by the power switch. However, if the machine is unplugged then the data in memory is no
longer accurate.

" The Memory Address "M" Register is a 10-bit register used to tell the computer what
Memory location you are using. It can hold the address of instructions or data. Remem-
ber, instructions or data codes are just numbers.

The Index "X" Register is an 8-bit storage register. It is used to modify Memory
addresses. . A Memory address and the contents of the Index Register can be added together
to give a new memory address. You will see how this is used when you get into
Programming.

To add the Index to the Memory address there is an Index Adder. It takes the out-
puts of the Memory Address Register and the Index Register and adds the two together.
The sum is placed in the Memory Address Register. .

The Accumulator "A" Register is an 8-bit register. It can be shifted left or right
and can transfer data in and out in parallel. The Accumulator and Buffer hold the num-
‘bers used for most arithmetic and logical operations. The results of most of these op-
erations are then put back into the Accumulator. For example, during an add operationm,
the Buffer holds the addend and the Accumulator holds the augend, then the sum.

The Quotient "Q" Register is an 8-bit register used in some arithmetic operations.
It holds the LSD of the product after a multiply operation, and the LSD of the dividend

42

and then the quotient of a divide operation. It also can be shifted left or right, and
transfer data in or out in parallel.

The Arithmetic Logic Unit "ALU" takes its inputs from the Accumulator and the Y Bus.
It performs all the arithmetic and some logical operations. This is where the additions
and subtractions take place. The outputs of the ALU (Arithmetic Logic Unit) go to the
F Bus which inputs into the Accumulator.

The Count Down Register is an 8-bit register that is used to help control the com-
puter. It is used to help control teletype input and output to the computer, to count
the number of shifts for shifting operations, and to control the number of instructions
jumped in skip instructioms.

The clock is basically a free-running multivibrator that produces l-microsecond
pulses every 2 microseconds.

PRT = 2 psec PW = 1 usec PRF = 500 KHz

The pulses are used to toggle two D-Type flip-flops which are interconnected to form
a grey-code counter. The outputs of this counter are decoded as clock pulses - CP1l, CP2,
CP3, and ENABLE. The clock pulses control minor timing of the COM-TRAN TEN.

The D-Reg is a 4-bit up-counter, incremented by CP3, which can count in binary from
0 through 15(10). The output of the D-Reg is decoded in conjunction with the E FF to pro-
duce distributor pulses DPO - DP1l5 and DPAO - DPAl5. These distributor pulses control
the major timing of the COM-TRAN TEN. The E FF determines the phase (acquisition or
execution) in which the COM-TRAN TEN is operating. If a word is read from memory during
the acquisition time it is part of an instruction word. If it is read during execution
time it is data.

You have read what each element of the block diagram does. Now we will try to put
them all together into a working machine.

To write instructions and data into the computer the information goes to the Buffer
Register. It can come from the Input Register or the Teletypewriter. From the Buffer it
goes into the Memory.

Once the instructions and data are in Memory, the computer can start working on the
problem. To do this, the address of the first instruction to be performed is transferred
from the Program Address Register to the Memory Address Register. Remember the Program
Address Register tells where the next instruction word is located and the Memory Address
Register is used to tell the Memory location. The instruction is then brought out of
‘Memory through the Buffer Register and transferred to the Op Code Register on the Y bus.
Once the Op Code Register receives the instruction, it is decoded by the Control Section.
If the instruction requires data from Memory, then the data is brought out of the Memory
into the Buffer Register. From there the instruction does whatever it is supposed to do.
As you go through the instructions later in this book, you will need to refer to the
block diagram to follow each instruction and see what it does.

INDIVIDUALISM OF THE COM-TRAN TEN COMPUTER SYSTEM
In figure 1-36 is pictured the COM-TRAN TEN computer system. This is the digital
computer that is used in this manual as a vehicle of learning. Do not be misled by its
size. It can do all the things a large scale computer can do. (It is a small computer

because its word length is short and its memory size small.)

All computers have to be programmed...taught what to do and where to locate informa-
tion (called data). As soon as the programming is done, high-speed computing gets

43

f

wo3sAg I9indwo) TeUOTIEINPH NHL NVIL-WOD

'9g-T 2an3Tj

.l‘

Tt e

&
L}

i
& @ e

i .
5

(]
]
|

RE

e
wlilw

RDA26-383

underway. The COM-TRAN TEN computer, though, does more than compute. You start out
teaching the machine, as always. When computing starts, the CT-TEN education system
takes on a new personality...it becomes the teacher. It reveals the exciting world of
numeration, number manipulation, computer design, and logic. The activity it offers best
is logic...how do we think when we solve a problem.

The INPUT section of the CT-TEN system is labelled INPUT on the CONTROL PANEL. We
will also make use of a teletypewriter on which we can type into the computer's memory
or we can prepare tapes and read information in this way.

The OUTPUT section of the CT-TEN computer is the display primarily. We can also
direct the computer to type (or print) out answers on the teletype.

The MEMORY section of the CT-TEN computer consists of 1024 individual storage cells,
each of which is addressable. Each cell is eight bits in length. This means that in any
given cell we may store a number up to +127 and lower to and including -128. Instruction
words are two cells in size., We refer to the size of a memory cell as a word.

The ARITHMETIC section of the CT-TEN computer can also be called accurately the
LOGIC unit. There are several parts of the display that are used in the arithmetic or
logic of the computer. Take note of the ACCUMULATOR, QUOTIENT, BUFFER, and INDEX.
Besides the four operations of ARITHMETIC, LOGIC operations can be performed. The CT-TEN
computer also records the nature of certain registers as greater than, equal to, or less

than zero. Comparing numbers and acting on the results is an integral part of the nature
of computers.)

The 'CONTROL section of the CT-TEN computer can be studied in much detail through the
DISTRIBUTOR MODE (see CONTROL PANEL). It takes an interaction of all the registers you
see on the display for CONTROL to do its job. At present we will appreciate the work of
the CONTROL portion of the computer, rather than study and understand it in detail.

OPERATING THE COMPUTER

The COM-TRAN TEN computer can be operated from any standard 115-volt 48-62 (220
VAC optional) Hertz AC power source. The power plug is designed for a three-prong
receptacle. Check that the power plug is secure in the outlet. '

The POWER switch on the CT-TEN computer is located on the left of the control panel.
Press it. When lit, power‘is ON. Figure 1-37.
Controls and Switches

POWER Press this switch to turn cémputer ON, if off. Press this

same switch to turn computer OFF, if on. When switch is
lit, power to the computer and its memory is on.

LAMP TEST Turning ON the LAMP TEST results in all the light indica-
‘ tors on the display and the ten INPUT bit indicators to be
illuminated.
MODE: DIST DISTRIBUTOR MODE permits the operator to step through an

instruction by stopping after each clock pulse. When the
computer is in this mode, one clock pulse is generated
each time the START switch is pressed.

45

SINGE &

A/E

INST

vy

PROG

RPT

SENSE

ERROR BYPASS:

*'INST

ADD OVFL

DIV OVFL

P
&
-

ACQUISITION/EXECUTION MODE permits the operator to step
through a program by stopping twice for each instruction.
First the computer acquires an instruction stored in mem-
ory and stops while the contents are displayed in the OP
CODE and MEMORY ADDRESS registers. Then the computer
carries out the instruction and stops to display the
results in the registers. The START switch must be pressed
to go on to the next phase.

INSTRUCTION MODE allows the operator to step through a pro-
gram by stopping after each instruction is carried out.

The START must be pressed each time to go on to the next
instruction.

PROGRAM MODE is the mode of execution for the computer to
carry out instructions at its own fast speed of operation.
In this mode the computer stops only if an instruction

. commands it.

REPEAT MODE permits the operator to have a certain phase
of executing or acquiring an instruction to be repeated
over again, in order that voltage levels may be constant
and the registers may display the action repeatedly as a
constant situation. -

SENSE MODE can be pressed at any time. If a program con-
tains an instruction to test the SENSE switch, then one
of two alternate set of instructions will be carried out.

IF A MODE SWITCH LIGHT IS ON, THAT MODE SWITCH HAS BEEN
SELECTED. Press again to turn OFF.

The computer will stop when it encounters certain opera-
tional errors. By pressing the INSTRUCTION ERROR BYPASS
the computer will NOT stop when it encounters a code that
is not an instructional code.

By pressing this ADD OVERFLOW ERROR BYPASS the computer
will NOT stop when the result of computation in the ACCUM-
ULATOR register exceeds +127 or is less than -128. If this
indicator is not lit, the computer does STOP when the
result of addition or subtraction exceeds +127 or is less
than -128.

By pressing this DIVIDE OVERFLOW ERROR BYPASS, the com-—

- puter is instructed NOT to stop when the result of divi-

sion is greater than the QUOTIENT register can hold. If
this indicator is not 1lit, the computer does STOP when the
QUOTIENT register does not hold the answer in division.

Pressing one of these two switches sets up the computer to
execute the I/0 instruction selected. The countdown regis-
ter is set to a count of FFjg and the distributor register
to a Hex 10 code. The operation (OP) code is set up for
the proper 1/0 instruction.

46

READ INTIRPT

WRITE BLOCK
I/0 MODE:
REXMT OFF
HEX
ALPHA
 CONTROL:
CLEAR
STOP
START
INPUT
Switches
A
B
C
D
S
M
P
Q
X

If pressed, sets the OP code for read until interrupt
operation.

When pressed, sets up the OP code for write data block
operation.

Pressing this switch turns the teletype printer off. It
will not print data from the paper tape reader or keyboard.

Pressing this switch causes information read into or out of
memory to be considered in hexadecimal form. When read
into memory a colon (:) separates data words. When read
out of memory, a colon (:) is supplied by the system to
separate data words. The teletype remains in the I/0 mode
selected until a change is made on tape, on the teletype
control, or on the control panel.

Pressing this switch causes data to be read into or out of
memory as alphabetical letters, characters, or decimal
digits.

By pressing this switch all the register lights are cleared
and become zero.

By pressing this switch the computer will stop operating
after the manual stop signal is synchronized by the com—
puter's clock. This is the correct method of manually
stopping the computer while it is operating.

When pressed, the manual start signal starts the computer
clock and computer operations. The computer will operate
as directed by the MODE and MODE REPEAT switches until a
stop is executed.

The INPUT register consists of ten switches that can be set

(1it) by pushing each individually or by using the keys

numbered from O through F. By pressing one of the keys

arranged in four rows of four keys each (hexadecimal num-

bers), the binary form of that hexadecimal digit will be

entered on the right set of four INPUT switches; when the

next hexadecimal key is pressed, the first four lights are

transferred to the left before the new digit is entered in

the least significant set of four lights.

The RESET switch clears the ten INPUT switches. Pressing

one of the following switches will transfer the contents of

the INPUT REGISTER to the selected register.

ACCUMULATOR register

BUFFER register

COUNTDOWN register

DISTRIBUTOR register

OP CODE register

MEMORY ADDRESS register (8 least significant bits are also
called OPERAND) .

PROGRAM ADDRESS register

QUOTIENT register

INDEX register

47

8% -

D=, [Lslefajs]

LEAR STOP

CONTROL

ELER et e
POWER FF HEX ALPHA c
T .

START

= MODE
g ‘nun \-DIST AJE INST PROG
% AR 7

COM-TRAN Ten ABRE V25

LAMP ERROR BYPASS 1/0

RD WT ADD DIv READ WRITE
TEST A B C D S ™M P Q X MEMORY [INST OVFL OVFL INTRPT BOCK
| T 11V 1T 1 T 72 1%

/

Figure 1-37.

Control Panel for COM-TRAN TEN Computer

RDA26-435

RD MEMORY . READ MEMORY swifch sets up the computer to output data from
memory cells indicated in the memory address register.

WI MEMORY WRITE MEMORY switch sets up the computer to accept data
through the BUFFER register and store it into memory cells
beginning with the one addressed in the memory address.

Computer Registers and Display Panel

The registers of a computer are temporary storage devices. Each is made up of a
series of bistable circuits or flip-flops. Each such circuit has the ability to repre-
sent either the ZERO or the ONE state, and when connected in series they act upon one
another to interpret data. Certain registers hold results before and after computation,
others are a clearinghouse for the computer, still others act as the control within the
computer.

The more familiar a programmer becomes with the operational characteristics of the
various registers, the greater will be his ability to utilize them to best advantage when
writing and running programs.

A listing of the various registers of the COM-TRAN TEN computer follows, accompanied
by a description of the functional aspects of each. Figure 1-38,

Register and Abbreviation Description and Function
ACCUMULATOR An 8-bit register; seven bits represent magnitude in most
A arithmetic operations and the leftmost bit represents a

sign (0 is positive and 1 is negative). The register bits
are numbered according to their binary integer value, i.e.,
Ag is the 25 (32) position in the A register. A7 is the
sign position. The A register is used to hold:

(1) the augend and then the sum in arithmetic addition.

(2) the minuend and then the difference in subtraction.

(3) the most significant bits of a product. in multiplica-
tion (see AQ register).

(4) the most significant bits of a dividend prior to a
division (see AQ register).

(5) the remainder in division.

(6) the augend and then the LOGICAL sum in addition.

(7) the first word of data and the LOGICAL result in
EXCLUSIVE OR or in INCLUSIVE OR operations.

(8) the 8-bit status word as a result of the SENSE STATUS

instruction.
BUFFER An 8-bit register used to communicate with every section
B of the computer. It performs the following functions:

(1) holds the addend in arithmetic addition, if this num-
ber has the same sign as the augend in the
ACCUMULATOR.

(2) holds the two's complement of the addend in arithmetic
addition, if this is opposite in sign from the augend
which is in the ACCUMULATOR.

(3) holds the subtrahend in subtraction, if this number
is opposite in sign from the minuend in the
ACCUMULATOR.

49

| — ACCUMULATOR — ——QUOTIENT ——
— Lo [HEEE RN [(6] (5] [¢] [(31[2] (1] [o]

L[] carRRY [BUFFER— — INDEX ——
s DEEE DEON OEEE DEROD

[OP CODE —— ,——OPERAND —
—Owst 0JO00 O OBE DEGE BE6

I .
ERROR [] ADD l_ OP CODE -] I— MEMORY ADDRESS —l

L—[] pivibE X

[710s1 (51 (] (3] [2] (0] [o] BILIO]0] [0 [FE B0 B O] 0]
I———COUNTDOWN] IDISTRIBUTOR] l——— PROGRAM ADDRESS |

RDA26-436

Figure 1-38. Display of CT-TEN COMPUTER

COUNTDOWN
c

DISTRIBUTOR
D

OP CODE
s

MEMORY
ADDRESS

PROGRAM
ADDRESS

QUOTIENT
Q

AQ

(4) holds the two's complement of the subtrahend, if this
number has the same sign as the minuend in the
ACCUMULATOR.

(5) holds the multiplicand in multiplication and the div1—
sor in division.

(6) holds the constant in LOGICAL operations.

(7) acts as a data register for transferring in and out of
mMemory .

An 8-bit decreasing counter. It holds a count of the num-
ber of process steps in multiplication and division, the
number of shifts in shift instructions, the number of in-
structions to be skipped in skip instructions, and the num—
ber of words to be handled in Input/Output instructions.
The C register flip-flops are designated according to their
binary integer value, i.e., C6 is the 26 position.

A 5-bit increasing counter that establishes the sequence of
clock pulses. Depending on the state of the E flip-flop
and the decoded contents of the OP CODE register, this
register controls the logic functions to be performed on
initiation of each timing pulse.

A 5- to 8-bit register that holds the operation code of the
instruction being performed. In practice the most signifi-
cant five bits are the instruction code. The lower three
bits are added to the instruction code to allow for address-
ing beyond cell 'FF.' Thus three more levels of memory
cells can be used. Bit S2is used as an index.

A 10-bit register used to locate any one of the 1024 words
in the memory. The flip-flops are numbered according to
their binary integer value.

A 10-bit register that determines the location of the
instruction to be executed.. It is increased during the
ACQUISITION phase unless the MODE REPEAT switch is on. An
instruction consists of two consecutive words: one is the
OPERATION CODE and the other is the accompanying MEMORY
ADDRESS (for memory referenced instructions) or OPERAND
(for immediate instructions). The first instruction of any
program is usually stored at an even address.

An 8-bit register; seven bits represent magnitude and the
most significant bit represents the sign of the number.
The bits are numbered and handled like the bits in the
ACCUMULATOR. The Q register is used to hold:

(1) the least significant bits of a Eroduct in multiplica-
tion (see AQ register).

(2) the least significant bits of a dividend and then the
quotient in division. Qy is the sign bit.

A 16-bit register consisting of the ACCUMULATOR-QUOTIENT
registers. Fifteen bits hold the product after multipli-
cation with Ay being the sign of the product. The fifteen
bits hold the dividend before division with Ay being the
sign of the dividend. This 16-bit register is affected by
the ARITHMETIC shift instructions.

51

INDEX

-COND CODE

STATUS

ERROR

Hexadecimal Review

The X register is an 8-bit register which is used for
indexing the operand address. If S2, the index bit of an
instruction OP code is set, the contents of the INDEX regis-
ter will be added to the contents of the Memory Address
Register during the Acquisition phase of the instruction.

A 4-bit register arranged in vertical position. Following
each instruction this register records the nature of the
register affected. After an instruction involving the
ACCUMULATOR, the COND CODE records the nature of the
ACCUMULATOR. After division the COND CODE records the
nature of the QUOTIENT. In subtraction the two numbers are
regarded as 8-bit numbers; if the subtrahend (in the
BUFFER) is greater than the minuend (in the ACCUMULATOR)
the CARRY bit is set.

A 4-bit register arranged in vertical position. The bits
can be set by means of an instruction. The SENSE STATUS bit
can also be set from the control panel.

A 3-bit register that is arranged in vertical position.

These individual bits are set whenever the error occurs in
the course of running a program. Operation will not stop,
if the appropriate switch has been set to bypass the error

(switch is located on control panel).

Turn ON the power switch of the computer.

Press the CLEAR switch.

A/E mode.

Press RD MEMORY.
Press the START.

At this point watch the MEMORY ADDRESS register. Press the START again:. Notice
that the M, light went ON.

the recordlng process, just put down the results in the four least 51gn1f1cant lights.)

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
ON

OFF
OFF
OFF
OFF

ON -

ON
ON
ON
OFF
OFF
OFF
OFF
ON
ON
ON
ON

OFF
OFF
ON
ON

OFF

OFF
ON
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON

Press the START again. Record your results. (To shorten

OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON

52

By pressing the START, the computer increased what was in the MEMORY ADDRESS by one.
The computer was counting by one's in the M register. Since the computer has only two
ways of showing information in any one place (not ten different ways), the computer uses
a different number system. We call this system the binary numeration system. (Binary
means two symbols.)

Each light is EITHER ON or OFF. When we translate these states into number symbols,
we choose to let OFF be represented by "0" and ON to be represented by "1." Now the
states above are represented as:

HFRHEHRRRERHEHRHOOOOOOOO
HFRHHROOOOKHKFKHRHOOOO
HHOORHFROOKRHOORHR OO
HOMOHROHOHOKHORORO

You have just counted in binary from zero through fifteen. Look—back over the
results. We have a number system with only two symbols. The place value of each "0" or
"1" becomes more significant than one may have realized. Notice that two is represented
as: 001 0. Four was in this form: 0 1 0 0. Eight had this form: 10 0 0. A "1"
in each of these special positions gives a value of 2, 4, or 8 to be added into the
value of the number under consideration.

one's place

two's place

four's place

eight's place—;

0 0 0 0 = 0
o o o 1 = 1
o o0 1 0 = 2
o 0 1 1 = 3
o 1 0o 0o = 4
o 1 0 1 = 5
0o 1 1 0 = 6
o 1 1 1 = 7
1 0o o o0 = 8
1 0 o 1 = 9
1 0 1 0 = 10
1 0 1 1 = 1
1 1 o0 0 = 12
1 1 0 1 = 13
1 1 1 0 = 14
1 1 1 1 = 15

53

We stopped at fifteen, since we had considered only four places. Fifteen is the
largest number we can represent with four places, since fifteen equals eight plus four
plus two plus one. We call these places BInary digiTs or BITS, for short.

Notice that each number from zero through fifteen had a special or unique way of
representing that number. NO OTHER NUMBER could be represented in binary form as 12 is,
for example. Only 12 equals 8 plus 4 and so is: 1 1 0 0. If we work with numbers
greater than fifteen, we will need more places. Each place will be two times greater
than the one to its right. If we consider two more places, we then have the sixteen's
place and the thirty-two's place.

To emphasize and appreciate this idea that every number has a unique representation,
use the BINARY SELECTION set of six charts (figure 1-39). These are labelled A, B, C,
D, E, and F. Study them a few moments before turning to the following page.

Ask someone to think of a number from O through 63. Without telling you the number
he will identify it with six YES-NO responses. He will look at each chart in turn from
A through F. He will say YES, if the number is on the chart; NO if the number is not on
the chart.

Suppose his responses are:

A B c D E F
YES YES NO YES YES NO

That could only be the number 54.

Notice the number that appears first on each chart: A has 32, B has 16, C has 8,
D has 4, E has 2, and F has 1. Notice that these numbers are all a power of two (two
multiplied by itself a different number of times). Converting the YES responses to l's
and the NOs to 0O's, the binary form of 54 is 1 1 0 1 1 0. This means that 54 is 32
+ 16 + 4 + 2,

One more sample: I am thinking of a number...my responses are:

A B C D E F
YES NO YES NO YES YES

So that must be 32 + 8 + 2 + 1 which is 43.

As you work with the computer you will develop more familiarity with this system
and a closely related one: hexadecimal. The conversion table on a following page will
help you, so you need not master this material now.

However, if you wish to convert a number in decimal form to its equivalent binary
form you would divide by two successively. Assume, for instance, that we wish to find
the binary number for 53. The process is:

53/2 = 26, with a remainder of: 1
26/2 = 13, with a remainder of: 0
13/2 = 6, with a remainder of: 1
6/2 = 3, with a remainder of: O
3/2 = 1, with a remainder of: 1
1/2 = 0, with a remainder of: 1

The column of remainders, when set down with the top digit at the right yields
110101 which is the binary equivalent of 53 (32 + 16 + 4 + 1).

54

\ 23
5 26
" 27
0 29
o 31

> 33

13 35

15 37

17 39

1 a1

Fi
F gure 1-39. Binary Selection

55

43
A5
47
49
51
53
55
57
59
61
63

"RDA26-437

HEXADECIMAL
BINARY
DECIMAL

woNoOCUPRWNHE O

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

00010000
00010001
00010010
00010011
00010100
00010101

00010110

00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100

TABLE 1-1

DECIMAL-BINARY-HEXADECIMAL
CONVERSION TABLE

56

HEXADECIMAL
BINARY
DECIMAL

45
46
47

48

49
50

00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

01000000

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
etc.

On the COM-TRAN TEN we may get involved in a few problems with binary forms we will
wish to convert to their decimal forms. The registers show the numbers that are the
powers of two. Their equivalent values are:

20 =1 25 = 32 210 = 1024
2l =2 26 = 64 211 = 2048
22 = 4 27 = 128 212 = 4096
23 =8 28 = 256 213 = 8192
24 = 16 29 = 512

It will not be necessary to convert every number we use to binary in this way of
division. Most of the numbers we will work with are codes, numbers that command the
computer to do a certain task. To make things easier to express and convert them into
computer language we will use a special coding form called hexadecimal.

In hexadecimal form the binary numbers are arranged into groups of four bits each.
Thus the binary form of the decimal number 53 would be shown as:

0011 0101

Each place still has the same value. Therefore, we still have 32 + 16 + 4 + 1. We have
a total of eight places each of which has a value of (from left to right):

128 64 32 16 8 4 2 1

8+ 4+ 2+ 1 =15, the largest number we can represent with four bits. Notice that:

128 = 8 x 16
64 = 4 x 16
32 = 2x16
16 = 1 x 16.

So we can group the binary bits above and represent the decimal number 53 as '35' in
hexadecimal form. This means it has a value of (see table 1-1):

(3x16) + (5x1).

Using this system we are able to represent numbers when we code a program with a
few symbols and still be able to express quickly a number in binary form. If we wish to
convert '60' (the single quote(') symbols mean the number is in hexadecimal form) to
binary form, we change each digit to four binary digits:

0110 0000.

'98' would be 1001 1000
'20' would be 0010 0000
'11' would be 0001 0001
'48"' would be 0100 1000
'68' would be 0110 1000

In using hexadecimal numbers, we need six more digit symbols to represent the
numbers from ten through fifteen. We wish to use one symbol for each hexadecimal digit.
So we invent some symbols and to make it easy to remember them we will use the first
letters of the alphabet. Therefore, ten will be represented by A, eleven by B, twelve
by C, thirteen by D, fourteen by E, and fifteen by F. In keeping with this:

57

“FO' would be 1111 0000
'A8' would be 1010 1000
'BO' would be 1011 0000
-'D9' would be 1101 1001
'54' would be 0101 0100

Manual Input Procedure

One of the most important things about a computer is its ability to store informa-
tion. Here we will learn how to store information in memory, where the information is
stored so we can keep track of it, and what information we store.)

To open the input gates to memory follow this procedure: (see figure 1-40).

1. Power ON
2. CLEAR (Press CLEAR switch)
3. Select WT MEMORY
4. START (press START switch)
5. INPUT starting address on INPUT keys
6. Select M register (Press M register switch)
7. INPUT "word" on INPUT keys ("word" is two hexadecimal digits)
8. START
...repeat steps 7 and 8, until all information is in.

Decide where you wish to store information. The MEMORY ADDRESS register holds the
location or cell at which you will store information. In step 5 above we select the
first of several cells in which we will store information. 1In step 6 we select the M
register; this opens that particular memory cell to accept information. From then on
whatever we enter on the INPUT keys will be entered by pressing the START switch into
each memory cell.

We refer to two hexadecimal digits or eight bits as a word. Computers differ in
"word" size. The COM-TRAN TEN computer has eight bits in its ACCUMULATOR, BUFFER,
QUOTIENT, INDEX, and COUNTDOWN registers. This is the maximum any one memory cell can
hold also. This term "word" may represent an instruction code, an address, an operand,
a constant, or a piece of data between +127 and -128.

Following the procedure outlined above:

starting at MEMORY ADDRESS '10' (step 5)
input the following: (steps 7., 8.)

hexadecimal keys or INPUT binary keys
02 0000 0010
30 0011 0000
D8 1101 1000
57 0101 0111
16 0001 0110
FO 1111 0000
98 1001 1000
B8 1011 1000
04 0000 0100
Al 1010 0001

Press the RESET switch whenever you wish to erase what is on the INPUT keys. Only when.
you press the START is something entered into the computer.

58

CLEAR

il ,l .
SELE o /3 o
_______-5 . 2 O L e
- AE IV »
N v
WNNMMJ

Select Input “word”
WT MEMORY

START START

INPUT this last

Starting

Address word?

(CLEAR)
Select M
REGISTER

RDA26-438

Figure 1-40. Manual Input Procedure

59

Manual Output Procedure

You have just entered ten pieces of information or '"words" into the computer's
memory starting at cell 'l0'. Now let us retrieve that information. We will look at
the contents of memory cells '10' through '19' and examine what is stored there.

To open the output gates of memory follow this procedure (see figure 1-41):

.

UL~ WN

Power ON

CLEAR

Select RD MEMORY

INPUT starting address on INPUT keys (that is '10'")
Select M register

START

In the BUFFER register will be the contents of memory cell '10°'.

Is it:

0000 0010 or '02'?

In the MEMORY ADDRESS register will be 'll' and in the BUFFER will be '30'.
How does it look?
Continue to check out the MEMORY ADDRESS and the BUFFER.

MEMORY ADDRESS BUFFER
12 D8
13 57
14 16
15 FO
16 . 98
17 B8
18 04
19 Al

We have outlines the procedure for manually inputting data into memory and manually
recalling it. In summary:

MANUAL #*INPUT MANUAL #*%* QUTPUT
1. Power ON 1. Power ON
2. CLEAR 2. CLEAR
3. SELECT WT ' 3. Select RD
MEMORY MEMORY
4, START v 4, INPUT starting address
5. INPUT starting 5. Select M register
address
6. Select M register 6. START
7. INPUT "word" ...(repeat step 6)
8. START

...(repeat steps 7,8)

60

Power ON)

CLEAR

Select
RD MEMORY

Y

INPUT
Starting
Address

Select M
REGISTER

START

Look at
Contents
of BUFFER

NO

Make a ‘‘note” of

Error to correct

this - last

cell
?

Figure 1-41. Manual Output Procedure
61

CLEAR)

RDA26-439

REVIEW QUESTIONS 1-4

Holds the code for the instructions being performed.

All data going into or coming from memory goes here.

- Performs all arithmetic operations.

Used to modify a memory address.

Used to manually input hex numbers.

‘It holds the quotient after a divide.

Used to control the timing.

“Used
‘Used
. Used
Used
. Used
Used
Used
Used

Many

to
to
to
to
to
to
tg
to

of

Conductors used. to carry information many different places.

store numbers..

help control iﬁput and output:

take the two'sicomp;ement of a number.

hold the results of most aritﬁmetic and logical operatiomns.
hold values thaf are manually input.

hold the address of ﬁhe next instruction to be performed.
add the Memory Address Register and the Index Register.
£€Il\the computer what meﬁory location you are using.

the data transfers through the computer go through the register.

Performs some logical operations.

Used to hold the results of most logical operationms.

Bus Lines

Input Switches

Input Register

‘Buffer Register

. Twois.Cohplementer

Program Address Register -

OP Code Register

Memory

Memory Address. Register

Index Register

62

k. Index Adder
1. Accumulator
m. Quotient Register
n. Arithmetic Logic Unit
o. Countdown Register
p. Distributor
Answer the fqllowing questions in your own words.

2. Information to be written into the computer memory can come from which two places?
3. The information goes into what register before it goes into the Memory?

_4.. To execute a program, the address of the first instruction must be put in which
register?

5. Where is an instruction transferred after it is brought from Memory to the Buffer?
6. If an instruction requires data, where does the data come from?
7. What is the fastest way to enter data into the Input Register?

8. To enter. data into the "OP CODE" register from the Input Register which switch
is pushed?

9. The "RD" switch next to the Register Selection Switch is used to do what?
10. What does the acquisition phase of an instruction cycle do?

11. What does the execution phase of an instruction cycle do?

12. What is the purpose of the display panel?

13, After a divide, where does the remainder appear?

63

14. Which element (unit) of the COM-TRAN TEN performs all arithmetic and most logical
operations?

15. Which CT-TEN register keeps a running total of the result of arithmetic operations?

16. Can the ALU handle both positive and negative numbers during a subtraction
operation?

17. What three CT-TEN registers are used to hold the operands of multiply operation?

18. Why does the COM-TRAN TEN use the two's complement to express a negative difference
to a subtraction problem?

19. What is the two's complement of the binary number 0101 1010?

20. During what operations would the C Register of the CT-TEN be used?

21. Which oécurs first during a machine cycle, acquisition time.or execution time?
22. Which bits of an instruction code determine high order memory locations?

23. Which bit(s) of an instruction code determine indexing?

24, In the CT-TEN, which register must the operand pass through to reach the M
register? ’
PROGRAMMING

The attributes which have contributed to the growth and importance of modern digital
computers include the following:

1. Ability to operate at high speeds.
2. Capability of storing data permanently.
3. Operation in the stored-program mode.

4, Ability to handle "decision''-type operationmns.

64

5. Accuracy in repeated performances.

6. Capability of changing data and instructions as programmed.

7. Repetitive operations as instructed.

8. Indication of errors in number m;gnitude and in programming instructiomns.
9. Alphanumeric operations whereby messages can be stored and printed out.

Despite all these qualifications, however, the digital computer must still be told
what to do, how to do it, and what must be done with the end results. Trained personnel
who know how to communicate with computers and get them to process data are known as
Computer Programmers. Computer programmers communicate with the computer through a
medium called program language (Fortran, Cobol, RPG, etc.). This program language has
to be changed to machine language (coded commands which tell the computer what to do) by
a compiler, before it can be used by the computer. Computer technicians do not need to
know a program language; however, they must fully understand the machine language.

Machine language which is made up of coded commands or instructions tells the com-
puter what to do, how to do it, and where to store the results. When these instructions
are sequenced to perform a specific job to reach a desired end, they become a program.
In order for a computer technician to detect and locate any existing malfunctions, it is
necessary for him to know the content of any register anytime during a program run.

In this section you will learn the type of instruction, instruction repertoire,
instruction word format, data word format and the use of each instruction in the COM-
TRAN TEN. You should relate the flow of each instruction and/or data to the basic block
diagram and the block diagram of the COM-TRAN TEN.

Type of Instruction

The 44 discrete instructions used by the COM-TRAN TEN can be broken into various
categories as follows:

1. Load - 7 instructions

2. Store - 3 instructions

3. Arithmetic - 9 instructions
4, Logical - 5 instructions

5. Branch - 11 instructions

6. Input/Output - 9 instructions

Instruction Repertoire

Following is a list of the COM-TRAN TEN instructions with descriptions. The lower
case letters following the symbolic code of each instruction have the following
meaning:

l. m - Memory instruction
2. k - Immediate instruction

3. x =--Indexed instruction

65

INSTRUCTION REPERTOIRE

HEX CODE

SYMBOLIC

DESCRIPTION

NOTES

12

01

02

20

30

38

40

48

50

58

LX1,k

LCl,k

LAl,k

LDA,m,x

LCC,m,x

LAN,m,x

LDQ,m,x

STA,m,x

STX,m,x

STQ,m,x

LOAD

LOAD INDEX IMMEDIATE

Load INDEX Register with a count of k.
LOAD COUNTDOWN IMMEDIATE

Load COUNTDOWN Register with a count
of k. '

LOAD ACCUMULATOR IMMEDIATE
Load ACCUMULATOR with the value k.
LOAD ACGUMULATOR

Load ACCUMULATOR with contents of
memory address m.

LOAD CONSECUTIVE

Transfer the contents of memory address m
to memory address m + 1

LOAD ACCUMULATOR NEGATIVE

Load ACCUMULATOR with the two's com-
plement of the contents of m.

LOAD QUOTIENT REGISTER

Load QUOTIENT Register with the contents
of memory address m.

STORE
STORE ACCUMULATOR

Store contents of the ACCUMULATOR af
memory address m.

STORE INDEX

Store contents of the INDEX Register at
memory address m.

STORE QUOTIENT REGISTER

Store the contents of the QUOTIENT Register
at memory address m.

66

3,14

1,2,14

1,2

1,2,14

1,2

1,2

1,2

HEX CODE

SYMBOLIC

DESCRIPTION

NOTES

60

68

70

78

80

88

03

ADD,m,x

SUB,m,x

MPY,m,x

DIV,m,x

RAO,m,x

RSO,m,x

INX,k

ARITHMETIC
ADD

Add the contents of memory address m to
the contents of the ACCUMULATOR leaving
the result in the ACCUMULATOR. Condi-

tionally set carry and add overflow.

SUBTRACT

Subtract the contents of memory address m
from the contents of the ACCUMULATOR
leaving the result in the ACCUMULATOR.
Conditionally set carry and add overflow.

MULTIPLY

Multiply the contents of the ACCUMULA-
TOR by the contents of memory address m,
leaving a double length product in the AQ
Register. '

DIVIDE

Divide the double length number in the AQ
Register by the contents of memory address

m, leaving the quotient in the Q Register and
the remainder will be in the ACCUMULATOR.

Set Condition code according to the sign of
the quotient. The sign of the remainder will
be the same as the sign of the dividend. Con-
ditionally set divide overflow.

REPLACE ADD ONE

Add 1 to the contents of memory address m.
If the contents of memory address m is FF,
this instruction will cause the contents of
m to be set to zero and the carry bit will
be set. The ACCUMULATOR contains the result
of the addition.

REPLACE SUBTRACT ONE

Subtract 1 from the contents of memory
address m. If the contents of memory
address m is zero, this instruction will
cause the contents of m to be set to FF
and the carry bit will be set. The
ACCUMULATOR contains the result of the
subtraction.

INCREASE INDEX

Increase the contents of the INDEX Register
by k.

67

1,2,11
12,14

1,2,11
12,14

1,2,14

1’2’ :
13,14

1,2,4
11,14

1,2,4
11,14

- HEX CODE

SYMBOLIC

DESCRIPTION

NOTES

0B

10"

13

18

19:

90

98

AO

SLA,k

SRAk

SLL,k

SRL,k

AND,k

I0R,k

XOR,k

BUN,m,x

BST,m,x

BSB,m,x

LOGICAL
SHIFT LEFT ARITHMETIC

Shift the AQ Register left k places,
filling in zeros on the right.

SHIFT RIGHT ARITHMETIC -

Shift the AQ Register right k places,
propagating sign bits on the left.

SHIFT LEFT LOGICAL -

Shift the ACCUMULATOR left k places,
filling in zeros on the right.

SHIFT RIGHT LOGICAL

Shift the ACCUMULATOR right k places,
filling in zeros on the left.

AND

Form the bit-by-bit logical product of
k and the contents of the ACCUMULATOR,
leaving the result in the ACCUMULATOR.

INCLUSIVE OR

‘Form the bit-by-bit Inclusive OR of k

and the contents of the ACCUMULATOR,
leaving the result in the ACCUMULATOR.

EXCLUSIVE OR

Form the bit-by-bit Exclusive OR of

k and the contents of the ACCUMULA-
TOR, leaving the result in the
ACCUMULATOR.

BRANCH

BRANCH UNCONDITIONAL

Branch to memory address m.

BRANCH AND STOP

Branch to memory address m and stop.
BRANCH TO SUBROUTINE

Store BUN op code in location m. Store
the contents of the P Register (next
instruction address) in location m + 1.

Branch to location m + 2.

68

1,2

1,2

1,2

HEX CODE

DESCRIPTION

NOTES

A8

BO

B8

co

c8

08

09

0A

DO

SYMBOLIC

BPS,m,x
BZE,m,x
BNG,m,x
BNC,m,x
BXZ ,m,x
SKI,k

SKS,k

SKF, k

WDB,m,x

BRANCH ON POSITIVE

Branch to memory address m if the
condition code is greater than zero.

BRANCH ON ZERO

Branch to memory address m if the
condition code is equal to zero.

BRANCH ON NEGATIVE

Branch to memory address m if the condi-
tion code is less than zero.

BRANCH ON NO CARRY

Branch to memory address m if the
condition code is not carry.

BRANCH ON INDEX ZERO

Branch to memory address m if the
INDEX Register is zero.

SKIP ON INTERRUPT

Skip k instructions or 2k words if
interrupt is set.

SKIP ON SENSE SWITCH

Skip k instructions or 2k words if
the sense switch is on.

SKIP ON FLAG

Skip k instructions or 2k words if
flag is set.

INPUT/OUTPUT
WRITE DATA BLOCK

Transfer the contents of consecutive .
memory locations, starting with

address m to the selected external
device. Continue until the C Register
is zero. The number of words trans-
ferred from memory will be one more

than the initial count in the C Register.

69

1,2

1,2

1,2

1,2

1,2

192’
10

HEX CODE

SYMBOLIC

DESCRIPTION NOTES

D8

EO

E8

FO

11

00

28

F8

MNO,m,x

RDB,m,x

RDI,m,x

MNI,m,x

0CD, k

SST,k

FLC,k

FLS,k

MANUAL OUTPUT 1,2,15

Transfer the contents of consecutive
memory locations to the Input Register.
Continue until the C Register is zero.
The number of words transferred from
memory will be one more than the
initial count in the C Register.

READ DATA BLOCK ' 1,2,7,

Store data from the selected external
device in consecutive memory locatiomns
starting with address m. Continue until
C Register is zero. The number of words
stored in memory will be one more than
the initial count in the C Register.

READ UNTIL INTERRUPT 1
8

Store data from the selected external
device in comsecutive memory locations
starting with address m. Continue
until interrupt is set.

MANUAL INPUT 1,2
Transfer the contents of the Input Regis-

ter to consecutive memory locations start-

ing with address m. Continue until the C
Register is zero. The number of words

stored in memory will be one more than the
initial count in the C Register.

OUTPUT COMMAND 3,6,9
Transmit the operand k to the external

device addressed by the three low order

bits in k.

SENSE STATUS

The previously addressed device sends an

8-bit status word which is transferred to

the ACCUMULATOR.

FLAG CLEAR 5
Clear/flag to zero

FLAG SET 5

Set flag to omne.

70

10.

11.

12.

13.

14.

15.

NOTES for Instruction Repertoire

To address memory.locations above (FF1g); 1, 2, or 3 is added to the instruction code.

' Setting the index bit in on instruction OP CODE will cause the X Register to be

added to the memory address.
Value k is limited to (FF16).
Arithmetic in RAO and RSO instruction handles an 8-bit unsigned number.
Operand is not used in FLAG CLEAR or FLAG SET instructioms.
OCD instruction operand 5its have the following significance:
Bits 2, 1, O select one of eight peripheral units
Bit 3 selects HEX mode
Bit 4 selects APH mode

RDB and RDI instructions automatically generate and transmit the XON character to
the teletype. (XON turns on the tape reader.)

When using the telefype tape reader, the tape must end with XOFF followed by CONTROL
1. (XOFF turns the reader off after reading one more character; Control 1 sets the
Interrupt Bit.)

When using the teletype keyboard CONTROL H sets HEX mode; CONTROL A sets ALPHA mode.
In HEX mode a colon (:) loads the preceding two HEXadecimal characters into memory.

When using the teletype peripheral in HEXadecimal mode, output colons (:) are auto-
matically inserted, and line feeds and carriage returns are automatically generated.

CARRY Condition Code may be set by ADD, SUB, RAO, or RSO instructions. The CARRY
bit indicates that a carry or borrow took place from the 8-bit arithmetic result.
The 8-bit numbers are handled as unsigned binary numbers.

ADD overflow is an error condition. This bit is set whenever the magnitude of the
result exceeds the largest signed number that can be represented by 8-bits. The
8-bit numbers are handled as signed two's complement numbers.

DIVIDE overflow is an error condition. This bit is set whenever the magnitude of
the result exceeds the largest signed number that can be represented by 8-bits. The
8-bit number in the Quotient register is a signed two's complement number as is the
remainder in the Accumulator.

CONDITION CODE reflects the status df the Accumulator at the end of each instruction.

IEEadditioasto~the following:

X

Indicates status of the Quotient Register upon completion of a Divide instruction.

b. Indicates status of the double 1ength AQ Reglster after Multiply and Arithmetic

Shift instructions. (,“i_ 5([\ LA

On the MANUAL OUTPUT instructionm, the contents of the indicated memory location will
also be displayed on the Buffer Register. The computer will stop with the WAIT light
on, after each word is displayed. To continue, press the START switch.

71

Instruction Format

An instruction consists of two consecutive 8-bit words. The first word located at a
program address is displayed in the S Register. The second word is located at the next
~ consecutive address and is displayed in the M Register.

For immediate instructions not requiring memory access for addition data, the first
word is the op code and the

r— — OP CODE- -~ — — OPERAND - - 4
XXX XX X XX XXX XX XXX
second word is the operand of the instructions.

For instructions requiring memory access, the second word and the two lower bits of
the

XXX XX XXX & X XXXXXXKX
Lop Code ! L - —Memory Address — — — -}
Index
first word contain the 10-bit operand address word. The operand address is displayed
in the Memory Address Register. The five upper bits of the first word represent the op
code and the sixth bit of the first word indicates Indexing.

Addressing Upper Memory

The COM-TRAN TEN has 400 hex memory locations, numbered O - 3FF. These 400 loca-
tions may be broken into 'pages'" of memory as follows:

0 - FF
100 - 1FF
200 - 2FF upper memory
300 - 3FF

In order to get into upper memory, the 'page' number must be added to the op code.
For example: LDA 15 = 20 15. To get to upper memory, we must modify the op code.

21 15 would load A into location 115
22 15 would load A into location 215

23 15 would load A into locatlon 315

Indexing
There are times when it is desirable to modify the operand address of a given instruc-
tion without &dctually changing the data stored in memory. Indexing is an easy way to

accomplish this.

Setting S2, the index bit, to a 1 will cause the contents of the Index Reg to be
added to the contents of the M Reg during Acquisition time.

72

For example:
Op Code M Reg Index Reg
Hex 24 013 16
Binary 0010 0100 0Q 0001 0011 0001 0110

After indexing, the contents of the M Reg will be:

029
00 0010 1001

*Remember that bits SO-S1 and bits M8-M9 are the same two bits used for high order
addressing.
Number Representation
The COM-TRAN TEN uses a two's complement number system. Positive numbers are
treated in their normal binary representation. Thus, decimal 10 would have the binary

equivalent of 0000 1010.

The negative representation for this number is the two's complement of it. The two's
complement of any number is derived by complementing the number and adding one to it.)

BINARY NUMBER = 0000 1010
' COMPLEMENT = 1111 0101

+1 = 0000 0001
TWO'S COMPLEMENT = 1111 0110

This number is the negative representative for decimal 10. A simple rule for two's
complementation:

START WITH THE LSB POSITION
COPY THE BITS UP TO AND INCLUDING THE FIRST ONE
THEN COMPLEMENT ALL REMAINING BIT POSITIONS
"MSB of any number is the sign bit and is a "1" for negative numbers. The largest nega-

tive number in two's complement is one larger in magnitude than the largest positive
number. :

1000 0O0O0O

|

-128,

111 1111

+12710

ign bit

Instructions
Now you are ready to get into the instruction set of the COM-TRAN TEN. Keep in mind

that these instructions are for this computer only. Other computers will have similar
instructions and codes but not necessarily the same ones.

73

There are six different categories of instructions in the COM-TRAN TEN. You will not
learn all of the instructions in one category and then go to the next. We will be taking
instructions from different categories so that we can start writing small programs.

The load group is used to put data into the registers. The store group is used to
take data from the computer registers and put the data in memory. The arithmetic in-
structions are used to do the arithmetic operations such as add and subtract. The logi-
cal group performs such things as shifting, OR, exclusive OR, and AND functions. The
branching group allows control of the program. It allows a change in the sequence of
the program. The Input/Output (I/0) group allows data in from the teletype or out to the
teletype. As you go through the instructions in each group you will get a better idea of
what each instruction does.

Each instruction has a symbolic name which generally is an abbreviation of what it
does. It also has a Hexadecimal number code. This code is what will be put into the
computer memory in binary. The code is called machine language. You will need to know
some terms to understand the explanation of the instructions. Instructions will be laid
out in one of 2 formats for explanation. '

The First Format is as follows:

HEX SYMBOLIC MEMORY
CODE CODE ADDRESS INDEXABLE
20 LDA,m,x <& ‘

The 20 is the Hexadecimal code for the Load the Accumulator instruction. The m tells
you that the instruction must go to a memory location (m) to get the number it is going to
put into the accumulator. The X indicates that the memory address (m) can be indexed.
Indexing will be explained later. For now, note that it can be indexed.

The' Second Format is as follows:
02 (Hex Code) LAI (Symbolic Name) K (Constant)

The 02 is the Hex code for the Load Accumulator immediately instruction. The K
represents the number that will be put into the Accumulator. Note, the difference in
the two instructions. The LDA instruction must have a memory address to tell where the
number is coming from. The LAI uses no address. Instead, the number to be loaded is
a part of the Instruction.

Example: LDA 25; LAI 25
The LDA 25 means that the contents of memory location 25 will be put into the Accumula-
tor. This memory location may contain any 8-bit number. The LAI 25 means that the

number 25(16)will be put into the Accumulator.

Note, the difference between immediate instructions and memory instructionms.

Instruction Word Format

All instructions in the COM-TRAN TEN take 2 memory (8 bits each) locations. The
first location will hold the hexadecimal code for the instruction to be used. The
second location will hold either the constant K or the memory location m's address.
(Both K and m must be in hexadecimal.)

74

Those instructions that use memory addresses may sometimes need modification. Using
8 bits, the highest number we can get is a FF. This is 127 in decimal. Our computer
has 400 (16) memory locations. We have to add numbers to our Hexadecimal instruction
code if we want an address larger than FF. To address memory location 14B, we must add
the 1 to the Hex instruction code and put the 4B in the second memory location.

Examples:
SYMBOLIC CODE HEX CODE
First memory location Second memory location
LDA. 35 20 35
LDA 135 21 35
LDA 235 22 35
LDA 335 23 35

Each of these instructions loads the accumulator with the contents of different memory
locations. '

Micro Steps:

When you look at the programmers reference card, KDA-3020 you will find a column by
the instructions labeled "Micro Steps.'" These steps are there as a reminder of what
each instruction does. They do not tell you everything that happens during that instruc-
tion. They will serve as a quick reference so you will not have to search through the
book. An explanation follows:

REGISTERS CONDITION CODES

A - Accumulator . CARRY-Carry or borrow
C - Countdown (>0) greater than zero

M - Memory Address (=0) equal to zero

P - Program Address (<0) less than zero

Q - Quotient

AQ - Combined accumulator and quotient
I - Input

X - Index

K - Constant

SPECIAL SYMBOLS

—> Goes to
¢ () the contents of
H—> () shift right K places
<« (K) shift left K places
+ add
~ subtract
X multiply
= divide
« or
¢ and
® exclusive or
——NOT or compliment of

75

Examples:

o Ay (M)A

A register added to the contents of memory location m goes to the A.

SUB,m A-c(M)—A
A register minus the contents.of memory location m goes to the A register.

The following seven instructions are the first basic group you will learn. There is
a detailed explanation of each instruction with it.

Hex Code ' Symbolic Name Load Accumulator
20 LDA,m,x

LDA is a load accumulator instruction. The contents of memory location m will be put
into the accumulator. This instruction can be indexed which will be explained later in
the book. Memory location (m) is unchanged.

Example:
Before: LDA 3E Accumulator = F3 Memory Location 3E = 27
After: LDA 3E Accumulator = 27 Memory Location 3E = 27

Note, that what was in the accumulator (F3 in this case) was destroyed and the contents
of location 3E (27 in this case) was put into the accumulator.

48 STA,m,x Store Accumulator
This instruction is used to put the contents of the accumulator into a memory loca-

tion (m). The contents of the memory location before the instruction is executed will
be destroyed. The accumulator contents will be unchanged.

Example:
Before: STA 43 Accumulator = 7B Memory Location 43 = D1
After: STA 43 Accumulator = 7B Memory Location 43 = 7B

The D1 that was in memory location 43 is destroyed by the STA 43 instruction.

60 ADD,m,x ADD

This instruction is used to ADD the contents of Memory location m to the contents
of the accumulator. The contents of Memory location will be unchanged, but the accumu-
lator will contain the sum of the two numbers.

Example:
Before: ADD 1F Accumulator = 08 Memory Location 1F = 05
After: ADD 1F Accumulator = 0D Memory Location 1F = 05

Note, that the 08 that was in the accumulator was destroyed by the ADD.

76

68 SUB,m,x SUBTRACT

This instruction is used to subtract the contents of memory location m from the
accumulator leaving the difference in the accumulator. All negative numbers are in
two's complement form. If the computer comes up with a negative answer (such as sub-
tracting a larger number from a smaller number), then it will be in two's complement
form. If you enter a negative number it must be in two's complement.

Example:
Before: SUB 71 Accumulator = 43 Memory Location 71 = 21
After: SUB 71 Accumulator = 22 Memory Location 71 = 21

13 SLL,k Shift Left Logical

This instruction is used to shift the accumulator to the left. It will be shifted
the number of times specified by the constant k. Remember, k will be specified in
Hexadecimal. The constant k can be any number from 0 to FF. It would not be practical
to shift it more than 8 times because after 8 shifts the accumulator will be zero.

Example:
Before: SLL 03 Accumulator = 0101 1100 (2)‘= 5¢
After: SLL 03 Accumulator = 1110 0000 (2) = EO

Note, zeros shift in on the right'as the number moves left.
18 SRL,k Shift Right Logical

This instruction is used to shift the contents of the accumulator to the right.
The number of places the accumulator will be shifted is specified by the constant k.
. Again, k can be any number between 0 and FF, but after 8 shifts the accumulator will be
zero. Sign bit is shifted along with the number.

Example:
Before: SRL 01 Accumulator = 1011 0100 (2) = B4
After: SRL 01 Accumulator = 0101 1010 (2) = 5A

Note, zeros are shifted in on the left as the number is shifted right. Both the SRL
and the SLL used a constant k. Logical shifts only affect the accumulator. Remember,
that this is not an address of memory.

98 BST,m,x Branch and Stop

This instruction is used to stop the computer. You will put this instruction at the
end of most of your programs. The BST instruction will load the Program Counter (the
register that stores the next instruction address) with the address of memory location

m. When the computer will halt, the Program Counter is the only register that changed.

Example:

]

Before: BST 36 Program Counter = 74

After: BST 36 Program Counter = 36 and the computer has halted

77

Now we will put these seven instructions to work. Suppose we wanted to figure out
this formula: y = 2x+ 5 - z.

Out first step in writing the program would be to analyze the problem. We know, for
instance, that we want the answer y. Therefore, y is an unknown. To find y we must
know x and z. We can assume that those two will be given to us. We can also see that
we are going to have to add, subtract, and multiply to get the answer. At least now we
know what we must do to find the answer.)

The second step in writing a program is to devise a method to solve the problem.
This has been done for us since we are given the formula. All we have to do is tell the
computer how to work the formula. If, however, we had been given a problem to determine
some mathematical process, then we would have to find or derive a formula.

Our third step is to develop a flow chart. Each step is explained in the following
example.

First draw the flow chart symbol to show Where to StaTt....eeeeeeee..
!

Next show the operation to get X fTOm MEMOTY.ueeeerneneennroosonannan

[ADD x |

Add x to x to obtain the value 0f 2X.iciiieererrsoseescsessconssnnons

Add 5 tO 2Xuiissstessasseanseassoscasssnssasssscessoasassassesnscnconncas

(®
(®)
SUDLTACE Zeseesaseeesnosossassasscstsssssssosssssssssscssssscsssennssel SUB 2]

U PO S, . ra
Put the results into 10CALION Yeueereoeoesosresensssssessassesssssases STA Y

THEN SEOP:«vuseerunsertuunesuuneesunsssesunsesssneesnnsseessesnnssess (HALT)

Now that we have a flow chart that will work we need to write the program. To do
this all we need to do is find an instruction or a group of instructions that will do
each thing in the flow chart. The first thing we need to do is to assign x, y, z and 5
memory locations where they can sit until we are ready for them. These locations can
be anywhere in memory that we are not using for something else, like our program. So
let's put x in location 20, y in location 21, z in location 22, and 5 in locatiomn 23.
We could have put them anywhere, but once we have assigned these memory locations, we
must use them.

Find an instruction that will get x out of memory and put it in the accumulator. It
just so happens that the LDA instruction does just that. So our first instruction is
LDA 20. To make X become 2x, we must add another x. The instruction used for this is
ADD 20. To add 5 we must do ADD 23. We now need a way to subtract z. We can use the
SUB instruction. So to subtract z we do a SUB 22. Now, we have our final result. We
want to put this in y so we must do a STA 21. The last thing we must do is stop the
computer. We can do this with a BST 00. The address portion of this instruction
usually causes a branch back to the beginning of the program or to an area in the mem-
ory where data is stored so you can look at the results.

78

Now we have our program.

LDA 20 Load x
ADD 20 Add x

ADD 23 Add 5

SUB 22 Subtract z
STA 21 Store y
BST 00 STOP

Our program must also go into memory. Usually you will put the program into memory
starting at location 00. Programs can, of course, start at any location in memory just
as data can be located in any available memory address. It was mentioned earlier that
all instructions take two memory locations. One location holds the instruction code
while the next successive location holds either the address location or operand
(constant).

If we put the LDA 20 into memory locations 00 and 01 then the ADD 20 instruction
must go into memory locations 02 and 03. The hex code for LDA (20) goes into memory
location 00. The memory address 20 which is the location for x, goes into memory loca-
tion 0l. Each instruction needs two memory locations. The program must follow in
sequential memory locations. This is known as a straight line program.

The fifth step in writing a program is to code it into machine language. In memory
locations 00 and 01 we will put the LDA 20 instruction. In locations 02 and 03 we will
put the ADD 20 instructions and so on. Our format will be as follows:

Memory locations Symbolic code Hex Code Remarks
00, 01 LDA 20 20 20 Load Accumulator with x
02, 03 ADD 20 60 20 Add x to accumulator
04, 05 ADD 23 60 23 Add 5 to accumulator
06, 07 SUB 22 68 22 Subtract z from accumulator
08, 09 STA 21 48 21 Store accumulator in y
0A, 0B BST 00 98 00 Stop with 00 in program count

Notice first that all memory locations are in hex. If the first instruction starts in
an even memory location, so do the remaining instructions.

The first number in the hex column is the hexadecimal code for each instruction.
The second number is either the memory address or a constant (operand) depending on the
type of instruction.

The sixth and seventh steps would be performed by inserting the instructions into
the computer and executing the program. You do not need to do these steps for this pro-
gram. You will be doing them on the programs you write.

In the program above x and z can be any numbers capable of fitting into one mem-
ory location. That means that we can find y for any number of different x's and z's.

All we would have to do is to put a new x and a new z in and run the program again.

If we let x = 4 and z = 1 our program would perform as follows:

PROGRAM ACCUMULATOR REMARKS

LDA 20 04 Load the &4

ADD 20 08 . - Add 4 to it

ADD 23 0D Add 5 to it

SUB 22 1] Subtract 1

STA 21 0ocC Store answer in y
BST 00 0ocC STOP

79

If we looked in memory location 21 we would find that it contains a 0C. If you have
any questions about the 7 instructions on this program, see your instructor.
REVIEW QUESTIONS 1-5
1. Match the following statements with the step in which it would be pefformed.

This step is sometimes performed by the computer.
Figure how to take this given material and come up with the answer.
If the program doés not run correctly this step ﬁust be done.

____ Make a pictorial representation of how to solve the problem.

1. Analyze the problem.

2. Devise a general method to solve the problem.

3. Develop a flow chart.

4. Write the program.

5. Put symbolic coding into machine language.

6. Test the program.

7. Revise the program.

Match the following instructions with their functionms:

____ Subtracts the contents of the memory location specified from‘the Accumulator.

____ Shifts the Accumulator right the number of places specified.

;__ Puts the contents of the Accumulator into memory.

__Adds the contents of the memory location specified to the Accumulator.

____Puté the‘contents of the memory 1ocation specified into the Accumulator.

Puts the address portion into the Program Address Register and halts the com-
puter. :

Shifts the Accumulator left the number of places specified.

1. LDA
2. STA
3. ADD
4, SUB
5. SLL
6. SRL
7. BST

80

3. Analyze the following programs. Give the contents of the Accumulator after each
instruction. If you have trouble, go to the computer, load the program and run it one
instruction at a time.

Memory Symbolic Accumulator
Location Code

00,01 LDA 08

02,03 SRL 03

04,05 ADD 09

06,07 BST 00

QB 1A

09 05
Memory Symbolic Accumulator
Location Code

40,41 LDA 4E

42,43 . ADD 4F

44,45 STA 4E

46,47 SLL 01

48,49 \ , SUB 4F

4A, 4B STA 4F

4C,4D BST 4E

4E ' 07

4F 02

Now we can go into seven more of the instructions. The same format will be used to
discuss these as was used with the first seven.

40 LpQ,m,x Load Q

This instruction is used to load the contents of the memory location m into the Q
(quotient) register. The contents of memory location m are not changed.

Before: 1DQ 07 Q Register

]

21 Memory Location 07 12

After: LDQ 07 Q Register 12 Memory Location 07 12

No other register is affected. In other words, the accumulator was not changed, just
the Q register.

81

58 STQ,m,x Store Q

This instruction is used to put the contents of the Q register in memory location m.
The contents of the Q are not affected. Upon completion of the STQ instruction, memory
location m will contain the same information as the Q register.

Example:
Before: STQ CO Q Register = 3C Memory Location CO = FF
After: STQ CO Q Register = 3C Memory Location CO = 3C

Note, that the only thing affected is the contents of memory location m.
38 LAN,m,x Load Accumulator Negative
This instruction is used to put the two's complement of the contents of memory loca-

tion m into the accumulator. The accumulator will hold the two's complement of what was
in memory location m. :

Example:
Before: LAN 4F Accumulator = 36 Memory Location 4F = 05
After: LAN 4F Accumulator = FB Memory Location 4F = 05

FB is the two's complement of 05. Actually FB is the 16's complement of 05 but hexa-
decimal is only a binary shorthand.

70 MPY,m,x Multiply

This instruction is used to multiply the contents of the accumulator by the contents
of memory location m. The product of this multiply is placed back into the combined AQ
register., The A register will hold the 8 most significant bits, while the Q will hold
the 8 least significant bits. If you multiply two numbers whose product is greater than
7F, you would get an overflow. This would severely limit the numbers you can multiply.
To avoid this problem, the answer is put into two registers. In that way you can never
exceed the modulus (get an overflow) when you do a multiply.

Example 1:
Before: MPY 27 Accumulator = 05 Q Register = 34 Meﬁory Location 27 = 07
After: MPY 27 Accumulator = 00 Q Register = 23 Memory Location 27 = 07
5 x 7 = 0023 or in decimal 5 x 7 = 35 23(16) = 35 (10)
Example 2:
Before: MPY 62 A ﬁegister = 43 QkRegister = 00 Memory Location 62 = 7C

After: MPY 62 A Register = 20 Q Register = 74 Memory Location 62 = 7C
- 43 x 7C = 2074 or in decimal 67 x 124 = 8308 2074(16) = 8308(10)

Even though in Example 1 the answer only needed 8 bits, the accumulator is still part
of the answer. ’

82

78 DIV,m,x Divide

.This instruction is used to divide the contents of the combined AQ registers by the
contents of memory location m. The answer is put into the Q register and the remainder
is put into the A register. Notice that it has a remainder not a fraction. In other
words if you divide 5 by 2, the answer will be 2 in the Q reg and 1 in the A reg. You
will not get a 2.5 answer. Note also that the answer must be contained in 8 bits. That
is if you divide one number by another and the answer is greater than 7F you will get an
error.

The accumulator and the Q register are considered as one 16-bit register when doing
a divide. The accumulator will hold the sign of the number. If the number to be
divided by is FB (-5), then the accumulator will have to be FF and the Q register will
be FB. That is, the combined AQ register must have the two's complement of the number,
not just the Q register. Also, the remainder (A register) will have the sign of the
number you are dividing into unless there is no remainder. Therefore, if you are divid-
ing into a negative number the remainder, if there is one, will be in two's complement
form. . o '

In the following examples, we will use the same values with different signs to help
point out the fact that the remainder has the sign of the number you are dividing into.

Example 1: Dividing 5 by 2

Before: DIV 57 A Regiéter 00 Q Register = 05 Memory Location 57 = 02

After: DIV 57 A Register = 01 Q Register = 02 Memory Location 57 = 02

5 =2 = 2 remainder 1
Example 2: Dividing 5 by -2

Before: DIV 57 A Register

00 Q Register = 05 Memory Location 57 = FE

After: DIV 57 A Register = 01 Q Register = FE Memory Location 57 = FE
5 - FE(-2) = FE(-2) remainder 1

Example 3: Dividing -5 by 2

Before: DIV 57 A Register = FF Q Register = FB Memory Location 57 = 02

After: DIV 57 A Register = FF Q Register = FE Memory Location 57 = 02

FF FB (-5) - 2 = FE (-2) remainder FF (-1)

Example 4: Dividing -5 by -2

Before: DIV 57 A Register = FF Q Register = FB Memory Location 57 = FE

After: - DIV 57 A Register

FF Q Register = 02 Memory Location 57 = FE

FFFB (-5) - FE (-2) = 2 remainder FF (-1)

OB SLA,k Shift Left Arithmetic

This instruction shifts the combined AQ register left the number of places specified
by the constant k. The constant k (operand) can be any value from 0 to FF but after 10
hex shifts the AQ register contains all zeros.

83

Zeros are used to fill in the Q LSB. The Q MSB is shifted into the A LSB. A pic-
toral diagram is below.

- A e Q +——0

RDA26-440

Example:
Before: SLA 09 A Register = 0B Q Register = 42
After: SLA 09 A Register = 84 Q Register = 00

10 SRA,k Shift Right Arithmetic

This is used to shift the combined AQ register right the number of places specified
by the constant k. The sign bit of the accumulator is shifted in from the left. In
other words, if bit 7 (sign bit) of the A register is O then zeros will be shifted in.
If bit 7 of the A register is 1 then ones will be shifted in.

Example 1:
Before: SRA 08 Accumulator = 05 Q Register = F3
After: SRA 08 Accumulator = 00 Q Register = 05
Example 2:
Before: SRA 08 Accumulator = FB Q Register = F3
After: SRA 08 Accumulator = FF Q Register = FB

The following is a short program that used some of the instructions you have learned.
Read it carefully and keep track of the A Register and the Q Register after each instruc-
tion. In other words, write down what would be in the A and Q registers after the com-
puter runs each step. ’

MEMORY LOCATIONS SYMBOLIC CODE

00.01 LDA 50
02.03" © LDQ 51
04.05 DIV 52
06.07 ‘ STA 60
08.09 STQ 61
0A.0B LAN 53 ¢(50) = FF
0C.0D LDQ 51 c(51) = F5
OE.OF .~ DIV 52 c(52) = 03
10.11 STA 62 c(53) = 01
12.13 STQ 63
14.15 LDA 51
16.17 SRA 08
18.19 DIV 52
1A.1B STA 64
1C.1D STQ 65
1E.1F BST 00

Here is the program again with the contents of the A and Q shown after each step.
See if your's compares to this:

MEMORY LOCATIONS SYMBOLIC CODE A REGISTER Q REGISTER
00.01 LDA 50 FF 00
02.03 1DQ 51 FF F5
04.05 DIV 52 FE FD
06.07 STA 60 FE FD
08.09 STQ 61 FE FD
0A.0B LAN 53 FF FD
0C.0D LDQ 51 FF F5
OE.OF DIV 52 FE FD
10.11 STA 62 FE FD
12.13 STQ 63 FE FD
14.15 LDA 51 F5 Fd
16.17 SRA 08 FF F5
18.19 DIV 52 FE FD
1A.1B STA 64 FE FD
1C.1D STQ 65 FE FD
1E.1F BST 00 FE FD

c(50) = FF .
c(51) = F5
c(52) = 03
c(53) = 01

There are a few things that need to be said about the program. First, there are three
routines that all do the same thing. This program divides -11 by 3. It does it three
times, each in a different way. Steps 00-08 do it by first loading the A directly with
FF, loading the Q with F5, and then dividing by 3. The second group, steps 0A-12, does
it by loading A negative with 1 which puts FF into the A register. Steps l4-1lc does it
by loading the A with F5 (-11) and shifting it right. That shifts ones into the A
because the sign bit was set. Therefore, it leaves FFs in the A register after the
shift.

There are many ways to approach the same problem, as was just shown. No one way is
better than another. A programmer should try to make his program as short as possible
and still satisfy the requirements. The reason is that memory space in a computer is
usually very precious. You need to take up as little space as possible with your pro-
gram. This leaves room for data and other programs.

REVIEW QUESTIONS 1-6
1. Analyze the following programs and give the contents of the Accumulator and the

Quotient after each step. If you have trouble, go to the computer, load the program
and run it one instruction at a time.

Memory Symbolic- . Accumulator Quotient
Location Code

00,01 B LDA 0A

02,03 ~ SRA 08

04,05 DIV OB

85

Memory Symbolic Accumulator Quotient
Location Code ’

06,07 BST 00
0A 57
0B 03
Memory Symbolic Accumulator Quotient
Location Code
00,01 LDA OC
02,03 MPY 0D
04,05 DIV OE
06,07 SLA 08
08,09 MPY 0D
0A,0B BST 00
0cC 6
0D 3
OE 2
Memory Symbolic Accumulator Quotient
Location Code
00,01 LDA 14
02,03 MPY 14
04,05 SLA 08
06,07 MPY 15
08,09 SLA 08
0A,0B SUB 16
0C,0D SUB 16
OE,OF ADD 17
10,11 STA 18
12,13 BST 00
14 05
15 02
16 06
17 03
18 00

86

2. What are the contents of memory location 18 when this program stops?

Branching and Indexing

02 LAI,k Load Accumulator Immediate

This instruction will load the accumulator with the constant k. K can be any value
between 0 and FF. Notice that no memory location is used for the data. K is the data,
not the address of the data.

Example:
Before: LAI 4B Accumulator = 37 Memory Location 4B = 00
After: LAi 4B Accumulator = 4B Memory Location 4B = 00

Notice that 4B was put into the accumulator, not the contents of memory location 4B.
80 RAO,m,x Replace and Add One

This instruction will load the accumulator with the contents of memory location m,
add 1 to it, and store it back into memory location m. Notice here that the contents
of the A register will be destroyed.

Example:
Before: RAO 21 Accumulator = 32 Memory Location 21 = 42
After: RAO 21 Accumulator = 43 Memory Location 21 = 43

88 RSO,m,x Replace and Subtract One

This instruction loads the accumulator with the contents of memory location m,
subtracts one from it, and stores the results back into memory location m. This
instruction will destroy the contents of the accumulator.

Example:
Before: RSO 3E Accumulator = 10 Memory Location 3E = 50
After: RSO 3E Accumulator = 4F Memory Location 3E = 4F

90 BUN,m,x Branch Unconditionally

This instruction will cause the sequence of the program to jump to the instruction
at memory location m. In other words, the next instruction to be performed will be
the instruction in memory location m. Below is a diagram of what this instruction will
do.

PROGRAM PROGRAM FLOW

00 First Imnstruction

08 Instruction
0OA BUN 10

NOT EXECUTED

10 The inst. after BUN
.

87

Steps 00 through 08 will be performed sequentially, that is one right after the
other. Then the BUN 10 will be performed at step OA. This will cause control of the
computer to transfer to the instruction at step 10. The steps between steps 0OA and 10
are jumped over and they are not performed. Before we can talk about some other branch-
ing instructions, we need to know about condition codes.

There are four flip-flops that the computer uses as condition codes. These usually
give the status of the accumulator except after a divide, in which case the status of
the Quotient will be given. The condition code set after a multiply instruction indi-
cates the status of the combined AQ register.

If the accumulator (or quotient in the case of a divide) is zero, the =0 flip-flop
will be set. If the result is negative, the (less than zero) flip-flop will be set.
After an add or subtract, if the instruction caused an overflow or borrow because of
the limited size of the accumulator, the carry flip-flop will be set. During a divide,
the condition codes will be set by checking the Q register. In other words, if Q = O,
the = 0 flip-flop will be set, if Q<0 then <0 will be set, and if Q>0 (greater than
zero) then >0 will be set. The computer can check these condition codes and make deci-
sions depending upon their state. All decisions made by the computer, are made by
checking either these conditions or others that will be discussed later.

A8 BPS,m,x Branch on Positive

This instruction will cause the sequence of the program to change to the instruction
at memory location m if the >0 condition code is set. In other words, if the condition
code >0 ff is set, the normal step-by-step process will be altered and the process will
start back up at memory location m.

Example:
MEMORY LOCATION PROGRAM PROGRAM FLOW
34 Instruction
46 BPS 54
48 Instruction (not executed if >0 ff is set)

.
54 Next instruction T

In this example, the program will step sequentially up to step 46. It is at this if
" the condition code >0 is set then the next instruction will be at step 54. If >0 is not
set, the next instruction will be step 48. Theé computer can decide, by checking the
>0 condition code, whether to do step 54 next or to do step 48.

BO BZE,m,x . Branch on Zero

This instruction will cause the sequence of the program to change to the instruction
at memory location m if the condition code =0 is set. If the condition code =0 is set,
this instruction is performed. The normal step-by-step process will be changed and the
process will be started again at memory location m. This instruction allows the com—
puter to make decisions on what to do by checking for an answer being zero. Remember,
the condition codes are not set by the condition of the accumulator only.

B8 BNG,m,x Branch on Negative

This instruction is used to change the sequence of the program to memory location m
if the condition code<0 is set. If the <0 condition code is set, then the normal flow

88

of the program will be changed. The flow will pick up again at memory location m. This
allows the computer to make decisions based on the <0 condition code.

Now that you have learned seven more instructions, you can see that the branching
instructions are what gives the computer its '"brain'". They allow logical decisions to
be made which is essential to figuring most problems. These instructions are the major
difference between a computer and a calculator.

The following is a program for finding the larger of two numbers. There are many
ways to work this problem. This is just one of the ways.

00 LDA 20 START
02 SUB 21
04 BNG 0A
06 LDA 20 | LOAD FIRST NUMBER |
08 BST 00
0A LDA 21
0C BST 00 | SUBTRACT SECOND NUMBER |
20 first number
21 second number IS ANSWER yes —
<0
no DISPLAY FIRST
NUMBER
| DISPLAY SECOND NUMBER | ((HALT)
HALT

RDA26-441

Notice that subtracting and using a branch on negative could tell us which number
was largest. If the answer is negative, then the second number must have been larger
than the first.

REVIEW QUESTIONS 1-7
1. Match the following instructions with their functionms.
Unconditionally causes a change in the sequence of a program.

Adds one to the memory location specified.

Cause a change in the sequence of a program if the '"greater than zero" condi-
tion code is true.

Subtracts one from the memory location specified.
1. LAI

2. RAO

89

3. RSO

4. BUN
5. BPS
6. BZE
7. BNG

Answer the following questions in your own words.
2. What is meant by the term "unconditional" branch?
3. What is meant by the term "conditional" branch?

4. What happens if the condition being checked by a conditional branch instruction is
a one (true)?

5. What happens if the condition being checked by a conditional branch instruction is
a zero (false)?

6. Analyze the following program. Give the contents of the Accumulator. Be sure and
leave the registers blank beside any instructions not performed. If you have trouble,
go to the computer, load the program and run it one instruction at a time.

Memory Symbolic Accumulator
Location Code

00,01 LDA 0OC

02,03 ADD 0D

04,05 SLL 04

06,07 BNG 0A

08,09 ' BST 00

0A,0B BST 01

0cC 05

0D 06

7. Which program step did not get executed?
8. 1If the BNG OA at step 06 was changed to BPS OA which step would not get executed?
9. Analyze the following program and give the contents of thé Accumulator and Quotiént

registers after each step. If you have trouble, go to the computer, load the program
cand run it ome instruction at a time.

90

Memory Symbolic Accumulator Quotient

Location Code
00,01 LDA 20
02,03 SRA 08
04,05 DIV 21
06,07 BNG 0OC
08,09 STQ 22
0A,0B BST 00
0C,0D LDA 20
OE,OF STA 22
10,11 BST 01
20 0A
21 02
22 00

10. If lTocation 06 was changed to a BZE, where would this program stop?

11. If memory location 20 had FC in it when this program was run, where would the
program stop?

12. If memory location 20 had FC in it when this program was 'run, what would be in
memory location 22 when the program stopped? .

19 AND,k AND
This instruction will AND the contents of the accumulator with the constant k. The
results will be put into the accumulator. A logical AND of two numbers works just like

an AND gate. In other words, both inputs must be one to get one output.

Example:

Before: AND 35 Accumulator = 61(16) 0110 0001
After: AND 35 Accumulator = 21(16) 0010 0001
If we match the two numbers in binary maybe you can see what happens.

Accumulator = 0110 C001
We ANDED with 0011 0101

Result 0010 0001
Both bit 0's are ones. AND says both A and the number must be ones to get a one.

So if both A and the number has a one in the same position then a one will be put back
into the Accumulator in that position.

91

1A IOR,k Inclusive OR

This instruction will do a bit by bit inclusive OR of the Accumulator and the con-
stant k putting the results back into the accumulator. In other words, it works like an
OR gate. If either the A or the constant has a one in that bit position the result will
have a one there.

Acc = 1001 0101
k = 0101 0011
Res = 1101 0111

1B XOR,k Exclusive OR

This instruction does a bit by bit exclusive OR of the accumulator and the constant
k and puts the results back into the accumulator. An exclusive OR means if one or the
other (but not both) has a one in that bit position then the result will have a one in
that bit position.

Acc = 0101 1100
k = 0100 1011
Res = 0001 0111

Earlier you were told not to worry about the instructions that had "x" placed after
them. You were told that it meant the instruction could be indexed and indexing would
be explained later. Now you will learn indexing.

Indexing is nothing more than a convenient way to modify or change a memory address.
An instruction that has been indexed will use the memory location m as a starting point.
Then it will add to this address the contents of the index register. This will give a
result which will be the new memory location. Let's go through an example to help ex-
plain it. :

LDA,x 30

This says to load the accumulator with the contents of some memory location. Because
of the x, we can not be sure of what location we will be loading until we know what is
in the index register. If the index register has 00 in it then we will load the accu-
mulator with the contents of location 30. How did I get that? 30 (the memory location)
+ (00 the contents of the index register) = 30 (the address we will load).

If the index register has 05 in it then we will load the accumulator with the con-
tents of memory location 35. 30 + 5 = 35. The index register can hold any value 00
through FF. i

In order for the computer to know you want to index, you will have to modify the
hexadecimal code for the instruction. If you remember how to modify codes to get into
"high memory," this process is the same. Instead of adding 1, 2, or 3 as we did to get
into high memory this time we will add a 4 to get indexing.

SYMBOLIC HEX CODE
LDA,x 23 24 23
You can index high memory by adding the 1, 2, or 3 and adding the 4.
SYMBOLIC HEX CODE
LDA,x 23B 26 3B

Refer to the Instruction Repertoire on page 111.

92

Naturally if we want to be able to use this in any programs we must be able to work
with the index register. That is, we must be able to load the index with a known value.
The following instructions work with the index register.

12 LXI,k Load Index Immediate

This instruction will load the index register with the constant k. No other regis-
ters will be affected.)

Example:
Before: LXI 07 dindex register = 00
After: LXI 07 index register = 07
50 STX,m,x Store Index
This instruction is used to put the contents of the index register into memory loca-

tion m. Whatever was in memory location m will be destroyed and replaced by the con-
tents of the index register. The index register will not be affected.

Example:
Before: STX 42 1Index register = 16 Memory location 42 = 66
After: STX 42 1Index register = 16 Memory location 42 = 16

03 INX,k Increase Index

This instruction is used to change the index register by adding a value to it. If
the constant k is p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>