
Model ensembling is a very powerful technique to increase

accuracy on a variety of ML tasks. In this article I will share my

ensembling approaches for Kaggle Competitions.

For the first part we look at creating ensembles from submission files.

The second part will look at creating ensembles through stacked

generalization/blending.

I answer why ensembling reduces the generalization error. Finally I

show different methods of ensembling, together with their results

and code to try it out for yourself.

This is how you win ML competitions: you take other peoples’
work and ensemble them together.” Vitaly Kuznetsov NIPS2014

Creating ensembles from submission files
The most basic and convenient way to ensemble is to ensemble

Kaggle submission CSV files. You only need the predictions on the

test set for these methods — no need to retrain a model. This makes it

a quick way to ensemble already existing model predictions, ideal

when teaming up.

Voting ensembles.

We first take a look at a simple majority vote ensemble. Let’s see why

model ensembling reduces error rate and why it works better to

KAGGLE ENSEMBLING GUIDE
JUNE 11, 2015 | 21 COMMENTS

MLW ave  PrimaryMenu

converted by Web2PDFConvert.com

http://mlwave.com/
http://cims.nyu.edu/~vitaly/
http://mlwave.com/wp-content/uploads/2015/06/Repetition_Code_On_Fading_Channel_Graph.jpg
http://mlwave.com/wp-content/uploads/2015/06/NetflixPrize.png
http://mlwave.com/wp-content/uploads/2015/06/t-sne.png
http://mlwave.com/wp-content/uploads/2015/06/otto.png
http://mlwave.com/wp-content/uploads/2015/06/tut-headpose.png
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

ensemble low-correlated model predictions.

Error correcting codes

During space missions it is very important that all signals are

correctly relayed.

If we have a signal in the form of a binary string like:

1110110011101111011111011011

and somehow this signal is corrupted (a bit is flipped) to:

1010110011101111011111011011

then lives could be lost.

A coding solution was found in error correcting codes. The simplest

error correcting code is a repetition-code: Relay the signal multiple

times in equally sized chunks and have a majority vote.

Original signal:
1110110011

Encoded:
10,3 101011001111101100111110110011

Decoding:
1010110011
1110110011
1110110011

Majority vote:
1110110011

Signal corruption is a very rare occurrence and often occur in small

bursts. So then it figures that it is even rarer to have a corrupted

majority vote.

As long as the corruption is not completely unpredictable (has a 50%

chance of occurring) then signals can be repaired.

A machine learning example

Suppose we have a test set of 10 samples. The ground truth is all

positive (“1″):

1111111111

We furthermore have 3 binary classifiers (A,B,C) with a 70% accuracy.

You can view these classifiers for now as pseudo-random number

generators which output a “1″ 70% of the time and a “0″ 30% of the

time.

converted by Web2PDFConvert.com

http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Repetition_code
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

We will now show how these pseudo-classifiers are able to obtain

78% accuracy through a voting ensemble.

A pinch of maths

For a majority vote with 3 members we can expect 4 outcomes:

All three are correct
 0.7 * 0.7 * 0.7
= 0.3429

Two are correct
 0.7 * 0.7 * 0.3
+ 0.7 * 0.3 * 0.7
+ 0.3 * 0.7 * 0.7
= 0.4409

Two are wrong
 0.3 * 0.3 * 0.7
+ 0.3 * 0.7 * 0.3
+ 0.7 * 0.3 * 0.3
= 0.189

All three are wrong
 0.3 * 0.3 * 0.3
= 0.027

We see that most of the times (~44%) the majority vote corrects an

error. This majority vote ensemble will be correct an average of ~78%

(0.3429 + 0.4409 = 0.7838).

Number of voters

Like repetition codes increase in their error-correcting capability

when more codes are repeated, so do ensembles usually improve

when adding more ensemble members.

Using the same pinch of maths as above: a voting ensemble of 5

pseudo-random classifiers with 70% accuracy would be correct ~83%

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

of the time. One or two errors are being corrected during ~66% of the

majority votes. (0.36015 + 0.3087)

Correlation

When I first joined the team for KDD-cup 2014, Marios Michailidis

(KazAnova) proposed something peculiar. He calculated the Pearson

correlation for all our submission files and gathered a few well-

performing models which were less correlated.

Creating an averaging ensemble from these diverse submissions gave

us the biggest 50-spot jump on the leaderboard. Uncorrelated

submissions clearly do better when ensembled than correlated

submissions. But why?

To see this, let us take 3 simple models again. The ground truth is still

all 1′s:

1111111100 = 80% accuracy
1111111100 = 80% accuracy
1011111100 = 70% accuracy.

These models are highly correlated in their predictions. When we

take a majority vote we see no improvement:

1111111100 = 80% accuracy

Now we compare to 3 less-performing, but highly uncorrelated

models:

1111111100 = 80% accuracy
0111011101 = 70% accuracy
1000101111 = 60% accuracy

When we ensemble this with a majority vote we get:

1111111101 = 90% accuracy

Which is an improvement: A lower correlation between ensemble

model members seems to result in an increase in the error-correcting

capability.

Use for Kaggle: Forest Cover Type prediction

Majority votes make most sense when the

evaluation metric requires hard predictions,

for instance with (multiclass-) classification

accuracy.

The forest cover type prediction challenge uses the UCI Forest

CoverType dataset. The dataset has 54 attributes and there are 6

classes.

converted by Web2PDFConvert.com

https://www.kaggle.com/kazanova
http://onlinestatbook.com/2/describing_bivariate_data/pearson.html
https://www.kaggle.com/c/forest-cover-type-prediction
https://archive.ics.uci.edu/ml/datasets/Covertype
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

We create a simple starter model with a 500-tree Random Forest. We

then create a few more models and pick the best performing one. For

this task and our model selection an ExtraTreesClassifier works best.

Weighing

We then use a weighted majority vote. Why weighing? Usually we

want to give a better model more weight in a vote. So in our case we

count the vote by the best model 3 times. The other 4 models count

for one vote each.

The reasoning is as follows: The only way for the inferior models to

overrule the best model (expert) is for them to collectively (and

confidently) agree on an alternative.

We can expect this ensemble to repair a few erroneous choices by the

best model, leading to a small improvement only. That’s our

punishment for forgoing a democracy and creating a Plato’s Republic.

“Every city encompasses two cities that are at war with each
other.” Plato in The Republic

Table 1. shows the result of training 5 models, and the resulting score

when combining these with a weighted majority vote.

MODEL PUBLIC ACCURACY SCORE

GradientBoostingMachine 0.65057

RandomForest Gini 0.75107

RandomForest Entropy 0.75222

ExtraTrees Entropy 0.75524

ExtraTrees Gini (Best) 0.75571

Voting Ensemble (Democracy) 0.75337

Voting Ensemble (3*Best vs. Rest) 0.75667

Use for Kaggle: CIFAR-10 Object detection in images

CIFAR-10 is another multi-class

classification challenge where accuracy

matters.

Our team leader for this challenge, Phil

Culliton, first found the best setup to replicate a good model from dr.

Graham.

Then he used a voting ensemble of around 30 convnets submissions

(all scoring above 90% accuracy). The best single model of the

ensemble scored 0.93170.

A voting ensemble of 30 models scored 0.94120. A ~0.01 reduction in

error rate, pushing the resulting score beyond the estimated human

classification accuracy.

Code

converted by Web2PDFConvert.com

https://www.kaggle.com/triskelion/forest-cover-type-prediction/first-try-with-random-forests
https://www.kaggle.com/philculliton
http://blog.kaggle.com/2015/01/02/cifar-10-competition-winners-interviews-with-dr-ben-graham-phil-culliton-zygmunt-zajac/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

We have a sample voting script you could use at the MLWave Github

repo. It operates on a directory of Kaggle submissions and creates a

new submission.

Ensembling. Train 10 neural networks and average their
predictions. It’s a fairly trivial technique that results in easy,
sizeable performance improvements.

One may be mystified as to why averaging helps so much, but
there is a simple reason for the effectiveness of averaging.
Suppose that two classifiers have an error rate of 70%. Then,
when they agree they are right. But when they disagree, one of
them is often right, so now the average prediction will place
much more weight on the correct answer.

The effect will be especially strong whenever the network is
confident when it’s right and unconfident when it’s wrong. Ilya

Sutskever A brief overview of Deep Learning.

Averaging

Averaging works well for a wide range of problems (both

classification and regression) and metrics (AUC, squared error or

logaritmic loss).

There is not much more to averaging than taking the mean of

individual model predictions. An often heard shorthand for this on

Kaggle is “bagging submissions”.

Averaging predictions often reduces overfit. You ideally want a

smooth separation between classes, and a single model’s predictions

can be a little rough around the edges.

The above image is from the Kaggle competition: Don’t Overfit!, the

black line shows a better separation than the green line. The green

line has learned from noisy datapoints. No worries! Averaging

multiple different green lines should bring us closer to the black line.

Remember our goal is not to memorize the training data (there are far

more efficient ways to store data than inside a random forest), but to

generalize well to new unseen data.

Kaggle use: Bag of Words Meets Bags of Popcorn

This is a movie sentiment analysis contest.

In a previous post we used an online

perceptron script to get 95.2 AUC.

converted by Web2PDFConvert.com

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_vote.py
http://yyue.blogspot.com/2015/01/a-brief-overview-of-deep-learning.html
https://www.kaggle.com/c/overfitting
https://www.kaggle.com/c/word2vec-nlp-tutorial/
http://mlwave.com/online-learning-perceptron/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

The perceptron is a decent linear classifier

which is guaranteed to find a separation if

the data is linearly separable. This is a

welcome property to have, but you have to

realize a perceptron stops learning once

this separation is reached. It does not

necessarily find the best separation for new data.

So what would happen if we initialize 5 perceptrons with random

weights and combine their predictions through an average? Why, we

get an improvement on the test set!

MODEL PUBLIC AUC SCORE

Perceptron 0.95288

Random Perceptron 0.95092

Random Perceptron 0.95128

Random Perceptron 0.95118

Random Perceptron 0.95072

Bagged Perceptrons 0.95427

Above results also illustrate that ensembling can (temporarily) save

you from having to learn about the finer details and inner workings of

a specific Machine Learning algorithm. If it works, great! If it doesn’t,

not much harm done.

You also won’t get a penalty for averaging 10 exactly the same linear

regressions. Bagging a single poorly cross-validated and overfitted

submission may even bring you some gain through adding diversity

(thus less correlation).

Code

We have posted a simple averaging script on Github that takes as

input a directory of .csv files and outputs an averaged submission.

Rank averaging

When averaging the outputs from multiple different models some

problems can pop up. Not all predictors are perfectly calibrated: they

may be over- or underconfident when predicting a low or high

converted by Web2PDFConvert.com

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_avg.py
https://www.kaggle.com/cbourguignat/otto-group-product-classification-challenge/why-calibration-works
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

probability. Or the predictions clutter around a certain range.

In the extreme case you may have a submission which looks like this:

Id,Prediction
1,0.35000056
2,0.35000002
3,0.35000098
4,0.35000111

Such a prediction may do well on the leaderboard when the

evaluation metric is ranking or threshold based like AUC. But when

averaged with another model like:

Id,Prediction
1,0.57
2,0.04
3,0.96
4,0.99

it will not change the ensemble much at all.

Our solution is to first turn the predictions into ranks, then averaging

these ranks.

Id,Rank,Prediction
1,1,0.35000056
2,0,0.35000002
3,2,0.35000098
4,3,0.35000111

After normalizing the averaged ranks between 0 and 1 you are sure to

get an even distribution in your predictions. The resulting rank-

averaged ensemble:

Id,Prediction
1,0.33
2,0.0
3,0.66
4,1.0

Historical ranks.

Ranking requires a test set. So what do you do when want predictions

for a single new sample? You could rank it together with the old test

set, but this will increase the complexity of your solution.

A solution is using historical ranks. Store the old test set predictions

together with their rank. Now when you predict a new test sample

like “0.35000110″ you find the closest old prediction and take its

historical rank (in this case rank “3″ for “0.35000111″).

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Kaggle use case: Acquire Valued Shoppers Challenge

Ranking averages do well on ranking and

threshold-based metrics (like AUC) and

search-engine quality metrics (like average

precision at k).

The goal of the shopper challenge was to rank the chance that a

shopper would become a repeat customer.

Our team first took an average of multiple Vowpal Wabbit models

together with an R GLMNet model. Then we used a ranking average

to improve the exact same ensemble.

MODEL PUBLIC PRIVATE

Vowpal Wabbit A 0.60764 0.59962

Vowpal Wabbit B 0.60737 0.59957

Vowpal Wabbit C 0.60757 0.59954

GLMNet 0.60433 0.59665

Average Bag 0.60795 0.60031

Rank average Bag 0.61027 0.60187

I already wrote about the Avito challenge where rank averaging gave

us a hefty increase.

Finally, when weighted rank averaging the bagged perceptrons from

the previous chapter (1x) with the new bag-of-words tutorial (3x) on

fastML.com we improve that model’s performance from 0.96328

AUC to 0.96461 AUC.

Code

A simple work-horse rank averaging script is added to the MLWave

Github repo.

Competitions are effective because there are any number of
techniques that can be applied to any modeling problem, but
we can’t know in advance which will be most effective. Anthony

Goldbloom Data Prediction Competitions — Far More than Just a Bit

of Fun

From ‘How Scotch Blended Whisky is Made’ on Youtube

converted by Web2PDFConvert.com

https://www.kaggle.com/c/acquire-valued-shoppers-challenge
http://mlwave.com/lessons-from-avito-prohibited-content-kaggle/
http://fastml.com/classifying-text-with-bag-of-words-a-tutorial/
https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_rankavg.py
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5693459&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5691154%2F5693274%2F05693459.pdf%3Farnumber%3D5693459
https://www.youtube.com/watch?v=8vCZVsy0jIY
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Stacked Generalization & Blending
Averaging prediction files is nice and easy, but it’s not the only

method that the top Kagglers are using. The serious gains start with

stacking and blending. Hold on to your top-hats and petticoats: Here

be dragons. With 7 heads. Standing on top of 30 other dragons.

Netflix

Netflix organized and popularized the first data science competitions.

Competitors in the movie recommendation challenge really pushed

the state of the art on ensemble creation, perhaps so much so that

Netflix decided not to implement the winning solution in production.

That one was simply too complex.

Nevertheless, a number of papers and novel methods resulted from

this challenge:

Feature-Weighted Linear Stacking

Combining Predictions for Accurate Recommender Systems

The BigChaos Solution to the Netflix Prize

All are interesting, accessible and relevant reads when you want to

improve your Kaggle game.

This is a truly impressive compilation and culmination of years
of work, blending hundreds of predictive models to finally cross
the finish line. We evaluated some of the new methods offline
but the additional accuracy gains that we measured did not
seem to justify the engineering effort needed to bring them into
a production environment. Netflix Engineers

Stacked generalization

Stacked generalization was introduced by Wolpert in a 1992 paper, 2

years before the seminal Breiman paper “Bagging Predictors“.

Wolpert is famous for another very popular machine learning

theorem: “There is no free lunch in search and optimization“.

The basic idea behind stacked generalization is to use a pool of base

classifiers, then using another classifier to combine their predictions,

with the aim of reducing the generalization error.

Let’s say you want to do 2-fold stacking:

converted by Web2PDFConvert.com

https://www.kaggle.com/users
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://arxiv.org/pdf/0911.0460.pdf
http://elf-project.sourceforge.net/CombiningPredictionsForAccurateRecommenderSystems.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.researchgate.net/profile/David_Wolpert/publication/222467943_Stacked_generalization/links/0c960529e2b49a95f2000000.pdf
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Split the train set in 2 parts: train_a and train_b

Fit a first-stage model on train_a and create predictions for train_b

Fit the same model on train_b and create predictions for train_a

Finally fit the model on the entire train set and create predictions

for the test set.

Now train a second-stage stacker model on the probabilities from

the first-stage model(s).

A stacker model gets more information on the problem space by

using the first-stage predictions as features, than if it was trained in

isolation.

It is usually desirable that the level 0 generalizers are of all
“types”, and not just simple variations of one another (e.g., we
want surface-fitters, Turing-machine builders, statistical
extrapolators, etc., etc.). In this way all possible ways of
examining the learning set and trying to extrapolate from it are
being exploited. This is part of what is meant by saying that the
level 0 generalizers should “span the space”.

[...] stacked generalization is a means of non-linearly combining
generalizers to make a new generalizer, to try to optimally
integrate what each of the original generalizers has to say about
the learning set. The more each generalizer has to say (which
isn’t duplicated in what the other generalizer’s have to say), the
better the resultant stacked generalization. Wolpert (1992)

Stacked Generalization

Blending

Blending is a word introduced by the Netflix winners. It is very close

to stacked generalization, but a bit simpler and less risk of an

information leak. Some researchers use “stacked ensembling” and

“blending” interchangeably.

With blending, instead of creating out-of-fold predictions for the

train set, you create a small holdout set of say 10% of the train set.

The stacker model then trains on this holdout set only.

Blending has a few benefits:

It is simpler than stacking.

It wards against an information leak: The generalizers and stackers

use different data.

You do not need to share a seed for stratified folds with your

teammates. Anyone can throw models in the ‘blender’ and the

blender decides if it wants to keep that model or not.

The cons are:

You use less data overall

The final model may overfit to the holdout set.

Your CV is more solid with stacking (calculated over more folds)

than using a single small holdout set.

As for performance, both techniques are able to give similar results,

and it seems to be a matter of preference and skill which you prefer. I

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

myself prefer stacking.

If you can not choose, you can always do both. Create stacked

ensembles with stacked generalization and out-of-fold predictions.

Then use a holdout set to further combine these models at a third

stage.

Stacking with logistic regression

Stacking with logistic regression is one of the more basic and

traditional ways of stacking. A script I found by Emanuele Olivetti

helped me understand this.

When creating predictions for the test set, you can do that in one go,

or take an average of the out-of-fold predictors. Though taking the

average is the clean and more accurate way to do this, I still prefer to

do it in one go as that slightly lowers both model and coding

complexity.

Kaggle use: “Papirusy z Edhellond”

I used the above blend.py script by

Emanuele to compete in this inClass

competition. Stacking 8 base models

(diverse ET’s, RF’s and GBM’s) with Logistic

Regression gave me my second best score

of 0.99409 accuracy, good for first place.

Kaggle use: KDD-cup 2014

Using this script I was able to improve a model from Yan Xu. Her

model before stacking scored ~0.605 AUC. With stacking this

improved to ~0.625.

Stacking with non-linear algorithms

Popular non-linear algorithms for stacking are GBM, KNN, NN, RF

and ET.

Non-linear stacking with the original features on multiclass problems

gives surprising gains. Obviously the first-stage predictions are very

informative and get the highest feature importance. Non-linear

algorithms find useful interactions between the original features and

the meta-model features.

Kaggle use: TUT Headpose Estimation Challenge

 The TUT Headpose Estimation challenge

can be treated as a multi-class multi-label

classification challenge.

For every label a separate ensemble model

was trained.

The following table shows the result of training individual models,

and their improved scores when stacking the predicted class

probabilities with an extremely randomized trees model.

converted by Web2PDFConvert.com

https://github.com/emanuele/kaggle_pbr/blob/master/blend.py
https://www.kaggle.com/emanuele
https://www.kaggle.com/yansoftware
https://inclass.kaggle.com/c/tut-head-pose-estimation-challenge
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

MODEL PUBLIC MAE PRIVATE MAE

Random Forests 500 estimators 6.156 6.546

Extremely Randomized Trees 500
estimators

6.317 6.666

KNN-Classifier with 5 neighbors 6.828 7.460

Logistic Regression 6.694 6.949

Stacking with Extremely Randomized
Trees

4.772 4.718

We see that stacked generalization with standard models is able to

reduce the error by around 30%(!).

Read more about this result in the paper: Computer Vision for Head

Pose Estimation: Review of a Competition.

Code

You can find a function to create out-of-fold probability predictions

in the MLWave Github repo. You could use numpy horizontal

stacking (hstack) to create blended datasets.

Feature weighted linear stacking

Feature-weighted linear stacking stacks engineered meta-features

together with model predictions. The hope is that the stacking model

learns which base model is the best predictor for samples with a

certain feature value. Linear algorithms are used to keep the resulting

model fast and simple to inspect.

Vowpal Wabbit can implement a form of feature-weighted linear

stacking out of the box. If we have a train set like:

1 |f f_1:0.55 f_2:0.78 f_3:7.9 |s RF:0.95 ET:0.97 GBM:0.92

We can add quadratic feature interactions between the s -

featurespace and the f -featurespace by adding -q fs . The

features in the f -namespace can be engineered meta-features like in

the paper, or they can be the original features.

Quadratic linear stacking of models

This did not have a name so I made one up. It is very similar to

feature-weighted linear stacking, but it creates combinations of

model predictions. This improved the score on numerous

experiments, most noticeably on the Modeling Women’s Healthcare

Decision competition on DrivenData.

Using the same VW training set as before:

converted by Web2PDFConvert.com

http://vision.cs.tut.fi/data/publications/scia2015_hpe.pdf
https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/blend_proba.py
http://www.drivendata.org/competitions/6/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

1 |f f_1:0.55 f_2:0.78 f_3:7.9 |s RF:0.95 ET:0.97 GBM:0.92

We can train with -q ss creating quadratic feature interactions

(RF*GBM) between the model predictions.

This can easily be combined with feature-weighted linear stacking: -
q fs -q ss , possibly improving on both.

So now you have a case where many base models should be
created. You don’t know apriori which of these models are going
to be helpful in the final meta model. In the case of two stage
models, it is highly likely weak base models are preferred.

So why tune these base models very much at all? Perhaps
tuning here is just obtaining model diversity. But at the end of
the day you don’t know which base models will be helpful. And
the final stage will likely be linear (which requires no tuning, or
perhaps a single parameter to give some sparsity). Mike Kim

Tuning doesn’t matter. Why are you doing it?

Stacking classifiers with regressors and vice versa

Stacking allows you to use classifiers for regression problems and vice

versa. For instance, one may try a base model with quantile

regression on a binary classification problem. A good stacker should

be able to take information from the predictions, even though usually

regression is not the best classifier.

Using classifiers for regression problems is a bit trickier. You use

binning first: You turn the y-label into evenly spaced classes. A

regression problem that requires you to predict wages can be turned

into a multiclass classification problem like so:

Everything under 20k is class 1.

Everything between 20k and 40k is class 2.

Everything over 40k is class 3.

The predicted probabilities for these classes can help a stacking

regressor make better predictions.

“I learned that you never, ever, EVER go anywhere without
your out-of-fold predictions. If I go to Hawaii or to the bathroom
I am bringing them with. Never know when I need to train a
2nd or 3rd level meta-classifier” T. Sharf

Stacking unsupervised learned features

There is no reason we are restricted to using supervised learning

techniques with stacking. You can also stack with unsupervised

learning techniques.

K-Means clustering is a popular technique that makes sense here.

Sofia-ML implements a fast online k-means algorithm suitable for

this.

converted by Web2PDFConvert.com

https://www.kaggle.com/mikeskim
https://www.kaggle.com/forums/f/15/kaggle-forum/t/14469/tuning-doesn-t-matter-why-are-you-doing-it/
https://www.kaggle.com/scharf
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Another more recent interesting addition is to use t-SNE: Reduce the

dataset to 2 or 3 dimensions and stack this with a non-linear stacker.

Using a holdout set for stacking/blending feels like the safest choice

here. See here for a solution by Mike Kim, using t-SNE vectors and

boosting them with XGBoost: ‘0.41599 via t-SNE meta-bagging‘.

Piotr shows a nice visualization with t-SNE on the Otto Product Classification

Challenge data set.

Online Stacking

I spend quit a lot of time working out an idea I had for online stacking:

first create small fully random trees from the hashed binary

representation. Substract profit or add profit when the tree makes a

correct prediction. Now take the most profitable and least profitable

trees and add them to the feature representation.

It worked, but only on artificial data. For instance, a linear perceptron

with online random tree stacking was able to learn a non-linear XOR-

problem. It did not work on any real-life data I tried it on, and believe

me, I tried. So from now on I’ll be suspicious of papers which only

feature artificial data sets to showcase their new algorithm.

A similar idea did work for the author of the paper: random bit

regression. Here many random linear functions are created from the

features, and the best are found through heavy regularization. This I

was able to replicate with success on some datasets. This will the

topic of a future post.

A more concrete example of (semi-) online stacking is with ad click

prediction. Models trained on recent data perform better there. So

when a dataset has a temporal effect, you could use Vowpal Wabbit

to train on the entire dataset, and use a more complex and powerful

tool like XGBoost to train on the last day of data. Then you stack the

XGBoost predictions together with the samples and let Vowpal

Wabbit do what it does best: optimizing loss functions.

converted by Web2PDFConvert.com

http://lvdmaaten.github.io/tsne/
https://www.kaggle.com/mikeskim
https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/14295/41599-via-tsne-meta-bagging
https://www.kaggle.com/piotrw
http://arxiv.org/abs/1501.02990
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

The natural world is complex, so it figures that ensembling
different models can capture more of this complexity. Ben

Hamner ‘Machine learning best practices we’ve learned from

hundreds of competitions’ (video)

Everything is a hyper-parameter

When doing stacking/blending/meta-modeling it is healthy to think

of every action as a hyper-parameter for the stacker model.

So for instance:

Not scaling the data

Standard-Scaling the data

Minmax scaling the data

are simply extra parameters to be tuned to improve the ensemble

performance. Likewise, the number of base models to use can be seen

as a parameter to optimize. Feature selection (top 70%) or

imputation (impute missing features with a 0) are other examples of

meta-parameters.

Like a random gridsearch is a good candidate for tuning algorithm

parameters, so does it work for tuning these meta-parameters.

Sometimes it is useful to allow XGBoost to see what a KNN-
classifier sees. – Marios Michailidis

Model Selection

You can further optimize scores by combining multiple ensembled

models.

There is the ad-hoc approach: Use averaging, voting or rank

averaging on manually-selected well-performing ensembles.

Greedy forward model selection (Caruana et al.). Start with a base

ensemble of 3 or so good models. Add a model when it increases

the train set score the most. By allowing put-back of models, a

single model may be picked multiple times (weighing).

Genetic model selection uses genetic algorithms and CV-scores as

the fitness function. See for instance inversion‘s solution ‘Strategy

for top 25 position‘.

I use a fully random method inspired by Caruana’s method: Create

a 100 or so ensembles from randomly selected ensembles

(without placeback). Then pick the highest scoring model.

Automation

When stacking for the Otto product

classification competition I quickly got a

good top 10 spot. Adding more and more

base models and bagging multiple stacked

ensembles I was able to keep improving my

score.

Once I had reached 7 base models stacked by 6 stackers, a sense of

panic and gloom started to set in. Would I be able to replicate all of

converted by Web2PDFConvert.com

https://www.youtube.com/watch?v=9Zag7uhjdYo
http://blog.kaggle.com/2015/05/07/profiling-top-kagglers-kazanovacurrently-2-in-the-world/
http://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml04.icdm06long.pdf
https://www.kaggle.com/inversion
https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/14315/strategy-for-top-25-score
https://www.kaggle.com/c/otto-group-product-classification-challenge
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

this? These complex and slow unwieldy models were out of my

comfort zone of fast and simple Machine Learning.

I spend the rest of the competition building a way to automate

stacking. For base models pure random algorithms with pure random

parameters are trained. Wrappers were written to make classifiers

like VW, Sofia-ML, RGF, MLP and XGBoost play nicely with the

Scikit-learn API.

The first whiteboard sketch for a parallelized automated stacker with 3 buckets

For stackers I let the script use SVM, random forests, extremely

randomized trees, GBM and XGBoost with random parameters and a

random subset of base models.

Finally the created stackers are averaged when their fold-predictions

on the train set produced a lower loss.

This automated stacker was able to rank 57th spot a week before the

competition ended. It contributed to my final ensemble. The only

difference was I never spend time tuning or selecting: I started the

script, went to bed, and awoke to a good solution.

The automated stacker is able to get a top 10% score without any tuning or manual

model selection on a competitive task with over 3000 competitors.

Automatic stacking is one of my new big interests. Expect a few

follow-up articles on this. The best result of automatic stacking was

found on the TUT Headpose Estimation challenge. This black-box

solution beats the current state-of-the-art set by domain experts

who created special-purpose algorithms for this particular problem.

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Noteworthy: This was a multi-label classification problem.

Predictions for both “yaw” and “pitch” were required. Since the “yaw”

and “pitch”-labels of a head pose are interrelated, stacking a model

with predictions for “yaw” increased the accuracy for “pitch”

predictions and vice versa. An interesting result.

Models visualized as a network can be trained used back-

propagation: then stacker models learn which base models reduce

the error the most.

Next to CV-scores one could take the standard deviation of the CV-

scores into account (a smaller deviation is a safer choice). One could

look at optimizing complexity/memory usage and running times.

Finally one can look at adding correlation into the mix — make the

script prefer uncorrelated model predictions when creating

ensembles.

The entire automated stacking pipeline can be parallelized and

distributed. This also brings speed improvements and faster good

results on a single laptop.

Contextual bandit optimization seems like a good alternative to fully

random gridsearch: We want our algorithm to start exploiting good

parameters and models and remember that the random SVM it

picked last time ran out of memory. These additions to stacking will

be explored in greater detail soon.

In the meantime you can get a sneak preview on the MLWave Github

repo: “Hodor-autoML“.

The #1 and #2 winners of the Otto product classification challenge

used ensembles of over a 1000 different models. Read more about

the first place and the second place.

Why create these Frankenstein ensembles?
You may wonder why this exercise in futility: stacking and combining

1000s of models and computational hours is insanity right? Well…
yes. But these monster ensembles still have their uses:

You can win Kaggle competitions.

You can beat most state-of-the-art academic benchmarks with a

converted by Web2PDFConvert.com

https://github.com/MLWave/hodor-autoML
https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/14335/1st-place-winner-solution-gilberto-titericz-stanislav-semenov
http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

single approach.

You can then compare your new-and-improved benchmark with

the performance of a simpler, more production-friendly model

One day, today’s computers and clouds will seem weak. You’ll be

ready.

It is possible to transfer knowledge from the ensemble back to a

simpler shallow model (Hinton’s Dark Knowledge, Caruana’s

Model Compression)

Not all base models necessarily need to finish in time. In that

regard, ensembling introduces a form of graceful degradation: loss

of one model is not fatal for creating good predictions.

Automated large ensembles ward against overfit and add a form of

regularization, without requiring much tuning or selection. In

principle stacking could be used by lay-people.

It is currently one of the best methods to improve machine

learning algorithms, perhaps telling use something about efficient

human ensemble learning.

A 1% increase in accuracy may push an investment fund from

making a loss, into making a little less loss. More seriously:

Improving healthcare screening methods helps save lives.

Update: Thanks a lot to Dat Le for documenting and refactoring the

code accompanying this article. Thanks a lot everyone for the

encouraging comments. My apologies if I have forgotten to link to

your previous inspirational work. Further reading at “More is always

better – The power of Simple Ensembles” by Carter Sibley,

“Tradeshift Benchmark Tutorial with two-stage SKLearn models”

by Dmitry Dryomov, “Stacking, Blending and Stacked Generalization”

by Eric Chio, and “Deep Support Vector Machines” by Marco Wiering.

Terminology: When I say ensembling I mean ‘model averaging’: combining multiple

models. Algorithms like Random Forests use ensembling techniques like bagging

internally. For this article we are not interested in that.

The intro image came from WikiMedia Commons and is in the public domain,

courtesy of Jesse Merz.

PREVIOUS POST

Online Learning Perceptron

NEXT POST

How we won 3rd Prize in CrowdAnalytix COPD competition

21 THOUGHTS ON “KAGGLE ENSEMBLING GUIDE”

JUNE 13, 2015 AT 07:20

Fantastic post! Thank you! As far as I know, not available in

literature in this breath and depth.

 REPLY

OLAV

converted by Web2PDFConvert.com

http://www.ttic.edu/dl/dark14.pdf
https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
http://mlwave.com/human-ensemble-learning/
https://github.com/lenguyenthedat
https://github.com/MLWave/Kaggle-Ensemble-Guide
http://www.overkillanalytics.net/more-is-always-better-the-power-of-simple-ensembles/
https://www.kaggle.com/cartersibley
https://www.kaggle.com/c/tradeshift-text-classification/forums/t/10629/benchmark-with-sklearn/
https://www.kaggle.com/dremovd
http://www.chioka.in/stacking-blending-and-stacked-generalization/
https://www.kaggle.com/ericchio
http://videolectures.net/roks2013_wiering_vector/
http://www.ai.rug.nl/~mwiering/
https://en.wikipedia.org/wiki/User:Merzperson
http://mlwave.com/online-learning-perceptron/
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/
/kaggle-ensembling-guide/?replytocom=215463#respond
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

JUNE 13, 2015 AT 17:16

You gave away too much! Now we will have to ‘actually’ get

better if there is any hope in winning !

 REPLY

JUNE 15, 2015 AT 01:46

Great post! I have been looking for this technique.

Many thanks !

 REPLY

Pingback: Distilled News | Data Analytics & R

JUNE 15, 2015 AT 12:43

Thanks a lot of this post. Very helpful!

 REPLY

JUNE 15, 2015 AT 17:48

really good Triskelion!!

Its funny you are trying to automate this because I am too. Otto

really was my first accidental delve into serious stacking. It went

a little something like..

These KNN’s are great for this .

They are of use. I need k=1,2,4,8,16,…1024. The K=1 nails classes

3 and 4 and k=1024 owns class 2!!

And the 3-D T-sne version , and the log10, gotta get those in

there.

Plus I ran a few deep-nets for giggles… gotta have those in there..

Holy shit, wait I need quality out of fold predictions for all that if I

want to use XGboost to blend the level 2??? Thats a mess.

Fast forward I had built the Frankenstein you mentioned – but it

truly was a disorganized mess, though it mercifully limped it to a

respectable finish.

Working with a flexible framework would’ve been great.

Anyway I could ramble for hours… one last thought

The Hinton paper on dark knowledge you cited really hit home

for me when I read it during Otto. Xgboost was splitting on

predictions from class 2 from KNN models when it was building

KazAnova

Harry Dinh

Adil

Timothy Scharf

converted by Web2PDFConvert.com

https://www.kaggle.com/kazanova
/kaggle-ensembling-guide/?replytocom=215565#respond
/kaggle-ensembling-guide/?replytocom=215958#respond
http://advanceddataanalytics.net/2015/06/15/distilled-news-121/
http://adilmoujahid.com
/kaggle-ensembling-guide/?replytocom=216066#respond
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

trees for classes 3 and 4 in the level 2 classifier. It was doing it..

using teh dark knowledge. Once I saw that I was like.. man there

is no going back to the old way of doing business..

This is the future..

It was confirmed when I saw the winners Frankenstein

 REPLY

Pingback: Wise set of machine learning resources abou

JUNE 16, 2015 AT 08:05

Cloud people say “Dont treat your servers as pets but treat them

as Cattle”

I think the same saying should go for Machine Learning.

“Dont treat your MODELS as pets but treat them as Cattle”

 REPLY

JUNE 16, 2015 AT 19:59

mind blowing!!! thank for such a nice summary!

 REPLY

Pingback: Guide to Data Science Competitions | Happy Endpoints

JUNE 17, 2015 AT 03:52

Thanks! I have been wanting to learn more about ensembling,

and this is just what I was looking for.

 REPLY

JUNE 18, 2015 AT 08:11

Thanks! Very nice post!

 REPLY

JUNE 18, 2015 AT 18:43

Thank you for a great post on stacking and ensembling

techniques. I have been making progress in ML competitions and

I expect studying and applying your ideas will absolutely aid in

Julian de Wit

Vladimir Chupakhin

Devin

Mikhail Trofimov

Jeremy Castle

converted by Web2PDFConvert.com

/kaggle-ensembling-guide/?replytocom=216138#respond
http://www.erogol.com/large-set-machine-learning-resources-beginners-mavens/
/kaggle-ensembling-guide/?replytocom=216375#respond
/kaggle-ensembling-guide/?replytocom=216506#respond
https://exversiondata.wordpress.com/2015/06/14/guide-to-data-science-competitions/
/kaggle-ensembling-guide/?replytocom=216603#respond
/kaggle-ensembling-guide/?replytocom=216865#respond
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

future projects.

 REPLY

JUNE 21, 2015 AT 17:29

Thank you very much for this post. It was a fantastic reading!

 REPLY

JUNE 30, 2015 AT 23:22

i’m really new to ML and trying to learn as much as i can about

the field, particularly best practices. i just wanted to let you know

this was an extremely well-written tutorial, and i really

appreciate you taking the time to share. thank you.

 REPLY

JULY 24, 2015 AT 12:03

A well-written guide that’s easy to understand and detailed yet

concise. I found it extremely helpful. Thanks for sharing!

 REPLY

JULY 25, 2015 AT 12:07

Thanks for this post! Very informative!

 REPLY

JULY 28, 2015 AT 10:07

Thank you very much for sharing this. It is very helpful.

 REPLY

AUGUST 10, 2015 AT 15:00

Great articole but on stacking you say:

“Split the train set in 2 parts: train_a and train_b

Fit a first-stage model on train_a and create predictions for

train_b

Fit the same model on train_b and create predictions for train_a

Finally fit the model on the entire train set and create predictions

for the test set.

Now train a second-stage stacker model on the probabilities

from the first-stage model(s)”

Let’ say I split 30-to70 percent traina and traib.

Andres

james dipadua

Paul

Apurva

balikasg

john

converted by Web2PDFConvert.com

/kaggle-ensembling-guide/?replytocom=216947#respond
/kaggle-ensembling-guide/?replytocom=217511#respond
http://jamesdipadua.com
/kaggle-ensembling-guide/?replytocom=219692#respond
/kaggle-ensembling-guide/?replytocom=223234#respond
/kaggle-ensembling-guide/?replytocom=223431#respond
/kaggle-ensembling-guide/?replytocom=224045#respond
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

model a learns on 30%of n and predicts on 70%of n so you get

preda to have size 70%of , simmilar modelb learns on 70% of n

and you get predb to have size30%of n.

Finally you make modelc with 100% of train and predc you find

to be 100%of n-test.

After that you fit another model with 3 features with shape

30,70%n-train and 100 %ntest.

Maybe I am dump but from your description that is the

understanding.Please correct me where I am wrong.

 REPLY

AUGUST 13, 2015 AT 07:25

Hi, I had a bit of trouble parsing your question, so I am not sure

if I get you correctly. But:

First off, use an even split to make it easier on yourself. Divide

the data into equal parts: 75% – 25% split or a 80-20% split.

You train on the larger parts and you create predictions for the

holdout set.

The rest of your description sounds ok. I suggest you try it out

with the logistic regression stacking script and and see where

(or if) you get stuck.

 REPLY

SEPTEMBER 3, 2015 AT 16:38

This is Golden!!!!.

Thanks so much for writing this….

 REPLY

LEAVE A REPLY

Your email address will not be published. Required fields are marked *

Name *

Email *

Website

Comment

Triskelion

Rahul

converted by Web2PDFConvert.com

/kaggle-ensembling-guide/?replytocom=226414#respond
/kaggle-ensembling-guide/?replytocom=226890#respond
/kaggle-ensembling-guide/?replytocom=230598#respond
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

You may use these HTML tags and attributes: <abbr
title=""> <acronym title=""> <blockquote cite=""> <cite> <code>
<del datetime=""> <i> <q cite=""> <strike>

POST COMMENT

Search …

RECENT POSTS

How we won 3rd Prize in CrowdAnalytix COPD competition

Kaggle Ensembling Guide

Online Learning Perceptron

Lessons learned from the Hunt for Prohibited Content on Kaggle

yCombinator 2014 Data Science Start-ups

Detecting Counterfeit Webshops. Part 1: Feature engineering

Reflecting back on one year of Kaggle contests

Human Ensemble Learning

Predicting CTR with online machine learning

Winning 2 Kaggle in Class Competitions on Spam

How to produce and use datasets: lessons learned

Predict visual stimuli from human brain activity

Predicting repeat buyers using purchase history

Install Vowpal Wabbit on Windows and Cygwin

k-Nearest Neighbors and Clustering on Compressed Binary Files

RECENT COMMENTS

Triskelion on How we won 3rd Prize in CrowdAnalytix COPD competition

Minto on How we won 3rd Prize in CrowdAnalytix COPD competition

srepho on How we won 3rd Prize in CrowdAnalytix COPD competition

Rahul on Kaggle Ensembling Guide

converted by Web2PDFConvert.com

http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/
http://mlwave.com/online-learning-perceptron/
http://mlwave.com/lessons-from-avito-prohibited-content-kaggle/
http://mlwave.com/ycombinator-2014-data-science-start-ups/
http://mlwave.com/detecting-counterfeit-webshops-part-1-feature-engineering/
http://mlwave.com/reflecting-back-on-one-year-of-kaggle-contests/
http://mlwave.com/human-ensemble-learning/
http://mlwave.com/predicting-click-through-rates-with-online-machine-learning/
http://mlwave.com/winning-2-kaggle-in-class-competitions-on-spam/
http://mlwave.com/how-to-produce-and-use-datasets-lessons-learned/
http://mlwave.com/predict-visual-stimuli-from-human-brain-activity/
http://mlwave.com/predicting-repeat-buyers-vowpal-wabbit/
http://mlwave.com/install-vowpal-wabbit-on-windows-and-cygwin/
http://mlwave.com/k-nn-clustering-compressed-binary-files-ncd/
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-235748
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-235609
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-233157
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Triskelion on Online Learning Perceptron

isotope on Online Learning Perceptron

Triskelion on Kaggle Ensembling Guide

john on Kaggle Ensembling Guide

OTHER ML SITES

FastML (Foxtrot)
Beating the Benchmark (Abhishek)
Trevor Stephens (Kaggler)
Kaggle Blog

ML Wave website content is licensed under Creative Commons 3.0 attribution
PAGES

About

Contact

RECENT ARTICLES

How we won 3rd Prize in CrowdAnalytix COPD competition

Kaggle Ensembling Guide

Online Learning Perceptron

Lessons learned from the Hunt for Prohibited Content on Kaggle

yCombinator 2014 Data Science Start-ups

RECENT COMMENTS

Triskelion on How we won 3rd Prize in CrowdAnalytix COPD competition

Minto on How we won 3rd Prize in CrowdAnalytix COPD competition

srepho on How we won 3rd Prize in CrowdAnalytix COPD competition

Rahul on Kaggle Ensembling Guide

Triskelion on Online Learning Perceptron

AROUND THE WEB

MLWave Twitter
MLWave Github

converted by Web2PDFConvert.com

http://mlwave.com/online-learning-perceptron/#comment-227737
http://mlwave.com/online-learning-perceptron/#comment-226900
http://fastml.com
http://beatingthebenchmark.blogspot.com/
http://trevorstephens.com/
http://blog.kaggle.com/
http://mlwave.com/about/
http://mlwave.com/contact/
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/
http://mlwave.com/online-learning-perceptron/
http://mlwave.com/lessons-from-avito-prohibited-content-kaggle/
http://mlwave.com/ycombinator-2014-data-science-start-ups/
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-235748
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-235609
http://mlwave.com/how-we-won-3rd-prize-in-crowdanalytix-copd-competition/#comment-233157
http://mlwave.com/online-learning-perceptron/#comment-227737
https://twitter.com/mlwave
https://github.com/MLWave/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

