LIN Stack Package

For 8/16/32 bit MCU User’s Guide

Document Number: LIN_STACK_UG
Rev2.5.5 11/2015

<&

Z“ freescale"

semiconductor

Table of Contents

Chapter 1 INTrOTUCTION ooiiiiiiiiiiiiiiiiee et 4
1.1 A A ST T T 1T] V2SS TRSSR 5
1.2 Definitions, Acronyms, and ADDIEVIALION..........cooiiiiii e 6
1.3 R C] £ =T A To0 S PSSR 7
CRAPLEI 2 OVEBIVIBW .ottt ettt e e e ettt e e e e e e e e e eeatba e e e e e e e e eeeesnnnnnnes 8
2.1 SYSIEM ATCHITECIUIE ... ettt et et et te e b e e Re e st et et e be st e st e e Reene e s e enteseeneesteaneeneenes 9
2.2 SUPPOITEU DEIIVALIVES ...tttk bbbtk bbb bbbttt bt b s 10
2.3 LIN Stack Package COMPONENTScueiueiiiitiiieeteeeeteestestestesseaeessestestestesseasaaseesseseessessessesteaseessessessessessessenseens 11
2.3.1 Node Configuration TOOIuciiiiiiie et e et r e st e be e te e e e teeseeaneeaneesreennas 11
2.3.2 LIN StACK ATCNITECLUIE ..eovveveeieeeiese ettt sttt sttt e et e st e sbesteebeereene et e neebesaeetenreaneas 12
Chapter 3 LIN Stack PaCKaAgeuiiiii i 16
3.1 Generation CONFIGUIALION FIIESc.iiviiiie e 17
3.2 STACK SOUICE COUE ...ttt b bbb et bttt r et 17
K = T 1 ST 0T o] oo o Yo - T S OPR 17
3.2.2 LOW LEVEI TAYET ...t bbb bbbt b et 19
KR B o] (N ol - T PRSP PPRPR 19
3L2.4 TTANSPONT LAYET ...ttt ettt bbb bbbkt h bbbt bt e e n e n e nn e r e ene s 19
Kol B = To (01 o] YT SR 20
3.2.6 INCIUTE TOIUBT ...ttt bttt 20
Chapter 4 How to use LIN Package.......cccccoovviiiiiiiiiiiiiiiieeeeeeeeeee 21
4.1 ENVIFONMENT FEQUITEIMIENES ... vviivieieeie ettt ettt et et e e e s e e s s s e s reesbeesbeebeenbeanseassesta e raeteeseenneeas 22
4.2 Hardware configuration file generation............ccuviiiiiiiiii e 24
4.3 LI L0 (81T (U o TP P OO PP 28
4.4 Configuration Files and LIN Stack Source Code INtegration............ccccvvevieieeiieiieiiccc e 31
4.4.1 Create an empty project of the target MCU D0Ardccooviiiiiiii i 31
4.4.2 Create a folder containing configuration files ... 32
4.4.3 Create a group containing LIN Stack SOUICE COUEccviiuieiiiieiieiee sttt 33
4.5 CoNFIGUIALTION TN CWWL0.6ecviiiiiieie bbb bbb bbbt b ettt b et b 40
4.6 Getting Started With LIN @PPHCALIONc.oiuiiiiiiiiiiice bbb 47
4.6.1 Initialization Of NArAWAre ULHTTIES.cveiiieie ettt neereenes 47
4.6.2 Initialization OF LIN SYSTEIM.....c..i ittt bbbttt be bbb neenes 48
4.6.3 Timer for LIN schedule execution (Master mode ONnly)cocooeiiiiiiiiii e 49
R IV 0 -] LSS 51
4.6.5 LIN ADPPICALIONS ...ttt bttt bbbt e bt et e e b et e ekt b e e bt e b e e me e tenbenbesbeereenes 51
Chapter 5 Demo APPHICALIONuuueii e e e e e e e e e e eeeannnas 58
5.1 [AVl o o] (oToto] o [T g o= o] o] [Tor: i [o] o OO PP TUUUPRURURO 58
5. LT INEFOUUCTION <.ttt bbbtk et b et b e bbb e R e s e e b e e bt ke e bt e bt e b e e n e e st e b e besbeebenneaneas 58
5.1.2 DEMO ENVIFONMENT SEIUD .vevvivitirieiiteieicste sttt ettt r e 59
5.1.3 Detail DeSCription OF NOGESottt bbbttt sb et bt aneaneas 60
5.1.4 LIN System INFHHAIIZATIONc.vouiieiiiiice ettt e 60
5.1.5 FUNCLIONAITY DESCIIPLIONoveiitiiieiiiee et bbbttt 62
TG @] o< 14T DU RSSO UP U VRPRPRORS 66

Freescale Semiconductor

5.2 LIN diagnostic demo appliCALIONooeiiiiiiii bbb 70
5. 2.1 INEFOUUCTION ...ttt bbbt bbbt bt e R e e h e s e b ek eb e eb e e bt e b e e st e e et eb e et e e bt eneaneaneas 70
5.2.2 DIagnOStiC SEMVICES SUPPOIeviiveiteetterieteiestestestestaeseesses e ssestestesses e esseseessessesteasesseassessesestessessesneessasennees 71
5.2.3 DBIMO SEEUD ...ttt bbbt e b b E bt h s bt bR R bbb 72
5.2.4 OPEration AESCIIPLIONcuviieieiteitiie ettt ettt et e e e e st e s te e esaeseess e e e st e testeeteeseenseseeeeteseentenreaneas 75
5.3 Resynchronization demo apPliICALIONccviiiiiiiiie ettt reera e e e enens 80
TR I A a1 oo [o o OO OO TSR URT ST 80
5.3.2 DBIMO SBEUPD ...ttt bt e b bbbt h bR R bttt r e 80
5.3.3 OPEration ESCIIPLIONcvieiiieiieitise ettt st et e et e st e te s teesaeseese e e e st e besteabeeseenseseeseteseestenreaneas 83
Y 01 0 1= o 11 G 85
APPENAIX B ittt 87
Y 0 6 1= 0 o 11 G 90
[[0 0 (S Vo TSR TSRS 92
WVBI SUDPOIT: ..tk h et b bbb e b b e bt bt e b e bbb e b b e Rt b bRt bt b bt bbb 92
USA/EUrOpe Or LOCALIONS NOT LISTEA:veviitiietiite ittt sttt bbbttt s r et ene st 92
Europe, Middle EaSt, AN ATTICA:viieieiiie ettt sttt e e et e beste et e e rees e e e e te e seesbesreaneereenean 92
T 12 TSP TSP P PP PR VRPN 92
ASTA/PACITIC: ..ottt ettt b et E e bt Rt bt Rt Rt R e bR Rt bR e Re R b e Rt Rt e R bt re bt re et renene 92
FOr Literature REGUESES ONIY: ..ottt bbbt b bbb b bttt sb e e et b e et b e b 92

3 Freescale Semiconductor

Chapter 1
Introduction

This document details the implementation of LIN 2.0/2.1/2.2A and SAE J2602 compliant (see
[11,[2].[3].[4]) SW drivers for Freescale 8, 16 and 32 bit microcontroller portfolio. Throughout the
text the stack will be called LIN2.x/J2602. The aim of the documents is to help the user to easily
utilize these stacks in the project and explain the configuration flow.

The information in this document is subject of change without notice and does not represent a
commitment on the part of Freescale Semiconductor. The software describes in this document is
furnished under a license agreement and may be used or copied in accordance with the terms of that
license agreement. No part of this manual may be reproduced in any form or by any means,
electronically or mechanically, including photocopying and recording for any purpose without the
express written permission of Freescale Semiconductor.

4 Freescale Semiconductor

Introduction

1.1 Revision History

Table 1-1. Revision history

Revision Date Author Description

1.0 2009-09-24 B26340-Cong Tran Initial release

2.0 2011-03-21 B26340-Cong Tran Update chapter 2 for new HW supported
Update chapter 3.1 for NPF structure, 3.2 for
SCI folder and add RESYN feature
Update chapter 4.5 for diagnostic example
application
Add demo application for diagnostic and
resynchronization to chapter 6

2.0.1 2011-03-24 B26340-Cong Tran Update table 2.1

2.1 2011-12-19 B26340-Cong Tran Update chapter 3.1.2 for NCF tool
Update table MCU support for MM912xxXx,
VR64, GN32, SC4, LG32

2.2 2012-06-11 B26340-Cong Tran Update chapter 4.5 for new CW support
Update support 9S127VM128 MCU

2.3 2013-07-13 B26340-Cong Tran Update table MCU support for Lumen,
QulIBSJ638, RN60, VR64 SCIv6, Knox
Update chapter 4 for LIN_PHY using

2.4 2013-09-17 B26340-Cong Tran Update application for LIN master, slave
tasks, goto sleep/wake up, multi timer
selection

2.5 2014-08-11 B26340- Cong Tran Add Kinetis platform support
Add AUTOBAUD feature in LIN Driver

25.1 2014-09-11 B26340- Cong Tran Add Hearst platform support

25.2 2015-04-15 B39392- Lan Bui Update to support 9S127VML31, 9S12VR32
MCUs

25.3 2015-06-01 B39392- Lan Bui Changed name of the LIN Driver Package to
LIN Stack Package

254 2015-09-26 B39392- Lan Bui Update to support 9S12ZVL128,
9S12ZVMC256 MCUs

255 2015-11-18 B39392- Lan Bui Update SCI Version of S12ZVHY64 to SCIV6

Add max_message_length and support_sid
field to network description in npf files

Freescale Semiconductor

Introduction

1.2 Definitions, Acronyms, and Abbreviation

BSP
CAN
DTC
GPIO
LIN
LDF
MCU
NAD

NCF
NPF
PCI
PDU
PID
RISC
SAE
SCI
SLIC
SNPD

UART
ubSs
XGATE

Board Support Package
Controller Area Network
Diagnostic Trouble Code.
General Purpose Input Output
Local Interconnect Network
LIN Description File
Microcontroller unit

Node Address for slave nodes. Diagnostic frames are broadcasted and the NAD
specifies the addressed, respectively responding slave node. The NAD is the
address of a logical node.

Node Capability File

Node Private File

Protocol Control Information
Packet Data Unit

Protected Identifier

Reduced Instruction Set Computer
Society of Automotive Engineers
Serial Communication Interface
Slave LIN Interface Controller

Slave Node Position Detection. Defines a recommended practice to position and
separate identical slave nodes.

Universal Asynchronous Receiver/Transmitter
Unified Diagnostic Service.

RISC coprocessor that allows autonomous high-speed data processing and
transfers.

Freescale Semiconductor

Introduction

1.3 References

[1] LIN Specification Package, rev. 2.1, November 24, 2006

[2] LIN Specification Package, rev. 1.3, December 12, 2002

[3] LIN Specification Package, rev. 2.0, September 23, 2003

[4] LIN Specification Package, rev. 2.2A, December 31, 2010

[5] SAE J2602/1 LIN Network for Vehicle Application, September 2005
[6] MISRA-C:2004 Guidelines for the use of the C language in critical systems, October 2004
[7] MC9S12HZ256 Data Sheet, rev. 2.05, 04/2008

[8] MC9S12P128 Reference Manual, rev. 1.08, 2 July 2008

[9] MC9S12XEP100 Reference Manual, rev. 1.18, 09/2008

[10] MC9S12XDP512 Data Sheet, rev. 2.17, July 2007

[11] MC9S08SG32 Data Sheet, rev. 4, 52008

[12] MC9S08SG8 Data Sheet, rev. 5, 6/2008

[13] MC9S08DZ60 Data Sheet, rev. 4, 6/2008

[14] MC9S08DZz128 Data Sheet, rev. 1, 5/2008

[15] MC9S08AWE0 Data Sheet, rev. 2, 12/2006

[16] MC9S08QD4 Data Sheet, rev. 3, 11/2007

[17] MC9S08EL32 Data Sheet, rev. 3, 7/2008

[18] MC9S08MP16 Reference Manual, rev.1, 9/2009

[19] MC9S12XHY256 Reference Manual, rev 0.1, 11/2009

[20] MM912F634 Advanced Information, Rev. 4.0, 10/2010

[21] Surface vehicle recommended practice.

[22] CodeWarrior™ Development Studio 8/16-Bit IDE User’s Guide

[23] CANoe as a diagnostic tool, v.1.2, June 06,2006

[24] ISO 14229-1, Road vehicles - Unified diagnostic services (UDS), December 2006
[25] Application note AN3756, Rev. 0, 10/2008

7 Freescale Semiconductor

Chapter 2
Overview

This chapter provides a high-level description of LIN Stack architecture with hardware
independence. This chapter contains information about following:
e System architecture of LIN Stack

e Node configuration Tool which is used for generation hardware configuration files.

Freescale Semiconductor 8

Overview

2.1 System Architecture

The layered architecture of the LIN2.x/J2602 Stack package is shown on Figure 2-1. Such
architecture approach aims maximum reusability of common code base for LIN2.x and J2602
standards for 8 bit, 16 bit and 32 bit Freescale automotive MCU portfolio.

The core API layer of LIN2.x/J2602 handles initialization, processing and signal based interaction
between application and LIN Core. The LIN2.x TL (Transport Layer) provides methods for tester
to transmit diagnostic requests.

The low level layer offers method of handling signal transmission between user application and
hardware independence such as byte sending, response receiving, break symbol detection, etc.

The physical transport layer of the Driver supports three standard interfaces SCI, SLIC, GPIO to
operate with 8 bit and 16 bit MCU hardware.
Refer to Chapter 2.3.2 LIN Stack for detail information.

LIN2.1 API

LIN2.1/J2602 API J2602 API

LIN 2.1/32602
Low Level

MCU HW
SCI/GPIO/SLIC/
UART

Figure 2-1. LIN Stack Architecture diagram

Freescale Semiconductor 9

Overview

2.2 Supported Derivatives

The following table displays the list of supported MCU derivatives including the functionalities
Note that all derivatives support the LIN2.x and J2602 variant.

Table 2-1. Target Platform

LIN Module Master Mode ‘ Slave Mode

Version ‘

Diagnostic Diagnostic

Class | Class | Class | Class @ Class | Class
| 1l 11 | 1] 11

1 9S08AW16A
2 95085G32 SCI_V4
3 9S08SG8* SCI_V4
4 9508DZ60 SCI_V4
5 9508DZ128 SCI_V4
6 9S08AW60 SCI_V2
7 9S08QD4** GPIO
8 N g'LtJ 9SO0BEL32™* SCI V4
SLIC
9 9S08MP16 SCI_V4
10 9S08SG4 SCI_V4
11 9S08SG8 SCI_Vv4
12 9S08LG32 SCI_Vv4
13 9S08SC4** SCI_V4
14 9S08RN60 SCI_v4
15 9S12HY64 SCI_V5
16 9S12XHY256 SCI_V5
17 9S12P128 SCI_V5
18 9S12XS128 SCI_V5
19 9S12XS256 SCI_V5
20 9S12XEP100 SCI_V5
21 9S12XEQ512 SCI_V5
22 9S12XET256 SCI_V5
23 16 bit | 9S12XDP512 SCI_V5
24 MCU gsizxFs12 SCI_V5
25 9512G128 SCI_V5
26 9512G240 SCI_V5
27 9S12GN32 SCI_V5
28 9512G64 SCI_V5
29 9S12VR64 SCI_V6
LINPHY_V1
30 9S12VR32 Tomarino SCI V6
LINPHY V2

Freescale Semiconductor 10

Overview

31 MMO12F634**** SCI_V4
32 16 bit | MM912G634 SCI_V4
MagniV

33 MCU MM912H634 SCI_V4

34 MM9123637 SCI_V4

35 MM9Z1J638 D2D+SCl4

36 9S5127ZVML128_Carcassonne | SCI_V5

37 9S127VL_Knox SCI_V6

38 9S127VL128 SCI_V6
LINPHY V2

39 S127 9S12ZVHY64 Lumen SCI_V6

40 9S127VH128 Lumen SCI_V6

41 9S127VC64 Hearst SCI_V6

42 9S127VML31 Obidos SCI_V6
LINPHY V3

43 9S127VMC256 SCI_V6

44 SKEAZN84

45 Kinetis SKEAZNG642 UART

46 SKEAZ1284

Mark:
[] : Support

X : Not support
*9S08SG8 Supports master and slave modes in diagnostic class | only due
to memory limitation
** 9S08QD4, 9S08SC4 supports LIN protocol only
*** 9S08EL32 contains SCI and SLIC interfaces. SLIC supports slave mode only due to its
function to support slave LIN interface.
****x MMO912 integrated LIN frontend / Quest / Quicksilver

2.3 LIN Stack Package Components

LIN Stack Package consists of two major parts:

e Node Configuration Tool — PC based script for LIN Stack configuration generation.

e LIN Stack — Embedded SW package supporting the LIN2.x and J2602 communication

2.3.1 Node Configuration Tool

The Node Configuration Tool is a built-in script of the LIN Stack package which allows user to
easily generate the node configuration .h and .c files based on LIN Configuration Description File
(LCF) and Node Private Description File (LPF) (see more in 3.1 Generation Configuration).
Those files are then in compiler integrated with LIN Stack source code and user application and
after compilation downloaded to the target derivative. Figure 2-2 shows the diagram of
configuration data flow.

Freescale Semiconductor 11

Overview

Node Configuration

Tool
Node Configuration LIN Stack
Code (.c and .h) Code (.c and .h)

(Target DerivativeH Compiler/Linker)

Figure 2-2. Configuration data

The LDF file describes a complete LIN cluster including Master/slave mode definition and
contains information to handle the cluster.

The NPF file contains information about LIN nodes — such as node name, number of interface,
MCU clock frequency, used communication channel (e.g. SCI channel) and port (e.g. GP1O port),
etc., required for full description of the node.

2.3.2 LIN Stack Architecture

The Figure 2-3. shows the details of modules in the LIN Stack package. It also demonstrates the
relationship among modules and the direction of function call among them.

Freescale Semiconductor 12

Overview

Application m
layer

Diagnostic class IlI

Diagnostic Diagnostic class Il
service

Diagnostic class |

LIN 2.0 Node
Config

TL APIs

Transport
LIN 2.1 Transport
protocol
LIN core
layer LIN 2.0

Status
Mgmt

| Low level API

LIN Low Level Driver (LLD)

Low-level XGATE

layer

SCI UART SLIC GPIO
Frame
processing
rame rame Bit processing
processlna IDI’O("PSS]I\G
SCI UART GPIO
Controller Controller SLIC Controller Controller
Legend:
I:I Function block = Function call <€ Interactive

Figure 2-3. LIN Stack Layer Diagram

LIN Stack software package provides support for LIN2.x and J2602 communication protocols. The
Stack package is divided into the layers as follows:

1. The lowest layer — Board Support Package (BSP) layer is comprised of codes, which
implements the tasks dedicated to specific MCU platform: interrupt service routines, i/o

Freescale Semiconductor 13

Overview

port setup, memory handling and so on. There are three interfaces implemented within the
Stack package: SCI, SLIC and GPIO.

Low level layer consists of core functions for the LIN protocol such as the frames handling,
signals transmission and reception, data preparation, etc. Besides, this layer contains
common implementation functions for the lowest layer to provide the interface abstraction.
Function for LIN cluster setup can be found here as well. This layer interacts with the core
API layer through low level API functions.

Core API layer consists of API functions as defined by the LIN2.x/J2602 specification
enabling the user to utilize the LIN2.x/J2602 communication within the user application.
Both the static and dynamic modes for calling the API functions are supported. The core
API layer interacts with the low level layer and can be called by such upper layers as
LIN2.x TL API, LIN TL J2602 or application for diagnostic implementation.

Transport layer stands between the application layer and the core API layer including
LIN2.x TL API and LIN TL J2602. This layer provides APIs for the transport protocol,
node configuration and diagnostic. For LIN2.x, all components will be extended from LIN
2.0 specification. The node configuration for J2602 implements only some functions of
LIN 2.0 specification. The layer contains some main components below:

e Transport protocol:

- Transport protocol presented in LIN2.x Stack supports single and full frame
transmission. Single frame transmission is applied for diagnostic class I,
whereas the full frame is applied for diagnostic classes Il and I11.

Diagnostic services layer presented in the Stack supports all diagnostic classes as defined in

[1].

e Diagnostic class I: Node configuration and Identification

- LIN2.x extends slave configuration and assign frame with 1D range to LIN
2.0. The assign frame with ID is removed.

- J2602 simplifies LIN 2.0 Node configuration.
e Diagnostic classes Il and IlI:

- The diagnostic services are implemented based on standard diagnostic
specification [24]. The layer supports API functions and OEMs will add to
application source code to complete base on their specific application.

The table below shows the services supported in the LIN Stack

Diagnostic | " " UDS ser- Data

Class vice index [Hex] | !dentifier

Diagnostic Transport Protocol Requirements

Single frame transport only +

Full transport protocol (multi-segment) + +

Required Configuration Services

Assign frame identifier range A + A 0xB7

Read by identifier (O = product id) + + + 0xB2 0x00
Read by identifier (all others) optional | optional | + 0xB2 OxXX
Assign NAD optional | optional | optional 0xBO
Conditional change NAD optional | optional | optional 0xB3
Positive response on + + + service +

Freescale Semiconductor

14

Overview

supported configuration services ‘ ‘ ‘ 0x40
Required UDS Services

Read data by identifier + + 0x22 0x0091
0x0092

Write data by identifier + + 0x2F 0x0092

Session control + 0x10 0x01

Read by identifier for sensor and actuator + 0x22 Implemented

data by OEM

1/0 control by identifier + 0x2F 0x08

Read DTC (fault memory) + 0x19 0x01

Clear DTC (fault memory) + 0x14 N/A

Routine control if applicable | 0x31

Other diagnostic services if applicable

Flash Reprogramming Services
Flash programming services OxXX

‘ optional

Note

* The blue color shows the services are supported by Stack
** The orange color shows the services are not supported by Stack

(+) Plugs are mandatory services for LIN Stack

6. Application layer is the highest layer which stands for user’s applications.

Refer to Stack Source Code for detail about source code files of each layer.

Table 2-2. LIN2.x diagnhostic service specification

Freescale Semiconductor

15

Chapter 3
LIN Stack Package

This section presents more detail description of products in the package. The content is focused
how to construct input files for Node configuration tool and explore deeply in the source code.

The chapter contains sections:
e Generation Configuration Files
e Stack Source Code

Freescale Semiconductor

16

LIN Stack Package

3.1 Generation Configuration Files

The language described in this section is used in order to create input files for the Node
configuration tool to generation configuration files. To understand how to run this tool, refer to
Chapter 4.2, Hardware configuration file generation for more information.

NOTE

The LDF and NPF files could be created in notepad or wordpad
text editors in window and saved into .Idf and .npf extension files.

3.2 Stack Source Code

The Stack source code is organized to five folders: bsp, coreapi, diagnostics, include and transport
as shown in Figure 3-1. The structure of source code is based on the LIN system architecture (see
more in Chapter 2.2, LIN Stack).

LIM_5tack
bsp
ALUTOBALD
GPIO
RESYM
5Cl
SLIC
UART
XGATE
coreapi
diagnostic
include
lowlevel

transport

Figure 3-1. LIN Stack Source Code Directory Structure

3.2.1 Board Support Package

Board Support Package (BSP) layer is the lowest layer, which is comprised of functions related to
the specific hardware. Here you could find out the special interrupt service routines, 10
parameters, memory handling and so on. There are three interfaces implemented within the stack
package: SCI, SLIC and GPIO.

3.2.1.1 GPIO

There is only one MCU name 9S08QD4 in the support derivative table (see more in Table 2-1)
support GPIO interface. The source code in this folder is served for this MCUs.

In this folder, there are four files, including 1in 11d gpio.c, lin 11d gpio.h, timer.c
and timer.h. Namely

e lin 11d gpio.c define initialization, data sending flow of GPIO interface

Freescale Semiconductor

17

LIN Stack Package

e <timer.c define timeout management, counter for user application, and timer interrupt.

e lin 11d gpio.h, timer.h includes the prototypes for functions served for .c files.

3.2.1.2 RESYN

The source code in this folder support resynchronization feature of LIN Driver as the application
note [25]. The folder contains two source files 1in 11d resyn.cand 1in 11d resyn.h. The
MCUs support this feature include 9S08SG32, 9S08EL32, 9S08DZ60, 9S08DZ128 and
9S08MP16.

3.2.1.3 SCI

There three SCI communication versions supported in the LIN Driver and the version has been
combined in a single module of SCI.

The folder contains files lin_Ild_sci.c which implements all the functions universally used for all
MCUs with SCI interface. The 1in 11d sci.h contains the prototypes for functions
implemented in 1in 11d sci.c. The lin 11d timesrv.c consists of timing and board
frequency setup functions; 1in 11d timesrv.h consists of the prototypes for functions
implemented in 1in 11d timesrv.c and 1in reg.h contains the registry map declaration for
the MCU. The 1in isr.c contains interrupt service routines for SCI communication and timer.

The folder to the target MCU contains the file 1in isr.c which implements the interrupt service
routines and other initial tasks dedicatedly.

3.2.14 SLIC

Slave LIN Interface Controller is embedded module that automates LIN message handling to help
increase performance while reducing development time and cost.

In this folder, there are four files, including l1in 11d slic.c, 1lin 11d slic.h,
slic isr.c and slic isr.h. The contents of the files are described below:

e lin 11d slic.c includes all the initial functions and other related task handling
functions which will be used to directly interact with the physical hardware.

e lin 11d slic.h includes the prototypes for functions implemented in the file
lin 11d gpio.c, constant declarations and macros.

e slic isr.c consists of interrupt service routines for the physical board.

e slic isr.c consists of the prototypes for functions implemented in the file
slic isr.h, constant declaration and macros.

3.2.1.5 XGATE

The XGATE module on the advanced S12X family of 16-bit MCUs is a highly flexible, high
performance and cost-sensitive parallel processing solution. The XGATE module is a peripheral
coprocessor that allows autonomous high-speed data processing and transfer between the MCU’s
peripherals and the internal RAM and 1/O ports. XGATE uses SCI for 1/O communication and
handling interrupt.

Freescale Semiconductor

18

LIN Stack Package

Similar to modules in the SCI structure, the XGATE folder contains modules specific for XGATE
xlin sci.cxgate, xvector.cxgate. The source code in these modules is stored in the RISC
core.

3.2.1.6 UART

The UART layer provides physical hardware communication handling for Kinetis MCU platforms.
This is based on SCI version-4 communication specified for 32 bit ARM architecture.

3.2.1.7 AUTOBAUD

The signal on the UART receive pin (RX pin) can be internally routed to an Input Capture module
to time the edges of the incoming signal. From that timing the layer can set up the UART at the
correct baud rate.

3.2.2 Low Level layer

Low level layer consists of core functions for the LIN protocol such that frames handling, signals
transmission and reception, data preparation, etc. It also contains the functions used to set up the
LIN cluster. There are two files included in:

e 1in.c contains the functions for initialization of LIN core features, preparation of current
transmission and interaction with hardware modules.

e 1in.h consists of function declaration, macro definitions and so on which are
implemented within the lin.c file.

3.2.3 Core API Layer

Core API layer is a set of functions which are intended to be used to develop the applications
interacting with the LIN bus. There are six files in this folder, including:

e lin common_ api.c contains the common API functions which are applicable for all
three versions LIN2.x and J2602.

e lin common proto.c contains the functions which are used to set up the session
environment based on the low level layer.

e 1lin 1in21 api.c contains the API functions for LIN2.x communication protocol.

e lin 1in21 proto.c contains the functions which prepares the background tasks for
LIN2.x API functions.

e lin j2602 api.c contains the API functions for J2602 communication protocol.

e lin j2602 proto.c contains the functions which prepares the background tasks for
J2602 API functions.

3.2.4 Transport Layer

Transport layer comprises of functions, which represent the transport layer specification within the
LIN protocol. This layer is only applicable for some types of communication within the LIN bus.
The other types will not use the transport layer but the API and the low-level layer for opening a
working session for transmission and reception of data within the LIN bus.

There are four files in this folder, including:

Freescale Semiconductor

19

LIN Stack Package

e Lin commontl api.c consists of function calls for data preparation, node identification
and configuration and others which are the implementation of the transport layer
specification.

e Lin commontl proto.c consists of functions which do the background tasks for setting
up the transport layer.

e lin 21tl api.c consists of functions which implements the transport layer for LIN2.x
communication protocol.

e lin j2602tl api.c consists of functions which implements the transport layer for
J2602 communication protocol.

3.2.5 Diagnostic Service

The transport layer is also complemented with the diagnostic services, which implement full
diagnostic nodes defined in the LIN specification. Three diagnostic classes are supported where
Class I is using normal signaling and class 11 and class Il uses the transport layer.

This set of functions is built to support the mandatory diagnostic services described in the
communications protocol specification. This folder contains the file 1in diagnostic
_service.c, which implements the diagnostic class | for node configuration and identification
mentioned above.

3.2.6 Include folder

This folder contains all the function declarations, macros and constants definitions and global
variables which could be used throughout the source code. There are eleven files, including
lin common api.h, 1lin common proto.h, 1lin commontl api.h, 1lin commontl
_proto.h, 1lin diagnostic service.h, 1lin j2602 api.h, 1lin j2602 proto.h,
lin j2602tl api.h, 1lin 1in2l1 api.h, 1lin 1in2l proto.h and lin 1in21tl
_api.h. Among of them, 1in common proto.h is key one which plays a gateway role to
connect others for handling the protocol layer.

Freescale Semiconductor

20

Chapter 4
How to use LIN Package

The objective of this chapter is to provide user with instructions on how to set up and run LIN
applications as quick as possible. This chapter contains the following sections:

Environment requirement - Recommendation regarding CodeWarrior versions for each
target derivative.

Hardware configuration file generation - Steps to generate configuration files from input
files by using node configuration tool.

Target setup - Steps to setup a target hardware platform
Configuration files and LIN Stack source code integration - Steps to integrate to a project

Getting start with LIN application - Using API functions for user application

Freescale Semiconductor

21

How to use LIN Package

4.1 Environment requirements

The scope of this section is limited to recommend some notices when creating LIN application
projects using Code Warrior. For more detail information about the CodeWarrior Integrated
Development Environment (IDE) and computer programming, refer to the Reference [22].

The three Code Warrior versions 6.2, 5.1 and 4.7 are recommended environments applicable for
LIN Stack respectively with MCU 8/16 bit families as shown in Table 4-1. MCUs respective with
Code Warrior Version

Table 4-1. MCUs respective with Code Warrior Version

CW10.6 Cw4.7 CW5.1
9S12HY64 9512G64
9S08RN60 9512P128 9512G128
9512ZVL32 9512XS128 9512G240
95127VL128 9512XS256 9512GN32
MM9Z1J638 9S12XEP100 9S12XHY256
9S12ZVHY64 9S12XEQ512 MMO912F634
95127VH128 9S12XET256 MM912G634
SKEAZN84 9512XDP512 MM912H634
SKEAZN642 9S512XF512 MM912J637
SKEAZ1284 9S12XF512 9512VR64
9S08AW16A
9S08AW60
9508SG32
9508SG8
95085G4
9508DZ60
9508DZ128
9508QD4
9S08EL32
9S08MP16
9S08LG32
9508SC4
9512ZVC64
9512ZVMC256
NOTE 1

Freescale Semiconductor

22

How to use LIN Package

Check USB interface type of the target hardware platform to match with
connection types in CW (P&E Multilink/Cyclone Pro, SofTec HCS08/16
or HCS08/16 Open Source BDM) for downloading source code action.

NOTE 2

For MCU with XGATE coprocessor support, it is recommended to
selecting the source code of HCS12X and XGATE in RAM (Multi Core
selection) for purpose of faster operation.

Mew Proje i Al [l [?ape

Wwould vou like to have initially support for the
HGATE?

" Single Core [HCS124)
o pulti Core [HCS12% and =GATE in RARM)
" Multi Core [HCS12% and #GATE in FLASH)

The created project will contain source code

for the HCS1 2 and the =<GATE.

The HCS1 2+ code copies the XGATE code

from flash into ram and then configures the
GATE.

-

= freescale

¢ Back M et > Cancel

Figure 4-1 XGATE option in Code Warrior Studio
NOTE 3

The data type in Standard Types Settings of CW4.7 is selected as 16 bit.
Whereas, it is selected as 8bit in CW6.2 (Choose Standard Settings-
>Compiler for HO8/12->Type sizes).

Freescale Semiconductor

23

How to use LIN Package

Standard Types Settings E]
Bbit 1Ebit 32bit E4bit g
char (¥ - " v signed _
shirt - (+ - . Defaults
int - (¥ i i
long - - Q . Cancel
longlong .) f_“
eI - i+ £ W signed Flzlp
plain bit figld Iv
DspP IEEE32 |EEER4
float lﬁ o .
double lﬁ o .
larg double lﬁ o .
larg long double lﬁ o .

Figure 4-2 Data type option in CW4.7 and CW6.2

NOTE 4

When a CPU running with XGATE support, a warning message often
appears as shown in below:

&Harning + Cl20sa: 3P debug info incorrect because of optimization or inline assembler

lin common_proto.c line &30

Figure 4-3. Warning message appears in project with XGATE support

To remove this warning, choose SofTec HCS12 Settings -> Compiler for
H12 ->Options-> Optimizations and select Main Optimize Target then
click Optimize for execution time option.

NOTE 5
For 9S12HY64 and 9S12P128 MCUs, in order to compliant with Code
Warrior V4.7, two Code Warrior patches
(CW12 v4 7 HCS12 HY64 HA64 SP.exe, CW12 V4 7 HCS12

_P128 Sp.exe) need to be installed. (Access website:
http://www.freescale.com and download these two files).

4.2 Hardware configuration file generation

This section describes steps for generation configuration files (1in cfg.h, 1lin cfg.c,
lin hw cfg.c) for a node in LIN network. The input files include one NPF file and one or
several LDF files which the node participates in. These two files could be edited in a text editor
and they must be saved with . 1df and .npf extensions respectively instead of . txt.

In order to start generation files, perform following tasks.

1. Define target MCU (as shown in Table 2-1) used for emulation and its interface type
(GPIO, SCI and SLIC). If SCI interface is selected, verify the SCI version and channel
used as given in Table 4-2 below (This information is also mentioned in
MCU config.cfg file in NCF tool folder).

Freescale Semiconductor

24

http://www.freescale.com/

How to use LIN Package

Table 4-2. List of MCUs with SCI number and its address in RAM

SCI Number of
Version SCI/UART Address
channel
9S08AW16A
SCI0 0x0038
9S0BAWE0 | SCI V2 S08_ 2C1 ot
9S08DZ60 SCI0 0x0038
9sospz12s | SC-V4 _S08_ SCI1 00040
9S08LG32 SCI1 0x0010
SCl_v4 _S08_ SCI2 0x0018
95085G8
9S085G32
aoeeLas SCI_ V4 s08_ SCI0 0x0038
9S085C4
9S08MP16 SCI V4 508 SCI0 00068
9512132 SCI V4 S12_ SCI0 0x0240
9S12HY64
9S12P128 SCI V5 s12. SCI0 0x00C8
9S12GN32
9S12XS128
9S12XS256 SCI0 0x00C8
9S12XHY256 | SC-Vo Stz SCI0 0x00DO0
9S12G64
9512G128 SCI0 0x00C8
9S12G240 SCI V5 s12. SCI1 0x00D0
SCI2 0X00ES
9S12XEP100 SCI0 0x00C8
9S12XEQ512 SCI1 0x00D0
9S12XET256 SCI2 0x00BS
9s12xpps12 | SC-VP _S12X_ SCI3 0x00CO
SC14 0x0130
SCI5 0x0138
9S12XF512 SCI0 0x00C8
SCLV5 _S12X_ SCI1 0x00D0
MMO12F634
MM912G634 | SCI V4 s12. SCI0 0x0240
MM912H634
MM912J637 | SCI V4 D2D SCI0 0x0218
9S12VR64 SCI0 0x00C8
9S12VR32 SCLV6 S12_ SCI1 0x00D0
9S03RN60 SCI0 0x3080
SCI V4 S08_ SCI1 0x3088
SCI2 0x3090
MM9Z11638 | SCI V4 SCI0 OXOE18
9S127VL32
9S127VL128
9S127VMC256 | SCI_V6 s12. gg:g 8§8;28
9S127V/C64
9S127VML31

Freescale Semiconductor

25

How to use LIN Package

9S12ZVHY64
9S12ZVML128 SCI0 0x0700
SCLVS Sl 2 SCI1 0x0710
SKEAZNB84 1 0x4006A000
SKEAZNG642 3 0x4006A000
SKEAZ1284 UART K 3 0x4006B000
0x4006C000

2. Edit LDF and save to a folder.
3. Edit and NPF file and save to the same folder with LDF file above.

The sample .npf code below is targeted for S12ZVML128 platform using SCI0 channel for LIN
communication, 5 second timeouts, 8MHz bus clock, diagnostic class I, and the LDF which this
node participate is LIN21.1df as master node:

/* ***/

/* Initiator: CONG TRAN B26340 */

/* This example is used for S127ZVML128 as Master node */
/'k 'k**********************/

/*** GENERAL DEFINITION **x/
LIN node config file;

/*** MCU DEFINITION ***/

mcu | /* Must check the correct MCU name */
mcu_name = MCS9S12ZVML128;
bus clock = 8000000; /* Frequency bus of system Hz*/
xgate support = no; /* Support XGATE Co-Processor */

}

/*** L,IN HARDWARE DEFINITION **x/
/* SCI config */
scif
sl2 sciO{
sci channel = 0; /* Check validation of sci channel */

}

/*** NETWORK DEFINITION **x*/
network {

idle timeout = 5s;
diagnostic class = 1;
max message length = 6;
LIO{
node = SeatECU; /* Name of node described in LDF (must check
consistence with LDF) */
file = "LIN21.1df"; /* Path to LDF file */
device = s12 sciO; /* Identifier to LIN Hardware, related to LIN

HARDWARE DEFINITION */
support sid {
READ BY IDENTIFIER = 178;

ASSIGN FRAME ID RANGE = 183;
ASSIGN NAD = 176;
CONDITIONAL CHANGE NAD = 179;
SAVE_CONFIGURATION = 182; }

Freescale Semiconductor

26

How to use LIN Package

The max_message_length property applies to the diagnostic transport layer only. It defines the
maximum length of a diagnostic message that is number of used data bytes plus one (for the
SID or RSID). For diagnostic class I, max_message_length should be less than or equal to 6.
For diagnostic class Il and 111, max_message_length should be less than or equal to 4095.

The support_sid lists all SID values (node configuration, identification and diagnostic services)
that are supported by the slave node. For diagnostic class 3, users also can add their User
Defined Diagnostics SIDs. NPF files of Master nodes should list all SID values that are
supported by the slave nodes in the LIN Cluster. For convenience, users can use Eclipse Plugin
to list supported SID according to the supported diagnostic class. In NPF files, support_sid can
be listed using decimal values as above or hexadecimal values, e.g READ BY IDENTIFIER
= 0xB2. On Eclipse Plugin GUI, users can only input support_sid using decimal values.

Generate configuration files

There are three different ways to generate configure files that was integrated in the package:
Windows Command Line, Standalone GUI and Eclipse plug-in. This use manual presents the
steps to use Standalone GUI, for more detail of two remain methods, refer to the user guide of
NCF tool in the package.

4. Open the execution file NCFGui . jar in Node Configuration Tool at location: ..\NCFGUT.
The execution program window appears as shown in Figure4.4.

Mode Configuration Tool

File Help
MFF input File: E]
Oukput Folder: E]
[] owverwrite autput Folder Clear errors] ’ Wiew log] [Exit l
Welcome ko LIM Mode configuration tool Feb 24,2011 09:42:58

Figure 4-4 NCF main window

5. Click File => Select NPF file in File menu or press Ctrl + N to include the NPF file.

6. Click File => Select output folder in File menu or press Ctrl + O to select target folder
which contains output files.

Freescale Semiconductor

27

How to use LIN Package

7. Click Generate or press Ctrl + G button to generate files

If the NPF file is correct, a message will be displayed as shown in Figure

————————————— Thu Feb 24, 2011 09:48:5fi-———————————-

NPF file
LDF file
Dutput folder

¢ ENVNCFAuisExanpleziyMaster XDP51E 3CI DiagmosticClassz.npt
: EVHNCFOuinExanplesyTurnIndicator. 1d4£
C:%Documents and J3ettings’ linhmnwl'\Desktophout

Processing iz completed!

Figure 4-5. Successful generation message

Otherwise, an error message will appear to show a brief description of error type. Figure
shows an example of error message when lacking the interface field in the NPF file.

NPF file
LLF file
LDF file
Output folder

————————————— Thu Feb 24, 2011 09:49:48----——---————-

: EmvAllConfigCaseyConfigFilest Gateway xeplO0.npf

: EmvdllConfigCasesConfigFiles\CANOE LINDiagnostic.ldf
: ErvAllConfigCasersConfigFilesyLINZ1. 14f

: CivDoouments and Settingsy linhnwliDesktop’out

Error: Gateway xeplOO.npf - Must hawe at least one master node for malti LIN chamnel.
There iz 1 error.

Figure 4-6. An error message

4.3 Target setup

This section describes connection steps from a host PC to a demonstration board of target MCU
and some notices when working with some specific boards. The MCU project boards might be
different in hardware configuration such as system clock, mode operation, LIN connector, power
supply, USB/PC interface. It is strongly recommended to check all jumpers setting before getting
with LIN application.

1. Install all required system software for each MCU, it normally includes Code Warrior
patch, SofTec/Multilink Microsystems DLL built-in with board support.

2. Check “POWER SEL” jumper is in the “USB” position. Otherwise a 12V DC power
supply or 1/0 header connector of the LIN bus must be plugged.

JP9
PWR _SEL

L

VR1 USB

Figure 4-7. POWER SEL jumper on DEMO9S12HY64 board

Insert one end of the USB cable into a free USB port of the host PC.
Insert the other end of the USB cable into the USB connector on the project board.

Freescale Semiconductor

28

How to use LIN Package

17O

(o)e)
onQ

O o 3201

J202

OfO| RESET#
O O] BKGD
BDM_ENA

Figure 4-8. USB port on the DEMO9S12XSFRAME

5. Check operation modes. Several hardware platforms are available with two working
modes: “Standalone” mode and “host” mode. In standalone mode, no PC connection is
required. The microcontroller is factory programmed. In the other hand, in the host mode
the program execution is controlled by the host PC through the “USB” connector. Refer to
user manual of each board to see jumper and connector settings.

6. Check LIN/RS-232 SEL jumper. Make sure that the jumper is selected for LIN
transceiver.

>
r -

L 0]-&9—232
oo

500]'LI”
RS-232.

LIMN SEL

Figure 4-9. LIN Transceiver selection jumper on DEMO9S12PFRAME

7. For boards support external clock (EVB9S12XEP100, EVB9S12XDP512, DEMO-
9S12XSFRAME, etc.) make sure that the OSC SEL jumper is selected as CLOCK instead
of CRYSTAL.

U102 CLOCK

-
00 6 0000 J105
| {0]O| XCLKS#=0
| O O] cLocK
@o cl)@o 0 O | |0 Of crysTAL
L J L

0SC SEL
Figure 4-10. Oscillation selection jumper on DEMO9S12XSFRAME

8. Verify the LIN transceiver of the MCU project board to ensure it works properly by using
built-in test project regarding the MCU and debug in Code Warrior Real Time Debugger
environment. Figure shows an example of LIN transceiver testing on EVB9S12XDP512
board.

Freescale Semiconductor

29

How to use LIN Package

i True-Time Simulator & Real-Time Debugger C:\Documents and Settings\congth\Desktop\FSL_LIN_Driver_Source_code_20091021\tests\integration\TST_MasterMode_LIN21}
File View Run inDART-HCS12 Component Source “Window Help

Ole(e| & [es]e] 2% »|e|=|2e]+] o

H|Source:1 |z”§”zl

El Source:2 |z”§||z|

HC12 [CADocuments and SettingsicongthhDesktop\FSL_LIN_Driver_Source_code 20091021 Min_commo |Line: 528 AGATE |C:\Program Files\Freescale’\Codew/ amor for HCS12 W4, 74lib\wgatechsrchitskgate. crgate Line: 298
% The upper slave task is in charge of handling PID or Response conplete events / ;‘an RL, (R7,#8) L]
ADC R4, R4, Rl
SEND " Ami_tz
vu:LdAlin)pidil:espunaeicaubackihandler ACSR R4, #1 PCoPr= 1
; ,

[

/% [IN] interface name */
1_ifc handle iii,

FNORL R5, #-1

% [IN] ewent id */ :RDL RS, #1
lin_11d ewvent id event id, ABN‘E _LMULU L1
#% [IN] PID Lo process ©/ "SR B3, #1 pares 1
1 ud pid JCaR Rz, #1
] LD R1, (RO,R7+)
{® 3 ‘1w RS, (RO,R7+)
,if (LIN LLD_PID OK == event_id}{E = o Loy R4, (RO,R7+)
B1in 1 nid(iii, pid); " 1pw R, (RO,R7+) w|

e]|
FORTE_PEQ “= 1; —

[Assembly:2 (= Ix]
@} eloe,if (LIN_LLD_TX_COMPLETED == event_id){El =

Alinﬁup ate_tx(iii, pid); HGATE [LMULU
APURTB_PBI = 1 CER RE, #1] gl
XNORL RS, #254
” [} else,if (LIN_LLD_R¥ COMPLETED == ewent_idj{[ROL RS, #1

,Lin_update_rx (i1, pid); P
7 PORTE B2 ~= L1:
@} else if (LIN_LLD_BUS_ACTIVITY_TIMEQUT == event_id) (& =1 |Register:2
lin_bus_activity_timeout{iii, pid);
” } else {E
lin_handle error{iii, event_id, pidj:

}

Rl 0 Rz 0
R4 o RS 7E RE 1

L@ 7 [g0EA PC [8308 CCR | mEve
S FUNCTION® MCTL [EL CHID 64 ¥BR | 80DC
][] ST | 0 SEm | 0

Data:1 Data: 2 x| Data:3 X‘ Data: 4

HET2 lin_common_proto.c | Af [HC12 lin_pid_response_ca | Al| KGATE tevgatecxgate | Al [KGATE LMULL [

frame_signal_error 1 unsiged che® | iii LI0 (0} 1_ifc_handle errno 240 int

_PORTAB <2z» volarile POF - event_id LIN LLD_PID_OK (0} lin 1ld_even
lin_ifc_configur.. <59 array[l] of pid 1 unsigned cha
lin flag frame h.. <17= array[17] of

lin_freme_flag_thl <17> array[17] of

lin flag signal .. <2- array[20] ufw

|~

] =

‘Z E”Z| ZE Command

Auto Logical RUNNING A
000080'L OF OF 00 20 05 00 00 00 &0 00 00 00 00 00 FF & Breakpoint
000090'L 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A0'L 00 00 OO0 00 00 OO0 00 00 00 00 0D 00 00 00 00 00 in» =]
0000BO'L 00 00 00 80 00 00 00 00 00 04 00 00 CO 00 00 00 Edl
0000CO'L 00 04 00 00 CO OO0 00 00 00 04 00 00 CO 00 00 00 ~ W< ¥
For Help, press F1 |Automatic (breakpoints, watchpoints, and trace possibls) [Mcos124DPS12 |Braakpoint

Figure 4-11. Breakpoint at lin_proccess_pid function to test LIN transceiver

o Open TST 9s12xdp512 SCI XGATE MasterMode LIN21.mcp project file in
location
..\tests\integration\TST MasterMode LIN2I\TST 9s12xdp512 SCI X
GATE MasterMode LINZ21

o Set active schedule table as L10 SendTable in main function

o Call 1 sch tick functionin for (;;) loop, the sample code is below

1 sch set(LIO, LIO SendTable, 0); // For test LIN transceiver
for(;;) |
/* Delay time */
for(i = 0;i < 6000; i++) {
}
ret = 1 sch tick(LIO);
} /* wait forever */

/* please make sure that you never leave this function */

o Download to MCU board and click Start/Continue button.

o Set breakpoint in lin process pid(iii,pid) code line of lin pid
response callback handler function and observe if the program pause at this
breakpoint.

Freescale Semiconductor

30

How to use LIN Package

9. For MCU boards without LIN transceiver DEMO9S08AW60E, DEMO9S08QD4,
DEMO9S08SG8, you must connect their Tx/Rx pins of interface used through another
external LIN transceiver. For example, the GPIO pins in DEMO9S08QD4 board are
connected to a LIN transceiver of the DEMO9S08EL32 board as shown in Figure below.

o ldentify Tx/Rx pins in the schematic of DEMO9S08QD4
o Connect these pins with Tx/Rx pins on DEMO9S08EL32 board (linel, 2)

o Connect ground terminals between two boards (line 3)

o Supply power 12V to DEMO9S08EL32 board, it is then ready for demonstration.

3

£ 1 / — — | ® 1
RO T o OO 00 R0 |;
1 6 _O d_og Rg'oo? g—D O@ H] gL O[or ‘—Q 06

=] = o0 ND | swi 3 (@] = VR1 = o0
gg 5 +D~-J VR1 Qooe : 8=8 -0 OF U“ZQ Ol ﬂ] * Peyoos
BDM_ PORT Jeg— D2 = %OO] ‘O‘ _Nmz-f.,—,@ Eéﬂ tele

cisce ci7__| ®O 5 5 - ﬁﬁﬁ o o . "o
o rP302 R307U305 U3E6 - Soo | laal W el sl Al AR 2|0 X%g 8
i
cre 5[||:[D|:“:|El 1 2 = U e ——— ‘ o T g So0s
g Bcses - - u1 TaleXs)
3042 _
g'_ ii AE]ZI Foﬁ% 2 o5 uses %USBIBDM E moco
T]Jug QD bl ED Dﬁ o E Ooo
Z’,;l:[© o T G Rms[l 2 % 05¢ = Eg g%

2 o by — U304 5 o iy

DLk L L T e

H el o .

5312]:|5 e g1 | st “cow_seL & o0

ED[I H | I - oo O 0%

38 " SO R nD O0—0

F Em ;3@ g 8 :Iusez R311 A§ RP301 ‘ O
)8] g 8¢ e A SR Rl e T O
i =) T VEIB O e 5
K 302 R31 3
= = -
| sl] g o8 1%
| 1 Spm,cat1 *30 Ousgg-vufwzo sy

Figure 4-12. Connect LIN transceiver in DEMO9S08EL32 to DEMO9S08QD4 board.

4.4 Configuration Files and LIN Stack Source Code

Integration

This section will provide a steps-by-steps guide on how to integrate configuration files with LIN
Stack source code in your first project.

4.4.1 Create an empty project of the target MCU board
1. Open Code Warrior Studio V4.7 (or 6.2 refer to target MCU Table 4-2)

2. Create an empty project for a target MCU. Figure shows an example of MCU name

9S12XEP100.

Freescale Semiconductor

31

How to use LIN Package

| ® SofTecHCS12 By By

Files | Link Order | Targets |

¥ | Fie | Code | Data |4 Ij
B readme.txt néa nfa =l ~
B tips.kxt néa nfa =l
@ (=-S5 Sources 0 0+ =
w [mainc 0 0« =
W ‘il datapage.c 0 0+ =l
w [+-{_] Startup Code 0 0« =l
@ [+#-{_] Pm 0 0o =
[+-{_] Linker Map 0 0o =
w [+{_] Libraries 0 0+ =l
+-{_3 Debugger Project File 0 0o =l
+-{_3 Debugger Crnd Files 0 0o =

18 files 0 0 4

Figure 4-13. Project Window

4.4.2 Create a folder containing configuration files

3. Create new folder with name lin_cfg in the project folder and copy configuration files
(1in cfg.h, 1lin cfg.c, 1lin hw cfg.c) generated in Section 4.2, Hardware
configuration file generation to this folder.

& 9512XEP100_Slave Node

Eile Edit Yew Favorites Tools Help ﬁ'
@ Back - 'k,_:;l II p Search H___L' Folders v @ Folder Sync
Address |5 EnTestMewBoard\9512XEP100_Slave_Node v Go

-)9512¥EP100_Slave Mode Data
=
yemd
Other Places I"i
prm
I TestMewBoard) Sources

HEios12xEP100_Slave_Node.mep
EI Z_Lawauk, bl
Cef aulk. e
E] readme. bxt
[HsofTec_HCS1Z.0ni
=] tips.bxt

My Documents
g My Compuber
\ﬂ Py Mebwiork Places

Freescale Semiconductor

32

How to use LIN Package

Figure 4-14. Create new folder with name lin_cfg

Add configuration files to this project (drag and drop lin_cfg folder into CodeWarrior project).

| =l

9512XEP100_Slave_Node mcp I

& 9512XEP100_Slave Node

File Edit Wiew Favaorites Tools Help

OGE

4.4.3 Create a group containing LIN Stack source code

| ® SoffecHrsi2 By &5
. - &Y @) - | [
Files ILinkDrderl Targetsl @ Back </ LE P Search H_ Folders @ Folder Sync
¢ | File | Code | Data o |- Address |3 Ed\TestMewBoard195125EP100_Slave_Mods
B readme.tst n'a n'a = - :E]951ZXEPIDD_SIave_NUde_Data
B tips bt na nfa = File and Folder Tasks ¥ ISbin
$I§|-a50urces 0 0 = =)emd
¢ -0 [maind o 0« =
[“f datapage.c] 0 = Other Places — =
@ [#-{_] Starup Code] o« = Sprm
@ [+{3 Pim a i} =l Iy TestMewBoard I Sources
[*{3 Linker Map 0 0= Hlz19512XEP100_Slave_Mode.mcp
@ {7 Libraries 0 0 = M bacuments C Lavout htv\] B
[+#_] Debugger Project File] o = Ei My Compuker D_F ")
[++_3 Debugger Cmd Files 0 o = - e Leraul. mem
\:! Iy Metwork Places E] veadime bk
"% 5ofTec_HCS12.0ni
[Z] tips bxt
w

Figure 4-15. Add configuration files to the project

This section will help user to add source code to the application. Notice that every change in the
source code might create serious errors for application.

4. Create new group with name LIN_Stack

XEP100_Gateway.mcp l

|T]ﬂ}' SofTec HCS12

Files | Lirik. Eln:lerl TargetSI

Cl@gey &y

¢ | Fie | Code | Data # -
w [+ lin_cfa 0 0« ==
w [+{_] Sources 0 0« =
w [+{_] Startup Code 0 0« =
w [+{_F Prm 0 o =
[+-{Z7 Linker Map 0 1] =l
¥ [+{_] Libraries 0 0« =
[+{_3 Debugger Project File 0 o =
+{_3 Debugger Crad Files 0 o =
B readme.txt h'a hia =l
B tipstat n'a néa =l
Create Group

Enter name for new group:

LIM_Stack

o]

Cancel |

Figure 4-16. Create a group name LIN_Stack

5. Drag and drop five sub folders of LIN Stack folder (coreapi, diagnostic, include, lowlevel,
transport) into created LIN_Stack group.

Freescale Semiconductor

33

How to use LIN Package

[E=N (o =x™)
<« LINDriver b LIN_Stack » ~ | 42 ||| search Liny Stack o
Open Share with = Mew folder = - O i@?
-
Mame Date modified Type Siz
J bsp 4/21/201510:25 AM File folder
| coreapi 5/6/2015 5:57 PM File folder
. diagnostic 4/21/201510:25 AM File folder
J include 5/6/2015 5:57 PM File folder
) lowlevel 5/6/2015 5:57 PM File folder
. transport 5/11,/2015 2:38 PM File falder
| mainpage.h 5/20/201510:36 AM HFile

XEP100_Gateway. mcp |

| [D¥ SofTec HCs12

Fies | Link Order | Targets |

By @5

* File: Code | Data |4 |-
(3 LIN_Stack 0 0 M-
w {7 lir_cfg 0 0« =
w [#{] Sources 0 0« =
w [#{] Startup Code a 0« =
W [+ Prm 0 I =
+{_J Linker Map 0 a =
w [#{] Libraries a 0« =
+{_3 Debugger Project File a 0o =
+-{_7 Debugaer Crd Files 0 a =
B readme. txt nia n'a =
B tips.tst nia n'a =

Figure 4-18. Drag and drop five sub folders of LIN Stack folder into LIN_Stack group

6. Create a new bsp group is subgroup of LIN_Stack and bsp’s subgroup with name of

interface

e Create bsp group

XEP100_Galeway.mcp l

|_ SofTec HCS12

Files | Link Order | Targets |

-l@ge vy &%

i File Code | Data |4
 -@ALIN_Stack 0 0+ =
@] transport 1] 0« =
+{_] include 0 o =
o] lowlevel 0 0« =
w [#{_] coreapi 1] 0+ =
@ [#{_] diagnostic 1] 0« =
& {7 lin_cfg 1] 0« =
w [#{_] Sources 1] 0« =
% [+{_] Startup Code 1] 0+ =
& {7 Prm 1] o =
+{_] Linker Map 1] 0o =
w [+{_] Libraries 1] 0« =
+-{_J Debugger Praject File 1] 0 =l
+{_3 D'ebugger Crod Files 1] o =
B readrne. bt nia nta =l
B tips.tat hia h'a =l

Create Group

i

Enter name for new group:

|bsp

o]

Cancel |

4

Figure 4-19. Create bsp group is subgroup of LIN_Stack group

SCI interface

Drag and drop SCI folder into bsp group.

Freescale Semiconductor

34

How to use LIN Package

e
P00 e l
< LIN_Stack » bsp » ~ [43][Search bsp 2| |[_W’5°*TecHCS12 TRy 5
= Open Include in library + Share with - Mew folder =~ [@ Filez | Link Drderl Targetsl
Name Date medified Type S:f e | File | Code | Data [#€ [:
w S LIM_Stack 0 0« =
)\ AUTOBAUD 4/21/201510:25 AM File folder o E'D Fanepot . 1. =
L. GPIO 4/21/201510:25 AM File folder :I"IC||UC|9| g g =l
W .
). RESYN 4/21/201510:25 AM File folder - coraapi . 0. x
| Ju 5CI 5/11/2015 2:39 PM File folder L diagnostic 1] 0« =
e . @afsd 0 o =
1. slic 4/21/201510:25 AM File folder I i R =
1. UART 5/6/2015 5:57 PM File folder ¢ =] gUUICESC g g g L
)\ XGATE 4/21/201510:25 AM File folder :g prorup Lode I A
#{Z3 Linker Map] o =
@ [+{_] Libraries a 0« =
#{_3 Debugger Project File] o =
[+{_3 Debugger Cmd Files a o =
B readme st nia nfa =l
B tips.tet nta nfa =

Figure 4-20. Drag and drop SCI folder into bsp group
After all steps above, we have file architecture of Code Warrior project like this

Freescale Semiconductor

35

How to use LIN Package

File Edit View | Search | Project ProcessorExpert Device Initialization Window Help

REaFgEovxxhaaaNadhsilBR

XEP100_Gateway.mcp I i

I[i.s‘ﬂec HCS12 jﬁ By @5 &~ {} + M.+ [~ d'~ Path: | DGIT_Repo'LINDriver\Examples'General_Demo_Appl
B = I#inclu;le <1_1idef_ he % Common defines and macros *7
8% ILlnkDrderI Targetsl <% derivative information #*-

- #pragma LINE INFO DERIVATIVE "mc9slZmzepll0”
¥ | Fie | Code | Data 4 [: #include <MCIS12XEP100.hs

¥ =3 LIN_Stack 0 Os =+

¥ SR hansport] 0+ =) e .

W - lin_commont_api.c 0 0e = #include "l:!.n.h .

W [lin_commont]_prato.c 0 0« = #include "lln_demcn:h N

¢ 1B lin_2602Y_apic 0 0. = g;nciuge ,,leg—.ma}tlflx-h

-er - fin_linZ1t_apic 0 D« includs fstdio.

=R include . 0 o = #define GOTO_SLEEP DURATION 10
Ml lin_comment|_apih o b #define WAKEUP_DURATION 21
[lin_commont]_prato_h 0 0 =l
- lin_zomman_apih 0 0)| #define CLUSTER1_ACTIVE REQUEST 1}
[lin_zammmon_prata.h a a = #define CLUSTERZ?_ACTIVE REQUEST 1
- lin_diagnostic_service.h] a =l #define CLUSTER1_CLUSTERZ_ACTIVE FEQUEST 2
B lin_j26024_apih 0 0 =l #define CLOSTER1_CLUSTERZ_ DISAELE 3
) lin_j2602_apih 0 0=
BB lin_j2602_prota.h il il = extern 1_uf count:
= :::—:::g::tlgiﬂqh g g : #% Main entrt of application =~
- fin_lin?1_prata h 0 0 o ved main(veid) { _ }
¢ 1S lowevel 0 0+ = _uf ret. mods, led_ccnr_ltrgll = 0, controll = 0, control2
- N 1l _uf =lavelinfo, swi = 0;
¥ D lin.c: a 0 = 1_ult i.j. counter = 0:
v Déﬂ lin.h g g : 1_u8 data[4] = {0xAk, OxAd, Oxda, 0Oxlad};
! coreapt -

W - lin_common_api.c] 0+ = Line 1 Call | [«] |

w B lin_common_proto.c i] 0e =

' M lin_j2602_api.c i 0 e =

w M lin_j2602_proto.c 0 0e =

W B lirn_lin21_apic 0 0+ =

w R lin_lin21_proto.c i] 0 =

¥ [FE3 diagnostic i] 0 e =

w ol lin_diagnostic_service.c 0 0e =

¥ 3 bsp 0 0« =

w =50 0 0 x

3 R lin_isrc i 0e =

3 M lin lld_scic 0 0e =

M lin_lld_scih 0 i =l

w B lin_lld_timesre.c 0 0s =

B lin_lld_timesre.h]] =l
M lin_regh 0 0 =l
¥ [+{_] lin_cfg 0 0« =
¥ =53 Sources 0 0+ =
@ derivativeh i] i =l
W i 0 0=
i 0 =

L 0 0« =_
0 0o =

W 0 0=

W 0 0 =

L3 0 0« =

w] Startup Code i] 0 =

w [+#{3 Frm i i =l 4
L. Link er blan n =2

Figure 4-21. Overview of LIN Stack files architecture.

e Resynchronization feature

Resynchronization feature currently supports 9S08DZ60, 9S08DZ128, 9SO8EL 32 and 9S08SG32 hoards.
To use this feature, drag and drop RESYN folder into bsp group.

Freescale Semiconductor

36

How to use LIN Package

=]
XEP10_Gateway.mcp l
| [SofTec HCS12 ~liRY &y
Files | Lirk, Elrder] Targets]
i File Code | Data |4 =
@ =23 LIN_Stack 0 0 e =~
¥] transport 1] 0« =
+{_] include 0 0o =
o [T lowlevel 0 0+ =
@ [#{_] coreapi 1] 0« =
w [+] diagnostic 1] 0« =
¥ S bsp 0 0« =
¢ [ERESYN 0 0+ =
W il lin_iid_resyn.c 1] 0« =
f R lin Nld_respnh 1] o =
¢ [EE350 0 0« =
W -l lir_isrc 1] 0+ =
W -~ lin_lid_scic 1] 0« =
Bl lin_Id_scih 0 n =
¥ Bl lin_Id_timesre.c 1] 0« =
Bl lin_lld_timesre. b 1] 0 =l
@l lin_reg.h 1] 0 =l
w {7 lin_cfg 1] 0« =
@ [#{_J Sources 1] 0« =
w [#{_] Startup Code 1] 0+ =
w [#{_] Prm 1] 0 =l
+{_J Linker Map 1] 0 =l
w [+{_7J Libraries 1] 0« =
+{_3 Debugger Project File 1] 0o =
+-{_7 Debugger Crd Files 1] 0 =l
B readme.txt n'a nta =l
B tips.tat héa n'a =l

Figure 4-22. drag and drop RESYN folder into bsp group
e SLIC interface
If SLIC interface is chose, the source code added to project is shown in Figure

Freescale Semiconductor

How to use LIN Package

i
EL32_Slave2 mcp l
|ﬂ Standard jﬁ B % @
File:s | Lirk. Elru:ler] Targets]

¥ File Code | Data |4 :
~ 3 LIN_Stack 0 0 o=

+{_] diagnostic 1] 0 =l

+{_] include 0 o =

+-{_] lawlevel 0 0o =

+{_] coreapi 1] 0o =

+{_] transport 1] 0 =l

<A bsp 0 o =

SExsUc 0 0

<25 9s08el32 0 n =l

ol lin_Id_glic.h na n'a =l

Cfl i N _timesre. o na n'a =l

S i lld_timesry. b héa nta =l

- slic_jsre nia nta =l

ol elic_isrh na n'a =l

-l ln_Nd_slic.c na n'a =l

+{7 Sources 1] o =

+{_3 lir_cfg 1] 0o =

w [F] Inchides 1] 0 =l

% [+{_] Libz] n =l

@ [+#{_] Project Settings 1] o =

Figure 4-23. Add all Stack source code to SLIC interface (MCU used is 9SO08EL 32)
e GPIO interface
If GPIO interface is chose, the source code added to project is shown in Figure

=1l
QD4_SlaveB mop l
| % Standard j ﬁ B % @
File:s | Lirk. I:Irder] Targets]

W File Code | Data |4 :
~ 3 LIN_Stack 0 0 o=

+ {7 diagniostic 1] 0 =l

+_] include 0 0 =

+_] lawulevel 0 0o =

+{] coreapi 1] 0 =l

+{_] tranzport 1] 0 =l

A bap 0 o =

SE3GRID 0 0

5163 9:08qd4 0 0=

ool lin_Ild_gpio.c na n'a =l

R lin_llid_gpio.h héa n'a =l

R timero nda nfa =l

“-Hl tirmer.h hia h'a =l

+{_] Sources 1] 0 =l

+{_7 lir_cfg 1] o =

&] Includes 1] 0o =

w [+{] Libz] 1] =l

% [+{_] Project Settings 1] 0 =l

Freescale Semiconductor

How to use LIN Package

Figure 4-24. Add all Stack source code to GPIO interface (applied to 9508QD4 MCU only)

NOTE

Due to limitation in memory space, the RAM/ROM areas in QD4 MCU
need to be reallocated in Project.prm file to match with the Stack source
code. Namely, Z RAM = 0x0060 to 0x0060, RAM = 0x0061 to 0Ox15F.

See more in Figure 4-25.

Z RAM
RAM
ROM
ROM1
<% INTVECTS
END

SEGHENTS ~#* Here all EAM-RCM areas of the device are listed. Used in PLACEMENT below.
READ WRITE 0=z0060 To O0x0060;
READ WRITE 0=0061 T 0=01GF:
READ COHNLY OxFO00 TO OxFFA9:
READ ONLY 0=zFFCO TO 0=FFCF:
READ_ONLY 0xFFDO TO OxFFFF: Reserved for Interrupt Vectors =7

*

Figure 4-25. RAM/ROM areas relocation in QD4 MCU
e XGATE + SCI interface

If XGATE is selected, the Code Warrior Studio will automatically generate a default
file xgate.cxgate which defines XGATE interrupt handle functions and XGATE
vector table.

i4 Freescale CodeWarrior - [xgate.cxgate]

A= hL g -n-B-d

File Edit Wwiew Search Project Processor Expert Window Help
| =N = @
TST_9z12xep100_SCI_XGATE _Mazterdode_LINX1_text. mcp l

| # SofTecHCS12 By &5
File:s l Link. Order] Targets]
L File Code | Data |98 4 :
B readme bt n/a nia = -
B tips.tet n’a néa =l
@ 23 Sources 0 0+ » =l
¥ - main.c n O« » =
W -l datapage.c 1] 0« » =
W i N:gate.crgate 1] 0+ =« =
----- B =gate.h 1] 0 e ol
@ [+{_] Startup Code n 0« « =
@ [#{_] Prm 1] - =l
+{_7] Linker Map 1] 0= =l
[+{_7J Libraries 1] 0« + =
+{_3 Debugger Project File] n - =l
+.73 Nehunnear Cad Files n n = vl_‘
29 filez 1]]
£ >

EBIX]
% B

MWinclude <hidef .
#include "=gate.

S put wour hand
typedef struct {
int counter:

} MvDataTvpe:

ztatic MyDataTyp
]

T

< interrupt han
interrupt woid S

A< put your ow
pData—rcounter
if (pData—:cou
phata—>count
shared_count
b
b

Line 1 Call | 4]

Figure 4-26. Remove xgate.cxgate file in the project with XGATE support

This file has been modified which serves for SCI interrupt and request interrupt from
S12X_CPU and saved in location ..\LIN Stack\ bsp\XGATE\common . Therefore,
remove this default file and add the modified file to a group with name common in
SCI_XGATE group as the figure bellow.

NOTE

Freescale Semiconductor

39

How to use LIN Package

Remove NEAR segment pointer name by near in xgate.h file to
make XGATE vector table entry works properly. See Figure 4-27.

#ifndef HCATE _H_
#define _ HGATE _H_

<% HGATE wector table entrv *7

typedef void (#near HGATE Function)(int):

typedef struct {
EGATE_Function poc:
int dataptr:

} EGATE TableEntry:

<% pointer to the handler =
<% pointer to the data of the handler =

Figure 4-27. Remove NEAR segment pointer name by near

X b . {} - M- B~ o - Path | E:AFSL_UIN_3WSL_LING_R
9512XEP100_Slave_Mode mcp l

{ErrorHandler, 0xl1lF}. .~ Channel 1F -
. {ErrorHandler, 0x:0}. .~ Channel 20 -
| % SofTecHCS12 By & {ErrorHandler, 021}, .~/ Channsl 21 -
_ _ {ErrorHandler, 0xZ2}. .~ Channel 22 -
Files | Link Order | Targets | {ErrorHandler. 023}, ~~ Channel 23 -
{ErrorHandler, 0zxZ4}., .~ Channel 24 -
| File Code | Data {ErrorHandler, 0x25}., ~ Channel 25 -
e NV U U {ErrorHandler, 0x26}. ~ Channel 26 -
¥ [+-{] Libraries 0 0 {ErrorHandler, 0x27}. .~ Channel 27 -
CASE - |lin_cfg| o o {ErrorHandler. 0x28}. ~~ Channel 28 -
! -~ lin_cfg.c 1] 1] {ErrorHandler, 0x<9+., . Channel 29 -
@ lr_cfg.h 1] 1] {ErrorHandler., 0xZA}, .~ Channel 24 -
@l lin_hw_cfg.h 1] 1] {ErrorHandler, 0xZB}. .~ Channesl 2B -
% =23 LIN_Stack 1] 1] {ErrorHandler, 0x2C}, ~ Channel 2C -
¥ =-E3bsp 0 0 {ErrorHandler, 0x2D}. ~ Channel 2D -
@ S ERHGATE 0 0 {ErrorHandler, 0x/E}. .~ Channsl 2?E -
& B lin_isr.c 0 0 {ErrorHandler, 0x2F}. v Channel 2F -
A rrorHandler, Ox . L anne -

o) it 0 0 {E Handl D=z30} Ch 1 30
L= ’ rrorHandler. Ox .S anne -

oL Imesny. ¢ iE Handl 031} Ch 131
B lin_lid_timesrv.h 0 0 {ErrorHandler. 0x32}. ~~ Channel 32 -
¥ ~H lin_lld_sgate.c o o {ErrorHandler. 0x33}. ~~ Channel 33 -
- lin_ld_xgate.h 0 0 {ErrorHandler. 0x34}, .~ Channel 34 -
~f req_s12xh 0 0 {ErrorHandler, 0x35}. .~ Channel 35 -
' -l =lin_sci.cxgate 1 1 {ErrorHandler, 0x36}., .~ Channel 36 -
[l =lin_scih]] {ErrorHandler, 0x37}. ~ Channel 37 -
L3 @l wvector.crgate 1] 1] {ErrorHandler, 0x38}. .~ Channel 38 -
' +-{_] coreapi 1] 1] {(HGATE Function)lin _outgoing_request
w [+{] diagnostic 1] 1] {ErrorHandler, 0x3A}. v Channel 34 -
LEjhdee 0 0 {ErrorHandler, 0x3B}. ~ Channel 3B -
o {ErrorHandler, 0x3C}, ¢ Channsl 3C -

¥] lowlevel n n : ! .

& i{jtmnﬁmﬂ 0 0 {(EGATE_Function)=zlin_timer_handler. |
+-3 Linker M 0 0 {ErrorHandler, 0x3E}. .~ Channel 3E -
ke tap {ErrorHandler. 0=3F}, .~ Channel 3F -
¥ [+ L Pm 0 0 {ErrorHandler. 0x40}. ~~ Channel 40 -
B readme.tat nfa nfa {ErrorHandler, 041}, .~ Channel 41 -
¥ 5EA Sources 0 0 {(EGATE_Function)=lin_sci_handler. 0=l

Figure 4-28. Final source code adding window for the project with XGATE support

Once you completed adding LIN Stack source and compiled without error and warning, you are
now ready for writing LIN applications.

4.5 Configuration in CW10.6

MC9S12Z2VM128 is developed base on Code Warrior 10.6. These steps below show how to
configure a LIN application by LIN Stack package in CW10.6.

1. Create empty project target for MC9S12Z2VM128 in CW

Freescale Semiconductor

40

How to use LIN Package

* CIC++ - CodeWarrior Development Studio

File Edit Source Refactor Mo BECNEReE PR TS| Project
CCEe I ¥ | Devices B %5 Debug | BE cic++
Select the derivative or board you would like to use
=0
) i A &
Device or board to be used: Lo a
| type filker bext o=
-
File Mame = - ColdFire 4 fadl
[ColdFirs Y4 D
[ColdFire ¥x Evaluation Boards %
[ColdFire ¥x Tower Boards
[ColdFirs+ ¥1 A
[HCS08 T &
[Kinetis
e &
[Qorivva
[RI03 J &
B 5127
=) 5122%M Family | %
- MIZ95122¥MCES
MC9S122WMC1258
MC95122WMLES
EE]--Sensors :|
isass\l =3 Progre) =0
Project Type [Output: | m -
Locat... Typ
£ 1l
%- Camponents Library 22 @ [< Back JL hexk = J [Finish] [Cancel]
| 2
— L)
3

Figure 4-29. Select 9S12ZVM128 in Code Warrior
2. Click “Next” button following suggestion from CW default wizard
The final view is shown below

Freescale Semiconductor

41

How to use LIN Package

2 CIC++ - 512ZVM_LIN_Slave/Sources/main.c - CodeWarrior Development Studio

File Edit Source Refackor Mawigake Search Project Rum PEMIcro - Processor Expert window Help

N-EHE B i FA-N-R-MieS-g-6- iR B [%5 Debug | B cict+ |
: a 2 a = J - i
- O-Q- ™Y FdETN D]
%CodeWarriur Projec i3 T Project Paneq = 8| [£] main.c 22 = 8
= #include <hidef.h> /% for Ensblelnterrupts me#H :
|E_§|laz . S @ B q)(bplml #include "derivative.h”™ /% include peripheral o=
==
File: Mame = %
B L= 5127M_LIN_Slave
ts.' Binaties %
[l Includes
= Lib rvoid main (void) { b &
[MC95122yMLLZE
el
[~ Project_Headers Enablelnterrupts; fa
1= Project_Settings /% dinclude your code here */
= SasnalysispointsiManager, apconfig =
= (= Sources A
(€] main.c < | > %
Eipro 32 Eﬂas} Etow ﬁPrD}JﬁReWE""Dis}%Pm} =08
0 errors, 2 warnings, 0 okthers =] =
Description = Resource Path
& Warnings {2 items)
< | >
(% Companents Library &3 = |1|v = E\I ¢ 3
| Bt L
DopE
: U

Figure 4-30. 9S12ZVM128 project in Code Warrior 10
3. Copy “LIN Stack” to project folder in workspace:

Lo]

LIN Stack » LIN Stack » ~ | 43 || Search LIN_Stack o
rary - Share with = Mew folder = « i I@

Marne Date modified Type

. bsp 4/21/201510:25 AM File folder

| coreapi 5/6/2015 5:57 PM File folder

| diagnostic 4/21/2015 10:25 AM File folder

. include 5/6/2015 557 PM File folder

L lowlevel 5/6/2015 5:57 PM File folder

| transport 5/11/2015 2:38 PM File folder

|| mainpageh 5/20/201510:36 AM H File

Figure 4-31. Add LIN Stack to workspace
4. Keep SCI folder and remove all other folders in “bsp” folder

Freescale Semiconductor

42

How to use LIN Package

[&]eSa)

b LIMN_Stack » bsp » - | 4 | | Search bsp = |
¥y Share with = Mew folder == « [I@I
Mame . Date modified Type
J SCI 5/25/2015 3:06 PM File folder

Figure 4-31. Remove GPIO, SLIC, XGATE interfaces
5. Create empty “lin_cfg” folder with the same level directory with LIN _Stack folder
6. Generate configuration files and copy these three files to this folder as mention in Section

4.2
% in_cfe EBX
File Edit ‘“iew Favorites Tools Help .1.'
-) =, - | (&
@ Back, _/l l_? 7 Search ‘H Folders @ Faolder Sync
Address |1,i'| D:APTAO_Share}S122M_LIN_Slavellin_cfg V| Ga
Folders x lin_cFg
= 05 5122%M_LIN_ Slave A gggurce File
I5) .settings
I Lib i
in_cfq
('])4+ Header File
[C7) LIN_Stack & KB
lﬁ MCIS122VMLLZE in h ‘
. in_Fs_cfg
(2 Project_Headers Z/_++ Header File
|53 Project_Settings 2 KR
I Sources =
I test
I Release 20111123
I5h Repositaries v
< [¥

Figure 4-32. Generate configuration files and copy to project folder
7. Back to CW10.6 window, press “F5” in project workspace to update new folders created
8. Click to project selected (S12ZVM_LIN_Slave) ->Right Click -> choose properties

9. Go to C/C++ build item in left sigh of new window, double click to “Settings” item, the
new window is displayed below

Freescale Semiconductor

43

How to use LIN Package

Properties for 512ZVM_LIN_Slave

| bype Filker best Settings e

Resource

|>

Build configuration: |MC95122VML128 [Active] V| [Manage

Discovery Oplions

Ervvironment

Logging
"" " =83 5127 Burner #|| Command: |"${SIZZ_ToolsDir},l'burner"

Toal Chain Editor B@ Output !

[CfC++ General e] All options:

- Project References - Configure S-Records

e

- RunfDebug Settings (= Input

@ Host

- @ Messages

@ Disable User Messages

@ General Expert settings:

= B8 5127 Linker Command

@ Optirization line pattern:
g

£ Tool Settings | J# Build Steps | Build Artifact | Binary Parsers | @ Error Parsers | Build Tool Versions |

-WiewHidden -WwmsgFob"Yefee: %l Sk %ed: Smin”

[${ComMmaNDY $IFLAGS) ${INPUTS)

- @ Messages
(2 Disable User Messages

@ General
a---@ 5127 Compiler

! @ Input
(22 Access Paths
@ Warnings
%
[.D'h
@ Language
H
(22 Messages
L]

General)

3
@ [ox

Ciptirnization

|~

] [Cancel

Figure 4-33. Setting path for new folder in project properties
10. Go to S12Z Compiler option, double click to “Access Paths”

In the “Access Paths” right sight view, add the paths for new files in the folders created above

Freescale Semiconductor

44

How to use LIN Package

Properties for, 512ZVM_LIN_Slave

| bype Filter text

| Settings -
Resource A
Euilders —
El--C,I'C++ EBuild Id configuration: |MC95122\-‘ML128 [Active] b | [Manage Co
- Build Yariables
- Discavery Options
- Environment ;
Logging ! Tool Settings | A Build Steps || Euild Artifact || Binary Parsers || @ Error Parsers || Euild Taol Yersions
! ?E';tlizisain Editor =8 5127 Burner ~ | []Do Mot use MWCIncudes Yariable
=] il
B CJC++ General = fD‘ %L*Ltiu': . < fecond [#] alwsays Search User Paths
: (22 Configure S-Recards .
-~ Project References \w; & Search User Paths (#inchude "' £ 8 35 H
- (Tt g
Run/Debug Settings =
fS Host "${ProjDirPatht{lin_cfg"
9@ Messages "ﬁgro]glrgatp}}:}' II:::_EEEE: ::Fralnsdpﬂrtu
PO m raiDirPal _Stackfinclude
P [=* Disable User Messages "&{ProjDirPath}/ LIN_Stackcoreapi”
B General

"&{ProjDirPath/LIN_Stack /diagnostic”
= B8 5127 Linker "&{ProjDirPathl/LIN_Stack [bspfaCT"

(2 optimization ${ProjDirPathtiLIN_Stack flowlevel

(B Oubput =

g InL;LITtu Search User Paths Recursively & x 3 5l &

B Host

B@ Messages

@ Disable User Messages

@ General

=88 5127 Compiler

(3 Tnpu

) -

g s;;:;;:ths Search System Paths (#incude <., =) & w38 '@l I@l

@ Optimization {MCUT oolsE:) Support

L "$IMCUToolsBaselir 51 2lisa_sSupport/s1Zlisac)src”
[g; anguage "$IMCUToolsBaseDir /51 2lisa_Supportfs12lisac/lib”

o[22 Messages

@ General

BE‘B 5127 Assembler

=2 outpuk B

H B !
< | >

®

[QK] [Cancel

Figure 4-34. Add path for LIN Stack and configure files
11. Click to “OK” button to finish file configuration
12. Add include files in “main.c”

#include <hidef.hr /% for Enablelnterrupts macro #/

#include "derivative.h™ /% include peripheral declarations &/
#include "lin.h"

fif TL FRAME
Hinclude
H#endif

_TL MUOLTI FRAME
"lin linZ2ltl api.h

13. Create vectors.c file and save in Source folder (see example in the package for full
implementation)

Freescale Semiconductor

45

How to use LIN Package

II."*

*

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

* Vectors.o

1T void
20 woid
30 woid
417 woid
50U woid
60 woid
70 woid
S0 wvoid
ST woid

izsr idx =

ISRL ()
ISR2 ()
ISR3 ()
ISR ()
ISRE ()
ISREG ()
ISR7 ()
ISR ()
ISRI ()

* Created on: May 2, 2012
* huthor: CongTH
u/

0;

i e, e, e, e e e,

{

107 woid ISR1O0() §
117 woid I3R11()

#include <hidef.h> /% for Enablelnterrupts macro %/
volatile int

f* 3tores the identifier of the interrupt that was

isr idx
isr idx
isr idx
isr idx
isr idx
izr idx
isr idx
isr idx
isr idx
isr idx
isr idx

AL LEEAT]

= m

e e ww

LRt EE B U Y LAY R SN
-

AL

10;
11;

HALT;
HALT;
HALT;
HALT;
HALT;
HALT;
HALT;
HALT;
HALT;
HALT;
HALT;

et et et et ettt et et et

/ {E3PARE

/{ TRAP

FE =11

AiaTs

fiMachine Exception
S i Rezerved

S i Rezerved
Si3purious Interrupt
SPAEIRD interrupt
SAIRD interrupt
fIRTI

Figure 4-35. Interrupt function implementation

14. Add interrupt vector table in .prm file (see example in the package for full implementation)

I
I
I
I
I
I
I
I
I

L B o I L

f/VECTOR O Entry
fATINIT Ent
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR 10
VECTOR 11
VECTOR
//VECTOR 13 TIMchanl ISR
VECTOR 13
VECTOR 14
VECTOR 15
VECTOR 1o
VYECTOR 17
VECTOR 15
VECTOR 19
VECTOR Z0O
VECTOR 21
VECTOR 22

ry
SR1
SR2
SR3
SR4
SRS
SRE
SR7
SRS
SRO
ISR10
ISR11

I3R13
I3r1i4d
I3R15
I3R1le
I3R17
I3R15
I3R15
IZRZ0
IZRz21
I3P:2

AT reset vector:

VECTOR 0O 3tartup /% reset wector: this iz the default
this iz the default
f* for assembly applications: that t©

12 TIMchanO ISR //Timer(Channel 0 (ISR1Z)
A4 TimerD Channel 1 [(ISR13)

Figure 4-36. Interrupt vector table redefinition

You are ready for creating application.

Freescale Semiconductor

46

How to use LIN Package

4.6 Getting Started with LIN application

4.6.1 Initialization of hardware utilities
Before getting start with LIN application, some hardware unities must be initialized such as system
clock, timer, 1/0O ports for demonstration.

NOTE

In order to make the LIN system runs properly, the frequency of each
MCU board should be greater equal to 8MHz. See user manual of each
MCU to setup this value.

MCO clock speed: 7987000 He
Elock Module Name Addrezz Range Status
0 FLASH_4000 4000 - 7FFF EBlank - Tnselected
1 FL&3H _Coo0 coogd - FFFF Frogrammed - Tnselected
£ ALL_PPAGE3F EQ3oon -FFEFFF Frogrammed - Tnselected
3 EEPROM_COO coo - FFF EBlank - Unselected
4 ALL EPAGES FCOS00 -FFOEFF EBlank - Tnselected
5 EEPROM_s00 g00 - BFF Elank - Tnselected
& FL&3H _s000 g0o0 - EFFF Programmed - Tnselected

Figure 4-37. MCU clock speed displayed in Command window of CW real time debugger

In the example below, the system clock in DEMO9S08AWG60 board is configured as 16MHz and
ports ¢ and d is set as input for press buttons.

void cpu init () {
/* PE initialization code after reset */
/* Common initialization of the write once registers */
SOPT = 0x53;
// Low-voltage detect
SPMSC1 = 0x1C;
SPMSC2 0x00;
/* System clock initialization */
SMCLK = 0x17;
/* Init internal frequency equal to 16Mhz */
ICGCl = 0x78
ICGFLT = 0xCO0;
ICGC2 = 0x20;
/* Initialize ICGTRM register from a non volatile memory */
ICGTRM = * (unsigned char*)0xFFBE;

void init keyboard ()
{

PTCDD = 0x10; // set port c as inputs for push button switch input except
for C4 which is accelerometer ST

PTCPE = OxEF; // enable port c pullups for push button switch operation
except for C4 which is accelerometer ST

PTDDD = 0x00; // set port d as inputs for push button switch and

accelerometer inputs

Freescale Semiconductor

a7

How to use LIN Package

PTDPE = 0x0C; // enable port d pullups on D2 and D3 for push button switch
operation

4.6.2 Initialization of LIN system

Before the APIs functions of the LIN2.x, J2602 are used, the LIN system must be initialized. In the
example below for EVB9S12XEP100 MCU board, the LIN system is initialized when the
microcomputer is reset. Note that this reflects the points where the API functions for LIN are
called.

#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */

#include "lin.h"

void init keyboard ()
{

PTCDD = 0x10; // set port c as inputs for push button switch input except
for C4 which is accelerometer ST

PTCPE = OxEF; // enable port c pullups for push button switch operation
except for C4 which is accelerometer ST

PTDDD = 0x00; // set port d as inputs for push button switch and
accelerometer inputs

PTDPE = 0x0C; // enable port d pullups on D2 and D3 for push button switch
operation

}
void cpu init () {
/* PE initialization code after reset */
/* Common initialization of the write once registers */
SOPT = 0x53;
// Low-voltage detect
SPMSC1 = 0x1C;

SPMSC2 = 0x00;

/* System clock initialization */

SMCLK = 0x17;

/* Init internal frequency equal to 16Mhz */
ICGCl = 0x78;

ICGFLT = 0xCO;

ICGC2 = 0x20;
/* Initialize ICGTRM register from a non volatile memory */
ICGTRM = * (unsigned char*)0xFFBE;

/* .. Something to define */

void main (void) {
1 u8 ret;
EnableInterrupts; /* enable interrupts */
/* include your code here */
/* LIN initialization for h w utilities */

Freescale Semiconductor

48

How to use LIN Package

init keyboard() ;

cpu_init();

/* LIN initialization for timer */

ret = 1 sys init();

/* LIN initialization for interface */
ret = 1 ifc init(LIO);

for(;:) |
/* .. Something to do */
} /* loop forever */
/* please make sure that you never leave main */

NOTE

If using diagnostic services class Il or Il you must init transport layer
first. Add this command before using LIN API init transport layer:

- For master node:

1d_init (LIO);
- For slave node:

1d init();

4.6.3 Timer for LIN schedule execution (Master mode only)

This section is just applied for Master Mode only. In any LIN system, the API function for
schedule execution must be called regularly. The table below lists MCUs with timer names which
could be used for this execution.

Table 4-3: Timer used for LIN Driver

Timer Version Number Channel
used

MCU
of channel

9SOBAWIBA | 508TPM V2 8 0
9S08AW60

9S08DZ60

9S08DZ128
9508SG8 S08TPM V3 8 0
9S08SG32
9S08EL32
9S08MP16 SO08FTM V2 2 0

9S12HY64
9512P128 TIM16B8C V2 8 7
9512G128
9S12XHY256
9S12XEP100
9S12XEQ512 V2
9S12XET256 S12PIT24B8C 8 0
9S12XDP512
9S12XF512
9512XS128 | 519pIT24B4C | VI 4 0
9512XS256
9512132 TIM16B4C 4 3

9S12ZVML128 | TyMmo V3 4)
9512ZVL32

Freescale Semiconductor

49

How to use LIN Package

9S12ZVHY64

9S12ZVML31

9S08RN6G0 SO8TPM V3 8 0

9S12VR64 TIM16B8C V3 8 3

9S12VR32

MMO9Z1J638 | TIM16B4C ~ 4 3

SKEAZN84 FTM ~ 4 2

SKEAZN642 | FTM ~ 4 2

SKEAZ1284 | FTM ~ 4 2

05127V C64 TIM16B8C 4 2

0S12ZVL128 | TIM16B6C V3 6 3

9S12ZVMC256 | TIM16B4C V3 4 3
NOTE

In the table, the channel used column shows the channel name in the
highlight timer has been used for the timeout management in each MCU
with time base as 500 ms. In order to use another timer, user could use
another timer type with every time base value.

In the sample code below, TIM timer channel 2 is used to count-up and generate interrupts at an
approximately 2.5ms interval for S12VR64 -Tomar board. Also, in the function (main processing)
for schedule-table execution, the API function for schedule-table execution must be called at or
multiple of the corresponding time-base interval. (See more from demo of S12VR64 in the
package)

Initialized timer function for LIN schedule tick:

void TIM channel2 init (void) {

TIOS |= TIOS_I0S2 MASK;

CFORC |= CFORC_FOC2_ MASK;

TTOV |= TTOV_TOV2 MASK;

TIE |= TIE C2I MASK;

/* Set counter as 2.5ms timing */
TC2 = 20000;

}

This application code will be defined by user for period of each LIN frame sent in the bus. The
sample code use a loop to increate tick to 15ms for every LIN frame transmission

#pragma CODE_SEG _ NEAR SEG NON_ BANKED
interrupt VectorNumber Vtimch2 void TIM TIMERZ ISR(void) {

if (LIN counter>=6) {
/* Activate LIN frame transfer for every 15ms */
ret = 1 sch tick(LIO);
/* Reset counter */
LIN counter = 0;
}
if (LED counter>=50) {
/* Activate LIN frame transfer for every 15ms */
PTT PTTO =~ PTT PTTO;
/* Reset counter */
LED counter = 0;

Freescale Semiconductor

50

How to use LIN Package

}

LIN counter++;

LED counter++;

/* Clear timer flag */

TFLGl |= TFLGl C2F MASK;
/* Reset timer counter */
TC2 = (TC2 + 20000) &OXFFFF;

}
#pragma CODE SEG DEFAULT /* Return to default code segment */

4.6.4 LIN_PHY Enable

For those MCUs which support LIN_PHY to replace LIN transceiver (9S12VR64, 9S127Zs), there
are two ways to drive this interface. The first one is using SCI to control LIN_PHY and the second
one is directly handle through the LPDR register provided by hardware silicon.

To easy porting and maintenance, this scope of Stack use the first way where SCI physical layer
has been existed.

In order to enable LIN_PHY working with SCI, the steps as below:
1. Enable LIN_PHY
2. Enable LIN Pull-up
3. LIN Slew Rate selection

Due to range of LIN baudrate from 2000bps to 20000 bps, the LIN slew rate bit selection is
defined to mapping optimally with LIN baudrate working.

For more information, refer to LIN Slew Rate Mode Register (LPSRM) of 9S12Zs Reference
Manual.

LIN_PHY Enable example:
Here is code for enabling LIN_PHY in 9S12VRG64:

void LIN Phy (void) {

LPCR_LPE = 1; /* Enable LIN Phy */
LPCR_LPPUE = 1; /* Pull up to strong signal */
LPSLRM = 0x01; /* Select Slew Rate */

4.6.5 LIN Applications

This section describes sample codes for LIN application using API function (refer to Appendix A)
after initializing hardware utilities and LIN system as well as timer for schedule execution. The
application focuses on contents (frame) transferred on the LIN bus and how to process data
depends on LIN system configuration which is acquired from the status of various nodes,
peripheral devices, and other applications.

4.6.5.1 Master task

This example code below for master task is taken from S12VR64 demo code in the package. For
more application, please refer to directory:
LIN_Package\Examples\VR64 MagniV\VR64_Master LIN21.

Freescale Semiconductor

51

How to use LIN Package

Base on LDF definition for schedule table, the master task will require user to select which
schedule will be active and the frames associated will be processed.

In this example, here is the table of scheduler defined in the lin_cfg.h file

typedef enum {
/* Interface name = LIO */
LI0 LIN NULL SCHEDULE
,LI0_GOTO SLEEP SCHEDULE
,LI0 MasterReqTable
,LI0 SlaveRespTable
,LI0 NormalTable
,LI0 ETFCollisionResolving
,LI0 InitTable

}1 schedule handle;

In the main.c file, the schedule is active as the code below

/* Set active schedule table, */
1 sch set (LIO,LI0 NormalTable, 0);

In this example, the LIN NormalTable is active. There are two more default schedule generated by
tool are .10 11N NULL scHEDULE Used for no activity in LIN bus request and
LI0 GOTO SLEEP SCHEDULE USed to send goto sleep request.

In this application, the master will control temperature of motor by reading temperature data stored
in signal MotoriTemp IN Motorlstate Cycl frame. If the returned temperature is greater than
maximum value, master will request slave to reduce temperature or if greater than broken value,
master will request slave to stop motor.

if (1 _flg tst LIO MotorlTemp flag()) {
/* Clear this flag... */
1 flg clr LIO0 MotorlTemp flag();
/* Store temperature data */
Motorl temp = 1 u8 rd LIO MotorlTemp();
/* The application will change Motor selection in case
the temperature is greater than maximum value to release motor power
This will be transfered by sporadic frame type in LIN bus */
if (MOTOR1 OVER TEMP<Motorl temp) ({
/* Request stop motor by power off */
1 u8 wr LIO MotorlSelection (MOTOR SELECTION STOP) ;
}else if ((MOTOR1 MAX TEMP<Motorl temp) & (MOTOR1 OVER TEMP > Motorl temp)) {
/* Request to reduce motor speed */
1 u8 wr LIO MotorlSelection (MOTOR SELECTION DECREASE) ;
} else {
/* Request to increase motor speed if user request */
1 u8 wr LIO MotorlSelection (MOTOR SELECTION INCREASE);

4.6.5.2 Slave task

This example code below for LIN slave tasks is used to check control signal from Master on
temperature selection modes. See VR64 Slave LIN21 example in the package.

/* Check if temp signal is updated */
if (1 _flg tst LIO MotorlSelection flag()) {
/* Clear this flag... */

Freescale Semiconductor

52

How to use LIN Package

1 flg clr LIO MotorlSelection flag();
/* Store selection data */
Motorl Selection = 1 u8 rd LIO MotorlSelection();

/* The application will change Motor selection in case
the temperature is greater than maximum value to
release motor power
This will be transfered by sporadic frame type in LIN bus */

1 u8 wr LIO MotorlTemp (Motorl temp);

/* Check if power off motor due to high temperature */
if (Motorl Selection == MOTOR SELECTION_ STOP) {
[Frmmm e add code here to stop motor ---—-——--—---—-—- */

4.6.5.3 Goto Sleep and Wakeup applications

This section is taken from the application code of General demo application. Please refer to
directory Examples\General_Demo_Application\XEP100_Gateway for code of master node and
Examples\General_Demo_Application\DZ128_Slavel\ for slave node.

The feature Goto Sleep is only call by master and after this function is called, the LIN status word
which contain a bit for Goto Sleep will be updated. Therefore user can check by reading this word.

NOTE

The call is a read-reset call; meaning that after the call has
returned, the status word is set to 0.

If user press button PB4 in XEP100 EVB board, the Goto Sleep, wakeup features will be enable
and press one more time, it will disable the features.

/* Use the button PB4 in the EVB board to demonstrate goto sleep/wakeup
feedture */
if (!'SwW4) {

for(i = 0; 1i<60000;1i++) {
for(j = 0; 3j<10;3++);

}i

if (0 == (sw4d%2)) {
(void) printf ("Enable free counter for test goto sleep\n");
1 sch set(LIl, LI1 PeriodicalWakeupTable, 0);
1 sch set(LI2, LI2 PeriodicalWakeupTable, 0);
count = 10;
freecntr enable();

} else {
(void) printf ("Disable free counter\n");
controll = 0;
control2 = 0;
1 sch set(LI1l, LI1 LIN NULL SCHEDULE, 0);
1 sch set(LI2, LI2 LIN NULL SCHEDULE, 0);
count = 10;
freecntr disable();

}

swi++;

There two ways for wake up LIN bus:

a- The master node issue a break field, e.g. by issuing an ordinary header since the break will act
as a wake up signal

Freescale Semiconductor

53

How to use LIN Package

b- Master node or slave call API function 1 _ifc wake up to send wake up signal in the bus

In this example, the master issue a break field by active 111 PeriodicalWakeupTable Schedule.
By using and reseting counter variable count, the LIN network will be wakeup and in sleep mode
periodically.

/* Send goto sleep command */
if (GOTO_SLEEP DURATION == count) {
(void)printf ("Send goto sleep command\n");
1 ifc goto_sleep(LI2);
1 ifc goto sleep(LIl);
count++;
}
/* Run Periodical Wakeup table */
if (WAKEUP_DURATION == count) {
(void)printf ("Run Periodical Wakeup table\n");
1 sch set(LIl, LI1 PeriodicalWakeupTable, 0);
1 sch set(LI2, LI2 PeriodicalWakeupTable, 0);
count = 0;
}
counter++;
if (5 == counter) {
counter = 0;

}

In order to check Goto sleep flag, the code below uses a LED in the board to display the status.
If LED is on, mean the node in the sleep state and if the LED is off, the node is in wakeup state.

/* Check if any sleep mode on two cluster by reading the LIN word status */
LINl1 word status = 1 ifc read status (LI1);
LIN2 word status = 1 _ifc read status (LI2);

if (LIN1 word status != 0){
if ((LIN1 word status>>3)&0x0001) {
LED3 = ON; /* clusterl bus is in sleep mode */
lelse(
LED3 = OFF; /* clusterl bus is in wakeup mode */
}
}
if (LIN2 word status != 0){
if ((LIN2 word status>>3)&0x0001) {
LED4 = ON; /* cluster2 bus is in sleep mode */
telse({
LED4 = OFF; /* cluster2 bus is in wakeup mode */
}

At the slave site (DZ128_Slavel) the code to check goto sleep and request send a wakeup signal as
below:

/* Check if the goto sleep command sent by master node */
LIN word status = 1 ifc read status(LIO);
/* The word status i1s presented below
———————————————————— Word status---—-—-—-——-—-""""""""""""=""=--—-—-—-——
[15]11411311211111019181716151413121110]
\ [I I | I | | |--— Error in response
| | | |---— Successful tranfer
I et Overun
| |-——————- Goto sleep
| —————————= Bus activity
| ——————————— Event trigger collision

Freescale Semiconductor

54

How to use LIN Package

\ | |-—————————————= Save configuration

|- —— Las frame PID */
/* Check if any update from LIN word status*/
if (LIN word status != 0){
/* Check if the LIN bus in the sleep mode */
if ((LIN _word status>>3)&0x01) {
LED3 = ON;
/* Press PTA4 to wakeup LIN node */
if (!PTAD PTAD4) {
/* Call wakeup function */
1 ifc wake up(LIO);
}
telse(
LED3 = OFF;
}

}

4.6.5.4 Multi LIN master with different timers for S12X MCUs

For S12x MCU family including XEP100, XDP512, XF512, XEQ512 and XET256 contain a PIT

timer with 8 channels.

If those MCUs are used for multi LIN Master, the timer for timeout activity can be selected one

PIT timer channel for all LIN networks or separated channels for each network.

The figure 4-38 below shows a configuration of Multi LIN master with different Time base

required in each network.

9S12XEP100
Master Master
Task 1 Task 2
LIN21.Idf LINDiagnostic.ldf
Time base =5 ms Time base =1 ms
LIN LIN LIN LIN
IN IN IN IN
Slave Slave Slave Slave
taskl task2 taskl task2

Figure 4-38. Configuration of multi LIN Master in 9512XEP100

To select timer channel for each network, user just add timer_channel definition to interface

configuration of npf file

[/*** LIN HARDWARE DEFINITION ***/

Freescale Semiconductor

55

How to use LIN Package

/* SCI config */

sci{
s12 scil{
sci channel = 1; /* Check validation of sci channel */
timer channel = 1; /* PIT timer */
}
s12 sci3{

sci channel = 3; /* Channel setting */
timer channel = 2; /* PIT timer */

NOTE

This timer selection is for timeout activity which time base is
defined in LDF file. In the main.c application, user must define
another timer for scheduler as mention in section Timer for LIN
schedule execution (Master mode only)

If no timer selection defined, the Driver is default to use only one channel where time base is taken

from smallest value of time bases defined in LDF files.

4.6.5.5 AUTOBAUD feature for S12Z MCU family as Slave Node

AUTOBAUD is an extensive feature in LIN Driver which allows a MCU to detect baud rate of
LIN bus and adapt its original baud rate to bus value.

Auto Baud is applied when the baud rate of the incoming data is unknown or the baud rate is fixed

with some specific values. Each LIN network might have different configuration on such baud
rates. One MCU can work with different configurations without flashing.

In this scope of LIN Driver version, two baud rate are supported: 9600 and 19200 bps and verified

on S12Z MCU family.

Master Master
]]
1 1 L1 1

9600bps 19200 bps

Figure 4-39. Two baud rate supports for AUTOBAUD feature
In order to use this feature, user just enables an option in NPF file as below:

| /*** NETWORK DEFINITION ***/

Freescale Semiconductor

56

How to use LIN Package

network ({

idle timeout = 5s;
diagnostic class = 1; /* Class selection to use diagnostic services */
autobaud support = yes;
LIO{
node = Motorl; /* Name of node described in LDF (must
check consistence with LDF) */
file = "LIN21.1ldf"; /* Path to LDF file */
device = sl12 sciO; /* LIN Hardware

interface, related to INTERFACE SECTION */
}
}

For more application usage case, refer to demo application attached in the package:

Freescale Semiconductor

57

Chapter 5
Demo Application

This section gives detailed instructions on how to set up a LIN node from the source code provided.
By following these guidelines and the referenced documents, the application developers could build
any images for the nodes working on the supported MCUs listed in the scope of work for this
document.

5.1 LIN Protocol demo application

5.1.1 Introduction

The demo application demonstrates a typical application of the LIN. The application covers
functionalities in HVAC and door application, such as control of door locks, mirrors and window
lifters. The best representative application is a gateway, such as one shown in Figure 5-1.

Master
Node

Slave
Task

LIN Gateway Node

Master Master
l task 1 l l task 2 l
_ J
Slave Slave
Node Node
Slave Slave Slave
Node Node Node

LIN Cluster 1 LIN Cluster 2

Figure 5-1. Demo application configuration

The LIN gateway node is one of the controllers with multiple LIN interfaces. It provides connection
to a higher level car network, receiving commands via the slave LIN task. In the same time the two
or more master tasks are specified in the scheduler, allowing transferring the commands further to
the slave LIN clusters.

A set of procedures in transferring messages is implemented in this application:

Demo Application

1.

From the Master node to Slave nodes via the Gateway (for example, potentiometer).

From the Gateway to request current potentiometer from the slave nodes.

Send diagnostic frames from the gateway to the slave nodes.

2
3. Send sleep and wakeup signals from the gateway to the slave nodes.
4.

5. The node configuration utility must describe the network configuration and the

required properties of the nodes. This configuration should be compiled with the
project files to create the Demonstration Application executable.

The LIN gateway node shall log the events and output it in a readable form for the

demonstration and traceability of the LIN functioning.

5.1.2 Demo Environment Setup
The hardware platform for each node is identical based on the demo application configuration as

shown in the Figure 5-2. Three are seven hardware platforms named from B1 to B7 respectively.

Figure 5-2. Master/Slave/Gateway hardware

as intermediary role to connect nodes B5, B6 and B7.

NOTE
The 9S08SG32 hoard in the cluster 2 is not involved to the network but acts

9S08DZ128(B1)
LIN
IN
LIN5
9S12XEP100(B2)
LIN3 LIN 4
9S08EL32 9S12HY64(B7)
(B3) HINT 310
o b LINL| |LIN2 LIN1 LIN2
9S08DZ128(B4) 9S08SG32(B5)
9S08SG32
LIN Transceiver
X RX
RX X
9S08QD4(B6)

Freescale Semiconductor

59

Demo Application

5.1.3 Detail Description of Nodes

The table 6-9 below illustrate in detail description of boards participating in the network including
name, ID, functionality and the buttons used for the application.

Table 5-1. Master

Board ID | Functionality User I/O
9S08DZ128 | B1 Master Push button: PTA4, PTA5, PTAG,
PTA7

Table 5-2. Gateway

Board ID Functionality User I/O

9S12XEP100 | B2 Slave on LIN 5 Push button: PB4, PB5, PB6, PB7
Master on LIN 4
Master on LIN 3

Table 5-3. Clusterl

Board 'Board ID Functionality User 1/O

9S08Dz128 | B4 Slavel Push button: PTA4, PTA5, PTAS,
PTA7

9S08EL32 B3 Slave2 Potentiometer: RV1
Led: LED1, LED2

Table 5-4. Cluster2

Board Board ID Functionality User I/O
9S08SG32 B5 Slave A Potentiometer: RV1
Led: LED1, LED2
9S08QD4 B6 Slave B Potentiometer: RV1
9S12HY64 B7 Slave C Potentiometer: RV1
Led: LED1, LED2

5.1.4 LIN System Initialization

Table 5-5 shows the expected hardware and software used for demo application.
Table 5-5. List of hardware and software for demo application

CW6.2 CW4.7

9S08AW16A 9S12XEP100
9S08SG32 9S12HY64
9S08DZ128
9S08QD4
9S08EL32

NOTE

All derivatives use 12V power supply except 9S08QD4 board with 5V
power supply.

Freescale Semiconductor

60

Demo Application

The steps to initialize the demo from LIN Stack package are detailed in this section. For other LIN
network applications, refer to Chapter 4, How to use LIN Package to create single application for
each derivative involving the network. The remaining steps are similar to this section.

1. Open Code Warrior V4.7 and V6.2 environments.
The MCUs run on Code Warrior V4.7 are 9S12XEP100, 9S12HY 64

The MCUSs run on Code Warrior V6.2 are 9S08DZ128, 9S08EL32, 9S08SG32,
9S08QD4

2. Open folder for target board in Demo folder as shown in Figure 5-3 (e.g..\tests
\integration\Demo\Clusterl Slavel 9s08dz128) and drag Code Warrior project
file (. mcp) to one of two Code Warrior environments.

|JLIN_Stack
=l |) tests
=l |) integration
=l) Dema
() Cluskerl_Slavel_9s08dz128
) Clusterl Slave? 9s03el32
[) Clusterz_Slaves_9s08sg932
) Cluster?_Slaveb_9s0Sqd4
+) Clusker?_SlaveC_9s1z2hyved
+ |) Gateway _Gateway 9s1Zxeplil
+ |) Gateway_Master_9s05dz125

¥

Figure 5-3. Demo Source Code Directory Structure

3. Attach power and turn on the target board. The board must be connected to the PC
through a Multilink or SofTec Interface Device Application. The Combined Interface
Device Application is configured by default to use the USB connector for serial
communication.

4. Download source code to the board.
5. Dispose the boards as illustrated in Figure 5-4 and connect boards via LIN bus wires.
6. Jumper setting:

All boards have their jumper set as default except 9S12XEP100 board whose function as
Gateway.

In 9S12XEP100 board, the OSC SEL jumper is set as CLOCK and LIN TRANCEIVER
SUPPLY SEL jumper is 12V.

7. Attach power to 9S12XEP100 board and make sure that all power led of boards is
turn on which is ready for operation.

Freescale Semiconductor 61

Demo Application

Figure 5-4. A disposition of seven hardware platforms to match with the configuration

5.1.5 Functionality Description

This section describes in details functionalities and procedures of the Demo Application. It includes
descriptions of PID sending and direction of message transmitting between physical nodes of the
network.

5.15.1 Sequence of Frames between Master Node, Gateway
and Slave Nodes

All frames in communication are defined in table below:

Table 5-6. Define functionality of each node respectively with its pid

PID Publisher Subscriber Description
0x01 Master Gateway Change schedule table
0x02 Gateway Master Master requests potentiometer
status from all slave nodes
0x04 Gateway Slave 1 Reset signal
Slave 2
0x05 Gateway Slave 1 Data byte with 2 bit information
Slave 2 about push button
0x06 Slave 1 Gateway Potentiometer status
0x07 Slave 2 Gateway Potentiometer status
0x08 Gateway Slave A Reset signal
Slave B
Slave C

Freescale Semiconductor 62

Demo Application

0x09 Gateway Slave A Data byte with 2 bit information
Slave B about push button
Slave C

Ox0A Slave A Gateway Potentiometer status

0x0B Slave B Gateway Potentiometer status

0x0C Slave C Gateway Potentiometer status

0x3C Gateway All slaves Sleep command

515.2 Reset Status

After resetting the MCU, the node is ready for communication. The LED status of each board
after resetting is:

Table 5-7. Status of each MCU board after reset

Board Responsibility LED1 LED2
9S08EL32 Slave 1 in Cluster 1 OFF OFF
9S08DZ128 | Slave 2 in Cluster 1 OFF OFF
9S08SG32 Slave A in Cluster 2 OFF OFF
9S12HY64 Slave C in Cluster 2 OFF OFF

5.1.5.3 Demonstration use cases

In this chapter we present several typical use cases for the demo setup. The communication between
the nodes in these use cases is explained in form of time diagrams.

Reset signal is to set OFF status for LED1 and LED2 on all Slave boards

-

B Gateway sends reset signal to all
PID = 0x04 Slaves in Cluster 1 in order to set
4 4| status of LED1 and LED2 to OFF
Gateway response

Figure 5-5. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 1

Freescale Semiconductor 63

Demo Application

PID = 0x08

[Slave A] [Slave B] [Slave Cj

Gateway sends reset signal to all
Slaves in Cluster 2 in order to set

Gateway response

R\ R\

4| status of LED1 and LED2 to OFF

|

R\

Figure 5-6. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 2

Message from Master node to Gateway

Master
node

PID = 0x01

g
Master response

>
PID = 0x02

>

Gateway response

Master node sends signal to change
schedule table

Master node requests Potentiometer
status from all Slave nodes

Figure 5-7. Timing Diagrams for frames from Master node to Gateway

Message from Gateway to Slave nodes in Cluster 1

Freescale Semiconductor

64

Demo Application

[Slave 1] [Slave 2 j

PID = 0x05

Gateway response

PID = 0x06

r’s

Slave 1 response

-
PID = 0x07

Slave 2 responsg

Gateway sends signal to turn on/off
the LED1 and LED2

Gateway requests Potentiometer
status from Slave 1

Gateway requests Potentiometer
status from Slave 2

Figure 5-8. Timing Diagrams for frames from Gateway to Slaves in Cluster 1

Message from Gateway to Slave nodes in Cluster 2

PID = 0x09

(sen) (ses) (swec)

Gateway sends signal to turn on/off

Master response

R\

LED1 and LED2

Y

PID = 0x0A

Gateway requests Potentiometer

Slave A response

R\

\ status to Slave A

Gateway requests Potentiometer

\ status to Slave B

Gateway requests Potentiometer

g
PID = 0x0B
Slave B response
-t
PID = 0x0C
Slave C responsg
g

status to Slave C

Figure 5-9. Timing Diagrams for frames from Gateway to Slaves in Cluster 2

Sleep signal from Gateway to Slave nodes

Freescale Semiconductor

65

Demo Application

(o) (3oe2)

PID = 0x3C .
- > Gateway sends Sleep signal to all

‘ > Slaves in Cluster 1

Figure 5-10. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 1

[Slave A] [Slave B] [Slave C]

PID = 0x3C Gateway sends Sleep signal to all
———————— Br—————=Dy——————13 Slavesin Cluster 2
‘ > > >

Figure 5-11. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 2

5.1.6 Operation

Operation on push buttons of this demo is very simple. By pushing the buttons on board
9S08DZ128 (Master node) user can change the schedule table between the following ones:

- Operates only Cluster 1
- Operates only Cluster 2
- Operates both clusters

- Not operate both clusters

5.1.6.1 Actions on All Boards Before Resetting the LEDs Status
Table 5-8. List of actions and results before resetting the LEDs status

Push button PTA4 Schedule in Cluster 1 is active

Push button PTA5 Schedule in Cluster 2 is active

Push button PTAG6 Schedules in both Clusters are active
Push button PTA7 Schedules in both Clusters are inactive

By pressing the buttons on 9S12XEP100 board (Gateway), the user can change the LEDs on
slave nodes as follows:

Table 5-9. List of actions and results after pressing buttons on 9S12XEP100 board

Freescale Semiconductor 66

Demo Application

Action ' Result

Push button PB4 in the first time
(data = 0x00)

Board | B3 B4
LED1 | ON ON
LED2 | ON ON

(data = 0x00)

Push button PB4 in the second time Board | B3 B4
(data = 0x01) LED1 | OFF OFF
LED2 | ON ON
Push button PB4 in the third time Board | B3 B4
(data = 0x10) LED1 | ON ON
LED2 | OFF OFF
Push button PB4 in the fourth time Board | B3 B4
(data = Ox11) LED1 | OFF OFF
LED2 | OFF OFF
Push button PB5 in the first time Board | B5 B7

LED1 | ON ON
LED2 | ON ON

Push button PB5 in the second time Board | B5 B7
(data = 0x01) LED1 | OFF OFF
LED2 | ON ON
Push button PB5 in the third time Board | B5 B7
(data = 0x10) LED1 | ON ON
LED2 | OFF OFF
Push button PB5 in the fourth time Board | B5 B7
(data = 0x11) LED1 | OFF OFF
LED2 | OFF OFF
Push button PB6 Board | B3 B4 B5 B7
LED1 | OFF | OFF | OFF | OFF
LED2 | OFF OFF OFF OFF

Push button PB7

Send GOTOSLEEP command

After that the application will be in charge of
waking up the network in 10 seconds. And the
schedule will send the header to query states of
Slaves

The data content sent to the slave boards wraps around and is controlled by pressing the PB4

and PB5 buttons on the gateway node.

To demonstrate the data direction from slave to master, user can change the data content of the
messages by changing the potentiometer. This information is accessible via Hyper terminal

window.

Table 5-10. List of actions and results when changing the potentiometer

Action Result

Change the Potentiometer on board
B3

Value of Potentiometer for Slave 1 will be
changed in log information

Change the Potentiometer on board
B4

Value of Potentiometer for Slave 2 will be
changed in log information

Change the Potentiometer on board
B5

Value of Potentiometer for Slave A will be
changed in log information

Change the Potentiometer on board
B6

Value of Potentiometer for Slave B will be
changed in log information

Freescale Semiconductor

67

Demo Application

Change the Potentiometer on board | Value of Potentiometer for Slave C will be
B7 changed in log information

5.1.6.2 Actions on All Boards After Resetting LEDs Status
After PTA4 on S08DZ128 master board press (Schedule in Cluster 1 is active)

Table 5-11. List of actions and results after resetting LEDs status

PB4 pressed in the first time Board | B3 B4 B5 B7
LED1 | ON ON OFF | OFF
LED2 | ON ON OFF | OFF

PB4 pressed in the second time Board | B3 B4 B5 B7

LED1 |OFF |OFF |OFF |OFF
LED2 | ON ON OFF | OFF
PB4 pressed in the third time Board | B3 B4 B5 B7

LED1 | ON ON OFF | OFF
LED2 | OFF | OFF |OFF | OFF
PB4 pressed in the fourth time Board | B3 B4 B5 B7
LED1 | OFF OFF OFF | OFF
LED2 | OFF OFF OFF | OFF

PB5 pressed in the first time/ Board | B3 B4 B5 B7

second time/ third time/ forth LED1 | OFF | OFF | OFF | OFF

time LED2 | OFF | OFF | OFF | OFF
Change the Potentiometer on | Value of Potentiometer for Slave 1 will be changed in
board B3 log information

Change the Potentiometer on | Value of Potentiometer for Slave 2 will be changed in
board B4 log information

Change the Potentiometer on | Value of Potentiometer for Slave A, B and C will not
board B5/ B6/ B7 be changed in log information

After PTA5 on S08DZ128 master board press (Schedule in Cluster 2 is active)
Table 5-12. List of actions and results after pressing the button PTA5 of S08D2128 board

PB4 pressed in the first time/ Board | B3 B4 B5 B7
second time/ third time/ forth LED1 | OFF | OFF |OFF | OFF
time LED2 |OFF |OFF |OFF |OFF
PB5 pressed in the first time Board | B3 B4 B5 B7

LED1 | OFF | OFF |ON ON
LED2 |OFF |OFF |ON ON
PB5 pressed in the second time Board | B3 B4 B5 B7
LED1 |OFF |OFF |OFF |OFF
LED2 |OFF |OFF |ON ON
PB5 pressed in the third time Board | B3 B4 B5 B7
LED1 |OFF |OFF |ON ON
LED2 | OFF | OFF |OFF | OFF
PB5 pressed in the fourth time Board | B3 B4 B5 B7

Freescale Semiconductor

Demo Application

LED1 |OFF | OFF |OFF | OFF
LED2 | OFF | OFF | OFF | OFF

Change the Potentiometer on
board B3/ B4

Value of Potentiometer for Slave 1, 2 will not be
changed in log information

Change the Potentiometer on
board B5

Value of Potentiometer for Slave A will be changed
in log information

Change the Potentiometer on
board B6

Value of Potentiometer for Slave B will be changed
in log information

Change the Potentiometer on
board B7

Value of Potentiometer for Slave C will be changed
in log information

After PTA6 on S08DZ128 master board press (Schedules in both Clusters are active)

Table 5-13. List of actions and results after pressing the button PTA6 of S08DZ128 board

Action Result

PB4 pressed in the first time

Board | B3 B4 B5 B7
LED1 | ON ON OFF | OFF
LED2 | ON ON OFF | OFF

PB4 pressed in the second time

Board | B3 B4 B5 B7
LED1 |OFF |OFF |OFF |OFF
LED2 | ON ON OFF | OFF

PB4 pressed in the third time

Board | B3 B4 B5 B7

LED1 | ON ON OFF | OFF
LED2 | OFF |OFF | OFF |OFF
PB4 pressed in the fourth time Board | B3 B4 B5 B7
LED1 | OFF | OFF | OFF | OFF
LED2 | OFF |OFF | OFF |OFF

PB5 pressed in the first time

Board | B3 B4 B5 B7

PB5 pressed in the second time

LED1 | OFF |OFF |ON ON
LED2 | OFF OFF ON ON
Board | B3 B4 B5 B7
LED1 | OFF |OFF |OFF |OFF
LED2 | OFF OFF ON ON

PB5 pressed in the third time

Board | B3 B4 B5 B7

LED1 |OFF |OFF |ON ON
LED2 | OFF | OFF |OFF | OFF
PB5 pressed in the fourth time Board | B3 B4 B5 B7
LED1 |OFF |OFF |OFF |OFF
LED2 | OFF | OFF |OFF | OFF

Change the Potentiometer on
board B3

Value of Potentiometer for Slave 1 will be changed in
log information

Change the Potentiometer on
board B4

Value of Potentiometer for Slave 2 will be changed in
log information

Change the Potentiometer on
board B5

Value of Potentiometer for Slave A will be changed
in log information

Change the Potentiometer on
board B6

Value of Potentiometer for Slave B will be changed

Freescale Semiconductor

69

Demo Application

in log information

Change the Potentiometer on | Value of Potentiometer for Slave C will be changed
board B7 in log information

After PTA7 on S08DZ128 master board press (Periodically wakeup both clusters.)

Table 5-14. List of actions and results after pressing the button PTA7 of S08DZ128 board

Action Result

PB4 pressed in the first time/ Board | B3 B4 B5 B7
second time/ third time/ forth LED1 | OFF |OFF |OFF |OFF
time LED2 | OFF OFF OFF OFF
PB5 pressed in the first time/ Board | B3 B4 B5 B7
second time/ third time/ forth LED1 | OFF |OFF |OFF |OFF
time LED2 | OFF OFF OFF OFF

5.1.6.3 Log Description

The LIN gateway node shall log the events and output it in a readable form for the demonstration
and traceability of the LIN functioning via the hyper terminal.
There are 3 types of communication that shall be logged:

Table 5-15. List of message and log description

Message Log description
Gateway gets request | “Master node requested only cluster 1 active”
from Master node “Master node requested only cluster 2 active”

“Master node requested clusterl and cluster2 active”
“Master node requested clusterl and cluster2 inactive”
“Control LED of Clusterl from Master node”
“Control LED of Cluster2 from Master node”
Gateway sends requests | “Control LED of Clusterl from GateWay”

to slaves “Control LED of Cluster2 from GateWay”

“Reset Leds of all slave”

“Send goto sleep command”

Gateway gets response | “Potentiometer value of SlaveX = XXX”

from slaves

The log information will be printed through COM port (RS_232_0 connector on 9S12XEP100
board) and displayed on Hyper Terminal window.

5.2 LIN diagnhostic demo application

5.2.1 Introduction

The diagnostic classes are introduced in the LIN Specification Package v2.1 [1], chapter 5.
Diagnostics functionality such as node identification and enhanced application functions are added.

The scope of this demo application is specific for diagnostic implementation. In the last phase
development of LIN Stack, the diagnostic class | was supported for slave node and class Il was
developed for master node only. In the phase 3 of LIN Stack, the full diagnostic classes will be
implemented. This demo application is aimed to expose the diagnostic classes Il and I1I.

Freescale Semiconductor 70

Demo Application

The diagnostic data in this demo is based on diagnostic description file (UDS-ExampleEcu-
4.0.1.cdd) of CANdela Studio integrated in CANoeLIN version 7.1 sp5.

They can be found from Start menu/Programs/CANoe/Demos/CANoeLIN- Diagnostics
tester, or as files directly C:\Documents and Settings\congth\My
Documents\Vector\CANoe\7.1\CANoe Demos\Demo_LIN_CN\LINDiagnosticsTester\CDD.

With this alignment, any LIN physical nodes in the demo could be replaced by CANoe HW
to demonstrate diagnostic communication (see
Table 2-2. LIN2.x diagnostic service specification).

5.2.2 Diagnostic services support

5.2.2.1 Diagnostic class Il
Diagnostic class covers services in class 11 and addition services is listed below
1. Read data by Identifier (0x22)

o Mater node sends Read data by Identifier service- Development data Read (0x22,
0x0091)

o Slave processes the request and send response to master

2. Read data by Identifier (0x22)
o Mater node sends Read data by Identifier service - Serial data Read (0x22, 0x0092)
o Slave processes the request and send response to master

3. Write data by Identifier (0x2E)
o Mater node sends Write data by Identifier service- Serial data Write (Ox2E, 0x0092)
o Slave processes the request and send response to master

5.2.2.2 Diagnostic class
Diagnostic class covers services in class I, 11 and addition services for class Il only is listed below
1. Session control (0x10)
o Mater node sends Section Control - Default section start (0x10, 0x01)
o Slave processes the request and send response to master
2. 1/0 control by identifier(0x2F)
o Mater node sends 1/0 control by identifier - Door status read (Ox2F, 0x08)
o Slave processes the request and send response to master
3. Read DTC (0x19) (fault memory)
o Mater node sends read DTC by identifier — Fault memory read (0x19, 0x01)
o Slave processes the request and send response to master
4. Write DTC (0x14) (fault memory)
o Mater node sends write DTC by identifier — Fault memory write (0x14)
o Slave processes the request and send response to master

Freescale Semiconductor 71

Demo Application

5.2.3 Demo setup

Figure 5-12 The setup of the Diagnostic Demonstration Applicationshows the setup for diagnostic

communication in the network. The network contains one master node with name LINMaster and

two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are Ox11 and 0x12

respectively.

The slave node RearLeftDoor is configured for execution diagnostic class II.

FontLeftDoor is configured for execution diagnostic class IlI.

Due to the diagnostic class Il cover services of class Il and add some more services, the service of

class Il is reused combination with new serviced added.

ECU
LINMaster
Master

ECU
FrontLeftDoor
Slave (0x11)

ECU
RearLeftDoor
Slave (0x12)

Figure 5-12 The setup of the Diagnostic Demonstration Application

5.2.3.1 Hardware description

The slave node

Base on the demo setup above, the hardware for each node is identical as shown in the figure and

table below.

9S12HY64
(BD)

LIN
TRANSCEIVER

LIN
TRANSCEIVER]

LIN
TRANSCEIVER

931(28%128 9S12XEP100
SCI (Bs)
SCI

9S08LL64
(B4)

Figure 5-13: Master/Slave hardware configuration

The application utilizes three FSL hardware platforms MC9S12HY64, TWR 9S12G128 and
EVB9S12XEP100 to set up a LIN network as Figure 5-12 The setup of the Diagnostic
Demonstration Application. However, the TWR 9S12G128 board doesn’t have LCD or enough
LEDs to display the signals of FrontLeftDoor node. For this reason, the TWR 9S08LL64 is
used. These boards (9S12G128 & 9S08LL64) are joined together through tower, and

Freescale Semiconductor

72

Demo Application
communicated via SCI. The real hardware sets up as the following Figure 5-14: The real demo

application hardware:

jg
=
2
9
§L’
é’,’
EX:
3
=
=

a0
i

Figure 5-14: The real demo application hardware

5.2.3.2 LCD display

5.2.3.2.1 TWR 9S08LL64 (FrontLeftDoor slave)
The LCD in TWR 9S08LL64 is utilized with two display areas shown in the figure below:

@’Clv.{:__x,»
e

Figure 5-15: The LCD GD-5360P (on the LL64 board) specification

Display description:
1. The LEDs at the position No.1 display the NAD of the target slave

Freescale Semiconductor 73

Demo Application

2. The LEDs at the position No.2 display the value of FrontLeftDoorSignal of FrontLeftDoor
slave. The signal is sent from the TWR 9S12G128 board.

5.2.3.2.2 DEMO9S12HY64 (RearLeftDoor slave)

The LCD display features in DEMO9S12HY64 are utilized with two display areas which shown in
figures below:

~__ 44 [INNO000a000naaannennn 28

fﬁx

%VJ @ |
)

1000I0N00000000000000U00 22
Figure 5-16: The LCD GD-5560P (on the HY64 board) specification

Iy
[

{
UZ

I
Il
I
Il

02
0
[JZ
02

iy
)
EJ

0 Q
D

)
)

O
-’
y

e (DD

U
y
U

R e S —

Display description:

1. The LEDs at the position No.1 display the operation mode

2. The LEDs at the position No.2 display the master request (or slave response)
data

3. The LEDs at the position No.3 & No.4 display the FrontLeftDoorSignal and

RearLeftDoorSignal

The icon at the position No.5 turns on when the master waits the slave’s response

The icon “TRIP A" at the position No.6 turns on when the master’s request is

sent to FrontLeftDoor Node (or slave’s response is received from FrontLeftDoor

Node)

6. Theicon “TRIP B” at the position No.6 turns on when the master’s request is
sent to RearLeftDoor Node (or slave’s response is received from RearLeftDoor
Node)

All peripheral devices, which are used in demo application, are listed in Table 4-1:

ok~

Table 5-16: Hardware configuration list

Board Board ID Responsibility User 1/0O

9S12HY64 B1 Master node Push button: SW1, SW2, SW3, SW4
LED: LED1, LED2, LED3, LED4
LCD: GD5560P

Potentiometer: RV1

9S512G128 B2 Slave node (0x11) LED: LED1, LED2, LED3, LED4
Push button: SW1, SW2, SW3, SW4
Potentiometer: RV1

9S12XEP100 B2 Slave node (0x12) Potentiometer: RV1
LED: LED-matrix
9S08LL64 B4 Display the LCD: GD5360P
Potentiometer’s value of
9512G128

Freescale Semiconductor 74

Demo Application

5.2.4 Operation description

Figure 5-17: Diagnostic operation shows the principle of diagnostic operation in the LIN network.
This is explained in more details in Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data
record is a sample and Figure 5-19.

Master Slave
Node Node

Send diag request Receive request
Wait for response LIN bus Process request...
Receive response Respond to request

Figure 5-17: Diagnostic operation
The diagnostic sequence is to send a request and to wait for a response before continuing with the
next request.

The master node sends a request to slave node via LIN bus. Base on the service definition, the slave
node receives the request and start to process request. After a while, the master requests response
from slave, the data prepared by slave previously will be transmitted by LIN bus.

5.24.1 Sequences of frame between Master node and Slave nodes
All frames in communication are defined in table below:

Table 5-17: Operation mode in the demo

No. Operation| Description Frame Publisher Subscriber
Mode Type/PID
1 0x00 The LIN network operates in | Unconditio | FrontLeftD | Master
normal schedule. The master node nal Frame | oor &
reads: FrontLeftDoorSignal from RearLeftD
FrontLeftDoor Node; oor
RearLeftDoorSignal from
RearLeftDoor Node and displays
them to LCD.

These signals can be changed by
adjusted the slave node’s
Potentiometer
2 0x20 The Master node prepares data for | Master Master RearLeftDoo
master’s request for service: “Read | Request/ r
data by Identifier - Serial number | Ox3C
read (SID = 0x22 & sub-ID =
0x0092)” and displays them on the

LCD.

3 0x21 - The Slave will response to the | Slave RearLeftD | Master
master’s request (0x22) with two | Response/ | oor
types: 0x3D

Positive response: response data

Negative response: response error

Freescale Semiconductor 75

Demo Application

code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

4 0x22

The Master node prepares data for
master’s request for service: “Write
data by Identifier - Serial number
write (SID = Ox2E & sub-ID =
0x0092)” and outputs them to the
LCD.

The serial number can be changed
by changing the define
SERIAL_NUMBER on the source
code

Master
Request/
0x3C

Master

RearLeftDoo
r

5 0x23

- The Slave will response to the
master’s request (0x2E) with two

types:
Positive response: response data

Negative response: response error
code
(If slave response’s type is positive
response, the serial number will be
updated — the master node can read
the updated serial number by calling
the service “read by identifier (SID
= 0x22) with sub-ID = 0092 ")

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

Slave
Response/
0x3D

RearLeftD
oor

Master

6 0x30

- The Master node prepares data for
master’s request for service: “10
control by identifer — 10 status read
(SID = 0x22 & sub-ID = 0x0080)”
and displays them to the LCD.

Master
Request/
0x3C

Master

FrontLeftDoo
r

7 0x31

- The Slave will response to the
master’s request (0x22) with two

types:
Positive response: response data

Negative response: response error
code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

- If the positive response is returned,
the LED status on the master node
(HY®64 board) will be updated as the
LED status on the FrontLeftDoor
node (the LL64 board)

Slave
Response/
0x3D

FrontLeftD
oor

Master

8 0x32

- The Master node prepares data for
master’s request for service: “1O
control by identifier — 10 status write
(SID = 0x2F & sub-ID = 0x0080) ”
and displays them to the LCD

Master
Request/
0x3C

Master

FrontLeftDoo
r

Freescale Semiconductor

76

Demo Application

- The IO status’ value can be
changed by adjusting the
potentiometer. The value is
displayed both LEDs and LCD (the
last byte on master requested data)

0x33

- The Slave will response to the
master’s request (0x2F) with two

types:
Positive response: response data

Negative response: response error
code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

- If the positive response is returned,
the LED status on the FrontLeftDoor
node (HY64 board) will be updated
as the LED status on the master node
(the G128 board)

Slave
Response/
0x3D

FrontLeftD
oor

Master

10

0x34

- The Master node prepares data for
master’s request for service:
“Session control (0x10), Sub-ID:
(0x01)” and displays them to the
LCD

Master
Request/
0x3C

Master

FrontLeftDoo
r

11

0x35

- The Slave will response to the
master’s request (0x10) with two

types:
Positive response: response data

Negative response: response error
code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

Slave
Response/
0x3D

FrontLeftD
oor

Master

12

0x36

- The Master node prepares data for
master’s request for service: “Read
DTC (0x19) Sub-ID (0x01)” and
displays them to the LCD

Master
Request/
0x3C

Master

FrontLeftDoo
r

13

0x37

- The Slave will response to the
master’s request (0x10) with two

types:
Positive response: response data

Negative response: response error
code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

Slave
Response/
0x3D

FrontLeftD
oor

Master

14

0x38

- The Master node prepares data for
master’s request for service: “Clear

Master
Request/

Master

FrontLeftDoo
r

Freescale Semiconductor

77

Demo Application

DTC (0x14)” and displays them to | Ox3C

the LCD

15 | 0x39 - The Slave will response to the | Slave FrontLeftD | Master
master’s request (0x10) with two | Response/ | oor
types: 0x3D

Positive response: response data

Negative response: response error
code

- The Master node will wait until
received slave’s response and then
display the response to the LCD.

Note
The LCD on the master node (the HY64 board) displays the mode
operation at the position No.1, the FrontLeftDoorSignal at the

position No.3, the RearLeftDoorSignal at the No.4 and Master’s request (or
Slave’s response) data at No.2

The LCD on LL64 board (the Front Left Door Node) displays the NAD at
the position No.1, the FrontLeftDoorSignal’s value at No.2. These signals
are sent from TWR 9512G128 board.

The Led matrix on XEP100 board (the Rear Left Door Node) displays the
NAD or the RearLeftDoorSignal’s value (Press button SW1 to display
NAD, and SW2 to display RearLeftDoorSignal).

5.2.4.2 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is
described below:

- The LCD on HY®64 board displays the mode 0x00. (Please see Table 5.1 for details)
- The LCD on LL64 board displays the value of FrontLeftDoorSignal and the NAD.
- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.

The LED status of all boards after resetting is OFF.

5.2.4.3 Service Operation
Read data by Identifier: UDS = 0x22, SID = 0x0092

Freescale Semiconductor 78

Demo Application

FrontLeftDoor) (RearLeftDoor) master sends request to the LIN
Slave (0x11) Slave (0x12)) bus with UDS = 0x22 Read data by

Identifier SID: (0x0092)

PID = 0x3C
—————————— Cr-———————1
Master request
> PDU = {0x11, 0x03, 0x22, 0x00,
0x92, OXFF,0xFF, OXFF}
Wait for response
Process Master request
PID = 0x3D
—————————— -

Slave response

- PDU = {0x11, 0x10, 0x07, 0x62,
0x00, 0x92,0x00, 0x02}

PID = 0x3D
—————————— Dr—-——————-—-I
Slave response
Data Record < PDU = {0x11, 0x21, 0x9B, 0x45,
{0x62, 0x00, 0x92, OXFF, OxFF,0xFF, OxFF}

0x00, 0x02, 0x9B, 0x45}

Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data record is a sample

Write data by Identifier: UDS = 0x2E, SID = 0x0092

FrontLeftDoor) (‘RearLeftDoor) wmaster sends request to the LIN
Slave (0x11) Slave (0x12)) bus with UDS = 0x2E Write data
by Identifier SID: (0x0092)
PID = 0x3C
—————————— - ———
Master request PDU = {0x11, 0x10, 0x07, OX2E,
> 0x00, 0x92,0x00, 0x00}
| PID=0BC ___ | ____ =
Master request
> PDU = {0x11, 0x21, 0x00, 0x00,
OXFF, OXFF OxFF, OxFF}
Wait for_response
Process Master request
PID = 0x3D
—————————— R e ety
Data Record . PDU = {0x11, 0x03, OX6E, 0x00,
{OX6E, 0x00, 0x92} ave response 0x92, OXFF, 0XFF, OXFF}
-

Figure 5-19: Write data by Identifier: UDS = 0x2E, SID = 0x0092, Data record is a sample

5244 Operation on Push button

Freescale Semiconductor

Demo Application

Table 5-18: Master node operation on Push button

Action Result

Push button SW1 The Master node returns to normal schedule, none diagnostic service

is selected. The LCD displays the ForntLeftDoorSignal &
RearLeftDoorSignal from two slave nodes.

Push button SW2 Selecting the diagnostic services for class II. The master request’s data is
displayed on LCD

Push button SW3 Selecting the diagnostic services for class III. The master request’s data is
displayed on LCD

Push button SW4 Sending master request, which is displayed on LCD, to slave node,
and display the slave response’s data which is received on the LCD.

Table 5-19: FrontLeftDoor node (LL64 board) operation on Push button

Action Result
Push button SW1 Turn on/off LED 1
Push button SW2 Turn on/off LED 2
Push button SW3 Turn on/off LED 3
Push button SW4 Turn on/off LED 4

Table 5-20: RearLeftDoor node (XEP100 board) operation on Push button

Action Result
Push button SW1 | To display NAD on the LED matrix
Push button SW2 | To display RearLeftDoorSignal’s value on the LED matrix

5.3 Resynchronization demo application

5.3.1 Introduction

Local interconnect network (LIN) is widely used standard for low cost automotive networks. In
order to ensure reliable communication via LIN bus, a MCU bus clock needs to be accurate enough
to avoid errors. MCU can use crystal or ceramic resonator to provide very accurate bus clocks.
However, LIN protocol was designed to allow more cost-effective solution. An automatic
resynchronization feature allows a cost-effective solution: MCUs can use on-chip oscillators to
implement LIN slaves, even though the on-chip oscillators have less accuracy than a crystal.

The demo application will show the different between the LIN operations with and without
resynchronization feature.

5.3.2 Demo setup

Figure 5-20 Nodes setup of the Resynchronization Demonstration Application shows the setup for
communication in the LIN network. The network contains one master node with name LINMaster
and two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are 0x11 and 0x12
respectively.

The slave node FrontLeftDoor is configured to support the resynchronization feature. But, the slave
node RearLeftDoor is configured without resynchronization feature support.

The master node LINMaster could be able to change baud rate by pressing button.

Freescale Semiconductor 80

Demo Application

Figure 5-20 Nodes setup of the Resynchronization Demonstration Application

ECU
LINMaster
Master

l

!

!

ECU
FrontLeftDoor
Slave (0x11)

ECU
RearlLeftDoor
Slave (0x12)

5.3.2.1 Hardware description
Base on the demo setup above, the hardware for each node is identical as shown in the figure and

table below.

9S12HY64
(B1)

LIN
TRANSCEIVER

LIN
TRANSCEIVER

9S08DZ128
(B2)

LIN
TRANSCEIVER

9S12XEP100
(B3)

EVB9S12XEP100.

Figure 5-21: Master/Slave hardware configuration
The application utilizes three FSL hardware platforms MC9S12HY64, DEMO9S08DZ128 and

The real hardware sets up as the following Figure 5-22:

Freescale Semiconductor

81

Demo Application

xxxxxxxxxx

== o'l

vl

Figure 5-22: The real demo application hardware

5.3.2.2 LCD Display

53221 DEMO9S12HY64

The LCD display features in DEMOO0S12HY64 are utilized with display areas which shown in
figures below:

&4 NN zs

,___;;K:E:F;r;_<fi>;;_ﬂ.

=

2888

p—

DEE) @y
oo ®

=)

i)

0
0
Eo

|
]
|
]
i
]
i
]
I
i
i
]
]
i
]
1
I
|

S —

OO 2

Figure 5-23: The LCD GD-5560P (on the HY®64 board) specification
Display description:

1 The LEDs at the position No.1 & No.2 display the FrontLeftDoorSignal and
RearLeftDoorSignal

2 The LEDs at the position No.3 display the current baud-rate of master node

3 Theicon “TRIP A" at the position No.4 turns off when the master node can’t
receive the signal from FrontLeftDoor Node

Freescale Semiconductor 82

Demo Application

4 Theicon “TRIP B” at the position No.4 turns off when the master node can’t
receive the signal from RearLeftDoor Node
All peripheral devices, which are used in demo application, are listed in Table 4-1:

Table 5-21: Hardware configuration list
Board Board ID Responsibility User I/O

9S12HY64 Bl Master node Push button: SW1, SW2, SW3, SW4
LED: LED1, LED2, LED3, LED4
LCD: GD5560P

Potentiometer: RV1

9S12XEP100 | B2 Slave node (0x12) | Potentiometer: RV1
LED: LED-matrix
9S08Dz128 | B3 Slave node (0x11) | LED: LEDO-7

Potentiometer: RV1

5.3.3 Operation description

This section describes in details functionalities and procedures of each node in Demo application.
The descriptions of each frame and direction of message transmitting between physicals nodes of
the network is listed on the following table

Table 5-22: Sequence frames between nodes of the network

PID | Frame’s Name Publisher Subscriber | Description
0x01 | FrontLeftDoorMessag | FrontLeftDoor | Master The current POT value of
e FrontLeftDoor Node

0x02 | RearLeftDoorMessage | RearLeftDoor | Master The current POT value of
RearLeftDoor Node

0x05 | MastertoRearControl | Master RearLeftDoor | Master sends a “verify”
data to RearLeftDoor
Signal

0x07 | ReartoMasterMessage | RearLeftDoor | Master RearLeftDoorSignal sends

a “verify” data, which is
received from master node,
back to master node.

0x06 | MastertoFrontControl | Master FrontLeftDoo | Master sends a “verify”
r data to FrontLeftDoor

Signal
0x08 | FronttoMasterMessage | FrontLeftDoor | Master FrontLeftDoorSignal sends

a “verify” data, which is
received from master node,
back to master node.

To verify that LIN network works correctly when the baud-rate is changed, the master node sends a
signal to each slave node. Then, the slave node sends it back, the master node will compare two
signals, one which is sent to slave node, one which is received from slave node. If the two signals is
not equal, the master-node turns LEDs on to notify that the LIN network doesn’t work correctly.
Besides, the user can check by change the POT value. The master node displays the POT values
which are received from two slave nodes on the LCD. When the values which are displayed on
master node’s LCD, is not match with the POT’s values which are displayed on LED of each board,
it is stated that the transmitting and receiving signal via the network is not correctly.

Note

Freescale Semiconductor 83

Demo Application

- The LED 1&2 on the HY®64 board is turned on when the master
cannot receive signals from FrontLeftDoor correctly

- The LED 3&4 on the HY64 board is turned on when the master
cannot receive signals from RearLeftDoor correctly

5331 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is
described below:

- The LCD on HY64 board displays the network’s baud-rate, and the RearLeftDoorSignal ‘s
and FrontLeftDoorSignal’s values which are received from two slave node.

- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.

- The LED on DZ128 board displays the value of FrontLeftDoorSignal

The LED status of all boards after resetting is OFF.

5.3.3.2 Operation on Push button

Table 5-23: Master node operation on Push button

Action Result

Push button SW1 | Increase the master baud-rate and the baud-rate is displays on
the LCD

Push button SW2 | Decrease the master baud-rate and the baud-rate is displays on the LCD

Freescale Semiconductor 84

Appendix A

List of API function

Name of API function Master Slave LIN2.x J2602 Description
Support Support Support Support

|_sys_init Initializes the LIN
system

| _bool rd Reads a 1-bit signal

| u8 rd Reads a 2- to 8-bit signal

| ul6 rd Reads a 9- to 16-bit
signal

| _bytes rd Reads byte assignment
signals

|_bool wr Writes a 1-bit signal

| _u8 wr Writes a 2- to 8-bit
signals

| ule wr Writes a 9- to 16-bit
signals

|_bytes wr Writes data for a byte-
assignment signal

| flg_tst Tests a flag

| _flg_clr Clears a flag

| sch set Sets a schedule

| _sch_tick Executes a schedule

|_ifc_goto_sleep Reserves a sleep
command

|_ifc_init Initializes the interface

|_ifc_wake up Outputs a wake-up signal

| ifc_read_status Acquires state
information

|_sys_irq_disable Disable LIN related IRQ

|_sys_irq_restore Enable LIN related IRQ

|_ifc_connect Connect the interface to
the LIN cluster

|_ifc_disconnect Disconnect the interface
to the LIN cluster

Id_assign NAD Assigns NAD value

Id_conditional_change_ NAD Assigns conditional
NAD value

Id_read_by id Read property associated
with id

Id_is_ready Verifies a state of node
setting

Id_check_response Acquires the state

Appendix

information on response

Id_assign_frame_id_range

Assigns the protected
identifier by range

Id_assign_frame_id

Assigns the protected
identifier

diag_read_data_by _identifier

Read data by identifier
diagnostic class 11
service

diag_write_data_by identifie
r

Write data by identifier
diagnostic class 11
service

diag_session_control

Session control
diagnostic class 111
service

diag_fault_memory_read

Read fault memory
diagnostic service

diag_fault_memory_clear

Clear fault memory
diagnostic service

diag_IO_control

Input/Output control by
identifier diagnostic
service

diag_get flag

Get diagnostic service’s
flag.

diag_clear flag

Clear diagnostic
service’s flag.

Freescale Semiconductor

86

Appendix

Appendix B
LIN Configure File (LDF) for sample application

The completed sample LDF file for LIN2.x network demo master gateway is as follows

LIN description file;

LIN protocol version = "2.1";
LIN language version = "2.1";
LIN speed = 19.2 kbps;

Nodes {

Master: MasterNode, 5 ms, 0.1 ms ;
Slaves: Gateway ;

}

Signals {
ClusterlPotentiometerl: 8, 0, Gateway, MasterNode;
ClusterlLightSensorl: 8, 0, Gateway, MasterNode;
ClusterlPotentiometer2: 8, 0, Gateway, MasterNode;
Cluster2PotentiometerA: 8, 0, Gateway, MasterNode;
Cluster2LightSensorA: 8, 0, Gateway, MasterNode;
Cluster2PotentiometerB: 8, 0, Gateway, MasterNode;
Cluster2PotentiometerC: 8, 0, Gateway, MasterNode;
GatewayError: 1, 0, Gateway, MasterNode;
ClusterIdentifier: 2, 0, MasterNode, Gateway;

}

Diagnostic signals {

MasterReqgBO: 8, 0 ;
MasterRegBl: 8, 0 ;
MasterRegB2: 8, 0 ;
MasterRegB3: 8, 0 ;
MasterRegB4: 8, 0 ;
MasterRegB5: 8, 0 ;
MasterRegB6: 8, 0 ;
MasterReqgB7: 8, 0 ;
SlaveRespBO: 8, 0 ;
SlaveRespBl: 8, 0 ;
SlaveRespB2: 8, 0 ;
SlaveRespB3: 8, 0 ;
SlaveRespB4: 8, 0 ;
SlaveRespB5: 8, 0 ;
SlaveRespB6: 8, 0 ;
SlaveRespB7: 8, 0 ;

}

Frames {

GatewayControl: 1, MasterNode, 1 {
ClusterIdentifier, O0O;

}

PotentiometerInfo: 2, Gateway, 5 {
ClusterlPotentiometerl, O0;
ClusterlPotentiometer?2, 8;
Cluster2Potentiometerh, 16;
Cluster2PotentiometerB, 24;
Cluster2PotentiometerC, 32;

}

LightSensorInfo: 3, Gateway, 3 {
ClusterlLightSensorl, O0;
Cluster2LightSensorA, 8;

Freescale Semiconductor

Appendix

GatewayError, 16;

}

}
Sporadic frames {

SporadicControlFrame: GatewayControl;

}
Diagnostic frames {

MasterReq: 0x3c {
MasterReqgBO, 0 ;
MasterRegBl, 8 ;
MasterRegB2, 16 ;
MasterReqgB3, 24 ;
MasterReqgB4, 32 ;
MasterRegB5, 40 ;
MasterReqgB6, 48 ;
MasterReqgB7, 56 ;

}

SlaveResp: 0x3d {
SlaveRespBO, 0 ;
SlaveRespBl, 8 ;
SlaveRespB2, 16 ;
SlaveRespB3, 24 ;
SlaveRespB4, 32 ;
SlaveRespB5, 40 ;
SlaveRespB6, 48 ;
SlaveRespB7, 56 ;

}

}
Node attributes ({

Gateway{

LIN protocol = "2.1";
configured NAD = 0x1;
initial NAD = Oxa;
product id = 0Oxle, 0x1, O;

response error = GatewayError;
P2 min = 100 ms;
ST min = 20 ms;

N As timeout = 1000 ms;
N Cr timeout = 1000 ms;
configurable frames {
GatewayControl;
PotentiometerInfo;
LightSensorInfo;

}
}
Schedule tables {
NormalTable {
PotentiometerInfo delay 50 ms;
LightSensorInfo delay 50 ms;
SporadicControlFrame delay 20 ms;

}

Node Private File (NPF) for sample application

Freescale Semiconductor

88

Appendix

The NPF of the node which participates in the gateway is given as follow (the node might
participate to other LIN networks)

/*** GENERAL DEFINITION ***/
LIN node config file;

/*** MCU DEFINITION ***/

mcu | /* Must check the correct MCU name */
mcu name = MCO9S12XEP100;
bus _clock = 8000000; /* Frequency bus of system Hz*/
xgate support = no; /* Support XGATE Co-Processor */

}
/*** LIN HARDWARE DEFINITION ***/
/* SCI config */

scif
sl2 sciOf{
sci channel = 1; /* Check validation of sci channel */
timer channel = 0;
}
sl2 scil{
sci channel = 3; /* Channel setting */
timer channel = 1;
}
sl2 sciz2{
sci channel = 5; /* Channel setting */
timer channel = 2;
}
}
/*** NETWORK DEFINITION ***/
network {
idle timeout = 4s;
diagnostic class = 1; /* Class selection to use diagnostic
services */
LIO{
node = Gateway;
file = "Demo Master Gateway.ldf";
device = s12 sci0;
}
LI1{
node = Gateway;
file = "Demo Clusterl.ldf";
device = sl12 scil;
}
LI2{

node = Gateway;
file "Demo Cluster2.ldf";
device = sl2 sci2;

Freescale Semiconductor

89

Appendix

Appendix C

Data Reference for Node Configuration Tool

mcu_info scif{

MC9S12XEP100, SCI V5, _S12X , 0x00cCs8, 0x00DO, 0x00BS, 0x00cCOo,
0x0130, 0x0138;
MCO9S12XEQ512, SCI V5, _S12X , 0x00cCs8, 0x00DO, 0x00B8S, 0x00cCo0,
0x0130, 0x0138;
MC9S12XDP512, SCI V5, _S12X , 0x00cCs8, 0x00DO, 0x00B8S, 0x00cCo,
0x0130, 0x0138;
MC9S12XET256, SCI V5, S12X , 0x00C8, 0x00DO, 0x00B8, 0x0130;
MC9S12XF512, SCI_Vv5, sS1z2X , 0x00C8, 0x00DO;
MC9S512XS128, SCI _Vv5, slz , 0x00C8, 0x00DO;
MC9S512XS256, SCI _Vv5, slz , 0x00C8, 0x00DO;
MC9S12GN32, SCI Vv5, sl1z , 0x00C8;
MC9S512G64, SCI Vv5, sl12 , 0x00C8, 0x00DO;
MC9S12HY64, SCI v5, sl1z , 0x00C8;
MC9S12P128, SCI v5, 812 , 0x00C8;
MC9S12XHY256, SCI V5, S12 , 0x00C8, 0x00DO;
MC9S12G128, SCI v5, 812 , 0x00C8, 0x00DO, O0xOO0ES;
MC9S12G240, SCI Vv5, 812 , 0x00C8, 0x00DO, O0xO0ES;
MC9S12VR64, SCI Vo6, Sl12 , 0x00C8, 0x00DO;
MC9S12VR32, SCI Vo6, Sl12 , 0x00C8, 0x00DO;
MC951272VvML128,SCI V6, S12 , 0x0700,0x0710;
MM912F634, SCI v4, sl1z , 0x0240;
MM912G634, SCI v4, sl1z , 0x0240;
MM912H634, SCI v4, sl1z , 0x0240;
MM912J637, SCI v4, sl1z , 0x0218;
MC9S12164, SCI v4, s1z , 0x0240;
MM971J638, SCI v4, s1z , 0x0E18;
MC9508Dz60, SCI v4, sS08 , 0x0038, 0x0040;
MC9s08Dz128, SCI v4, s08 , 0x0038, 0x0040;
MC9S08EL32, SCI v4, s08 , 0x0038;
MC95085G4, SCI v4, sS08 , 0x0038;
MC9S508SG8, SCI v4, s08 , 0x0038;
MC9S08SG32, SCI v4, s08 , 0x0038;
MC9S08MP16, SCI v4, s08 , 0x0068;
MC9S08LL64, SCI v4, s08 , 0x0020, 0x1858;
MC9S08LG32, SCI v4, s08 , 0x0010, 0x0018;
MC9S08SC4, SCI v4, s08 , 0x0038;
MC9S08AWG6O0, SCI vz, s08 , 0x0038, 0x0040;
MCO9S08AW1G6A, SCI vz, s08 , 0x0038, 0x0040;
MC9S08RN6O, SCI v4, s08 , 0x3080, 0x3088, 0x3090;
MC9S127zVL32, SCI ve, slz , 0x0700, 0x0710;
MC9s12zVL128, SCI Ve, sl2z , 0x0700,0x0710;
MC9s1272VML31, SCI Ve, sl12 , 0x0700,0x0710;
MC9S127ZVHY64, SCI Ve, sl2z , 0x0700, 0x0710;
MC9s1272VH128, SCI Ve, sl2z , 0x0700, 0x0710;
MC9S127zVCoe4, SCI ve, _slz , 0x0700, 0x0710;
MC981272VMC256,SCI Vo6, S12 , 0x0700, 0x0710;
}
mcu_info gpiof{
MCO9S08QD4;
}
mcu_info slic{
MC9S08EL32;
Freescale Semiconductor 90

Appendix

}

mcu_info uart({
SKEAZNS84,
SKEAZN642,
SKEAZ1284,

0x4006A000;
0x4006A000,
0x4006A000,

0x4006C000;
0x4006C000;

0x4006B000,
0x4006B000,

Freescale Semiconductor

91

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor

Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: LIN_STACK_UG
Rev. 2.5.3

Information in this document is provided solely to enable system
and software implementers to use Freescale Semiconductors
products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes
without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale Semiconductor assume any liability arising out
of the application or use of any product or circuit, and specifically
disclaims any liability, including without limitation consequential or
incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can
and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any
license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain
life, or for any other application in which failure of the Freescale
Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design
or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products
have the functionality and electrical characteristics as their non-
RoHS-complaint and/or non-Pb-free counterparts. For further
information, see http://www.freescale.com or contact your
Freescale sales representative. For information on Freescale's
Environmental Products program, go to
http://lwww.freescale.com/epp. Freescale™ and the Freescale logo
are trademarks of Freescale Semiconductor, Inc. All other product
or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

AUTOSAR
AUTOSAR and AUTOSAR logo are registered trademarks of

AUTOSAR GbhR
(www.autosar.org)

<&

Z “freescale”

semiconductor

