

LIN Stack Package

For 8/16/32 bit MCU User’s Guide

Document Number: LIN_STACK_UG

Rev2.5.5 11/2015

2 Freescale Semiconductor

Table of Contents

Chapter 1 Introduction .. 4

1.1 Revision History ... 5

1.2 Definitions, Acronyms, and Abbreviation .. 6

1.3 References .. 7

Chapter 2 Overview ... 8

2.1 System Architecture ... 9

2.2 Supported Derivatives .. 10

2.3 LIN Stack Package Components .. 11

2.3.1 Node Configuration Tool .. 11

2.3.2 LIN Stack Architecture ... 12

Chapter 3 LIN Stack Package ... 16

3.1 Generation Configuration Files .. 17

3.2 Stack Source Code ... 17

3.2.1 Board Support Package ... 17

3.2.2 Low Level layer... 19

3.2.3 Core API Layer ... 19

3.2.4 Transport Layer ... 19

3.2.5 Diagnostic Service ... 20

3.2.6 Include folder .. 20

Chapter 4 How to use LIN Package .. 21

4.1 Environment requirements ... 22

4.2 Hardware configuration file generation .. 24

4.3 Target setup .. 28

4.4 Configuration Files and LIN Stack Source Code Integration ... 31

4.4.1 Create an empty project of the target MCU board .. 31

4.4.2 Create a folder containing configuration files ... 32

4.4.3 Create a group containing LIN Stack source code .. 33

4.5 Configuration in CW10.6 ... 40

4.6 Getting Started with LIN application ... 47

4.6.1 Initialization of hardware utilities.. 47

4.6.2 Initialization of LIN system... 48

4.6.3 Timer for LIN schedule execution (Master mode only) .. 49

4.6.4 LIN_PHY Enable .. 51

4.6.5 LIN Applications ... 51

Chapter 5 Demo Application ... 58

5.1 LIN Protocol demo application .. 58

5.1.1 Introduction ... 58

5.1.2 Demo Environment Setup ... 59

5.1.3 Detail Description of Nodes .. 60

5.1.4 LIN System Initialization .. 60

5.1.5 Functionality Description .. 62

5.1.6 Operation ... 66

3 Freescale Semiconductor

5.2 LIN diagnostic demo application ... 70

5.2.1 Introduction ... 70

5.2.2 Diagnostic services support ... 71

5.2.3 Demo setup .. 72

5.2.4 Operation description .. 75

5.3 Resynchronization demo application ... 80

5.3.1 Introduction ... 80

5.3.2 Demo setup .. 80

5.3.3 Operation description .. 83

Appendix A ... 85

Appendix B ... 87

Appendix C ... 90

Home Page: .. 92

Web Support: .. 92

USA/Europe or Locations Not Listed: .. 92

Europe, Middle East, and Africa: ... 92

Japan: .. 92

Asia/Pacific: ... 92

For Literature Requests Only: .. 92

4 Freescale Semiconductor

Chapter 1
Introduction

This document details the implementation of LIN 2.0/2.1/2.2A and SAE J2602 compliant (see

[1],[2],[3],[4]) SW drivers for Freescale 8, 16 and 32 bit microcontroller portfolio. Throughout the

text the stack will be called LIN2.x/J2602. The aim of the documents is to help the user to easily

utilize these stacks in the project and explain the configuration flow.

The information in this document is subject of change without notice and does not represent a

commitment on the part of Freescale Semiconductor. The software describes in this document is

furnished under a license agreement and may be used or copied in accordance with the terms of that

license agreement. No part of this manual may be reproduced in any form or by any means,

electronically or mechanically, including photocopying and recording for any purpose without the

express written permission of Freescale Semiconductor.

Introduction

5 Freescale Semiconductor

1.1 Revision History

Table 1-1. Revision history

Revision Date Author Description

1.0 2009-09-24 B26340-Cong Tran Initial release

2.0 2011-03-21 B26340-Cong Tran Update chapter 2 for new HW supported

Update chapter 3.1 for NPF structure, 3.2 for
SCI folder and add RESYN feature

Update chapter 4.5 for diagnostic example
application

Add demo application for diagnostic and
resynchronization to chapter 6

2.0.1 2011-03-24 B26340-Cong Tran Update table 2.1

2.1 2011-12-19 B26340-Cong Tran Update chapter 3.1.2 for NCF tool

Update table MCU support for MM912xxx,
VR64, GN32, SC4, LG32

2.2 2012-06-11 B26340-Cong Tran Update chapter 4.5 for new CW support

Update support 9S12ZVM128 MCU

2.3 2013-07-13 B26340-Cong Tran Update table MCU support for Lumen,
QuIBSJ638, RN60, VR64 SCIv6, Knox

Update chapter 4 for LIN_PHY using

2.4 2013-09-17 B26340-Cong Tran Update application for LIN master, slave
tasks, goto sleep/wake up, multi timer
selection

2.5 2014-08-11 B26340- Cong Tran Add Kinetis platform support

Add AUTOBAUD feature in LIN Driver

2.5.1 2014-09-11 B26340- Cong Tran Add Hearst platform support

2.5.2 2015-04-15 B39392- Lan Bui Update to support 9S12ZVML31, 9S12VR32
MCUs

2.5.3 2015-06-01 B39392- Lan Bui
Changed name of the LIN Driver Package to
LIN Stack Package

2.5.4 2015-09-26 B39392- Lan Bui Update to support 9S12ZVL128,
9S12ZVMC256 MCUs

2.5.5 2015-11-18 B39392- Lan Bui Update SCI Version of S12ZVHY64 to SCIV6

Add max_message_length and support_sid
field to network description in npf files

Introduction

6 Freescale Semiconductor

1.2 Definitions, Acronyms, and Abbreviation

BSP Board Support Package

CAN Controller Area Network

DTC Diagnostic Trouble Code.

GPIO General Purpose Input Output

LIN Local Interconnect Network

LDF LIN Description File

MCU Microcontroller unit

NAD Node Address for slave nodes. Diagnostic frames are broadcasted and the NAD
specifies the addressed, respectively responding slave node. The NAD is the
address of a logical node.

NCF Node Capability File

NPF Node Private File

PCI Protocol Control Information

PDU Packet Data Unit

PID Protected Identifier

RISC Reduced Instruction Set Computer

SAE Society of Automotive Engineers

SCI Serial Communication Interface

SLIC Slave LIN Interface Controller

SNPD Slave Node Position Detection. Defines a recommended practice to position and
separate identical slave nodes.

UART Universal Asynchronous Receiver/Transmitter

UDS Unified Diagnostic Service.

XGATE RISC coprocessor that allows autonomous high-speed data processing and
transfers.

Introduction

7 Freescale Semiconductor

1.3 References

[1] LIN Specification Package, rev. 2.1, November 24, 2006

[2] LIN Specification Package, rev. 1.3, December 12, 2002

[3] LIN Specification Package, rev. 2.0, September 23, 2003

[4] LIN Specification Package, rev. 2.2A, December 31, 2010

[5] SAE J2602/1 LIN Network for Vehicle Application, September 2005

[6] MISRA-C:2004 Guidelines for the use of the C language in critical systems, October 2004

[7] MC9S12HZ256 Data Sheet, rev. 2.05, 04/2008

[8] MC9S12P128 Reference Manual, rev. 1.08, 2 July 2008

[9] MC9S12XEP100 Reference Manual, rev. 1.18, 09/2008

[10] MC9S12XDP512 Data Sheet, rev. 2.17, July 2007

[11] MC9S08SG32 Data Sheet, rev. 4, 5/2008

[12] MC9S08SG8 Data Sheet, rev. 5, 6/2008

[13] MC9S08DZ60 Data Sheet, rev. 4, 6/2008

[14] MC9S08DZ128 Data Sheet, rev. 1, 5/2008

[15] MC9S08AW60 Data Sheet, rev. 2, 12/2006

[16] MC9S08QD4 Data Sheet, rev. 3, 11/2007

[17] MC9S08EL32 Data Sheet, rev. 3, 7/2008

[18] MC9S08MP16 Reference Manual, rev.1, 9/2009

[19] MC9S12XHY256 Reference Manual, rev 0.1, 11/2009

[20] MM912F634 Advanced Information, Rev. 4.0, 10/2010

[21] Surface vehicle recommended practice.

[22] CodeWarrior™ Development Studio 8/16-Bit IDE User’s Guide

[23] CANoe as a diagnostic tool, v.1.2, June 06,2006

[24] ISO 14229-1, Road vehicles - Unified diagnostic services (UDS), December 2006

[25] Application note AN3756, Rev. 0, 10/2008

Freescale Semiconductor

8

Chapter 2
Overview

This chapter provides a high-level description of LIN Stack architecture with hardware

independence. This chapter contains information about following:

 System architecture of LIN Stack

 Node configuration Tool which is used for generation hardware configuration files.

Overview

Freescale Semiconductor

9

2.1 System Architecture
The layered architecture of the LIN2.x/J2602 Stack package is shown on Figure 2-1. Such

architecture approach aims maximum reusability of common code base for LIN2.x and J2602

standards for 8 bit, 16 bit and 32 bit Freescale automotive MCU portfolio.

The core API layer of LIN2.x/J2602 handles initialization, processing and signal based interaction

between application and LIN Core. The LIN2.x TL (Transport Layer) provides methods for tester

to transmit diagnostic requests.

The low level layer offers method of handling signal transmission between user application and

hardware independence such as byte sending, response receiving, break symbol detection, etc.

The physical transport layer of the Driver supports three standard interfaces SCI, SLIC, GPIO to

operate with 8 bit and 16 bit MCU hardware.

Refer to Chapter 2.3.2 LIN Stack for detail information.

LIN 2.1 TL

LIN 2.1 Core API J2602 Core API

LIN 2.1/J2602

Low Level

MCU HW

SCI/GPIO/SLIC/

UART

J2602 API

LIN2.1 API

Common Core API

LIN2.1/J2602 API

Figure 2-1. LIN Stack Architecture diagram

Overview

Freescale Semiconductor

10

2.2 Supported Derivatives
The following table displays the list of supported MCU derivatives including the functionalities

Note that all derivatives support the LIN2.x and J2602 variant.

Table 2-1. Target Platform

No. Type MCU LIN Module
Version

Master Mode Slave Mode

Diagnostic Diagnostic

Class
I

Class
II

Class
III

Class
I

Class
II

Class
III

1

8 bit
MCU

9S08AW16A SCI_V4

2 9S08SG32 SCI_V4

3 9S08SG8*

SCI_V4

4 9S08DZ60 SCI_V4

5 9S08DZ128 SCI_V4

6 9S08AW60 SCI_V2

7 9S08QD4**

GPIO

8 9S08EL32*** SCI_V4

SLIC

9 9S08MP16 SCI_V4

10 9S08SG4 SCI_V4

11 9S08SG8 SCI_V4

12 9S08LG32 SCI_V4

13 9S08SC4** SCI_V4

14 9S08RN60 SCI_V4

15

16 bit
MCU

9S12HY64 SCI_V5

16 9S12XHY256 SCI_V5

17 9S12P128 SCI_V5

18 9S12XS128 SCI_V5

19 9S12XS256 SCI_V5

20 9S12XEP100 SCI_V5

21 9S12XEQ512 SCI_V5

22 9S12XET256 SCI_V5

23 9S12XDP512 SCI_V5

24 9S12XF512 SCI_V5

25 9S12G128 SCI_V5

26 9S12G240 SCI_V5

27 9S12GN32 SCI_V5

28 9S12G64 SCI_V5

29 9S12VR64 SCI_V6
LINPHY_V1

30 9S12VR32 Tomarino SCI V6

LINPHY V2

Overview

Freescale Semiconductor

11

31

16 bit
MagniV
MCU

MM912F634**** SCI_V4

32 MM912G634 SCI_V4

33 MM912H634 SCI_V4

34 MM912J637 SCI_V4

35

S12Z

MM9Z1J638 D2D+SCI4

36 9S12ZVML128_Carcassonne SCI_V5

37 9S12ZVL_Knox SCI_V6

38 9S12ZVL128 SCI_V6
LINPHY V2

39 9S12ZVHY64_Lumen SCI_V6

40 9S12ZVH128_Lumen SCI_V6

41 9S12ZVC64 Hearst SCI_V6

42 9S12ZVML31 Obidos SCI_V6

LINPHY V3

43 9S12ZVMC256 SCI_V6

44

Kinetis

SKEAZN84

UART

45 SKEAZN642

46 SKEAZ1284

Mark:

 : Support

: Not support

 * 9S08SG8 Supports master and slave modes in diagnostic class I only due

to memory limitation

 ** 9S08QD4, 9S08SC4 supports LIN protocol only

 *** 9S08EL32 contains SCI and SLIC interfaces. SLIC supports slave mode only due to its

function to support slave LIN interface.

 **** MM912 integrated LIN frontend / Quest / Quicksilver

2.3 LIN Stack Package Components
LIN Stack Package consists of two major parts:

 Node Configuration Tool – PC based script for LIN Stack configuration generation.

 LIN Stack – Embedded SW package supporting the LIN2.x and J2602 communication

2.3.1 Node Configuration Tool
The Node Configuration Tool is a built-in script of the LIN Stack package which allows user to

easily generate the node configuration .h and .c files based on LIN Configuration Description File

(LCF) and Node Private Description File (LPF) (see more in 3.1 Generation Configuration).

Those files are then in compiler integrated with LIN Stack source code and user application and

after compilation downloaded to the target derivative. Figure 2-2 shows the diagram of

configuration data flow.

Overview

Freescale Semiconductor

12

LIN Configuration

Description File

(.ldf)

Node Private

Description File

(.npf)

Node Configuration

Tool

Node Configuration

Code (.c and .h)

LIN Stack

Code (.c and .h)

Compiler/LinkerTarget Derivative

Figure 2-2. Configuration data

The LDF file describes a complete LIN cluster including Master/slave mode definition and

contains information to handle the cluster.

The NPF file contains information about LIN nodes – such as node name, number of interface,

MCU clock frequency, used communication channel (e.g. SCI channel) and port (e.g. GPIO port),

etc., required for full description of the node.

2.3.2 LIN Stack Architecture
The Figure 2-3. shows the details of modules in the LIN Stack package. It also demonstrates the

relationship among modules and the direction of function call among them.

Overview

Freescale Semiconductor

13

Diagnostic class III

TL APIs

LIN core

layer

LIN Low Level Driver (LLD)

Low level API

LIN 2.1 Core API

SLIC GPIO

XGATE

Application

SCI

Controller
SLIC Controller

GPIO

Controller

Frame

processing

Bit processing

Transport

layer

Low-level

layer

Application

layer

Legend:

J2602 Core API

Function block Function call Interactive

SCI

Frame

processing

LIN 2.0

LIN 2.0

Status

Mgmt J2602 Status

Mgmt

LIN 2.0

Scheduler

LIN 2.0

Network

Mgmt

LIN 2.0

Signal

Mgmt

J2602 Interface

LIN 2.1 Interface

LIN 2.1

Single frame transport Multi frame transport

LIN 2.1

APIs

LIN 2.0 Transport

protocol
LIN 2.1

J2602

LIN 2.1 Transport

protocol

Diagnostic class II

Diagnostic class I

Diagnostic

service

LIN2.1 J2602

LIN 2.0 Node

Config

LIN Diagnostic services

UART

Controller

UART

Frame

processing

Figure 2-3. LIN Stack Layer Diagram

LIN Stack software package provides support for LIN2.x and J2602 communication protocols. The

Stack package is divided into the layers as follows:

1. The lowest layer – Board Support Package (BSP) layer is comprised of codes, which

implements the tasks dedicated to specific MCU platform: interrupt service routines, i/o

Overview

Freescale Semiconductor

14

port setup, memory handling and so on. There are three interfaces implemented within the

Stack package: SCI, SLIC and GPIO.

2. Low level layer consists of core functions for the LIN protocol such as the frames handling,

signals transmission and reception, data preparation, etc. Besides, this layer contains

common implementation functions for the lowest layer to provide the interface abstraction.

Function for LIN cluster setup can be found here as well. This layer interacts with the core

API layer through low level API functions.

3. Core API layer consists of API functions as defined by the LIN2.x/J2602 specification

enabling the user to utilize the LIN2.x/J2602 communication within the user application.

Both the static and dynamic modes for calling the API functions are supported. The core

API layer interacts with the low level layer and can be called by such upper layers as

LIN2.x TL API, LIN TL J2602 or application for diagnostic implementation.

4. Transport layer stands between the application layer and the core API layer including

LIN2.x TL API and LIN TL J2602. This layer provides APIs for the transport protocol,

node configuration and diagnostic. For LIN2.x, all components will be extended from LIN

2.0 specification. The node configuration for J2602 implements only some functions of

LIN 2.0 specification. The layer contains some main components below:

 Transport protocol:

- Transport protocol presented in LIN2.x Stack supports single and full frame

transmission. Single frame transmission is applied for diagnostic class I,

whereas the full frame is applied for diagnostic classes II and III.

5. Diagnostic services layer presented in the Stack supports all diagnostic classes as defined in

[1].

 Diagnostic class I: Node configuration and Identification

- LIN2.x extends slave configuration and assign frame with ID range to LIN

2.0. The assign frame with ID is removed.

- J2602 simplifies LIN 2.0 Node configuration.

 Diagnostic classes II and III:

- The diagnostic services are implemented based on standard diagnostic

specification [24]. The layer supports API functions and OEMs will add to

application source code to complete base on their specific application.

The table below shows the services supported in the LIN Stack

 Diagnostic
Class

I II III
UDS ser-

vice index [Hex]

Data
Identifier

Diagnostic Transport Protocol Requirements

Single frame transport only +

Full transport protocol (multi-segment) + +

Required Configuration Services

Assign frame identifier range + + + 0xB7

Read by identifier (0 = product id) + + + 0xB2 0x00

Read by identifier (all others) optional optional + 0xB2 0xXX

Assign NAD optional optional optional 0xB0

Conditional change NAD optional optional optional 0xB3

Positive response on + + + service +

Overview

Freescale Semiconductor

15

supported configuration services 0x40

Required UDS Services

Read data by identifier + + 0x22 0x0091

0x0092

Write data by identifier + + 0x2F 0x0092

Session control + 0x10 0x01

Read by identifier for sensor and actuator
data

 + 0x22 Implemented
by OEM

I/O control by identifier + 0x2F 0x08

Read DTC (fault memory) + 0x19 0x01

Clear DTC (fault memory) + 0x14 N/A

Routine control if applicable 0x31

Other diagnostic services if applicable …

Flash Reprogramming Services

Flash programming services optional 0xXX

Table 2-2. LIN2.x diagnostic service specification

Note

 * The blue color shows the services are supported by Stack

 ** The orange color shows the services are not supported by Stack

 (+) Plugs are mandatory services for LIN Stack

6. Application layer is the highest layer which stands for user’s applications.

Refer to Stack Source Code for detail about source code files of each layer.

Freescale Semiconductor

 16

Chapter 3
LIN Stack Package

This section presents more detail description of products in the package. The content is focused

how to construct input files for Node configuration tool and explore deeply in the source code.

The chapter contains sections:

 Generation Configuration Files

 Stack Source Code

LIN Stack Package

Freescale Semiconductor

 17

3.1 Generation Configuration Files
The language described in this section is used in order to create input files for the Node

configuration tool to generation configuration files. To understand how to run this tool, refer to

Chapter 4.2, Hardware configuration file generation for more information.

NOTE

The LDF and NPF files could be created in notepad or wordpad

text editors in window and saved into .ldf and .npf extension files.

3.2 Stack Source Code
The Stack source code is organized to five folders: bsp, coreapi, diagnostics, include and transport

as shown in Figure 3-1. The structure of source code is based on the LIN system architecture (see

more in Chapter 2.2, LIN Stack).

Figure 3-1. LIN Stack Source Code Directory Structure

3.2.1 Board Support Package
Board Support Package (BSP) layer is the lowest layer, which is comprised of functions related to

the specific hardware. Here you could find out the special interrupt service routines, IO

parameters, memory handling and so on. There are three interfaces implemented within the stack

package: SCI, SLIC and GPIO.

3.2.1.1 GPIO

There is only one MCU name 9S08QD4 in the support derivative table (see more in Table 2-1)

support GPIO interface. The source code in this folder is served for this MCUs.

In this folder, there are four files, including lin_lld_gpio.c, lin_lld_gpio.h, timer.c

and timer.h. Namely

 lin_lld_gpio.c define initialization, data sending flow of GPIO interface

LIN Stack Package

Freescale Semiconductor

 18

 timer.c define timeout management, counter for user application, and timer interrupt.

 lin_lld_gpio.h , timer.h includes the prototypes for functions served for .c files.

3.2.1.2 RESYN

The source code in this folder support resynchronization feature of LIN Driver as the application

note [25]. The folder contains two source files lin_lld_resyn.c and lin_lld_resyn.h. The

MCUs support this feature include 9S08SG32, 9S08EL32, 9S08DZ60, 9S08DZ128 and

9S08MP16.

3.2.1.3 SCI

There three SCI communication versions supported in the LIN Driver and the version has been

combined in a single module of SCI.

The folder contains files lin_lld_sci.c which implements all the functions universally used for all

MCUs with SCI interface. The lin_lld_sci.h contains the prototypes for functions

implemented in lin_lld_sci.c. The lin_lld_timesrv.c consists of timing and board

frequency setup functions; lin_lld_timesrv.h consists of the prototypes for functions

implemented in lin_lld_timesrv.c and lin_reg.h contains the registry map declaration for

the MCU. The lin_isr.c contains interrupt service routines for SCI communication and timer.

The folder to the target MCU contains the file lin_isr.c which implements the interrupt service

routines and other initial tasks dedicatedly.

3.2.1.4 SLIC

Slave LIN Interface Controller is embedded module that automates LIN message handling to help

increase performance while reducing development time and cost.

In this folder, there are four files, including lin_lld_slic.c, lin_lld_slic.h,

slic_isr.c and slic_isr.h. The contents of the files are described below:

 lin_lld_slic.c includes all the initial functions and other related task handling

functions which will be used to directly interact with the physical hardware.

 lin_lld_slic.h includes the prototypes for functions implemented in the file

lin_lld_gpio.c, constant declarations and macros.

 slic_isr.c consists of interrupt service routines for the physical board.

 slic_isr.c consists of the prototypes for functions implemented in the file

slic_isr.h, constant declaration and macros.

3.2.1.5 XGATE

The XGATE module on the advanced S12X family of 16-bit MCUs is a highly flexible, high

performance and cost-sensitive parallel processing solution. The XGATE module is a peripheral

coprocessor that allows autonomous high-speed data processing and transfer between the MCU’s

peripherals and the internal RAM and I/O ports. XGATE uses SCI for I/O communication and

handling interrupt.

LIN Stack Package

Freescale Semiconductor

 19

Similar to modules in the SCI structure, the XGATE folder contains modules specific for XGATE

xlin_sci.cxgate, xvector.cxgate. The source code in these modules is stored in the RISC

core.

3.2.1.6 UART

The UART layer provides physical hardware communication handling for Kinetis MCU platforms.

This is based on SCI version-4 communication specified for 32 bit ARM architecture.

3.2.1.7 AUTOBAUD

The signal on the UART receive pin (RX pin) can be internally routed to an Input Capture module

to time the edges of the incoming signal. From that timing the layer can set up the UART at the

correct baud rate.

3.2.2 Low Level layer
Low level layer consists of core functions for the LIN protocol such that frames handling, signals

transmission and reception, data preparation, etc. It also contains the functions used to set up the

LIN cluster. There are two files included in:

 lin.c contains the functions for initialization of LIN core features, preparation of current

transmission and interaction with hardware modules.

 lin.h consists of function declaration, macro definitions and so on which are

implemented within the lin.c file.

3.2.3 Core API Layer
Core API layer is a set of functions which are intended to be used to develop the applications

interacting with the LIN bus. There are six files in this folder, including:

 lin_common_api.c contains the common API functions which are applicable for all

three versions LIN2.x and J2602.

 lin_common_proto.c contains the functions which are used to set up the session

environment based on the low level layer.

 lin_lin21_api.c contains the API functions for LIN2.x communication protocol.

 lin_lin21_proto.c contains the functions which prepares the background tasks for

LIN2.x API functions.

 lin_j2602_api.c contains the API functions for J2602 communication protocol.

 lin_j2602_proto.c contains the functions which prepares the background tasks for

J2602 API functions.

3.2.4 Transport Layer
Transport layer comprises of functions, which represent the transport layer specification within the

LIN protocol. This layer is only applicable for some types of communication within the LIN bus.

The other types will not use the transport layer but the API and the low-level layer for opening a

working session for transmission and reception of data within the LIN bus.

There are four files in this folder, including:

LIN Stack Package

Freescale Semiconductor

 20

 Lin_commontl_api.c consists of function calls for data preparation, node identification

and configuration and others which are the implementation of the transport layer

specification.

 Lin_commontl_proto.c consists of functions which do the background tasks for setting

up the transport layer.

 lin_21tl_api.c consists of functions which implements the transport layer for LIN2.x

communication protocol.

 lin_j2602tl_api.c consists of functions which implements the transport layer for

J2602 communication protocol.

3.2.5 Diagnostic Service
The transport layer is also complemented with the diagnostic services, which implement full

diagnostic nodes defined in the LIN specification. Three diagnostic classes are supported where

Class I is using normal signaling and class II and class III uses the transport layer.

This set of functions is built to support the mandatory diagnostic services described in the

communications protocol specification. This folder contains the file lin_diagnostic

_service.c, which implements the diagnostic class I for node configuration and identification

mentioned above.

3.2.6 Include folder
This folder contains all the function declarations, macros and constants definitions and global

variables which could be used throughout the source code. There are eleven files, including
lin_common_api.h, lin_common_proto.h, lin_commontl_api.h, lin_commontl

_proto.h, lin_diagnostic_service.h, lin_j2602_api.h, lin_j2602_proto.h,

lin_j2602tl_api.h, lin_lin21_api.h, lin_lin21_proto.h and lin_lin21tl

_api.h. Among of them, lin_common_proto.h is key one which plays a gateway role to

connect others for handling the protocol layer.

Freescale Semiconductor

 21

Chapter 4
How to use LIN Package

The objective of this chapter is to provide user with instructions on how to set up and run LIN

applications as quick as possible. This chapter contains the following sections:

 Environment requirement - Recommendation regarding CodeWarrior versions for each

target derivative.

 Hardware configuration file generation - Steps to generate configuration files from input

files by using node configuration tool.

 Target setup - Steps to setup a target hardware platform

 Configuration files and LIN Stack source code integration - Steps to integrate to a project

 Getting start with LIN application - Using API functions for user application

How to use LIN Package

Freescale Semiconductor

 22

4.1 Environment requirements
The scope of this section is limited to recommend some notices when creating LIN application

projects using Code Warrior. For more detail information about the CodeWarrior Integrated

Development Environment (IDE) and computer programming, refer to the Reference [22].

The three Code Warrior versions 6.2, 5.1 and 4.7 are recommended environments applicable for

LIN Stack respectively with MCU 8/16 bit families as shown in Table 4-1. MCUs respective with

Code Warrior Version

Table 4-1. MCUs respective with Code Warrior Version

CW10.6 CW4.7 CW5.1

9S12ZVM128 9S12HY64 9S12G64

9S08RN60 9S12P128 9S12G128

9S12ZVL32 9S12XS128 9S12G240

9S12ZVL128 9S12XS256 9S12GN32

MM9Z1J638 9S12XEP100 9S12XHY256

9S12ZVHY64 9S12XEQ512 MM912F634

9S12ZVH128 9S12XET256 MM912G634

SKEAZN84 9S12XDP512 MM912H634

SKEAZN642 9S12XF512 MM912J637

SKEAZ1284 9S12XF512 9S12VR64

9S08AW16A

9S08AW60

9S08SG32

9S08SG8

9S08SG4

9S08DZ60

9S08DZ128

9S08QD4

9S08EL32

9S08MP16

9S08LG32

9S08SC4

9S12ZVC64

9S12ZVMC256

NOTE 1

How to use LIN Package

Freescale Semiconductor

 23

Check USB interface type of the target hardware platform to match with

connection types in CW (P&E Multilink/Cyclone Pro, SofTec HCS08/16

or HCS08/16 Open Source BDM) for downloading source code action.

NOTE 2

For MCU with XGATE coprocessor support, it is recommended to

selecting the source code of HCS12X and XGATE in RAM (Multi Core

selection) for purpose of faster operation.

Figure 4-1 XGATE option in Code Warrior Studio

NOTE 3

The data type in Standard Types Settings of CW4.7 is selected as 16 bit.

Whereas, it is selected as 8bit in CW6.2 (Choose Standard Settings-

>Compiler for H08/12->Type sizes).

How to use LIN Package

Freescale Semiconductor

 24

Figure 4-2 Data type option in CW4.7 and CW6.2

NOTE 4

When a CPU running with XGATE support, a warning message often

appears as shown in below:

Figure 4-3. Warning message appears in project with XGATE support

To remove this warning, choose SofTec HCS12 Settings -> Compiler for

H12 ->Options-> Optimizations and select Main Optimize Target then

click Optimize for execution time option.

NOTE 5

For 9S12HY64 and 9S12P128 MCUs, in order to compliant with Code

Warrior V4.7, two Code Warrior patches

(CW12_V4_7_HCS12_HY64_HA64_SP.exe, CW12_V4_7_HCS12

_P128_SP.exe) need to be installed. (Access website:

http://www.freescale.com and download these two files).

4.2 Hardware configuration file generation
This section describes steps for generation configuration files (lin_cfg.h, lin_cfg.c,

lin_hw_cfg.c) for a node in LIN network. The input files include one NPF file and one or

several LDF files which the node participates in. These two files could be edited in a text editor

and they must be saved with .ldf and .npf extensions respectively instead of .txt.

In order to start generation files, perform following tasks.

1. Define target MCU (as shown in Table 2-1) used for emulation and its interface type

(GPIO, SCI and SLIC). If SCI interface is selected, verify the SCI version and channel

used as given in Table 4-2 below (This information is also mentioned in

MCU_config.cfg file in NCF tool folder).

http://www.freescale.com/

How to use LIN Package

Freescale Semiconductor

 25

Table 4-2. List of MCUs with SCI number and its address in RAM

MCU SCI
Version

MCU
Type

Number of
SCI/UART
channel

Address

9S08AW16A

9S08AW60

SCI_V2 _S08_ 2
SCI0 0x0038

SCI1 0x0040

9S08DZ60

9S08DZ128
SCI_V4 _S08_ 2

SCI0 0x0038

SCI1 0x0040

9S08LG32
SCI_V4 _S08_ 2

SCI1 0x0010

SCI2 0x0018

9S08SG8

9S08SG32

9S08EL32

9S08SC4

SCI_V4 _S08_ 1 SCI0 0x0038

9S08MP16 SCI_V4 _S08_ 1 SCI0 0x0068

9S12I32 SCI_V4 _S12_ 1 SCI0 0x0240

9S12HY64

9S12P128

9S12GN32

SCI_V5 _S12_ 1 SCI0 0x00C8

9S12XS128

9S12XS256

9S12XHY256

9S12G64

SCI_V5 _S12_ 2
SCI0 0x00C8

SCI0 0x00D0

9S12G128

9S12G240 SCI_V5 _S12_ 3

SCI0 0x00C8

SCI1 0x00D0

SCI2 0x00E8

9S12XEP100

9S12XEQ512

9S12XET256

9S12XDP512
SCI_V5 _S12X_ 6

SCI0 0x00C8

SCI1 0x00D0

SCI2 0x00B8

SCI3 0x00C0

SCI4 0x0130

SCI5 0x0138

9S12XF512
SCI_V5 _S12X_ 2

SCI0 0x00C8

SCI1 0x00D0

MM912F634

MM912G634

MM912H634

SCI_V4 _S12_ 1 SCI0 0x0240

MM912J637 SCI_V4 D2D 1 SCI0 0x0218

9S12VR64

9S12VR32
SCI_V6 _S12_ 2

SCI0 0x00C8

SCI1 0x00D0

9S08RN60

SCI_V4 _S08_ 3

SCI0 0x3080

SCI1 0x3088

SCI2 0x3090

MM9Z1J638 SCI_V4 1 SCI0 0x0E18

9S12ZVL32

9S12ZVL128

9S12ZVMC256

9S12ZVC64

9S12ZVML31

SCI_V6 _S12_ 2
SCI0 0x0700

SCI1 0x0710

How to use LIN Package

Freescale Semiconductor

 26

9S12ZVHY64

9S12ZVML128
SCI_V5 _S12_ 2

SCI0 0x0700

SCI1 0x0710

SKEAZN84

UART _K_

1 0x4006A000

SKEAZN642 3 0x4006A000

0x4006B000

0x4006C000
SKEAZ1284

3

2. Edit LDF and save to a folder.

3. Edit and NPF file and save to the same folder with LDF file above.

The sample .npf code below is targeted for S12ZVML128 platform using SCI0 channel for LIN

communication, 5 second timeouts, 8MHz bus clock, diagnostic class I, and the LDF which this

node participate is LIN21.ldf as master node:

/* ***/

/* Initiator: CONG TRAN B26340 */

/* This example is used for S12ZVML128 as Master node */

/* ***/

/*** GENERAL DEFINITION ***/

LIN_node_config_file;

/*** MCU DEFINITION ***/

mcu { /* Must check the correct MCU name */

 mcu_name = MC9S12ZVML128;

 bus_clock = 8000000; /* Frequency bus of system Hz*/

 xgate_support = no; /* Support XGATE Co-Processor */

}

/*** LIN HARDWARE DEFINITION ***/

/* SCI config */

sci{

 s12_sci0{

 sci_channel = 0; /* Check validation of sci_channel */

 }

}

/*** NETWORK DEFINITION ***/

network {

 idle_timeout = 5s;

 diagnostic_class = 1;

 max_message_length = 6;

 LI0{

 node = SeatECU; /* Name of node described in LDF (must check

consistence with LDF) */

 file = "LIN21.ldf"; /* Path to LDF file */

 device = s12_sci0; /* Identifier to LIN Hardware, related to LIN

HARDWARE DEFINITION */

 support_sid {
 READ_BY_IDENTIFIER = 178;

 ASSIGN_FRAME_ID_RANGE = 183;

 ASSIGN_NAD = 176;

 CONDITIONAL_CHANGE_NAD = 179;

 SAVE_CONFIGURATION = 182; }

 }

 }

}

How to use LIN Package

Freescale Semiconductor

 27

The max_message_length property applies to the diagnostic transport layer only. It defines the

maximum length of a diagnostic message that is number of used data bytes plus one (for the

SID or RSID). For diagnostic class I, max_message_length should be less than or equal to 6.

For diagnostic class II and III, max_message_length should be less than or equal to 4095.

The support_sid lists all SID values (node configuration, identification and diagnostic services)

that are supported by the slave node. For diagnostic class 3, users also can add their User

Defined Diagnostics SIDs. NPF files of Master nodes should list all SID values that are

supported by the slave nodes in the LIN Cluster. For convenience, users can use Eclipse Plugin

to list supported SID according to the supported diagnostic class. In NPF files, support_sid can

be listed using decimal values as above or hexadecimal values, e.g READ_BY_IDENTIFIER

= 0xB2. On Eclipse Plugin GUI, users can only input support_sid using decimal values.

Generate configuration files

There are three different ways to generate configure files that was integrated in the package:

Windows Command Line, Standalone GUI and Eclipse plug-in. This use manual presents the

steps to use Standalone GUI, for more detail of two remain methods, refer to the user guide of

NCF tool in the package.

4. Open the execution file NCFGui.jar in Node Configuration Tool at location: …\NCFGUI.

The execution program window appears as shown in Figure4.4.

Figure 4-4 NCF main window

5. Click File => Select NPF file in File menu or press Ctrl + N to include the NPF file.

6. Click File => Select output folder in File menu or press Ctrl + O to select target folder

which contains output files.

How to use LIN Package

Freescale Semiconductor

 28

7. Click Generate or press Ctrl + G button to generate files

If the NPF file is correct, a message will be displayed as shown in Figure

Figure 4-5. Successful generation message

Otherwise, an error message will appear to show a brief description of error type. Figure

shows an example of error message when lacking the interface field in the NPF file.

Figure 4-6. An error message

4.3 Target setup
This section describes connection steps from a host PC to a demonstration board of target MCU

and some notices when working with some specific boards. The MCU project boards might be

different in hardware configuration such as system clock, mode operation, LIN connector, power

supply, USB/PC interface. It is strongly recommended to check all jumpers setting before getting

with LIN application.

1. Install all required system software for each MCU, it normally includes Code Warrior

patch, SofTec/Multilink Microsystems DLL built-in with board support.

2. Check “POWER SEL” jumper is in the “USB” position. Otherwise a 12V DC power

supply or I/O header connector of the LIN bus must be plugged.

Figure 4-7. POWER SEL jumper on DEMO9S12HY64 board

3. Insert one end of the USB cable into a free USB port of the host PC.

4. Insert the other end of the USB cable into the USB connector on the project board.

How to use LIN Package

Freescale Semiconductor

 29

Figure 4-8. USB port on the DEMO9S12XSFRAME

5. Check operation modes. Several hardware platforms are available with two working

modes: “Standalone” mode and “host” mode. In standalone mode, no PC connection is

required. The microcontroller is factory programmed. In the other hand, in the host mode

the program execution is controlled by the host PC through the “USB” connector. Refer to

user manual of each board to see jumper and connector settings.

6. Check LIN/RS-232 SEL jumper. Make sure that the jumper is selected for LIN

transceiver.

Figure 4-9. LIN Transceiver selection jumper on DEMO9S12PFRAME

7. For boards support external clock (EVB9S12XEP100, EVB9S12XDP512, DEMO-

9S12XSFRAME, etc.) make sure that the OSC SEL jumper is selected as CLOCK instead

of CRYSTAL.

Figure 4-10. Oscillation selection jumper on DEMO9S12XSFRAME

8. Verify the LIN transceiver of the MCU project board to ensure it works properly by using

built-in test project regarding the MCU and debug in Code Warrior Real Time Debugger

environment. Figure shows an example of LIN transceiver testing on EVB9S12XDP512

board.

How to use LIN Package

Freescale Semiconductor

 30

Figure 4-11. Breakpoint at lin_proccess_pid function to test LIN transceiver

o Open TST_9s12xdp512_SCI_XGATE_MasterMode_LIN21.mcp project file in

location
…\tests\integration\TST_MasterMode_LIN21\TST_9s12xdp512_SCI_X

GATE_MasterMode_LIN21

o Set active schedule table as LI0_SendTable in main function

o Call l_sch_tick function in for(;;) loop, the sample code is below

l_sch_set(LI0, LI0_SendTable, 0); // For test LIN transceiver

 for(;;) {

 /* Delay time */

 for(i = 0;i < 6000; i++) {

 }

 ret = l_sch_tick(LI0);

 } /* wait forever */

 /* please make sure that you never leave this function */

}

o Download to MCU board and click Start/Continue button.

o Set breakpoint in lin_process_pid(iii,pid) code line of lin_pid_

response_callback_handler function and observe if the program pause at this

breakpoint.

How to use LIN Package

Freescale Semiconductor

 31

9. For MCU boards without LIN transceiver DEMO9S08AW60E, DEMO9S08QD4,

DEMO9S08SG8, you must connect their Tx/Rx pins of interface used through another

external LIN transceiver. For example, the GPIO pins in DEMO9S08QD4 board are

connected to a LIN transceiver of the DEMO9S08EL32 board as shown in Figure below.

o Identify Tx/Rx pins in the schematic of DEMO9S08QD4

o Connect these pins with Tx/Rx pins on DEMO9S08EL32 board (line1, 2)

o Connect ground terminals between two boards (line 3)

o Supply power 12V to DEMO9S08EL32 board, it is then ready for demonstration.

1

2

3

Figure 4-12. Connect LIN transceiver in DEMO9S08EL32 to DEMO9S08QD4 board.

4.4 Configuration Files and LIN Stack Source Code
Integration
This section will provide a steps-by-steps guide on how to integrate configuration files with LIN

Stack source code in your first project.

4.4.1 Create an empty project of the target MCU board
1. Open Code Warrior Studio V4.7 (or 6.2 refer to target MCU Table 4-2)

2. Create an empty project for a target MCU. Figure shows an example of MCU name

9S12XEP100.

How to use LIN Package

Freescale Semiconductor

 32

Figure 4-13. Project Window

4.4.2 Create a folder containing configuration files
3. Create new folder with name lin_cfg in the project folder and copy configuration files

(lin_cfg.h, lin_cfg.c, lin_hw_cfg.c) generated in Section 4.2, Hardware

configuration file generation to this folder.

How to use LIN Package

Freescale Semiconductor

 33

Figure 4-14. Create new folder with name lin_cfg

Add configuration files to this project (drag and drop lin_cfg folder into CodeWarrior project).

Figure 4-15. Add configuration files to the project

4.4.3 Create a group containing LIN Stack source code
This section will help user to add source code to the application. Notice that every change in the

source code might create serious errors for application.

4. Create new group with name LIN_Stack

Figure 4-16. Create a group name LIN_Stack

5. Drag and drop five sub folders of LIN Stack folder (coreapi, diagnostic, include, lowlevel,

transport) into created LIN_Stack group.

How to use LIN Package

Freescale Semiconductor

 34

Figure 4-18. Drag and drop five sub folders of LIN Stack folder into LIN_Stack group

6. Create a new bsp group is subgroup of LIN_Stack and bsp’s subgroup with name of

interface

 Create bsp group

Figure 4-19. Create bsp group is subgroup of LIN_Stack group

 SCI interface

Drag and drop SCI folder into bsp group.

How to use LIN Package

Freescale Semiconductor

 35

Figure 4-20. Drag and drop SCI folder into bsp group

After all steps above, we have file architecture of Code Warrior project like this

How to use LIN Package

Freescale Semiconductor

 36

Figure 4-21. Overview of LIN Stack files architecture.

 Resynchronization feature

Resynchronization feature currently supports 9S08DZ60, 9S08DZ128, 9S08EL32 and 9S08SG32 boards.

To use this feature, drag and drop RESYN folder into bsp group.

How to use LIN Package

Freescale Semiconductor

 37

Figure 4-22. drag and drop RESYN folder into bsp group

 SLIC interface

If SLIC interface is chose, the source code added to project is shown in Figure

How to use LIN Package

Freescale Semiconductor

 38

Figure 4-23. Add all Stack source code to SLIC interface (MCU used is 9S08EL32)

 GPIO interface

If GPIO interface is chose, the source code added to project is shown in Figure

How to use LIN Package

Freescale Semiconductor

 39

Figure 4-24. Add all Stack source code to GPIO interface (applied to 9S08QD4 MCU only)

NOTE

Due to limitation in memory space, the RAM/ROM areas in QD4 MCU

need to be reallocated in Project.prm file to match with the Stack source

code. Namely, Z_RAM = 0x0060 to 0x0060, RAM = 0x0061 to 0x15F.

See more in Figure 4-25.

Figure 4-25. RAM/ROM areas relocation in QD4 MCU

 XGATE + SCI interface

If XGATE is selected, the Code Warrior Studio will automatically generate a default

file xgate.cxgate which defines XGATE interrupt handle functions and XGATE

vector table.

Figure 4-26. Remove xgate.cxgate file in the project with XGATE support

This file has been modified which serves for SCI interrupt and request interrupt from

S12X_CPU and saved in location …\LIN_Stack\ bsp\XGATE\common.Therefore,

remove this default file and add the modified file to a group with name common in

SCI_XGATE group as the figure bellow.

NOTE

How to use LIN Package

Freescale Semiconductor

 40

Remove NEAR segment pointer name by near in xgate.h file to

make XGATE vector table entry works properly. See Figure 4-27.

Figure 4-27. Remove NEAR segment pointer name by near

Figure 4-28. Final source code adding window for the project with XGATE support

Once you completed adding LIN Stack source and compiled without error and warning, you are

now ready for writing LIN applications.

4.5 Configuration in CW10.6
MC9S12ZVM128 is developed base on Code Warrior 10.6. These steps below show how to

configure a LIN application by LIN Stack package in CW10.6.

1. Create empty project target for MC9S12ZVM128 in CW

How to use LIN Package

Freescale Semiconductor

 41

Figure 4-29. Select 9S12ZVM128 in Code Warrior

2. Click “Next” button following suggestion from CW default wizard

The final view is shown below

How to use LIN Package

Freescale Semiconductor

 42

Figure 4-30. 9S12ZVM128 project in Code Warrior 10

3. Copy “LIN Stack” to project folder in workspace:

Figure 4-31. Add LIN Stack to workspace

4. Keep SCI folder and remove all other folders in “bsp” folder

How to use LIN Package

Freescale Semiconductor

 43

Figure 4-31. Remove GPIO, SLIC, XGATE interfaces

5. Create empty “lin_cfg” folder with the same level directory with LIN_Stack folder

6. Generate configuration files and copy these three files to this folder as mention in Section

4.2

Figure 4-32. Generate configuration files and copy to project folder

7. Back to CW10.6 window, press “F5” in project workspace to update new folders created

8. Click to project selected (S12ZVM_LIN_Slave) ->Right Click -> choose properties

9. Go to C/C++ build item in left sigh of new window, double click to “Settings” item, the

new window is displayed below

How to use LIN Package

Freescale Semiconductor

 44

Figure 4-33. Setting path for new folder in project properties

10. Go to S12Z Compiler option, double click to “Access Paths”

In the “Access Paths” right sight view, add the paths for new files in the folders created above

How to use LIN Package

Freescale Semiconductor

 45

Figure 4-34. Add path for LIN Stack and configure files

11. Click to “OK” button to finish file configuration

12. Add include files in “main.c”

13. Create vectors.c file and save in Source folder (see example in the package for full

implementation)

How to use LIN Package

Freescale Semiconductor

 46

Figure 4-35. Interrupt function implementation

14. Add interrupt vector table in .prm file (see example in the package for full implementation)

Figure 4-36. Interrupt vector table redefinition

You are ready for creating application.

How to use LIN Package

Freescale Semiconductor

 47

4.6 Getting Started with LIN application

4.6.1 Initialization of hardware utilities
Before getting start with LIN application, some hardware unities must be initialized such as system

clock, timer, I/O ports for demonstration.

NOTE

In order to make the LIN system runs properly, the frequency of each

MCU board should be greater equal to 8MHz. See user manual of each

MCU to setup this value.

Figure 4-37. MCU clock speed displayed in Command window of CW real time debugger

In the example below, the system clock in DEMO9S08AW60 board is configured as 16MHz and

ports c and d is set as input for press buttons.

void cpu_init() {

 /* PE initialization code after reset */

 /* Common initialization of the write once registers */

 SOPT = 0x53;

 // Low-voltage detect

 SPMSC1 = 0x1C;

 SPMSC2 = 0x00;

 /* System clock initialization */

 SMCLK = 0x17;

 /* Init internal frequency equal to 16Mhz */

 ICGC1 = 0x78

 ICGFLT = 0xC0;

 ICGC2 = 0x20;

 /* Initialize ICGTRM register from a non volatile memory */

 ICGTRM = *(unsigned char*)0xFFBE;

}

void init_keyboard()

{

 PTCDD = 0x10; // set port c as inputs for push button switch input except

for C4 which is accelerometer ST

 PTCPE = 0xEF; // enable port c pullups for push button switch operation

except for C4 which is accelerometer ST

 PTDDD = 0x00; // set port d as inputs for push button switch and

accelerometer inputs

How to use LIN Package

Freescale Semiconductor

 48

 PTDPE = 0x0C; // enable port d pullups on D2 and D3 for push button switch

operation

}

4.6.2 Initialization of LIN system
Before the APIs functions of the LIN2.x, J2602 are used, the LIN system must be initialized. In the

example below for EVB9S12XEP100 MCU board, the LIN system is initialized when the

microcomputer is reset. Note that this reflects the points where the API functions for LIN are

called.

#include <hidef.h> /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

#include "lin.h"

void init_keyboard()

{

 PTCDD = 0x10; // set port c as inputs for push button switch input except

for C4 which is accelerometer ST

 PTCPE = 0xEF; // enable port c pullups for push button switch operation

except for C4 which is accelerometer ST

 PTDDD = 0x00; // set port d as inputs for push button switch and

accelerometer inputs

 PTDPE = 0x0C; // enable port d pullups on D2 and D3 for push button switch

operation

}

void cpu_init() {

 /* PE initialization code after reset */

 /* Common initialization of the write once registers */

 SOPT = 0x53;

 // Low-voltage detect

 SPMSC1 = 0x1C;

 SPMSC2 = 0x00;

 /* System clock initialization */

 SMCLK = 0x17;

 /* Init internal frequency equal to 16Mhz */

 ICGC1 = 0x78;

 ICGFLT = 0xC0;

 ICGC2 = 0x20;

 /* Initialize ICGTRM register from a non volatile memory */

 ICGTRM = *(unsigned char*)0xFFBE;

}

 /*Something to define */

void main(void) {

 l_u8 ret;

 EnableInterrupts; /* enable interrupts */

 /* include your code here */

 /* LIN initialization for h_w utilities */

How to use LIN Package

Freescale Semiconductor

 49

 init_keyboard();

 cpu_init();

 /* LIN initialization for timer */

 ret = l_sys_init();

 /* LIN initialization for interface */

 ret = l_ifc_init(LI0);

 for(;;) {

 /*Something to do */

 } /* loop forever */

 /* please make sure that you never leave main */

}

NOTE

If using diagnostic services class II or III you must init transport layer

first. Add this command before using LIN API init transport layer:

- For master node:

ld_init(LI0);

- For slave node:

ld_init();

4.6.3 Timer for LIN schedule execution (Master mode only)
This section is just applied for Master Mode only. In any LIN system, the API function for

schedule execution must be called regularly. The table below lists MCUs with timer names which

could be used for this execution.

Table 4-3: Timer used for LIN Driver

MCU Timer Version Number

of channel

Channel
used

9S08AW16A

9S08AW60
S08TPM V2 8 0

9S08DZ60

9S08DZ128

9S08SG8

9S08SG32

9S08EL32

S08TPM V3 8 0

9S08MP16 S08FTM V2 2 0

9S12HY64

9S12P128

9S12G128

9S12XHY256

TIM16B8C V2 8 7

9S12XEP100

9S12XEQ512

9S12XET256

9S12XDP512

9S12XF512

S12PIT24B8C
V2

8 0

9S12XS128

9S12XS256
S12PIT24B4C V1 4 0

9S12I32 TIM16B4C 4 3

9S12ZVML128 TIM0 V3 4 2
9S12ZVL32

How to use LIN Package

Freescale Semiconductor

 50

9S12ZVHY64

9S12ZVML31

9S08RN60 S08TPM V3 8 0

9S12VR64

9S12VR32
TIM16B8C V3 8 3

MM9Z1J638 TIM16B4C -- 4 3

SKEAZN84 FTM -- 4 2

SKEAZN642 FTM -- 4 2

SKEAZ1284 FTM -- 4 2

9S12ZVC64 TIM16B8C 4 2

9S12ZVL128 TIM16B6C V3 6 3

9S12ZVMC256 TIM16B4C V3 4 3

NOTE

In the table, the channel used column shows the channel name in the

highlight timer has been used for the timeout management in each MCU

with time base as 500 ms. In order to use another timer, user could use

another timer type with every time base value.

In the sample code below, TIM timer channel 2 is used to count-up and generate interrupts at an

approximately 2.5ms interval for S12VR64 -Tomar board. Also, in the function (main processing)

for schedule-table execution, the API function for schedule-table execution must be called at or

multiple of the corresponding time-base interval. (See more from demo of S12VR64 in the

package)

Initialized timer function for LIN schedule tick:

void TIM_channel2_init(void){

 TIOS |= TIOS_IOS2_MASK;

 CFORC |= CFORC_FOC2_MASK;

 TTOV |= TTOV_TOV2_MASK;

 TIE |= TIE_C2I_MASK;

 /* Set counter as 2.5ms timing */

 TC2 = 20000;

}

This application code will be defined by user for period of each LIN frame sent in the bus. The

sample code use a loop to increate tick to 15ms for every LIN frame transmission

#pragma CODE_SEG __NEAR_SEG NON_BANKED

interrupt VectorNumber_Vtimch2 void TIM_TIMER2_ISR(void) {

 if (LIN_counter>=6){

 /* Activate LIN frame transfer for every 15ms */

 ret = l_sch_tick(LI0);

 /* Reset counter */

 LIN_counter = 0;

 }

 if (LED_counter>=50){

 /* Activate LIN frame transfer for every 15ms */

 PTT_PTT0 =~ PTT_PTT0;

 /* Reset counter */

 LED_counter = 0;

How to use LIN Package

Freescale Semiconductor

 51

 }

 LIN_counter++;

 LED_counter++;

 /* Clear timer flag */

 TFLG1 |= TFLG1_C2F_MASK;

 /* Reset timer counter */

 TC2 = (TC2 + 20000) &0xFFFF;

}

#pragma CODE_SEG DEFAULT /* Return to default code segment */

4.6.4 LIN_PHY Enable
For those MCUs which support LIN_PHY to replace LIN transceiver (9S12VR64, 9S12Zs), there

are two ways to drive this interface. The first one is using SCI to control LIN_PHY and the second

one is directly handle through the LPDR register provided by hardware silicon.

To easy porting and maintenance, this scope of Stack use the first way where SCI physical layer

has been existed.

In order to enable LIN_PHY working with SCI, the steps as below:

1. Enable LIN_PHY

2. Enable LIN Pull-up

3. LIN Slew Rate selection

Due to range of LIN baudrate from 2000bps to 20000 bps, the LIN slew rate bit selection is

defined to mapping optimally with LIN baudrate working.

For more information, refer to LIN Slew Rate Mode Register (LPSRM) of 9S12Zs Reference

Manual.

LIN_PHY Enable example:

Here is code for enabling LIN_PHY in 9S12VR64:

void LIN_Phy(void){

 LPCR_LPE = 1; /* Enable LIN Phy */

 LPCR_LPPUE = 1; /* Pull up to strong signal */

 LPSLRM = 0x01; /* Select Slew Rate */

}

4.6.5 LIN Applications
This section describes sample codes for LIN application using API function (refer to Appendix A)

after initializing hardware utilities and LIN system as well as timer for schedule execution. The

application focuses on contents (frame) transferred on the LIN bus and how to process data

depends on LIN system configuration which is acquired from the status of various nodes,

peripheral devices, and other applications.

4.6.5.1 Master task

This example code below for master task is taken from S12VR64 demo code in the package. For

more application, please refer to directory:

LIN_Package\Examples\VR64_MagniV\VR64_Master_LIN21.

How to use LIN Package

Freescale Semiconductor

 52

Base on LDF definition for schedule table, the master task will require user to select which

schedule will be active and the frames associated will be processed.

In this example, here is the table of scheduler defined in the lin_cfg.h file

typedef enum {

 /* Interface_name = LI0 */

 LI0_LIN_NULL_SCHEDULE

 ,LI0_GOTO_SLEEP_SCHEDULE

 ,LI0_MasterReqTable

 ,LI0_SlaveRespTable

 ,LI0_NormalTable

 ,LI0_ETFCollisionResolving

 ,LI0_InitTable

}l_schedule_handle;

In the main.c file, the schedule is active as the code below

/* Set active schedule table, */

l_sch_set(LI0,LI0_NormalTable, 0);

In this example, the LIN NormalTable is active. There are two more default schedule generated by

tool are LI0_LIN_NULL_SCHEDULE used for no activity in LIN bus request and

LI0_GOTO_SLEEP_SCHEDULE used to send goto sleep request.

In this application, the master will control temperature of motor by reading temperature data stored

in signal Motor1Temp in Motor1State_Cycl frame. If the returned temperature is greater than

maximum value, master will request slave to reduce temperature or if greater than broken value,

master will request slave to stop motor.

if (l_flg_tst_LI0_Motor1Temp_flag()){

 /* Clear this flag... */

 l_flg_clr_LI0_Motor1Temp_flag();

 /* Store temperature data */

 Motor1_temp = l_u8_rd_LI0_Motor1Temp();

 /* The application will change Motor selection in case

 the temperature is greater than maximum value to release motor power

 This will be transfered by sporadic frame type in LIN bus */

 if (MOTOR1_OVER_TEMP<Motor1_temp) {

 /* Request stop motor by power off */

 l_u8_wr_LI0_Motor1Selection(MOTOR_SELECTION_STOP);

 }else if ((MOTOR1_MAX_TEMP<Motor1_temp)&(MOTOR1_OVER_TEMP > Motor1_temp)){

 /* Request to reduce motor speed */

 l_u8_wr_LI0_Motor1Selection(MOTOR_SELECTION_DECREASE);

 } else {

 /* Request to increase motor speed if user request */

 l_u8_wr_LI0_Motor1Selection(MOTOR_SELECTION_INCREASE);

 }

 }

4.6.5.2 Slave task

This example code below for LIN slave tasks is used to check control signal from Master on

temperature selection modes. See VR64_Slave_LIN21 example in the package.

 /* Check if temp signal is updated */

if (l_flg_tst_LI0_Motor1Selection_flag()){

 /* Clear this flag... */

How to use LIN Package

Freescale Semiconductor

 53

 l_flg_clr_LI0_Motor1Selection_flag();

 /* Store selection data */

 Motor1_Selection = l_u8_rd_LI0_Motor1Selection();

 /* The application will change Motor selection in case

 the temperature is greater than maximum value to

 release motor power

 This will be transfered by sporadic frame type in LIN bus */

 l_u8_wr_LI0_Motor1Temp(Motor1_temp);

 /* Check if power off motor due to high temperature */

 if (Motor1_Selection == MOTOR_SELECTION_STOP) {

 /*---------- add code here to stop motor ------------*/

 }

 }

4.6.5.3 Goto Sleep and Wakeup applications

This section is taken from the application code of General demo application. Please refer to

directory Examples\General_Demo_Application\XEP100_Gateway for code of master node and

Examples\General_Demo_Application\DZ128_Slave1\ for slave node.

The feature Goto Sleep is only call by master and after this function is called, the LIN status word

which contain a bit for Goto Sleep will be updated. Therefore user can check by reading this word.

NOTE

The call is a read-reset call; meaning that after the call has

returned, the status word is set to 0.

If user press button PB4 in XEP100 EVB board, the Goto Sleep, wakeup features will be enable

and press one more time, it will disable the features.

/* Use the button PB4 in the EVB board to demonstrate goto sleep/wakeup

feedture */

 if (!SW4){

 for(i = 0; i<60000;i++){

 for(j = 0; j<10;j++);

 };

 if (0 == (sw4%2)){

 (void)printf("Enable free counter for test goto sleep\n");

 l_sch_set(LI1, LI1_PeriodicalWakeupTable, 0);

 l_sch_set(LI2, LI2_PeriodicalWakeupTable, 0);

 count = 10;

 freecntr_enable();

 } else {

 (void)printf("Disable free counter\n");

 control1 = 0;

 control2 = 0;

 l_sch_set(LI1, LI1_LIN_NULL_SCHEDULE, 0);

 l_sch_set(LI2, LI2_LIN_NULL_SCHEDULE, 0);

 count = 10;

 freecntr_disable();

 }

 sw4++;

 }

There two ways for wake up LIN bus:

a- The master node issue a break field, e.g. by issuing an ordinary header since the break will act

as a wake up signal

How to use LIN Package

Freescale Semiconductor

 54

b- Master node or slave call API function l_ifc_wake_up to send wake up signal in the bus

In this example, the master issue a break field by active LI1_PeriodicalWakeupTable schedule.

By using and reseting counter variable count, the LIN network will be wakeup and in sleep mode

periodically.

 /* Send goto sleep command */

 if (GOTO_SLEEP_DURATION == count){

 (void)printf("Send goto sleep command\n");

 l_ifc_goto_sleep(LI2);

 l_ifc_goto_sleep(LI1);

 count++;

 }

 /* Run Periodical Wakeup table */

 if (WAKEUP_DURATION == count){

 (void)printf("Run Periodical Wakeup table\n");

 l_sch_set(LI1, LI1_PeriodicalWakeupTable, 0);

 l_sch_set(LI2, LI2_PeriodicalWakeupTable, 0);

 count = 0;

 }

 counter++;

 if (5 == counter){

 counter = 0;

 }

 In order to check Goto sleep flag, the code below uses a LED in the board to display the status.

If LED is on, mean the node in the sleep state and if the LED is off, the node is in wakeup state.

 /* Check if any sleep mode on two cluster by reading the LIN word status */
 LIN1_word_status = l_ifc_read_status(LI1);

 LIN2_word_status = l_ifc_read_status(LI2);

 if (LIN1_word_status != 0){

 if((LIN1_word_status>>3)&0x0001){

 LED3 = ON; /* cluster1 bus is in sleep mode */

 }else{

 LED3 = OFF; /* cluster1 bus is in wakeup mode */

 }

 }

 if (LIN2_word_status != 0){

 if((LIN2_word_status>>3)&0x0001){

 LED4 = ON; /* cluster2 bus is in sleep mode */

 }else{

 LED4 = OFF; /* cluster2 bus is in wakeup mode */

 }

 }

At the slave site (DZ128_Slave1) the code to check goto sleep and request send a wakeup signal as

below:

 /* Check if the goto sleep command sent by master node */

 LIN_word_status = l_ifc_read_status(LI0);

 /* The word status is presented below

 --------------------Word status------------------------------

 |15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|

 | | | | | | | | |-- Error in response

 | | | | | | | |---- Successful tranfer

 | | | | | | |------ Overun

 | | | | | |-------- Goto sleep

 | | | | |---------- Bus activity

 | | | |------------ Event trigger collision

How to use LIN Package

Freescale Semiconductor

 55

 | | |-------------- Save configuration

 | |---------------- 0

 |------------------------------ Las frame PID */

 /* Check if any update from LIN word status*/

 if(LIN_word_status != 0){

 /* Check if the LIN bus in the sleep mode */

 if((LIN_word_status>>3)&0x01){

 LED3 = ON;

 /* Press PTA4 to wakeup LIN node */

 if (!PTAD_PTAD4){

 /* Call wakeup function */

 l_ifc_wake_up(LI0);

 }

 }else{

 LED3 = OFF;

 }

 }

4.6.5.4 Multi LIN master with different timers for S12X MCUs

For S12x MCU family including XEP100, XDP512, XF512, XEQ512 and XET256 contain a PIT

timer with 8 channels.

If those MCUs are used for multi LIN Master, the timer for timeout activity can be selected one

PIT timer channel for all LIN networks or separated channels for each network.

The figure 4-38 below shows a configuration of Multi LIN master with different Time base

required in each network.

9S12XEP100

Slave

task2

LIN

IN

Timer 1

Master

Task 1

Timer 2

Master

Task 2

Slave

task1

LIN

IN

LIN21.ldf

Time base = 5 ms

Slave

task2

LIN

IN

Slave

task1

LIN

IN

LINDiagnostic.ldf

Time base = 1 ms

Figure 4-38. Configuration of multi LIN Master in 9S12XEP100

To select timer channel for each network, user just add timer_channel definition to interface

configuration of npf file

/*** LIN HARDWARE DEFINITION ***/

How to use LIN Package

Freescale Semiconductor

 56

/* SCI config */

sci{

 s12_sci1{

 sci_channel = 1; /* Check validation of sci_channel */

 timer_channel = 1; /* PIT timer */

 }

 s12_sci3{

 sci_channel = 3; /* Channel setting */

 timer_channel = 2; /* PIT timer */

 }

}

NOTE

This timer selection is for timeout activity which time base is

defined in LDF file. In the main.c application, user must define

another timer for scheduler as mention in section Timer for LIN

schedule execution (Master mode only)

If no timer selection defined, the Driver is default to use only one channel where time base is taken

from smallest value of time bases defined in LDF files.

4.6.5.5 AUTOBAUD feature for S12Z MCU family as Slave Node

AUTOBAUD is an extensive feature in LIN Driver which allows a MCU to detect baud rate of

LIN bus and adapt its original baud rate to bus value.

Auto Baud is applied when the baud rate of the incoming data is unknown or the baud rate is fixed

with some specific values. Each LIN network might have different configuration on such baud

rates. One MCU can work with different configurations without flashing.

In this scope of LIN Driver version, two baud rate are supported: 9600 and 19200 bps and verified

on S12Z MCU family.

Figure 4-39. Two baud rate supports for AUTOBAUD feature

In order to use this feature, user just enables an option in NPF file as below:

/*** NETWORK DEFINITION ***/

How to use LIN Package

Freescale Semiconductor

 57

network {

 idle_timeout = 5s;

 diagnostic_class = 1; /* Class selection to use diagnostic services */

 autobaud_support = yes;

 LI0{

 node = Motor1; /* Name of node described in LDF (must

check consistence with LDF) */

 file = "LIN21.ldf"; /* Path to LDF file */

 device = s12_sci0; /* LIN Hardware

interface, related to INTERFACE SECTION */

 }

}

For more application usage case, refer to demo application attached in the package:

Chapter 5
Demo Application

This section gives detailed instructions on how to set up a LIN node from the source code provided.

By following these guidelines and the referenced documents, the application developers could build

any images for the nodes working on the supported MCUs listed in the scope of work for this

document.

5.1 LIN Protocol demo application

5.1.1 Introduction
The demo application demonstrates a typical application of the LIN. The application covers

functionalities in HVAC and door application, such as control of door locks, mirrors and window

lifters. The best representative application is a gateway, such as one shown in Figure 5-1.

LIN Gateway Node

LIN Cluster 1 LIN Cluster 2

Master

Node

Slave

Task

Master

task 1

Slave

Node

Slave

Node

Master

task 2

Slave

Node

Slave

Node

Slave

Node

Figure 5-1. Demo application configuration

The LIN gateway node is one of the controllers with multiple LIN interfaces. It provides connection

to a higher level car network, receiving commands via the slave LIN task. In the same time the two

or more master tasks are specified in the scheduler, allowing transferring the commands further to

the slave LIN clusters.

A set of procedures in transferring messages is implemented in this application:

Demo Application

Freescale Semiconductor

59

1. From the Master node to Slave nodes via the Gateway (for example, potentiometer).

2. From the Gateway to request current potentiometer from the slave nodes.

3. Send sleep and wakeup signals from the gateway to the slave nodes.

4. Send diagnostic frames from the gateway to the slave nodes.

5. The node configuration utility must describe the network configuration and the

required properties of the nodes. This configuration should be compiled with the

project files to create the Demonstration Application executable.

6. The LIN gateway node shall log the events and output it in a readable form for the

demonstration and traceability of the LIN functioning.

5.1.2 Demo Environment Setup
The hardware platform for each node is identical based on the demo application configuration as

shown in the Figure 5-2. Three are seven hardware platforms named from B1 to B7 respectively.

9S08QD4(B6)

9S08SG32

LIN 1 LIN 2

LIN Transceiver

TX RX

RX TX

9S12XEP100(B2)

9S08DZ128(B1)

LIN 5

LIN 3 LIN 4

9S08EL32

(B3)

9S08DZ128(B4) 9S08SG32(B5)

9S12HY64(B7)
LIN 1

LIN

OUT

LIN

IN
LIN 1 LIN 2

J10

LIN

IN

Figure 5-2. Master/Slave/Gateway hardware

NOTE

The 9S08SG32 board in the cluster 2 is not involved to the network but acts

as intermediary role to connect nodes B5, B6 and B7.

Demo Application

Freescale Semiconductor

60

5.1.3 Detail Description of Nodes
The table 6-9 below illustrate in detail description of boards participating in the network including

name, ID, functionality and the buttons used for the application.

Table 5-1. Master

Board Board ID Functionality User I/O
9S08DZ128 B1 Master Push button: PTA4, PTA5, PTA6,

PTA7

Table 5-2. Gateway

Board Board ID Functionality User I/O
9S12XEP100 B2 Slave on LIN 5

Master on LIN 4

Master on LIN 3

Push button: PB4, PB5, PB6, PB7

Table 5-3. Cluster1

Board Board ID Functionality User I/O
9S08DZ128 B4 Slave1 Push button: PTA4, PTA5, PTA6,

PTA7

9S08EL32 B3 Slave2 Potentiometer: RV1

Led: LED1, LED2

Table 5-4. Cluster2

Board Board ID Functionality User I/O
9S08SG32 B5 Slave A Potentiometer: RV1

Led: LED1, LED2

9S08QD4 B6 Slave B Potentiometer: RV1

9S12HY64 B7 Slave C Potentiometer: RV1

Led: LED1, LED2

5.1.4 LIN System Initialization
Table 5-5 shows the expected hardware and software used for demo application.

Table 5-5. List of hardware and software for demo application

CW6.2 CW4.7

9S08AW16A 9S12XEP100

9S08SG32 9S12HY64

9S08DZ128

9S08QD4

9S08EL32

NOTE

All derivatives use 12V power supply except 9S08QD4 board with 5V

power supply.

Demo Application

Freescale Semiconductor

61

The steps to initialize the demo from LIN Stack package are detailed in this section. For other LIN

network applications, refer to Chapter 4, How to use LIN Package to create single application for

each derivative involving the network. The remaining steps are similar to this section.

1. Open Code Warrior V4.7 and V6.2 environments.

The MCUs run on Code Warrior V4.7 are 9S12XEP100, 9S12HY64

The MCUs run on Code Warrior V6.2 are 9S08DZ128, 9S08EL32, 9S08SG32,

9S08QD4

2. Open folder for target board in Demo folder as shown in Figure 5-3 (e.g…\tests

\integration\Demo\Cluster1_Slave1_9s08dz128) and drag Code Warrior project

file (.mcp) to one of two Code Warrior environments.

Figure 5-3. Demo Source Code Directory Structure

3. Attach power and turn on the target board. The board must be connected to the PC

through a Multilink or SofTec Interface Device Application. The Combined Interface

Device Application is configured by default to use the USB connector for serial

communication.

4. Download source code to the board.

5. Dispose the boards as illustrated in Figure 5-4 and connect boards via LIN bus wires.

6. Jumper setting:

All boards have their jumper set as default except 9S12XEP100 board whose function as

Gateway.

In 9S12XEP100 board, the OSC SEL jumper is set as CLOCK and LIN TRANCEIVER

SUPPLY SEL jumper is 12V.

7. Attach power to 9S12XEP100 board and make sure that all power led of boards is

turn on which is ready for operation.

Demo Application

Freescale Semiconductor

62

Figure 5-4. A disposition of seven hardware platforms to match with the configuration

5.1.5 Functionality Description
This section describes in details functionalities and procedures of the Demo Application. It includes

descriptions of PID sending and direction of message transmitting between physical nodes of the

network.

5.1.5.1 Sequence of Frames between Master Node, Gateway
and Slave Nodes

All frames in communication are defined in table below:

Table 5-6. Define functionality of each node respectively with its pid

PID Publisher Subscriber Description
0x01 Master Gateway Change schedule table

0x02 Gateway Master Master requests potentiometer

status from all slave nodes

0x04 Gateway Slave 1

Slave 2

Reset signal

0x05 Gateway Slave 1

Slave 2

Data byte with 2 bit information

about push button

0x06 Slave 1 Gateway Potentiometer status

0x07 Slave 2 Gateway Potentiometer status

0x08 Gateway Slave A

Slave B

Slave C

Reset signal

Demo Application

Freescale Semiconductor

63

0x09 Gateway Slave A

Slave B

Slave C

Data byte with 2 bit information

about push button

0x0A Slave A Gateway Potentiometer status

0x0B Slave B Gateway Potentiometer status

0x0C Slave C Gateway Potentiometer status

0x3C Gateway All slaves Sleep command

5.1.5.2 Reset Status

After resetting the MCU, the node is ready for communication. The LED status of each board

after resetting is:

Table 5-7. Status of each MCU board after reset

Board Responsibility LED1 LED2

9S08EL32 Slave 1 in Cluster 1 OFF OFF

9S08DZ128 Slave 2 in Cluster 1 OFF OFF

9S08SG32 Slave A in Cluster 2 OFF OFF

9S12HY64 Slave C in Cluster 2 OFF OFF

5.1.5.3 Demonstration use cases

In this chapter we present several typical use cases for the demo setup. The communication between

the nodes in these use cases is explained in form of time diagrams.

Reset signal is to set OFF status for LED1 and LED2 on all Slave boards

Gateway

(Master task 1) Slave 1 Slave 2

PID = 0x04
Gateway sends reset signal to all

Slaves in Cluster 1 in order to set

status of LED1 and LED2 to OFF

Gateway response

Figure 5-5. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 1

Demo Application

Freescale Semiconductor

64

Gateway

(Master task 2) Slave A Slave B

PID = 0x08
Gateway sends reset signal to all

Slaves in Cluster 2 in order to set

status of LED1 and LED2 to OFF

Slave C

Gateway response

Figure 5-6. Timing Diagrams for Reset LED signal from Gateway to Slaves in Cluster 2

Message from Master node to Gateway

Master

node

Gateway

PID = 0x01

Gateway response

Master response

PID = 0x02

Master node sends signal to change

schedule table

Master node requests Potentiometer

status from all Slave nodes

Figure 5-7. Timing Diagrams for frames from Master node to Gateway

Message from Gateway to Slave nodes in Cluster 1

Demo Application

Freescale Semiconductor

65

Gateway

(Master task 1) Slave 1 Slave 2

PID = 0x05 Gateway sends signal to turn on/off

the LED1 and LED2

Gateway response

PID = 0x06

Slave 1 response

Gateway requests Potentiometer

status from Slave 1

PID = 0x07

Slave 2 response

Gateway requests Potentiometer

status from Slave 2

Figure 5-8. Timing Diagrams for frames from Gateway to Slaves in Cluster 1

Message from Gateway to Slave nodes in Cluster 2

Gateway

(Master task 2) Slave A Slave B

PID = 0x0A
Gateway requests Potentiometer

status to Slave A
Slave A response

Slave C

PID = 0x0B
Gateway requests Potentiometer

status to Slave B
Slave B response

PID = 0x0C
Gateway requests Potentiometer

status to Slave C
Slave C response

PID = 0x09
Gateway sends signal to turn on/off

LED1 and LED2
Master response

Figure 5-9. Timing Diagrams for frames from Gateway to Slaves in Cluster 2

Sleep signal from Gateway to Slave nodes

Demo Application

Freescale Semiconductor

66

Gateway

(Master task 1) Slave 1 Slave 2

PID = 0x3C
Gateway sends Sleep signal to all

Slaves in Cluster 1

Figure 5-10. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 1

Gateway

(Master task 2) Slave A Slave B

PID = 0x3C Gateway sends Sleep signal to all

Slaves in Cluster 2

Slave C

Figure 5-11. Timing Diagrams for Sleep signal from Gateway to Slaves in Cluster 2

5.1.6 Operation
Operation on push buttons of this demo is very simple. By pushing the buttons on board

9S08DZ128 (Master node) user can change the schedule table between the following ones:

- Operates only Cluster 1

- Operates only Cluster 2

- Operates both clusters

- Not operate both clusters

5.1.6.1 Actions on All Boards Before Resetting the LEDs Status

Table 5-8. List of actions and results before resetting the LEDs status

Action Result
Push button PTA4 Schedule in Cluster 1 is active

Push button PTA5 Schedule in Cluster 2 is active

Push button PTA6 Schedules in both Clusters are active

Push button PTA7 Schedules in both Clusters are inactive

By pressing the buttons on 9S12XEP100 board (Gateway), the user can change the LEDs on

slave nodes as follows:

Table 5-9. List of actions and results after pressing buttons on 9S12XEP100 board

Demo Application

Freescale Semiconductor

67

Action Result

Push button PB4 in the first time

(data = 0x00)
Board B3 B4

LED1 ON ON

LED2 ON ON

Push button PB4 in the second time

(data = 0x01)
Board B3 B4

LED1 OFF OFF

LED2 ON ON

Push button PB4 in the third time

(data = 0x10)
Board B3 B4

LED1 ON ON

LED2 OFF OFF

Push button PB4 in the fourth time

(data = 0x11)
Board B3 B4

LED1 OFF OFF

LED2 OFF OFF

Push button PB5 in the first time

(data = 0x00)
Board B5 B7

LED1 ON ON

LED2 ON ON

Push button PB5 in the second time

(data = 0x01)
Board B5 B7

LED1 OFF OFF

LED2 ON ON

Push button PB5 in the third time

(data = 0x10)
Board B5 B7

LED1 ON ON

LED2 OFF OFF

Push button PB5 in the fourth time

(data = 0x11)
Board B5 B7

LED1 OFF OFF

LED2 OFF OFF

Push button PB6 Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

Push button PB7 Send GOTOSLEEP command

After that the application will be in charge of

waking up the network in 10 seconds. And the

schedule will send the header to query states of

Slaves

The data content sent to the slave boards wraps around and is controlled by pressing the PB4

and PB5 buttons on the gateway node.

To demonstrate the data direction from slave to master, user can change the data content of the

messages by changing the potentiometer. This information is accessible via Hyper terminal

window.

Table 5-10. List of actions and results when changing the potentiometer

Action Result
Change the Potentiometer on board

B3

Value of Potentiometer for Slave 1 will be

changed in log information

Change the Potentiometer on board

B4

Value of Potentiometer for Slave 2 will be

changed in log information

Change the Potentiometer on board

B5

Value of Potentiometer for Slave A will be

changed in log information

Change the Potentiometer on board

B6

Value of Potentiometer for Slave B will be

changed in log information

Demo Application

Freescale Semiconductor

68

Change the Potentiometer on board

B7

Value of Potentiometer for Slave C will be

changed in log information

5.1.6.2 Actions on All Boards After Resetting LEDs Status

After PTA4 on S08DZ128 master board press (Schedule in Cluster 1 is active)

Table 5-11. List of actions and results after resetting LEDs status

Action Result
PB4 pressed in the first time Board B3 B4 B5 B7

LED1 ON ON OFF OFF

LED2 ON ON OFF OFF

PB4 pressed in the second time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 ON ON OFF OFF

PB4 pressed in the third time Board B3 B4 B5 B7

LED1 ON ON OFF OFF

LED2 OFF OFF OFF OFF

PB4 pressed in the fourth time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

PB5 pressed in the first time/

second time/ third time/ forth

time

Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

Change the Potentiometer on

board B3

Value of Potentiometer for Slave 1 will be changed in

log information

Change the Potentiometer on

board B4

Value of Potentiometer for Slave 2 will be changed in

log information

Change the Potentiometer on

board B5/ B6/ B7

Value of Potentiometer for Slave A, B and C will not

be changed in log information

After PTA5 on S08DZ128 master board press (Schedule in Cluster 2 is active)

Table 5-12. List of actions and results after pressing the button PTA5 of S08DZ128 board

Action Result
PB4 pressed in the first time/

second time/ third time/ forth

time

Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

PB5 pressed in the first time Board B3 B4 B5 B7

LED1 OFF OFF ON ON

LED2 OFF OFF ON ON

PB5 pressed in the second time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF ON ON

PB5 pressed in the third time Board B3 B4 B5 B7

LED1 OFF OFF ON ON

LED2 OFF OFF OFF OFF

PB5 pressed in the fourth time Board B3 B4 B5 B7

Demo Application

Freescale Semiconductor

69

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

Change the Potentiometer on

board B3/ B4

Value of Potentiometer for Slave 1, 2 will not be

changed in log information

Change the Potentiometer on

board B5

Value of Potentiometer for Slave A will be changed

in log information

Change the Potentiometer on

board B6

Value of Potentiometer for Slave B will be changed

in log information

Change the Potentiometer on

board B7

Value of Potentiometer for Slave C will be changed

in log information

After PTA6 on S08DZ128 master board press (Schedules in both Clusters are active)

Table 5-13. List of actions and results after pressing the button PTA6 of S08DZ128 board

Action Result

PB4 pressed in the first time Board B3 B4 B5 B7

LED1 ON ON OFF OFF

LED2 ON ON OFF OFF

PB4 pressed in the second time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 ON ON OFF OFF

PB4 pressed in the third time Board B3 B4 B5 B7

LED1 ON ON OFF OFF

LED2 OFF OFF OFF OFF

PB4 pressed in the fourth time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

PB5 pressed in the first time Board B3 B4 B5 B7

LED1 OFF OFF ON ON

LED2 OFF OFF ON ON

PB5 pressed in the second time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF ON ON

PB5 pressed in the third time Board B3 B4 B5 B7

LED1 OFF OFF ON ON

LED2 OFF OFF OFF OFF

PB5 pressed in the fourth time Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

Change the Potentiometer on

board B3

Value of Potentiometer for Slave 1 will be changed in

log information

Change the Potentiometer on

board B4

Value of Potentiometer for Slave 2 will be changed in

log information

Change the Potentiometer on

board B5

Value of Potentiometer for Slave A will be changed

in log information

Change the Potentiometer on

board B6

Value of Potentiometer for Slave B will be changed

Demo Application

Freescale Semiconductor

70

in log information

Change the Potentiometer on

board B7

Value of Potentiometer for Slave C will be changed

in log information

 After PTA7 on S08DZ128 master board press (Periodically wakeup both clusters.)

Table 5-14. List of actions and results after pressing the button PTA7 of S08DZ128 board

Action Result
PB4 pressed in the first time/

second time/ third time/ forth

time

Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

PB5 pressed in the first time/

second time/ third time/ forth

time

Board B3 B4 B5 B7

LED1 OFF OFF OFF OFF

LED2 OFF OFF OFF OFF

5.1.6.3 Log Description

The LIN gateway node shall log the events and output it in a readable form for the demonstration

and traceability of the LIN functioning via the hyper terminal.

There are 3 types of communication that shall be logged:

Table 5-15. List of message and log description

Message Log description
Gateway gets request

from Master node

“Master node requested only cluster 1 active”

“Master node requested only cluster 2 active”

“Master node requested cluster1 and cluster2 active”

“Master node requested cluster1 and cluster2 inactive”

“Control LED of Cluster1 from Master node”

“Control LED of Cluster2 from Master node”

Gateway sends requests

to slaves

“Control LED of Cluster1 from GateWay”

“Control LED of Cluster2 from GateWay”

“Reset Leds of all slave”

“Send goto sleep command”

Gateway gets response

from slaves

“Potentiometer value of SlaveX = XXX”

The log information will be printed through COM port (RS_232_0 connector on 9S12XEP100

board) and displayed on Hyper Terminal window.

5.2 LIN diagnostic demo application

5.2.1 Introduction
The diagnostic classes are introduced in the LIN Specification Package v2.1 [1], chapter 5.

Diagnostics functionality such as node identification and enhanced application functions are added.

The scope of this demo application is specific for diagnostic implementation. In the last phase

development of LIN Stack, the diagnostic class I was supported for slave node and class II was

developed for master node only. In the phase 3 of LIN Stack, the full diagnostic classes will be

implemented. This demo application is aimed to expose the diagnostic classes II and III.

Demo Application

Freescale Semiconductor

71

The diagnostic data in this demo is based on diagnostic description file (UDS-ExampleEcu-

4.0.1.cdd) of CANdela Studio integrated in CANoeLIN version 7.1 sp5.

They can be found from Start menu/Programs/CANoe/Demos/CANoeLIN- Diagnostics

tester, or as files directly C:\Documents and Settings\congth\My

Documents\Vector\CANoe\7.1\CANoe Demos\Demo_LIN_CN\LINDiagnosticsTester\CDD.

With this alignment, any LIN physical nodes in the demo could be replaced by CANoe HW

to demonstrate diagnostic communication (see

Table 2-2. LIN2.x diagnostic service specification).

5.2.2 Diagnostic services support

5.2.2.1 Diagnostic class II

Diagnostic class covers services in class II and addition services is listed below

1. Read data by Identifier (0x22)

o Mater node sends Read data by Identifier service- Development data Read (0x22,

0x0091)

o Slave processes the request and send response to master

2. Read data by Identifier (0x22)

o Mater node sends Read data by Identifier service - Serial data Read (0x22, 0x0092)

o Slave processes the request and send response to master

3. Write data by Identifier (0x2E)

o Mater node sends Write data by Identifier service- Serial data Write (0x2E, 0x0092)

o Slave processes the request and send response to master

5.2.2.2 Diagnostic class III

Diagnostic class covers services in class I, II and addition services for class III only is listed below

1. Session control (0x10)

o Mater node sends Section Control - Default section start (0x10, 0x01)

o Slave processes the request and send response to master

2. I/O control by identifier(0x2F)

o Mater node sends I/O control by identifier - Door status read (0x2F, 0x08)

o Slave processes the request and send response to master

3. Read DTC (0x19) (fault memory)

o Mater node sends read DTC by identifier – Fault memory read (0x19, 0x01)

o Slave processes the request and send response to master

4. Write DTC (0x14) (fault memory)

o Mater node sends write DTC by identifier – Fault memory write (0x14)

o Slave processes the request and send response to master

Demo Application

Freescale Semiconductor

72

5.2.3 Demo setup
Figure 5-12 The setup of the Diagnostic Demonstration Applicationshows the setup for diagnostic

communication in the network. The network contains one master node with name LINMaster and

two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are 0x11 and 0x12

respectively.

The slave node RearLeftDoor is configured for execution diagnostic class II. The slave node

FontLeftDoor is configured for execution diagnostic class III.

Due to the diagnostic class III cover services of class II and add some more services, the service of

class II is reused combination with new serviced added.

ECU

RearLeftDoor

Slave (0x12)

ECU

LINMaster

Master

ECU

FrontLeftDoor

Slave (0x11)

Figure 5-12 The setup of the Diagnostic Demonstration Application

5.2.3.1 Hardware description

Base on the demo setup above, the hardware for each node is identical as shown in the figure and

table below.

9S12HY64

(B1)

LIN

TRANSCEIVER

9S12XEP100

(B3)

LIN

TRANSCEIVER

LIN

TRANSCEIVER

9S12G128

(B2)

SCI

SCI

9S08LL64

(B4)

Figure 5-13: Master/Slave hardware configuration

The application utilizes three FSL hardware platforms MC9S12HY64, TWR 9S12G128 and

EVB9S12XEP100 to set up a LIN network as Figure 5-12 The setup of the Diagnostic

Demonstration Application. However, the TWR 9S12G128 board doesn’t have LCD or enough

LEDs to display the signals of FrontLeftDoor node. For this reason, the TWR 9S08LL64 is

used. These boards (9S12G128 & 9S08LL64) are joined together through tower, and

Demo Application

Freescale Semiconductor

73

communicated via SCI. The real hardware sets up as the following Figure 5-14: The real demo

application hardware:

Figure 5-14: The real demo application hardware

5.2.3.2 LCD display

5.2.3.2.1 TWR 9S08LL64 (FrontLeftDoor slave)

The LCD in TWR 9S08LL64 is utilized with two display areas shown in the figure below:

 Figure 5-15: The LCD GD-5360P (on the LL64 board) specification

 Display description:

1. The LEDs at the position No.1 display the NAD of the target slave

1

2

Demo Application

Freescale Semiconductor

74

2. The LEDs at the position No.2 display the value of FrontLeftDoorSignal of FrontLeftDoor

slave. The signal is sent from the TWR 9S12G128 board.

5.2.3.2.2 DEMO9S12HY64 (RearLeftDoor slave)

The LCD display features in DEMO9S12HY64 are utilized with two display areas which shown in

figures below:

Figure 5-16: The LCD GD-5560P (on the HY64 board) specification

 Display description:

1. The LEDs at the position No.1 display the operation mode

2. The LEDs at the position No.2 display the master request (or slave response)

data

3. The LEDs at the position No.3 & No.4 display the FrontLeftDoorSignal and

RearLeftDoorSignal

4. The icon at the position No.5 turns on when the master waits the slave’s response

5. The icon “TRIP A” at the position No.6 turns on when the master’s request is

sent to FrontLeftDoor Node (or slave’s response is received from FrontLeftDoor

Node)

6. The icon “TRIP B” at the position No.6 turns on when the master’s request is

sent to RearLeftDoor Node (or slave’s response is received from RearLeftDoor

Node)

All peripheral devices, which are used in demo application, are listed in Table 4-1:

Table 5-16: Hardware configuration list

Board Board ID Responsibility User I/O
9S12HY64 B1 Master node Push button: SW1, SW2, SW3 , SW4

LED: LED1, LED2, LED3, LED4

LCD: GD5560P

Potentiometer: RV1

9S12G128 B2 Slave node (0x11) LED: LED1, LED2, LED3, LED4

Push button: SW1, SW2, SW3 , SW4

Potentiometer: RV1

9S12XEP100 B2 Slave node (0x12) Potentiometer: RV1

LED: LED-matrix

9S08LL64 B4 Display the

Potentiometer’s value of

9S12G128

LCD: GD5360P

1

2

3 4

5

6

Demo Application

Freescale Semiconductor

75

5.2.4 Operation description
Figure 5-17: Diagnostic operation shows the principle of diagnostic operation in the LIN network.

This is explained in more details in Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data

record is a sample and Figure 5-19.

Master

Node

Slave

Node

LIN bus

Send diag request

Wait for response

Receive response

Receive request

Process request...

Respond to request

Figure 5-17: Diagnostic operation

The diagnostic sequence is to send a request and to wait for a response before continuing with the

next request.

The master node sends a request to slave node via LIN bus. Base on the service definition, the slave

node receives the request and start to process request. After a while, the master requests response

from slave, the data prepared by slave previously will be transmitted by LIN bus.

5.2.4.1 Sequences of frame between Master node and Slave nodes

All frames in communication are defined in table below:

Table 5-17: Operation mode in the demo

No. Operation
Mode

Description Frame
Type/PID

Publisher Subscriber

1 0x00 The LIN network operates in

normal schedule. The master node

reads: FrontLeftDoorSignal from

FrontLeftDoor Node;

RearLeftDoorSignal from

RearLeftDoor Node and displays

them to LCD.

 These signals can be changed by

adjusted the slave node’s

Potentiometer

Unconditio

nal Frame

FrontLeftD

oor &

RearLeftD

oor

Master

2 0x20 The Master node prepares data for

master’s request for service: “Read

data by Identifier - Serial number

read (SID = 0x22 & sub-ID =

0x0092)” and displays them on the

LCD.

Master

Request/

0x3C

Master RearLeftDoo

r

3 0x21 - The Slave will response to the

master’s request (0x22) with two

types:

Positive response: response data

Negative response: response error

Slave

Response/

0x3D

RearLeftD

oor

Master

Demo Application

Freescale Semiconductor

76

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

4 0x22 The Master node prepares data for

master’s request for service: “Write

data by Identifier - Serial number

write (SID = 0x2E & sub-ID =

0x0092)” and outputs them to the

LCD.

 The serial number can be changed

by changing the define

SERIAL_NUMBER on the source

code

Master

Request/

0x3C

Master RearLeftDoo

r

5 0x23 - The Slave will response to the

master’s request (0x2E) with two

types:

Positive response: response data

Negative response: response error

code

(If slave response’s type is positive

response, the serial number will be

updated – the master node can read

the updated serial number by calling

the service “read by identifier (SID

= 0x22) with sub-ID = 0092”)

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

Slave

Response/

0x3D

RearLeftD

oor

Master

6 0x30 - The Master node prepares data for

master’s request for service: “IO

control by identifer – IO status read

(SID = 0x22 & sub-ID = 0x0080)”

and displays them to the LCD.

Master

Request/

0x3C

Master FrontLeftDoo

r

7 0x31 - The Slave will response to the

master’s request (0x22) with two

types:

Positive response: response data

Negative response: response error

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

 - If the positive response is returned,

the LED status on the master node

(HY64 board) will be updated as the

LED status on the FrontLeftDoor

node (the LL64 board)

Slave

Response/

0x3D

FrontLeftD

oor

Master

8 0x32 - The Master node prepares data for

master’s request for service: “IO

control by identifier – IO status write

(SID = 0x2F & sub-ID = 0x0080) ”

and displays them to the LCD

Master

Request/

0x3C

Master FrontLeftDoo

r

Demo Application

Freescale Semiconductor

77

- The IO status’ value can be

changed by adjusting the

potentiometer. The value is

displayed both LEDs and LCD (the

last byte on master requested data)

9 0x33 - The Slave will response to the

master’s request (0x2F) with two

types:

Positive response: response data

Negative response: response error

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

 - If the positive response is returned,

the LED status on the FrontLeftDoor

node (HY64 board) will be updated

as the LED status on the master node

(the G128 board)

Slave

Response/

0x3D

FrontLeftD

oor

Master

10 0x34 - The Master node prepares data for

master’s request for service:

“Session control (0x10), Sub-ID:

(0x01)” and displays them to the

LCD

Master

Request/

0x3C

Master FrontLeftDoo

r

11 0x35 - The Slave will response to the

master’s request (0x10) with two

types:

Positive response: response data

Negative response: response error

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

Slave

Response/

0x3D

FrontLeftD

oor

Master

12 0x36 - The Master node prepares data for

master’s request for service: “Read

DTC (0x19) Sub-ID (0x01)” and

displays them to the LCD

Master

Request/

0x3C

Master FrontLeftDoo

r

13 0x37 - The Slave will response to the

master’s request (0x10) with two

types:

Positive response: response data

Negative response: response error

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

Slave

Response/

0x3D

FrontLeftD

oor

Master

14 0x38 - The Master node prepares data for

master’s request for service: “Clear

Master

Request/

Master FrontLeftDoo

r

Demo Application

Freescale Semiconductor

78

DTC (0x14)” and displays them to

the LCD

0x3C

15 0x39 - The Slave will response to the

master’s request (0x10) with two

types:

Positive response: response data

Negative response: response error

code

 - The Master node will wait until

received slave’s response and then

display the response to the LCD.

Slave

Response/

0x3D

FrontLeftD

oor

Master

Note

The LCD on the master node (the HY64 board) displays the mode

operation at the position No.1, the FrontLeftDoorSignal at the

position No.3, the RearLeftDoorSignal at the No.4 and Master’s request (or

Slave’s response) data at No.2

The LCD on LL64 board (the Front Left Door Node) displays the NAD at

the position No.1, the FrontLeftDoorSignal’s value at No.2. These signals

are sent from TWR 9S12G128 board.

The Led matrix on XEP100 board (the Rear Left Door Node) displays the

NAD or the RearLeftDoorSignal’s value (Press button SW1 to display

NAD, and SW2 to display RearLeftDoorSignal).

5.2.4.2 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is

described below:

- The LCD on HY64 board displays the mode 0x00. (Please see Table 5.1 for details)

- The LCD on LL64 board displays the value of FrontLeftDoorSignal and the NAD.

- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.

 The LED status of all boards after resetting is OFF.

5.2.4.3 Service Operation

Read data by Identifier: UDS = 0x22, SID = 0x0092

Demo Application

Freescale Semiconductor

79

LINMaster

Master
FrontLeftDoor

Slave (0x11)

RearLeftDoor

Slave (0x12)

PID = 0x3C

Master sends request to the LIN

bus with UDS = 0x22 Read data by

Identifier SID: (0x0092)

PDU = {0x11, 0x03, 0x22, 0x00,

0x92, 0xFF,0xFF, 0xFF}

Master request

PID = 0x3D

PDU = {0x11, 0x10, 0x07, 0x62,

0x00, 0x92,0x00, 0x02}
PID = 0x3D

PDU = {0x11, 0x21, 0x9B, 0x45,

0xFF, 0xFF,0xFF, 0xFF}

Slave response

Slave response
Data Record

{0x62, 0x00, 0x92,

0x00, 0x02, 0x9B, 0x45}

Process Master request

.

.

.

.

.

.

Wait for response

Figure 5-18: Read data by Identifier: UDS = 0x22, SID = 0x0091, Data record is a sample

Write data by Identifier: UDS = 0x2E, SID = 0x0092

Data Record

{0x6E, 0x00, 0x92}

LINMaster

Master
FrontLeftDoor

Slave (0x11)

RearLeftDoor

Slave (0x12)

PID = 0x3C

Master sends request to the LIN

bus with UDS = 0x2E Write data

by Identifier SID: (0x0092)

PDU = {0x11, 0x10, 0x07, 0x2E,

0x00, 0x92,0x00, 0x00}

Master request

PID = 0x3D

PDU = {0x11, 0x03, 0x6E, 0x00,

0x92, 0xFF,0xFF, 0xFF}
Slave response

Process Master request

.

.

.

.

.

.

Wait for response

PDU = {0x11, 0x21, 0x00, 0x00,

0xFF, 0xFF,0xFF, 0xFF}

PID = 0x3C

Master request

Figure 5-19: Write data by Identifier: UDS = 0x2E, SID = 0x0092, Data record is a sample

5.2.4.4 Operation on Push button

Demo Application

Freescale Semiconductor

80

Table 5-18: Master node operation on Push button

Action Result
Push button SW1 The Master node returns to normal schedule, none diagnostic service

is selected. The LCD displays the ForntLeftDoorSignal &

RearLeftDoorSignal from two slave nodes.

Push button SW2 Selecting the diagnostic services for class II. The master request’s data is

displayed on LCD

Push button SW3 Selecting the diagnostic services for class III. The master request’s data is

displayed on LCD

Push button SW4 Sending master request, which is displayed on LCD, to slave node,

and display the slave response’s data which is received on the LCD.

Table 5-19: FrontLeftDoor node (LL64 board) operation on Push button

Action Result
Push button SW1 Turn on/off LED 1

Push button SW2 Turn on/off LED 2

Push button SW3 Turn on/off LED 3

Push button SW4 Turn on/off LED 4

Table 5-20: RearLeftDoor node (XEP100 board) operation on Push button

Action Result
Push button SW1 To display NAD on the LED matrix

Push button SW2 To display RearLeftDoorSignal’s value on the LED matrix

5.3 Resynchronization demo application

5.3.1 Introduction
Local interconnect network (LIN) is widely used standard for low cost automotive networks. In

order to ensure reliable communication via LIN bus, a MCU bus clock needs to be accurate enough

to avoid errors. MCU can use crystal or ceramic resonator to provide very accurate bus clocks.

However, LIN protocol was designed to allow more cost-effective solution. An automatic

resynchronization feature allows a cost-effective solution: MCUs can use on-chip oscillators to

implement LIN slaves, even though the on-chip oscillators have less accuracy than a crystal.

The demo application will show the different between the LIN operations with and without

resynchronization feature.

5.3.2 Demo setup
Figure 5-20 Nodes setup of the Resynchronization Demonstration Application shows the setup for

communication in the LIN network. The network contains one master node with name LINMaster

and two slave nodes: FontLeftDoor and RearLeftDoor with node address (NAD) are 0x11 and 0x12

respectively.

The slave node FrontLeftDoor is configured to support the resynchronization feature. But, the slave

node RearLeftDoor is configured without resynchronization feature support.

The master node LINMaster could be able to change baud rate by pressing button.

Demo Application

Freescale Semiconductor

81

ECU

RearLeftDoor

Slave (0x12)

ECU

LINMaster

Master

ECU

FrontLeftDoor

Slave (0x11)

Figure 5-20 Nodes setup of the Resynchronization Demonstration Application

5.3.2.1 Hardware description

Base on the demo setup above, the hardware for each node is identical as shown in the figure and

table below.

9S12HY64

(B1)

LIN

TRANSCEIVER

9S08DZ128

 (B2)

9S12XEP100

(B3)

LIN

TRANSCEIVER

LIN

TRANSCEIVER

Figure 5-21: Master/Slave hardware configuration

The application utilizes three FSL hardware platforms MC9S12HY64, DEMO9S08DZ128 and

EVB9S12XEP100.

The real hardware sets up as the following Figure 5-22:

Demo Application

Freescale Semiconductor

82

Figure 5-22: The real demo application hardware

5.3.2.2 LCD Display

5.3.2.2.1 DEMO9S12HY64

The LCD display features in DEMO0S12HY64 are utilized with display areas which shown in

figures below:

Figure 5-23: The LCD GD-5560P (on the HY64 board) specification

 Display description:

1 The LEDs at the position No.1 & No.2 display the FrontLeftDoorSignal and

RearLeftDoorSignal

2 The LEDs at the position No.3 display the current baud-rate of master node

3 The icon “TRIP A” at the position No.4 turns off when the master node can’t

receive the signal from FrontLeftDoor Node

3

1 2

4

Demo Application

Freescale Semiconductor

83

4 The icon “TRIP B” at the position No.4 turns off when the master node can’t

receive the signal from RearLeftDoor Node

All peripheral devices, which are used in demo application, are listed in Table 4-1:

Table 5-21: Hardware configuration list

Board Board ID Responsibility User I/O

9S12HY64 B1 Master node Push button: SW1, SW2, SW3 , SW4

LED: LED1, LED2, LED3, LED4

LCD: GD5560P

Potentiometer: RV1

9S12XEP100 B2 Slave node (0x12) Potentiometer: RV1

LED: LED-matrix

9S08DZ128 B3 Slave node (0x11) LED: LED0-7

Potentiometer: RV1

5.3.3 Operation description
This section describes in details functionalities and procedures of each node in Demo application.

The descriptions of each frame and direction of message transmitting between physicals nodes of

the network is listed on the following table

Table 5-22: Sequence frames between nodes of the network

PID Frame’s Name Publisher Subscriber Description

0x01 FrontLeftDoorMessag

e

FrontLeftDoor Master The current POT value of

FrontLeftDoor Node

0x02 RearLeftDoorMessage RearLeftDoor Master The current POT value of

RearLeftDoor Node

0x05 MastertoRearControl Master RearLeftDoor Master sends a “verify”

data to RearLeftDoor

Signal

0x07 ReartoMasterMessage RearLeftDoor Master RearLeftDoorSignal sends

a “verify” data, which is

received from master node,

back to master node.

0x06 MastertoFrontControl Master FrontLeftDoo

r

Master sends a “verify”

data to FrontLeftDoor

Signal

0x08 FronttoMasterMessage FrontLeftDoor Master FrontLeftDoorSignal sends

a “verify” data, which is

received from master node,

back to master node.

To verify that LIN network works correctly when the baud-rate is changed, the master node sends a

signal to each slave node. Then, the slave node sends it back, the master node will compare two

signals, one which is sent to slave node, one which is received from slave node. If the two signals is

not equal, the master-node turns LEDs on to notify that the LIN network doesn’t work correctly.

Besides, the user can check by change the POT value. The master node displays the POT values

which are received from two slave nodes on the LCD. When the values which are displayed on

master node’s LCD, is not match with the POT’s values which are displayed on LED of each board,

it is stated that the transmitting and receiving signal via the network is not correctly.

Note

Demo Application

Freescale Semiconductor

84

 - The LED 1&2 on the HY64 board is turned on when the master

cannot receive signals from FrontLeftDoor correctly

 - The LED 3&4 on the HY64 board is turned on when the master

cannot receive signals from RearLeftDoor correctly

5.3.3.1 Reset signal

After resetting the MCU, the node is ready for communication. The status of each board is

described below:

- The LCD on HY64 board displays the network’s baud-rate, and the RearLeftDoorSignal ‘s

and FrontLeftDoorSignal’s values which are received from two slave node.

- The LED matrix on XEP100 board displays the value of RearLeftDoorSignal.

- The LED on DZ128 board displays the value of FrontLeftDoorSignal

The LED status of all boards after resetting is OFF.

5.3.3.2 Operation on Push button

Table 5-23: Master node operation on Push button

Action Result

Push button SW1 Increase the master baud-rate and the baud-rate is displays on

the LCD

Push button SW2 Decrease the master baud-rate and the baud-rate is displays on the LCD

Appendix A

List of API function
Name of API function Master

Support
Slave
Support

LIN2.x
Support

J2602
Support

Description

l_sys_init Initializes the LIN

system

l_bool_rd Reads a 1-bit signal

l_u8_rd Reads a 2- to 8-bit signal

l_u16_rd Reads a 9- to 16-bit

signal

l_bytes_rd Reads byte assignment

signals

l_bool_wr Writes a 1-bit signal

l_u8_wr Writes a 2- to 8-bit

signals

l_u16_wr Writes a 9- to 16-bit

signals

l_bytes_wr Writes data for a byte-

assignment signal

l_flg_tst Tests a flag

l_flg_clr Clears a flag

l_sch_set Sets a schedule

l_sch_tick Executes a schedule

l_ifc_goto_sleep Reserves a sleep

command

l_ifc_init Initializes the interface

l_ifc_wake_up Outputs a wake-up signal

l_ifc_read_status Acquires state

information

l_sys_irq_disable Disable LIN related IRQ

l_sys_irq_restore Enable LIN related IRQ

l_ifc_connect Connect the interface to

the LIN cluster

l_ifc_disconnect Disconnect the interface

to the LIN cluster

ld_assign_NAD Assigns NAD value

ld_conditional_change_NAD Assigns conditional

NAD value

ld_read_by_id Read property associated

with id

ld_is_ready Verifies a state of node

setting

ld_check_response Acquires the state

Appendix

Freescale Semiconductor

86

information on response

ld_assign_frame_id_range Assigns the protected

identifier by range

ld_assign_frame_id Assigns the protected

identifier

diag_read_data_by_identifier Read data by identifier

diagnostic class II

service

diag_write_data_by_identifie

r

 Write data by identifier

diagnostic class II

service

diag_session_control Session control

diagnostic class III

service

diag_fault_memory_read Read fault memory

diagnostic service

diag_fault_memory_clear Clear fault memory

diagnostic service

diag_IO_control Input/Output control by

identifier diagnostic

service

diag_get_flag Get diagnostic service’s

flag.

diag_clear_flag Clear diagnostic

service’s flag.

Appendix

Freescale Semiconductor

87

Appendix B

LIN Configure File (LDF) for sample application

The completed sample LDF file for LIN2.x network demo master gateway is as follows

LIN_description_file;

LIN_protocol_version = "2.1";

LIN_language_version = "2.1";

LIN_speed = 19.2 kbps;

Nodes {

 Master: MasterNode, 5 ms, 0.1 ms ;

 Slaves: Gateway ;

}

Signals {

 Cluster1Potentiometer1: 8, 0, Gateway, MasterNode;

 Cluster1LightSensor1: 8, 0, Gateway, MasterNode;

 Cluster1Potentiometer2: 8, 0, Gateway, MasterNode;

 Cluster2PotentiometerA: 8, 0, Gateway, MasterNode;

 Cluster2LightSensorA: 8, 0, Gateway, MasterNode;

 Cluster2PotentiometerB: 8, 0, Gateway, MasterNode;

 Cluster2PotentiometerC: 8, 0, Gateway, MasterNode;

 GatewayError: 1, 0, Gateway, MasterNode;

 ClusterIdentifier: 2, 0, MasterNode, Gateway;

}

Diagnostic_signals {

 MasterReqB0: 8, 0 ;

 MasterReqB1: 8, 0 ;

 MasterReqB2: 8, 0 ;

 MasterReqB3: 8, 0 ;

 MasterReqB4: 8, 0 ;

 MasterReqB5: 8, 0 ;

 MasterReqB6: 8, 0 ;

 MasterReqB7: 8, 0 ;

 SlaveRespB0: 8, 0 ;

 SlaveRespB1: 8, 0 ;

 SlaveRespB2: 8, 0 ;

 SlaveRespB3: 8, 0 ;

 SlaveRespB4: 8, 0 ;

 SlaveRespB5: 8, 0 ;

 SlaveRespB6: 8, 0 ;

 SlaveRespB7: 8, 0 ;

}

Frames {

 GatewayControl: 1, MasterNode, 1 {

 ClusterIdentifier, 0;

 }

 PotentiometerInfo: 2, Gateway, 5 {

 Cluster1Potentiometer1, 0;

 Cluster1Potentiometer2, 8;

 Cluster2PotentiometerA, 16;

 Cluster2PotentiometerB, 24;

 Cluster2PotentiometerC, 32;

 }

 LightSensorInfo: 3, Gateway, 3 {

 Cluster1LightSensor1, 0;

 Cluster2LightSensorA, 8;

Appendix

Freescale Semiconductor

88

 GatewayError, 16;

 }

}

Sporadic_frames {

 SporadicControlFrame: GatewayControl;

}

Diagnostic_frames {

 MasterReq: 0x3c {

 MasterReqB0, 0 ;

 MasterReqB1, 8 ;

 MasterReqB2, 16 ;

 MasterReqB3, 24 ;

 MasterReqB4, 32 ;

 MasterReqB5, 40 ;

 MasterReqB6, 48 ;

 MasterReqB7, 56 ;

 }

 SlaveResp: 0x3d {

 SlaveRespB0, 0 ;

 SlaveRespB1, 8 ;

 SlaveRespB2, 16 ;

 SlaveRespB3, 24 ;

 SlaveRespB4, 32 ;

 SlaveRespB5, 40 ;

 SlaveRespB6, 48 ;

 SlaveRespB7, 56 ;

 }

}

Node_attributes {

 Gateway{

 LIN_protocol = "2.1";

 configured_NAD = 0x1;

 initial_NAD = 0xa;

 product_id = 0x1e, 0x1, 0;

 response_error = GatewayError;

 P2_min = 100 ms;

 ST_min = 20 ms;

 N_As_timeout = 1000 ms;

 N_Cr_timeout = 1000 ms;

 configurable_frames {

 GatewayControl;

 PotentiometerInfo;

 LightSensorInfo;

 }

 }

}

Schedule_tables {

 NormalTable {

 PotentiometerInfo delay 50 ms;

 LightSensorInfo delay 50 ms;

 SporadicControlFrame delay 20 ms;

 }

}

Node Private File (NPF) for sample application

Appendix

Freescale Semiconductor

89

The NPF of the node which participates in the gateway is given as follow (the node might

participate to other LIN networks)

/*** GENERAL DEFINITION ***/

LIN_node_config_file;

/*** MCU DEFINITION ***/

mcu { /* Must check the correct MCU name */

 mcu_name = MC9S12XEP100;

 bus_clock = 8000000; /* Frequency bus of system Hz*/

 xgate_support = no; /* Support XGATE Co-Processor */

}

/*** LIN HARDWARE DEFINITION ***/

/* SCI config */

sci{

 s12_sci0{

 sci_channel = 1; /* Check validation of sci_channel */

 timer_channel = 0;

}

 s12_sci1{

 sci_channel = 3; /* Channel setting */

 timer_channel = 1;

}

 s12_sci2{

 sci_channel = 5; /* Channel setting */

 timer_channel = 2;

}

}

/*** NETWORK DEFINITION ***/

network {

 idle_timeout = 4s;

 diagnostic_class = 1; /* Class selection to use diagnostic

services */

 LI0{

 node = Gateway;

 file = "Demo_Master_Gateway.ldf";

 device = s12_sci0;

 }

 LI1{

 node = Gateway;

file = "Demo_Cluster1.ldf";

 device = s12_sci1;

 }

 LI2{

 node = Gateway;

 file = "Demo_Cluster2.ldf";

 device = s12_sci2;

 }

}

Appendix

Freescale Semiconductor

90

Appendix C

Data Reference for Node Configuration Tool
mcu_info_sci{

 MC9S12XEP100, SCI_V5, _S12X_, 0x00C8, 0x00D0, 0x00B8, 0x00C0,

0x0130, 0x0138;

 MC9S12XEQ512, SCI_V5, _S12X_, 0x00C8, 0x00D0, 0x00B8, 0x00C0,

0x0130, 0x0138;

 MC9S12XDP512, SCI_V5, _S12X_, 0x00C8, 0x00D0, 0x00B8, 0x00C0,

0x0130, 0x0138;

 MC9S12XET256, SCI_V5, _S12X_, 0x00C8, 0x00D0, 0x00B8, 0x0130;

 MC9S12XF512, SCI_V5, _S12X_, 0x00C8, 0x00D0;

 MC9S12XS128, SCI_V5, _S12_, 0x00C8, 0x00D0;

 MC9S12XS256, SCI_V5, _S12_, 0x00C8, 0x00D0;

 MC9S12GN32, SCI_V5, _S12_, 0x00C8;

 MC9S12G64, SCI_V5, _S12_, 0x00C8, 0x00D0;

 MC9S12HY64, SCI_V5, _S12_, 0x00C8;

 MC9S12P128, SCI_V5, _S12_, 0x00C8;

 MC9S12XHY256, SCI_V5, _S12_, 0x00C8, 0x00D0;

 MC9S12G128, SCI_V5, _S12_, 0x00C8, 0x00D0, 0x00E8;

 MC9S12G240, SCI_V5, _S12_, 0x00C8, 0x00D0, 0x00E8;

 MC9S12VR64, SCI_V6, _S12_, 0x00C8, 0x00D0;

 MC9S12VR32, SCI_V6, _S12_, 0x00C8, 0x00D0;

 MC9S12ZVML128,SCI_V6, _S12_, 0x0700,0x0710;

 MM912F634, SCI_V4, _S12_, 0x0240;

 MM912G634, SCI_V4, _S12_, 0x0240;

 MM912H634, SCI_V4, _S12_, 0x0240;

 MM912J637, SCI_V4, _S12_, 0x0218;

 MC9S12I64, SCI_V4, _S12_, 0x0240;

 MM9Z1J638, SCI_V4, _S12_, 0x0E18;

 MC9S08DZ60, SCI_V4, _S08_, 0x0038, 0x0040;

 MC9S08DZ128, SCI_V4, _S08_, 0x0038, 0x0040;

 MC9S08EL32, SCI_V4, _S08_, 0x0038;

 MC9S08SG4, SCI_V4, _S08_, 0x0038;

 MC9S08SG8, SCI_V4, _S08_, 0x0038;

 MC9S08SG32, SCI_V4, _S08_, 0x0038;

 MC9S08MP16, SCI_V4, _S08_, 0x0068;

 MC9S08LL64, SCI_V4, _S08_, 0x0020, 0x1858;

 MC9S08LG32, SCI_V4, _S08_, 0x0010, 0x0018;

 MC9S08SC4, SCI_V4, _S08_, 0x0038;

 MC9S08AW60, SCI_V2, _S08_, 0x0038, 0x0040;

 MC9S08AW16A, SCI_V2, _S08_, 0x0038, 0x0040;

 MC9S08RN60, SCI_V4, _S08_, 0x3080, 0x3088, 0x3090;

 MC9S12ZVL32, SCI_V6, _S12_, 0x0700, 0x0710;

 MC9S12ZVL128, SCI_V6, _S12_, 0x0700,0x0710;

 MC9S12ZVML31, SCI_V6, _S12_, 0x0700,0x0710;

 MC9S12ZVHY64, SCI_V6, _S12_, 0x0700, 0x0710;

 MC9S12ZVH128, SCI_V6, _S12_, 0x0700, 0x0710;

 MC9S12ZVC64, SCI_V6, _S12_, 0x0700, 0x0710;

 MC9S12ZVMC256,SCI_V6, _S12_, 0x0700, 0x0710;

}

mcu_info_gpio{

 MC9S08QD4;

}

mcu_info_slic{

 MC9S08EL32;

Appendix

Freescale Semiconductor

91

}

mcu_info_uart{

 SKEAZN84, _K_, 0x4006A000;

 SKEAZN642, _K_, 0x4006A000, 0x4006B000, 0x4006C000;

 SKEAZ1284, _K_, 0x4006A000, 0x4006B000, 0x4006C000;

}

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: LIN_STACK_UG
Rev. 2.5.3

Information in this document is provided solely to enable system
and software implementers to use Freescale Semiconductors
products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes
without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale Semiconductor assume any liability arising out
of the application or use of any product or circuit, and specifically
disclaims any liability, including without limitation consequential or
incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can
and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any
license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain
life, or for any other application in which failure of the Freescale
Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design
or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products
have the functionality and electrical characteristics as their non-
RoHS-complaint and/or non-Pb-free counterparts. For further
information, see http://www.freescale.com or contact your
Freescale sales representative. For information on Freescale's
Environmental Products program, go to
http://www.freescale.com/epp. Freescale™ and the Freescale logo
are trademarks of Freescale Semiconductor, Inc. All other product
or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

AUTOSAR and AUTOSAR logo are registered trademarks of
AUTOSAR GbR
(www.autosar.org)

