

 LPC3250 – Getting Started with Linux
Copyright 2010 © Embedded Artists AB

Getting Started With

Linux on the

LPC3250 OEM Board

Getting Started With Linux on the LPC3250 OEM Board Page 2

Copyright 2010 © Embedded Artists AB Rev C

Embedded Artists AB
Södra Promenaden 51
SE-211 38 Malmö
Sweden

info@EmbeddedArtists.com
http://www.EmbeddedArtists.com

Copyright 2010 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaims any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Please send your
comments to support@EmbeddedArtists.com.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

mailto:info@EmbeddedArtists.com
http://www.embeddedartists.com/
mailto:support@EmbeddedArtists.com

Getting Started With Linux on the LPC3250 OEM Board Page 3

Copyright 2010 © Embedded Artists AB Rev C

Table of Contents
1 Introduction ... 5

1.1 Organization of this Document ... 5

1.2 Conventions in This Book ... 5

2 Getting Started .. 6

2.1 Introduction .. 6

2.2 Preparation and Setting up the Board .. 6

2.3 Load the u-boot From MMC/SD Card .. 7

2.4 Load the u-boot From UART ... 8

2.5 Boot the u-boot ... 9

2.6 Load the Root File System and Linux Kernel 10

3 Using the Linux Target Image Builder 13

3.1 Introduction .. 13

3.2 Setup an Ubuntu 9.04 Distribution .. 13

3.2.1 Download and Start the VMware Appliance 13

3.2.2 Customize Ubuntu ... 14

3.2.3 Install Necessary Packages .. 15

3.2.4 Setup a TFTP Server .. 16

3.2.5 Setup an NFS Server .. 16

3.3 Install LTIB and Build the Images ... 17

3.4 Add Additional Packages .. 20

3.5 Useful Linux Commands ... 20

3.5.1 Obtain IP Address ... 20

3.6 Hello World Application ... 21

4 Universal Boot Loader - u-boot 22

4.1 Introduction .. 22

4.2 Console / Environment .. 22

4.2.1 Commands .. 22

4.2.2 Network Related Variables .. 23

4.2.3 Boot Related Variables .. 23

4.3 Booting Options ... 23

4.3.1 Kernel from USB Memory Stick ... 23

4.3.2 Kernel from TFTP Server .. 24

4.3.3 Kernel Stored in NAND Flash .. 24

4.3.4 Root File System NFS Mounted .. 25

4.3.5 Root File System in NAND Flash .. 25

4.3.6 Root File System on MMC/SD Card .. 26

4.4 Use DHCP.. 28

4.5 Known Problems .. 28

4.5.1 Unable to Access USB Memory Stick ... 28

4.5.2 Unable to Boot Because of Bad Blocks 29

Getting Started With Linux on the LPC3250 OEM Board Page 4

Copyright 2010 © Embedded Artists AB Rev C

5 Peripherals and Drivers 30

5.1 Introduction .. 30

5.2 Display .. 30

5.2.1 Hardware ... 30

5.2.2 Device Driver and Configuration .. 30

5.2.3 Usage .. 30

5.2.4 Add and Use the fbv Application .. 30

5.3 Touch Screen .. 31

5.3.1 Hardware ... 31

5.3.2 Device Driver and Configuration .. 31

5.3.3 Usage .. 32

5.4 Network ... 32

5.4.1 Hardware ... 32

5.4.2 Device Driver and Configuration .. 32

5.4.3 Usage .. 32

5.5 Memory Card .. 34

5.5.1 Hardware ... 34

5.5.2 Device Driver and Configuration .. 34

5.5.3 Usage .. 34

5.6 USB Host ... 34

5.6.1 Hardware ... 34

5.6.2 Device Driver and Configuration .. 34

5.6.3 Usage .. 34

5.7 LEDs and Buttons .. 35

5.7.1 Hardware ... 35

5.7.2 Device Driver and Configuration .. 35

5.7.3 Usage .. 35

5.8 NAND Flash ... 36

5.8.1 Hardware ... 36

5.8.2 Device Driver and Configuration .. 37

5.8.3 Usage .. 37

Getting Started With Linux on the LPC3250 OEM Board Page 5

Copyright 2010 © Embedded Artists AB Rev C

1 Introduction
This document provides you with step-by-step instructions to get Linux up-and-running on the
LPC3250 OEM Board / LPC3250 Developer‟s Kit. The instructions cover everything from building the
bootloader, kernel, root file system to transfer the built software to the target board.

Additional documentation you might need is.

 LPC3250 OEM Board User’s Manual – This document is available for download at Embedded
Artists support site.

 Kickstart and Stage 1 Loader – The LPC3250 OEM board has been preprogrammed with the
Kickstart and Stage 1 Loader (S1L). This document gives an introduction to these loaders.
Please note that the document has been written by NXP with a different LPC3250
Development board in mind. Not all information is relevant for Embedded Artists LPC3250
OEM Board. The document is found in the sample application package (CDL) that can be
downloaded from Embedded Artists support site. The location of the document within the
package is software/csps/lpc32xx/bsps/ea3250/docs/lpc32xx_bl.pdf.

1.1 Organization of this Document

 Chapter 2 – Getting Started
This chapter describes how you quickly get Linux up-and-running on the LPC3250 OEM
Board using prebuilt u-boot, Linux kernel and root file system images.

 Chapter 3 – Using the Linux Target Image Builder
This chapter describes how the Linux Target Image Builder (LTIB) is setup and used on a
Fedora 11 and Ubuntu 9.04 distribution.

 Chapter 4 – Universal Boot Loader - u-boot
This chapter describes the u-boot and how to use different booting options.

 Chapter 5 – Peripherals and Drivers
This chapter describes some of the peripherals and drivers that are available on the LPC3250
OEM Board.

1.2 Conventions in This Book

A number of conventions have been used throughout the book to help the reader better understand the
content of the book.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the LPC3250 OEM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

Getting Started With Linux on the LPC3250 OEM Board Page 6

Copyright 2010 © Embedded Artists AB Rev C

2 Getting Started
2.1 Introduction

This chapter describes how you get-up-and running with prebuilt images of the u-boot, Linux kernel
and root file system. Necessary images can be downloaded from Embedded Artists support site or you
can follow the instructions in chapter 3 to build the images yourself.

 u-boot.bin – The Universal Bootloader, known as u-boot for short.

 uImage – The Linux kernel image.

 rootfs.jffs2 – A JFFS2 formatted root file system to be stored in NAND flash.

Besides the images you will also need a USB memory stick and an MMC/SD card (if you select to
load the u-boot from a MMC/SD card) in order to follow the instructions below. A terminal application
is also required as an interface towards the board. These instructions will be using the Tera Term
terminal application.

2.2 Preparation and Setting up the Board

In this section you will setup the board and boot into the Stage 1 boot loader (S1L) where it will then be
possible to load the u-boot.

1. Copy the u-boot.bin file to the root directory in a FAT formatted MMC/SD card.

2. Copy the uImage and rootfs.jffs files to the root directory of a USB memory stick.

3. Insert the MMC/SD card in the MMC/SD card slot on the QVGA Base board, see Figure 1.

4. Insert the USB memory stick in the USB A connector, see Figure 1.

5. Connect the USB cable that came with the board to the USB mini-B connector marked UART
#0, see Figure 1. Also make sure that the cable is connected to your computer.

6. The board will now power up. Follow the instructions in the User‟s Manual for the LPC3250
OEM Board to install necessary FTDI USB drivers and identify which COM port that was
assigned to the board.

7. Start your terminal application and connect to the COM port associated with the board.

Note: Make sure the automatic ISP jumpers (marked RST and P2.10 on the base board)
are open. If not it’s possible that a terminal application resets the board. In Figure 1 the
jumpers are closed.

8. Reset the board by pressing the Reset button. The S1L bootloader will boot, see Figure 2 to
see what it looks like in Tera Term.

9. You are now ready to continue to the next section and load the u-boot.

Getting Started With Linux on the LPC3250 OEM Board Page 7

Copyright 2010 © Embedded Artists AB Rev C

Figure 1 Top Part of the QVGA Base Board

Figure 2 S1L Bootloader Console

2.3 Load the u-boot From MMC/SD Card

In this section you will load the u-boot from the memory card and store it in the NAND flash on the
target board.

Make sure you have followed the instructions in section 2.2 and that you have output in your terminal
application similar to the output shown in Figure 2.

If you don’t have access to an MMC/SD card go to section 2.4 and load the u-boot from UART instead.

1. Load the u-boot.bin file from the MMC/SD card to SDRAM at address 0x83fa0000.

EA3250> load blk u-boot.bin raw 0x83fa0000

2. Save the image to the NAND flash.

EA3250> nsave

3. Setup the S1L bootloader to automatically load the u-boot.

EA3250> aboot flash raw 0x83fa0000

3 4
5

Getting Started With Linux on the LPC3250 OEM Board Page 8

Copyright 2010 © Embedded Artists AB Rev C

4. Set the boot delay to 2 seconds (the system prompt must be set at the same time).

EA3250> prompt EA3250> 2

2.4 Load the u-boot From UART

In this section you will load the u-boot from UART and store it in the NAND flash on the target board.

Make sure you have followed the instructions in section 2.2 and that you have output in your terminal
application similar to the output shown in Figure 2.

1. Tell S1L to load from the UART to SDRAM at address 0x83fa0000.

EA3250> load term raw 0x83fa0000

2. In Tera Term Select the File  Send File menu alternative.

3. Locate and select your u-boot.bin file. Make sure the “Binary” option is selected, see Figure 3.
A dialog will appear showing the progress when you have clicked the “Open” button, see
Figure 4.

4. When the file has been transferred send a Break sequence with ALT-b to get back to the
EA3250> prompt.

5. Save the image to the NAND flash.

EA3250> nsave

6. Setup the S1L bootloader in order to automatically load the u-boot.

EA3250> aboot flash raw 0x83fa0000

7. Set the boot delay to 2 seconds (the system prompt must be set at the same time).

EA3250> prompt EA3250> 2

8. You are now ready to boot the u-boot.

Getting Started With Linux on the LPC3250 OEM Board Page 9

Copyright 2010 © Embedded Artists AB Rev C

Figure 3 Send File via Tera Term

Figure 4 Transfer progress in Tera Term

2.5 Boot the u-boot

The u-boot has been loaded to the target and saved in the NAND flash. It is now time to boot and
setup the u-boot.

1. Issue the boot command to start u-boot.

EA3250> boot

2. The u-boot will now start and you will see something similar to the output below. Hit any key
to stop the u-boot from auto booting.

U-Boot 2009.03-rc1 (Sep 27 2009 - 14:27:25)

DRAM: 64 MB

NAND: 128 MiB

Getting Started With Linux on the LPC3250 OEM Board Page 10

Copyright 2010 © Embedded Artists AB Rev C

*** Warning - bad CRC or NAND, using default environment

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

uboot>

3. There is no need to worry about the warning message. It just means that the u-boot
environment hasn‟t been saved to persistent storage (NAND flash).

4. Enter print in the u-boot console to see the u-boot environment. Only a portion of the

variables are displayed below.

uboot> print

bootargs=

bootcmd=run mtdboot

...

ethaddr=00:1a:f1:00:00:00

ipaddr=192.168.5.234

serverip=192.168.5.88

rootpath=/home/user/ltib/rootfs

...

5. In order to test the network functionality in Linux you need to change the ipaddr variable to

an IP address that is valid on your network. In this example we assume that 192.168.0.100 is
valid on your network (change it to an address that really is valid on your network).

uboot> setenv ipaddr 192.168.0.100

6. Now save your changes done to the environment. This will also remove the warning message
from step 2.

uboot> saveenv

7. Continue to the next section where you will load the root file system and Linux kernel.

2.6 Load the Root File System and Linux Kernel

In this section you will load the root file system (rootfs.jffs2) from the USB memory stick and

store it in NAND flash. You will then also load the Linux kernel (uImage) from the USB memory stick

and boot the kernel.

Note: If you have problems loading the images from the USB memory stick go to section
4.5.1 for a possible solution.

1. The default u-boot environment has been prepared with a variable named update_fs

which will load the root file system and store it in NAND flash. The content of the
update_fs variable is explained in section 4.3.5, for now just run the command.

uboot> run update_fs

...

Getting Started With Linux on the LPC3250 OEM Board Page 11

Copyright 2010 © Embedded Artists AB Rev C

NAND write: device 0 offset 0x500000, size 0x400000

 4194304 bytes written: OK

2. When the root file system has been stored in NAND Flash it is time to load and boot the Linux
kernel. A variable named mtdboot is available in the default environment. This variable will

setup the boot arguments to use a root file system in NAND flash (in an MTD partition), load
the kernel and then boot it. The content of the mtdboot variable is explained in section

4.3.5. Run the command:

uboot> run mtdboot

3. There will be a lot of output in the terminal application when the kernel boots. Only a portion
has been included below.

Booting kernel from Legacy Image at 80100000 ...

 Image Name: Linux-2.6.27.8

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1602272 Bytes = 1.5 MB

 Load Address: 80008000

 Entry Point: 80008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

Uncompressing

Linux...

done, booting the kernel.

ÿLinux version 2.6.27.8 (user@bagvapp) (gcc version 3.4.5) #1 PREEMPT Mon Sep 28

09:51:45 CEST 2009

CPU: ARM926EJ-S [41069264] revision 4 (ARMv5TEJ), cr=00053177

Machine: Embedded Artists LPC3250 OEM board with the LPC3250 Microcontroller

Memory policy: ECC disabled, Data cache writeback

CPU0: D VIVT write-back cache

CPU0: I cache: 32768 bytes, associativity 4, 32 byte lines, 256 sets

CPU0: D cache: 32768 bytes, associativity 4, 32 byte lines, 256 sets

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 16256

Kernel command line: root=/dev/mtdblock3 rw rootfstype=jffs2 ip=192.168.5.234

ea_ethaddr=00:1a:f1:00:00:00 console=ttyS0,115200n8

...

mmc0: host does not support reading read-only switch. assuming write-enable.

mmc0: new SD card at address e624

mmcblk0: mmc0:e624 SU256 247040KiB

 mmcblk0: p1

IP-Config: Guessing netmask 255.255.255.0

IP-Config: Complete:

 device=eth0, addr=192.168.5.234, mask=255.255.255.0, gw=255.255.255.255,

 host=192.168.5.234, domain=, nis-domain=(none),

 bootserver=255.255.255.255, rootserver=255.255.255.255, rootpath=

VFS: Mounted root (jffs2 filesystem).

Freeing init memory: 100K

init started: BusyBox v1.11.2 ()

starting pid 296, tty '': '/etc/rc.d/rcS'

Mounting /proc and /sys

Setting the hostname to nxp

Mounting filesystems

scsi 0:0:0:0: Direct-Access SanDisk Cruzer 8.02 PQ: 0 ANSI: 0 CCS

sd 0:0:0:0: [sda] 15704063 512-byte hardware sectors (8040 MB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Assuming drive cache: write through

sd 0:0:0:0: [sda] 15704063 512-byte hardware sectors (8040 MB)

Getting Started With Linux on the LPC3250 OEM Board Page 12

Copyright 2010 © Embedded Artists AB Rev C

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 0:0:0:0: [sda] Attached SCSI removable disk

scsi 0:0:0:1: CD-ROM SanDisk Cruzer 8.02 PQ: 0 ANSI: 0

mount: mounting usbfs on /proc/bus/usb failed: No such file or directory

Starting syslogd and klogd

Running sysctl

Setting up networking on loopback device:

Setting up networking on eth0:

/etc/rc.d/init.d/network: line 149: udhcpc: not found

Starting inetd:

Starting the boa webserver:

starting pid 359, tty '': '-/bin/sh'

[root@nxp /]#

4. Linux is now up-and-running.

Getting Started With Linux on the LPC3250 OEM Board Page 13

Copyright 2010 © Embedded Artists AB Rev C

3 Using the Linux Target Image Builder
3.1 Introduction

The Linux Target Image Builder (LTIB) system will be used to build the u-boot, Linux kernel and root
file system. LTIB ease the build and deployment process of several components needed in a Linux
system. Besides the bootloader and kernel a lot of needed utilities, modules and libraries are included
and will be configured and built automatically by LTIB. For more information about LTIB, go to
http://ltib.org.

This chapter describes how you install LTIB and all necessary packages in a Linux distribution (setting
up Ubuntu 9.04 is explained). It will be explained how you can download the Linux distributions as
VMware virtual appliances and run it in a VMware Player.

Even though you are an experienced user and don‟t intend to run Ubuntu 9.04 you will find information
about, for example, packages that are needed by LTIB.

3.2 Setup an Ubuntu 9.04 Distribution

If you are an experienced Linux user and already have your own Debian distribution (or another Linux
distribution) you can skip this section and go to either section 3.2.3 to see which packages that needs
to be installed or go directly to section 3.3 for instructions of how to install LTIB.

3.2.1 Download and Start the VMware Appliance

1. Download Ubuntu 9.04 as a VMware appliance from http://chrysaor.info/?page=ubuntu. When
writing this document it was packed in a tar-gz compressed file named
ubuntu904desktop.tgz.

2. You can use 7-Zip to unpack the file. This utility can be downloaded from http://www.7-
zip.org.

3. In order to use the VMware appliance you need to install VMware Player. Download it from
http://www.vmware.com/products/player/ and follow the instructions to install the player.

4. Unpack the ubuntu904desktop.tgz file in a location of your choice.

5. Now double-click the ubuntu904desktop.vmx file to start the VMware Player. If vmx

files haven‟t been associated with VMware Player you can start VMware Player manually and
then select the Open command and locate the vmx file.

6. When Ubuntu has started you will see a Login dialog where you can choose which user to
login, see Figure 5. Enter “user” (without quotation marks) as the user and “chrysaor.info” as
the password.

http://ltib.org/
http://chrysaor.info/?page=ubuntu
http://www.7-zip.org/
http://www.7-zip.org/
http://www.vmware.com/products/player/

Getting Started With Linux on the LPC3250 OEM Board Page 14

Copyright 2010 © Embedded Artists AB Rev C

Figure 5 Ubuntu Login Screen

3.2.2 Customize Ubuntu

1. By default the keyboard layout is a US Layout. If you have a different keyboard layout change
it by following these instructions.

a. Go to the System  Preferences  Keyboard menu.

b. Click on the Layouts tab.

c. Click the “Add” button.

d. Select your keyboard layout (country) and click the “Add” button.

e. Select which layout to be the default layout. You can also remove the layouts you
don‟t intend to use.

f. Click the “Close” button.

2. If you would like to change the password for the user “user”, use the passwd command.

a. Open a terminal application (note the same kind of application as Tera Term) from
Applications  Accessories  Terminal.

b. Run the passwd command as illustrated below and enter the password of your

choice when asked for it (note that when using sudo you might first be asked for the
current password which is “chrysaor.info” without the quotation marks).

$ sudo passwd user

Getting Started With Linux on the LPC3250 OEM Board Page 15

Copyright 2010 © Embedded Artists AB Rev C

3. Make sure you have network access by activating the network device in VMware Player. It
should be connected and of type “Bridged” as can be seen in Figure 6.

Figure 6 Activate Network Device

4. The user “user” has been added to the admin group which by default has been given
administrative rights in the sudoers file. LTIB requires additional rights to be added for this

user; more specifically a password may not be requested when using the rpm command.

a. Start the visudo tool to edit the sudoers file.

$ sudo visudo

b. At the end of the file add the following line.

uusseerr AALLLL==((AALLLL)) NNOOPPAASSSSWWDD:://uussrr//bbiinn//rrppmm,, //oopptt//llttiibb//uussrr//bbiinn//rrppmm

c. Press CTRL+X to exit the file. Choose „Y‟ to save the changes.

5. A terminal application is used often and it is therefore convenient to add shortcuts on the
desktop and panel for the terminal application.

a. Go to Applications  Accessories.

b. Right-click on Terminal and select “Add this launcher to panel”.

c. Right-click again on the Terminal and select “Add this launcher to desktop”.

6. Change screen resolution. The default resolution is quite low. Change it like this:

a. Go to System  Preferences  Display.

b. Select the Resolution you want.

c. Click the Apply button.

3.2.3 Install Necessary Packages

LTIB will require a number of packages to be installed in your Linux distribution before you can actually
use LTIB. If these packages haven‟t been installed LTIB will usually complain and list the packages
that are missing. LTIB could also fail without listing any package. The instructions below install the
packages that are missing in the Ubuntu distribution we are using.

Please note that we don‟t display the output and progress of an installation of a package in the
instructions below. You will, for example, be asked if it is ok to download a package. Answer „y‟ on
these questions.

1. Install a CVS client in order to checkout LTIB files.

$ sudo apt-get install cvs

2. A few other packages are also needed by LTIB

Getting Started With Linux on the LPC3250 OEM Board Page 16

Copyright 2010 © Embedded Artists AB Rev C

$ sudo apt-get install rpm

$ sudo apt-get install libncurses5-dev

$ sudo apt-get install m4

$ sudo apt-get install bison

$ sudo apt-get install tcl

3.2.4 Setup a TFTP Server

This section describes how you setup a TFTP server in Fedora and makes it accessible from other
computers on your network. The TFTP server can be used to transfer files to the target board, for
example, download the kernel image by the u-boot.

1. Install a TFTP server.

$ sudo apt-get install tftpd

2. Open the configuration file.

$ sudo gedit /etc/inetd.conf

3. Modify (or add if it is missing) the tftp line so that it looks like below. The last part of the line is

where the TFTP server will have its root directory. We set this to /home/user (note that it is

all in one row).

ttffttpp ddggrraamm uuddpp wwaaiitt nnoobbooddyy //uussrr//ssbbiinn//ttccppdd //uussrr//ssbbiinn//iinn..ttffttppdd

//hhoommee//uusseerr

4. Restart inetd.

$ sudo /etc/init.d/openbsd-inetd restart

5. The TFTP server is now ready to be used.

3.2.5 Setup an NFS Server

An NFS (network file system) mounted root file system is quite convenient to use during development
of a Linux system. The actual root file system will then be located on the development computer and
not on the target board, but the target board gets access to the file system using the NFS protocol.

1. Install the NFS server.

$ sudo apt-get install portmap nfs-kernel-server

2. Add the following line to the /etc/exports file (note that it is only one line). Also note that

if you are not using the 192.168.x.x network (IP addresses in this address range) you need to
change this part of the line.

$ sudo gedit /etc/exports

//hhoommee//uusseerr//llttiibb//rroooottffss

 119922..116688..00..00//225555..225555..00..00((rrww,,nnoo__rroooott__ssqquuaasshh,,nnoo__ssuubbttrreeee__cchheecckk,,ssyynncc))

3. After setting up the /etc/exports, export the shares.

Getting Started With Linux on the LPC3250 OEM Board Page 17

Copyright 2010 © Embedded Artists AB Rev C

$ sudo exportfs -ra

3.3 Install LTIB and Build the Images

This section describes how you install LTIB, selects the configuration applicable for the Embedded
Artists LPC3250 OEM Board and starts the build process where the u-boot, Linux kernel and root file
system will be built.

1. Open a web browser and go to http://ltib.org.

2. Click on the Download link in the left menu (below the Resources title).

3. In the “Quick install” section you will find a link to the netinstall.txt file. Right-click on this file

and save it in your home directory (/home/user).

4. Open up a terminal application and run the netinstall script.

$ cd /home/user

$ perl netinstall.txt

5. Select „Y‟ to continue the installation.

6. Click Enter to use the default installation directory.

7. When LTIB files have been downloaded change directory.

$ cd ltib

8. Now start the LTIB configuration. The first time you run the configuration it will take quite a
long time since a lot of packages must be downloaded.

$./ltib

9. After a while a configuration menu will appear, see Figure 7. Hit Enter to select Platform.

Figure 7 LTIB Platform Selections Menu

http://ltib.org/

Getting Started With Linux on the LPC3250 OEM Board Page 18

Copyright 2010 © Embedded Artists AB Rev C

10. In the “platform choice” menu select “Embedded Artists LPC3250 OEM Board with the NXP
LPC32XX SoC”.

Figure 8 LTIB Platform Choice Menu

11. Click the “Exit” button.

12. Select “Yes” when asked to save the configuration.

13. A new configuration menu will appear, see Figure 9. For now just click the Exit button and go
with the default configuration.

Figure 9 LTIB Platform Configuration Menu

Getting Started With Linux on the LPC3250 OEM Board Page 19

Copyright 2010 © Embedded Artists AB Rev C

14. Select “Yes” when asked to save the configuration. LTIB will now download necessary
packages, build u-boot, build the Linux kernel and create a root file system.

15. If everything builds successfully you will have something similar to the example below in your
terminal.

…

Filesystem stats, including padding:

 Total size = 9160k

 Total number of files = 455

Started: Wed Sep 30 15:39:38 2009

Ended: Wed Sep 30 15:46:01 2009

Elapsed: 383 seconds

Build Succeeded

16. You will find the Linux kernel and u-boot images in the boot directory.

/home/user/ltib/rootfs/boot/uImage

/home/user/ltib/rootfs/boot/u-boot.bin

17. The JFFS2 formatted root file system image will be located in the ltib directory.

/home/user/ltib/rootfs.jffs2

18. The complete root file system is located in the following directory.

/home/user/ltib/rootfs/

19. Copy the images to the /home/user directory ensuring that they are accessible by the TFTP
server.

$ cp /home/user/ltib/rootfs/boot/uImage /home/user

$ cp /home/user/ltib/rootfs/boot/u-boot.bin /home/user

$ cp /home/user/ltib/rootfs.jffs2 /home/user

20. To be able to use the touch screen the device table file must be altered. By default this file
does not enable the input/eventX device files. You can skip this step and instead create the
device files in runtime. Go to section 5.3 if you would like to do it in runtime. Open the
device_table.txt file (it is assumed that your current directory is /home/user/ltib).

$ gedit bin/device_table.txt

21. Locate the line starting with “#/dev/input/event” and uncomment that line

IInnppuutt

##//ddeevv//iinnppuutt//mmiiccee

//ddeevv//iinnppuutt//eevveenntt

22. Save the file and then force a recompile of the root file system.

Getting Started With Linux on the LPC3250 OEM Board Page 20

Copyright 2010 © Embedded Artists AB Rev C

$./ltib –p dev -f

23. You are now ready to deploy your Linux system to the target board. Chapter 2 describes a
way of deploying the system using a USB memory stick. Chapter 4 describes the u-boot in
more detail and also presents more booting options.

3.4 Add Additional Packages

A small subset of the packages that are available in LTIB has been selected in the default
configuration. If you would like to add more packages follow these instructions.

1. Run the ltib script with the configure option.

$ cd /home/user/ltib

$./ltib --configure

2. The LTIB configuration menu will appear, see Figure 9. Go to the “Package List” option and
hit the Enter key (or click Select button).

3. You will now see a long list of packages. Scroll down to the packages you would like to
include and select those packages.

4. Click the Exit button.

5. Click the Exit button.

6. Select “Yes” when asked to save the configuration.

7. LTIB will now compile the selected package and copy it (application or library) to the root file
system.

Please note that all the available packages have not been tested with the Linux port for the LPC3250
OEM Board. The build might even fail if components are missing.

3.5 Useful Linux Commands

3.5.1 Obtain IP Address

The IP address of your Linux host can be obtained by using the ifconfig command.

$ sudo ifconfig

eth1 Link encap:Ethernet HWaddr 00:0c:29:40:d2:db

 inet addr:192.168.5.58 Bcast:192.168.5.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe40:d2db/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:732443 errors:0 dropped:0 overruns:0 frame:0

 TX packets:202445 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:418384275 (418.3 MB) TX bytes:57386301 (57.3 MB)

 Interrupt:19 Base address:0x2024

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:78 errors:0 dropped:0 overruns:0 frame:0

 TX packets:78 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:6040 (6.0 KB) TX bytes:6040 (6.0 KB)

Getting Started With Linux on the LPC3250 OEM Board Page 21

Copyright 2010 © Embedded Artists AB Rev C

3.6 Hello World Application

As a first step to application development in Linux you can try to use and modify the existing Hello
World application. Follow the steps below to access, modify and build the Hello World application.

1. Unpack and prepare the Hello World package

$ cd /home/user/ltib

$./ltib – p helloworld –m prep

2. Go to the directory where the Hello World application is available and open the source code.

$ cd rpm/BUILD/helloworld-1.1

$ gedit hello.c

3. Change the printf statement.

 pprriinnttff((““hheelllloo wwoorrlldd ffrroomm EEAA\\nn””))

4. Add the Hello World application to the list of packages that will be included in your Linux
system. Follow the instructions in section 3.4 and choose the package named “hello world”.

5. When the build has finished successfully transfer the root file system to the target board (with
an NFS mounted file system the application will be available directly after the build has
finished).

hello

hello world from EA

Getting Started With Linux on the LPC3250 OEM Board Page 22

Copyright 2010 © Embedded Artists AB Rev C

4 Universal Boot Loader - u-boot
4.1 Introduction

The Universal Boot Loader also known as Das U-boot or u-boot for short is an open-source boot
loader that supports a wide range of different architectures such as ARM, PowerPC, XScale, x86,
MIPS, Coldfire, 68k, and MicroBlaze. Many board configurations have been made available, for each
architecture, by an active community. The u-boot boot loader has actually become the most widely
used boot loader on ARM based systems.

Besides supporting a wide range of architectures the u-boot also supports a wide range of booting
options. Below is a list of some of these booting options:

 From Flash memory (for example NOR or NAND)

 From a USB mass storage device

 From an MMC/SD memory card

 From a harddisk or CDROM

 Using Ethernet: TFTP, BOOTP, DHCP or NFS

 Using a serial connection

A booting option means a location from where the u-boot searches for the kernel image to load. If a
MMC/SD card has been selected the u-boot will initialize the memory card controller and try to read the
image(s) from that device.

4.2 Console / Environment

The u-boot supports a command line interface usually accessed via a terminal application, such as
Tera Term. The terminal application is connected to the serial port associated with the development
board. The command line interface allow you to manually type in boot commands or update the
environment variables that can later be used as boot options.

4.2.1 Commands

It is possible to discover which commands are available by using the help command.

uboot> help

When issuing the help command a list of all the available commands will be presented. These

commands are the ones that have been selected to be supported when configuring the u-boot. If more
information is needed about a specific command type help followed by the name of the command.

The example below gives you more information about the setenv command.

uboot> help setenv

Below is a list of some of the commands used to modify, list and execute variables in the u-boot
environment.

 printenv – This command will print the u-boot environment.

 setenv – This command is used to set the value of a variable. If the variable doesn‟t exist

when calling setenv it will be created. If calling setenv on a variable, but not specifying a

value the variable will be deleted.

 saveenv – This command will save any changes done to the environment and must be

called after setenv has been used in order for the changes to be saved persistently.

Getting Started With Linux on the LPC3250 OEM Board Page 23

Copyright 2010 © Embedded Artists AB Rev C

 run – execute the commands found in an environment variable.

Below are examples of the commands described above.

uboot> setenv serverip 192.168.0.110

uboot> saveenv

uboot> run mtdboot

4.2.2 Network Related Variables

The u-boot environment contains a number of variables that are network related, i.e., related to
communication over a network. Make sure these variables are correctly setup for your network.

 ethaddr – Specifies the Ethernet/MAC address that will be assigned to the development

board. The address will also be forwarded to the Linux kernel via the ea_ethaddr

argument in the boot argument list, sections 4.3.4, 4.3.5 and 4.3.6 contain example of its
usage. Make sure your board gets a unique address.

 ipaddr – Specifies the IP address that will be assigned to the development board. The

address will be forwarded to the Linux kernel via the ip argument in the boot argument list,

sections 4.3.4, 4.3.5 and 4.3.6 contain example of its usage. Make sure this address is a valid
and unique address on your network. If you would like to use dynamically assigned IP
addresses see section 4.4.

 serverip – This variable specifies the IP address of the TFTP server used when

downloading images using TFTP. Set it to the IP address of the computer running your TFTP
server. See section 3.5.1 for how to obtain the IP address in a Linux distribution.

 netmask – Defines a mask used to divide your network into subnets. On most office and

home networks the netmask is set to 255.255.255.0 which means that the 3 first octets of the
IP address is fixed while the last can vary.

4.2.3 Boot Related Variables

The variables listed below are all related to the boot process.

 bootargs – This variable contains the boot arguments sent to the Linux kernel. It usually

contains settings for the console and where to find the root file system.

 bootcmd – This variable contains the boot command(s) that will be run during auto booting.

 bootdelay – This variable defines the delay in seconds until an autoboot will take place.

Autoboot can be cancelled by hitting any key during boot.

4.3 Booting Options

Setting up a booting option means specifying from which source the Linux kernel should be loaded as
well as specifing where to find the root file system.

4.3.1 Kernel from USB Memory Stick

Most computers today have a USB connection and most operating systems support USB and have
device drivers for USB mass storage devices. This makes it simple to use a USB memory stick to
transfer boot images from the development computer to the development board.

For this purpose the usb and fatload commands are used to access the memory stick and transfer

the images to the development board. In the default environment there is a variable named

loadkernel_usb which illustrates how to load the kernel from a USB memory stick.

Note: If you have problems loading the images from the USB memory stick, please go to
section 4.5.1 and see if that solution solves your problem.

Getting Started With Linux on the LPC3250 OEM Board Page 24

Copyright 2010 © Embedded Artists AB Rev C

loadkernel_usb=usb start; fatload usb 0 $(loadaddr) uImage; usb stop

1. First the USB interface must be initialized with the usb start command.

2. Using the fatload command the kernel image (uImage) is then loaded via the USB

interface, device 0 and to the load address specified by the loadaddr variable.

3. The final step is to stop the USB interface.

If you would like to load the kernel from a USB memory stick make sure that the loadkernel

variable contains the content of the loadkernel_usb variable.

uboot> setenv loadkernel $(loadkernel_usb)

uboot> saveenv

4.3.2 Kernel from TFTP Server

During development of the Linux kernel it is convenient to use the Trivial File Transfer Protocol (TFTP)
to download a newly created kernel. The development cycle will be much shorter compared to when
you would need to copy the kernel image to, for example, a USB memory stick.

The tftpboot command is used when downloading images from a TFTP server. Before using this

command you have to make sure the network related variables described in section 4.2.2 are correctly

setup for your network. In the default environment there is a variable named loadkernel_tftp

which illustrates how to load the kernel from a TFTP server.

loadkernel_tftp=tftpboot $(loadaddr) uImage

If you would like to load the kernel from a TFTP server make sure that the loadkernel variable

contains the content of the loadkernel_tftp variable.

uboot> setenv loadkernel $(loadkernel_tftp)

uboot> saveenv

4.3.3 Kernel Stored in NAND Flash

The LPC3250 OEM Board comes with a large NAND flash that can host the Linux kernel for fast
access without the need for a USB memory stick or network access.

Before the kernel can be loaded from NAND flash the NAND flash must be updated with the kernel.
For this purpose the default environment has been setup with a variable named update_kernel.

update_kernel=run loadkernel; nand erase $(nand_kernel_off)

$(nand_kernel_sz); nand write.jffs2 $(loadaddr) $(nand_kernel_off)

$(nand_kernel_sz)

1. The loadkernel variable is used by the update_kernel variable to load the kernel to

SDRAM (address given by loadaddr). Section 4.3.1 and section 4.3.2 describe how the

loadkernel variable can be setup to load the kernel from either a USB memory stick or a

TFTP server.

2. The second step is to erase the part of the NAND flash that will be used to store the kernel.
The offset into the NAND flash as well as the maximum size of the kernel is given by the
variables nand_kernel_off and nand_kernel_sz.

3. The last step is to write the kernel image to NAND flash.

Getting Started With Linux on the LPC3250 OEM Board Page 25

Copyright 2010 © Embedded Artists AB Rev C

In the default environment there is a variable named loadkernel_nand which illustrates how to

load the kernel from NAND flash.

loadkernel_nand=nboot.jffs2 $(loadaddr) 0x0 $(nand_kernel_off)

1. The nboot command is used to load the kernel from NAND device 0x0 and offset

nand_kernel_off to SDRAM at address loadaddr.

If you would like to load the kernel from NAND flash make sure that the loadkernel variable

contains the content of the loadkernel_nand variable.

uboot> setenv loadkernel $(loadkernel_nand)

uboot> saveenv

4.3.4 Root File System NFS Mounted

During the development phase of your Linux system it is convenient to be able to easily update the
root file system without having to transfer the file system to the development board. Using NFS
(Network File System) will allow you to do this.

1. Make sure you have NFS setup on your development computer as described in section 3.2.5.

2. Set the rootpath variable in the u-boot environment to point to the location of your

exported root file system directory.

rootpath=/home/user/ltib/rootfs

3. Use the nfsboot variable to boot Linux. This variable will setup the bootargs variable in

a way where Linux use an NFS mounted root file system.

nfsboot=setenv bootargs root=/dev/nfs rw nfsroot=$(serverip):$(rootpath)

ip=$(ipaddr) ea_ethaddr=$(ethaddr) console=ttyS0,115200n8;run

loadkernel;bootm $(loadaddr)

4.3.5 Root File System in NAND Flash

The root file system can be stored in the large NAND flash available on the LPC3250 OEM Board. This
is typically the place where the root file system will be placed after the development phase, allowing
the Linux system to be more stand-alone.

1. The first step is to update the NAND flash with the root file system. Two variables have been
setup to load the root file system from either a TFTP server or from a USB memory stick. If
you have problems loading the file system image from a USB memory stick, please read
section 4.5.1 to see if this solves your problem.

loadrootfs_tftp=tftpboot $(loadaddr) rootfs.jffs2

loadrootfs_usb=usb start;fatload usb 0 $(loadaddr) rootfs.jffs2;usb stop

2. Set the loadrootfs variable to the content of either the loadrootfs_tftp or

loadrootfs_usb variable as in the example below.

uboot> setenv loadrootfs $(loadrootfs_usb)

uboot> saveenv

3. The update_fs variable has been setup to update the NAND flash with the root file system.

First the loadrootfs variable will be used to load the root file system to SDRAM. Then

Getting Started With Linux on the LPC3250 OEM Board Page 26

Copyright 2010 © Embedded Artists AB Rev C

the NAND flash will be erased at the offset specified by nand_rootfs_off and size

specified by nand_rootfs_sz. The last step is to write the file system to the NAND flash.

update_fs=run loadrootfs; nand erase $(nand_rootfs_off)

$(nand_rootfs_sz); nand write.jffs2 $(loadaddr) $(nand_rootfs_off)

$(nand_rootfs_sz)

4. To actually update the NAND flash run the update_fs variable.

uboot> run update_fs

5. Use the mtdboot variable to boot Linux. This variable will setup the bootargs variable in

a way where Linux looks for the root file system in NAND flash. See section 5.8.2 for an
explanation of how the NAND flash is partitioned.

mtdboot=setenv bootargs root=/dev/mtdblock3 rw rootfstype=jffs2

ip=$(ipaddr) ea_ethaddr=$(ethaddr) console=ttyS0,115200n8; run

loadkernel;bootm $(loadaddr)

4.3.6 Root File System on MMC/SD Card

This section describes how you can put the root file system on an MMC/SD card.

1. Insert an MMC/SD card on your development computer. It will most likely be auto mounted
and you now need to discover which device file it has been associated with. First try using the
mount command. In the example below we see a file system mounted on /media/disk

using device file /dev/sde1 (this might be different for you). You can try to remove the card

and see if this mount point is removed to be sure this is your memory card.

$ sudo mount

...

/dev/sde1 on /media/disk type vfat

2. You can also use dmesg to locate the device file being used. In the log below we see that

sde1 (this might be different for you) is used. We also see that the size of the memory card

is about 500 MB which is correct for our card.

$ sudo dmesg

...

[171217.515649] sd 3:0:0:3: [sde] Write Protect is off

[171217.515654] sd 3:0:0:3: [sde] Mode Sense: 23 00 00 00

[171217.515657] sd 3:0:0:3: [sde] Assuming drive cache: write

through

[171217.521167] sd 3:0:0:3: [sde] 990976 512-byte hardware

sectors: (507 MB/483 MiB)

[171217.528650] sd 3:0:0:3: [sde] Write Protect is off

[171217.528653] sd 3:0:0:3: [sde] Mode Sense: 23 00 00 00

[171217.528655] sd 3:0:0:3: [sde] Assuming drive cache: write

through

[171217.528713] sde: sde1

3. Un-mount the memory card.

$ sudo umount /dev/sde1

Getting Started With Linux on the LPC3250 OEM Board Page 27

Copyright 2010 © Embedded Artists AB Rev C

4. Run fdisk to edit the partition table on the memory card.

$ sudo fdisk /dev/sde1

5. List the existing partition table using the p option.

Command (m for help): p

6. Use the d option to delete all partitions on the memory card.

7. Create a new partition using the n option.

8. Select p to create a primary partition.

9. Select 1 for partition number.

10. Use default value for the first cylinder by hitting the Enter key.

11. Use default value for last cylinder by hitting the Enter key.

12. Select w to write the new partition table to the memory card.

13. Format the memory card to an ext2 file system.

$ sudo mkfs.ext2 /dev/sde1

14. Mount the memory card when it has been formatted.

$ sudo mkdir /mnt/mmc

$ sudo mount –t auto /dev/sde1 /mnt/mmc

15. Copy the root file system to the memory card.

$ sudo cp R /home/user/ltib/rootfs/* /mnt/mmc

16. Un-mount the memory card, remove it from the development computer and insert it in the
development board.

$ sudo umount /dev/sde1

17. Boot into the u-boot console and add an mmcboot variable.

uboot> uboot> setenv mmcboot setenv bootargs root=/dev/mmcblk0p1

ip=\$(ipaddr) ea_ethaddr=\$(ethaddr) console=ttyS0,115200n8\;run

loadkernel\;bootm \$(loadaddr)

18. Run the mmcboot variable

uboot> run mmcboot

Getting Started With Linux on the LPC3250 OEM Board Page 28

Copyright 2010 © Embedded Artists AB Rev C

4.4 Use DHCP

If you don‟t want to or are able to assign a static IP address to the target board you can instead use
dynamically assigned IP addresses by using the DHCP protocol. Please note that a DHCP server must
be available on your network.

In the u-boot you need to exchange the tftpboot command for the dhcp command to load the

images using DHCP. For the Linux kernel you need to set the ip argument to dhcp instead of using a

static IP address.

1. Boot into the u-boot console and change the ipaddr variable to dhcp.

uboot> setenv ipaddr dhcp

2. Change the loadkernel_tftp and loadrootfs_tftp variables.

uboot> setenv loadkernel_tftp dhcp $(loadaddr) uImage

uboot> setenv loadrootfs_tftp dhcp $(loadaddr) rootfs.jffs2

3. Update the loadkernel and loadrootfs variables.

uboot> setenv loadkernel $(loadkernel_tftp)

uboot> setenv loadrootfs $(loadrootfs_tftp)

uboot> saveenv

4. Boot Linux.

uboot> run bootcmd

4.5 Known Problems

4.5.1 Unable to Access USB Memory Stick

For some USB memory sticks you might need to specify which partition to use, not only which device
to use when invoking the fatload command. If this is the case for your memory stick and you are

using the default variables in the u-boot environment you need to update two variables;
loadkernel_usb and loadrootfs_usb.

In the example below the loadkernel_usb and the loadrootfs_usb variables are updated to

specify partition 0 on device 0. Please note how the backslash character needs to be used before the
semicolon when updating a variable.

uboot> setenv loadkernel_usb usb start\;fatload usb 0:0 $(loadaddr)

uImage\; usb stop

uboot> setenv loadrootfs_usb usb start\;fatload usb 0:0 $(loadaddr)

rootfs.jffs2\; usb stop

uboot> saveenv

You also need to make sure to update the loadkernel and loadrootfs variables.

uboot> setenv loadkernel $(loadkernel_usb)

uboot> setenv loadrootfs $(loadrootfs_usb)

uboot> saveenv

Getting Started With Linux on the LPC3250 OEM Board Page 29

Copyright 2010 © Embedded Artists AB Rev C

4.5.2 Unable to Boot Because of Bad Blocks

A NAND flash is organized into several blocks where each block is divided into several pages. Already
when a NAND flash is delivered from the manufacturer it can contain blocks with one or more invalid
bits. These blocks are considered to be unusable and therefore marked as bad. As an example the
NAND flash used on the LPC3250 OEM Board is manufactured by Samsung and the only guarantee
they give is that block 0 is always okay and that the number of bad blocks is at most 20.

Bad blocks can also occur over time as worn-out blocks.

In the default u-boot environment there is a variable called loadkernel_nand which is using the

nboot command when loading the Linux kernel. This command doesn‟t handle bad blocks and will

fail with a read and CRC error when trying to load the kernel if there is a bad block in the kernel
partition.

Instead of using the nboot command the nand read command can be used which will skip a bad

block and continue to read on the next valid block.

Update the loadkernel_nand variable to use nand read command.

uboot> setenv loadkernel_nand nand read.jffs2 $(loadaddr)

$(nand_kernel_off) $(nand_kernel_sz)\;bootm $(loadaddr)

uboot> saveenv

Getting Started With Linux on the LPC3250 OEM Board Page 30

Copyright 2010 © Embedded Artists AB Rev C

5 Peripherals and Drivers
5.1 Introduction

This chapter describes some of the peripherals on the LPC3250 OEM Board, their drivers and how to
use the peripherals from within Linux.

5.2 Display

5.2.1 Hardware

A 3.2 inch QVGA color TFT LCD display is mounted on the QVGA Base Board together with a
Solomon Systech SSD1289 LCD controller. The SSD1289 is attached to the SPI bus. The LPC3250
also has an embedded LCD controller which is compatible with the ARM PrimeCell PL110.

Both the SSD1289 and LPC3250 LCD controllers will be used. The SSD1289 will be used for initial
initialization of the display after a power-cycle of the display.

5.2.2 Device Driver and Configuration

The ARM PrimeCell PL110 device driver contains the majority of the code for the display and is
located here in the source tree: /drivers/video/amba-clcd.c.

The usage of the SSD1289 controller is located in the board specific file: /arch/mach-

lpc32xx/board-ea3250.c. More specifically the clcd_enable callback will initialize the

display using the SSD1289 controller.

The configuration options below are related to the display functionality.

Configuration Description

CONFIG_FB Enable frame buffer support

CONFIG_FB_ARMCLCD Enable the PL110 driver

5.2.3 Usage

The frame buffer is exposed to user space as a device file called /dev/fb0. It can be used directly

by an application to output graphics onto the display, for example, by memory mapping the file. A more
common way is to use a graphical API such as Microwindows, DirectFB or SDL instead.

By default, functionality called “console on framebuffer” and “Bootup Logo” has been enabled. This
means that you should see the Linux penguin in the top left corner of the display when you boot the
board.

You can also use the applications described in the touch screen section, see 5.3.3 to see usage of the
display.

5.2.4 Add and Use the fbv Application

The fbv application allows displaying images on a frame buffer. Supported image formats include png,
jpeg and bmp.

1. In your Linux distribution (for example Fedora 11 or Ubuntu 9.04) go to the ltib directory.

$ cd /home/user/ltib

2. Run the ltib script with the configure option.

$./ltib --configure

Getting Started With Linux on the LPC3250 OEM Board Page 31

Copyright 2010 © Embedded Artists AB Rev C

3. The LTIB configuration menu will appear, see Figure 9. Go to the “Package List” option and
hit the Enter key (or click Select button).

4. You will now see a long list of packages. Scroll down to the option called fbv and press
Spacebar on your keyboard to select the package.

5. Click the Exit button.

6. Click the Exit button.

7. Select “Yes” when asked to save the configuration.

8. LTIB will now compile the selected package and copy it (the application) to the root file
system.

9. Copy a picture to the root file system. Here we assume that you have an image named

pic.png in your home folder (/home/user/pic.png).

$ sudo cp /home/user/pic.png /home/user/ltib/rootfs/home/user

10. If you have an NFS mounted root file system the fbv application and picture will be

accessible from your Linux system.

11. Before displaying the image on the screen, make sure the display is enabled. It might have
been disabled for power save reasons.

echo 0 > /sys/class/graphics/fb0/blank

12. Display the image on the LCD screen.

fbv /home/user/pic.png

5.3 Touch Screen

5.3.1 Hardware

The touch screen controller mounted on the QVGA Base Board is a Texas Instruments TSC2046
which is a next-generation version to the ADS7846 controller. The TSC2046 is compatible with the
ADS7846.

The TSC2046 controller is a low-voltage controller connected to the SPI bus with low power
consumption and high speed (up to 125 kHz).

There is an embedded touch screen controller on the LPC3250 microcontroller, but that isn‟t used with
the Embedded Artists LPC3250 OEM Board.

5.3.2 Device Driver and Configuration

A driver for the ADS7846 is integrated in the kernel and located here in the source tree:
/drivers/input/touchscreen/ads7846.c.

The following configuration options are related to the touch screen functionality.

Configuration Description

CONFIG_INPUT_TOUCHSCREEN Enable touch screen support

CONFIG_TOUCHSCREEN_ADS7846 Enable the ADS7846/TSC2046 driver

Getting Started With Linux on the LPC3250 OEM Board Page 32

Copyright 2010 © Embedded Artists AB Rev C

5.3.3 Usage

These instructions show how to use the touch screen through the tslib library. Tslib is an abstraction
layer for touch screen panel events, as well as a filter stack for the manipulation of those events, for
more information visit the tslib website: http://tslib.berlios.de/.

1. The /dev/input/event0 device node must be available. If it isn‟t it can be created by

using the mknod utility.

mknod /dev/input/event0 c 13 64

2. In the default configuration of the root file system tslib is included as well as calibration and
test applications. Run the calibration application.

ts_calibrate

3. When you have calibrated the screen you can test the touch screen with the ts_test

application.

ts_test

5.4 Network

5.4.1 Hardware

The LPC3250 has an Ethernet interface with a full featured 10 Mbps or 100 Mbps Ethernet MAC
(Media Access Controller). On the Embedded Artists LPC3250 OEM Board the Ethernet block in the
LPC3250 is connected to the off-chip National Semiconductor DP83848 Ethernet PHY via the RMII
interface.

5.4.2 Device Driver and Configuration

The driver for the LPC3250 MII/RMII Ethernet interface is located here in the source tree:
/drivers/net/lpc32xx_mii.c.

The following configuration options are related to the network functionality.

Configuration Description

CONFIG_NET Enable networking support in the kernel

CONFIG_LPC32XX_MII Enable support for the LPC3250 MII/RMII interface

5.4.3 Usage

The Ethernet driver isn‟t used directly from user space applications. Instead the driver is used by the
networking subsystem in the kernel and applications use a high-level interface such as a socket API.

In the Embedded Artists configuration the networking interface is initialized at start-up and given its IP

address from the u-boot bootloader as a boot argument (the ip argument). You can check the IP

address by using the ifconfig command. In the example you can see that the IP address assigned

to the board is 192.168.5.234.

ifconfig

eth0 Link encap:Ethernet HWaddr 00:1A:F1:00:00:00

 inet addr:192.168.5.234 Bcast:192.168.5.255

Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2405 errors:0 dropped:0 overruns:0 frame:0

http://tslib.berlios.de/

Getting Started With Linux on the LPC3250 OEM Board Page 33

Copyright 2010 © Embedded Artists AB Rev C

 TX packets:1131 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2829202 (2.6 MiB) TX bytes:190332 (185.8 KiB)

 Interrupt:29

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The Boa web server has been enabled in the default configuration and will be started when the kernel
boots. Use a web browser and enter the boards IP address in the address field of the browser to
access the web server, see Figure 10.

Figure 10 Example webpage loaded from the LPC3250 OEM Board

Boa‟s document directory is located in /var/www/html in the root file system.

Getting Started With Linux on the LPC3250 OEM Board Page 34

Copyright 2010 © Embedded Artists AB Rev C

5.5 Memory Card

5.5.1 Hardware

The LPC3250 has a Secure Digital (SD) interface that conforms to the SD Memory Card Specification
Version 1.01. The MMC/SD card interface on the LCP3250 is compatible with the ARM PrimeCell
MMCI PL180/1.

5.5.2 Device Driver and Configuration

The driver for the LPC3250 MMC/SD card interface is located here in the source tree:

/drivers/mmc/host/mmci.c.

The following configuration options are related to the MMC/SD card functionality.

Configuration Description

CONFIG_MMC Enable MMC/SD card support

CONFIG_MMC_ARMMMCI Enable support for the ARM AMBA PrimeCell PL180/1 driver.

5.5.3 Usage

Insert an MMC/SD card in the MMC/SD card connector on the QVGA Base Board and then mount the
card. In the instructions below it is assumed that the memory card is FAT formatted.

mount –t vfat /dev/mmcblk0p1 /mnt/rwfs

You can now access the file system on the memory card by visiting the /mnt/rwfs directory.

cd /mnt/rwfs

ls

5.6 USB Host

5.6.1 Hardware

The LPC3250 has an Open Host Controller Interface (OHCI) compliant USB host controller.

5.6.2 Device Driver and Configuration

The driver for the LPC3250 OHCI controller is located here in the source tree:

/drivers/usb/host/ohci-pnx4008.c.

The following configuration options are related to the USB OCHI functionality.

Configuration Description

CONFIG_USB_SUPPORT Enable core support for USB

CONFIG_USB_OHCI_HCD Enable OHCI HCD support

CONFIG_ARCH_LPC32XX
If this configuration flag is set the pnx4008 OHCI driver will be
enabled.

5.6.3 Usage

One use-case of using USB host on an embedded system is to attach a USB memory stick to the
system and thereby adding a read-writable file system.

1. Attach a USB memory stick to the USB A connector on the base board. You will see output in
the console similar to the example below.

Getting Started With Linux on the LPC3250 OEM Board Page 35

Copyright 2010 © Embedded Artists AB Rev C

usb 1-1: new full speed USB device using usb-ohci and address 2

usb 1-1: configuration #1 chosen from 1 choice

scsi0 : SCSI emulation for USB Mass Storage devices

scsi 0:0:0:0: Direct-Access SanDisk Cruzer 8.02 PQ:

0 ANSI: 0 CCS

sd 0:0:0:0: [sda] 15704063 512-byte hardware sectors (8040 MB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Assuming drive cache: write through

sd 0:0:0:0: [sda] 15704063 512-byte hardware sectors (8040 MB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 0:0:0:0: [sda] Attached SCSI removable disk

scsi 0:0:0:1: CD-ROM SanDisk Cruzer 8.02 PQ:

0 ANSI: 0

2. As can be seen in the log the USB memory stick is available on sda1, more specifically
/dev/sda1.

3. Mount the memory stick.

mount –t vfat /dev/sda1 /mnt/rwfs

4. You can now access the file system.

cd /mnt/rwfs

ls

5.7 LEDs and Buttons

5.7.1 Hardware

Most of the LEDs and buttons on the base board are connected to the PCA9532 device. The NXP
Semiconductor PCA9532 device is a 16-bit I2C I/O Expander.

5.7.2 Device Driver and Configuration

The driver for the PCA9532 is located here in the source tree:
/drivers/i2c/chips/pca9532.c.

The following configuration options are related to the I2C and PCA9532 functionality.

Configuration Description

CONFIG_I2C Enable I2C support in the kernel

CONFIG_I2C_PNX Enable the LPC3250 I2C interface

CONFIG_MACH_LPC32XX_I2C0_ENABLE Enable I2C0

CONFIG_SENSORS_PCA9532 Enable support for the PCA9532 I2C device

5.7.3 Usage

The PCA9532 has a number of files exposed at the following location in the file system:
/sys/bus/i2c/devices/0-0060/. The files in the list below are accessible and each file

represent a register in the PCA9532.

File Description

Getting Started With Linux on the LPC3250 OEM Board Page 36

Copyright 2010 © Embedded Artists AB Rev C

input0
This file reflects the state of the device pins (inputs 0 to 7). Writing to
this file will have no effect.

input1
This file reflects the state of the device pins (inputs 8 to 15). Writing
to this file will have no effect.

ls0 LED select 0 controls LED (output pin) 0 – 3.

ls1 LED select 1 controls LED (output pin) 4 – 7.

ls2 LED select 2 controls LED (output pin) 8 – 11.

ls3 LED select 3 controls LED (output pin) 12 – 15.

psc0
The PSC0 register is used to program the period of the PWM0
output.

psc1
The PSC1 register is used to program the period of the PWM1
output.

pwm0

The PWM0 register determines the duty cycle of BLINK0. The
outputs are LOW (LED on) when the count is less than the value in
PWM0 and HIGH (LED off) when it is greater. If the value is set to 0
the output is always HIGH.

pwm1

The PWM1 register determines the duty cycle of BLINK1. The
outputs are LOW (LED on) when the count is less than the value in
PWM1 and HIGH (LED off) when it is greater. If the value is set to 0
the output is always HIGH.

For more details about the PCA9532 registers look at the data sheet. Below are some examples of
how to access the files (it is assumed that the current working directory is the

/sys/bus/i2c/devices/0-0060/ directory).

Turn on LED1 on the QVGA Base board:

echo 1 > ls2

Turn off LED1 and turn on LED2 on the QVGA Base board:

echo 4 > ls2

Check the state of the device pins (connected to the LEDs):

cat input1

253

Please note the value 253 which is the same as the binary value 11111101, i.e., bit 1 has the value 0
all others have the value 1. A LED is turned on when an output is LOW so the value 253 means that
device pin 9 (note that input1 is used) is low and since this pin is connected to LED2 this LED is lit. The
schematics for the QVGA Base board illustrate how the PCA9532 is connected.

5.8 NAND Flash

5.8.1 Hardware

The LPC3250 OEM Board is equipped with a 1 Gbit NAND Flash memory from Samsung. The part
number for the memory is K9F1G08U0A.

Getting Started With Linux on the LPC3250 OEM Board Page 37

Copyright 2010 © Embedded Artists AB Rev C

The LPC3250 microcontroller has two NAND Flash controllers, one multi-level controller (MLC) and
one single level controller (SLC).

5.8.2 Device Driver and Configuration

The driver for the LPC3250 SLC NAND driver is located here in the source tree:
/drivers/mtd/nand/lpc32xx_nand.c.

The NAND MTD partitions are setup in the board specific file (/arch/arm/mach-

lpc32xx/board-ea3250.c) and have the following layout. The kickstart, S1L and u-boot are all

setup as one MTD partition in Linux.

Block Offset Size Description

0 0x00000000 128 K Kickstart Bootloader

1-2 0x00020000 256 K S1L Bootloader

3-6 0x00060000 512 K u-boot

7 0x000E0000 128 K u-boot environment

8-39 0x00100000 4 M Linux kernel

40-80 0x00500000 5 M Root File system

81- 0x00A00000

The following configuration options are related to the NAND flash functionality.

Configuration Description

CONFIG_MTD
Enable Memory Technology Device (MTD)
support

CONFIG_MTD_NAND Enable NAND device support

CONFIG_MTD_NAND_SLC_LPC32XX
Enable support for the LPC3250 SLC NAND
driver

5.8.3 Usage

One way of using the NAND flash is to store the root file system and kernel image in an MTD partition,
see section 4.3.3 and section 4.3.5 for more information.

