
ECE 420 Parallel and Distributed Programming

Lab 3: Solving a Linear System of Equations via

Gauss-Jordan Elimination using OpenMP∗

Winter 2017

1 Background

Consider the problem of solving a linear system of equations

a11x11 + a12x12 + ...+ a1nx1n = b1

a21x21 + a22x22 + ...+ a2nx2n = b2

... ...

an1xn1 + an2xn2 + ...+ annxnn = bn.

Denote the coefficient matrix by

A =


a11 a12 ... a1n

a21 a22 ... a2n

...

an1 an2 ... ann

 ,

the constant vector by

~b =


b1

b2

...

bn

 ,

∗In this manual, all the indeces start from 1.

1

ECE420: Lab 3 University of Alberta

and the unknown variables by

~x =


x1

x2

...

xn

 .

The linear system of equations can be represented by

A · ~x = ~b.

The linear system of equations is actually characterized by the augmented

matrix G,

G = {A|~b}

=


a11 a12 ... a1n b1

a21 a22 ... a2n b2

...

an1 an2 ... ann bn

 .

Any operation on the original system of equations is equivalent to performing

some corresponding operation on the augmented matrix G. And an augmented

matrix can easily be mapped back to a linear system of equations. For simplicity,

we will perform calculation on the augmented matrix.

There are 3 types of linear operations (or row operations) which will not change

the solution(s) to the linear system of equations:

1. interchanging any two rows;

2. multiplying each element of a row by a nonzero constant;

3. replacing a row by the sum of itself and a constant multiple of another row

in the augmented matrix.

For these row operations, we use the following notations:

1. Ri ↔ Rj: interchange the ith row and the jth row;

2. αRi: multiply each element of row i by a nonzero α;

3. Ri + αRj: replace row i with the sum of row i and α times row j.

To solve the linear system of equations, the basic idea is to transform the

original linear system to an equivalent new system via some linear operations. And

the new system should be reduced to some good form such that every equation

2

ECE420: Lab 3 University of Alberta

in the system has exactly one different variable with a nonzero coefficient, from

which we can simply “read” the solutions. In other words, the target augmented

matrix should be in the following form:
d11 0 ... 0 b′1
0 d22 ... 0 b′2
...

0 0 ... dnn b′n

 .

The Gauss-Jordan Elimination is a procedure to achieve the above goal.

1.1 Gaussian Elimination with Partial Pivoting

Gaussian Elimination will transform the augmented matrix into its equivalent

“upper triangular” form, in which the elements below the main diagonal are all

zeros. It iteratively eliminates the elements below the main diagonal from the

first column to the last column via row operations. Algorithm 1 describes such a

procedure.

Note that the partial pivoting part is important in this procedure. It will pre-

vent the case in which ukk is zero or close to zero. Thus, with partial pivoting, the

program will be more numerically stable. Also, note that in the row replacement

operation, j starts from k, since the first k − 1 elements are always zero in this

algorithm.

1.2 Jordan Elimination

After we obtain an “upper triangular” U from Gaussian Elimination, the Jordan

Elimination can further transform it into the desired form. Similarly, the basic idea

is to iteratively eliminate the elements above the main diagonal for each column,

one after another.

The inner for loop performs the row replacement. However, for each row, we

only need to update the two elements dik and di(n+1), since elements on the other

columns actually stay the same. See the example for an illustration.

After we get D, we can compute the desired solution ~x simply by

xi = di(n+1)/dii, for any i.

3

ECE420: Lab 3 University of Alberta

Algorithm 1 Gaussian Elimination

Input: An augmented matrix G = {A|~b}, where A = (aij) is an n×n matrix

and ~b = (bi) is an n-dimensional vector.

Output: The augmented matrix U (the elements are denoted as uij) that is

equivalent to G and is in the “upper triangular” form.

Initially, U← G

for k = 1 to n − 1 do/*eliminate elements below the diagonal to zero one

column after another*/

/*Pivoting*/

In U, from row k to row n, find the row kp that has the maximum absolute

value of the element in the kth column

Swap row k and row kp

/*Elimination*/

for i = k + 1 to n do

temp = uik/ukk

for j = k to n+ 1 do

uij ← uij − temp · ukj/*row replacement*/

endfor

endfor

endfor

4

ECE420: Lab 3 University of Alberta

Algorithm 2 Jordan Elimination

Input: The output of the Gaussian Elimination U (an n× (n+ 1) matrix).

Output: The augmented matrix D (with elements denoted by dij) that is

equivalent to G and is in our final target form.

Initially, D← U

for k = n to 2 do/*eliminate elements to zero for each column one after

another*/

for i = 1 to k − 1 do/*row replacement one row after another*/

di(n+1) ← di(n+1) − dik/dkk · dk(n+1)

dik ← 0

endfor

endfor

1.3 An Example

We will give an example to demonstrate the described algorithms. Consider a

linear system of equations:

2x11 + 4x12 − 2x13 = 3

−4x21 − 8x22 + 5x23 = −4

4x31 + 4x32 − 5x33 = 4.

The corresponding augmented matrix is 2 4 −2 3

−4 −8 5 −4

4 4 −5 4


The Gauss-Jordan Elimination with partial pivoting on it will be

5

ECE420: Lab 3 University of Alberta

 2 4 −2 3

−4 −8 5 −4

4 4 −5 4


R1↔R2−−−−→

 −4 −8 5 −4

2 4 −2 3

4 4 −5 4

 (pivoting)

R2+
1
2
R1−−−−−→

 −4 −8 5 −4

0 0 1
2

1

4 4 −5 4


R3+R1−−−−→

 −4 −8 5 −4

0 0 1
2

1

0 −4 0 0


R2↔R3−−−−→

 −4 −8 5 −4

0 −4 0 0

0 0 1
2

1

 (pivoting; it happens to be the end of Gaussian Elimination)

R1−10R3−−−−−→

 −4 −8 0 −14

0 −4 0 0

0 0 1
2

1

 (Starting Jordan Elimination)

R1−2R2−−−−→

 −4 0 0 −14

0 −4 0 0

0 0 1
2

1



6

ECE420: Lab 3 University of Alberta

2 Task and Requirement

Task: Using OpenMP, implement a program to solve linear systems of equations

by Gauss-Jordan Elimination with partial pivoting. The input will be a coefficient

matrix A and a vector ~b. The output will be a vector ~x, where

A · ~x = ~b.

Requirements and Remarks:

• Use the scripts in “Development Kit Lab 3” to generate input data, load

data and save results. Refer to the ReadMe file for details on how to use

them.

• Time measurement should be implemented.

• The number of threads should be passed as the only command line argument

to your program.

• Optimize the performance of your implementation as much as possible using

the techniques learned in class.

• You don’t need to consider the singular cases, i.e., a linear system with

no solution or an infinite number of solutions. The input data generated

by “datagen.c” will avoid such cases. You do need to include the partial

pivoting procedure in your code to make the computed results correct and

numerically stable.

Lab Report Requirements:

1. Describe your implementation clearly.

2. Compare and discuss the performance (speedup or efficiency) of your imple-

mentation under different numbers of threads used. Explain your results.

3. Present the design choices and performance optimization analysis in your lab

report. In the report, show the run times of your optimized code compared

against some baseline inferior version(s). Use figures and/or tables to show

7

ECE420: Lab 3 University of Alberta

the results under various setups (e.g., different scheduling policies and chunk

sizes, different parallelization strategies, and different numbers of threads

and so on) and under sufficiently large input(s). In other words, an effort for

performance optimization must be demonstrated in your lab report.

4. Please also refer to the “Lab Report Guide” for other requirements.

Submission Instructions:

Each team is required to submit BOTH a hard copy of printed lab report to the

assignment box AND the source code on eClass. The report should be submitted

in the assignment box on the 2nd floor of ECERF. Please check eClass for the

code and report submission due date.

For code submission, each team is required to submit a zip file to eClass. The

zip file should be named “StudentID-Hx.zip”, where “StudentID” is the Student

ID of one of your group members (doesn’t matter which member) and “Hx” is the

section (H1 or H2).

The zip file should contain the following files:

1. “readme”: a text file containing instructions on how to compile your source

files;

2. “members”: a text file listing the student IDs of ALL group members, with

each student ID occupying one line;

3. “Makefile”: the makefile to generate the executable. Please ensure that your

Makefile is located in the root folder of that zip file and the default “$make”

command will generate the final executable program named “main”;

4. All the necessary source files to build the executable “main”;

DO NOT include the compiled data generation file, “serialtester” file, or the

input/output data file.

Note: you MUST use the file names suggested above. File names are

case-sensitive. You MUST generate the required zip file by directly

8

ECE420: Lab 3 University of Alberta

compressing all the above files, rather than compressing a folder con-

taining those files.

3 Hints and Tips

• To improve the performance, you might need to find out all components of

the program that each can be run in parallel first. Try to reduce the number

of forks and implicit joins due to repeated uses of parallel directives. In other

words, try to reuse the team of threads launched by a parallel directive.

• What kind of scheduling policies will yield the best result for each OpenMP

for loop?

• How many threads should be used?

• Should we use the same number of threads to handle each for loop? Or

should we vary the number of threads dynamically at different stages of

the program? Should we vary the scheduling policy, chunksizes and other

parameters?

• To guarantee the correctness, how should we effectively protect a critical

section if there is any?

• Would the single or master directive be useful here?

• Is it helpful to use the collapse clause if there is any nested loop?

• In the pivoting procedure, swap the index or pointers rather than swapping

all the row elements in memory.

• The debugging is similar to Pthread debugging. When compiling, instead

of using the “-g” flag, you might need to use the “-ggdb” flag to make the

debugger work well on an OpenMP multi-threaded program. You can try

other flags like “-gstabs”, “-gstabs+”. However, whether they would work

depends on the system.

Appendix

9

ECE420: Lab 3 University of Alberta

A Marking Guideline

Code:

Correct implementation: 2

Speed: 1

Report:

Clear description of implementation: 1

Testing and verification: 1

Performance discussion: 4

Presentation: 1

Total: 10

10

