
The Usage of Sets
Usually, with a small amount of decision variables and limited constraints, we can use the

traditional way and enter the objective function and the constraints one by one. However, if we meet
the problem with a series of similar constraints and express long, complex formulas, the traditional
way would be troublesome, and the usage of sets would be a great choice. Sets allow to express the
large models very quickly and easily. Usually, in large models, you’ll encounter the need to express a
group of several very similar calculations or constraints.

LINGO recognizes two kinds of sets: primitive and derived. A primitive set is a set composed only
of objects that can’t be further reduced. A derived set is defined using one or more other sets. In other
words, a derived set derives its members from other preexisting sets.

Now, let me introduce the primitive sets, which will also be used in our problem. A primitive set
definition has the following syntax:

setname [/ member_list /] [: attribute_list];

The three words are corresponding to the name of the set, its members (objects contained in the set),
and any attributes the members of the set may have. The member list and attribute list are optional.
The set section begins with the keyword ​SETS: (including the colon) and ends with the keyword
ENDSETS​. In our case, we have the same type the members: each of the member has 12 values
corresponding to 12 months. There’s my code:
sets​:

Month: rlabor, rtons, olabor, otons,limittons, soldtons, demandtons,

pricepertons, storagetons, storageprice;

endsets

The rtons, otons, soldtons and storagetons are the decision variables and all other variables are
coefficients, which will be set in the following section.

Since the derived sets would not be used in our problem, if you would like to learn more about that,
please refer the official Lingo Manual.
Usage of Data

To initialize the members of certain sets and assign values to certain set attributes, LINGO uses a
second optional section called the ​data section. The data section allows you to isolate data from the
equations of your model. This is a useful practice in that it leads to easier model maintenance and
facilitates scaling up a model to larger dimensions.

Similar to the sets section, the data section begins with the keyword ​DATA: (including the colon)
and ends with the keyword ​ENDDATA​. In the data section, There’s the syntax:

object_list = value_list;
The ​value_list contains the values to assign to the objects in the object list, optionally separated by
commas. In our problem, from the table, we know that the cost of labor in regular time from month 1
to month 3 is $4, from month 4 to month 9 is $6 and from month 10 to month 12 is $4. So I get the
following code:
data​:

rlabor=4,4,4,6,6,6,6,6,6,4,4,4;

enddata​;

Similarly, I can assign the initial value for olabor(labor cost in overtime), limittons(limit on raw
material availability), demandtons(demand), pricepertons(selling price) and storageprice(storage
price). All of them would be assigned with 12 values, which corresponding to the value from month 1
to month 12.
Set Looping Function

Set looping functions allow you to iterate through all the members of a set to perform some
operation. There are currently four set looping functions in LINGO. The names of the functions and
their uses are following:

Function Use

@FOR The most powerful of the
set looping functions,
@FOR ​is primarily used
to generate constraints
over members of a set.
@FOR ​may also be used
in calc sections to assign
values to attributes across
the members of a set.

@SUM Probably the most
frequently used set
looping function, ​@SUM
computes the sum of an
expression over all
members of a set.

@MIN Computes the minimum
of an expression over all
members of a set.

@MAX Computes the maximum
of an expression over all
members of a set.

@PROD Computes the product of
an expression over all
members of a set.

The syntax for a set looping function is:
@function(setname: expression_list);

where @function corresponds to one of the four set looping functions listed in the table above.
setname​ is the name of the set you want to loop over.

In our problem, the objective function is the sum of each month’s revenue minus the sum of regular
time labor cost, minus the sum of each month’s overtime labor cost and the sum of each month’s
storage cost. The revenue in month j is the selling price times the sold tons. Since I’ve assigned the
values to selling price, the sum of each month’s revenue is:
@sum​(month:pricepertons*soldtons)
 Similarly, we can get the sum of labor cost and storage cost.

Also, to model the constraints, we need to use ​@for function. For the constraint ​(1.6)​, which is the
sold tons in month j should be less than or equal to the demand in month j. For example, the sold tons
in month 1 should be less than or equal to 400. Since I’ve assigned the value to the demands in the
DATA​ section, the constraint is:
@for​(month(I):

soldtons(I) <=demandtons(I)

);

The index I ​is from 1 to 12 since we’ve assigned 12 values to ​demandtons(I)​, which should be the
same index. Soldtons(I) means the selling tons in month I. For example, Soldtons(12) means the
selling tons in month 12.

Although there’re only two loop functions used in our problem, the usage of other two loop
function is similar. If you would like to find more example, please refer the official Lingo Manual.
The usage of filter
 Sometimes, I only need to loop some parts of the set, not the whole part. For example, for the
constraint (1.8), which is that, during the months 4,5,6,7,8,9, the company can hire enough labor to
produce 800 tons of products during the regular time.
 R​j​<=800, for j=4,5,6,7,8,9 (1.8)
 In this case, we can use a conditional qualifier (filter) on the set index to accomplish this as follows:
@for​(month(I)|I #GE# 4 #and# I #LE# 9:

Rtons(I)<=800

);

 The #LE# or #GE# symbol is called a logical operator. This operator returns true if I is greater than
or equal to 4 and less than or equal to 9. Otherwise, it returns false. Therefore, when LINGO loop the
function, it plugs the set index variable, I, into the conditional qualifier I #GE# 4 and #LE# 9. If the
conditional qualifier evaluates to true, Rtons(I) will be added to the constraints. The logical operators
recognized by LINGO are:
#EQ# equal
#NE# not equal
#GE# greater-than-or-equal-to
#GT# greater than
#LT# less than
#LE# less-than-or-equal-to

