Lisa. BASIC-Plus 2.0 User's Guide

MSearch Type Style Print : : i =

Find ...
Find Same
Find & Paste RlI

vSeparate Identifiers
All Occurrences
0TO 1

Cases Must Agree

V7% = YO% - 385% + XX(13%)
\ V2% = FNVK(W7%, 18040%)
N Vi% = INSTR(1X, X§, 'N|
\ V2% = FNU%(6%, 18040%, W7%,
\ V2% = FNUX(7%, 18040%, W7%,
IF (VO%-385%)
! CALC ADDRESS OF VR

! GET VR BLOCK
! CHECK FOR AVAILABLE

! ERROR IF NONE
! ERROR IF OVER LIMIT

BrE=GI'N-" =~ § O RINEIGNOTE

\ vzx 4vCases Need Not Agree FFOR X1% = 1% TO X¥(11%)

V3% = X¥(36% + X1%)
X2% = SPACEH(V3Y)
\ WO% = V3% + 4%
\ V4% = 509% / W%
\ W% = 46% + (X1%-1%) * 7%
\U7$ = SPACES$ (511%-V4%*Wo%)

\ FIELD #1%, W9% * (W4%-1%) AS X439, W9% AS U

FOR W4% = 1% TO V4%

FOR W4% = 7% TO 1% STEP -1%
\ W% = X% (W7% + W4%)
\ IF W1% THEN LSET X2§ = ;
MID [V$, V2 W1%), X¥(129% + (W%

| STEP THROUGH' FIELD NUMBERS
I IF NOT ZERO THEN ADD APPROPRIATE

Workshop User's Guide
for the Lisa™ |

0351-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returmned
a registration card received with the product. You should check periodically
with your authorized Lisa dealer.

Limitation on warrantles and Liability

All implied warranties conceming this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety (90) days from the date of original retail purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, elther express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantabllity, or fitness for any particular purpose. As a result, this
software and manual are sold “as Is,” and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored In or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may alsc have other rights that vary from state to state.

ii1

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, In whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on muitiuse licenses.)

iv

19-0352-A

Contents

Chepter 1
Introduction

The Workshop provides tools for program development. It provides facilities
for editing, language processing, and debugging, as well as commands for
managing files and configuring the system. The system also includes many
other utilities.

Chapter 2
The File Manager

The File Manager enables you to manage and manipulate files and volumes.

Chapter 3

The System Manager
The System Manager enables you to set default and configuration parameters
for the Lisa, and manage processes.

Chapter 4
The Editor

The Editor enables you to create and modify text files. These text files are
used as input to the Compiler and the Assembler.

Chapter 5
The Pascal Compller

The Compiler translates Pascal source code Into object code. Translation
requires two steps: first the compiler translates Pascal into 1-code; then the
code Generator translates the I-code into object code.

Chapter 6
The Assembler

The Assembler translates assembly language programs into object code.

Chapter 7
The Linker

The Linker combines object code flles Into executable programs.

Chapter 8

The Debugger
The Debugger enables you to examine memory, set breakpoints, and perform
other run-time debugging functions.

Chapter 9
Exec Flles

Exec flles enable you to execute a serles of commands and programs
automatically.

Chapter 10
The Transfer

The Transfer Program enables you to transfer files between the Lisa and a
remote computer. It can also let you use the Lisa as a terminal for a
remote computer. ‘

Chapter 11
The Utilities

Utlility programs are provided for debugging, configuring the system, and
manipulating fiies.

Appendixes
A Error

This section contains a list of error messages for the system, the Linker,
and the Assembler.

B8 The Lisa Character Set
This section defines the complete Lisa character set.

C Screen Control Characters
This section lists character sequences that can be used for controlling the
screen dispiay.

D Common Problems
This section contains some common problems and suggestions for handling
them.

Index

vi

0353-A

Preface

This manual is intended for experienced Pascal, BASIC, or COBOL
programmers. It describes the Workshop system, which is the environment in
which these languages are used. We assume you have read the L/sa owners
Guige and are familiar with your Lisa system.

Related Documents
For Pascal programming:

* Pascal Reference Manual for the Lisa

* MCE800G 16 Bit Micrgorocessor User'’s Marual

* (perating System Reference Maal for the Lisa
For BASIC programming:

* BASIC-Plus Users Guige for the Lisa
For COBOL programming:

s CABA. Users Guide for the Lisa

» CBA. Rererence Manual for the Lisa

Type and Syntax Conventions
Boldface type is used In this manual to distinguish program text from English
text.

Italics are used when technical terms are introduced.

Syntax diagrams are used to describe file specifiers and the syntax of exec
flles. For example, the following diagram describes a wild-card-spec:

wild-card-spec

=t

®
®

vii

Start at the left and follow the arrows through the diagram. Several paths
are possible. Every path that begins at the left and ends at the arrowhead on
the right is valid, and represents a valid way to construct a file specifier.
The boxes traversed by a path through the diagram represent the elements
that can be used to construct a wild-card-spec. Thus the diagram embodies
the following rules:

* A wild-card-spec can begin with a string (string-1) or the string can be
omitted.)

* A wild-card-spec must contain one of "=", "?", or "$".

* The "=", “?", or “$" can pe followed by a string (string-2) or the string can
be omitted.

The name contained in a rectangular box is the name for some other
syntactic construction that is specified by another diagram. The name in a
rectangular box is to be replaced by an actual instance of the construction
that it represents.

Symbols such as reserved words, operators, and punctuation, are enclosed in
circles or ovals. Text in a circle or oval represents itself, and is to be
written as shown (except that capitalization is not required).

viii

NOTES

-0054-A

11

12

13

17

18

19

Chapter 1
Introduction

The Workshop enereetaaresseeeseserentananneaseasnnatasaeasassansnsne 1-1
The workshop provides the functions necessary to develop and run
programs on the Lisa. The Workshop can be booted from either a
diskette or a ProFile.

Starting the WOrKShop «.......cccoomuceeacceceenancanns 1-2
The workshop is started by booting the Lisa from a disk containing the
workshop software. You can use the Environments window to select

one of several available environments.

The Workshop Command Line 1-3
The workshop command line gives you access to the main system
functions and subsystems. All the Workshop commands are described in
this section.

File System Organization and Naming 1-6
Flles are stored on disk volumes and are accessed by specifying the

volume name and the flle name.

The Workshop User Interface 1-6
This section gives information on the user interface conventions used in
the Workshop system.

Utility Programs 1-9
Utility programs provide additional functions for the workshop. A

utllity program is started by choosing the RUN command from the
Workshop command line.

How Do I Install the Pascal Language System? 1-9
This section provides instructions for installing the Pascal Language
System onto your ProFile.

How Do I Write and Run a Pascal Program? 1-11
A Pascal program is written with the Editor. The source file must be
compiled and linked before it can be run.

How Do 1 write and Run an Assembly Language Program? 1-11
An assembly language program is written with the Editor. It must be
assembled and linked with a Pascal main program before it can be run.

1.10 How Do 1 Install the BASIC Language SYStem?ccccococmmreiceennnn 1-12
This section provides instructions for installing the BASIC Language
System onto your ProfFile.

111 How Do I Use the BASIC InteIpreter?ccccceecveceeeeneennecnenes 1-13
A BASIC program can be written using either the Editor or the BASIC
Interpreter to create the source file. The BASIC Interpreter will run
the program.

1.12 How Do I Install the COBOL Language System? 1-13
This section provides instructions for installing the COBOL Language
System onto your ProFile.

1.13 How Do 1 Write a COBOL Program? 1-15
A COBOL program is written with the Editor. After writing the
program, enter the COBOL language system to complle and run the
program. The COBOL system is invoked by pressing C In response to the
workshop command prompt.

1.18 UsSing the PrINLeY ... teneeeresscneeenes e 1-15
This section provides instructions on how to configure your Lisa for a
printer. Information is also provided on how to specify a default
printer when you have more than one printer connected to your Lisa

1.15 The Operating System 1-16
The workshop runs under the Operating System for the Lisa computer.
You can access Operating Systern routines through the SYSCALL
interface. More information about this interface can be found in the
Qoeraling System Reference Mearadl ror the Lisa

Introduction

11 The Workshop
The Workshop allows you to develop and run programs on the Lisa. It
provides tools necessary to write, debug, and run programs in Pascal, BASIC,
and COBOL. This manual explains how to use the Workshop and all of its
tools.

Cornmeand lines provide access to all Workshop functions. The main command
line, WORKSHOP, allows you to edit programs, run utilities or user programs,
and use the languages available on the system. It also provides access to two
subsystems: the File Manager and the System Manager.

The File Manager allows you to copy, delete, rename, and list disk files. It
includes a backup function, and functions for manipulating volumes. These
functions are listed in the FILE-MGR command line. (See Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command line.
(See Chapter 3.)

The Lisa system can display one of two screens, called the main screen and
the altemate screen. The Workshop system normally displays on the main
screen. The alternate screen Is used by the system Debugger. You can
change to the other screen display by pressing the right hand [OPTION] key and
holding it down while you press the [ENTER] key. The System Manager
contains the Console command, which can be used to specify where the
Workshop should display.

You can currently use the Workshop to write programs in Pascal, COBOL, and
BASIC. To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:
* Pascal Rererence Manual for the Liss

* MCB8000 16 Bit Microgprocessor User’s Menua! (if you want to use
assembly language or the Debugger)

= fpersting System Rererernce Manual for the Lisg (for information on
system calls)

For BASIC Programming:
* BASIC-Rlus Users Guide for the Lisa

Workshap Lsers Guide Introguction

For COBOL. Programming:
* COBA. Users Guioe for the Lisa
» CBA Rererence Manil for the LIsa

If you have only a BASIC or COBOL system, you will not have all the software
described in this manual. Specifically, you will not have the Debugger and
can disregard the sections that pertain to it. The portions of this manual that
will be most useful to BASIC and COBOL programmers are:

* The Introduction, which describes how to use the Workshop.
* The File Manager, which describes files and how to manipulate them.

* The System Manager, which describes setting up the system configuration
parameters.

» The Editor, which describes how to create and modify text flles, which are
used as source files.

You may also use some of the utilities if they are included in your software.

12 sStarting the Workshop
The Workshop can be booted from a diskette or a ProFile™. It will most
commonly be used with a ProFile, because hard disks have more space and are
faster. See the LJ/sg Owners Guice for instructions on booting the system.

To start the system, boot from a disk that contains the workshop software. If
your disk contains only the workshop environment, the workshop command
line will appear at the top of the screen. If you have more than one
environment (for example, the Workshop and the Office System) you can use
the Environments window to start up the environment you want, and switch
between environments.

The Environments window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically when you boot the system. To access the Environments window
while booting the system, press any key while the Lisa is starting up. The
Environments window will be displayed.

The Environments window s shown in Figure 1-1. It displays five buttons:

Power Off Turn off the Lisa

Restart Reboot or reset the Lisa

Start Start the selected environment

Set Default Set the default to the selected environment
No Default Display the Environments window on startup.

Workshop Lsers Guice Introouetion

To select an environment, move the pointer to the checkbox of that
environment and click the mouse button. Then move the pointer to the start
button and click. The selected environment will start.

To access the Environments window from the Workshop, for example, to select
another environment, use the Quit command from the workshop command line.

Environments

B WorkShop Set Default

[] Office Susten
No Default

Start

Figure 1-1
The Environments Window

1.3 The Workshop Command Line
when you select the wWorkshop environment, the workshop command line
appears at the top of the screen. This command line lists all the prirmary
workshop commands and gives access to several subsystemns with additional
commands. The wWorkshop line displayed contains only some of the commands
available. You can see the rest of the commands by pressing “?", the last
symbol on the line. To return to the original command line, press [RETURN]
Pressing the first letter of a command initiates the command.

Most commands will ask for additional information. Type in the information
using the Lisa keyboard. Some questions have a default value, displayed in
square brackets ([default]). To accept the default value, press [RETURN} If
you don't want the default value, type In the value you want.

Two other subsystems have separate comrmand lines: the File Manager and the
System Manager. Their command lines can be accessed from the Workshop
command line, and are used the same way.

1-3

workshap Users Guloe Introauction

The maln, or workshop, command line is as follows:

WORKSHOP: FILE-MGR, SYSTEM-MGR, Edit, Run, Pascal, Basic, Cobol, Quit, ?
The additional portion, displayed by pressing 77, is:

Assemble, Debug, Generate, MakeBackground, Link, TransferProgram
All the main command line commands are described as follows:

FILE-MGR (F) :

This command puts you into the File Manager subsystem, which is used to
manipulate the files and volumes on the system. For more information on the
flle manager, see Chapter 2 in this manual.

SYSTEM-MGR (S)

This command puts you Into the System Manager subsystem. This subsystem
provides various configuration and utility functions. See Chapter 3 in this
manual for more information.

Edit (E)

The Edit command puts you into the text editor, which is used to create and
modify text files. The Editor is used to create source files for BASIC, COBOL,
and Pascal. It is also used for assembly language programming and to create
exec files. The Editor is described in Chapter 4 in this manual.

Run (R)

The Run command causes a complled and linked program to execute. This
command Is used for user-written Pascal programs, utility programs, and any
other software that runs under the workshop. The Run command asks you for
the flie to run. This file must be an executable object file or an exec file.
when you give the Run command a file name with no .0BJ extension, it will
first search for that file name. If It is not found, It will search for
fllename.ob). If you do not specify a volume name, the Run command will
search through up to three default volumes for the flle. (See Section 2.4.1 for
an explanation of volume name.) These defaults can be set by the Flle
Manager's Prefix command. See Chapter 2 for more information on the Prefix
command.

The Run command will also accept an “exec file" as input. An exec file is a
scenario of commands for the workshop system to carry out. An exec file
name must be preceded by a "<" or “exec/" to be processed correctly. For
more information on exec files, see Chapter 9 in this manual.

Pascal (P)

This command starts the Pascal Compiler. The Compiler asks for the input
file, which must be a text file; the listing file; and the output file, which will
contain the object code. The Pascal Compller is described in Chapter 5.
Further Information on the Pascal language can be found in the Pasca/
Reference Manual for the Lisa

Workshgp User's Guice Introguction

Compilation is In two steps. The first step, done by the Pascal command,
produces an intermediate code file. After this, you must use the Generate
command, (press G) to generate an object file from the intermediate code file.

Basic (B)

This command puts you into the BASIC Interpreter. More information on
BASIC programming can be found in the BAS/C-Flus User's Guide for the
Lisa

Cobol (C)

This command puts you into the COBOL language system. More information

on COBOL programming can be found in the COBCOL (kser’s Guige for the Lisg
and the COBCK Refererce Menugl for the Lisa.

Quit(Q)

The Quit command ends the workshop environment. You can use it to access
the Environments window to start another environment or to turn off your
Lisa.

The following prompt line appears after you confirm that you want to leave
the shell:

workShop_shell, Another_shell, Reboot, Power_off

Type the first letter of what you want to do, for example, type A to access
the Environments window.

Assemble (A) ,

The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MCOB8000 16 Bit Micrgprocessor
Users Manual

Debug (D)

The Debug command causes your program to run with a breakpoint inserted at
the first instruction in the program, so you can use the debugger on the
program. More Information on the Debugger can be found in Chapter 8 of
this manual.

Generate (G)

The Generate command converts intermediate code files produced by the
Pascal compiler into object code. It is used with the Pascal Compiler and is
described in Chapter S.

MakeBack ™)

The MakeBackground command allows you to start up a background process,
then continue using the Workshop for other functions. It is assumed that the
background process will not try to display on the console or require keyboard

inpu;.

1-5

workshap Users Guide Introduction

Link (L)

The Link command executes the Linker. The Linker is used to prepare
compiled Pascal programs and assembled routines for execution, and to link
together separately compiled pieces of a program. The Linker is described in
Chapter 7.

Transfe

The Transfer Program allows your Lisa to communicate with a remote
computer. It can be used as a terminal, or to transfer files between the Lisa
and the remote computer. The Transfer Program is described in Chapter 10.

14 File System Organization and Naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains. A file is specified by giving
the name of the volume and the name of the file:

-volumename-filename

The Workshop maintains a working directory; you can access files in it
without specifying a volume name. The working directory can be changed by
using the File Manager's Prefix command. Files on the working directory can
be specified by just the file name, with no leading “-™:

filename

Further information on the file system can be found in Chapter 2 of this
manual and in the Querating System Reference Manual for the Lisa

15 The Workshop User Interface
This section describes conventions and standards used in the Workshop system.
These ways of requesting input from the user are standard throughout the
systemn to make it easier to use.

151 File Name Prompts
Many of the Workshop prompts are for file names. In the Lisa Operating
System, you have few restrictions on what characters you can put in file
names. However, you should be aware that the following restrictions exist in
the workshop:

1. You can embed blanks, but leading and trailing blanks and tabs will be
removed when the Workshop processes your file prompt input.

2. Cases are preserved as you specify them.

A pat/mame has three parts: a device name, a file name, and an extension.
The following conventions apply to a path name:

device (or volume) name is up to 32 characters long, excluding .

file name is composed of alphabetic or numeric
characters; spaces are permitted.

1-6

Workshop User's Guioe Introguction

extension is composed of alphabetic or numeric
characters; spaces are permitted. An
extension is optional. If present, it is the
final "' and any characters that follow
(there must be at least one) in the
pathname.

The combined length of the file name, plus extension, cannot exceed 3
characters. ,

Prompts often include default values. You do not have to enter parts of file
names already supplied by defaults.

If a prompt includes a default extension which you don‘t want (except if the
file name consists of only a logical device name), put a period at the end of
the file name. The period will be removed and no extension will be added.

The following sections explaln the standard responses allowed to prompts.

1511 The CLEAR Key
The [CLEAR] key on the Lisa keyboard is an escape key. You can use it in
response to a file name prompt to abort out of the command or program. No
[RETURN] is required after pressing the key.

1512 Prompts with Single Default Values
when a default value for part of a flle name exists, it Is shown enciosed in
brackets in the prompt message; for example, [.text] indicates that there is a
default file name extension value, and that that value is .text. If a default
value iIs present, you need specify only the file name part not supplied by the
default.

Extensions will not be added to file specifications consisting of device names
only. Therefore, if you want to specify only a device when there is an
extension default (for example, when prompted for a listing file with a default
extension .TEXT and you want -printer), simply use -printer.

To use the default value for an entire file name, respond with [RETURN]} If
you do not want any file to be used, even if a default value exists, respond
with a backslash "\".

1513 Prompts with Altemate Default Values
Alternate defaults are indicated by a slash. For example:

{-consolel]f.text]

means you have a choice of either the console or a ".text” file. To choose the
console, simply press [RETURN] To choose a text file, respond with a file
name.

15.1.4 Prompts with Separate Default Values
Each of the parts of a file name might have a separate default value, such as
[-paraport] [-intrinsic] [.1ib] If each of the defaults is independent:

Workshop Users Guide Introguction

* a response with no device specification gives you the default device.
* a response with no file name gives you the default file name.
* a response with no extension gives you the default extension.

Sometimes the defaults depend upon each other. For instance, the prompt
{-paraport-intrinsic] [.1ib] indicates dependency, because the first two
components are enclosed in the same set of brackets. When defaults are
dependent, if you choose one or the other of them, you will get both. Be sure
to look at what has been included in the brackets to see whether the defaults
are independent or not.

1515 Prompts with No Default Values
If you find that no default value is given in the file name prompt, use
[RETURN] or a backslash to specify no file. Sometimes a file is required for
the system to perform its function. If this is the case, and you specify no
file, the program terminates.

15.16 Ending a List of Prompts
Some Workshop tools prompt for lists of files, as does the Linker. To indicate
that you are finished responding to a prompt for a list of files, use [RETURN]

1517 The ? Response
If you need help, or a list of program options, respond to a file name prompt
by pressing the ? key followed by [RETURN] Then proceed according to the
information that appears on your screen.

152 How to Terminate an Operation
You can terminate the operation of most commands and programs by pressing
®-period, although termination might not be immediate if the program being
run does not recognize &-period.

NOTE

Note that most Workshop tools check for &-period from the keyboard
even when running under exec files. This means that you can abort
workshop tools in exec files.

Unless user programs are written to recognize the &-period key combination
as an abort mechanism, pressing those keys will not terminate the program
being run. (See PASLIBCALL, Section 5.4, for information on the function
PAbortFlag, which tells whether or not those keys have been pressed.) If this
is the case, you can either:

* wait for the user program to terminate so that €-period can be recognized
by something else, or

* press the NMI key, which forces the system into the Debugger. The NMI
key is the "-" key on the numeric keyboard.

See Section 8.2 for instructions on how to stop a user program early.

Workshap Users Guice Introdietion

153 How to Halt a Screen Display
If you want to temporarily stop the screen display, press the & key and type
S, which stops the program from running by blocking its current output
operation. when you want to restart the screen display, again press €-S.

1.5.4 Inserting and Ejecting Diskettes
You can usually insert a diskette at any time. It will be mounted and :
accessible after you press any key, except the €, [CAPS LOCK], [OPTION], or
[SHIFT] key, on the keyboard. You can usually eject a diskette by pressing
the diskette button and then hitting any key on the keyboard. (when you are
in the Editor, the Preferences tool, or TransferProgram, you do not need to hit
a key after pressing the diskette button.)

Mounting and unmounting diskettes is handled by the Pascal run-time system
in the Workshop. Therefore, the act of inserting a diskette or pressing the
eject button is not recognized until Pascal 1/0 is performed, thus the necessity
of hitting a key. If the program you are running does not use Pascal 1/0, you
must first return to the Workshop command line. Then enter the File Manager
and Mount or Unmount your diskette.

16 Utllity
The Workshop provides various utility programs, which support functions used
less often than the functions you obtain through primary commands. The
utilities are described in Chapter 10.

You must Run utilities. Choose the Run command from the main command
line by pressing R when the main command line is displayed. The system will
ask you for the name of the file to run. Type In the name of the utility you
want to run.

1.7 How Do 1 Install the Pascal Language S
Because the Lisa Office System is a standard product, you »2ast install it
before you install any optional language systems.

To Install the Pascal language system, start with your ProFile on and your
Lisa off.

1. Insert the "Pascal 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the & key and type either 1, if you put the diskette in drive 1
(the upper drive), or 2, if you used drive 2 (the lower drive)

4. wait. 1t will take about 3 minutes for the Lisa to load in the Operating
System and the Workshop shell from the diskette,

Workshop Users Guioe Introouction

NOTE

If you want to stop the loading process at any time after the system
has booted, hold down the & key while you type a period. The system
will stop copying files and you will enter the workshop environment.

5. when the system is finished booting, you will see some information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

* The system will ask if you want to go ahead with the process. (Type Y
for yes.)

* The system will ask you where the target ProFile is attached. It must
be attached to the built-in parallel connector (PARAPORT), or the
upper or lower connector of the parallel interface card in expansion
siot 2 (SLOT2CHANZ and SLOT2CHANL, respectively).

* The system will then ask you to insert the secong Workshop diskette,
“Pascal 2".

* The system will then ask if your ProFile needs to be initialized. Do
no¢ initialize your ProFile if there is already an Office System on it!

If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. “Enough space” for a whole
workshop means about 1500 blocks. If you already have another
workshop Language System on the ProFile, then “"enough space" means
about 700 blocks. (The language systems share about 800 blocks.)

* If you do initialize your ProFile, you will be asked if there is now a
Lisa O0S volume on it. Answer Y if the ProFile has ever been used with
a Lisa.

‘You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually being executed.

If you get any error messages. stop the process by typing ®-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and

call the Apple® Support Hotline to find out what to do.

when all the flles on the “Pascal 2" diskette have been copied, the system
will eject the diskette and ask you to insert the "Pascal 3" diskette, then
continue to copy files.

1-10

Workshap Lsers Guide Introokiction

when the system is finished copying files, the Workshop command line will
appear.

1.8 How Do 1 write and Run a Pascal Program?
To write and run a Pascal program, proceed as follows:

1.

5.

Use the Editor to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See the
FPascal Reference Marvgl for the Lisa for information on the language.

Compile the program with the Pascal command (press P while the
workshop command line is displayed). The output from the compiler is an
intermediate file.

The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object file. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more information on compiling Pascal programs.

Link the program with the Link command. In order to be executable, the
program must be linked with the Pascal support routines contained in
IOSPASLIB.0BJ. If you are using any REAL variables, you must link your
program to I0SFPLIB.0BJ. For other applications you can alsc use other
libraries and units, or assembly language routines. More information on
the Linker can be found in Chapter 7.

The linker produces an executable object file. Press R to run the program.

Information on making system calls from Pascal can be found in the (perating
Systern Reference Marwal for the Liss

19 How Do I Write and Run an Assembly Language Program?
Assembly language programs must be called as procedures or functions from a
Pascal main program. To write an assembly language routine, proceed as
follows:

1.

2.

3.

Use the Editor to create an assembly language source program. See
Chapter 6 of this manual for information on assembly language. Chapter 4
describes the Editor.

Press A 1o execute the Assembler. The Assembler accepts the text file
you created and produces an object file.

Declare the routines you wrote in assembly language as EXTERNAL in the
main Pascal program that calls them.

Use the Pascal and Generate commands to create an object file from the
Pascal program. See Section 1.8 for more information.

1-11

Workshop Users Guioe Introgiiction

5. Use the Link command to link the Pascal object file, the assembly object

file, IOSPASLIB.0BJ, and any other needed units or libraries.

6. Use the Run command to run the resulting object file.

1.10 How Do I Install the BASIC Language System?
Because the Lisa Office System is a standard product, you /must install it
before you install any optional language systems.

To install the BASIC language system, start with your ProFile on and your
Lisa off.

1

Insert the "BASIC 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

Hold down the & key and type either 1, if you put the diskette in drive 1
(the upper drive), or 2, if you used drive 2 (the lower drive).

wait. It will take about 3 minutes for the Lisa to load in the Operating
System and the Workshop shell from the diskette.

NOTE

If you want to stop the loading process at any time after the system
has booted, hold down the ® key while you type a period. The system
will stop copying files and you will enter the Workshop environment.

when the system is finished booting, you will see some information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

* The syst)em will ask if you want to go ahead with the process. (Type Y
for Yes.

* The system will then ask you where the target ProFile is attached. It
must be attached to the built-in parallel connector (PARAPORT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHANZ and SLOT2CHANI, respectively).

* The system will then ask you to insert the second Workshop diskette,
"BASIC 2.

* The system will then ask if your ProFile needs to be initialized. Do
not initialize your ProFile if there is already an Office System on it!

1-12

workshop Users Guide Introdetion

* If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. “Enough space” for a whole
Workshop means about 1500 blocks. If you already have another
workshop Language System on the ProFile, then “enough space” means
about 700 blocks. (The language systems share about 800 blocks.)

* If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it. Answer Y if the ProFile has ever been used with
a Lisa.

You will now see a lot of text flash by on your screen-~don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually being executed.

If you get any error messages, stop the process by typing &-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

when all the files have been copied, the Workshop command line will appear.

1.11 How Do I use the BASIC Interpreter?
To use the BASIC Interpreter, proceed as follows:

1. Use the Basic command by pressing B when the main command line is
displayed. You will enter the BASIC Interpreter.

2. Enter the BASIC language statements and commands necesary to write and
execute your program. The BASIC Interpreter can execute statements
immediately or save them to run later. You can retumn to the main
command line by using the BASIC command BYE.

You may also use the Editor to prepare or modify the BASIC source program,
then use the BASIC Interpreter to run it. See Chapter 4 in this manual for
more information on the Editor.
See the BASIC-Fius Users Guide for the Lisa for more information on the
language.

1.12 How Do [Install the COBOL Language System?
Because the Lisa Office System is a standard product, you must install it
before you install any optional language systems.

To install the COBOL language system, start with your ProFile on and your
Lisa off.

1. Insert the "COBOL 1" Language System diskette into your Lisa’s upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the & key and type either 1, if you put the diskette in drive 1
(the upper drive), or 2, if you used drive 2 (the lower drive).

1-13

Workshp Lsers Guice Introaction

4. wait. It will take about 3 minutes for the Lisa to load in the Operating
System and the Workshop shell from the diskette.

NOTE

If you want to stop the loading process at any time after the system
has booted, hold down the & key while you type a period. The system
will stop copying files, display "Exec processing aborted”, and you will
enter the workshop environment.

5. when the system is finished booting, you will see some information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

The system will ask you where the target ProFile is attached. It must
be attached to the built-in parailel connector (PARAPORT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHANZ and SLOT2CHANI, respectively).

The system will then ask you to insert the second Workshop diskette,
"coBaL 1.

The system will then ask if your ProFile needs to be initialized. Do
not initialize your ProFile if there is already an Office System on it!

If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space™ for a whole
Wworkshop means about 1500 blocks. If you already have another
workshop Language System on the Profile, then “"enough space™ means
about 700 blocks. (The language systems share about 800 blocks.)

If you do initialize your ProfFile, you will be asked if there is now a
Lisa 0S volume on it. Answer Y if the ProFile has ever been used with
a Lisa.

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually being executed.

If you get any error messages, stop the process by typing &-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.

1-i4

Workshap Users Guice Introguction

113 How Do I write a COBOL Program?
To write a COBOL program, proceed as follows:

1. Create a text file containing the source program by using the Editor. See
Chapter 4 in this manual for more information on the Editor.

2. Press C to enter the COBOL language system. More information on COBOL
programming can be found in the CBA. Lkers Guioe for the Liss and the
CaBA. Reference Manal for the Lisa

Use the Quit coomand to exit back to the main command line.

1.14 Using the Printer
To use a printer with the Workshop system, you must set up the printer
correctly, and configure your system for the printer. If you have more than
one printer you will want to set up one of them as the default printer. These
operations are explained below.

Setting up the Printer

The procedure for setting up a printer varies with the type of printer. See
the instruction manual that came with your printer for directions on how to
set it up correctly.

If your printer is an Apple Imagewriter, the default standards which have been
factory preset should be satisfactory for normal use. However, if you want to
modify the performance of the Imagewriter, you can get the technical
specifications from the Agple Imagewriter Lsers Manual, Part I: Reference.

Configure Your Lisa for a Printer
Follow these steps to configure your Lisa for a printer:

1. From the Workshop command line, press S to enter the System Manager
subsystem.

2. Then press P for Preferences. The Preferences tool is used to set up the
configuration of the Lisa system and the Workshop.

3. Click on Device Connections to display what devices are connected to the
Lisa.

4. Select the port to which your printer is connected. When you select the
port, all devices that can be connected to that port are displayed.

5. Select printer, and additional configuration options are displayed.

6. when you are finished configuring your printer, select Quit from the Tools
menu.

7. Then exit from the System Manager back to the Workshop command line
by pressing Q for Quit.

1-15

workshap Users Guide Introauction

Any changes made with the Preferences tool are made immediately to
Parameter Memory, but changes in device connections do not take effect until
the next time the Lisa is booted. Therefore, if you want to continue working,
it Is necessary to reboot your Lisa now. For additional information on the
Preferences Tool, refer to Section 3.3.

To reboot, perform the following steps:

1. Press Q for Quit.

2. Select Y in answer to "Are you SURE you want to LEAVE the shell?”
3. Press R for Reboot.

when the system has finished rebooting, the changes you made will be in
effect.

Setting a Default with Multiple Printers

If you have multiple printers connected to your Lisa, you can specify which
one is to be the default printer. This means that you can establish which
printer will be designated by -printer.

First configure all of the devices you want connected to the Lisa. (See the
previous section and Section 3.3 for instructions on configuring devices))

After you have rebooted, return to the System Manager command line. Select
D for DefaultPrinter, and enter the device name of the default printer. If you
do not want to change the device name, because you want the default to
ri?rélain as it is, press [RETURN] to exit back to the System Manager command
line.

Rebooting is not required for the default printer setting to take effect.
However, if output redirect to the printer is in effect, you will have to do the
output redirection again.

Details on the DefaultPrinter option are available in Section 3.2.

1.15 The Operating System.
The Workshop runs under the Operating System of the Lisa computer. You can
use some Operating System routines from a Pascal program to perform special
system functions for you. These system calls are defined in the intrinsic unit

SYSCALL. The dependencies of the Lisa wWorkshop environment are shown in
Figure 1-2 on the following page.

More information on the SYSCALL interface and routines can be found in the
Lisa Operating System documentation.

1-16

Workshgp User'’s Guide Introguction

IPIIIIZFTIIFI Iy IFVT.

QuickDraw
- aa
Bit-Map Graphics
Flt Pt Library
<% <
Full IEEE Numerics
Pascal Run-Time Library
g <
L0 | Heap }StringsjMath

1

Lisa Operating System
Memory Mgmt § File System

y

Process Mgmt

Figure 1-2
Lisa Workshop Environment

1-17

NOTES

19-0354-A

21

24

25

26

2.7

28

29

Chapter 2
The File Manager

The Flle MANAOEYccceeeiciimciirticericacmenreeome ettt oase s cnesesanansonanens 2-1
The File Manager allows you to manlpulate flles volumes, and devices.
Using the Flle Managerccccemmmencececncmnecaeemmmmacmeoenseessmmnnnsasaneas 2-1

Press F at the wWorkshop command line to display the File Manager
commands. The first letter of each File Manager command invokes
that command.

The Flle Manager COMMENDScccceeuerereceeensesasmmamoennesesasemmannnsassananns 2-1
This section lists and defines all File Manager operations.

The Workshop View Of FIIES..... ..o orreeeiiicracieneeansscececaeeeaeaes 2-8
Each disk can contain a volume which has a directory of files. File
extensions (.TEXT, .0BJ, and so forth) are added to some files with
special uses.

Using wild Card Characters 2-11
wild card characters allow you to name groups of files by giving
filename pattems to be matched. The wild card characters are =, $, 2.

How Do I List Existing Files?.... 2-13
To list all the files on a volume, use the List command or the Names
command. You can use wild cards to list subsets of the files on the
volume.

How Do 1 Copy a File? 2-13
To copy a file, use the File Manager Copy command. Similar to the
Copy command, the Backup command is also used to copy files. If you
want the old file deleted after the copy operation is successful, use the
Transfer command. You can copy multiple files by using wild cards.

How Do I Delete a File? 2-14
To delete a file, use the File Manager Delete command. You can
delete more than one flle by using wild cards.

How Do I Create and Use a Volume? 2-15
Use the Initialize command to create a volume. The volume must be
mounted before you can use it.

2.10 How Do I Change the Name of a File or VoOIume?ccccenneeeeee
To change the name of a flle or volume, use the Rename command.

The File Manager

21 The File Manager
The File Manager is a subsystem of the Workshop. It provides file and device
manipulation facilities, and handles most of the tasks of transferring
information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directories, rename or delete files,
find out what volumes are on line, initialize new disks or diskettes, print files,
and so on. See the Quersting System Reference Marual for the Lisa for more
information on the File System and supported devices.

22 Using the File Manager
To use the File Manager, press F in response to the Workshop command

prompt. The File Manager begins executing, and displays the File Manager
prompt line:

FILE-MGR: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?
Pressing 7" displays the additional command line:

Equal, FileAttributes, Initialize, Mount, Names, Online, Scavenge, Unmount
To redisplay the original command line, press [RETURN]

To execute any command, press the first character of that command name
while- the File Manager command line Is displayed. Most commands ask for
file names, or other input parameters. If there is a default value for a
parameter, it is displayed in square brackets ([default] . To accept the
default, just press [RETURN] If you do not want the default, type in the
value you want.

To manipulate files with the File Manager you need to address the file with a
file specifier A file specifier can be an 0S pathname (representing a file on
a disk or diskette), an 0S volume name (for example, -MYDISK), the name of a
physical device (for example -RS232A), or the name of a logical device (for
example -printer). File specifiers can contain wildcards enabling them to
specify a collection of files. See Section 2.5 for more information on
wildcards. See Section 2.4 for more information on file specifiers.

23 The File Manager Commands
The File Manager commands are listed in the File Manager prompt line. They
* are: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, Equal,
FileAttributes, Initialize, Mount, Names, Online, Scavenge, and Unmount.

Each of these operations is described below. Information on wild card
characters can be found in Section 2.5.

2-1

Workshop Users Guide The File Manager

231 Backup (B)
The Backup command executes a simple backup utility, similar to Copy. It

asks for source and destination file specifiers, which will most likely contain
wild cards (see Section 2.5). It then compares the source files to the
destination files. Whenever the contents of the two files are not equal, the
source file is copied. If a source file is missing from the destination, it is
copled. Thus it copies only different files from the source to the destination.

NOTE

The destination file is temporarily named Workshop.temp, and the
source file is automatically copied. If the copy is successful, the
destination file is renamed with its original name, and the files are
compared. If the files are different, the first file is deleted. Ordering
the process this way prevents deletion of the destination file before
verification that the source file is good.

Because the file name Workshop.temp is internally involved in the
Backup command, do not assign that name to your files.

232 Copy (O)
The Copy command copies files. It asks for a source file specifier and a

destination file specifier. You can use wild cards if you want to copy more
than one file. The source file(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. If you change the
default, the source file is compared to the destination file after the copy
operation to ensure that they are the same. The Validate command is
described in Chapter 3.

Text files are handled specially when copied to the -printer or -console
logical devices. lLeading blanks in a line of text might have been replaced by
aO?DLE,count) pair to save disk space. As such pattems are detected, they are
replaced by (count) blanks in the copy of the file sent to the printer or
console. All other flles are sent byte by byte unchanged.

233 Delete (D)
The Delete command is used to delete a file or a number of files specified by
a wild card expression. It asks you to specify the files to be deleted.

234 List (L)
The List command lists information about the files matching the given file
specification. If all you need is the names of the files, use the Names
command described in Section 2.3.13.

Workshop User’s Guice

The File Manager

* If the file specifier is a file name (for example -MYDISK-example.text)
information from only that file is listed.

* If the file specifier is a volume name (for example -MYDISK), information
about all files on the volume is listed.

s If the file specifier includes a wildcard character (for example,
-MYDISK-~.text) information about all matching files is listed.

The list command displays the following information:
Filename The name of the flle.

Size The logical file length in bytes.

Psize The physical file length in blocks (512 bytes).
Last-Mod-Date Date and time the flle was last changed.
Creation-Date Date and time the file was created.

Attr File attributes, a combination of the following:

C File was closed by the Operating System.

L Flle is locked. It cannot be deleted until the flle
safety switch Is tumed off. (See FileAttributes
command later in this section.)

o File was left open when the system crashed.

P File is protected.

S File has been scavenged.

An example of the list display is shown In Figure 2-1.

Contents of volume -paraport—=

Filename
SYSTEM.DEBUG2
SYSTEM. JUDIRECTORY
SYSTEM.LLD
SYSTEM.LOG
SYSTEM.O0S

SYSTEM. SHELL
XEJECTEM.0BJ

235 Prefix (P)

Size Psize Last-Mod-Date Creation-Date Attr

14848 29 03/03/83-15:46 04/10/82-21:57
7168 14 07/18/83-09:31 02/23/83-10:33
9216 18 06/02/82-00:24 02/23/83-10:24
2992 é 07/18/83-16:56 06/08/83-17:49 0

188928 349 05/04/83-10:08 05/04/83-10:08 CB

8704 17 06/02/82-00:28 03/29/83-15:14 CO
512 1 06/02/82-00:27 03/29/83-13:22

Figure 2-1
The List Display

The Prefix command enables you to set up default volume names to search
when you specify a flle name without a volume name. You can set up to three
volume names that will be searched in order, when you try to run a program,
until the file is found. The first prefix is the name of the working directory.

workshop Users Guioe The File Msrager

It will be searched anytime you specify a file name without a volume name.
The second and third prefixes are searched when you try to Run a program
without specifying the volume it is on.

NOTE

The second and third prefixes affect the running of programs directly
from the workshop shell. They are not searched for programmatic file
operations, such as opening files, or for other File Manager operations.

The last option of the Prefix command asks if you want to initlalize the
Prefix set at boot time. Answer Y if you want what you have entered to be
established as defaults when you boot.

This command asks you for the three prefixes. If you want to accept the
gefault, If any, press [RETURN] If you want to set a prefix, type in the
volume name that you want. If you want to have no prefix, press [CLEAR] as
the prefix for that level.

236 Rename (R)
The Rename command enables you to change the name of a file. It asks for
the file name to change and the name to change it to. You can also use the
Rename command to change the name of a volume. The Rename command
can change the name of a number of files specified by wild cards. See
Siections 2.5 and 2.10 for more information on using wild cards and renaming
files.

237 Transfer (T)
The Transfer command asks for an Input file specifier and a destination flle
specifier. It copies the input file(s) to the destination and then, if the copy
was successful, deletes the input file(s) However, If you Transfer to the
-console or the -printer, the input file(s) will not be deleted.

238 Quit (Q)
The Quit command exits from the File Manager subsystem back to the
workshop command line.

239 Equal (E)
The Equal command compares the contents of two files to determine if they

are exactly the same. It asks for the names of the files to compare, then
compares them byte by byte and tells you if they are equal or unequal.

23.10 FileAttributes (F)
This cornmand is used to set and clear file attributes. You can set the safety
attribute, which prevents you from accidentally deleting a file. You can also
make a file into a protected master (see below).

To use the FileAttributes command press F in response to the File Manager
command prompt. It displays the command line:

FileAttributes: ClearAttributes, Safety, Protect, Quit.

2-4

wWorkshap User's Guide The File Manager

These commands are accessed by pressing the first character of the command.
They perform the following functions:

ClearAttributes (C)

The ClearAttributes command clears the C, 0, and S attributes on the
specified volume, file, or set of files with wildcards. These attributes are set
by the system, and have the following meanings:

C File was closed by the Operating System.
0 File was left open when the system crashed.
S File has been scavenged.

See the Scavenge command in Section 2.3.15 for more information.

Safety (5)

The Safety command allows you to set or remove the safety attribute (L) on
any file. when the safety attribute is set, the file is called "Locked” and

cannot be deleted. To delete a file with safety on, use the Safety command
to remove the attribute, then delete the file.

Protect (P)

“The Protect command is used to make an executable object file into a
protected master. This is a form of copy protection for programs. Once a
file is made into a protected master, this protection cannot be removed. A
protected master has the following characteristics: ‘

e It can be run on any Lisa machine
* 1t can be copied on any Lisa machine.

. Ciopies made will run only on the Lisa that made the /25t copy of the
file.

NOTE

Once a flle Is made into a protected master, there is no way to
unprotect it. Be sure you understand the characteristics of a protected
master before you create one.

This protection scheme is for executable object files. Note that
protecting a file does not prevent you from deleting it.

Quit (Q)
The Quit command exits from the FlleAttributes subsystem to the File
Manager.

23.11 Initialize (1)
The Initlalize command s used to format and initialize the File System on a
diskette or ProFile. It asks you for the device name to initialize, the number
of blocks to initialize, and the volume name. If you want the entire device to
be initialized, press [RETURN] for the number of blocks (accepting the

2-5

Workshgp Users Guide The Flile Menager

default). If the device is a diskette, it is formatted (ProFiles are factory
. formatted). Boot tracks are automatically written to any device that is
initialized. An initialized device is automatically mounted.

The Initialize command warns you If you attempt to initialize a oisk that
already contains a volume, because the contents will be erased. A volume is
initlalized to allow a certain maximum number of files. You can make this
number larger or smaller (if you know you will have a large number of small
flles, for example) when Initializing It.

2312 Mount (M)
The Mount command Is used to make an OS device accessible. It requests a
device name. It should be used whenever you connect a new device, such as a
ProFile. The Unmount command, described in Section 2.3.16, is used to
remove a device. All configured devices are mounted at boot time. The
configuration can be changed with the Preferences tool, which Is described in
Section 3.3.

2313 Names (N)
The Names command is a faster version of the List command. It gives you a
list of flle names only. It asks for a file specifier, and displays the names of
all files matching the given file specifier.

23.1a Online (0)
The Online command produces a list of all the devices that are currently
mounted and available, with the following information:

DeviceName The name of the device. ‘
VolumeName The name of the volume.
VolSsize The number of blocks on the volume.

FreeBlks The number of blocks still available.
Flies The number of files stored on the volume.
Open The number of files open on the volume.
Attr The attributes of the volume:

B8 The Boot volume.
P The Prefix volume (Prefix 1).
M volume s currently mounted,

The Online display is shown in Figure 2-2.

2-6

Workshap Lsers Guloe he Flle Meanager

FILE-MGR: Backup, Copry, Delete, List, Prefix, Rename, Transfer, Quit, 7R

Volumes on line

DeviceName VolumeName VolSize FreeBlks Files Open Attr
PARAPORT Fred’s Workshop 9698 754 178 16 MBP
SLOT2CHAN2 8 8] 8 M
RS232A] 2]] 8 M
RS232B 8 9] 8 M
MAINCONSOLE 8 2]] 1M
AL TCONSOLE -} a] 8 M
Figure 2-2
The Online Display
23.15 Scavenge (S)

The Scavenge command runs the 0S Scavenger, which restores damaged files.
Files can be damaged any time the Operating System terminates abnormally.

The Scavenger searches through a disk and restores its directories, files, and
allocation tables to a consistent state.

To scavenge a disk, use the Scavenge command and specify the device name.
After the scavenge Is complete, use the Mount command to mount it agaln,
and continue using it. The boot volume cannot be unmounted; therefore it
cannot be scavenged. If the ProFlle is normally your boot volume and you
need to scavenge it, it Is necessary to boot from a diskette or another ProFile
and run the Scavenger from it.

If a file is changed In any way by the Scavenger, the flle attributes are set to
S, for scavenged. This attribute Is displayed by the List command. The
changes made to the file might or might not affect the data in the flle,
depending on what state the file was in when it was scavenged. Examine any
file that has the scavenged attribute before relying on its contents. After the
file has been checked, you can remove the scavenged attribute with the
FileAttribute command.

Workshop User’s Guioe - The Flle Manager

NOTE

A disk’s File System can get into an inconsistent state if the Operating
System terminates abnormally, because the directories and allocation
tables are kept in memory and only written out to disk periodically. If
there is an abnormal termination, such as a power failure, the

to the state of the File System since these tables were written to disk
might be lost. Information can also be lost if you disconnect a ProFile
from the Lisa without first unmounting it. If the disk is used after
such an event, more data can be lost if the system allocates the same
blocks to more than one file.

The Scavenger always retums the disk to a consistent state, but it is
possible to lose data when the system crashes. This damage can
become even worse if the disk Is used while In an inconsistent state.

All scavenged files should be checked before you depend on tnelr
contents.

2316 Unmount (U)
This command makes a device inaccessible (takes it off line). It asks for a
device name. For diskettes, use a volume name to unmount, or @ device name
to unmount and eject, the diskette. Always unmount a device before
disconnecting it from a running machine.

24 The wWorkshop View of Files
workshop users are provided with a view of files and devices that is actually
a composite of what is provided by the Lisa Operating System, the Pascal
run-time system, and the File Manager itself. Each contributes a specific set
of facilities:

* The Lisa Operating System provides support for a variety of Input and output
devices, including both block-stnuectured devices (disks and diskettes) and
sequentlal cevices (RS232 ports, consoles).

* The Pascal run-time system provides support for several Iaglcal-wvlaes
(console, printer, keyboard) which are not provided by the OS.

* The File Manager provides wild-card facilities which enable many File
Manager commands to be applied to a whole set of files, rather than just
one at a time.

2A4.1 0S Volumes on Disk
Every block-structured device is organized as a single volume with a flat
directory structure. Volumes can be initially created on a disk by using the
File Manager's Initlalize command. The Initialize command:

1. Formats the disk (if necessary)
2. Records its assigned volume name of up to 32 characters.

Workshap Users Guide Tne Flile Manager

3. Creates its initial, empty directory (also called a catalog).
4. Mounts the initialized disk.

when an object Is created on a disk, its file name of up to 32 characters is
entered in the disk's directory. File names must be unique within a volume so
that every object can be clearly identified.

2.4.2 File Specifiers
within the workshop, file specifiers are used to identify the volume, device,
file, or set of files an operation applies to. The diagrams that follow show
the makeup of a file specifier and its components.

file~specifier
| volume-name wild—card-spec
physical-device
logical-device |
physical-device '< ‘ \f , >
—>(__LoweR)——
—(__PARAPIRT _)——
o SLOTMCHAND)——
o RS732A) —
—»(_ RszzB) —
logical-devi
e =+ _cosae) >
PRINTER
KEYBOARD

2-9

workshao Users Guide The File Manager

wllg-card-spec

N O T

O
(®

A physical device name refers to a specific hardware device or port, whether
or not there is actually anything connected or mounted there. when a device
is block-structured and mounted, its physical device name can be used in a
file specifier instead of the disk or diskette's volume name. Since sequential
devices are not mass storage devices, they never have volume names. The
only way to specify them is to use thelr physical device names followed by
dummy file names; for example, “-RS232A-X". Logical devices are also not
mass storage devices and do not have volume names. They can be referred to
by their logical device names only.

2.4.3 The Working Directory and the Prefix .
Sometimes, specifying the same volume name or physical device name again
and again is inconvenient. with the File Manager's Prefix command you can
establish a particular volume as the 0S's working directory. Otherwise, the
default working directory is the volume the system was booted from. If a file
specifier omits the volume or physical device name, the file or set of files is
assurned to be in the working directory. For example, if the working directory
Is. -MYDISK, the file specifier PROGRAM1.0BJ refers to the same flle as
-MYDISK-PROGRAM1.08J.

-UPPER The upper diskette; drive 1.

-LOWER The lower diskette; drive 2.

-PARAPORT ProFile attached to.the parallel connector.

-SLOTMCHANN ProFile attached to the Parallel Interface Card in siot m,
channel n (where m Is a slot between 1-3,and n is
channel 1 or 2).

2-10

workshap Lsers Guloe The Flle Manager

NOTE

To avoid confusion within the system, do not assign a device name to a
volume.

There are also two serial dgevices, -RS232A and -RS232B. These provide
access to extemal RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

—CONSOLE Used for output to the screen and input from the keyboard.
The actual device that is used as the console can be
changed by the Console command In the System Manager.
See Section 3.2 for information on the Console command.

~PRINTER Used to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tool,
described in Section 3.3.3. If you have more than one
printer, the one that will be used is specified by the
DefaultPrinter command described in Section 3.2.

-KEYBOARD Used as a nonechoing input device from the keyboard. This
is the keyboard on the console device.

Certain types of files In the system have stanoarg file extensions. These
extensions make it easier to keep track of the different types of files. These
file extensions are:

TEXT This indicates a text file in the format created by the Editor.

.0BJ This indicates an object code file. Object flles are created by
the code Generater, the Assembler, and the Linker. Object files
created by the Linker are executable.

1 This indicates an intermediate (I-code) file produced by the
Pascal Compiler. The Generate command converts an
intermediate file into an object code file.

LIB This indicates a library directory.

25 Using wild Card Characters
wild card characters allow you to specify a set of files to operate on. The
command s performed on all flles whose pathname matches the set specified.
Wwlld card characters are =", "7", and "$". Only one wild card character can
appear in a file specifier. These characters are used as follows:

stringl=string2
The “=" character stands for any sequence of zero or more characters that

can be ignored in the search. The surrounding strings (stringl and string2)
must be matched exactly, ignoring case. Either or both strings can be rull.

2-11

Workshgp Users Guide The Flle Manager

Here are some examples of using the “=" wild card character as a source file

- name:
ds=.text All flles beginning with ds and ending in .text.
=.0bj All files ending with .obj.
= All files.

when “=" Is used in a destination flle name, It is replaced with the characters
that were matched by a wild card In the source flle. This enables you to do
operations like change the name of a list of files as they are copied. Here
are examples of using "=" as a destination file name:

ds=text to bu/ds=.text Change all files starting with ds and ending
with .text so they begin with bu/.

qd.- ‘to quickdraw.- Change all files starting with qd to begin with
quickdraw.

string17string2
The “7" character Is the same as the "=", except that the system asks you to

confirm each file name before performing the operation. The "?" wild card
can be used only in a source string.

when you use a “?" In a source specifier, you are presented with a list of files
that match it. You can move backwards and forwards through the list by
using the up and down arrows on the numeric keypad. Press Y beside every
file that you want to be processed. When you have selected all the files you
want, press [RETURN] The operation will then be performed on the files you
selected after confirmation.

when using the List command, you cannot use the “?" wildcard in response to
the prompt for a volume name.

stringisstring2 ;
The “$" character can stand for part of a destination file name only, It is

replaced by the entire source file name. For example, if you have the source
files matching ds=.text:

dsfmgr.text
dssmgr.text ‘
If the destination expression is bk$, the output files will be:

bkdsfrngr.text
bkdssmgr.text

Contrast this with the output expression bk=text, which results in:

pkfmgr.text
bksmgr.text

2-12

Workshop User's Guide 7he File Manager

Hint: You can adopt conventions for naming files that pretend there is a
hierarchical file system: for example,

Source/F1l.text
Source/F2.text
Source/XYZ.text

26 How Do I List Exdisting Files?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command, but
it gives you only the file names.

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the wWorkshop command prompt.

2. Execute the List command by pressing L, or the Names command by
pressing N

3. If you want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed. (The "?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default volume, press [RETURN]

The listing produced by the List command is explained in Section 2.3.4.

‘You can send a copy of the directory to a file by following the specification
with a comma and then the name of the file to send the directory to. For

example,
-paraport-bk/=,foo.text
sends the directory to foo.text.
For more information on wild card characters, see Section 2.5 in this chapter.

27 How Do I Copy a File?
You can Copy a file and leave the original file intact, or you can Transfer a
file, which copies the file, then deletes the original file. To copy a file:

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press C to start the Copy command. (Press T, for Transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press [RETURN]L
4. Enter the pathname you want the file to be copied to. Press [RETURN]
The file is copied or transferred as you specified.

2-13

Workshop Users Guide The File Menager

If you want to copy a number of files with similar names, or all the files on a
volume, you can use wild card characters. See Section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all
the copies of the selected files.

The following are examples of copy and transfer operations:

Copy from what existing file(s)? myprog
Copy to what new file? -backup-$

(This copies the file myprog on the working directory te the volume
-backup with the same name, myprog.)

Copy from what existing file(s)? ds=

Copy to what new file? -backup-$
(This copies all files beginning with “ds” on the working directory to
the volume backup with the same file name.)

Transfer from what existing file(s)? -osback-0sg=

Transfer to what new file? -oswork-$

(This copies all files beginning with “osg" on the volume -osback to the
volume -oswork using the same file name. When the files have been
copied successfully, the original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma () in response to
the request for the source file.

Transfer from what existing file(s)? -osback-0sg=, -0Swork-$
(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? ds=,~backup-backds=

(This copies all files beginning with “ds” in the working directory to the
volume -backup with back inserted as the beginning of each file name.)

The Backup command is another way to copy files. It is selective, in that
only different files will be copied. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for mare information on the Backup
commeand.

2.8 How Do I Delete a File?
To delete a file:

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the workshop command prompt.

2. Invoke the Delete command by pressing D.

2-14

Workshop Users Guide The File Manager

3. Enter the pathname of the flle you want to delete.

4. The system asks you to confirm that you want to delete the file. Reply Y
to delete the file or N to keep it.

If you want to delete more than one flle, you can use wild cards. See Section
25 for more information on using wildcards.

29 How Do I Create and Use a Volume?
A volume can be created on either a diskette or a ProFile disk. Each disk
can contain one volume. Creating a volume on a disk gives the disk a name
and sets up a directory for flles.

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the workshop command prompt.

2. Press I to Invoke the Initialize command. This command asks for:

a.

b.

C.
d.

The device name (upper or lower for a diskette, slot2chan2 or paraport
for a ProfFile, and so forth)

The number of pages to initialize; the default is to initialize the whole
device.

The volume name.

The maximum number of files on the device; the default is a good
value unless you are using a large number of very small files or a few
very large files.

The volume is initialized, with an empty directory. (If the device is a
diskette, it is first formatted.) The system wams you if you are initializing a
device that has an existing volume on it, and gives you a chance to change
your mind before destroying the existing volume.

After initialization, the device is automatically mounted so it can be used.

2.10 How Do I Change the Name of a File or Volume?
The Rename command allows you to change the name of any file or volume,

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the workshop cormmand prompt.

2. Execute the Rename command by pressing R.

3. Enter the pathname of the flle or volume you want to rename.

4. Enter the new name. (The same device name Is assumed for a file.)
The name of the file or volume is changed.

You can use the Rename command to change the name of a group of files by
using wild card expressions.

2-15

NOTES

9-0355-A

32

33

Chapter 3
The System Manager

The System Manager . 31
The System Manager allows you to set certain system defaults and set

up the Lisa configuration, including external device connections and the
startup device.

The System Manager FUunCtionsccccccciiiarriirraiacianes 3-1
The System Manager is activated by pressing S in response to the

workshop command line. Its functions are accessed from a command
line stmilar to the workshop command line.

The Preferences Tool 33
The Preferences tool allows you to set up the system configuration and
to specify what external devices are connected.

Process Management - . - 39
The process management subsystem allows you to make selected
processes resident, display the status of all currently existing processes,
and remove processes.

The System Manager

3.1 The System Manager
The System Manager allows you to set system defaults and specify the system
configuration. Using it, you can:

e Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating keys.

» Set the configuration of external devices such as disks and printers.
e Set the default startup device.

= Set processes to be resident or nonresident, for performance tuning your
workshop system.

= Set which device is to be the console.
» Redirect output from the console to a file or external device.
* Monitor all currently existing processes, and remove processes.

3.2 The System Manager Functions
By pressing S in the main comand line, you can enter the System Manager
subsystem.

The System Manager command line is:
SYSTEM-MGR: ManageProcess, OutputRedirect, Preferences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing “?" shows you the additional line of commands:

Console, FilesPrivate, Validate, DefaultPrinter
Each System Manager command is described below.

rocess (M
This command puts you into a process management subsystem, which allows
you to select which processes should be resident for performance reasons. A
resident process will not be removed from memory when it terminates, so it
will not have to be reloaded when it is run again. It also allows you to
display the status of all currently existing processes, and remove processes.
The process managment subsystemn is described in Section 3.4.

OutputRedirect (0)

This command allows you to send a copy of all output that is displayed on the
console to another device, such as the -printer, or to a file on a disk. The
command asks you for the pathname to send the copy to. In order to return
to displaying only on the console, use the command again and redirect the
output to the -console device (which is the default).

Workshop Users Guice The System Manager

Preferences (P)

This command starts the Preferences tool which allows you to set up the
configuration of the Lisa system and the Workshop. The Preferences tool is
described in Section 3.3.

Time (T)

This command allows you to set the hardware clock/calendar's date and time.
See the L/sa Owners Guioe for more information on the system clock and
calendar. The date and time values are used for the creation and
modification dates on your files, so they should be kept correct.

Quit Q)
This command exits from the System Manager and returns to the main
workshop command line.

Console (C)

This command allows you to change where the Workshop console is displayed.
It may be displayed on the main screen, which is the default, on the alternate
screen, where the Debugger displays, or on an external terminal connected to
the RS232A or RS232B connector. when the main or alternate screen is used
for the console, output can be stopped and restarted by pressing ®-S. If an
external terminal is used with XOn/XOff processing enabled, then control-S
stops output and control-Q restarts it.

The console can be moved to the altemate screen when you run a graphics
program to prevent output from writelns from appearing on the graphics
screen (the main screen). You can display either the alternate or the main
screen by pressing OPTION-ENTER. When the console is moved to the
altemnate screen, both the console output (writelns) and the Debugger output
will be mixed together on the same screen.

FilesPrivate (F)

This command enables or disables the selection of private system files. The
Lisa Office System uses file names beginning with the “{" character for its
tools and documents, and the Workshop user should rarely be concerned with
such files. These files are called “private”. When selection of private files is
disabled (the default), the workshop File Manager's wild card mechanism will
exclude them from its selections unless the file specifier explicitly includes
the leading “[".

There are just a few private files which are used by the Workshop (for
example, {T1ijmenus.text). You must enable the selection of private files if
you want a single file specifier to refer to the entire set of Workshop system
files.

3-2

Workshop Users Guide The Systerm Manager

validate (V)

This command is used to set up how much verifying you want the Workshop to
do for you. There are two values you can set with this command. The first
is whether or not to verify file copies. The system verifies a copy by
comparing the original file with the copy to be sure they are the same. The
default is to never verify. You should have no reason to verify unless you
suspect something is wrong with your disk. The second value you can set is
whether or not your selections for File Manager commands are verified.
Selections are verified by listing the file names and asking you to confirm the
operation.

DefaultPrinter (D)

This command is used when you have more than one printer connected to your
Lisa. It tells the system which one will be the -printer logical device. It
first gives you a list of all the physical devices that have been configured by
the Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as —printer.

3.3 The Preferences Tool
Start the Preferences tool by pressing P in response to the System Manager
command line. It displays a8 window with four checkboxes and a tools menu.
The Preferences display is shown in Figure 3-1.

ols
O

Oconvenience Settings [OStartup ODevice Connections UWorkshop

Figure 3-1
The Preferences window

After you have finished with the Preferences tool, you can exit back to the
Systern Manager by selecting Quit from the Tools menu.

The Preferences tool allows you to set up your workshop system the way you
want it. It contains four sections:

* Convenience Settings that allow you to regulate screen contrast, the
speaker volume, and repeat delays.

* Device Connections that tell the Lisa system what extermnal devices are
connected.

Workshop Users Guide The System Mansager

* Startup, which tells the Lisa what device to use as a startup device.
* Workshop which sets up defaults for the workshop.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 10 hours when the Lisa is unplugged. If your Lisa is without
power for longer than this, and the parameter memory is lost, the preference
settings will be restored from information on the startup disk.

Any changes made with the Preferences tool change parameter memory
immediately, but some of them, such as device connections and startup
options, have no effect until the system is booted again.

The Preferences tool displays a window containing a number of buttons and
checkboxes. You set the values you want by using the mouse to move the
pointer to the desired options and clicking.

Four areas of preferences are described briefly below. More information on
the first three areas can be found in the LJsg Owrers Guige, Section D,
Desktop Manager Reference Guide. Select the area you want to view or
change by moving the pointer with the mouse to the checkbox in front of the
section name and clicking. .

33.1 Cenvenience Settings
The Convenience Settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa. These
characteristics are divided into three sections: Screen Contrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-2.

Workshop User's Guide The System Mansager

Tools
a0

i MConvenience Settings [OStartup ODevice Connections Oorkshop

(et Al Convenience Settings to Lisa Defaults

Screen Controst

Normal Level
dork 000000000 NOO00D0D0 D brignt QEAaegeem
Minutes Until Screen Dims contrast, adjust
0O1-2 M2-4 Os-10 O10-20 O15-30 O30-60 brightness on

bock of the Lisa

Dim Level
dork 00 O000ONOO000 000D bright [EEaces

H speaker Volume sharp,
siient (Ftash menu bar} 0 Sort @ 0 0O O O toud

A Repeating Keys

Delay
short DM O OO0 tong

Rate
Fast B00 00 O Stow

& Mouse Double Click Delay
short OB OO0 Long

Figure 3-2
Convenience Settings

Screen Contrast

The contrast portion contains three sections. The first allows you to select
the normal screen contrast level. Check in a contrast box until the contrast
level is comfortable. Checking a box immediately changes the contrast.

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place is set with the Minutes Until Screen Dims section.

3-5

Workshap Lsers Guide The System Menager

The third section allows you to set the dim contrast level. Checking a box in
the Dim Level section makes the screen dim to that level until you move the
Mouse.

Speaker Volume

The speaker volume section allows you to set how loud the Lisa's audible
alerts will be. Checking a box demonstrates the volume by causing two beeps
at the level you selected.

Rates

There are three rates that can be set, two for the keyboard and one for the
mouse. The first is the initial keyboard repeat delay. This is the length of
time a key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how quickly a key repeats after it has
staerted repeating. The third rate is the mouse double click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click. These three values should be set for your most comfortable use.

332 Startup
The Startup display allows you to specify the boot device and the type of
memory test to be performed on startup. The Startup display is shown in
Figure 3-3.

The Startup display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you want.

The Startup display also allows you to select a long or short memory test.
The brief test takes about 20 seconds, the long test takes about 40 seconds.

Changes made to the Startup display are put into parameter memory
immediately, but have no effect until the system is booted again.

Workshop Users Guide The System Manager

il| Preferences |}
Oconvenience Settings MStartup [Device Connections [Workshop
Start Up From:

Oiskette in Drive 1 (Upper)
Ooiskette in Drive 2 (Lower)

MDisk Attached to Parallel Connector

BBrief
OThoreugh

Figure 3-3
The Startup Display

333 Device Connections
The Device Connections display allows you to specify what external devices
are attached to the Lisa. When you choose Device Connections, the Lisa
displays a table showing all the connectors available, and the device (if any)
that is attached to it.

To tell the Lisa that you are attaching, removing, or changing an external
device, check the box for the connector you are using. The Lisa will display
a list of all devices that can be attached to that connector. Check the
correct device. If you are removing a device, check No Device.

For some devices, such as printers, another set of specifications appears.
Check the appropriate boxes for the device you are attaching.

Workshigp Users Guide The System /Marnager

Any changes made to the device connections are made immediately to
parameter memory, but they do not take effect until the Lisa is rebooted.
For the two serial ports, see the PortConfig utility in Section 11.10. A
typical device connections display is shown in Figure 3-4.

Tools

il| Preferences ||l
i OConvenience Settings Ostartup MDevice Connections Oworkshop

Connectors Devices Currently Connected
Expansion 2 lower ProFlie
Expansion 2 upper Dot Matrix Printer

OomOoocoOA

Parallel ProFile
Serial A Nothing Connected
Serial B Nothing Connected

1 Device You Intend to Connect
ENo Device [Daisy Wheel Printer (Dot Matrix Printer
Mhemote Computer

Figure 3-4
A Device Connections Display

33.4 Wworkshop
The Workshop display, shown in Figure 3-5, allows you to set parameters of
the workshop system. These parameters will not go into effect until you
reboot the system. Then they are stored in parameter memory and will stay in
effect until you change them.

Note that changes to the memory size affect all other systems (for example,
the Office Systern) and will prevent large programs from running.

with mouse scaling, equivalent X and Y movements of the mouse cause
diagonal cursor movement on the rectangular Lisa screen. Without scaling,
the cursor would move at a true 45-degree angle on the screen when X and Y
movements of the mouse are the same.

3-8

workshop Users Guioe The System Manager

il Pi’efév'écltes"lillf
Convenience Settings [(Startup Device Connections BWorkshop

Memory to use(ossuming 1 megabyte machine)
Wfull megabyte Othree quarter megabyte Ohalf megabyte

Enable Mouse Scaling?
Bno Oyes

Figure 3-5
The workshop Display

335 The Tools Menu
The tools menu provides you with two functions: Set all of PM to defaults,
and Quit. Set all of PM to defaults resets parameter memory to the standard
Lisa defaults. Quit exits from the Preferences tool, and puts a copy of the
current settings of parameter memory on the disk.

3.4 Process Management
The process management subsystem is started by pressing M in response to the

System Manager command line. This subsystem displays the following
command line:

Manage Process: AddResident, DeleteResident, KillProcess, ProcessStatus, Quit ?

Workshop Users Guioe The Systern Manager

This subsystem is used to control which processes will be resident. After a
resident process runs to completion, it is suspended and retained in memory, if
possible, rather than terminated and removed from memory. This allows it to
restart faster, because the process does not have to be recreated. For
example, if you are often using the Pascal Compiler and the Editor, you can
improve the performance of your workshop system for these applications by
making the Compiler and the Editor resident. This will allow much more
rapid shifting between the two.

See the Qperating System Reference Mamal for the uxa for more
information on processes

AddResident (A)

The AddResident command adds a process to the list of processes that are
resident. You supply the flle name of the object file that you want 1o be
made resident the next time it is executed.

DeleteResident (D)
The DeleteResident command removes a process from the list of resident
processes, but does not kill the process if it is currently running.

KillProcess (K)
The KillProcess command terminates a currently existing process, including a
background process, but does not remove it from the list of resident processes.

ProcessStatus (P)
The ProcessStatus command gives you information about all currently existing
processes. It provides the following information:

Pathname The name of the processes object file.

Process_ID The unique identifier assigned to the process.

State The current state of the process: Active, Suspended, or
waiting.

Resident Tells you if this is a resident process.

Quit

The Quit command exits from the process management subsystem back to the
System Manager command line.

3-10

NOTES

-0356-A

4.1

42

43

44

45

4.6

47

48

49

Chapter 4
The Editor

L= =0 L) O 4-1
The Editor is used to create and modify text files.

USING the EQILOTeoeceeeeeerereenseseenessensenesseseeneemsnsassesessessesessesnenres 4-2
Start editing by pressing E in response to the command prompt. The
Editor creates a new file or edits an existing one. Operations are
provided in five menus: File, Edit, Search, Type Style, and Print.

Se1ECHING TOXL c.ceeeemeneeecaceemcreeraneenreeeeereacaraemeasa e e anassannsssennanmansns a-4
The mouse is used to select text and to move the insertion point.

Scrolling and Moving the DISPIayccocciremeirieimnireeccre e eeneacnae 4-5
The display can be scrolled by using the scroll bar on the right side of
the window. The window can be moved by clicking in the title bar.

The size of the window can be changed by using the size control box.

The File FUNCHIONS. .ccceieecieimee e cneteenenncseneensennansresnsesesenes 4-6
The file functions are used for retneving and saving text files. You
can also save oOr revert to a previous version and exit the Editor.

The Edit FUNCLIONSoeeeecareomcaneeccecneocmcaneneesaaeonacacasanssesanans -4-8
The three basic edit functlons are cut, paste and copy. The Edit menu
also gives you functions to adjust text to the left and right, and to set
tabs.

Search gives you functions to find text smngs in the file, and
optionally replace them.

The Type Style FUNCLIONScc.cccoriiiiriccccncnsresaceccnnaeaaaaeeeenenenssenanns 4-11
The Type Style menu enables you to change the font that the file is
displayed and printed in.

The Print Functions 4-12
The Print menu enables you to print the file, and to specify the format
it should be printed in.

The Editor

4.1 The Editor
The Editor is used to create and modify text files. These files can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen, a portion of the file
is displayed. This “window" into the file can be moved to display any part of
the file you want. An example of the Editor display is shown in Figure 4-1.

File Edit Search Type Style Print
0 0

2

File

Save & Put Away

Save a Copy in ...

Save & Continue
Revert to Previous Version

Open ...
Duplicate ...
Tear Off Stationery ...

Exit Editor

3
Edit
Undo -Last- Change

Cut/X
Copy/C
Paste/V

Shift LeftA
Shift RightR

Figure 4-1
The Editor Display

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a special
window called the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion point. The insertion point is
marked by a blinking vertical line where the next character will be placed.
Any characters typed or pasted from the Clipboard are inserted at this point.
This is true even if the insertion point is not currently displayed in the
window. The window is automatically scrolled to show the insertion point.

A-1

Workstiop User's Guioe The Editor

NOTE

The Editor is memory based This means that there is a physical limit
on the size of the file that can be edited. If a file is too big to edit,
it should be split into more than one file of manageable size. The
FileDiv and FileJoin utilities can be used for this. They are described
in Chapter 11.

The mouse is used to scroll the text in the window, move the insertion point,
select text to be cut or copied, point to menus, and select items on menus.
42 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press {RETURN] for the default, which is blank paper, or enter a name.
For more information on stationery, see Section 4.2.3.

The file that you are working on is called the active document. You can have
several documents open and accessible at any one time, but only the active
document can be edited. The active window is indicated by a darkened title
bar and scroll bars, and is always on top of all the windows.

To leave the Editor, select Exit from the file menu, and you will return to the
workshop command line.

421 Editing Operations
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut or copied. select text by moving the
mouse while holding down the button. See Section 4.3 for complete
information on selecting text. Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

422 The Menus
Operations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

Workshop Users Guide The Editor

You select an operation from a menu by moving the arrow pointer to the
menu name on the menu bar and holding down the button. The menu is
displayed. Choose the menu item by moving the mouse down until the item
you want appears in reverse video. Releasing the mouse button starts the
operation.

423 Creating and Using Stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired text. To
use any stationery other than the default blank paper, choose Tear Off
Staticnery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing the text you want on the
stationery. Save this document on the disk. To use this stationery, choose
Tear Off Stationery from the Edit menu, and give it the file name of the
stationery you created. ‘

4.2.4 Editing Multiple Files
More than one document can be open at one time, but only one document is
the active document. To read in a document when you already have an active
document, choose Open from the File menu. It asks you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pointer into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

This capability of working with more than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations: ‘

* Open the document containing the text you want to copy.

« Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if you
want the text to be removed from its original file.

* Open the document you want the text to be copied to. It becomes the
active document.

* Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

* Chaose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

workshop Users Guite The Editor

43 Selecting Text
The basic editing functions are cut, copy, and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion point where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pointer on
the screen.

within an active document, the pointer will have one of three shapes:
Text pointer in a document
Arrow pointer for menus and scroll bars
Hourglass when an operation will take over 20 seconds

Use the mouse to move the pointer on the screen. The shape of the pointer
changes when you move in and out of the document window.

within the window, the text pointer is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, words, or lines. Selected text is displayed in
reverse video.

43.1 Moving the Insertion Point
The insertion point is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion point, move the pointer to where you want it to be and
click. Note that the insertion point moves when you select text.

432 Selecting Characters
To select characters, move the text pointer to the beginning of the characters
you want to select, press and hold the mouse button while moving to the last
character you want to select.

An alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
beginning of the text you want to select and click the mouse button. Then
move the pointer to the end of the text you want selected and shift click.
shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrolling controls to display the end of the
text you want selected if it is too big to fit in the window.

433 Selecting Words and Lines
To select a word, move the pointer into the word and click the mouse button
twice. To select a line, move the pointer into the line and click the mouse
button three times.

Workshop Users Guide The Editor

To select multiple words or lines, click the mouse button the required number
of times, and hold. Move the pointer to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, the selection expands or contracts by lines.

An altermate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item
you want selected, shift click, and the entire block of text becomes selected.

434 Adjusting the Amount of Text Selected
To change the amount of text selected, move the pointer to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

44 Scrolling and Moving the Display
when a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part is
displayed by “scrolling” through the display. The vertical bar on the right side
of the active window is the scroll bar. An example of a text window showing
the scroll bar is in Figure 4-1.

The display window can be changed in size and moved on the screen. This
enables you to have multiple documents displayed cn the screen. These
operations are done using the title bar and size control box as explained in
Section 4.4.2.

4.4.1 Scrolling the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative position of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the position of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the window makes use of the view buttons. The
view buttons are the boxes at each end of the scroll bar. If you move the
pointer to a view button and click, the display moves one windowful toward
the beginning or end of the document, depending on which button you clicked.

Workshop Lsers Guice The Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document. If you hold the button down, the window will
continue to move a line at a time until you release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document.

442 ™Moving the Window
You can move the window on the screen and change its size. This lets you
display multiple documents on the screen. You can make any visible window
be the active window by moving the pointer into it and clicking.

To move a window, move the pointer to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.

To change the size or shape of the active window, move the pointer to the
size control box, press the button, and move the pointer until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower nght hand corner of
the window. Only the active window can be resized.

45 The File Functions
The file menu provides functions for reading in and writing out documents,
updating documents, copying documents, and exiting the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.

Save & Put Away
This writes out the active document and closes it

Save a Copy in . ..
This writes out a copy of the active document to another document name.
You are prompted for the name of the document to write to.

Save & Continue
This saves all changes made so far by writing out the document to disk,
without closing the document.

Revert to Previous Version

This returns the document to the way it was before you started editing it, or
when you last saved it. This is done by reading in the document from the
disk.

4-6

workshop Users Guide The Editor

[File];
Save & Put Away

Save a Copy in ...

Save & Continue

Revert to Previous Version

Open ...
Duplicate ...
Tear OFF Stationery ...

Exit Editor

Figure 4-2
The File Menu

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active document. The Editor supplies
the .TEXT extension on the file name. If the file name that you want does
not end in .TEXT, you must end the file name with a period. See Section 1.5,
The Workshop User Interface.

Duplicate . . .
This enables you to read in a copy of an existing document to edit into a new
document. It is read in with the default name “untitled”

Tear Off Stationery .. .

This gets a new piece of stationery and makes it the active document. See
Section 4.2.3 for more information on stationery. The stationery is given the
default name “untitled”.

Exit Editor

This first asks you if you want to put away any modified documents. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor resident, you can exit and restart the Editor without losing
any information between invocations. Section 3.4, Process Management, gives
instructions on how to make the Editor resident.

Workshop Users Guide The Editor

4.6 The Edit Functions
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.
The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting it in the active document,

and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion point with the paste operation.

tada Last Change

{at %X
{opy *{
Paste &V
$hift Left %1
Shift Right #R
Set Tabs ...

Select All of Document ®A

Figure 4-3
The Edit Menu
For example, to move text from one place in a document to another:
1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

4. Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion point.

The Edit menu also enables you to adjust selected text left or right by
inserting or deleting spaces, and to set tabs.

4-8

workshop User's Guide The Editor

Some edit functions can also be done by holding down the & key and pressing
another key. The Key that corresponds to each function is shown in the Edit
menu, as you can see in Figure 4-3.

Undo Last Change

This command puts the document back to the way it was before the previous
operation, if possible. You will receive a warning message if the last
operation cannot be undone.

Cut

Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the active document. You can also Cut by pressing the
X key while holding down the & key.

Copy

Copy places a copy of the currently selected text onto the Clipboard, but
does not remove it from the active document. You can also Copy by pressing
the C key while holding down the & key.

Paste

Paste inserts a copy of the text on the Clipboard at the insertion point in the
active document. If a section of text is selected, Paste replaces it. You can
also Paste by pressing the V key while holding down the ® key.

sShift Left

Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing the L key while holding down the & key.

Shift Right

Shift Right is similar to Shift Left, except that it moves the selected text to
the right by inserting spaces at the beginning of each line. This can also be
done by pressing the R key while holding down the & key.

Set Tabs . ..
Set Tabs enables you to set the spacing of the tab stops.

Select All of Document
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the € key.

4.7 The Search Functions
The Search menu gives you the ability to search for a text string in the
active document. The basic operation is Find, which locates the next
occurrence of the string and selects it. Find & Paste All replaces each
occurrence of the string with the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

Workshop User's Guide The Editor

| Search | NS

Find ... 6F
Find Same s
Find & Paste Rl

v'Separate ldentifiers
All Occurrences

vCases Need Not Agree
Cases Must Agree

Figure 8-4
The Search Menu

All searches start at the insertion point, and go to the end of the document.
There are three search operations in the Search menu, as follows:

Find . ..

Find prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it is selected. If not, the system tells you.
The Find command can also be executed by pressing the F key while holding
down the & key.

Find Same
Find Same repeats a previously specified Find, and selects the next occurence

of the string. You can do a Find Same by pressing the S key while holding
down the & key.

Find & Paste All

Find & Paste All finds all occurrences of the specified string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case must be matched. The options currently in effect have a check mark in
front of them. To change the option, you choose a new one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

Workshop User’s Guioe The Editor

Separate Identifiers
when Separate Identifiers is chasen, the search operation looks for a "token”
or word to match the search string. A token is a word bounded by spaces.

All Occurrences
when All Occurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a word.

The next options indicate if case is significant in finding a match:

Cases Need Not Agree
when Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

Cases Must Agree
when Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

48 The Type Style Functions
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a line, and
whether or not the display is proportionally spaced. when a document is
printed, it is printed in the same type style it is displayed in, if that type
style is available on your printer.

20 Pitch Gthic

15 Pitch Gothic
V12 Pitch Modern
12 Pitch Elite
10 Pitch Modern
10 Pitch Courier

PS Modern
PS Executive

Figure 4-5
Tre Type Style Menu

4-11

workshop Lsers Guice The Editor

49 The Print Functions
The Print menu provides functicns for printing a document. You can print all
or part of a document, choose what form of footers are to be printed, specify
if Pascal keywords are to be emphasized, and tell what type of printer is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of Document

The Print All of Document command prints the entire document.

Print Selection

The Print Selection command prints only the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the print is to be
performed. They are organized into three sets of two options. The currently
selected option in each set is indicated by a check mark. You can choose any
combination of options you want.

Print AIl of Document
Print Sefection

vFull Footers
Page Numbers Only

vPlain Keywords
Differentiated Keywords

vDot Matrix Printer
Daisy Wheel Printer

Figure 8-6
The Print Menu

The first options control what type of foolers are printed at the bottom of
the page.

4-12

Workstiop Users Guioe The Editor

Full Footers

when Full Footers is chosen, each page printed has a footer consisting of the
document name, the page number, and the date. If the document is less than
one page long, no footer will be printed.

Page Number Only
Choosing Page Number Only results in only a page number on the bottom of

each printed page. If the document is less than one page long, no page
number will be printed.

The next options are used for printing Pascal programs.

Plain Keywords

Choosing Plain Keywords causes Pascal keywords to print as normal text.
Differentiated Keywords

Choosing Differentiated Keywords causes Pascal keywords to print with

underlining. In addition, the read procedure, write procedure, and other
standard Pascal procedures and functions are underlined.

You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
wheel Printer.

4-13

NOTES

57-A

51

52

53

54

Chapter 5
The Pascal Compiler

The Pascal Compiler .. - |
The Pascal Compiler translates Pascal source statements into object
code. This translation is in two steps. The source statements are first
translated into intermediate code (I-code), then the I-code is translated
into object code.

Using the Pascal Compiler.... w51
The Compiler expects as input a text file containing a Pascal program.
The Compiler translates source code into intermediate code (I-code),

then the code generator translates I-code into object code.

The Pascal Compiler Commands 5-2
You enter Compiler commands into the Pascal source file. They
provide for symbolic debugging information and conditional compilation.

The Pascal Run-Time Environment 5-3
This section explains how to use the PASLIBCALL unit, which provides
some special system functions to Pascal programs. It also explains how
the Pascal heap operates.

The Pascal Compiler

5.1 The Pascal Compiler
The Compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step, parsing, converts the program
into semantically equivalent tree structures called I-code. The second step
translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the Pascal Reference Manual
for the Lisa. A Pascal program can call assembly language routines. More
information on assembly language is in Chapter 6 of this manual.

The Operating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in the
SYSCALL unit, which is described in the gpersting System Reference Maral
for the Liss.

The Pascal run-time support routines are in the library I0SPASLIB.0BJ. The
support routines for floating point operations are in IOSFPLIB.0BJ. After
generating the object code, it is necessary to link the program with
IOSPASLIB.0BJ before you can run it. If you are using real numbers, you must
also link with IOSFPLIB.0BJ. For information on how to link the program, see
Chapter 7 in this manual.

5.2 Using the Pascal Compiler
The Compiler expects a text file containing a Pascal source program as input.
You can create this text file using the Editor.

when you have prepared a source program, use the Compiler to translate it
into object code. Start the Compiler by pressing P in response to the
workshop command prompt. The Compiler first asks:

Input file[.TEXT]

Type the name of the file that contains the source program. You do not need
to add the .TEXT extension. The Compiler then asks:

List file[.TEXT]

Type the name of the file that you want the listing to go to, or press
[RETURN] if you don't want a listing. ‘You can display the listing on the
console by using the —console pathname. The Compiler next asks you where
to store the I-code form of the program:

I-code file[<input name>](.I]

Workstigo User's Guide Pascal Compiler

If you want the I-code to be stored in a file with the same name as the
source file, but with a .I extension instead of the .TEXT, just press [RETURN]
If you want another name, type the name and press [RETURN]

After the last input, the Compiler translates the program into I-code and
stores it in the I[-code file. If there were any errors, they are displayed in
the listing file, or on the console if there is no listing file. when a message
is displayed on the console, you are given a choice of aborting the compile by
pressing [CLEAR], or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $€ Compiler command.

5.2.1 Wsing the Code Generator
To translate the I-code into object code, press G in response to the Workshop
command prompt. The code generator first asks:

Input file [.I] -

Type the name of the I-code file. You do not need to add the .I extension.
The generator then asks:

Output File [<input name>]{.0BJ] -

To accept the default name, press [RETURN] If you want a different name
for the output file, type the name and press [RETURN] The .0BJ extension
will be added to the name for you.

The output file from the code generator is object code, but it is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in I0SPASLIB.0BJ, and
I0SFPLIB.0BJ for floating point operations. These routines must be added o
the object file by using the Linker. See Chapter 7 in this manual for more
information on the Linker.

5.3 The Pascal Compiler Commands
Compiler commands allow control of code generation, input file control, listing
control, and conditional compilation. The commands all start with a §, and
are placed as comments in the source program where you want the command
to take effect. All the Compiler commands are listed in Table 5-1. A
complete explanation of the Compiler commands is found in the Pasca/
Reference Manwal for the Lisa.

Workshap User's Guide Pascal Compiler

Table 5-1
Pascal Compiler Commands
Command Meaning
$! filename Include contents of filename in this compilation.
$U filename Search filename for units used.
$C+ or $C- Turn code generation on (+) or off (-) for a procedure.
Default $C+.
$R+ or $R- Turn range checking on (+) or off (-). Default $R+.
$3S segname Start putting code modules into segment segname.
$X+ or $X- Turn automatic stack expansion on (+) or off (-).
Default $X+.
$D+ or $D- Turn procedure name generation for Debugger on)
or off (). Default $0+.
$E filename List Compiler errors in filename.
$L filename Produce Compiler listing in filename.
$L+ or $L- Turn source listing on (+) or off (-). Default $L+.
$DECL 1list Declare compile time variables.
$SETC Assign a value to a compile time variable.
$IFC Begin conditional compilation section.
$ELSEC Begin ELSE clause of conditional compilation.
$ELSEC is optional.
$ENDC End of conditional compilation section.

5.4 The Pascal Run-Time Environment
The Pascal run-time environment provides a unit PASLIBCALL which allows
you to use some special system functions. It also provides special heap
manipulation functions.

54.1 The PASLIBCALL Unit
The unit PASLIBCALL provides you with some additional system functions. In
order to access the PASLIBCALL routines, you must use the units SYSCALL
and PASLIBCALL:

USES
{$U syscall} SYSCALL,
{su paslibcall} PASLIBCALL;

This gives you access to the routines listed below. These routines are
contained in I0SPASLIB.0BJ, so programs using them require no additional
inputs to the Linker.

Workshop Users Guide Pascal Compiler

function PAbortFlag : boolean

This function tells whether or not the #-period key combination has been
pressed. It enables programs to exit out of long operations. The flag is
cleared when PAbortFlag is called. If you want your program to stop
when you press €-period, you must use this function in the program to
detect that the key combination has been pressed. For example:

{This program fragment hangs in an infinite loop until &-period
is pressed}

aborted :=false

Repeat {!ait} for &-period. You might want to do other things
here

aborted :=PAbortFlag;
until aborted.
procedure ScreenCtr (contrfun : integer);

This procedure provides standard screen control functions, and enables
programs to perform screen control without having to to use escape
sequences. Escape sequences are explained in Appendix C. The parameter
specifies the screen control function. It is defined in the constants as
follows, in the PASLIBCALL unit:

Value
Function Constant Decimal Hex
clear screen CclearScreen 1 1
clear to the end of screen CclearEScreen 2 2
clear to end of line CclearELine 3 3
move cursor to home position CgoHome 11 B
cursor left one position CleftArrow 12 C
cursor right one position CrightArrow 13 D
cursor up one line position CupArrow 14 E
cursor down one line position CdownArrow 15 F

Screen control example:

{This program fragment clears the screen, and positions the
cursor on the third line}

ScreenCtr (CgoHome);
ScreenCtr (CclearScreen);

ScreenCtr (CdownArrow);
ScreenCtr (CdownArrow);

Workshop Users Guide

Pascsl Compiler

procedure GetGPrefix (var prefix : pathname);

This procedure provides your program with the first level prefix setting in
the File-Mgr in the workshop.

procedure GetPrDevice (var PrDevice : e_name);

This procedure returns the corresponding default printer device name so
that you can perform additional device control functions using
DEVICE_CONTROL. (The Quersting System Reference Maral for the Lisa
explains the device control call) The default printer device name is the
one corresponding to the logical device '-printer’. Note that the device
name returned contains a leading - .

procedure PLINITHEAP (var ernum, refnum:integer;

where:

size

delta

1dsn

swapable

size, delta:longint
1dsn:integer;
swapable:boolean);

is the error number returned if the procedure has any
problems making a data segment having a mem_size of
size bytes. Appendix A contains an explanation of the error
codes for the Workshap.

is the number of bytes in the heap.
is the refnum of the heap.

Is the amount you want the data segment to increase when
the current space is used up. If you use a large heap, use a
large number for delta.

is the logical data segment number used for the heap. The
default is 5. For more information see the Operating System
Reference Manual for the Lisa

is the boolean that determines if the system can swap the
heap data segment out to disk if it needs to.

This procedure can be used when you have special needs; for example,
when you want to specify your own ldsn or heap size. When you use
PLINITHEAP, you must call it before calling other heap routines. For
more information on the heap, see Section 5.5.

5.4.2 The Pascal Heap
The Pascal heap is one contiguous piece of memory, a data segment, which
works automatically without any initialization call. See Chapter 11 of the
Pascal Reference Menusdl for the Lisa for information on the normal heap

functions.

5-5

Workshop Users Guide Pascal Compiler

when a Pascal program starts execution, no heap space is allocated (no data
segment made). On the first call to one of the heap routines or on the first
PLINITHEAP call, the heap is created with either a default size of 16k bytes
or the size specified in the PLINITHEAP call.

PLINITHEAP makes the heap as a private data segment so that the Operating
System removes it when the process calling PLINITHEAP terminates. Note
that when the heap is initialized, size and delta are put on 512 byte block
boundaries. Therefore, if you use the PLINITHEAP call and specify values for
size and delta that do not fall on block boundaries, the procedure increases
the values to the next block boundary.

If the heap runs out of space while it is being used, the size of the heap is
increased by the default of 16k or the delta specified in PLINITHEAP. The
default ldsn used is S. If you want a different ldsn for the heap data
segment, call PLINITHEAP. Remember that the size of a data segment is
limited by the ldsn you use. For ldsn 16, you can get enly 128k (actually 96k
safely), for ldsn 15 you can get only 256k, for ldsn 14 you can get only 384k,
and so forth. See the Quersting Systerm Reference Manua! for the Lisa for
more information on ldsn's and data segments.

If swapable is true, the heap is made with disc_size equal to size so the data
segment is not memory resident. This uses up disc_size bytes on the startup
disc. The default for swapable is false. When swapable is false, the
procedure creates a data segment that has a disc_size of 0 (zero), which
makes it memory resident.

The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and
HEAPRESULT.

* If you call NEW and not enough space is available, the size of the heap is
increased by either the default of 16k or the delta size specified in
PLINITHEAP.

* MEMAVAIL provides the maximum number of words you could ever expect
to get, taking into account the ldsn you used as well as the amount of free
space the Operating System currently has available. If another process is
using memory concurrently, its use of memory also affects MEMAVAIL.
MEMAVAIL does not show the amount of memory left in the heap's data
segment alone, since the heap's data segment can grow and shrink over
time.

* MARK sets a pointer to the lowest free area on the heap. It is used with
RELEASE to deallocate variables from the heap.

* RELEASE deallocates variables from a marked area of the heap. If you
release the heap to a point within the original size of the heap data
segment, the heap data segment is reduced to its original size. More
information on MARK and RELEASE can be found in the Pgsca/ Reference
Marwial for the Lisa.

Workshop Users Guioe Pascal Compiler

* HEAPRESULT returns a 0 if the last heap operation was successful,
otherwise it contains the Operating System error number indicating what
failed. A list of the Operating System errors is in Appendix A

NOTES

3-0358-A

6.1

6.4

6.5

6.7

Chapter 6
The Assembler

The ASSBITDIETcceceeciericreececmrececarmemeceseacameseansrssesansmenannansnss 6-1
The Assembler transiates 68000 assembly language into machine

language.

Using the Assemblerccococoireeriniiiienceririrreseanca 6-1
The Assembler accepts a text flle as lnput and proaduces a machine
language (.0BJ) file as output.

ASSEIMDIET OPCOUESceemeeeerremmneriinennersenarreensssnencensreereasnsensnssrnnenseres 6-3
The Assembler opcodes are the standard 68000 opcodes, with a few
alternate forms for some instructions.

Assermbler Syntax . 6-5
AN Assermbler statement consists of an optional label, the opcode, and
one or two operands. The operands can contain expressions.

Assembler DITeCtIVESeervcvriiiiiccrrriirceeeeereneeeneeaenee 69
The Assembler airectives provide for proceaure and function definition,
macros, label and constant declaration, listing control, storage

allocation, and conditional assembly.

Comimunication with Pascal.. .6-16
Assembly language routines can be either procedures or functions called
from a Pascal program. Parameters are passed on the Pascal stack.
Assembly Language Examples .6-21

This section provides example assembly language routines mustratlng
parameter passing and other functions.

The Assembler

6.1 The Assembler
The Assembler is a program that translates assembly language source
statements into object code. The Assembler accepts a text file containing the
source statements as input, and produces an object file as output. The object
file produced must be linked with a Pascal main program before it can be
executed.

Assembly language routines are used to implement low level or time critical
functions. This chapter describes how to use the Assembler, and the syntax of
assembly language programs. Information on the machine instructions
available on the 68000 processor can be found in the Motorola MC68000
Reference Manual.

6.2 Using the Assembler
To assemble a program, press A from the wWorkshop command line. Then
specify the input file (the file that contains your source program) and two
output files: an optional listing file and the object file (the file that will
contain the object code produced by the Assembler).

The input file must be a text file containing assembly language source
statements. You can create this file with the Editor. The output file produced
is an object file (.0BJ) that must be linked with a Pascal main program to be
un.

Any errors in the program will be indicated by messages on the console or in
the listing file. A complete list of Assembler error messages is found in
Appendix A of this manual.

6.2.1 Assembler Options
when you start the Assembler, the option settings are displayed. You can
enter the options selection mode by responding to the input file prompt with
"?". There are two Assembler options:

P Pretty listing.

S Print information about available space.
Each option may be set to + or -:

* On

- Off

when pretty listing is on, the forward referenced labels or offsets are filled in
with the correct values in the listing.

After setting options, press [RETURN], and the Assembler asks you for the
name of the input file. The Assembler then asks you for the name of the
listing, and the object files.

Workshop Users Guioe The Assembler

6.2.2 The Input File
The input file is a text file containing Assembler language source statements.
A file created using the Editor will be in text file format.

when the Assembler asks you for the name of the input file, type "?" if you
want to change Assembler options at this time; otherwise type the pathname
of your source file. File naming is explained in Chapter 2.

6.2.3 The Object File
The object file produced by the Assembler contains a machine code version of
your source program. The name of an object file ends with .0BJ . A raw
assembly object file is not executable; it must be linked with a Pascal
program that calls it. See Section 6.6 for further information.

The output file will be an object file which must be linked with a Pascal main
program before it can be executed. The object file goes to the same volume
as the input text file was on unless another volume is specified.

6.2.4 The Listing File
The listing file produced by the Assembler contains a list of source statements
and their machine-language equivalent. If pretty listing is off, all addresses
for forward referenced labels will be presented in the listing file as asterisks
(%) If pretty listing is on, the actual values will be filled in.

Source statement errors are flagged in the listing. Refer to the Appendix for
a list of Assembler error messages.

An example of an Assembler listing file is shown in Figure 6-1. Figure 6-2
shows the same file listed with the pretty list option.

workshop Users Guice

0000| 0000 0001
0000| 0000 0020

0000{ 303C 0020

J010* 0008
18| 19 30 13
0018} 00

The Assernbler
one .equ 1
label2 .equ $20
move #1abel?, dO
clr d0
"” add #cne, 0
beq M ; show listing patching
bra 2 ; sddress filled in
; for backward branching
[} lea dats, a0
bra.s done
; some more code ...
nop
done rts
date _byte 29, $30, 19 ; odd number of bytes
.align 2 ; meke sure next instruction
; is on even
Figure 6-1

Assembler Listing

If you specify a device name such as -printer or -console for the listing file,
the listing will be printed on that device. If you specify a disk file, the
listing will be created as a text file; you may then print it by using the Copy
command in the File Manager command line.

NOTE

If you want pretty listing, the listing output must be sent to a file, not
to a device. Pretty listing is done by making an additional pass

through the listing file to patch in the forward references. There must
be enough disk space for two listing files for this operation to succeed.

workshop Users Guioe The Assembler

2000 .proc example
2000
0000} (000 0001 one .equ 1
0000f 0000 0020 label2 .equ $20
0000
0000} 303C 0020 : move #lebel2, O
0004} 4240 cir d0
0006| 5240 @2 add Hone, dO
0008| 6700 0004 beg [} ; show listing patching
000C| 60F8 bra [Y] ; address filled in
; tor backward branching
000E
O00E
O00E| 41FA 0008 @t lea data, &0
0012 €002 bra.s done
0014
0014 ; some more code ...
0014
0014 4E71 nop
0016} 4E75 done rts
0018
2018{ 19 30 13 data .byte 25, $30, 19 ; odd number of bytes
2018] 00 .align 2 ; meke sure next instruction
; 18 on even
Figure 6-2
Pretty Listing

6.3 Assembler Opcodes
The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User's Manual. The Assembler has two variant mnemonics for branches that
are more indicative of how the instruction is being used after unsigned
comparisons. These variants are BHS (Branch on High or Same) for BCC, and
BLO (Branch on Low) for BCS. The default radix is decimal.

The size of an operation (byte, word, or long) is specified by appending either
.B, .w, or L to the instruction. The default operation size is Word. To cause
a short forward branch (an 8-bit displacement rather than a word
displacement), append a .S to the instruction. The default branch size is Word.

Note that the TAS (test and set) instruction is not implemented on the Lisa
hardware. Using this instruction may cause timing problems.

Note that the Assembler accepts generic instructions and assembles the
correct form. The instruction ADD, for example, is assernbled into ADD,
ADDA, ADDQ, or ADDI, depending on the context.

ADD D3, A5
becomes ADDA D3, AS.

MOVE, CMP, and SUB are handled in a similar manner.

6-4

Workshop Users Guide The Assembler

6.4 Assembler Syntax .
This section describes the form in which the Assembler expects an assembly
language program. The structure of an assembly language program is shown in
Section 6.4.1. Rules for forming constants, identifiers, labels, expressions, and
addressing modes are provided in the following sections.

6.4.1 Structure of an Assembly Language
An assembly language program contains one or more procedures or functions.
The structure of an assembly language source file is shown in Figure 6-3. The
source file contains an (optional) section of operations that doesn't generate
code. Constants or macros are usually defined here. Next it conains one or
more procedures (PROC) or functions (FUNC). These each contain a sequence
of directives and code generating operations. A procedure or function ends
when the Assembler encounters the next .PROC or FUNC. The .END directive
is the last statement that is processed by the Assembler. Any text beyond the
-END is ignored.

non cooke generating gperations

PROC (or FUNC)
- code genersting qperations axl any directives needed

PROC

FUNC
elc.

END

Figure 6-3
Structure of an Assembly Language Program

The directives that don't generate code are:

EQU .MACRO IF LIST MACROLIST
ENDM ELSE NOLIST NOMACROLIST
.REF ENDC .PAGE PATCHLIST
.DEF TITLE NOPATCHLIST
6.4.2 Constants

Constants in the Assembler can be either numeric or string constants.

6.4.21 Numeric Constants
Numeric constants in the Assembler can be expressed in decimal, hexadecimal,
octal, or binary. The default radix is decimal. Numeric constants are
expressed as follows:

6-5

Workshop Users Guide The Assembler

Decimal
Decimal numbers are formed with the decimal digits (0-9). Examples:
10

13
137

Hexadecimal
Hex numbers can be expressed in two ways:

1. Preceed the number with a "$". Examples:

$FF13
$127

2. Follow the number with an "H". Using this form, the number must start
with a digit (0-9). Examples:
0FF13H4
195H

Octal
Octal numbers are followed by the character “0". Note that this is the letter
0, not the number zero (0). Examples:

770
1040
Binary
Binary numbers are followed by the character "B". Examples:

10118
1110008

6.4.22 String Constants
String constants are delimited by matching pairs of single or double quotes.
Examples of string constants are:

“this is a string constant™
‘'using single quotes as delimiters lets you include "double™ quotes’

6.4.3 Identifiers
Only the first eignt characters of identifier names are meaningful to the
Assembler. The first character must be alphabetic; the rest can be
alphanumeric, period, underbar, or percent sign.

Examples of identifiers are:

LooP
EXIT_PRC
NUM
numobd%

Workshop Users Guice The Assembler

6.4.4 Labels and Local Labels
Labels begin in column one. They can be followed by an optional colon.

Local labels can be used to avoid using up the storage space required by
regular labels. The local label stack can handle 50 labels at a time. It is
cleared every time a regular label is encountered. A local label is an @
followed by a string of decimal digits (0-9). Examples of local labels are:

@123
@2
@79

6.4.5 Expressions and Operators
All guantities are 32 bits long unless constrained by the instruction.
Expressions are evaluated from left to right with o goerator precedence
Angle brackets can be used to control expression evaluation. The operators
are:

positive sign or binary addition
unary minus or subtraction
ones complement (unary operator)
exclusive or

multiplication

division (DIV)

™MaD

logical OR

logical AND

equal (used only with .IF)

not equal (used only with .IF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 % 4, the addition is performed first. To perform the
multiplication first, rewrite the expression with angle brackets to show
precedence: 2 + <9 * 4>; Or reorder the operands: S * 4 + 2.

6.4.6 Addressing Modes
Refer to the Motorola 68000 manual for detailed information on the
addressing modes supported by the 68000 microprocessor. Table 6-1 gives a
summary of the addressing modes including their syntax.

» vl o+

I Sl N |

A
v

Workshop Users Guioe The Assermbler

Table 6-1
Summary of Addressing Modes
Mode Register Syntax Meaning Extra words
1] 0.7 Di Data direct 0
1 0.7 Al Address direct 0
2 0.7 (Al) Indirect 0
3 0.7 (Ai)+ Postincrement 0
4 0.7 -(Ai) Predecrement]
5 0.7 Al) Indexed 1
6 0.7 AiRi) Offset indexed 1
7 0 e Absolute short address 1
7 1 e Absolute long address 2
7 2 e PC Relative 1
7 3 eRi) PC Relative indexed 1
7 4 e Immediate lor2

Notes:
The indexed and PC relative indexed modes are determined by the opcode.

The absolute address and PC relative address modes are determined by the
type of the label (absolute or relative).

The absolute short and long address modes are determined by the size of the
operand. Long mode is used only for long constants.

The number of extra words for immediate mode is determined by the opcode
size modifier (W or L)

NOTE

All programs that run under the Lisa 0S must be relocatable.
Addresses should not be absolute.

6.4.7 Miscellaneous Syntax
Comments
A comment in an assembly language program begins with a semicolon. The
Assemnbler ignores all characters after a semicolon in a line. Examples are:

;> This is a comment on a line by itself
CLR.L DO ;comment after a statement

6-8

Workstiop Users Guide

Current Program Location
The current program location is indicated in assembly language by the symbol

"%"_ Examples of its use are:

N 3

P

.4

Move Multiple (MOVEM)
To specify which registers are affected by Move Multiple (MOVEM), specify
ranges of registers with "-" and specify separate registers with “/*. For
example, to push registers D0 through D2, D4, and AD through Ad onto the top
of the stack:

HOVEM.L DO-D2/D4/A0-A4, -(A7)

6.5 Assembler Directives
Assembler directives tell the Assembler to do various functions besides
generating executabie code. These functions include defining symbols and
constants, defining macros, doing conditional assembly, and controlling listing

options.

The Assernbler

Loop infinitely
Jump back 4 bytes

The Assembler directives (pseudo-ops) are shown in Table 6-2.

Directive
PROC
FUNC
.DEF
REF
SEG
END

.ASCII
.BYTE
.BLOCK
WORD
LONG
ALIGN
ORG

.RORG

EQU

.MACRO
ENDM

Table 6-2

The Assembler Directives

Operands
<identifier>
<identifier>
<identifier-list>
<identifier-list>
‘<name>’

‘<char-string>'
<value-list>
<length>{,value]
<value-list>
<value-list>
<Expr>

<value>

<value>
<value>

<identifier>

Meaning

begin procedure

begin function

make identifiers externally available
declare external identifiers

put code of next .PROC in segment ‘name’
end of entire assembly

place ASCII string in code

allocate a byte in code for each value
allocate length bytes of value

allocate a word for each value
allocate a long word for each value
allign next code on multiple of Expr
place next byte at <value> relative to
beginning of assembly

same as .0RG

set label equal to <value>

begin macro definition
end macro definition

6-9

Workshop Lbers Guice The Assembler

Table 6~2 (continued)
The Assembler Directives

Directive Operands Meaning
JF <expr> begin conditional assembly
ELSE optional alternate to .IF block
ENDC end conditional assembly
LIST turn on assembly listing
NOLIST turn off assembly listing
PAGE issue a page feed in listing
JITLE “<title>” title of each page in listing
MACROLIST turn on macro expansion listing
NOMACROLIST turn off macro expansion listing
PATCHLIST turn on patchlist
NOPATCHLIST turn off patchlist

INCLUDE <filename> include contents of <filename> in assembly
6.5.1 Space Allocation Directives .
The space allocation directives are .ASCIi, .BYTE, .WORD, .LONG, and .BLOCK.

ASCII ‘string’

Converts ‘string’ into the equivalent ASCII byte constants and places the bytes
in the code stream. The string delimiters must be matching single or double
guotes. To insert a single quote into the code use double guotes as delimiters.
Similarly for double quotes:

.ASCII “don't" > string containing single quote
.ASCIT ‘'a "glitch"' string containing double quote
BYTE <values>
Allocates a byte of space in the code stream for each of the values given.
Each value must be between -128 and 255.
BLOCK <length>{ value]
Allocates <iength> bytes, each filled with the value given. If no value is
given, a block of zeroes is allocated.

WORD <values>
Allocates a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65535.

6-10

Workshop Users Guide The Assembler

For example,
TEMP _WORD 0, 65535, -2,17
creates the assembled output:

0000
FFFF
FFFE
0011

LONG <values>
Allocates two words of space for each value in the list. For example,

. STUFF .LONG 0, 65535, -2,17
creates the output:

00000000
O00OFFFF
FFFFFFFE
00000011

<label> EQU <value>
Assigns <value> to <label>. <value> can be an expression containing other
labels.

ORG <value>

Puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are inserted from the current location to
<value>.

RORG

is similar to .ORG. It indicates that the code is relocatable. Because the
loader does not support absolute loading, .ORG and .RORG accomplish the
same function. A/ godressing must be PC relative.

6.5.2 M™acro Directives
A macro consists of a macro name, optional arguments, and a macro body.
when the Assembler encounters the macro name, it substitutes the macro body
for the macro name in the assembly text. Wherever “%n" occurs in the macro
body (where n is a single decimal digit), the text of the n-th parameter is
substituted. If parameters are omitted, a null string is used in the macro
expansion. A macro can invoke other macros up to five levels deep. In the
assembly listing, the listing of the expanded macro code is controlled by the
options .MACROLIST and NOMACROLIST. These options are described in
Section 6.5.5.

6-11

Workshop User's Guide The Assermbler

MACRO <identifier>

-ENDH
defines the macro named <identifier>. The following is an example of a
macro:

-MACRC Help

HOVE %1,D0

ADD 00, %2

-ENDH

If "Help” is called in an assembly with the parameters “Alpha” and "Beta”, the
listing created would be:

Help Alpha, Beta
MOVE Alpha, DO
ADD DO, Beta

6.5.3 Conditional Assembly Directives
The conditional assembly directives .IF, .ELSE, and .ENDC are used to include
or exclude sections of code at assembly time based on the value of the
conditional expression.

JF <expression>

Identifies the beginning of a block of source statements that is assembled only
under certain conditions. If <expression> is false, the Assembler ignores all
statements until a .ELSE or ENDC is found. The statements between the
optional .ELSE and .ENDC are assembled if <expression> is evaluted to be
false at the time of assembly. Otherwise they are ignored.

<expression> is considered to be false if it evaluates to zero. Any non-zero
value is considered true. The expression can also involve a test for equality
(using <> or =). Strings and arithmetic expressions can be compared.
Conditionals can be nested. The macros HEAD and TAIL given in Section
6.6.1 provide examples of the use of conditionals. The general form is:

IF <expr>

. ;assembled if <expr> is true
[.ELSE] ;optional

. ;assembled if <expr> is false
-ENDC

Workshop Users Guide The Assembler

6.5.4 Extemal Reference Directives
Separate routines can share data structures and subroutines by linkage
between assembly routines using .DEF and .REF. These directives generate
link information that allows separately assembled routines to be linked
together.

DEF and .REF directives associate labels between assembly routines, not
between assembly routines and Pascal.The only way to communicate data
between Pascal and assembly routines is by using the stack. This is done by
passing the data as parameters in the procedure or function call. Information
on parameter passing between Pascal and assembly language routines is found
in Section 6.6.

DEF <identifier-list>

ldentifies labels defined in the current routine as available to other assembly
routines through matching .REFs. The .PROC and .FUNC directives also
generate code similar to that generated by a .DEF with the same name, so
assembly routines can call external .PROCs and .FUNCs with REFs.

.PROC Simple, 1
.DEF Alpha, Beta

BNE Beta
Alpha HOVE
RTS
Beta HOVE
RTS
.END

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF.

.REF <identifier-list>

ldentifies the labels in <identifier-list> used in the current routine as
available from some other assembly routines, which defined these identifiers
using the .DEF directive.

PROC Sinple
REF Alpha
JSR Alpha
END

This example uses the label "Alpha™ declared in the .DEF example.

6-13

Workshop User's Guide The Assembler

When a .REF is encountered, the Assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of 0's) and
a short external reference with an address pointer to the word of 0's following
the opcode. If the referenced label and the reference are in the same
segment module, the Linker changes the addressing mode from short absolute
to single-word PC relative. If, however, the referenced procedure is in a
different segment, the Linker converts the reference to an indexed addressing
mode (off AS), and the word of zeros is converted into the proper entry offset
in the jump table. If the referenced procedure is in an intrinsic unit (and
therefore in a different. segment), the IUJSR, IULEA, IUIMP, and IUPEA
instructions are used. The Linker blindly assumes that the word immediately
before the word of zeros is an opcode in which the low order 6 bits are the
effective address. Thus, a .REF label cannot be used with any arbitrary
instruction. 77e .REF labels are intended for JSR, JMF, PEA, and LEA
Instructiors.

SEG
Default segment name is " " (8 blanks). .SEG “"segment name" puts the
code in segment called “segment name”. The .SEG directive takes effect
when the next PROC or .FUNC is reached. Thus it is not possible to split one
procedure into two segments. This is an example of how the .SEG directive
wOTKS:
SEG ‘namel’

PROC A

{code in PROC A}

SEG ‘name2’
fcode still in PROC A} {this code will still be in segment ‘namel’}
PROC B {code of PROC B will be in segment ‘name2’}

6.5.5 Listing Control Directives
The directives that control the Assembler's listing file output are .LIST,
NOLIST, PAGE, .TITLE, .MACROLIST, NOMACROLIST, .PATCHLIST, and
NOPATCHLIST. If you do not specify a name for the listing file in response
to the Assembier's prompt, the listing directives are ignored.

The default for the Assembler is for LIST, MACROLIST, and .PATCHLIST to
be in effect when the Assembler starts. .TITLE defaults to blank.

LIST and NOLIST

Can be used to select portions of the source to be listed. The listing goes to
the specified output file when .LIST is encountered. .NOLIST turns off the
listing. .LIST and .NOLIST can occur any number of times during an assembly.

6-14

Workshop Lsers Guioe The Assemnbler

PAGE
Causes the next line of the listing file to be printed on the next page.
TITLE “<title>

Specifies a title for the listing page. <title> can contain up to 80 characters,
and can be enclosed in either single or double quotes. For example:

.TITLE ‘Interpreter’
places the word, "Interpreter”, at the head of each page of the listing.

PATCHLIST
Patches the forward referenced labels in the listing. It must be on if you
want pretty listing. See Section 6.2.4 for more information on pretty listing.

NOPATCHLIST
Turns off patching of forward references.
MACROLIST
Turns on listing of the expanded code from a macro.
NOMACROLIST
Turns off listing of macro expansion. See Figure 6-4 for examples of macro
listing.
0000 ; 2 paremeters 1h INC:
0000! %1 - the amount to add to
register that is passed as %2
0000 ; %2 - register name
0000 .macro INC
0000 add %1, %2
0000 .endn
0000
0000
0000 i parameters passed to DEC:
0000 : %1 - amount to subtract
; from register %2
0000 ; %2 - register name
0000 .macro 0EC
0000 sub %1, %2
0000 .endm
00001
0000
0000 .proc HacroExample
0000 ING 2,d0
0000] 5440 # ADD #2, d0
0002 IND 1,84
0002{ 324C # AD #1 o4
0004 DEC $ff, d3
0004] 0443 OOFF & S8 s3ff, d3
0008 end
Figure 6-4
Macro Listing

6-15

Workshgp User's Guioe The Assembler

6.5.6 File Directive
INCLUDE <filename>
Causes the contents of <filename> to be assembled at the point of the
INCLUDE. You need not specify the .TEXT suffix. An included file cannot
itself contain an .INCLUDE statement.

6.6 Communication with Pascal
Assembly language routines must be called from a Pascal program. In order
to call an assembly language routine, the Pascal program declares the
assembly language procedure or function to be EXTERNAL. If the assembly
routine does not return a value, declare the assembly routine as a
PROCEDURE in the Pascal program. If a function result is to be returned
from the assembly routine, declare it as a FUNCTION in Pascal and space for
the returned value is allocated (by the Pascal Compiler) on the stack just
before the function parameters, if any. The amount of space allocated
depends on the type of the function. A Longint or Real function resuit takes
two words, a Boolean result takes one word with the result in the high order
byte, and other types take one word. A Boolean result of 0 indicates false,
any non zero value indicates true.

NOTE

Assembly language programs are in read only memory segments. Thus
they have no data space to write into. Any data space needed must be
allocated by the Pascal Compiler. A pointer to the space is then
passed to the assembly language routine. “Writes” to the data space
are done by pointer references using modes like (Ax), i(Ax), etc. For
examples of this technigque see Section 6.7.5

In the following example, an assembly language routine is linked to a Pascal
program. The assembly language routine accepts two integers and returns the
logical AND of them. The Pascal host file is:

PROGRAM BITTEST;
VAR I,J: INTEGER;
FUNCTION TIand(i, j : INTEGER) : INTEGER;
EXTERNAL ; (* external = Assembly language *)

BEGIN
: 255,'

1 =

J o=

WRI 'IELN (1,3, AND = ', Tand (I, J));
ENOD.

6-16

Workshap User’s Guide The Assembier

The Assembler file is:

.FUNC IAND

MOVE.L (A7)+,AC ; return address

MOVE.¥ (A7)+,D0 ; J

MOVE.4@ (A7)+,01 ;I

AND . ¥ D1,D0 ;I AND D

MOVE.¥ DO, (A7) ; put function result on stack
P (A0)

.END

In the example given above little attempt has been made to make the
assembly language procedure mimic the structure of a procedure generated by
the Pascal Compiler. A complete description of this structure requires some
preliminary discourse.

6.6.1 The Run-Time Stack
Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment is large enough before the procedure is
entered, the Compiler emits code to ‘touch’ the lowest point that will be
needed by the procedure. If we ‘touch’ an illegal location (outside the current
stack bounds), the memory management hardware signals a bus error that
causes the 68000 to generate a hardware exception and pass control to an
exception handler. See the L/sa Haroware Manual for more information on
the memory management hardware. This code, provided by the Operating
System, must be able to restore the state of the world at the time of the
exception, and then allocate enough extra memory to the stack that the
original instruction can be reexecuted without problem. To be able to back
up, the instruction that caused the exception must not change the registers, so
a TST.W instruction with indirect addressing is used.

In the normal case, the procedures LINK instruction should be preceded by a
TST.W (A7), which attempts to reach the stack location that can accomodate
the static and dynamic stack requirements of the procedure. If the static and
dynamic stack requirements of your assembly language procedure are less than
256 bytes, you can assume that the Compiler's fudge factor will protect the
assembly language procedure, so the TST.W can be omitted. If the
requirements are greater than 32K bytes, (A7) may not be sufficient because
only 16 bits of addressability are available. In this case, the Compiler
currently emits code that in some cases looks like:

MOVE.L A7, A0
SUB.L #Size, A0 ;#size=dynamic + static needed
TST.¢ (AO)

If the Compiler option D+ is in effect (the default), the first eight bytes of
the memory area following the final RTS or JMP (AD) contain the procedure
name, in upper case (produced by the Pascal Compiler). The Debugger gets
the procedure name from this block, allowing you to use procedure names in

6-17

Workshop User's Guide The Assembler

the Debugger. The following examplie shows how an assembly language
programmer can provide the Debugger with information it needs to perform
symbolic low level debugging. Note that all procedure names must be in
upper case to be compatible with the Debugger.

© ASSEMBLY LANGUAGE EXAMPLE

AN I

N N Ny

Na NNy

NN Ne Ny

N NN N N

N S NN

DEBUGF .EQU 1 ; true => allow debugging with

, Pproc names

HEAD -- This MACRO can be used to signal the
beginning of an assembly language procedure. HEAD
should be used when you do not want to build a stack
frame based on A6, but do want debugging information.

No arguments

.MACRO HEAD
IF DEBUGF
LINK A6, #0 ; fancy NOP used by Debugger
-ENDC
-ENDHM

TAIL -- This MACRO can be used as a generalized exit
sequence. There are two cases. First, if you build
a stack frame, TAIL can be used to undo the stack
frame, delete the parameters (if any) and return.
Second, if you do not want to build a stack frame
based on A6, this HACRO can be used to signal the
end of an assembly language procedure. In either
case if DEBUGF is true, the Procedure_name

is dropped by the MACRO as an 8-character name.

Two arguments:
1) Number of bytes of parameters to delete
2) Procedure_Name as string exactly 8 characters,
must be upper case.

MACRO TAIL
UNLK A6
IF %1 =0
RTS ; 0 bytes of parameters
.ELSE
IF %1 =4

MOVE.L (A7)+,(A7) ; 4 bytes of parameters
RTS

6-18

Workshop Users Guide The Assembler

.ELSE
MOVE.L (A7)+,A0 ; put return addr into AO
ADD.¥ #%1, A7 > remove params from stack
N (A0) ; return to caller
-ENDC
.ENDC
IF DEBUGF
.ASCIT %2
.ENDC

.ENDM

The following example demonstrates the use of the
TAIL macro for the purpose of debugging. The example
assumes that you want to build a stack frame based
on A6. In a real assembly language procedure the
zeroes below would be replaced by the local size and

Nae N Ne N N NN,

parameter size.
.PROC SIMPLE
LINK A6, 30 ; zero bytes of locals
NOP > body of procedure
TAIL 0, 'SIMPLE ' , zero bytes of parameters
-END

These two macros, HEAD and TAIL, can be used to make it easier to debug
assembly language routines called from Pascal programs.

Upon entry to the assembly routine, the stack is as shown in Figure 6-5.

6-19

Workshop Users Guide The Assembler

Callers Stack Frame 9 b

Callers Dynamic Link e

Function Result (If a function)
Procedure Arguments (if any)

Static Link (If any)

Retum Agdress

Dynamic Link (old Ag) -_—

Local Frame

" —p

Oynamic Stack Area
A7 ’ Low Memory

Figure 6-5
The Pascal Run-Time Stack

The Amction result is present only if the Pascal declaration is for a function.
It is either one or two words. If the result fits in a single byte {a boolean,
for example), the most significant half (the lower-addressed half) gets the
result value. .

Procedure argurernts are present only if parameters are passed from Pascal.
They are pushed on the stack in the order of declaration. All reference
parameters (parameters declared as VAR's in the Pascal Procedure or Function
declaration) are represented as 32-bit addresses. Value parameters less than
16 bits long always occupy a full word. A boolean parameter passed by value
occupies a word with the value in the most significant byte (the
lower-addressed byte). All non-set value parameters larger than 4 bytes are
passed by reference.

The static link is present only if the external procedure’s level of declaration
is not global. The link is a 4-byte pointer to the enclosing static scope.

It is the responsibility of the assembly language procedure to deallocate the
return address, the static link (if any), and the parameters (if any). The SP
(stack pointer) must point to the function result or to the previous top of
stack upon return. Registers D4 through D7 and A3 through A7 must be
preserved. We recommend that you also preserve D3 and A2.

6.6.2 Register Conventions
The following are the register conventions used in the Lisa system. It is your
responsibility to preserve these registers.

6-20

workshop Lsers Guioe The Assermvler

D0-D2/A0-A1: Scratch registers (can be clobbered)

D3, A2: Scratch registers, but should be preserved
D4-D7/A3, A4: Used for code optimization (must be preserved)
AS: Pointer to user globals (must be preserved)

A6 : Pointer to base of stack (must be preserved)
SP: Top of stack

Registers D3 and A2 may be used at some time in the future by the Compiler
for code optimization, so you should preserve them also.

6.6.3 Parameter Passing Between Pascal and Assembly Language
Parameters are passed between Pascal and assembly language routines in the
following ways:

by value:
boolean a word on the stack with the boolean value in the
most significant byte of the word (lower, or even
address).
integer a word
longint two words

data structure by address (4 bytes). It is the responsibility of the
assembly language routine to interpret the data
structure correctly.

by reference (VAR parameters)
all types by address (4 bytes on the stack)

6.7 Assembly Language Examples
6.7.1 Using .REF and .DEF Directives
The first example illustrates the use of .REF and .DEF. These two directives
allow an assembly language routine to reference other assembly routines.

The Pascal host file is:

program WasteTime;
procedure Wait (time : integer);
external;
begin
writeln (°Going to waste some time');
wait (50);
writeln ('Finished wasting time');
end.

The assembly language file is:

.proc wait
-ref cycle need to use a piece of code
whose entry point is cycle
defined outside procedure wait
another outside procedure

return address in a0

.ref more_time
move.l (a7)+,al

N Ne Ny N, N,

6-21

Workshap Users Guioe . The Assernbler

move.¥ (a7)+.d0 > need to wait this many cycles
; a parameter for cycle

Jsr cycle

Jsr more_time ; waste more time

Jmp (a0) 2 return

; the subroutine used by wait is defined in the

; following code. this proc could do other things

> besides the cycle routine

.proc def_cycle

.gef cycle > cycle visible to other procs

.

code can go here

Se Ny

nop . example of a 1line of code

cycle ; beginning of the cycle routine
; parameter is in do0

sub #1,d0

bne cycle

rts

more code can go here

.proc more_time . waste more time

clr dao > use d0 as timer
a1 add #2,d0

bne al

Its

.end

6.7.2 String Parameters
The following program illustrates how to pass a Pascal string to an assembly
language program, modify the string, and return it. Pascal strings have their
length stored as the first byte in the string.

NOTE

Assembly language routines are in read only segments and do not have
thelr own data (read/write) area. All read/write data should be
declared in Pascal and passed to the assembly routines using pointers.

6-22

Workshop User's Guide

The Pascal source file is:

The Assembler

program pasStr;
type strType = string[80];
var str : striype;
ch : char;

procedure AsmStr (var str : strlype).

external;
begin

str := ‘initial string in Pascal main program®;

writeln (str);
AsmStr (str);
writeln (str);

writeln;

write (‘'press any key to continue’);

read

The assembly language file is:

(ch);

.proc AsmStr
move.l (A7)+,A0
move.l (A7)+, A1
move.l A2, -(A7)
lea size, A2
clr.1 bo
move.b (A2),00
move.b (A2)+, (A1)+

copy subqg D
blo done
move.b (A2)+, (A1)+
bra copy

done move.l (A7)+ A2
Jmp (a0)

size .byte 38

myStr .ascii
.align 2

6.7.3 Writing a Function

;return address saved in A0
;address of string from Pascal
;save scratch register A2

;o0et size of string

;copy size of string
;done copying string?
;yes, return to Pascal
;one char of string

;restore scratch register
;return to Pascal

'this string is from the Lisa Assembler’
;get on a word boundary

The following example shows how to write a function in assembly language.
This function returns a boolean value.

6-23

Workshop Users Guide The Assembler

The Pascal program is:
program booleanFunction;
var int : integer;
ch : char;
function swapBytes (var int : integer) : boolean;
external;

{ if a parameter is passed by reference
(a var parameter) its addesss is passed
to the assembly routine on the stack }
begin
int := 256;
writeln ('the initial value of int = ', int:1);
repeat
if swapBytes(int) then
writeln (‘int = *, int:1)
else writeln (‘int = 0, function value is false');
int := int - 1;
until (int < 0);
write ('press any key to continue’);
read (ch);

The assembly language function is:

.func swapBytes

move.l (A7)+,A0

pop return address
move.l (A7)+,Al

get address of word to swap

N Ne N NN

move {A1),D0 . get the number

TOor #8,D0 swap the bytes

move DO, (A1) put it back

bne a1 :

clr (A7) , number = 0 so return false (0)
bra a2

a1l move #SFFFF, (A7)
2 (A0)

.end

return result true (non zero)
return to calling program

N

Ny

6-24

Workshop Users Guige The Assembler

6.7.4 Calling Pascal 1/0 Routines
The following example illustrates how to call Pascal routines from assembly
language to do 1/0. Note the use of macros for calling the Pascal routines.

program AsmlIO;
type strType = string{80];

var str:striype;
f1,f2: text;
ch: char;

procedure main;
external;

{THE FOLLOWING FUNCTIONS ARE CALLED FROM THE ASSEMBLY LANGUAGE
PROGRAM MAIN TO PERFORM 1/0}

function f_rewrite (f_num: integer; f _name: strType):integer;
begin .
case f_num of
1: rewrite (f1,f_name);
2: rewrite (f2,f_name);
end;
f rewrite := joresult;
end;

function f_reset (f_num: integer; f _name: strType): integer;
begin
case f_num of
1: reset (f1,f_name);
2: reset (f2,f_name);
end;

f_reset := joresult;
end;
procedure writeLine (f_num: integer; var S: strType);
begin
case f_num of
0: write (s); {file id = 0 means write to -console}

1: write (f1,s);
2: write (f2,s);
end;
end;

procedure writelF (f num: integer; var S: strType);
begin

6-25

Workshop User's Guide The Assermbler

case f_num of

0: writeln (s);

1: writeln (f1,s);
2: writeln (f2,s);
end;
end;

procedure f_close (f_num: integer; lock_file: boolean);
begin
case f_num of
1: if lock_file then
close (f1,lock)
else
close(f1);
2: if lock_file then close(f2, lock)
else close(f2);
end;
end;

{THE MAIN PROGRAM CALLS THE ASSEMBLY LANGUAGE MAIN}

in
writeln ('test program - using assembly main routine to do 1/0°);
writeln;
main;
write ('press any key to continue');
read (input,ch);

The assembly language file is:
.proc main

EXTERNAL REFERENCES AND CONSTANTS

.ref writelF
.ref writeLine
.ref f_rewrite
.ref f_reset
.ref f_close

first_file .equ 1 id # of file one
printerid _.equ 2 ; id # of file "-printer’

Ne

; return address to the Pascal main routine is left on the stack

6-26

Wworkshap Lsers Guioe

e Assermbler

HACROS TO CALL PASCAL FUNCTIONS

macro open_write_file

: X1 —-- file #

: X2 --- file name

clr -(a?7) ;

move #%1,-(a7) ;

lea %2, a0 ;

move.l a0, -(a7)

Jsr f_rewrite

move (a7)+,at ;

ble a1

error %2 ;
al -endm

.macro open_read file

b X1 —— file #

; %2 --- file name

clr -(a7) :

move #%1, -(a7)

lea %2, a0

move.l a0, -(a7)

Jsr f_reset

move (a7)+,a0 ;

ble a1

error %2 ;
al .endm

.macro write file ;

; %1 - file #

move #%1, -(a7)

lea %2,al

move.l al, -(a7) 2

Jsr writeLine ;

.enam

.macro writetn file

X1 ——- file ¢

.
’

e N

reserve space for function
result from f_rewrite

file id # as first param
second param is file name

; pop I0result

I0result > 0 —> error
(nested macro call)

reserve space for function
result of f_reset

pop IOresult

I0result > 0 -> error

; write a line (with no linefeed)
%2 --- label of string to be written

push string address onto stack

; write it out

write a line of text with
1linefeed

X2 --- label of string to be written

6-27

Workshop Lsers Guloe The Assermtler
move #%1,~(a7)
lea X2, a1
move.l ai, -(a7) > push string address onto stack
Jsr writelF ; write it out
.encm
.macro close_file
; X1 —-- file #
: X2 --- close status code
; 0 - $00ff normal close
: $0100 - S$Ffff lock
move %1, -(a7)
move #X2, -(a7)
Jsr f_close
.encm
error

.macro

write file O0,errstr

writeln file 0,%1

rts

X1 --- file name

write error message
to console

(file id # 0)

output file name also

qQuit

L R YR Y]

.endm

open_write_file first_file, filel
open_write_file printerld, printer
writeln file 0, openstr

writeln file first_file, string

writeln file printerlqg, stri
close_file first_file, $0100
close_file printerId, 0
open_read_file 1,filel
close_file 1, SFEFf

open read_file 2 errfile

6-28

Ne S Ne g, Ve Ve N

Yo Ny

N

N

open 10/record.text

write the openstr
to -console (file # 0)
write string to

; first file

write strl to printer

lock first file
do not 1lock the printer

no error should occur
preserve filel

no errflle around, should
cause €rror.

workshao Users Guioe The Assembler

rts > back to Pascal main
; program
© CONSTANTS
filel .byte 14
.ascii 'I0/record.text’
.align 2
printer .byte 8
.ascili '-printer’
align 2
string .byte 38
.ascii ‘this string is from the Lisa Assembler’
.align 2 ; make sure on even memory
strl .byte 34
myStr .ascii ‘another string from Lisa Assembler’
align 2

openstr .byte 26
.ascii ‘'opened file I0/record.text’

.align 2
errstr .byte 22
.ascii ‘error in opening file °
align 2
errflle .byte 6
ascii ‘noFile’
align 2
.end

Workshop Lsers Guide The Assembler

6.7.5 Using Pascal Data Areas
Assembly Ianguage routines are in read only segments and do not have a data
area. Any data area that must be written into must be declared in the Pascal
program and referenced in the assembly language program by pointers. The
following two examples illustrate the correct and incorrect ways of doing this.
The correct example illustrates how to do a READLN from an assembly
language program.
The first example illustrates the “obvious” and /icorrect way of doing a
READLN from an assembly language program. The Pascal program is as
follows:

program ASHDemo;

{ BAD EXAMPLE: Note that this example does not work, because
it tries to write into a memory space reserved by the
Assembler. Data space must be set up in the Pascal program
and referenced by a pointer variable. The following example
illustrates the correct way of doing this. }

type

PasStr = string{255];
var

ch: char;

procedure w write(S: PasStr);
in
write(s);
procedure w_writeln;
begin
writeln;
end;

procedure w readln(var s: PasStr);
{ read a line from -CONSOLE and put it into
(t_rrite to) string s }

begin
readln(s);
end

procedure main; external;
main; { call to assesbly language routine }
write('That*'"s all folks, type space to continue');

6-30

Workshop User's Guioe The Assembler

repeat read(ch); until ch = * °;

end. {ASHDemo}
This is the corresponding /ncorrect assembly language program:
.proc main
.ref w_write, w_writeln, w_readln

.MaCIo a write (s: passtr)

> %1 = string label

N

lea X1, a0
move.1l ao, -(a7)
Jsr w_write
.endm
.macro a_writeln ; no parameters
Jsr w_writeln
.endm
.RBCTO0 a_readln ; (var s: passtr)
; %1 = string label

; Put the address of the string into
; which a line is to be read on the
; stack and call Pascal routire to

lea %1, a0 ; This space has been
Jsr w_readln

a_write stringl ; This will write a string
a_writeln ; and a newline.
a_write hello

6-31

Workshop Users Guioe

a_readln

a_writeln
rts

hello -byte
.ascii
.align

StringSpace .block

.align
Stringl .bytcie'
.ascii
.align

.end

The Assembler

stringspace NOTE: this will fall
; with a bus error
; because stringspace is
; in program space (read
; only), not in read/write
; Wmemory space.

stringspace ’

13

‘Type a line: °*

2

256 ; Save some space for a
; readin. This block of
; memory is in program
; space, therefor it is
. read only.

2

39

‘This string is from the Lisa Assembler.’
2

This is the correct way of doing a READLN from an assembly language
program. Note that the string “s”, declared in the Pascal program, is used in
the w_readln function and passed to the assembly language program by

pointer.
program AStDemn;

{ GDOD EXAMPLE: This example does a readln by using a pointer
variable as a parameter. This allows the string to be
reserved by the Pascal Compiler. }

type
PasStr = string{255]);
ByteP = “PasStr;
var

s: PasStr; { this string is allocated in resd/write
memory by the Pascal Compiler }

6-32

Workshop User's Guide

ch: char;

procedure w_write(S: PasStr);

in
write(s);
end;

procedure w_writeln;

begin
writeln;
end;

function w_readln: ByteP;

{ This function reads a line into the string s (space

The Assermnbler

allocated by the Pascal Compiler in read/write memory
segment) and returns address of s to assembly routine }

begin
readln(s);

w_readln := pointer (as);

end;

procedure main; external;

begin {AStDemo}
main;

{ call to assembly language routine }

write('That’'s all folks, type space to contirue');
repeat read(ch); until ch =

. {AStDemo}

;

This is the correct assembly language program:

.proc

.ref

main

w_write, w_writeln, w_readln

a_write
%1, a0
a6, -(a7)
w_write
a_writeln

v_writeln

6-33

’

I

’

(s: passtr)
%1 = string label

no parameters

Workshop Lser’s Gulioe he Assermbler

.macro a_readln ﬂnction v reatﬂn ByteP.

This function expects the Pascal routine
w_readln to return the pointer to the
string 1n which a 1ine has been read

Se Vo N, N

Ne

clr.1 -(a7)
Jsr v_readlin
.enam
a_write stringi ; this will write a string
a_writeln ; and a newline
a_write hello
a_readln > leaves the address of
; string read at top of
. stack
Jsr w_write ; takes top of stack as
; parameter
a_writeln
rts
hello .byte 13
.ascii ‘Type a line: '
.align 2
Stringl .byte 39
.ascii ‘This string is from the Lisa Assembler.’
.align 2
.end

NOTES

-0359-A

7.2

7.3

74

75

76

7.7

78

79

Chapter 7
The Linker

THE LINKEY ..ottt cre et e rere s st s sesn s s r s a s s am v 7-1
The Linker is a program that combines object files to create an
executabie file.

USING the LINKET ..oeeieiiiiaiiiiiiieiinceriie ettt e s e e 7-2
The Linker combines object files to produce executable programs.
Inputs to the Linker are object files, command files, or options.

The Linker OpiONS _......cociimiiiiiiicmiiii ittt ce e es e sea e e aneee 7-2
The Linker options control how a link is performed. A list of the
current option settings is displayed when you enter a "?" to the options

prompt.

How Do 1 Link @ Main Program?.t ees 7-4
A main program is linked by giving the Linker the object file from a
Pascal program, along with all assembly language routines, compiled
units, and libraries that the program uses.

Regular and Intrinsic UNItSottt reeeeenes 7-4
Regular and intrinsic units are both Pascal units, separately compiled.

A requiar wiitis linked with @ main program and becomes part of the
executable file. An Jntrinsic wiit is shared among all programs that

use it, both on disk and in memory.

The LINKET LISHNG .eeeemeieeiceeeieeeeeeeeeceeeeeenae e eeecmeee e emaeeeesnnaeeaes 7-5
The Linker listing provides a summary of the linking process and
resources used. Optionally, you can request lists of all symbois used.

Resolving EXeINAl NAIMIES .. .o.cooiiiiiiiiiectrrirem e ce s cceearaansenacnanes 7-6
Extems/ names are symbolic references to separately compiled modules.
The Linker maps them to actual addresses.

MOOULE INCHUSION.....eeeei e ereeerecccreeee e ee e e e s v e ae v e nanann 7-6
The Linker only includes modules that are actually referericed.
R0 11 = 17 1o TS 7-7

Segmentinga program allows portions of it to be swapped out of
memory when not in use. Segmentation is controlled by a combination
of compiler commands, Linker options, and the ChangeSeg utility.

The Linker

7.1 The Linker
The Linker combines object files. Its input consists of commands and object
files. Its output consists of abject files, link-map information, and error
messages. The output of the Pascal compiler must be linked with
IOSPASLIB.0BJ before it can be executed. Other object files, including
intrinsic unit libraries, and object files produced by the Assembler, can alsg be
linked into the output object file.

when a program is compiled into an object file, it contains the following sorts
of things:

= Object code, in the form of relocatable machine language, that expresses
the algorithm of the program.

= Symbolic (named) references to all locations that were not known at
compile time. These include externally compiled routines (units and
intrinsic units) and the Pascal library support routines (I0SPASLIB.0BJ).

= Other information to be used by the Linker.

The purpose of the Linker is to resolve all the symbolic references (link
references to definitions), and output an object file that can be executed. The
Linker also sorts the code modules into named segments. These segments are
swapped into memory at run time by the Operating System.

The Linker does its work in two phases. In the first phase, it reads all the
input files, and finds all symbolic references and their corresponding
definitions. Errors such as duplicate and missing references are detected
during phase one. In the second phase, the Linker copies code from the input
files into the output files in executable format.

If the Linker can’t find something that is addressed symbolically, this is an
error. An error message will be printed, indicating the missing module. This
process of finding the real addresses that correspond to the symbolic addresses
Is called resalving the externsal references

The Linker expects to find the file INTRINSIC.LIB. INTRINSIC.LIB is a
directory of libraries and intrinsic units, and includes information for the use
of the Linker. INTRINSICLIB defines all the intrinsic units supplied with the
workshop system.

To create an executable file, the Linker must have the following inputs:
* The object file from a main Pascal program.
* IOSPASLIB.0BJ to provide the standard Pascal procedures and functions.

7-1

Wworkshap Users Guide The Linker

* JOSFPLIB.OBJ, if you are using any floating point variables.

* Object files for any other external procedures referenced by the main
program. These can be Pascal units, assembly language routines, or
intrinsic units defined in INTRINSIC.LIB.

The Linker combines these files and Creates an executable object file. If it is
unable to link these files correctly to create a legitimate output file, the
Linker displays an error message. If there is an error, the object file is not
produced.

when linking a main program, all references to external objects must be
resolved. Partial links are not supported.

while 1t Is linking a main program, the Linker does a apad code analysis and
does not Include any routines that are not referenced. Unnecessary routines
are eliminated from the main program, and from the regular units glven as
inputs to the link.

7.2 Using the Linker
The Linker is started by pressing L in response to the Workshop command
prompt. The Linker prompts you for the input files, the listing file, and the
output file. Options can be entered after entering "7* in response to the input
file prompt. After all file names and options are entered, the link begins.
Hence the set of options in effect is the same throughout the link. It is not
possible to change options part way through the link. When entering an input
file name, it is not necessary to enter the .0BJ extension; the Linker will
provide that as needed for input files.

The Linker will accept option commands and input file names from a
command file. A command file is a text file containing the file names and
options, one per line. If a blank line exists in the file, the Linker treats this
as the [RETURN] that signals the end of the Input flles. You use a command
file by typing “<" followed by the name of the text file the commands are in.
It is not necessary to enter the .TEXT extension; the Linker will provide that
aslneeded for all input command files. Create the text file by using the
Editor.

The default listing is -console. You can send the listing to a text file by
entering its name in response to the listing file prompt. When sending the
listing to a text file, you do not need to provide the .TEXT extension, since
the Linker provides it.

After entering the ouput file name, the link begins. If no errors occur during
the link and all external references are resolved, the output file is executable.
A message is printed at the end of the link to tell you if the output is
executable.

73 The Linker Options
To enter the Linker options mode, type “? [RETURN]" in response to the
prompt for an input file. To leave options mode and return to entering input
files, press [RETURN] in response to the options prompt. The order in which

7-2

Workshop Users Guide The Linker

options are entered is unimportant, because they have no effect until the link
begins. The last value entered for an option is the value used when the link
is performed.

Options are represented by a single character. A “+" in front of the character
makes that option take effect. A "-" sets the Linker so that option will not
happen. In addition to being set on or off, some options have additional
parameters. Numeric parameters can be in either decimal or hexadecimal.
Hexadecimal numbers are indicated with a leading “$". The current setting
of all options can be displayed by entering a "?" in response to the request
for an input file or an option.

The Linker options are as follows:
+A Alphabetical listing of symbols. The default is ~A
+D Debug information. The default is -D.

-H num -H sets the initial disk space allocated to the program’s stack.
The default is to automatically include space for the program
variables and the value specified in the +S option.

+L Location ordered listing of symbols. The default is -L. The
location is the segment name plus offset.

+M fromName toName
+M maps all occurrences of the segment fromName to the
segment toName. This allows you to map several small segments
into a single larger segment. You can thereby postpone
segmentation decisions until link time by using many segment
names in the source code.

NOTE

Because options have an effect only when the link begins, it is not
possible to map a segment name to several different names using this
option. Also, you cannot use this option to map segments to or from
the blank segment.

+S num +S sets the starting dynamic stacksize to ‘num’. The default is
10000.

+T num +T sets the maximum allowed location of the top of the stack to
num”. The default is 128K,

+ W + W tells the Linker to get intrinsic unit information from a file
other than INTRINSIC.LIB.

? Prints the options available and their current values.

7-3

Worksthoo Users Guide The Linker

7.4 How Do I Link a Main Program?
A main program consists of a Pascal program linked with all routines
necessary for it to run. A main program is the only type of executable object
file produced by the Linker. To link a main program you must have the
following:

* A compiled Pascal PROGRAM object file.

* Object files for any other units the program uses. This Includes files for
regular units and assembly language routines. Any intrinsic units used
must be defined in INTRINSIC.LIB.

* IOSPASLIB.0BJ, and I0SFPLIB.0BJ (if any real variables are used).
when you have all the above files, proceed as follows:

1. Execute the Linker by pressing “L" when the Workshop command prompt is
displayed. The Linker displays a header and asks you for an input file.

2. Enter any desired options. To enter the options mode, press *? [RETURNJ'
in response to the request for an Input file. See Section 7.3 in this
chapter for information on Linker options. Press [RETURN] after each
option entered. When you have entered all the options, press [RETURN] to
begin entering input file names.

3. Enter the file names for all the object files, pressing [RETURN] after each
one. The file names can be entered in any order. You do not need to
enter the .0BJ extension; the Linker will automatically append it.

4. Press [RETURN] to Indicate the end of the input flles.

5. The Linker prompts you for a listing file. Enter the file name desired, or
press [RETURN] to accept the default of displaying the listing on the
-console.

6. The Linker prompts you for the output file. Enter the name of the
executable file you want produced. You do not need to enter the .08J
extension; it is supplied automatically.

The linking process begins when you press [RETURN] after entering the output
file name. If the link is successful, the message “Output is executable” will be
displayed. If the link is not successful, error messages are displayed.

7.5 Regular and Intrinsic Units
The two types of units are regular units and intrinsic units. Each is a
separately compiled code module that may be used by a maln program or
another unit. The syntax of a Pascal unit is explained in the Pasca/
Reference Manual for the Lisa

A regular unit is combined with a main program by the Linker and included in
the resulting object file. An intrinsic unit, on the other hand, is stored
separately on the disk, and loaded at run time. Thus, only one copy of an
intrinsic unit is kept on the disk, no matter how many main programs use it.

. Workshap Lkers Guide The Linker

In addition to being shared on the disk, an intrinsic unit is also shared in
memory.
NOTE

The current implementation has no provision for users to create new
intrinsic units. All intrinsic units are supplied by Apple Computer.

75.1 How Do I Link with a Regular Unit?
A reqular unit is a separately compiled segment of code. It is written in
Pascal, and compiled like a regular program. See the Pasca/ Reference
Menua] for the Lise for information on how to write a unit. See Chapter S
in this manual for information on compiling the unit.

After you have created a unit, the routines in it can be accessed from any
other program or regular unit you write. The Linker combines a8 main program
with all units it uses. The result is an executable object file containing all
the needed routines.

To use reguiar units with a main program, follow the procedure in Section 7.4.
As input, you must give the Linker:

= The object file of the main program.
* The object files of all units used by the main program.
* IOSPASLIB.0BJ, and IOSFPLIB.OBJ (if any floating point variables are used)

The Linker combines all these object files into an executable object file. It
also does a dead code analysis to eliminate any routines that are not used, to
reduce the size of the object file.

76 The Linker Listing
A listing is produced each time a program is linked. This listing can be sent
to a file, or displayed on the console (the default). The +A option gives you
an alphabetical list of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced in stages, as follows:

1. The input files are read, and a summary of the resources used is printed.

2. .The linking process begins. Information about the size of each segment is
printed.

Errors are reported as they are found, and you are told whether or not the
output is executable.

If you requested optional listings, they are alsoc printed. An example of a
Linker listing with no options requested is shown in Figure 7-1. Linker
listings are mainly used for debugging at the machine code level. See
Chapter 8 for more information on the Debugger.

7-5

Workshop Users Guide The Linker

Beginning memory - 262488
After static allocation, wemory - 186813
Input file [.0BJ] ? TRANSVOL
Input file [.0BJ] ? I0SPASLIB
Input file [,0BJ] ?
Listing file (CONSOLE:}/L.TEXT] -
OQutput- f1le (.0BJ] - TRANSFER_FLS
Reading filer TRANSVOL.O0BJ
Reading file: 10SPASLIB.0BJ
Read 2 flles, max = 108
4 segeents, sax v 128
16 wodules, max = 1459
32 entries, max = 20800
38 ref. lists, wax = ©8008
124 references, max * 16900
Linking Main Progras,
Active: 4 of 16 read.
Visible: | of 32 read.
Global data: $80867C
Common data) $008060
Linking seguent #: B 1 file (JT) segs { sizer 2908
Beginning memory - 184487
Ending wemory - 184832
8 Errors detected.

The output {s executable,

Elapsed tiwe: 298 and 304/1808 seconds.
That‘s all Folks '!! |

Figure 7-1
A Linker Listing

7.7 Resolving External Names
An external name is a symbolic entry point into an object module. All such
names are visible at all times--there is no notion of the nesting level of an
external name. External names can be either global or local. A Jocal name
begins with a $ followed by 1 to 7 digits. Local names are generated by the
Pascal compiler. A glaval name is any name that is not a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global names are not allowed. Only one definition of a given
global name can occur in a given link. The one exception to this is that the
Linker accepts duplicate names where one instance is in @ main program or
regular unit, and the other is in an intrinsic library file. In this case, a
warning is issued, and the entry in the main program or regular unit is used.

The scope of the local name is limited to the file in which it resides. All
references to a given local name must occur within the same input file.
when a link is done, global names are passed through to the output file
unmodified, but local names are renamed so that no conflicts occur between
local names defined in different files.

7.8 Module Inclusion
When linking an intrinsic unit, all code modules in the unit are included.
when linking @ main program with regular units, the Linker does a dead code
analysis and does not include any modules that are not called.

7-6

Workshap Users Guioe The Linker

79 Segmentation
Segmenting a program makes it possible for portions of the program that are

not being used to be swapped out to disk, thus making better use of memory.
The way a program is segmented affects its performance.

Segmentation is controlled by three things:

* The $S Compiler command and the .SEG Assembler option, which assign
segment names to source code modules.

* The +M Linker option, which enables you to remap compiler segment
names into new segment names.

« The ChangeSeg utility, which enables changing the segment names prior to
linking. See Chapter 10 for information on ChangeSeg.

7-7

NOTES

129-0360~A

Chapter 8
The Debugger

8.1 The DeDUGQRTcoomiitiraiiicieritactetirenscrartranssasisssssnsssnssenssrarmsnrnnns 8-1

The Debugger allows you to examine and modify memory, set
breakpoints, assemble and disassemble instructions, and provides other
functions for run-time debugging.

8.2 Inadvertent Entry Into the DebUOQeTcvoeieeiiiiioiaiiercece e rrnneraneceeenas 8-1
If you have a bug in your program or a system malfunction, you may

inadvertently enter the Debugger. This section tells you how to deal
with this,

8.3 USING the DEDUGOETeeeveeeeceeeeeeeererseeeeesesseseeessseesescessssesssssssessesnsas 8-6

Enter the Debugger by pressing D in response to the command prompt,
or by pressing the NMI key. The Debugger prompt (>) indicates that it
is reagy to accept commands.

8.4 The Debugger COMIMBNDSo ir i crameer e et s ansanan 8-10
Commands are available for assembly and disassembly of instructions,

displaying memory and registers, setting breakpoints and traces, memory
management, and base conversions.

85 Summary of Debugger COmMaNScoooiimrioreeromeriresecccaocaenaencmnaans 8-20

The Debugger

8.1 The Debugger
The Debugger allows you to examine and modify memory, set breakpoints,

assemble and disassemble instructions, and perform other -functions for
run-time debugging. .

Procedure names are available to the Debugger for program units compiled
with the D option on. The Debugger uses the symbolic names wherever
appropriate.

The Debugger’s symbol table contains the user symbol table and the
distributed procedure names. The user symbol table contains symbols the user
defines while using the Debugger and the predefined symbols for registers.
Section 6.6 in this manual contains more information about the run-time
environment of programs.

when you enter the Debugger, the Debugger screen is made visible by the
Debugger. You can display the main screen by pressing [OPTION] and [ENTER]
to see the state of the program before the Debugger was entered. Redisplay
the Debugger screen (by pressing [OPTIONHENTER] again) to continue with
debugging. : ,

8.2 Inadvertent Entry into the Debugger ’
Accidental entry into the Debugger can be caused by a bug in the program
you are running or by some malfunction in the system. A message from the
Debugger will suggest the type of problem. The messages and the actions you
can take for program bugs are described in Section 8.2.1 below. System
malfunctions are described in Section 8.2.2.

8.2.1 Program Bugs
You can enter the Debugger while your program is executing for any of the

following reasons. More information on these conditions can be found in the
MCE8000 16 Bit Micrgprocessor Lsers Marsl.

* A value range error

* An illegal string index

¢ A bus error oi address error

* An illegal instruction or a privilege violation
* Integer division by zero

* Spurious interrupt or unexpected exception

* Overflow when TRAPV is executed

* Line 1111 Emulator

Workshop User's Guide) The Debugger

¢ System malfunction

* Intentionally, by pressing the NMI key. This is the way to terminate an
infinite loop (when s-period doesn't stop your program). Do not use NMI
when running system programs.

Usually the system will tell you the most appropriate action to take, for
example, "type g to continue”. Follow these instructions unless you have a
special reason for doing something different.

Programrmng errors are described in Section 8.2.1.1 below. Stopping an
infinite loop is described in Section 8.2.1.2 below.

8.2.1.1 Program errors
If you have an error in your program it will drop into the Debugger and

display one of the following messages:
If a range check error occurs in application code, the message displayed is:
VALUE RANGE ERROR in process gid <gggg>

value to check = <vww> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller aé = <ccccce>
Going .to Lisabug, type g to continue.
or:
ILLEGAL STRING INDEX in process of gio <gggg>
value to check = <vvvwv> lower bound = <nnhn> Uupper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>]
Going to Lisabug, type g to continue. .
where:
<ggag> - is the global process 1D of the process that incurred the
exception.
<WWWv> is the value that is outside the range.
<nnnn> is the lower bound of the range.
<uuuu> is the upper bound of the range.

<pppppp> is the address of the statement after the call to the range
check routine in Paslib.

<gcecee> is the address of the link field at the time of the call to
Paslib.

Ouring execution applications can field hardware exceptions. Refer to the
MCEE000 16 Bit Microgprocessor User'’s Manueal for definitions of these
hardware exceptions. If such an exception occurs, the system displays one of
the following messages:

wWorkshap Users Guice The Detugger

Bus error or address error exception:

EXCEPTION in process of gid <gggg>

Process is about to be terminated.

access address = <agaaaaaa> = mmu# <mmm> (segment name), offset
<0000>

inst reg = <rrrr> SI = <SSSS> pc = <pppppp>

saved registers at <xoco000> :

Going to Lisabug, type g to continue

Any other hardware exception:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
Sr = <S$SSS> PC = <pppppp>

saved registers at <xcooooooe

Going to Lisabug, type g to continue

where:

EXCEPTION is one of:
BUS ERROR
ADDRESS ERROR
ILLEGAL INSTRUCTION
PRIVILEGE VIOLATION
SPURIOUS INTERRUPT
UNEXPECTED EXCEPTION
ZERC DIVIDE
CHK RANGE ERROR
OVERFLOW
LINE 1111 EMULATOR

<Qgag> is the giobal 1D of the process that incurred the exception.

<aaasaaaa> is the address that caused the bus or address error

<mmm> is the segment number represented by <aaaaaaaa> and

<0000> is the offset within that segment ,

<ITIT> is the value of the instruction register at the time of the
exception

<ssss> is the value of the status register at the time of the

' exception

<pppppPpP> is the value of the program counter at the time of the
exception ;

<0000000> Is the address of the saved register information

All numbers displayed are decimal; the segment name is displayed only if the
segment number makes sense to the Operating System.

If the exception is divide by zero, overflow, or CHK out of bounds, the
process is not terminated and the line to that effect is not shown. If the
process has declared an exception handler for this exception, control passes to

Workshap User's Guide The Debugger

the handler after you type g to LisaBug, and the process then continues
execution. If no handler has been declared, the system default handler
terminates the process. If the exception is a bus error and the segment name
is "stack seg’, a stack overflow has probably occurred. To find your bug you
can do a SC (stack crawl) and IL (immediate disassemble) to find where you
are in the program. The instruction register tells you the exact instruction
being executed. The PC might be 2 to 10 bytes ahead.

You can declare an exception handler in your program to handle divide by
zero, overflow, or CHK out of bounds exceptions. Then your process will not
be terminated by the system if this type of exception occurs. You can also
geclare an exception handler for the “SYS_TERMINATE" exception in your
program. This exception handler will then get executed if your process has a
fatal error as described above. This allows you to clean up your program,
close your files, etc. (in this exception handler) before your program is
terminated. See the Querating System Refererce Maval for the Lisa for
how to declare an exception handler.

8.2.1.2 Terminating an Infinite Loop

The following procedure should be used on user programs only. To
terminate a systems program use ®-period.

If your program is in an infinite loop, or appears to be doing nothing, you can
enter the Debugger by pressing the NMI key (the - key on the numeric
keypad). This will put you into the Debugger and show the trace display,
which looks something like:

Level 7 Interrupt

aaaaaaaa bbbb <instr>
PCxxxxxxxxSRxxxxmeSxxxxxmxSS»oameOdPROC-yyy
DO=000000xX D1 =30000xxX D2=X000000¢k - D3 =00006XXx

Ba=3000xxxx D5=300000(X D6 =X300000K D7 =X0000000¢

AD=20000000¢ A1 =X00000XX A2 =XX00XX. A3 = X000

A4=X000000X A5=X000000X AB =X00000X A7 =X00XXXK

>

where:
aaagaaaa is the current address
bbbb is the contents of the current address
<instr> is the current instruction disassembled
XIOOOXKXKX is the contents of the specified register
d is the current domain (8 - 3)
yyy is the process 1D of the interrupted process

This information is used in debugging your program. If your program is in an
infinite loop, proceed as follows:

8-4

Workshop Liser's Guide The Detugger

6.

Check the domain (DO=d). If the domain is zero, you are currently
executing in system code. You must be executing user code before you
can work on your program (domain 1 - 3} See Section 8.2.1.3 "User Break”
below for a procedure to get you into user code.

Make sure you are in your own process, instead of another process that
may be rumning in the background. If the current address does not show
the name of one of your procedures, type SC (stack crawl). The procedure
names displayed should be from your program.

If you are in a tight loop you can step the PC beyond it by using other
Debugger commands. In order to do this you must be familiar with 68000
assembly language and the Debugger commands. Most often you will just
want to stop your program. This is explained below.

First make sure the domain is not zero. Type "PC 0" and press [RETURN)
This will cause an exception when you restart your program.

Type “G" and press [RETURN] Your program will restart, cause an
exception, and immediatly drop back into the Debugger with an exception
message that includes the instructions “Type g to continue™.

Type “G" and press [RETURN] Your program will be terminated.

8.2.1.3 User Break
The user break facility stops processing in user process code. Use this
procedure if the trace display indicates that the domain is zero. (Either
DOMAIN=0 or DOMAIN = n OVERRIDDEN T0 0) The UBR command will set a
breakpoint at the next instruction to be executed in the user process. To stop
your program in user process code, proceed as follows:

1.
2.

Type "UBR" and press [RETURN]

The system will continue executing until it retums to user process code,
then it will drop back into the Debugger. You can now proceed to work
on your code.

8-5

Workshap User'’s Guiae The Debugger

NOTE

There are two cases when UBR will not set a breakpoint. The first is
if the system is interrupted while a system process is running (PROCESS
=0, 1, or 2} The second is if the system is interrupted while the
scheduler is running and it has not chosen a process to run. If UBR
does not seem to be working, check for this as follows:

Type “ID PC~4" and press [RETURN] If the STOP instruction is
displayed, you are in the scheduler. You must press "G" and retumn to
start the system running again and press NMI again.

If your program is doing a READ or READLN, the system will display
the STOP instruction. The only way to continue execution is to press
“G" and enter something from the keyboard to satisfy the read.

8.2.2 System Malfunctions
If there is a system malfunction, the system will enter the Debugger with a
message indicating a system error or an EXCEPTION display with the domain
zero. The message will include instructions telling you what command to
type. Ususally it will tell you to type OSQUIT. It may be necessary to type
this command several times.

If you are having problems with system malfunctions, call your support hotline
for more information. It will be useful to have copies of the messages that
were displayed. If you have a printer connected to the lower Or upper port,
use PL or PU to generate a bug report.

83 Using the Debugger
Type D to the command prompt to invoke the Debugger. It asks:

Debug what 0S file?

Enter the name of the object file you want to debug. It is run with a
breakpoint set at the first instruction and drops you into the Debugger
immediately. The Debugger command prompt is >. The default radix is
hexadecimal.

Another way of getting into the Debugger is by pressing the NMI key, which

is the "-" key in the top row of the numeric keypad.

when you get the command prompt, the Debugger is ready to accept
commands that allow you to:

* Display and set memory locations

* Set and display registers

* Assemble and disassemble instructions
* Set breakpoints, patchpoints, and traces

Workshop Users Guioe The Debugger

= Manipulate the memory management hardware
* Set up timing buckets for execution timing
= Perform utility functions including:

* Symbol and sase conversion

* Move the Debugger window

* Print Debugger information

83.1 Examples of Using the Debugger
This section gives examples of how to use the Debugger. An explanation of
all Debugger commands is in Section 8.4. A summary of all Debugger
commands is in Section 8.5.

If you type a file name to the prompt from the Debug command, the
Debugger starts up with the program counter at the start of the program. To
see one instruction disassembled at 32F96, type:

>ID 32F9%

ID stands for Immediate Disassemble. Each subsequent 1D command, if given
without any address, disassembles the next instruction found. In addition to
printing the value of each byte, the Debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period.

To disassemble 20 consecutive addresses, type
>IL

IL, Immediate Disassemble Lines can also be followed by an address.
Subsequent IL commands disassemble successive blocks of 20 consecutive
locations in memory.

If the object file being examined was compiled with the D+ Compiler option,
the procedure names are available in the Debugger and can be used in any
expressions. For example,

>IL Foo S

disassembles the first S lines of procedure "Foo™.
>BR Foo+40

sets a breakpoint 40 bytes into procedure “Foo”.

Wworkstgp Users Guide The Debugger

You can also use labels in immediate assemblies:
>sy Ken 6000
>A Ken NOP
assembles a NOP instruction at the address “Ken”, which in this case is 6000.
>A 6000
>Rich: JMP $100
> [RETURN]

enters the immediate assembler at 6000, defines the label 'Rich’, and
assembles a JMP instruction.

8.3.2 A Pascal Example: Range Errors ‘
The Debugger can be used for run-time debugging of Pascal programs. Its
displays and commands reference Pascal procedure names to make it easier to
debug programs. If your program has a fatal run-time error, it will drop into
the Debugger and give you a trace display. The trace display will include the
name of the procedure that was executing.

One common reason for dropping into the Debugger is if you get a range error.
Range errors can be caused by array indexes, string value parameters, and
assignments to variables of a subrange type. If you get a range error, you
will drop into the Debugger with the RANGE ERROR exception message.

To help find the error in your program, give the Debugger an IL PC-20
command. This will give you a display of the previous 20 lines of assembly
code. You should see an.instruction of the form:

CHK #<lim> <data reg>

where <lim> is an mteger and <data reg> is a data register (D0 - D7). Lim is
the aliowable value. The contents of the data register is the actual value
that was out of range. The contents of all the registers can be displayed with
the TD (trace display) command.

Figure 8-1 shows a Pascal program that produces a check range error. Figure
8-2 shows the resulting Oebugger display, with an explanation of what the
display means.

8-8

Workshop Users Guioe

program check:
var ch:char;
procedure localproc;
var

isinteqger;

azarray[0..101]
begin

i o= 9y

al31 1= i
end;

of 1..7:

begin

writelni{’press space to run..

read(ch);
localproc;
end.

Figure 8-1

The Debugger

N

Pascal Program that Produces a Check Range Error

CHK RANGE ERROR in process of aid
sr 2 pc 2359330
saved registers at 13369278
Going to Lisabuy, tyre o to continue.

2
2,

Level 7 Interrupt
LOCALFRQO+0891A 1D40
FC=pR24@822
DR=0910300%
D4=@aonanal
AB=0RF81Z6E

MOVE.B

DB, sFFFS (AR

01=30020088) D2=02060ACE D3=BA0264A7
DS=4EF20084 D6=12CC4EFS D7=008429208
A1=08CCAZZA AZ=D0240060 A3=A0CCAZZA

FFFS
SR=0988 ‘QSLB=BBF7FBEC S5=PBCBFEE@ DO=1 P#=99R13

A4=BACCAZZA AS=BBFTFC44 AG=BDBFTFBFA AT=83F7FBEC

00A4 OD24 DODO 4AGF EFF2 4ES6 FFF2 3D7C ...¢..Jo..NV..=|
LOCALPRO+BB0Q 4AR6F EFF2 LOCALFRO TST.M $EFF2(AT) ~
~ LOCALFRO+0884 4ES6 FFF2 LINK A6, HEFFF2
LOCALPRO+B288 3D7C 0809 FFFE MOVE.W #40909, $FFFE(A6)
LOCALPRO+OVOE 302E FFFE MOVE.W $FFFE(A6) DB
LOCALPRO+0012 3288 MOVE.W D8, D1 4/(t5
LOCALFRO+0B14 5341 suBa.H #1, 0147 (2
LOCALFRO+AB16e 43BC 9806 CHK f#t@@gngi
LOCALPRO+201A 1D40 FFFS PC GZ)/”ﬁOVE.B \UETQFFFS(HG)
LOCALPRO+001E 4ESE UNLK A6
LOCALFRO+80828 4E7S RTS
el Figure 8-2

Check Range Debugger Display

workshop Users Guide The Debugger

Notes:
1. Debugger display produced by check range error.

2. Actual value in D1. This is the value that was checked and found out of
range.

3. Disassembly command typed in to display the assembly language display of
the program causing the error.

4. Look for the CHK instruction near the PC.

5. Note that the previous identifier is LLOCALPRO, therefore the error
occurred near the beginning of LOCALPRO.

6. Value in register D1 was supposed to be in range 0..6.

7. Pascal lower limit (#$1) was subtracted from D1. Therefore the range in
the Pascal type was 1.7.

More Information on the run time environment of a Pascal program is found in
Chapter 6.

84 The Debugger Commands
This section gives the definition of each Debugger command. The cormnmands
are grouped together according to function.

8.4.1 Deflnitions

Constant A constant in the default base.

$Constant A hex constant.

&Constant A decimal constant.

"ASCII String’ An ASCII string.

Name A symbol in the symbol table.

Expr An expression. Expressions can contain names, regnames,

strings, and constants. Legal operators are +« - * /.
Expressions are evaluated left to right. * and / take
precedence over + and -. (and) can be used to indicate
indirection. < and > can be used to nest expressions. In those
cases where an odd value Is probably @ mistake, the
Debugger warns you that you are trying to use an odd
address. If you declde to go ahead, it subtracts one from the
address given. If the Compiler option D+ was used,
procedure names are legal in expressions.

Exprlist A list of expressions separated by blanks.

Register Tre name for any of the 68000 registers, as follows: D0.D7
are the data registers, A0.A7 are the address registers, the
program counter PC, the status registers SR, US, or SS. Note
that A7 Is SP (the stack pointer).

RegName RDO0..RD7, RAD.RA7, PC, US, or SS. A predefined symbol in
the symbol table with a value set by the Debugger. The
value is equal to the value of the register in question. The
Debugger automatically updates the values of these symbols.

8-10

wWorkshap User's Guide The Debligger

The 'R’ is appended to distinguish the register names from
hexadecimal numbers.

8.4.2 Display and Set Memory L ocations
The following commands display and set memory locations.

SM exprl exprlist

Set memory with exprlist starting at exprl. SM assumes that each element of
exprlist is 32 bits long. To load different length guantities, use SB or Sw
described below. If the expression given is longer than 32 bits, SM takes just
the upper 32. For example, if we ask the Debugger to:

S™M 1000 ‘ABCDE'
it deposits the ASCII equivalent of "ABCD" starting at 1000.

SB exprl expriist
Set memory in bytes with exprlist starting at expri.

SW exprl expriist
Set memory in words with exprlist starting at expri. Expri must be an even
address, or the address will be rounded down to the nearest even address.

SL exprl exprlist
Set memory in long words with exprlist starting at expri. Exprl must be an
even address or it will be rounded down to the nearest even address. For
example,

SL 100 1
is eguivalent to

SM 100 D000 0001

DM expr

Display memory. Display 16 bytes of memory starting at expr. DM RA3+10,
for example, displays the contents of memory from 10 bytes beyond the
address pointed to by A3. DM (110) displays the contents of the memory
location addressed by the contents of location 110. Expr must be an even
address or it will be rounded down to the nearest even address.

DM exprl expr2
Display memory. If exprl < expr2, then display memory from exprl to expr2.
Otherwise, display memory for expr2 bytes starting at expri.

DB expr

Display memory as bytes. Expr can be any byte address. .

DW expr

Display memory as words. Expr must be an even address or it will be rounded
down to the nearest even address.

DL expr

Display memory as long words. Expr must be an even address or it will be
rounded down to the nearest even address.

8-11

Workstap Users Guide The Debugger

843 Finding Pattems in Memory
FB exprl expr2 exprlist
Find Byte. Find the byte or bytes ‘expriist’ in the address range specified. If
expr 1 < expr2 then search the range from exprl to expr2. Otherwise search
for expr2 bytes starting at exprl.

FM exprl expr2 exprlist
Find Memory.

FW exprl expr2 exprlist
Find Word.

FL exprl expr2 exprlist
Find Long word.

8.4.4 Set and Display Registers
i[5

Display the Trace Display at the current PC. An example of the trace display
is shown in Figure 8-3. It shows the instruction executing at the time the
program was Interrupted, the current value of all the registers, and the
current domain and process.

1

Level 7 Interrupt

LOCALFRO+BO1A 1D4B FFFS MOVE.B D@, $FFFS(AB)
PC=00240022 SR=80@8 0 US=BBFTFBEC SS5=0BCBFEE® DO=1 F#=006818
DB=013C0669 Di=00000008 D2=000000C6 D3=00199752

D4=pPPBPBEB1 DS=53656750 DE=78487A20 D7-00000000

AB=BPFB126E A1=BBCCB614 A2=00240068 A3=08CCB614

A4=PBCCT7SFC AS=BBF7FC44 AG=PBF7FBFA A7=08F7FBEC

Figure 8-3
The Trace Display

register

Display the current value of the register. DO, for example, is a command to
the Debugger to display the current value in the register D0. RDG, on the
other hand, is a name automatically placed in the symbol table to give you a
handle on the contents of DO in an expression. Thus, to display the current
value in the DO data register, type the command DO. To display the
instruction pointed to by the AD address register, type the command ID RAD
(immeatate dissassemble at the address RAQD, which is predefined to be the
contents of the AD register.)

8-12

Workshop User’s Guide Tre Debugger

register expr
Set the register to expr. For example, to set register D3 to zero, type D3 0.

8.45 Assemble and Disassemble Instructions
These commands are used to display code in assembly language format, and to
enter code in the form of assembly language statements.

A expr statement

Assemble one or more assembly language statements (instructions) starting at
expr. You can continue assembling instructions into consecutive locations,
pressing [RETURN] after each statement. Press just [RETURN] to exit the
immediate assembler. Note that the immediate assembler cannot assemble
any intrinsic unit instructions, but they are correctly disassembled. Code
segments can be write protected, which prevents you from assembling
instructions into them. This can be overridden with the WP 0 command to
disable write protection.

A expr

If you use the form A expr, the Debugger prompts you for the statement to be
assembled.

D

Disassemble one line at the next address.

ID expr

Disassemble one line at expr.

IL

Disassemble 20 lines at the next address.

IL expr

Disassemble 20 lines starting at expr.

IL expri expr2

Disassemble expr2 lines starting at expri.

IX statement
Immediate execution of a single instruction. The user’s PC is not changed by
this operation.
846 Set Breakpoints and Traces
These commands are used to trace program execution.

BR :

Display the breakpoints currently set. You can set up to 16 breakpoints with
the Debugger. Breakpoints are displayed both as addresses and as symbols. An
asterisk marks the point of the breakpoint in the disassembly.

8-13

Workshop Lsers Guloe The Debugger

BR exprlist
Set each breakpoint in exprlist. Symbols are legal, of course, SO you can:

BR Ralph+4
if Ralph is a known symbol.
Expressions can be of the form:
pp:aaaaa
where pp is the process 10, and aaaaa is the address in that process where
you want the breakpoint set. If the process ID is 0, the breakpoint is set in

system code in domain 0. If no process is given, the current process is
assumed. The current process is shown in the TD display described above.

Breakpoints cannot be set on intrinsic unit instructions.

CL
Clear all breakpoints.

CL exprlist
Clear each breakpoint in exprlist.

G
Start running at the current PC.

G expr

Starting running at expr.

T

Trace one instruction at the current PC.
T expr

Trace one instruction at expr.

SC expr

Stack Crawl. Display the user call chain. Expr sets the depth of the display.
It can be omitted. The Stack Craw! display is shown in Figure 8-4. More
information on the Pascal stack can be found in Section 6.6.

>sc

At LOCALPRO+BB1A

Stack frame at @OF7FBFA called from CHECK+8038
Stack frame at BBFT7FC44

>

Figure 8-4
The Stack Craw! Display

8-14

Workshop Users Guide The Debugger

procedure name

This calls a user procedure or function. It is your responsibility to save and
restore registers and push any necessary parameters. If you want execution to
stop upon return, you must sel a breakpoint on the current PC. For example:

BR PC ; set breakpoint on PC,
IX MOVEM.L D0-A6,-(A7) ; save registers.
; push params if needed.

FOO ; call procedure FOO.
IX MOVEM.L. (A7)+,D0-A6 ; restore registers.
CL PC ; remove break point.

A function can be called in a similar manner. Remember to allocate space
for the function result before pushing any parameters. Use either CLR.W
~(A7) or CLR.L -(A7).

OSQUIT
A procedure that might need to be called is OSQUIT. It exits from the 0S.
we recommend that you avoid tnis whenever possible.

UBR

UBR is a procedure that sets a breakpoint in the user code so that you will
drop into the Debugger as soon as you reenter user code. UBR is explained in
Section 8.2.1.3.

8.A.7 Manipulate the Memory Management Hardware
These commands change the memory management hardware of the Lisa. More
information on the rmemory managment hardware can be found in the //sg
Haraware Maruel

LP expr
Convert logical address to physical address.

DO expr

Set the SEG1/SEG2 bits. These bits determine the hardware domain number.
If the Status Register shows that you are in supervisor state, then the
effective domain is zero, and the domain number returned by the Debugger is
the domain that would be active if the SR were changed to user state. Note
tnat if you change domain, you should restore the original domain before you
type g.

wP 0 or1

Disable (0) or Enable (1) Write Protection. The default is 1.

MM start [end_or_count]

MM with one or two arguments displays information about the MMU registers.
The second argument defaults to 1. If the starting address is greater than the
second argument, the second argument is a count of the number of MMU
registers to be displayed. If the starting address is less than the second
argument, the second argument is the last register displayed.

8-15

workshap Users Guide The Debugger

MM 70
displays

Segment{70] Origin{000] Limit{00] Control[C]
These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU register. As can be seen from a careful perusal of
the hardware documentation, a Control value of C means the segment in

question is unused (invalid). If the Control value is valid (7, for example), the
Debugger also displays the Physical Start and Stop addresses of the segment.

MM 8100 8

displays the MMU register information for the 8 registers starting at register
64 (decimal 100).

MM num org lim cntrl [end_or_count]
The MM command followed by four arguments sets the MMU information for
segment ‘num’. The Origin, Limit, and control bits can be changed.

MM 70 100 ff 7

sets the Origin of segment 70 to 100 and the control bits to 7 (a regular
segment). The segment limit of -1 makes the segment 512 bytes long.

8.4.8 Timing Functions
The Debugger allows you to create up to 10 timing buckets for measuring
execution times. Using the microsecond timer in Drivers, time is accumulated
in each bucket and saved along with a count of the number of times the
bucket was entered.

Typically, this would be done as follows:

1. Enter the Debugger and enter the process number that you want to time
using the BT command.

Create one or more timing buckets with the TB command.

Set a breakpoint to stop execution at some point.

Go.

when the breakpoint is reached, print the timing summary with the PT
command.

LA A O A

6. Use the End Timing (ET) command to remove all timing buckets.
The timing commands are as follows:

BT expr :

Begin timing. Expr specifies the process number. If the expr is not given, the
current process is assumed. A process number of 0 can be used to indicate
domain 0.

8-16

workshop Users Guide The Debugger

TB addrl addr2
A timing bucket is created from addrl to addr2.

PT
Print timing summary. There are five columns printed:

Bucket number

Total time in this bucket.

Number of times this bucket was entered.
Starting address for this bucket.

Ending address for this bucket.

AR ol ol o

ET
End timing. This command prints the timing summary and removes all the
timing buckets.

KB expr
Kill Bucket. This can be used to remove a single bucket. Expr is the number
of the bucket to remove.

RT
Reset timers. This resets the timing and count tables while leaving the
bucket definitions intact.

Note that all addresses are in the same process. The process number is
defined by either the BT command or the first TB, PT, KB, or RT command.
If the process number is not given in the BT command, the current process is
assumed.

849 Utility functions
The utility functions include:

* Symbol and base conversion

* Moving the Debugger window
 Setting the NMI key

* Printing Debugger displays

* Dumping memory to a diskette

8.4.9.1 Symbols and Base Conversion
SY
Display the values of all symbols.

SY name
Display the value of the symbol name.

SY name expr
Assign expr to the symbol name.

8-17

Workshgp Users Guiae The Debugger

CV exprlist ,
Display the value of each expression in hex and decimal.

SH
Set the default radix to hex.

SD
Set the default radix to decimal.

8.4.9.2 Moving the Debugger Window
CS

The CS command clears the Debugger screen.

P expr
Set port number to expr. Valid port numbers are:

0 Lisa keyboard and screen (default)

1 Serial A
2 Serial B

If you move the port to a serial port you must have a modem eliminator
connected to that port.

RS
Display the patch Return address Stack

8493 Setting the NMI Key
NM
Displays the key code for the NMI key.

NM expr
Sets the NMI key to be key code expr. A value of zero disables the NMI key.

NOTE

This affects the entire system. If the NMI key is disabled, you cannot
use it to stop an infinite loop, or a system hang.

For example:
>NM $21

Sets the NMI key to be hex 21, which is the "-" key in the top row of the
numeric keypad. This is the default NMI key.

8.49.4 Printing from the
The following commands allow you to print information from the Debugger on
the dot matrix printer.

PR expr
The PR command enables or disables printing to the two-port card. When
printing is enabled, all Debugger output to the screen is printed.

8-18

Workshop Lser's Guide The Detugger

expr =1 enable printing upper port
expr = 2 enable printing lower port
expr =0 disable printing

NOTE

The Debugger only supports printing to a printer connected to the
lower or upper port. The serial printer is not supported. If the printer
is not connected the Debugger will hang when you try to print with the
PL, PU, or PS command.

PS expr
The PS command prints the entire primary or alternate screen. Printing must
be enabled (the PR command) before PS is used. Expr tells which screen to

print:
expr = 1 print primary screen
expr = 0 print alternate screen
FF
The FF command sends a form feed to the printer if printing is enabled.
PL and PU

The PL and PU commands print a bug report on the lower and upper ports
respectivly. The bug report consists of the following:

Dump of the primary screen

Dump of the alternate screen

Description of the exception

Trace Display

Stack Crawl

Disassermble of 20 lines from PC-$20
Display words from RA6-$20 for $80 bytes

8.49.5 Dumping Memory to Diskette
The following commands allow you to create a copy of the contents of
memory on a diskette.

M. and MU

The ML and MU commands dump a copy of memory to the lower and upper
diskette respectivly. This information can be used to reconstruct the
conditions at the time of a crash, for example. These commands work as
follows:

* If there is a disk in the drive, it is ejected.
* You are prompted to insert a disk.

* The disk is formatted and all necessary information is copied to it. This
process takes about 3 1/2 minutes.

8-19

Workshap Users Guide The Detugger

85 Summary of the Debugger Commands
procedure name Call the procedure.
register Display the current value of the register.
register expr Set the register to expr.
A expr statement Assemble statement at expr.
A expr Assemble one statement (instruction) at expr.
BR Display the breakpoints currently set.
BR exprlist Set each breakpoint in exprlist.
BT expr Begin timing process expr
cL Clear all breakpoints

CL exprlist Clear each breakpoint in exprlist

CV exprlist Display the value of each expression in hex and
decimal.

DB expr Display memory as bytes.

OL expr Display memory as long words.

DM exprl expr2 Display memory.

00 expr Set the SEG1/SEG2 bits.

DR Display index or ranges of dump RAM.

DW expr Display memory as words.

ET) End Timing; print summary and remove buckets
FB exprl expr2 exprlist Find Byte.

FF Send form feed to printer

FL exprl expr2 exprlist Find Long word

FM exprl expr2 exprlist Find Memory

Fw exprl expr2 exprlist Find word
G

Start running at the current PC

G expr Starting running at expr

1D Disassemble one line at the next address
ID expr Disassemble one line at expr

IL Disassemble 20 lines at the next address
IL expr Disassemble 20 lines starting at expr

IL exprl expr2 Disassemble expr2 lines starting at expri
IX statement Immediate execution of one instruction
KB expr Kill Bucket expr

LP expr Convert logical address to physical address.
ML memory to lower diskette

MM exprl expr2 Display MMU information

Set MMU information

MR Set a value level #5 interrupt on a word change.
MU Dump memory to upper diskette

NM Displays the keycode of the NMI key

NM expr - Sets NMI keycode to expr

OSQUIT Exits from the operating system *

P expr Set port number to expr.

PL Print bug report on lower port

PR expr Enable printing. 0=disable, 1=upper port, 2=lower

port.

8-20

Workshap User's Guice

PS expr
PT

SB exprl exprlist
SC expr

SD

SH

SL exprl exprlist

SM exprl exprlist
SW exprl exprlist
Sy

SY name

SY name expr

T

T expr

TB addrl addr2
TD

UBR
wWPOoril

The Detugger

Print screen. O=aletrnate, 1=primary

Print timing summary

Print bug report on upper port

Reboot

Display the patch Return address Stack

Reset timers

Set memory in bytes with exprlist starting at expri
Stack Crawl.

Set the default radix to decimal

Set the default radix to hex

Set memory in long words with exprlist starting at
exprl.

Set memory with exprlist starting at exprl.

Set memory in words with exprlist starting at exprl
Display the values of all symbois

Display the value of the symbol name

Assign expr to the symbol name

Trace one instruction at the current PC

Trace one instruction at expr

Create Timing Bucket from addrl to addr2
Display the Trace Display at the current PC

User break*

Disable (0) or Enable (1) write Protection.

* These are procedure calls to Operating System procedures. They are
explained in Section 8.2.

8-21

NOTES

1361-A

92

9.4

95

9.6

Chapter 9
Exec Files

EXEC FLIES ..c.oeeeeicieeceecceennrncceticeaceresecnemnsesenssasermesaesamesnsrasnsnan 9-1
Exec files are scenarios of commands to be automatically performed by
the Workshop system.

ExeC File Statementso oottt st e s e e nanaee 9-2
Exec file statements are of two types: normal lines, that contain
workshop commands, and exec command lines, that tell how to process
the exec file. Exec command lines include lines to set parameter

values, perform input and output, and control conditional execution.

Exec files are invoked using the workshop Run command. This
invocation line can set the values of parameters, as well as select exec
options.

Example EXBC FIIES.o iceieeieeccceomciets e teer e e e e s eeeaenne e 9-18
This section contains examples of exec files.
Exec File Programming TIPScoeemiiicmirimiirecinnesccreecneecee 9-22

This section contains tips on writing exec files.

EXEC FI1 EXTOISoeoeeereeiccctcctnvnecreerr e mean e ee s e e an s s nnnaanas 3-23
This section explains the format in which errors are reported, and lists
the errors.

Using Exec Files

9.1 Exec Files
Exec files are scenarios of commands to the Workshop system. They are
contained in text files, created with the Editor, and are executed with the
Run command. Exec files consist of characters you type to the Workshop to
perform the functions you want, and special exec file commands, which enable
you to use parameters and conditions to vary portions of the scenario.

In its simplest form, an exec file contains the characters you press to perform
a desired operation. An example of an exec file to compile a Pascal program
is:
SEXEC
Pmyprog
{ You need to enter two blank lines here }
{ to run the Compiler }
SENDEXEC

where P is the command to invoke the Pascal Compiler, and myprog is the
name of the source file. Further lines to Generate, Link, and Run the
program might follow.

Two separate activities occur while running an exec file: processing and
running. First, quring process time the exec processor creates a lemporary
71l which consists of a stream of Workshop commands. This temporary file is
then sent to the Workshop, which executes the command stream at w7 me.
A simple diagram of this procedure follows:

exec file (s exec processor worksh
© P temp file ®
6060 PO O0E
XYY T3 {
> s 5 33 I

process time run time

%

Padare s

Py
y Yy

with special exec file commands, you can use parameters and conditionally
perform the wWorkshop commands. An example of an exec file for a simple
Pascal program is shown in Figure 9-1.

9-1

workshop User's Guide £xec Files

$EXEC { “makeprog" -~ This exec file compiles, generates, and
1inks a Pascal program. }
P%0

{ no listing file}
{ gefault I-code file }
GX0
{default object file}
LX0
I0OSPASLIB
{ end of linker input }
{ no list file }
%0{ output file name }
$SENDEXEC

Figure 9-1
Example Exec File

You have several options available to you when running the exec file
processor. The Step Mode option, which enables you to selectively skip
command lines going to the temp file, could be used in the above example to
choose whether to do only the compile, generate, or link. Section 9.3.1
contains additional information on the exec file options.

9.2 Exec File Statements
Exec file statements are line oriented. Two types of exec file lines exist
exec command lines and normal lines. Normal lines contain Workshop
commands. Exec command lines handle the other features of exec files, such
as parameters and conditional statements.

You can use up to 10 parameters in an exec file, numbered %0 through %9.

parameter

You can pass parameters when you invoke an exec file and use them during
the execution of the exec file. For example, if you wanted to pass a
parameter in the Example Exec File shown in Figure 9-1, you would Run:

<makeprog (myprog)
The value “myprog” would then be assigned at each reference to %0.

when a parameter appears in a normal line, it is replacéd by the string value
of that parameter. These parameters can be used both as inputs to the exec
file and as temporary variables within it.

workshop User's Guide Exec Flles

Exec command lines start with a $ (dollar sign). They control the operation of
the rest of the exec file. Exec command lines are free format, as long as the
order of their elements is preserved. You can have any number of spaces
before or after any element of a command line. These ¢an go on to more
than one line. The processor will 100k on the next line if it does not have a
complete command at the end of a line.

Normal lines contain commands for the workshop system. These lines are sent
to the workshop as they appear, with the following exceptions:

1. Leading and trailing bianks are removed from these lines unless the "B”
option is in effect. See section 9.3.1 for more on the "B" option.

2. Comments are removed.
3. Parameters are expanded.
4. The tilde (") literalizing character is processed.

Comments are delimited by brackets { }, and can appear in either a normal or
an exec command line. These can cross line boundaries. They can be used to
comment out carriage returns in normal lines.

The """ is used as a literalizing character in normal lines, meaning it passes
the character following it through without processing. with a tilde you can
pass the character §, %, or { to the workshop system without having it be
interpreted as part of an exec command, a parameter, or a comment. To
represent a tilde, use a double tilde (7).

Note that while the exec file processor is not case sensitive, it does preserve
the case of parameters and strings supplied by the user.

A description of each exec command follows.

9.2.1 Beginning and Ending Exec Files :
Generally, exec files must begin with an EXEC line and must end with an
ENDEXEC line. The exceptions to this basic rule, for those who embed exec
files in their program sources, are: (1) one line of text can preceed the EXEC
line if the I (Ignore) invocation option is used, and (2) any amount of text can
follow the ENDEXEC line, but it is ignored.

9.2.2 Setting Parameter Values
You can set parameter values in an exec file by using the SET and DEFALLT
commands. The REQUEST command prompts the user for the value of a
parameter.

9-3

Workshap Users Guide Exec Files

9221 The SET and DEFAULT Commands
The SET and DEFAULT commands provide ways to change the value of a
parameter inside of an exec file. The forms of these commands are:

set statement

—($ SET —| parameter tring expression|-»

and

default statement

~(s pEFAULT | parameterJ——-—)
string expressionj—b

"String expression” is described in Section 9.2.5.

The SET command changes the value of the specified parameter to the value
of the given string expression. The DEFAIULT command is similar to the
SET command, except that the assignment takes place only if the value of the
specified parameter is the null string when the DEFAULT command is
encountered. Thus, you can use this command to supply default values to
parameters that have been left unspecified or empty in the exec invocation
line.

These commands also allow you 0 use unused parameters as variables within
the exec file.

92.22 The REQUEST Command
The RFQUEST command provides a way to prompt for values from the
console. The form of this command is:

request statement

—($ REQUEST)—{ parameter l__>

L(IJIITH Hstring expressionj—»

workshop User’s Guice ' Exec Files

The REQUEST command prints the glven string expression to the console, and
reads a line, which it assigns to the specified parameter, from the console.
Thus, "str expr” prompts the user for the value.

923 Input and Output
You can request input to an exec file with the READLN and READCH
commands. You can output values by using the WRITE and WRITELN
commands.

9231 The READLN and READCH Commands
The READLN and READCH commands enable exec files to read in text from
the console, and to assign it to a parameter variable. You can use these
commands to:

* obtain parameter values

* obtain values to control conditional selection

* pause untll the user indicates to continue
The forms of these commands are:

readln statement

—{$ READLN H parameter J»*

and

readch statement
—($ READCH)— parameter |—»

The READLN command reads a line from the console and assigns it to the
specified parameter. The READCH command reads a single character from
the console. If you press [RETURN] READCH will interpret it as a space.

9232 The WRITE and WRITELN Commanis
The WRITE and WRITELN commands enable exec files 1o write text to the
console screen. You can use this text for informatory messages or prompts.
The forms of these commands are:

9-5

Workshop Lsers Guioe Exee Flles

write statement
—('$ WRITE) >

string expression

and

writeln statement
~($ WRITELN) >

string expression

(e

These commands take an arbitrary number of string expressions, separated by
commas, as arguments. The strings are written to the current console line.
The WRITELN command adds a final carriage retum.

9.2.4 Conditional Statements - the IF Statement
Conditional statements enable you to perform commands depending on
conditions existing at process time (when the temporary file is created). The
condition is stated in the form of a boolean expression, and can include
built-in boolean functions.

The IF, ELSEIF, ELSE, and ENDIF commands enable conditional selection in
exec files. The forms of these commands are:

if statement

—{if part,l { $ ENDIF)}
%elseif partj{
<

9-6

workshop User's Guide Exec Files

if part

—<$ IF)—-Lboolean expression}——D

(—{ THEN »—| stuff ——»

elseif part

—<$ ELSEIFHDoolean expressionl—D

S e e s

THEN }— stuff ——p

else part

~($ ELSE }— stuff |+

where “"boolean expression” is described in Section 9.2.4.1, and “stuff” is
composed of arbitrary normal and command lines, other than commands that
would be a part of the current IF construct. The IF statement is multiline,
meaning that the components IF, ELSEIF, ELSE, ENDIF, and "stuff” each need
to be on separate lines.

The IF construct is evaluated in the usual way. First, the boolean expression
on the IF command itself is evaluated. If it is true, the "stuff" between the
IF and the next ELSEIF (if any), or ELSE (if any), or ENDIF is selected;
otherwise, it is not selected. The remaining parts of the IF construct, up to
the ENDIF command, are parsed, but are not selected once one of the boolean
expressions is true and its corresponding "stuff" is selected. Selecting “stuff"”
means that any normal lines are processed by the workshop, and any command
lines are processed. Conversely, if “stuff” is not selected, any normal lines
and command lines are not executed. However, the command lines are parsed
for correctness.

If the boolean expression on the IF construct is not true, the ELSEIF or ELSE
command that follows is processed. If an ELSEIF command is next, its
boolean expression is evaluated. If true, its corresponding "stuff" is selected
and the remainder of the IF construct is not selected. Processing the IF

workshop Lsers Guice Exee Flles

construct continues until one of the boolean expressions on an IF or ELSEIF
command is true, or until the ENDIF is reached. If no boolean expression is
true before the ELSE (if any) Is reached, the “stuff" corresponding to the ELSE
command is selected.

IF constructs can be nested within each other to an arbitrary ievel.

9.24.1 Boolean Expressions -- Comparison and Logical Operators
Boolean expressions enable you to test string values and check properties of
flles. The syntax for boolean expressions is:

boolean expression

boolean term

boolean term

Tboolean factor,L
' @—’boolean expression

boolean factor
boolean function | >
string expressionlr——)
<@~—Istring expression

workshop Uiser's Guioe £xec Files

The basic element of a boolean expression, a "bool factor”, is either a boolean
function (see Section 9.2.4.2) or a string comparison, testing string expressions
for equality or inegquality (see Section 9.2.4.3). The basic elements can be
combined with the logical operators AND, OR, and NOT, with parentheses for
grouping. These operators function in the usual way.

9.2.4.2 Boolean Functions -~ EXISTS and NEWER
Several functions returning boolean results are provided for use with the
conditional contructs.

hoolean function

EXISTS

3

(string expression)

string expression Ji

Qvo-{ string expression

The EXISTS function enables you to determine whether or not a file, volume,
or device exists. If you specify a device, the function will return a value of
TRUE if the device has a volume mounted on it. The string expression
arguments to these functions should specify names of files. Typically these
string expressions will be expanded string constants, discussed in Section
9.2.4.3, such as “%1.0bj".

The NEWER function enables you to determine if one file Is newer than
another file; that is, whether or not its last-modified date is more recent than
the last-modified date of another file. A value of TRUE Is retumned if the
first file is newer than the second. During processing, an error will occur if
one of the files does not exist.

9.2.43 String Expressions
A string expression can specify a string in a variety of ways, as noted in the
following:

Workstiop LSser’s Guive Exec Files

string expression

B\ R
N [tring Gonstent fe e

\ U—

'--prpar-dr'o otrmg LDn‘tcmtj-w»~\

1 strmg funct 1on e

e [enee funstion cail b > e

~-

* A parameter has the form %n.

s A string constant has the standard form of text delimited by single quotes
‘, with an embedded quote specifieg by the double guote rule, as in ‘That's
all, folkst.

s AN expanaed m/‘n(/ constant s similar 1o a string constant, except that
double quotes " are used as dehmxter and parametfer references are
expanded within the string.

* A string function s an exec file processor function that returns a string
value. A detailed description of string functions is provided in the
following section.

* AN exec function sl 13 an invocation of an exec file that retums a
string value, as described in Section 9.2.5.3.

9.2.4.4 String Functions - CONCAT and UPPERCASE
The string functions CONCAT and UPPERCASE can be appiied to other string
expressions 1o produce new string values.

The CONCAT function enables you to combine several string expressions to
produce a single string result. The CONCAT function takes a list of stiing
expressions, separated by commas, as arguments,

The UPPERCASE function converts any lowercase letters in its argument to
upper case.

9-10

Workshop User’s Guioe Exec Files

The form of these functions is:

string function

UPPERCASE (string expression
\@ONCALF—{(3 string expression]—)

e

An example of the use of the UPPERCASE function is
$ SET %0 TO UPPERCASE (X0)
which sets parameter 0 to an uppercase version of its previous value.

9.25 Nesting Exec Files
Exec flles can be nested in two ways. One is to use the SUBMIT command to
call another exec file in the same way that you would call a procedure.
Alternately, you can call exec files as functions (returning string values to a
string expression), as explained in Section 9.2.5.3.

925.1 The SUBMIT Command
The SUBMIT command enables you to nest exec files; that is, you can call
one exec file within another exec file. The form of the SUBMIT command is:

submit statement

(s supniT }—| exec commang |-+

where "exec command” is an exec command of the same form as would
follow the exec/ or < at the wWorkshop command level. This exec command
can include parameters and exec options in the usual fashion (see Section 9.3}

The SUBMIT command processes the specified exec file, putting any generated
exec output text into the current exec temporary file. Thus, while a single
exec file can have several nested subexec files, only one temporary output
file is generated. This file contains the output generated by all of the input
files. Exec filles can be nested to an arbitrary level.

9-11

Wworkstop User's Guioe Exec Files

within the text of the exec command, references to %n parameters are
expanded, and the literalizing character tilde (') is processed. Be aware that
this Is the only processing that takes place within the exec command.
Everything up to the first left parenthesis, or the end of the line if no
parameter list is present, is taken to be the exec file name. If a left
parenthesis exists, the parameter list is taken to be everything between this
parenthesis and the next right parenthesis. The exec command cannot be split
across lines.

Note that only the I (Ignore first line) and B (Blanks significant) options are
valid on a SUBMIT command. The R (Rerun), S (Step mode), and T (Temporary
file saved) options are applicable only from the main exec invocation line.

9252 The RETURN Command
The RETURN command allows exec files to return string values to other
{calling) exec files. Thus the RETURN command can transform an exec file
into a function. The form of the RETURN command is:

return statement
—($ RETURN } —»

string expression

Executing a RETURN command terminates the current exec file, and returns
to the calling exec file with the specified string value. (Section 5.2.5.3
describes how exec functions are called.) You can use @ RETURN command
without a string expression to exit from exec files which are ot used as
functions.

One way you can use exec functions Is to determine if a program flle,
including any corresponding include files, has been modified since its last
compilation. This function can then be used to conditionally submit compiles.
If written generally enough, such a function could be used by many exec files.

Exec functions can produce side effects; that is, they can contain normal lines
that get placed in the temporary flle. While the intentional use of such side
effects is unlikely, inadvertent instances can occur and are potentially
hazardous to your exec flles. An unexpected blank line in the middle of an

- exec flle can often throw it out of sync.

9.25.3 Exec Function Calls
Exec function calls return string values, and are thus one of the basic
elements of string expressions. They can also appear in boolean expressions,
supplying arguments for string comparisons. A typical use of an exec function
is to return a boolean value by returning either the string 7 or F. The form
of an exec function call is:

Workshop Users Guice Exec Files

exec function call

parameter list

parameter list

~O O

“

where < is the character that signals a function invocation, in the same way
that this character identifies exec files for the wWorkshop's Run command.

The “file name" and optional “parameter list” are the same as described in the
SUBMIT command section, Section 9.2.5.1.

Due to the liberal conventions conceming what characters, including blanks,
can appear in file names, the exec file processor must make some assumptions
about how to identify the exec function file name and the argument list.

The following rule is used: if the exec function invocation has an argument
list, the file name is assumed to be everything between the “<" and the ("
beginning the argument list; otherwise, the file name is assumed to be
everything between the "<" and the end of the line. This means that if the
function call is not the last thing on the command line, you must supply an
empty argument list to an exec function with no arguments.

Processing the text of a function call is the same as with a SUBMIT
command; that is, the only processing that takes place is the expansion of %n
parameters and recognition of the literalizing character * *. This means that
the text of a function call cannot contain an embedded function call. Note
also that a function call cannot be split across lines.

9-13

Workshgp Users Guide Exec Files

93 Using Exec Files
You invoke the exec file processor in response to the workshop Run command
prompt. An invocation line for the exec file processor has the form:

exec invocation 1line

exec command }-—b

EXEC/

exec command

filename >

parameter list}

exec options

The "exec flle” is the name of the exec file you want to run. An extension of
“TEXT" Is assumed if no extension is specified. However, you can override
the mechanism that supplies the “.TEXT" extension by ending your exec flle
name with a perlod; for example, using "fo0." causes the exec file processor to
search for the file “foo” rather than “foo.text”,

The optional “parameter list" Is enclosed in parentheses. The parameter list
can be empty or it can include up to ten parameters separated by commas.
For example, an exec file to run compiles, which takes volume and source file
parameters, might be invoked with "compile(foo,~work)". You can omit
parameters, leaving them as null paramaters, by specifying them with the null
string, as in “complle(foo,)”. The volume that was present in the previous
example has been omitted. Alternately, parameters can be left unspecified
altogether, as in “compile(foo)". In this case, they also get null values. One
reason to omit parameters is that the exec file might have been set up to
supply default values, as described in Section 9.2.2.1.

The exec options that follow the closing right parenthesis of the parameter
list consist of single-letter commands, which change the behavior of the exec
file processor; for example, you use the letter S to indicate that you want to
step through the exec file as it is being processed, conditionally seiecting
which commands are to be sent to the Workshop. The exec options are
discussed in detail in Exec Invocation Options, Section 9.3.1.

9-14

Workshop ULsers Guice Exec Files

The exec file processor's output is a temporary file with a . .text” extension.
The temporary file is the processed version of your exec commands; that is,
all exec command lines have been processed and removed, leaving only the
resulting Workshop commands. This temporary file is passed to the Workshop
when the processing is completed. The Workshop then runs the temporary
exec file, and automatically deletes it when finished.

NOTE

To terminate the processing of the exec file while the exec file
processor is running, you press ®-period.

93.1 Exec Invocation Options
Several options are available when running the exec file processor. You can
specify these options when invoking the exec file processor or on SUBMIT
commands. The options are specified by single letter commands following the
exec parameter list. A null parameter list should be used if you want to use
options without parameters, as in "<foo(s". The options are as follows:

B indicates that the exec file processor should not trim blanks on output
lines. Normally the exec file processor trims off leading and trailing
blanks on the lines that it outputs to the temporary file. Trimming
enables you to indent normal lines (lines that are not exec command lines)
without worrying about generating spurious blanks. In other words, the
exec file processor assumes that leading and trailing blanks are
insignificant. While this assumption is true for Workshop commands, it
might not be true for some other programs you can run with exec files.
Using this option tells the exec file processor not to trim such blanks.
The option applies to only the exec file being run or SUBMITted, and not
to any nested exec files.

1 indicates that the first line of the exec file is to be ignored by the exec
file processor. This option is intended for those who embed exec files in
their program sources. when using this option, you should begin the first
line of the source with a "(**, and follow the end of the exec file with a
"#)*, thus commenting it out of the program source. Note that you should
use “(*" and "#)" instead of “{" and '}", since the latter are comment
delimiters in exec files.

T indicates that the temporary file, which is created (i.e., the expanded form
of the exec file), should no¢ be automatically deleted after it is run. This
option enables you to to rerun an exec file created with the step option
{see below) without going through the stepping prompts a second time by
running a previously created expanded exec file. The R exec option,
described next, is used to run old temporary exec files. Note that the T
option is not allowed on SUBMIT commands.

9-15

Workshgp Users Guide Exec Files

R indicates that the an exec temporary file, saved with the T option, should
be rerun, bypassing the normal processing by which the temporary was
created. For example, “foo" might be an exec flle that generates a
complicated system using a large number of nested exec files that take a
significant amount of time for the processor to digest. If you know you
are going to run “foo™ repeatedly, you might want to generate the
temporary file only once but run it several times. The first time you
would Invoke the exec file processor with "<foo(t" to indicate that the
temporary file should not be automatically deleted after it is run,
Subsequently, you would invoke the exec file processor with “<foo(r™ to
rerun the oid temporary file. Note that the R option overrides any others
that might be specified; since, If you are rerunning an old exec temporary
file, all the processing has been performed and the other options make no
sense. Using the R option is not allowed on SUBMIT commands.

S indicates that the exec file should be processed in "Step Mode", which
allows selective skipping of output lines and SUBMITS.

93.1.1 Using the Step Function
If you use the step option, the following prompts appear when you invoke the
exec file processor:
Step Mode:
-- in response to "Include ?" answer:
Y, N, A (Abort), K (Keep rest), or I (Ignore rest).
-~ in response to "Submit ?" answer:
Y, N, S (Step), A (Abort), K (Keep rest), or I (Ignore rest).
More details ? (Y or N) [No]

If you repond with Y (yes) to the "More details ?“ prompt, you get
additional information as to what each of stepping responses means.

when you invoke an exec file with the step option, you are prompted when a
line has been generated and Is about to go Into the temporary file. The line
is displayed followed by "<= Include ?".

* A response of Y includes the line in the expanded exec file.
* A response of N omits the displayed line.

* A response of A aborts out of the exec file processor, and no exec file is
run.

* A response of K keeps (includes) all the remalning lines of the exec file,
leaving step mode.

* A response of 1 ignores the remainder of the exec file. No more lines are
included.

9-16

Workstigp Users Guide Exec Fliles

when a SUBMIT command is encountered in stepping, the SUBMIT line is
displayed followed by “<= Submit 7"

* A response of Y performs the SUBMIT unconditionally; that is, without
stepping through it.

* A response of N ignores the SUBMIT.
* A response of S steps through the SUBMIT file.

* A response of A aborts out of the exec file processor, and no exec file is
Tun.

* A response of K keeps the rest of the exec file, leaving step mode.
* A response of 1 ignores the remainder of the exec file.
NOTE

A reponse of ? to a "Submit ?” or "Include ?" prompt elicits an
explanation of the accepted responses.

Some examples of how to use the exec file processor’s stepping facility follow.

Stepping can be used to resume execution of an exec file that did not run to
termination. For example, if your "compile” exec file includes both a compile
and a generate step, and if you want to resume with the generate step, you
invoke the exec file with “compile(foo,~work)s". Then, in response to the
“Include?” prompt for lines corresponding to the compile step, you hit N to
skip the lines. Upon reaching the first line of the generate step you respond
with K to keep the rest of the file. Thus the generate step of the exec
process would be performed.

The stepping mechanism can be used to run only selected parts of an exec
file. Say, for instance, that you have a modular set of exec files, which
generates a whole system of programs, such as the Workshop, and that one
exec file called "make/all” can generate the whole system by SUBMITting
exec files for each of the component programs. The exec files for each
component program (development system tool) make use of other exec files to
perform such standard activities as compiling (and generating) a Pascal unit or
program, performing an assembly, installing a library, or manipulating files
with the Workshop's filer. If you perform a system build and find yourself
constantly having to regenerate parts of the system, the ability to step by
SUBMITs proves very useful. You can regenerate arbitrary parts of the
system by running "<make/all()s" (our master exec file invoked with the
stepping option), and selectively submitting the subexec files for only those
things that you want to rebuild, while stepping over the others.

9-17

wWorkshop Users Guide . Exec Files

Stepping in conjuction with the T option, for saving the temporary file created
by the exec file processor, can be useful when you are going to be
regenerating a single component of a program or system a number of times in
succession; for example, when you are fixing a bug in an element of a system
build and you expect that several iterations will be needed to correct the
problem. To continue the previcus example, suppose. that while building the
development system, you have a problem with the “fileio” unit of the
“objiolib™ library. Suppose also that an exec file called "make/objiolib”
generates and installs the library, submitting compiles and assemblies for all
of its units, linking everything together, and finally performlng the

installation. By invoking the exec file processor with “make/objiolib()st”, you
can go into step mode and submit only those things related to the compllatxon
of the “fileio” unit, the link, and the instaliation of the library in the intrinsic
library. Then, after each successive refinement of “fileio”, you can run the
saved temporary file by running “<make/objiolibr* without having to go
through the stepping process. The alternatives to this procedure are: to
create another exec file to generate only the selected parts, to run (and rerun)
the exec file for the whole library, or to run each subprocess independently
{which requires more of your attention).

9.4 Example Exec Files
9.4.1 An Exec File to Do a Pascal Compile
This exec file does a Pascal compile and generate. Note how comments are
used to make the smgle character Workshop commands more intelligible.

$EXEC { ™ -~ perform a Pascal conplle
zo—-trwnaneofthemxttocmpue}
P{Pascal cmplle}zo{swrce}
{no list file}
{default i-code file}
G{generate code}%0
default obj file}
$ENDEXEC

94.2 An Exec File to Do an Assenbly
This exec file performs an assembly, and allows for an optional output flle
name which can be different from the source name.

$EXEC { “assemb™ —- perform an assembly ‘

%0 -~ the name of the unit to assemble }

%1 -- (optional) alternate name of 0BJ output }
$OEFAULT %1 T0'%0 { use source name if no output name is given}
A{assemble}%0{source}

{no list file}
%1{obj file}
NDEXEC

9-18

Workshoo Users Guige £xec Files

94.3 A More Flexible Exec File to Do Pascal Compiles
This exec file performs compiles, aliowing for an output file with a different
name than the souce.

$EXEC { “compl” -- perform a Pascal compile
X0 -- the name of the unit to compile
%1 -- (optional) alternate name for 0BJ file }
$DEFAULT %1 TO %0 { if no alternate 0BJ name use same name as
source}
P{Pascal compile}%0{source)
{no 1list file}
{default i-code file}
G{generate code}X0
%1{08J file}
$ENDEXEC

9.4.4 A "Smart” Exec File to Do Pascal Compiles
This compile exec file only performs the compile if either the object file does
not exist or the source file is newer than the object file; that is, the source
has changed since it was last compiled. It uses the compl exec file shown in
Section 9.4.3 above.

$EXEC { “comp2” -~ perform a Pascal compile (only if really
required)
%0 -- the name of the unit to compile
X1 -- (optional) alternate name for 0BJ file }
$OEFAULT %9 TO %1 { set %9 to name of output 0BJ file }
$OEFAULT X9 TO X0
$IF EXISTS (“%9.0bj*) THEN
$IF NEWER (“X0.text", “%9.ob)")
THEN {recomp if source newer than object}
$SUBHMIT compl(X0,%1)
$ENDIF
$ELSE { 0BJ file does not exist, so generate it }
$SUBMIT comp1(X0, %1)
$ENDIF
S$ENDEXEC

9.4.5 Exec Flle Chalning
This example, "make/Prog", uses the smart compile exec file (“comp2")
defined In the last example to demonstrate how 10 chaln exec file execution.
Assume you want to generate a particular program composed of three units
(unitl, unit2 unit3), and that you have written “link/Prog”, a smart exec file
which performs a link only when one of the object files for one of the units is
newer than the linked program file. Your generation exec flle uses these
smart exec files to perform the minimal required amount of work. Thus it
can be used to ensure that you have the latest version of the program without
performing a full regeneration.

9-19

workshop User’s Guide : . Exec Files

$EXEC { "make/Prog” -- smart version, only recompiles
& links when it has to}
$SUBMIT comp2(unitl)
$SUBMIT comp2(unit2)
$SUBHMIT comp2(unit3) ,
R<link/Prog { Run link exec file after compiles have
run so that it gets the correct file
dates. This is one example of when you
should note the difference between
process time and run time.}
SENDEXEC

Note that in the last line of the above exec file you have scheduled an exec
file to be run at a later time, as opposed to SUBMITting it now, so that the
file dates for the link step are accessed after the compiles have had a chance
to run. The differences between running and submitting and exec files are
demonstrated in the following scenario. When an exec file is submitted, it is
processed immediately by the exec file processor. Its output goes to a
temporary file, which is then passed back to the Workshop. The Workshop
runs the commands in the temporary file until it comes to the command to
Run anothier exec file. At this point it discards the remainder of the
temporary file, and runs the exec file processor with the new exec command.
This exec file invocation results in another temporary file of commands, which
is then run by the workshop. This means that some exec processing has been
scheduled to follow some exec running, rather than all of the processing
taking place first.

9.4.6 A Recursive Exec File to Do Pascal Compiles
This compile exec file performs up to 10 compiles. It takes an argument list
with the names of the units to be compiled.

$EXEC { "rcomp™ -- perform any number (up to 10) Pascal compiles.
It calls "comp™ on its first argument and then calls
itself recursively with its arguments shifted left }
$IF %0 <> ' THEN
$SUBMIT comp(%0) { "comp”™ the first one }
${ "rcomp” the rest, less first }
$SUBMIT rcomp(%1, %2, %3, %4, %5, %6, %7, %8,%9)
$ENDIF
SENDEXEC

9.4.7 A BASIC Example
This exec file demonstrates, by generating the BASIC Interpreter, some of the
constructs in the exec file processor's meta language. The comments in the
body of the example should be sufficient to describe what is taking place.
The essential idea is that BASIC is made of three components and that you
might want to generate only one or two of them at a time.

9-20

workstiop Users Guide Exec Files

$EXEC { "make/basic™ -- generate the BASIC Interpreter.
There are three parameters -- if a parameter is a "Y"
(yes) the corresponding part of the system should be
generated :
(0) the b-code interpreter
(1) the run-time system
(2) the coomand interpreter
If no parameters are specified, the exec file prompts to
see what parts of the system should be generated. }
$WRITELN ‘Starting generation of the BASIC system’
$IF %0 = "' AND %1 = '" AND %2 = "' THEN

$ {no params supplied -- prompt for info}
$WRITE 'do you want to assemble the b-code mterpreter”'

"(y or [n])*

$READCH X0

$SWRITELN { this writeln puts us on a new line for the next
prompt }

$WRITE ‘do you want to conpne the run-time system?’,

(y or[n])"

$READCH %1

SWRITELN

$WRITE 'do you want to compile the command interpreter?’,
*(y or [n])’

$READCH %2

SWRITELN

$ENDIF

$

$IF UPPERCASE(X0) = 'Y' THEN {assemble the b-code interpreter}
$SUBMIT assemb (int.main)

$ENDIF

$

$IF UPPERCASE(%1) = 'Y' THEN { compile the run-time unit }
$SUBHIT comp(b.rtunit)

$ENDIF

$

$IF UPPERCASE(%2) = 'Y' OR UPPERCASE(%1) = 'Y' THEN
${ compile the command interpreter }
${ compile also if the run-time unit has changed }
$SUBHIT comp(b.basic)

$ENDIF

9-21

Workshop User's Guide Exec Files

$
${ link it all together }
L{1ink} b.basic
b.rtunit
int _main
hwintl
iosfplib
iospaslib
basic{executable output}
$ENDEXEC

9.4.8 An Exec File Function ,
This exec file is a function which prompts the user for the location of a
Profile, and returns a string with the name of the device to which the ProFile
is attached. Note that the function calls itself recursively until a valid
device name is specified.

$EXEC { "GetProfLoc” -- get location of ProFile by asking user }
$REQUEST %9 WITH
‘Where is the Profile attached (paraport/slot2chanl/slot2chan2)’
$SET %9 TO UPPERCASE (%9)
$IF (X9 <> 'PARAPORT") AND (X9 <> 'SLOTZ2CHANL')
AND (%9 <> 'SLOT2CHANZ2') THEN
$WRITELN 'That is not a valid device name. Let''s try again.®
$RETURN <GetProfLoc { recursive function call }
$ELSE
$RETURN %9
$ENDIF
$ENDEXEC

95 Exec File Programming Tips
The following points might be useful to remember when creating exec files.

1. Use moaular exec files. Think of exec flesas procedures that are
called by the SUBMIT command. The more modular your exec files are,
the easier it is to use the stepping facility on them.

2. Create stangara exec files for common functions; for example, use one
exec file to perform all your compilations. Therefore, if changes become
necessary, you have only one place to change.

3. Use gotional parameters 10 support features of your exec files that you
do not always use. The parameter mechanism enables you to ignore
optional parameters if you do not need the functions they support.

9-22

workshop Lsers Guice Exec Files

4. Write your exec files to prompt for information not supplied in the
parameters. Thus you do not need to remember the meaning of a large
number of parameters.

9.6 Exec File Errors :])
The exec file processor can recognize a number of errors during its invocation
and execution. The format in which errors are reported is:

ERROR in <err loc>
<curr line>
<@IT marker>
<err msg>
where

<err loc> is either ‘invocation line' or ‘'line #<n> of file "<file>".

<curr line> is the text of the current exec line where the error was
detected.

<err marker> is a line with a question mark indicating where the exec
file processor was in <curr line> when the error was
detected.

<err msg> is one of the messages listed below.

1/0 errors are followed by an additional line with the text of the OS error
raised during the 1/0 operation. The errors detected are listed below.

9.6.1 I/0 Errors
Unable to open input file “<file>".
Unable to open temporary file "<file>".
Unable to access file “<file>".
Unable to rerun file "<file>".

9.6.2 Other Errors
File does not begin with “"S$EXEC".
End of Exec file before "$ENDEXEC".
$EXEC command other than at start.
No Exec file specified.
Hore than 10 parameters.
No closing ")" found.
Line buffer overflow (>255 chars).
Invalid Exec option: <option char>.
Invalid Exec option on SUBMIT: <option char>.
End of Exec file in comment.
Invalid percent: not "%n" form.
Garbage at end of command.
No argument to SUBMIT.
ELSE, ELSEIF, or ENDIF not in IF.
ELSEIF after ELSE.
File contains unfinished IF.

9-23

Workshop User's Guige

Nothing following “<tilde>".
Out of memory. Processing aborted.
- Bad temp- file name generated: "<file>".
No value returned from file called as function.

RETURN with value in file not called as function.

and
Invalid command. <token> expected.
where <token> might be:
String value
"%n" parameter
Terminating string delimiter
ol=ll Or ll<>ll
wemh
Boolean value ,
Comma (list delimiter)
O')"
Valid command keyword
Command _

-9-24

Exec Files

NOTES

29-0437-A

10.1

102

103

104

Chapter 10
The Transfer Program

JALR (05 T o U 10-1
The Transfer program is a communications package that allows you to
transfer text between your Lisa and a remote computer.

Hardware Connections and Configuration............. 10-1
To use the transfer program you need a modem connected to one of

the serial ports. Use the Preferences tool from the System Manager to
configure the Lisa to use the modem.

Setting Transfer Program CharaCteristics........cceiimiraeemcecnenenennnnes 10-1
Use the menus to set the baud rate, parity, handsnake and full or half
duplex so that the transfer program will be compatible with the remote

computer.

Using the Transfer PTOQTaMcccovicuomicerreommcerecommencasreeramcmaseseamnac 10-5
The transfer program can be used to transfer a file from a remote
computer to the Lisa, or from the Lisa to the remote computer. It can
also allow you to use the Lisa as a terminal connected to the remote

computer.

workshgo Users Guide The Transfer Program

The Transfer Program

10.1 Introduction
The transfer program is a data communications package that allows you to
transfer text files from your Lisa to another computer. You can also recelve
text from the remote computer and store it in a text file, which can then be
read by the Editor.

To use the transfer program, you must either:

* Get the necessary modem and attach it to the Serlal A or Serial B
connector on the back of your Lisa. Then tell the Preferences tool in the
Systemn Manager the you are attaching to a Remote Computer.

* Or, get the necessary modem eliminator cable and attach it to the Serial A
or Serlal B connector on your Lisa. Then attach the other end to a serial
port on another computer, and tell the Preferences tool that you are
attaching to a Remote Computer,

when you have completed either action, set the Transfer Program
characteristics to match the requirements of the remote computer.

These operations are explained in Sections 10.2 and 10.3 below. Section 10.4
explains how to use the Transfer Program to send and receive data.

10.2 Hardware Connections and Configuratien
In order for the Lisa to communicate to a remote computer the Lisa can be
connected to a modem or a modem eliminator cable through either the Serial
A or the Serial B connector on the back of the Lisa.

In addition to connecting the hardware, you must configure the software To
do this, use the Preferences tool from the System Manager command line.
Access the Device Connections display, and set either Serial A or Serial B to
Remiote Computer. More information on the Preferences tool can be found in
Section 3.3.

You must also set the active Transfer Program to access the correct
connector. Do this by selecting either Serial A or Serial B from the
Connector menu. The default Is Serial A.

103 Setting Transfer Program Characteristics
In order to communicate with a remote computer, the Transfer Program must
be set up so that it transmits and receives data in the same way as the host.
These settings are made by using the Baud Rate, Parity, Handshake, Duplex,
and Control menus. These settings are explained below.

10-1

Workshgp Users Guide The Transfer Program

Baud Rate

The baud rate is the speed at which data passes to and from the remote
computer. The baud rate must be set to agree with the remote computer and
modem you are using. The baud rate menu is shown in Figure 10-1. The
default is 1200 baud. See the note in Section 11.10, PortConfig, for the valid
baud rate settings for each Serial port.

600
v'1200
1800

2000
2400
{1 -3600
4800
9600
19200

Figure 10-1
The Baud Rate Menu

Parity ‘

Parity refers to the process of checking that data was not damaged in -
transmission. Parity should be set to agree with the host computer. Parity
can be even, odd, or turmned off (none). Select the option desired from the
Parity menu. The default is none. The parity menu is shown in Figure 10-2.

18-2

Workshop Users Guide The Transfer Program

Handshake

The handshake menu, shown in Figure 10-3, selects either an XOn/XOff
protocol, or no handshake. The XOn/XOff protocol allows the remote computer
and the Transfer Program to tell each other whether they are ready to
receive more information. Using this protocol, the Lisa can stop transmission
from the host by sending XOff, and start it again by sending XOn. The host
can start and stop transmission from the Transfer Program by sending XOn
and XOff to the Lisa. The XOn character is a control-Q, XOff is control-S.
The default is for handshaking to be turned on.

| None !
v X0n/ XOFFf
Figure 10-3
The Handshake Menu

Duplex

This menu allows you to select Full or Half duplex. Full duplex sends all
characters typed from the Lisa keyboard to the remote computer, but does not
display them on the Lisa screen. All characters sent from the host are
displayed on the screen. Using full duplex, you will only see what you type if
the remote computer sends back the characters you type. Most hosts you are
likely to use with a Lisa do send back the characters they receive to be
displayed.

Half duplex displays the characters typed on the keyboard, bacause it does not
expect the host to send them back. The default is full duplex. The duplex
menu is shown in Figure 10-4.

10-3

Workshop Users Guide 7he Transfer Program

Figure 10-4
The Duplex Menu

Control

The control menu allows you to set two delay times, if needed. The first is a
delay between each character sent, the second is the delay between each line.
Both are in milliseconds. Delays are used to simulate typing speeds when
transmitting to a remote computer that can not keep up with full speed
transmission. The default is for no delay. The control menu is shown in
Figure 10-5. '

Record ta

Record All Text
vRecord Filtered Text

Play Back from ...
Character Delay ...
Line Delay ...

Evi
. Exit

Figure 10-5
The Control Memu

10-4

Workshop Users Guide 7he Transfer Program

10.4 Using the Transfer Program
Start the Transfer Program by pressing T in response to the workshop
command line. The Transfer Program will display a window on the screen
with menus at the top. ‘You must configure the Transfer Program to match
the remote computer you wish to communicate with. Information on
configuring it can be found in Section 10.3 earlier in this chapter.

After the Transfer Program comes up, it is ready to act as a terminal
emulator. Evrything you type on the keyboard will be transmitted through the
modem to the remote computer.

The Transfer Program can also be used to transfer files back and forth
between the Lisa and the remote computer. The functions for doing this are
in the Control menu. The control menu is shown in Figure 10-6.

To transfer a file from the Lisa to the remote computer, select "Play Back
From . .." from the control menu. It will ask you for the file name to play
back. It expects a .TEXT file. The contents of that file will be transmitted
to the remote computer.

To transfer a file from the remote computer to the Lisa, select "Record to ..."
from the control menu. It will ask you for the name of the file to record to.
After you have set up the remote computer to transmit the file you want (by
typing commands at the keyboard) select "Record All Text” from the control
menu. when you tell the remaote computer to transmit the file, it will be
recorded in the file you specified. This command will record the file exactly
as transmitted, including all control characters. If you don't want the control
characters, select "Record Filtered Text”. This option changes carriage
returns to newlines and replaces tabs by the appropriate number of spaces.

All other control characters are thrown away. The filtering option affects
only the disk file, not what is displayed on the screen. The default is "Record
Filtered Text".

To transmit control characters from the keyboard, hold down the & key and
press the character. Other special purpose characters can be transmitted as
shown in Table 10-1. Option keys are treated as no-ops.

10-5

Workshop Users Guide The Trarisfer Program

Table 10-1
Transmitting Special Characters from the Keyboard

Keypoard Transmits
Apple backspace del

clear esc

ENTER (alpha keyboard) break

ENTER (numeric keypad) return

arrow keys their symbols
Apple Q X0n
Apple S XOff

10-6

NOTES

1362-A

Chapter 11
The Utilities

11.1 ByteDiff 11-1
ByteDiff compares two flles, byte by byte, and shows where they are
different.

11.2 ChangeSeg .11-2

ChangeSeg allows you to change the segment names in the mocels in
an unlinked object file.

11.3 CodeSize 11-3
Codesize gives you a summary of the contents of an object file

12,8 DIff coceeeeecceeerremenemereermescaeamesnmesscacsasesnsssnsns ...11-6
Diff compares two text files and shows their differences.

11.5 DumpQbj S . ..11-8
DumpQbj displays the contents of an object file.

116 DumpPatch - ceereeeees 1179

OumpPatch displays and edits the contents of any file.

11.7 FileDiv and FileJdoin . 11-11
FileDlv divides large files mto smaller ones. FileJoin rejoins the
resuiting small files back into the original large file.

11.8 Find 11-12
Find searches a text file for a pattern, such as identification. :
119 GXRef ' 11-13
GXRef provides a global cross reference of subroutmes and modules.
1110 PortConfig . 11-14
PortConfig enables you to configure the RS232 ports.
11.11 SegMap ’ 11-16

SegMap produces a segment map for one or more object files.

1112 SXRef ‘ 11-17
SXRef produces a Cross reference of - source files.

1113 UXRef __.... . 11-18

UXRef produces a cross reference of USES statements in programs
and units. :

The Utilities

111 ByteDiff
Synopsis
ByteDiff compares the contents of two files and reports which bytes (words)
are different.

Dialog
Source file?
Target file?

Description

ByteDiff compares the source file to the target file and reports on their
differences. This utility is useful for finding the first differences between
files or for finding a small number of differences.

The program prompts for an input file and an output file. The two files can
be in any format: .text, .obj, .1, and so forth.

The output is of the form:
Bytes $xxxxxx differ aaaa bbbb
where:

xxxxxx is the byte address in hex
aaaa is the word (two bytes) from the source file
bbbb is the word from the target file

After 20 lines of output the user can either terminate by pressing [CLEAR] or
continue by pressing the space bar.

See Also
Diff, E(qual command of the File Manager

Notes

ByteDiff compares any binary files, but once it finds a difference between the
two files, it does not try to resynchronize. This utility does block-at-a-time
1/0. The program stops at the first end-of-file and has no termination
message. ByteDiff is nonstandard user interface.

Workshop Users Guiae The Utilitles

11.2 ChangeSeg
Synopsis

ChangeSeg changes the segment name in the modules In an unlinked object
file.

Dialog
File to change:
Map all Names (Y/N)

* Description’
The first prompt asks for the unlinked object file you want to change.
You are next asked if you want to map all names. If you want to change
segment names in all modules, respond Y. If you want to be prompted for the

new segment name for each module, type N. A response of [RETURN) accepts
the default name.

Notes
Changes are made in place (the file itself is changed).

11-2

workshop Users Guide The Utllitles

113 CodesSize
Synopsis
Determines the code size and code segmentation for a unit, a program, or a
library.

Dialog

Input file [.0BJ] -

Resident file .TEXT] -

Output file [-CONSOLEJ.TEXT] -

The resident file is the fille that contains the segemnt names that are
considered resident. The names In the file must be the same case as in the
code file itself. The resident information is used in the summary reports to
automatically sum the resident and swapping code.

At any time when specifying the file names, the run-time options can be
turned on or off. The run-time options are:

+% tums the mapping of calls to system extemals on or off. System
externals are procedures whose names begin with a "%". Using this
option, the system will count the number of procedures that call a
particular system external. This option is used to determine which
system routines are being used, for exampile, if WRITELNs are left
in the code.

+E turns the mapping of calls to nasystern extemnsls on or off.
Nonsystem externals are procedures in a segment other than the
calling procedure. Using this option, the system will count the
number of procedures that call a particular nonsystem external.
This option is used to determine which routines are being used, for
example, which library routine the code is using.

+M tells CodeSize that a particular segment is mapped onto another
segment. " This information generates the segment mapping summary
and the segment summary. This option is used when smaller
segments are mapped Into larger segements, and the sizes of the
smaller and resulting larger segements are needed.

+S turns the main report on and off. Sometimes the summary report is
all that is needed. Use this option to print only the summary
report.
Description
CodeSize generates two types of reports depending on the type of input file(s)k

main report and summary report. The input file can be an execution file, a
library, or an object file. For each file, the report format will be:

11-3

workshop User's Guide The Ulilitles

Type of File Main Report Summary Report

Execution file segment information segment summary
main summary

Library file unit information unit summary

segment information segment summary
main summary

Ooject file unit information external summary(+E or +%)
procedure information unit summary
: segment mapping summary(*M)
segment summary
main summary
The contents of the report section are:

Segment information

segment type intrinsic, nonintrinsic, main program
segrment name first eight charcters of the segment's name
segment size : size of the segment in decimal or hex
Unit information
unit name first eight characters of the unit name
unit global size - how much global space the unit uses
" unit type - intrinsic, shared intrinsic, regular
Procedure information
procedure name first eight characters of the procedure's
name
associated segment first eight characters of its segment’s name
procedure size size of the procedure in decimal or hex
“interface information is the procedure in the interface of the
unit?
extemal references list of all the external calls the procedure
makes. This is triggered by the +E or +%
options

External summary
extemal procedure name name of the procedure

i of occurrences how many different procedures called the
procedure. This is triggered by the +E or
+% options.

Unit summary

unit name first eight characters of the unit's name

unit size size of the unit in decimal or hex

unit type intrinsic or not

unit global size how much global space the unit uses

11-4

Workshop User's Guide The Utilities

Segment mapping summary
original segment name name of the original segment
new segment name name the segment is being mapped into
segment size size of the segment being mapped. This is
triggered by the +M option.

Segment summary

segment type swapping or resident. Resident segment is
specified to CodeSize by the "resident file".
segment name first eight characters of the segment's name
segment size size of the segment in decimal or hex
Main summary
total code size summation of the code size
total resident code summation of the code that is considered

resident all the time. Resident code is
specified to CodeSize by “resident file”.
total swapping code summation of the code that Is considered
swapping all the time. Swapping code is
specified to CodeSize by “resident file.”

total data globals summation of the global space for data

total main prog globals summation of the global space In the main
program

total globals sum of main program giobals plus data
globals

total jump table size of the jump table

11-5

Workstiop User's Guide The Utilities

114 Diff
Synopsis
Diff Is a program for comparing .TEXT files, in the Workshop. Diff is
designed to be used with Pascal or Assembler source files.

Dialog
(Type '?' to change or display options.)

New file name [.TEXT] -
0ld file name [.TEXT) -
Listing file [.TEXT] (<CR> = -CONSOLE) -

Description

Diff first prompts you for two input file names: the "new” file, and the “old”
file. DIiff appends ".TEXT" to these file names, if it Is not present. DIiff then
prompts you for a filename for the listing file. Press [RETURN] to send the
listing to the console.

Diff does not know about INCLUDE files. However, Diff does enable the
processing of several pairs of files to be sent to the same listing file. Thus,
when Diff is finished with one pair of files, it prompts you for another pair of
input files. To terminate Diff, simply press. [RETURN] in response to the
prompt for a new file name.

The output produced by Diff consists of blocks of "changed” lines. Each block
of changes s surrounded by a few lines of “context” to ald in finding the lines
in a hard-copy listing of the files.

There are three kinds of change blocks:

INSERTION a block of lines in the “new” file which does not appear
’ in the "old” file.
DELETION a block of lines in the "old" flle which does not appear in
the "new" flle.

REPLACEMENT a block of lines in the "new” flle which replaces a
corresponding block of different lines in the old file.

Large blocks of changes are printed in summary fashion: a few lines at the
beginning of the changes and a few lines at the end of the changes, with an
indication of how many lines were skipped.

Diff has three options:
C change the number of context lines displayed.
™M the number of lines required to constitute a match.

D the number of lines displayed at the beginning of a long block
of differences.

11-6

Wworkshgp User's Guioe The Utllitles

To set one of these numbers, type the option name and [RETURN], followed by
the new number to the prompt for the first input file name. An entry of D
[RETURN] 100, for example, causes Diff to print out up to 100 lines of a
block of differences before using an ellipsis. The maximum number of context
lines you can get is 8. You can get a display of the current option settings
by pressing "?" in response to the first file prompt.

Diff is not sensitive to upper/lower case differences. All input is shifted to a
uniform case before comparison is done. This is in conformance with the
language processors, which ignore case differences.

Diff is not sensitive to blanks. All blanks are skipped during comparison.
This {s a potential source of undetected changes, since some blanks are
significant (In string constants, for instance). However, DIff Is insensitive to
trivial changes, such as indentation adjustments, or Insertion and deletion of
spaces around operators.

Diff does not accept a matching context which is too small. The current
threshold for accepting a match is 3 consecutive matches, The M option
allows you to change this number. This has two effects:

1. Areas of the source where almost every other line has been changed will
be reported as a single change block, rather than being broken into several
small change Dlocks.

2. Areas of the source which are entirely different are not broken into
different change blocks because of trivial similarities (such as blank lines,
lines with only begin or end, and so forth)

Diff makes a second pass through the input files, to report the changes
detected, and to verify that matching hash codes actually represent matching
lines. Any spurlous match found during verification is reported as a
“"JACKPOT". The probability of a JACKPOT is very low, since two different
lines must hash to the same code at a locatlon in each file which extends the
longest common subsequence, and In a matching context which is large enough
to exceed the threshold for acceptance.

See Also
ByteDiff

Notes
Diff can handle files with up to 2000 lines.

11-7

Workshop Users Guide The Utilitles

115 Dump(bj
Synopsis
Dump0bj is a disassembler for 68000 code. This option provides a symbolic
and formatted listing of the contents of object flles. It can disassemble
either an entlre file, or specific modules within the flle.

Dialog
Input file? [.0BJ]
Output file? [-CONSOLE]

Dump A(1l, S(ome, or P(articular modules [S]?
Oump file positions [N]?
bDump selected object code [N]?

Description

DumpOb) first asks for the input file which should be an unlinked object flle.
The output (listing) file defaults to -CONSOLE. You are asked whether you
want to dump All, Some, or Particular modules.

If you respond S, DumpQObj asks for confirmation before dumping each
mogule. A response of [CLEAR] gets you back to the top level. If you
respond P, DumpQbj asks you for the particular module(s) you want dumped.

The file position is a number of the form [0,000] where the first digit is the
block number (decimal) within the file and the second number is the byte
number (hexadecimal) within the block at which the module starts. This
information can be used in conjunction with the DumpPatch program.

If you want the selected object code to be dumped, respond Y to the final
prompt. The default for this prompt is N »

See Also

OumpPatch

Notes

OumpQbj displays only the low order 24 bits of longint fields, which are

interpreted as addresses. This is consistent with the hardware, but causes
some bytes of the file not to be displayed.

11-8

Workshop User’s Guiae The Ltilities

11.6 DumpPatch
Synopsis
Dump and/or patch a file
Dialog
DumpPatch - Hexadecimal Dump and Patch
File: - Output: [-CONSOLE] {.TEXT] -

If you want to select the default of [-CONSOLE], press [RETURN] and select
the block number you want to start with; for example, 2.

If you type a file name, the following prompt appears:
Would you like to access (input file name) interactively? (Y or N)

If you respond Y, you will be prompted for the block number you want to
start with. If you respond N, you will be prompted for starting and ending
block numbers. The default values are 0 for the starting block number and
EOF for the ending block number.

Description

DumpPatch provides a textual representation of the contents of any file and
the ability to change its contents in either the ASCII character or
hexadecimal form. The file dump is block oriented with the hexadecimal
representation on the left and the corresponding ASCII representation on the
right. If a byte cannot be converted to a printable character, a dot is
substituted. The patch facility uses the arrow keys to move around within the
displayed block and change the value of any byte.

when DumpPatch is Run, you will be asked for the full name of the input file.
No extensions are appended. Pressing [RETURNM] will exit DumpPatch. If the
input file can be found, you will be asked where you want to direct the
output. The default for the output file is [-printer] If you type an output
file name, a .TEXT extension will be added if necessary. If you type a device
name; for example, -printer, no extension will be appended,

If an output file name or a valid device name was entered, you will be asked
if you would like to access the input file interactively. If you answer No, you
will get a quick dump of the input file and will be prompted for the starting
block to dump. The default [RETURN] for the last block to be dumped is the
last block of the input file. If you specify a block that is beyond the
end-of-file, you will be given the block number of the last block in the file.
Pressing [CLEAR] enables you to exit with no dumping.

Once a file has been completely dumped, DumpPatch asks you for the next
input file. Press [RETURN] to exit the program.

11-9

Workshop Users Guioe The Utilities

If you access the input flle interactively, you will be asked for the block to
dump. The output will be dumped to the screen with the option of dumping it
to the output flle when you are ready to leave that block. Press the space
bar to look at the next halfblock. Press [CLEAR] to go Into patch mode.
Press [RETURN] to quit the present block.

when you are in patch mode, the cursor will be found in the upper left corner
at word 0 of the block. The arrow keys are used to move the cursor around

_ in the current block and to previous or successive blocks. Press [TAB] to
toggle between the hexadecimal and the ASCII portions of the display. A
change made on one side of the display is automatically updated on the other
side as well. Until you get ready to move out of the current block you may
undo any changes by pressing [CLEAR] Wwnen leaving a block in which you
made changes, you will be asked if you want to write the changed block back
to the input file. This is your last chance to undo any unwanted changes! If
you specified output to something other than the console, you will also be
asked if you want to dump the current block to the output file when you try
to leave that block. To exit patch mode press [RETURN]L

See Also
Dump(dj

11-10

workshap User’s Guiae The Ullities

117 FlleDlv and FileJoin
Synopsis
FileDiv can be used to break a large flle Into several smaller pleces. FlleJoin
can then be used to rejoin these pleces into one file. These functions are
most useful when saving and restoring very large flles, or when you want to
break a large text file into smaller ones to be viewed in the Editor.

Dialog
Is this a .TEXT file? (Y or N)

Infile name : [.text]
Outfile name : [.text]

You might want to keep portions of a file on more than one disk. To give
you an opportunity to do that, FileDiv contains the following additional
prompts:

Another disk? (Y or N)

Have you inserted the next disk? (Y or N)

Description

Do not include the suffix in the file name. If, for example, you want to
divide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever) as
the output file. FileDiv will create a group of files named TEMP.1.TEXT,
TEMP.2.TEXT, and so on, until TEMP.TEXT is completely divided up.

To rejoin the pieces of the file, Run FileJoin. The dialog iIs the same as for
FileDiv.

11-11

Workshap Users Guide The Ulilities

118 Find
Synopsis
Find searches a text flle for a pattern.

Dialog

type “?" to display or change options

Enter input file name [.TEXT] (name of the file to be searched)
Enter output file name [-CONSOLEJ.TEXT] (default is the console)
Enter pattermn: (pattern to be matched)

Description
Find searches text flles for lines which match a string pattern. Lines found
are printed to the console. The following options are recognized:

+C Matches are case sensitive

+S Matches are space sensitlve.

+D Print dots as lines which do not match are scanned. ,
+L As lines are reported, print out the relative line numbers.
+T Report the files that are being scanned.

Typing ? In response to any of the input prompts will display a description of
the options available and read in the options.- You can leave Find by typing
[RETURN} or [CLEAR] in response to the input or pattem prompts.

More than one flle can be input at a time: Find supports the same wildcard
scheme as the Workshop File Manager. So submitting “~paraport-ch=" will
direct Find to search all of the text flles beginning with “ch™ on the paraport
directory. Find can also search predefined lists of files; suppose the file
“foobar.text” contained:

* hooha.text
grok.text
bruhaha.text”

Then submitting “<foobar.text" will direct Find to search, sequentially,
“hooha.text”, “grok.text”, and then “bruhaha.text”. If you type “foobar.text”
{without the leading '<') then Find will search “foobar.text", not the files listed
therein, for the pattern.

Notes
Find truncates output lines to 256 characters.

11-12

Workshap User's Guioe . Tne Ulilities

119 GXRef
Synopsis
Global Cross Reference.

Dialog

Input file [.083] ?

Listing file [CONSOLE:}/[.TEXT] -

Description

GXRef lists all the medules which call a given procedure, and all the modules

- which that procedure calls. It provides a global cross reference of subroutines
and modules.

GXRef accepts any number of object flle as input. when you have entered all
the object files, press [RETURN] in response to the input flle request.

11-13

Workshap User’s Guide The Utiiities

1110 PortConfig
Synopsis
PortConfig enables you to configure the RS232 ports.

Dialog ,
First you must supply information on how to configure the port.

Which RS232 port do you want to configure ? (A or B)

what parity setting ? - . - :
0) No parity S
1) Odd parity; no input parity checking
2) Odd parity; input parity errors = 00
3) Even parity; no input parity checking.
4) Even parity; input parity errors = $80°
Enter selection (0 - 4) (0]

what output handshake protocol ?
0) None
1) DTR handshake
2) XON/XOFF handshake
3) Delay after CRLF
Enter selection (0 - 3) [0]

what baud rate ? [9600]

Recelve and buffer Input how ?
0) Buffer input until full request is satisfled
1) Return whatever is received

Enter selection (0 - 1) [1]

what input handshake protocol ?
0) None
1) DTR handshake
2) XON/XOFF handshake
Enter selection (0 - 2) [0]

Adjust type-ahead buffer how 7

0) Flush only

1) Flush and re-size

2) Flush, re-slze, and set thresholds
Enter selection (0 - 2) [0]

what form of disconnect detection 7

0) None

1) BREAK detected means disconnect
Enter selection (0 - 1) [0]

Timeout on output after how many seconds (0 = no timeout) 7 [0}

11-14

workshop User's Guioe The Utilities

Automatic linefeed insertion ?
0) Disabled
1) Enabled

Enter selection (0 - 1) [0]

We are now ready to configure the port. Shall we proceed? (Y or N)

PortConfig contains a series of questions. After you answer one, you will be
prompted for an answer to the next one. The default values for each question
are shown in brackets.

Description

with the PortConfig utllity, you can configure the RS232 ports, and establish
such things as the parity setting, handshake protocol, baud rate, disconnect
detection, and so forth. If you are using Pascal and want additional
information on port configuration, see Section 2.10,12 in Querating Systemn
Reference Manual for the Lisa.

NOTE

For Serial A and Serial B ports, the baud rate can be set to 50, 75,
110, 150, 200, 300, 600, 1200, 1800, 2000, or 2400. Serial A can also be
set to 4800 or 9600.

For output on/y. Serial B can also be set to 3600, 4800, 7200, 9600, or
19200. :

11-15

Workshop Lsers Guioe The Utllitles

1111 SegMap
Synopsis
SegMap produces a segment map of one or more object files.
Dialog
Files to Map ? [.0BJ]
Listing File ? [-C(NSG_E]

Description

SegMap accepts either an object file name or a command file name, wnicn
enables you to include predefined lists of files.

A command file must be preceded with a "<". SegMap adds the .TEXT suffix
to the command file name. '

For example, if the file "Apple.text” contains:
“code”
“pascal”
“pasic”

Submitting “<Apple" airects SegMap to accept sequentially, “code.obj",
“pascal obj", and "basic.obj".

The map information includes the: object file name, the name of the unit in
the file, the names of the segments used in that unit (if any), and the new
segment names. '

11-16

Workshop User’s Guioe The Utillties

1112 SXRef
Synopsis
Pascal cross reference utllity
Dialog
Source File ? [.TEXT]
Output file for Listing ? [-CrossRef] [.TEXT]
Do you want a numbered listing of the source ? (Y or N)
Flag the declarations and assignments of each indentifier ?-(¥ or N)
Declaration Character ? [*]
Assignment Character ? [=]
Text file of words to Omit ? [SXRef.Omit] [.TEXT)

Description

SXRef gives a numbered listing of the source files and an alphabetical listing
of identifiers found. For each identifier, all references to the identifier are
listed in the order in which the references were encountered. Procedure and
Functlon names along with all references to them will be found at the end of
the cross reference listing.

Identifiers follow current Lisa Pascal conventions: the first eight characters,
without regard to case sensistivity. Case insensitivity is achieved by shifting
identifiers to lower case, within the Cross Reference section.

INCLUDE flles are automatically processed. User interfaces are not
processed. Comments and strings are recognized and skipped. There is no
conditional compilation processing or elimination of code controlled by
boolean constants.

SXRef will accept multiple source files. This can be used to get a cross
reference of a set of Main Programs together with the Units which the
programs use. References are given by file number and line number within
the flle. A directory of files read is printed at the end of the source listing,
and before the cross reference section.

SXRef attempts to read a flle for a list of words to omit from the cross
reference. The default name Is SXRef.omit.text, but other names can be
given. If the flle cannot be opened, execution proceeds normally without
omitting any identifiers.

SXRef will optionally flag where all jgentifiers are declared and assigned
values. The default flag characters are: {*] for declaration and [=] for
assignment.

If SXRef runs short of storage, an error message is given and the program
aborts.

See Also
GXRef, UXRef

11-17

Workstop Users Guide Tne Utilities

11.13 UXRef
Synopsis
Show unit dependencies of one or more Pascal source programs

Dialog

Type "?" to see current options

Source File ? [.TEXT] -

Output file for Listing ? [-Cross Ref] [.TEXT)] '

Text File of unit names with unexpected pathnames ? [UXRef.UMap] [.TEXT]

Description .

UXRef glves an alphabetical listing of programs and units. Each program or
unit listed includes two parts: 1) alphabetically lists all programs and units
that USE that program or unit, and 2) alphabetically lists all units that ARE
USED BY that program or unit.

UXRef recognizes conditional compilation and will determine the truth value
of any {$ifc ..} expression. Compile-time variables can be of both boolean
and integer types and a {$setc ..} can change a variable to a new type.
Warnings will be sent to the console if a syntactical or semantic error is
found in an {$ifc ...} expression.

wamings about units that can't be found are sent to the console. Even though
a unit cannot be found it will still show up on the Cross Reference listing.

Options may be turned on or off during file name prompt stage of UXRef.
Four options are included:

+C You will be asked to manually clarify a compile-time expression
or variable that cannot be evaluated correctly. Enter 'T" for
true and F' for false. If this option is off, the entire expression
will be treated as false.

+F As each flle iIs opened, a message will be printed on the
~console specifying the file name and the unit name being read.

+] "Include Files™ will be treated as units and will show up on the
: Cross Reference listing. Only those "Include files” that are
found between the beginning of the program/unit and the end of
the uses section will be listed.

+W All warnings will be written at the beginning of the Cross
Reference listing as well as on the console.

By entering ? during the file name prompt stage a short description of each
- option will appear along with their current values. The default values of the
options are: -C, +F, -1, and -W.

UXRef provides a facility to map a unit to an unexpected pathname. For
example, the unit “FOC" might not be complled yet {e.g., “F00.0BJ" does not
exist) and the source is named “UNIT/FOO.TEXT". UXRef will attempt to read
a flle for a list of logically connected units and pathnames and if
FOO0,~UPPER-UNIT/FOO.TEXT is an entry in that file then "UNIT/FOOTEXT"

11-18

Workshop Users Guiae The Ulilities

will be located and searched on the UPPER diskette when the unit FOO is
referenced. The unit name and the pathname must be separated by a comma
with no extra spaces between. In addition this same facility can be used to
shut off unnecessary warmnings that occur when an inaccessable unit is
referenced. Normally warnings will be printed when a unit cannot be found,
but if the unit name followed by a comma appears on UXRef.0mit. TEXT (or
some other name provided by the user) the warnings for that unit will be
bypassed. Example entries are:

FOO,~UPPER-UNIT/FOO.TEXT
SYSCALL

See Also
GXRef, SXRef

11-19

NOTES

Appendix A
Error Messages

PN VRN 0y o1 1) g 5B ¢ (0) & SRR A-1
A2 LINKEY EXTOYSeuieeeiieierenemaceeaeastsssenvasserssassessnssnssnsassanssnsassssnsssesnnee A-3
A3 Messages Generated by GOJIOLID.....c.ovviieiiiiniiiiiiinininieeee e A-6
Al Operating SYSIEM EITOYSciviieceererernnrirecscnnceeenessnssssemsnsasnssensasnssnens A-7

Error Messages

Al Assembler Errors
The following errors can be produced by the Assembler.
Undefined label
Operand out of range
Must have procedure name
Number of parameters expected
Extra garbage on line
Input line over 80 characters
Not enough .IFs
Illegal use of .REF label
Identifier previously declared
Improper format
EQU expected
Must .EQU before use if not to a label
Macro identifier expected
word addressed machine
Backward .0RG currently not allowed
Identifier expected
Constant expected
Invalid structure
Extra special symbol
Branch too far
variable not PC relative
Unexpected .ENDM
Not enough macro parameters
Operand not absolute

Illegal use of special symbols
Ill-formed expression

Not enough operands

Too many undefined lables in this expression
Constant overflow

Tllegal decimal constant

Illegal octal constant

Illegal binary constant

Invalid key word

Macro stack overflow - 5 nested limit
Include files cannot be nested

Unexpected end of input

37 This Is a bad place for an .INCLUDE file
38 Only labels and comments may occupy col 1
39 Expected local label

40 Local label stack overflow

W W AN W NNN NN N N) b ok b b fok b ok o ok b
*mgwwo—-gwmwO\Uzawwua\om\nmmawm-—cmmwmmbwwn—-

Workshap Users Guide Error Messages

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

String constant must be on one line
String constant exceeds 80 characters
Illegal use of macro parameter '
Illegal use of .DEF label

Expected key word

String expected

Nested macro definitions illegal

‘=* or ‘<> expected ‘
Cannot .EQU to undefined labels

Not even a register

Not a Data Register

Not an Address Register

Register expected

Right paren expected

Right paren or comma expected
Unrecognizable operand

0dd location counter

Comma expected

One operand must be a Data Register
Dn,Dn or -(An),-(An) expected

No longs allowed

First operand must be immediate
First operand must be Dn or #E
(An+){An+) expected

Second operand must be an An
Second operand must be a Dn
#<data>Dn expected

First operand must be a Dn
An<displacement> expected

An Is not aliowed with byte

Only alterable addressing modes allowed
Only data alterable addr modes allowed
An Is not allowed

USP, SR, and CCR not allowed
Cannot move from CCR

Dx,dAy) or d{Ay),Dx expected

Only memory alterable addr modes allowed
Only control addressing modes allowed
Must branch backwards to label
Patch out of code buffer boundaries
Code buffer overflow

Segment name must be In a string
Cannot .DEF macro

MACRO defined already

Nlegal use of MACRO

ERROR while WRITING SYMBOL TABLE FILE
Not enough ENDCs

Wworkshap User’s Guiae Error Messages

88 Must have an <EA> (effective address)
89 Unimplemented Motorola directive
90 Operand size must be a word
91 No undefined or forward label in .BLOCK
92 Only byte-size displacement value allowed

A2 Linker Exrors
Linker errors are either warnings, Errors, or Fatal Errors. All Linker errors
are listed below, along with a brief description of their probable cause. The
Linker can also produce errors from Objl0LIb. These errors are listed in
Section A3,

A21 wamings
A waming message is an indication of a potential error. However, the link is
allowed to continue normally and may produce a valid output file. warnings
cannot be ignored! You must make sure that the conditions indicated by the
wamning are what was intended. when in doubt, attempt to remedy the
conditions which caused the waming message to occur.
No Starting Location:
The file containing the main Pascal program has probably been omitted.
Duplicate entry definitions:
An entry name has been found in a library file which is the same as a
name in the main program. References to the name are interpreted as
referring to the main program entry. (NOTE: this can be an error if a Unit
in the link was trying to reference the library entry.)

Conflict with Intrinsic Unit Name:
A regular Unit in the link has the same name as a library Intrinsic Unit.
Also an U segment:
A segement in the link has the same name as as a library segment.
A.2.2 Errors
A error message Is an indication of a condition which prevents the production

of a valld output file. The link is allowed to continue, in order to detect any
other errors. However, the output file will not be produced.

Multiple start locations.
More than one main program file has been provided as input to the Linker.

Duplicate definition of Unit Name
Doubly defined Global Data area:

Two units of the same name have been provided as input to the Linker.
Duplicate entry definitions.

Two entries of the same name have been found in the Linker input files.

workshap User’s Guice Error Messages

Undefined entry:
The entry name has been referenced, but not defined. Either an Input file
has been omitted or a spelling error was made In a procedure name.

Undefined Code Module:
The module name has been referenced, but not defined. Either an input
file has been omitted or a spelling error was made in a procedure name.

Undefined data area:
The unit name has been referenced, but not defined. Either an input file
has been omitted or a spelling error was made in a unit name.

Segment name not found In Intrinsic.lib:
A name which occurs in an intrinsic library file does not appear in the
directory file. Probably indicates an "architecture™ consistency error; that
isi, the llbrary file was not linked against the same directory as the current
directory.

Bad block In Library flle.
The library file being read does not have valid contents.

Relocation Block.

Common Definition Block.
The IULinker does not support these cbject blocks. Either the object file
is very old, or an error has occured in the object file format.

Bad block, start of flle:

Bad block type ‘
The object file does not have valid contents. Most likely a disk error has
caused to object file to be damaged. You should regenerate the object
file or obtain a copy from a backup disk.

Bad Module type:
This indicates an internal Linker error, or perhaps an undetected memory
error.

U Code with main
The input contains both unlinked Intrinsic. units and an unlinked main
program. Link the Intrinsic units into a library file. Then link the main
program, using the Intrinsic library as input.

™More than 32K of globals
The globals required by the main program and regular units exceeds the
current limitation of 32K. You will need to recompile the program or the
units, moving some large variables to the heap.

Code Size too big
The code in the segment being linked exceeds the current limitation of
321K, You will need to resegment the program either using the «M Linker
option, or by recompiling with different $S compiler options.

A-4

warkshap Users Guide ' Error Messages

Segs 1-16 are Reservedt
The directory Indicates that a segment name has been assoclated with one
of the segments reserved for physical addresses.

A2.3 Fatal Errors
A fatal error indicates a condition which prevents the link from continuing.
Linker error ~-
Indicates an error in intemnal Linker logic, perhaps caused by an
undetected disk or memory error.

Inconsistent Intrinsic.lib.
Probably indicates an 1/0 error, such as bad media, which has corrupted the
directory flle, or the specification of a bad directory.

Can't re-open inFlle: 000000
An 1/0 error has occured which prevents the opening of file “xooooxxx' for
phase 2 processing. Examine the file using the File Manager, or
regenerate the file. Then attempt to do the link again.

Too many code segments.
The program has too many small segments. The current limitation is for
segments numbered 17 through 105. Reduce the number of segments by
combining small segments with the +M option in the Linker.

Regular unit during Intrinsic Link.
Intrinsic unit during Regular L ink.
as part of Intrinsic Library Link:
The Linker has detected an unlinked regular unit or main program mixed
with unlinked intrinsic units.

Regular unit in Intrinsic Seg File:
The Linker has detected an unlinked regular unit in an Intrinsic library
file.

Not Main or Intrinsic Link:
Thei Linker has not seen a valid input file to decide what type of link is
desired.

No Starting location, linking Main Programe
The file containing the Pascal main program has been omitted from the

input list, or is damaged.

One or more IU Segs not in IntrinsicLib:
An intrinsic segment name does not appear in the directory file. Probably
ingicates an architecture consistency error; that is, the library file was not
linked against the same directory as the current directory.

Bad Unit Block (Oid .0BJ file?)
Either this is a very old object file, not supported by this Linker, or a disk
error has occured.

A-5

workshap User's Guide Error Messages

A3 Messages Generated by ObjIOLib
The IULInker uses a number of units from the ObjlOLib intrinsic library file.
These units are also used by the Compiler, Code Generator, and object file
utility programs. These units detect some error conditions and issue messages.

A31 wamings
No Code Block found in input .LIB file.
For the 0.S. Loader, there should be a Code Block in the directory file.
Perhaps this is an old directory file, or a directory for another operating
system.

Errors detected: No Output .LIB file written.
when the error count is nonzero, the directory file is not rewritten.

A3.2 Enors
Bad Peek
Bad Peek2:
Indicates an internal error in the ObjlOLib library, perhaps caused by a disk
or memory error. Check your hardware then retry the link.

1/0 error, can't write last buffer:
Either the volume does not have enough space for the file or a hardware
error has occurred.

MemMan Error:
An error has occurred in the managing of storage elements. Usually this
error is due to insufficient initial space (Allocation error) or due to
exhaustion of available space (Memory Full)l The cause of the error is
indicated on the next output line.

Attempt to delete vertex with arcs.

Argument to OppositeVvertex is not an endpoint:
These are errors reported by the Graphs unit. If they occur while the
Linker is executing, there has been an internal logic error, perhaps caused
by an undetected 1/0 or memory error.

A33 Fatal Errors
1/0 error. ‘
An 1/0 error has occurred within Filel0. Usually this is the result of a
volume being almost full or a hardware failure. The previous message line
indicates whether the error occurred during reading or writing and at what
position within the file the error occurred.

No VersionControl Block.

No Unit Table.

NO Segment Table.

No File Names Table:
Indicates a bad format for the directory file. The Indicated block is
missing from the directory, but is required.

workshiop Lsers Guloe Error Messages

Errors during Installation:
Indicates errors during the installation of an object file library.

SetObjinvar: VarSize is not divisible by variant size:
Indicates an Internal logic error in Obji0. Either initialization was not
called, or ObjI0 giobals have been clobbered.

Flle Buffer less than 2 blocks:
Ingicates an internal logic error in Fllel0. Perhaps initialization was not
called.

Attempt to delete itern not on list:
This is an error reported by the Lisats unit. If it occurs while the Linker
is executing, there has been an internal logic error, perhaps caused by an
undetected 1/0 or memory error.

A4 Operating System Errors

-6081 End of exec file input

-6004 Attempt to reset text file with typed-file type

~-6003 Attempt to reset nontext file with text type

-1885 ProFile not present during driver initialization

-1882 -ProfFile not present guring driver initialization

-1176 Data in the object have been altered by Scavenger

-1175 File or volume was scavenged

-1174 File was left open or volume was left mounted, and system crashed

-1173 Flle was last closed by the 0S

-1146 Only a portion of the space requested was aliocated

~1063 Attempt to mount boot volume from another Lisa or not most recent
boot volume

-1060 Attempt to mount a foreign boot disk following a temporary unmount

-1059 The bad block directory of the diskette is almost full or difficult to
read

-696 Printer out of paper during initialization

-660 Cable disconnected during ProFile initialization

-626 Scavenger indicated data are questionable, but may be OK

-622 Parameter memory and the disk copy were both invalid

-621 Parameter memory was invalid but the disk copy was valid

~-620 Parameter memory was valid but the disk copy was invalid

-413 Event channel was scavenged

=412 Event channel was left open and system crashed

-321 Data segment open when the system crashed. Data possibly invalid.

-320 Could not determine size of data segrnent

-150 Process was created, but a library used by program has been scavenged
and altered)

-149 Process was created, but the specified program file has been scavenged
and altered

-125 Sepcified process is already terminating

~-120 Specified process is already active

Workshop User's Guide Error Messages

-115
100
101
110
130
131
132
133
134
135
136
138
141
142
143
144

145
146

147
148

190

191
192
193
194
195
196

198
199
201
202

203
302
303
304
306
307
308
309
310
311

Specified process Is already suspended

Specified process does not exist

Specified process is a system process

Invalid priority specified (must be 1..225)

Could not open program file

File System error while trying to read program flle

Invalid program file (incorrect format)

Could not get a stack segment for new process

Could not get a syslocal segment for new process

Could not get sysglobal space for new process

Could not set up communication channel for new process

Error accessing program file while loading

Error accessing a library file while loading program

Cannot run protected file on this machine

Program uses an Intrinsic unit not found In the Intrinsic Library
Program uses an intrinsic unit whose name/type does not agree with
the Intrinsic Library

Program uses a shared segment not found in the Intrinsic Library
Program uses a shared segment whose name does not agree with the
Intrinsic Library

No space in syslocal for program file descriptor during process creation
No space In the shared 1U data segment for the program's shared IU
globals

No space in syslocal for program file description during List_LibFiles
operation

Could not open program file

Error trying to read program file

Cannot read protected program file

Invalld program file (incorrect format)

Program uses a shared segment not found in the Intrinsic Library
Program uses a shared segment whose name does not agree with the
Intrinsic Library

Disk 1/0 error trying to read the intrinsic unit directory

Specified llbrary file number does not exist in the Intrinsic Library
No such exception name declared

No space left In the system data area for Declare_Excep_Hdl or.
Signal_Excep :

Null name specified as exception name

Invalid LOSN

No data segment bound to the LDSN

Data segment already bound to the LDSN

Data segment too large

Input data segment path name is invalid

Data segment already exists

Insufficient disk space for data segment

An invalld size has been specified

Insufficient system resources

A-8

workshap Users Guide Error Messages

312
313
314
315
317
401
402
403
404
405
406
410
411

413
416
417
420
421

422
423
uz4

425
426
427
428
429
430

431

432
433
440
441
445
450
530
531
532
600
602
605
606
608

Unexpected Flle System error

Data segment not found

Invalid address passed to Info_Address

Insufficient memory for operation

Disk error while trying to swap In data segment

Invalid event channel name passed to Make_Event_Chn

No space left in system global data area for Open_Event_Chn

No space left in system local data area for Open_Event_Chn
Non-block-structured device specified in pathname

Catalog is full in Make_Event_Chn or Open_Event_Chn

No such event channel exists in Kill_Event_Chn

Attempt to open a local event channel to send

Attempt to open event channel to receive when event channel has a
recetver

Unexpected Flle System error in Open_Event_Chn

Cannot get enough disk space for event channel in Open_Event_Chn
Unexpected File System error in Close_Event_Chn

Attempt to walt on a channel that the calling process did not open
walt_Event_Chn retums empty because sender process could not
complete

Attempt to call wait_Event_Chn on an empty event-call channel
Cannot find corresponding event channel after being blocked
Amount of data returmned while reading from event channel not of
expected size

Event channel empty after being unblocked, walt_Event_Chn

Bad request pointer error returned in wait_Event_Chn

wait_List has illegal length specified

Recetver unblocked because last sender closed

Unexpected File System error in Wait_Event_Chn

Attempt to send to a channel which the calling process does not have
open

Amount of data transferred while writing to event channel not of
expected size

Sender unblocked because receiver closed in Send_Event_Chn
Unexpected File System error in Send_Event_Chn

Unexpected File System error in Make_Event_Chn

Event channel already exists in Make_Event_Chn

Unexpected File System error in Kili_Event_Chn

Unexpected File System error in Flush_Event_Chn

Size of stack expansion request exceeds limit specified for program
Cannot perform explicit stack expansion due to lack of memory
Insufficient disk space for explicit stack expansion

Attempt to perform 1/0 operation on non 1/0 reguest

No more alarms available during driver initialization

Call to nonconfigured device driver

Cannot find sector on fioppy diskette (disk unformatted)

Illegal length or disk address for transfer

Workshap Users Guide Error Messages

609
610
613

614
615
616
617
618
619
623
625
630

631
632
634
635
636
638

639

640
641
642
646
647

649
652
653
654
655
656
657
658
659
660
662
663

670
671
672
673
674

Call to nonconfigured device driver

No more room in sysglobal for 1/0 request

Unpermitted direct access to spare track with sparing enabled on
floppy drive

No disk present in drive

wrong call version to floppy drive

Unpermitted floppy drive function

Checksum error on floppy diskette

Cannot format, or write protected, or error unclamping floppy diskette
No more room in sysglobal for 1/0 request

Illegal device control parameters to floppy drive

Scavenger indicated data are bad

The time passed to Delay_Time, Convert_Time, or Send_Event_Chn has
Invalid year

Illegal timeout request parameter

No memory available to initialize clock

lllegal timed event id of -1

Process got unblocked prematurely due to process termination
Timer request did not complete successfully

Time passed to Delay_Time or Send_Event_Chn more than 23 days from
current time

Illegal date passed to Set_Time, or illegal date from system clock in
Get_Time

RS-232 driver called with wrong version number

RS-232 read or write initiated with illegal parameter
Unimplemented or unsupported RS-232 driver function

No memory available to initialize RS-232

Unexpected RS-232 timer interrupt

Unpermitted RS-232 initialization, or disconnect detected

Illegal device control parameters to RS-232

N-port driver not initialized prior to ProFile

No room in sysglobal to initialize ProFile

Hard error status returned from drive

Wwrong call version to ProFile '

Unpermitted ProFile function

Illegal device control parameter to ProFile

Premature end of file when reading from driver

Corrupt File System header chain found in driver

Cable disconnected

Parity error while sending command or writing data to ProFile
Checksum error or CRC error or parity error in data read
Timeout

Bad command response from drive

Illegal length specified (must = 1 on input)

Unimplemented console driver function

No memory avallable to initlalize console

Console driver called with wrong version number

A-10

Workshap Liser'’s Guloe Error Messages

675 lllegal device control

680 wrong call version to serial driver

682 Unpermitted serial driver function

683 No room in sysglobal to initialize serial driver

685 Eject not allowed this device

686 No room in sysglobal to initialize n-port card driver

687 Unpermitted n-port card driver function

688 Wwrong call version to n-port card driver

630 wrong call version to parallel printer

691 Illegal parallel printer parameters

692 N-port card not initialized prior to parallel printer

693 No room in sysglobal to initialize parallel printer

694 Unimplemented parallel printer function

695 Illegal device control parameters (parallel printer)

696 Printer out of paper

698 Printer offline

699 No response from printer

700 Mismatch between loader version number and Operating System version
number

701 0S exhausted its internal space during startup

702 Cannot make system process

703 Cannot kill pseudo-outer process

704 Cannot create driver

706 Cannot initialize floppy disk driver

707 Cannot initialize the File System volume

708 Hard disk mount table unreadable

709 Cannot map screen data

710 Too many slot-based devices

724 The boot tracks do not know the right File System version

725 Either damaged File System or damaged contents

726 Boot device read failed

727 The 0S will not fit into the available memory

728 SYSTEM.OS Is missing

728 SYSTEM.CONFIG is corrupt

730 SYSTEM.OS is corrupt

731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt

732 SYSTEMLLD is corrupt

733 Loader range error

734 Wronig driver Is found. For instance, storing a diskette loader on a
ProFile

735 SYSTEMLLD Is missing

736 SYSTEMUNPACK Is missing

737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed

801 IOResult <> 0 on 1/0 using the Monitor

802 Asynchronous 1/0 request not completed successfully

803 Bad combination of mode parameters

806 Page specifled Is out of range

A-11

workshgp Lser'’s Guioe

809
810
816
819
820
821
822
825
826
828
829
835
837
838
839
841
843
847
8u8
849
852
854
855
856
857
861
864
866
867
868
869
870
871
872
873
874
875
879
881
882
883
884
885
886
887
888
890

Invalid arguments (page, adaress, offset, or count)
The requested page could not be read in

Not enough sysglobal space for Flle System buffers
Bad device number

No space in sysglobal for asynchronous request 1ist
Already initialized 1/0 for this device

Bad device number

Error in parameter values (Allocate)

No more room t0 allocate pages on device

Error in parameter values (Deallocate)

Partial deallocation only (ran into unallocated region)
Invalid s-flle number

Unallocated s-file or 1/0 error

Map overflow: s-file too large

Attempt to compact flle past PEOF

Unallocated s-flle or 1/0 error

Requested exact fit, but one could not be provided
Requested transfer count is <= 0

End of file encountered

Invalid page or offset value in parameter list

Bad unit number

No free slots in s-list directory (too many s-files)
No avallable disk space for file hints

Device not mounted -

Empty, locked, or invalid s-file

Relative page is beyond PEOF (bad parameter value)
No sysgiobal space for volume bitmap

wrong FS version or not a valid Lisa FS volume
Bad unit number

Bad unit number

Unit already mounted (mount)/no unit mounted

No sysglobal space for DCB or MDDF

Parameter not a valid s-file ID

No sysgiobal space for s-file control biock
Specified file is already open for private access
Device not mounted

Invalid s-file ID or s-file control block

Attempt to postion past LEOF

Attempt to read empty file

No space on volume for new data page of file
Attempt to read past LEOF :
Not first auto-allocation, but file was empty
Could not update fllesize hints after a write

No syslocal space for 1/0 request list

Error Messages

Catalog pointer does not indicate a catalog (bad perameter)

Entry not found in catalog
Entry by that name already exists

A-12

Workshap Users Guioe Error Messages

891
892
894
895
896
897
899
900
901
921
922
926
927
941
9y
945
946
947
948
949
950
951
952
954
955
956
957
958
959
960
961
962
963
%4
965
966
967
968
971
972
974
977
978
979
981
982
983

Catalog s full or is damaged

Niegal name for an entry

Entry not found, or catalog is damaged

Invalld entry name

Safety switch Is on--cannot Kill entry

Invalid bootdev value

Attempt to allocate a pipe

Invalid page count or FCB pointer argument

Could not satisfy allocation request

Pathname invalid or no such device

Invalid 1abel size

Pathname invalig or no such device

Invalid label size

Pathname Invalid or no such device

Oobject is not a file

File is not in the killed state

Pathname Invalid or no such device

Not enough space In syslocal for File System refdb
Entry not found in specifled catalog

Private access not aliowed if flle already open shared
Pipe already in use, requested access not possible or dwrite not allowed
File is already opened in private mode

Bad refnum

Bad refnum

Read access not allowed 10 specified object
Attempt to position FMARK past LEOF not allowed
Negative request count is illegal

Nonsequential access is not allowed

System resources exhausted

Error writing to pipe while an unsatisfied read was pending
Bad refnum

No WRITE or APPEND access allowed

Atternpt to position FMARK too far past LEOF
Append access not allowed in absolute mode
Append access not allowed in relative mode
Internal inconsistency of FMARK and LEOF (warning)
Nonsequential access is not allowed

Bad refnum

Pathname invalld or no such device

Entry not found in specified catalog

Bad refnum

Bad refnum

Page count Is nonpositive

Not a block-structured device

Bad refnum

No space has been allocated for specified file

Not a block-structured device

A-13

Workshap User's Guide Error Messages

985
986
987
988
989
930
994
935
999
1021
1022
1023
1024
1031
1032
1033
1041
1042
1043
1051
1052
1053

1054
1061
1062
1071
1091
1092

1101

1121
1128
1130
1131
1132
1133
1134
1135
1136
1137
1138

1141
1142
1143
1144

Bad refnum

No space has been allocated for specified file

Not a block-structured device

Bad refnum

Caller is not a reader of the pipe

Not a block-structured device

Invalid refnum

Not a block-structured device

Asynchronous read was unblocked before it was satisfied
Pathname invalid or no such entry

No such entry found

Invalid newname, check for '-* in string

New name already exists In catalog

Pathname invalid or no such entry

Invalid transfer count

No such entry found

Pathname invalid or no such entry

Invalid transfer count

No such entry found

No device or volume by that name

A volume 1s already mounted on device

Attempt to mount temporarily unmounted boot volume just unmounted
from this Lisa

The bad block directory of the diskette is invalid

No device or volume by that name

No volume is mounted on device

Not a valid or mounted volume for working dlrectory
Pathname invalid or no such entry

No such entry found

Invalid device name

Invalid device, not mounted, or catalog is damagea
Invalid pathname, device, or volume not mounted

File Is protected; cannot open due to protection violation
No device or volume by that name

No volume is mounted on that device

No more open files in the file list of that device

Cannot find space In sysglobal for open file list

Cannot find the open flle entry to modify

Boot volume not mounted

Boot volume already unmounted

Caller cannot have higher priority than system processes when calling
ubd

Boot volume was not unmounted when calling rbd

Some other volume still mounted on the boot device when calling rbd
No sysglobal space for MDDF to do rbd

Attempt to remount volume which is not the temporarﬂy unmounted
boot volume

A-14

workshop User's Guioe Error Messages

1145
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

1170
1171
1172
1176
1177
1178

1180
1181
1182
1183
1184

1186
1188
1190
1191
1193
1196
1197
1198
1199
1200
1201
1202
1203
1204
1210
1211
1212
1213
1214
1215

No sysglobal space for bit map to do rbd

Track-by-track copy buffer is too small

Shutdown requested while boot volume was unmounted

Destination device too small for track-by-track copy

Invalid final shutdown mode

Power is already off

Illegal command

Device is not a diskette device

No volume is mounted on the device

A valid volume is already mounted on the device

Not a block-structured device

Device name is Invalld

Could not access device before initialization using default device
parameters

Could not mount volume after initialization

' s not allowed in a volume name

No space avallable to initlalize a bitmap for the volume

Cannot read from a plpe more than half of its allocated physical size
Cannot cancel a read request for a pipe

Process walting for pipe data got unblocked because last plpe writer
closed it

Cannot write to a pipe more than half of its allocated physical size
No system space left for request block for pipe

Writer process to a pipe got unblocked before the request was satisfied
Cannot cancel a write request for a pipe

Process walting for pipe space got unblocked because the reader closed
the pipe

Cannot allocate space to a pipe while it has data wrapped around
Cannot compact a pipe while it has data wrapped around

Attempt to access a page that is not allocated to the pipe

Bad parameter

Premature end of file encountered

Something 1s still open on device--cannot unmount

Volume is not formatted or cannot be read

Negative request count is illegal

Function or procedure is not yet implemented

Illegal volume parameter

Blank file parameter

Error writing destination file

Invalid UCSD directory

File not found

Boot track program not executable

Boot track program too big

Error reading boot track program

Error writing boot track program

Boot track program file not found

Cannot write boot tracks on that device

A-15

Workshap Users Guide Error Messages

1216
1217
1218
1219
1220
1221
1222
1225

1226
1227
1228
1229
1230
1231
1232
1233
1237
1240
1296
1297
1298
1807
1820
1822
1824
1882
1885
1998
1999
6001
6002

6003
6004
6005

6006
6010
6081
6082
6083
6090
6101
6151
6152
6153

Could not create/close intemal buffer

Boot track program has too many code segments

Could not find configuration information entry

Could not get enough working space

Premature EOF in boot track program

Position out of range

No device at that position

Scavenger has detected an intemnal inconsistency symptomatic of a
software bug

Invalid device name

Device Is not block structured

Illegal attempt to scavenge the boot volume

Cannot read consistently from the volume

Cannot write consistently to the volume

Cannot allocate space (Heap segment)

Cannot allocate space (Map segment)

Cannot allocate space (SFDB segment)

Error rebuilding the volume root directory

Illegal attempt to scavenge a non-0S-formatted volume
Bad string argument has been passed

Entry name for the object s invalid (on the volume)
S-list entry for the object is invalid (on the volume)
No disk In floppy drive

Write-protect error on floppy drive

Unable to clamp floppy drive

Floppy drive write error

Bad response from ProFile

ProFile timeout error

Invalid parameter address

Bad refnum

Attempt to access unopened flle

Attempt to reopen a file which is not closed using an open FIB (file
info block)

Operation incompatible with access mode with which file was opened
Printer offline

F%ecord type incompatible with character device (must be byte
si

Bad Integer (read)

Operation incompatible with file type or access mode
Premature end of exec file

Invalid exec (temporary) flle name

Attempt to set prefix with null name ,

Attempt to move console with exec or output file open
Bad real (read)

Attempt to reinitalize heap already in use

Bad argument to NEW (negative size)

Insufficient memory for NEW request

A-16

Workshop Lsers Guite Error Messages

6154

Attempt to RELEASE outside of heap

Operating System Error Codes
The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.

10050
10051
10100

10102
10103
10104
10197
10198

10199

10201
10202
10203
10205
10207
10208
10212
10213
10401
10582
10590
10593
10594
10595
10596
10597
10598
10600
10601
10602
10603
10604
10605

10609
10610
10611
10612

10613

Request block is not chained to a PCB (Unbik_Req)

Bld_Req is called with interrupts off

An error was returned from SetUp_Directory or a Data Segment routine
(Setup_lUInfo)

Error > 0 trying to create shell (Root)

Sem_Count > 1 (Init_Sern)

Could not open event channel for shell (Root)

Automnatic stack expansion fault occurred in system code (Check_Stack)
Need_Mem set for current process while scheduling is disabled
(SimpleScheduler)

Attempt to block for reason other than 1/0 while scheduling is disabled
(SimpleScheduler)

Hardware exception occurred while in system code

No space left from Sigl_Excep call in Hard_Excep

No space left from Sigl_Excep call in Nmi_Excep

Error from wait_Event_Chn called in Excep_Prolog

No system data space in Excep_Setup

No space left from Sigl_Excep call in range error

Error in Term_Def Hdl -from Enable_Excep

Error in Force_Term_Excep, no space in Eng_Ex_Data

Error from Close_Event_Chn in Ec_Cleanup

Unable to get space in Freeze_Seg

Fatal memory parity error

Unable to move memory manager segment during startup

Unable to swap in a segment during startup

Unable to get space in Extend_MmMlist

Trying to alter size of segment that is not data or stack (Alt_DS_Size)
Trying to allocate space to an allocated segment (Alloc_Mem)
Attempting to allocate a nonfree memory region (Take_Free)

Error attempting to make timer pipe

Error from Kill_Object of an existing timer pipe

Error from second Make_Pipe to make timer pipe

Error from Open to open timer pipe

No syslocal space for head of timer list

Error during allocate space for timer pipe, or interrupt from
nonconfigured device

Interrupt from nonconfigured device

Error from info about timer pipe

Spurious interrupt from floppy drive #2

Spurious interrupt from floppy drive #1, or no sysiocal space for timer
list element

Error from Read_Data of timer pipe

A-17

Workshop Users Guioe Error Messages

10614

10615
10616
10617
10619
10624
10637
10675
10699
10700

10701
10702
10703
10704
10706
10707
10708
10709
10710
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734

10735
10736
10737
11176
11177
11178
11180

118xx
11901

Actual returned from Read_Data is not the same as requested from
timer pipe

Error from open of the receiver's event channel

Error from Write_Event to the recelver's event channel

Error from Close_Event_Chn on the receiver's pipe

No sysglobal space for timer request block

Attempt to shut down floppy disk controller while drive is still busy
Not enough memory to-initialize system timeout drives

Spurious timeout on console driver

Spurious timeout on parallel printer driver

Mismatch between loader version number and Operating System version
number

0S exhausted its internal space during startup

Cannot make system process

Cannot kill pseudo-outer process

Cannot create driver

Cannot initialize floppy disk driver

Cannot initialize the File System volume

Hard disk mount table unreadable

Cannot map screen data

Too many slot-based devices

The boot tracks do not know the right File System version

Either damaged File System or damaged contents

Boot device read failed

The 0S will not fit into the available memory

SYSTEM.OS is missing

SYSTEM.CONFIG is corrupt

SYSTEM.OS is corrupt

SYSTEM.DEBUG or SYSTEM.DEBUG? is corrupt

SYSTEM.LLD is corrupt

Loader range error

wrong driver is found. For Instance, storing a diskette loader on a
ProFile

SYSTEM.LLD is missing

SYSTEM.UUNPACK is missing

Unpack of SYSTEM.OS with SYSTEM. UNPACK failed

Found a pending write request for a pipe while in Close _Object when it
Is called by the last writer of the pipe

Found a pending read request for a pipe while in Close_Object when it
is called by the (only possible) reader of the pipe

Found a pending read request for a pipe while in Read_Data from the
pipe

Found a pending write request for a pipe while in write_Data to the
pipe

Error xx from diskette ROM (See OS errors 18xx)

Call to Getspace or Relspace with a bad parameter, or free pool is bad

A-18

>

O O o

Appendix B
Workshop Character Set

6 1 2 3 4 5 6 7
MMSPO@P‘D;
swm'lAQa4q§
smucz"ZBRbrgé
™™ |#|3|c|s|c]|s}
“1™1$4|D|T|d|t}
"‘°""“%5EUeu§§
I &I |F|VI |V
mms.7GWgW§§
sl cl8lHIX|nx|
“"")91Yiy;
i el Ji1Z|jlz}
Tl ROk
FFFS’(L\ll
“1-{=|M[]|m]|}
A% > [N Y |n| Tk
SIUS/?O OOEI.

The first 32 characters and DEL are nonprinting control codes.
The shaded area is reserved for future use.

B-1

Appendix C
Screen Control Characters

To perform standard screen control functions in Pascal, use the ScreenCtr
procedure of PASLIBCALL as detailed in Section S5.4. For an alternative
method of screen control, you can use WRITE or WRITELN's with the
corresponding character string from Table C-1.

In BASIC, you should use PRINT with the CHR$ function and the argument
that corresponds to the desired action. For example:

10 print chr$(27); chr$(42); chr$(10); chr$(10)
20 e
un

should erase the screen, and position the cursor on the third line.

Table C-1
Screen Control Character Strings
single-character string 2-character string
ASCII ASCII
Desired function Char HEX Decimal Char HEX Decimal
position to home 1€ 30
one position left BS 8 8
one position right FF C 12
position up one line vT B 11
position down one line LF A 10
erase to end of line ESC-T 1B-S4 27-84
- erase to end of screen ESC-Y 1B-5%9 27-89
erase screen ESC-+ 1B-2A 27-42

0.1
D.2
D3
D4
D.5
D6

Appendix D
Common Problems

what to Do wWhen You Find Yourself in the Debugger
How to Stop Your Program............c....
what to Do when a Diskette won't Eject
what to Do when You Get a Range Error
what to Do when the System Does Not Respond.

what to Do with a Runaway Exec File

...

Common Problems

This section presents the most common problems that programmers seem to
have with the Workshop with suggestions for handling them.

D.1 wnhat to Do wWhen You Find Yourself in the Debugger
You can tell you have entered the Debugger when you suddenly end up with
cryptic looking numbers and symbols on your screen. You are actually viewing
the alternate screen, and the numbers and symbols are a disassembly of the
code where you have stopped and the values of the machine registers. To
return to the normal screen to see where you were before you entered the
Debugger, hold down the [OPTION] key and press the [ENTER] key. Additional
information on the alternate screen is available in Section 3.2.

Often the Debugger display will include suggestions for what to do next, such
as “Press g to continue™. Figure D-1 is an example of what appears on the
screen when you enter the Debugger.

Level 7 Interrupt
LOCALPRO+@@1A 1D40@ FFF5 PC MOVE.B DO, $FFF3(A6)
PC=090240022 SR=0088 0 US=BBF7FBEC 5S=@ACBFEE@ D0=1 P#-=088819
Do=co100809 Di=00808008 D2=-000800C6 D3=008264A7
D4=00000081 DS=4EF90084 D6=12CC4EFS D7=08840000
AP=0BF84126E A1=BACCAZ22A A2=00240068 A3=8BBCCAZ22A
A4=BACCAZ2A AS=BBF7FC44 AG=BBF7FBFA A7=80F 7FBEC
/
Figure D-1
Debugger Screen Display

You can enter the Debugger in a number of ways, most commonly by having
an error in your program, pressing the NMI (nonmaskable interrupt) key, or
having a memory parity error. The NMI key Is the “-" key on the numeric
keypad.

More information on handling the Debugger is given in Chapter 8. Section 8.2
will help you handle accidental entry into the Debugger. Section 8.3.2
contains information aboout Pascal run-time errors, particularly range errors.

Workshop User's Guiae Common Problems

D.2 How to Stop Your
If your program has been running for longer than you think it needs to, it
might be in an infinite loop. Before you stop the program, you should:

* Check the alternate screen. Maybe your program is waiting for input.
* Try ®-period to see if it responds.

If neither of these actions works, press the NMI key, which stops your program
in the Debugger. See Section 8.2 for information about what you can do from

the Debugger.

D.3 what to Do wWhen a Diskette won't Eject
The eject request buttons are only recognized after the workshop system does
a Pascal 1/0 operation. Thus when you press an eject button, nothing will
happen until you press a key, or 1/0 happens for some other reason. (when
you are in the Editor, the Preferences tool, or TransferProgram, you do not
need to hit a key after pressing the diskette button.)

In general, if a diskette will not eject, it means that the file system still has
some file open on it. Use the Online command to check the open count,
which will tell you if any files are still open. Then use the List command
from the File Manager to list the contents of the diskette. If some files are
open, there is probably a resident process that has a file open or a data
segment open that has been mapped to the disk. Use the ManageProcess
subsystem in the System Manager to kill the process. This will close the files
and the disk will eject.

Further information on the List command can be found in Sections 2.3 and 2.6.
The ManageProcess subsystem Is described in Section 3.4.

D.4 what to Do When You Get a Range Error
A range error drops you Into the Debugger. Instructions for handling range
errors are in Section 8.3.2. A

D5 wnat to Do when the System Does Not Respond
Some of the reasons your wWorkshop might not respond are:

1. You might be running a program with an infinite loop.
2. You might have stopped console output by pressing #-S.
3. You might have the alternate screen showing.

4. You might have altered the NMI character.

Press the NMI key (the "-"key on the numeric keypad) to drop into the
Debugger. See Section 8.2 for further instructions.

If pressing the NMI key does not work, power off your Lisa and reboot the
system.

Workshop User's Guide Cornmon Problems

D6 Wwhat to Do with a Runaway Exec File
If you think that your exec file has gone wild, how do you stop it?

when the exec file processor has finished processing your exec file (s), it has
created a temporary file with the stream of characters that are to perform
the actions in the exec file. The Workshop then sets the run-time
environment so that standard input comes from the temporary file, and begins
executing the commands in the temporary file. while they are executing, the
workshop ignores the keyboard, although the characters you type will be
remembered.

You can terminate standard wWorkshop programs by pressing #-period, although
termination might not be immediate if the program being run does not
recognize ®-period.

NOTE

Note that most workshop tools check for &-period from the keyboard
even when running under exec files. This means that you can abort
workshop tools in exec files.

Unless user programs are written to recognize the #-period key combination
as an abort mechanism, pressing those keys will not terminate the exec file if
a user program is being run. (See PASLIBCALL, Section 5.4, for information
on the function PAbortFlag, which tells whether or not those keys have been
pressed.) If this is the case, you can either:

* walt for the user program to terminate so that §-perlod can be
recognized by something else, or

* press the NMI key, which forces the system into the Debugger.

If the user program does recognize &-period, pressing it will terminate the
program but not the exec file. To terminate the exec file, wait until the
workshop prompt appears and press €-period again.

See Section 8.2 for instructions on how to stop a user program early.

NOTES

__________ A-_--_--_--
active document 4.2
AddResident command 3.4
address error exception 8.2.1.1
addressing modes 6.4.5
All Occurrences 4.7
alternate screen 1.1
s-period key 1.5.2, 5.4.1
#-s key 1.5.3
ASCII Assembler directive 6.5.1
Assemble command 1.3
Assemble instruction in Debugger
8.4.5
Assembler 6
addressing modes 6.4.5
assemble from exec file 9.4.1
Assembler directives 6.5
calling Pascal 1/0 6.7.4
comments in program 6.4.7
conditional assembly directives
6.5.3
constants 6.4.2
current program location 6.4.7
error messages A.1
expressions 6.4.5
external reference directives
6.5.4
function, how to write 6.7.3
generic instructions 6.3
labels and local labels 6.4.4
listing file 6.2.4
macro directives 6.5.1
object file 6.2.3
opcodes 6.3
operators 6.4.5
options 6.2.1
Pascal data areas 6.7.5
program structure 6.4.1
pseudo-ops 6.5
space allocation directives
6.5.1
asterisk 6.4.7

029-0367-A

Index-1

Backup command 2.3.1, 2.7

BASIC
installing 1.10
Interpreter 1.11

Basic command 1.3

Baud Rate menu 10.3

.BLOCK Assembler directive 6.5.1

block-structured device 2.4.1

Boolean expression, in exec file
9.2.4.1

Boolean function, in exec file
9.2.4.2

boot device 3.3.2

booting 1.2

breakpoint, Debugger 8.2.1.3,
8.4.6

bus error 8.2.1.1

.BYTE Assembler directive 6.5.1

ByteDiff utility 11.2

__________ C--~_~__-“_
Cases Must Agree 4.7
Cases Need Not Agree 4.7
chaining exec files 9.4.5
ChangeSeg utility 11.2
changing a volume or file name
2.10
character set, Lisa B
CLEAR key 1.5.1.1
Clipboard 4.1, 4.6
Cobol command 1.3
CodeSize utility 11.3
command file, Linker 7.2
command line
File Manager 2.2, 2.3
System Manager 3.2
Workshop 1.1, 1.3
commands, Debugger 8.5
comments in Assembler program
6.4.7
comments in exec file 9.3.1

Workshap User’s Guioe

communications. See Transfer
program.
comparing binary files 11.1
comparing .TEXT files 11.4
Compiler, Pascal S
Compiler commands, Pascal 5.3
CONCAT function in exec file
9.2.4.4
conditional assembly directives
6.5.3
configuring an RS232 port 11.10
connectors 3.3.3
Console command 3.2
constants, Assembler 6.4.2
Control menu 10.3
Convenience Settings 3.3.1
Copy 4.6
Copy command 2.3.2, 2.7
copying
files 2.7
text 4.2.4
cross-reference, Pascal 11.12,
11.13 ,
cross-reference utility 11.9
current program location,
Assembler 6.4.7
Cut 4.6

__________ D_......_.-_.._._

data communications. See Transfer
program.

date, file 9.2.4.2

dead code analysis 7.1.1, 7.8

Debug command 1.3

Debugger 8
Assemble instruction 8.4.5
breakpoint 8.2.1.3, 8.4.6
commands 8.3-8.5
Disassemble instruction 8.4.5
display memory 8.4.2
display registers 8.4.4
execution time, measuring
memory dump to diskette 8.
memory management hardware,

changing 8.4.7

NMI key, setting 8.4.9.3

8.4.
4.9.

8
5

Index-2

Index

printing 8.4.9.4

problem diagnosis 0.1

and run time stack 6.6.1

search memory 8.4.3

symbols and base conversion

8.4.9.1

trace commands 8.4.6

UBR command 8.2.1.3

window, moving 8.4.9.2
.DEF Assembler directive 6.5.4
DEFAULT exec file command 9.2.2.1
DefaultPrinter command 3.2
Delete command 2.3.3, 2.8
DeleteResident command 3.4
deleting a file 2.8
Device Connections option 3.3.3
DEVICE_CONTROL system call 5.4.1
Differentiated Keywords 4.9
Diff utility 11.4
directives, Assembler 6.5
directory, working 1.4
Disassemble instruction, Debugger

8.4.5
disassembler utility 11.5
diskette

mounting and unmounting

1.5.4

nonejecting D.3

volume 2.4.1
domain 8.2.1.2
dumping a file 11.6
DumpObj utility 11.5
bumpPatch utility 11.6
Duplex menu 10.3
Duplicate... 4.5

Cut 4.6

Paste 4.6
Edit command 1.3
Edit menu 4.2.2, 4.6
Editor 4

copying text 4.2.4
Edit menu 4.2.2, 4.6
File menu 4.2.2, 4.5

Workshop User's Guiade

menus 4.2.2

multiple files 4.2.4

operations 4.2.1

Print menu 4.9

Search menu 4.2.2, 4.7

Type Style menu 4.2.2, 4.8
.ELSE Assembler directive 6.5.3
ELSE exec file command 9.2.4
ELSEIF exec file command 9.2.4
.ENDC Assembler directive 6.5.3
ENDIF exec file command 9.2.4
.ENDM Assembler directive 6.5.2
Environments window. 1.2
Equal command 2.3.9
error messages A

Assembler A.1

Linker A.2

ObjIOLib A.3

Operating System A.4

errors, program. See program bugs.

errors in exec file 9.6
escape key 1.5.1.1
exception handler 8.2.1.1
exec file 9
as function 9.4.8
assembly 9.4.1
Boolean expression 9.2.4.1
Boolean function 9.2.4.2
chaining 9.4.5
command lines 9.2
comments 9.2, 9.3.1
CONCAT string function 9.2.4.4
conditional statements 9.2.4
DEFAULT command 9.2.2.1
ELSE commend 9.2.4
ELSEIF command 9.2.4
ENDIF command 9.2.4
errors 9.6
EXISTS function 9.2.4.2
function calls 9.2.5.3
IF command 9.2.4
nesting 9.2.5
NEWER function 9.2.4.2
options 9.3
parameter list 9.3
parameters 9.2

Inoex

Pascal compile 9.4.1, 9.4.3,
9.4.4, 9.4.6
processor 9.3
programming tips 9.
READCH command 9.2.
READLN command 9.2.
recursive function
REQUEST command 9.2.2.2
RETURN commang 9.2.5.2
SET command 9.2.2.1
statements 9.2
stopping execution D.6
string expressions 9.2.4.3
2.4.4
5.1

5

3.1
3.1
9.4.6

string functions 9.
SUBMIT command 9.2.5.1,
temporary file 9.1, 9.3.
UPPERCASE string function
9.2.4.4
WRITE command 9.2.3.2
WRITELN command 9.2.3.2
execution time, measuring 8.4.8
EXISTS exec file function 9.2.4
Exit Editor 4.5
expressions, Assembler 6.4.5
extension to file name 2.4.3
external procedures and functions,
6.6
external reference directives,
Assembler 6.5.4
external references, resolving
7.1, 7.7

9.3.1.1
1.1

.2

__________ F_._.._______
file

copying 2.7

deleting 2.8

dump utility 1i.e

exec temporary 9.1

FileDiv utility 11.7

listing 2.6

patch utility 11i.6

search utility 11.8
FileAttributes command 2.3.10
file date 9.2.4.2
FileDiv utility 11.7
FileJoin utility 11.7

workshop User ‘s Gulde

File Manager 2
File Manager commands
Backup 2.3.1, 2.7
ClearAttributes 2.3.10
Copy, 2.3.2 2.7
Delete, 2.3.3 2.8
Equal 2.3.9
FileAttributes 2.3.10
Initialize, 2.3.11, 2.4.1 2.9
List 2.3.4, 2.6
Mount 2.3.12
Names 2.3.13, 2.6
Online 2.3.14
Prefix 2.3.5
Protect 2.3.10
Quit 2.3.8
Rename 2.10, 2.3.6
Safety 2.3.10
Scavenge 2.3.15
Transfer 2.3.7
Unmount 2.3.16
File menu 4.2.2
FILE-MGR command 1.3
file name 1.4, 4.5
changing 2.10
prompts 1.5.1, 1.5.1.2-1.
standard extension 2.4.3
file specifier 2.2, 2.4.2, 2.5
FilesPrivate command 3.2
Find... 4.7
Find & Paste All 4.7
Find Same 4.7
Find utility 11.8
font 4.8
full duplex. See Duplex menu.
Full Footers 4.9
function, how to write in
Assembler 6.7.3
function as exec file 9.4.8
function calls in exec file
3.2.5.3
function result 6.6.1

5.1.6

T p I
o

Generate command 1.3

Inaex

generic instructions, Assembler
6.3

GetGPrefix procedure, Pascal 5.4.1

GetPrDevice procedure, Pascal
S.4.1

global cross-reference utility
11.9

global name 7.7

GXRef utility 11.9

__________ H______-___

half duplex. See Duplex menu.

Handshake mernu 10.3

hardware exception 8.2.1.1

HEAD macro 6.6.1

heap, Pascal 5.4.2

HEAPRESULT, Pascal heap routine
5.4.2

help 1.5.1.7

I_ -
I-code 5.1, 5.2, 5.2.1
.IF Assembler directive 6.5.3
IF exec file command 9.2.4
.I file extension 2.4.3
.INCLUDE Assembler directive 6.5.5
infinite loop 8.2.1.2, D.2
Initialize command 2.3.11, 2.4.1,
2.9
insertion point 4.1, 4.3.1
installing
BASIC 1.10
coBOL 1.12
Pascal 1.7
intrinsic units 7.5

(74 -
keyboard repeat delay 3.3.1
KillProcess commands 3.4

L
labels, Assembler 6.4.4
.LIB file extension 2.4.3

Workshop User's Guide

Link command 1.3
Linker 7

error messages A.2

listing 7.6

options 7.3
Lisa character set B
.LIST Assembler directive 6.5.5
List command 2.3.4, 2.6
listing file, Assembler 6.2.4
listing files 2.6
Literal search 4.7
local labels, Assembler 6.4.4
local name 7.7
.LONG Assembler directive 6.5.1
loop 8.2.1.2, D.2

H--
.MACRO Assembler directive 6.5.1
macro directives, Assembler 6.5.1
.MACROLIST Assembler directive
6.5.5
main command 1line. See Workshop
commands line.
main program, 1inking 7.4
main screen 1.1
MakeBackground command 1.3
ManageProcess command 3.2
MARK, Pascal heap routine 5.4.2
MEMAVAIL, Pascal heap routine
5.4.2
memory
display in Debugger 8.4.2
dumping to diskette
8.4.9.5
parameter memory 3.3, 3.3.5
test 3.3.2
memory menagement hardware,
changing 8.4.7
modem 10.2, 10.3
Mount command 2.3.12
mounting a diskette 1.5.4
mouse 4.1
mouse double click delay 3.3.1
moving the display window 4.4.2

Ingex-5

Inaex

__________ N_---_---_-

Names command 2.3.13, 2.6

nesting exec files 9.2.5

NEW, Pascal heap routine 5.4.2

NEWER exec file function 9.2.4.2

NMI key 8.3, 8.4.9.3

.NOLIST Assembler directive 6.5.5

.NOMACROLIST Assembler directive
6.5.5

nonmaskable interrupt key (NMI) 8.3,

8.4.9.3
.NOPATCHLIST Assembler directive
6.5.5

__________ 0--_______-
.08J file extension 2.4.3
object code, Pascal 5.1, 5.2.
object file, Assembler 6.2.3,
ObjIOLib errors A.3
Online command 2.3.14
opcodes, Assembler 6.3
... 4.5
Operating System error messages
A4

1,

7.1
7.1

operators, Assembler 6.4.5

options for file name prompts
1.5.1.7

options in exec file 9.3

.ORG Assembler directive 6.5.1

OutputRedirect command 3.2

0

.PAGE Assembler directive 6.5.5
Page Number Only 4.9
parameter 1list in exec file 9.3
parameter memory 3.3, 3.3.5
parameter passing 6.6.3
Parity menu 10.3
Pascal Compiler S
Pascal
compile from exec file 9.4.1,
9.4.3, 9.4.4, 9.4.6
Compiler commands 5.3

workshop User ‘s Guide

cross-reference utility 11.12,

11.13

heap 5.4.2
HEAPRESULT 5.4.2
MARK 5.4.2
HMEMAVAIL 5.4.2
NEW 5.4.2
object code 5.1, 5.2.1
printing a program 4.9
RELEASE 5.4.2

Pascal command 1.3

PASLIBCALL unit, Pascal 5.4.1

Paste 4.6

patching a file 11.6

.PATCHLIST Assembler directive
6.5.5

pathname 1.5.1

Plain keywords 4.9

PLINITHEAP procedure, Pascal
5.4.1, 5.4.2

PortConfig utility 11.10

Preferences command 3.2, 3.3
Convenience Settings 3.3.1
Device Connections 3.3.3
Rates 3.3.1
Screen Contrast 3.3.1
Speaker Volume 3.3,
Startup option 3.3.
Tools menu 3.3.5
Workshop option 3.3.4

prefix 2.4.3

Prefix command 2.3.5

pretty listing, Assembler option
6.2.1, 6.2.4

Print All of Document 4.9

printer 1.14

printing
from the Debugger 8.4.9.4
Pascal programs 4.9

Print menu 4.2.2, 4.9

Print Selection 4.9

problems D

procedure arguments 6.6.1

Process Management commands
AddResident 3.4
DeleteResident 3.4
KillProcess 3.4

1
2

Inaex

ProcessStatus 3.4
Quit 3.4
processor, exec file 9.3
ProcessStatus command 3.4
program bugs 8.2.1
programmlng tips, for exec file
9.5

program structure, Assembler 6.4.1
protected master 2.3.10
pseudo-ops 6.5

Quit command 1.3, 2.3.8, 3.2, 3.4

__________ R_-___-____
range check error 8.2.1.1, 8.3.2
Rates option 3.3.1
READCH exec file command 9.2.3.1
READLN exec file command 9.2.3.1
recursive function 9.4.6
.REF Assembler directive 6.5.4
register conventions 6.6.2, 8.4.1
registers, display in Debugger
8.4.4
regular units 7.5
RELEASE, Pascal heap routine 5.4.2
remote computer 10.1, 10.2
Rename command 2.10, 2.3.6
REQUEST exec file command 9.2.2.2
RETURN exec file command 9.2.5.2
Revert to Previous Version 4.5
.RORG Assembler directive 6.5.1
RS232 port, configuring 11.10
Run command 1.3
running
Assembly language program 1.8
Pascal program 1.8
run time stack 6.6.1

__________ S________--
Save a Copy in... 4.5
Save & Continue 4.5
Save & Put Away 4.5
Scavenge command 2.3.15

#orkshop User's Guioe

Screen Contrast option 3.3.1
screen control
characters C
functions 5.4.1
stopping the display 1.5.3
ScreenCtr procedure, Pascal 5.4.1
scrolling 4.4.1
search file for pattern 11.8
Search menu 4.2.2, 4.7
.SEG Assembler directive 6.5.4
SegHap utility 11.11
segmentation 11.3, 7.9
segment map utility 11.11
segment name
Assembler 6.5.4
changing 11.2
Select All of Document 4.6
selecting text 4.3
Separate Identifiers 4.7
SET exec file command 9.2.2.1
Set Tabs 4.6
setting Workshop parameters 3.3.4
Shift Left 4.6
Shift Right 4.6
space allocation directives,
Assembler 6.5.1
Speaker Volume option 3.3.1
stack 6.6.1
stack overflow 8.2.1.1
Startup option 3.3.2
statement, in exec file 9.2
static link 6.6.1
stationery 4.2.3
stopping
screen display 1.5.3
operation 1.5.2
string expressions, in exec file
9.2.4.3
SUBMIT exec file command 9.2.5.1,
9.3.1.1
SXRef utility 11.12
symbolic references 7.1
system malfunctions 8.2.2
System Manager 3
System Manager commands
Corisole 3.2
Convenience Settings 3.3.1

Index-7

Inoex

DefaultPrinter 3.2

FilesPrivate 3.2

ManageProcess 3.2

OutputRedirect 3.2

Preferences 3.2, 3.3

Quit 3.2

Time 3.2

Validate 3.2
SYSTEM-MGR command 1.3

__________ T_____---__

TAIL macro 6.6.1

TAS Assembler opcode 6.3

Tear Off Stationery 4.5
temporary exec file 9.3.1.1

test and set instruction 6.3
text, selecting 4.3

JJEXT file extension 2.4.3

Time command 3.2

.TITLE Assembler directive 6.5.5
Token search 4.7

Tools menu 3.3.5

trace commands in Debugger 8.4.6
Transfer command 2.3.7

Transfer program 10
TransferProgram command 1.3

Type Style menu 4.2.2, 4.8

__________ U______-_-_
UBR command, Debugger 8.2.1.3
underlining 4.9
Undo Last Change 4.6
Unmount command 2.3.16
unmounting a diskette 1.5.4
UPPERCASE function, in exec file
9.2.4.4
user break facility 8.2.1.3
utilities 11
ByteDiff 11.1
ChangeSeg 11.2
CodeSize 11.3
comparing binary files 11.1
comparing .TEXT files 11.4
Diff 11.4
disassembler 11.5

Workshop User's Guige Ingex

dump a file 11.6 SYSTEM-MGR 1.3

DumpObj 11.5 TransferProgram 1.3
DumpPatch 11.6 Workshop option 3.3.4

FileDiv 11.7 WRITE exec file command 9.2.3.2
FileJoin 11.7 WRITELN exec file command 9.2.3.2
Find 11.8

GXRef 11.9

patch a file 11.6
PortConfig 11.10
search file for pattern 11.8
SegMep 11.11
segmentation 11.3
segment mapping 11.3
SXRef 11.12
UXRef 11.13
UXRef utility 11.13

validate command 3.2
volume 2.4.1
changing the name 2.10
creating 2.9

__________ w-------_-_
wild card characters 2.5
window
Debugger 8.4.9.2
Environments 1.2
window, moving 4.4.2
.WORD Assembler directive 6.5.1
working directory 1.4, 2.4.3
Workshop command line 1.1, 1.3
Workshop commands
Assemble 1.3
Basic 1.3
Cobol 1.3
Debug 1.3
Edit 1.3
FILE-MGR 1.3
Generate 1.3
Link 1.3 .
Makebackground 1.3
Pascal 1.3
Quit 1.3
Run 1.3

Index-8

HIS MANUAL was produced using

LisaWrite, LisaDraw, and
Lisal.ist.

fi&‘% LL PRINTING was done with an

Apple Dot Matrix Printer.

the Lisa™

.. we use it ourselves.

Workstigp User'’s Guide Mafl-Back Form

Apple publications would 1ike to learn about readers and what you think about this
manual in order to make better manuals In the future. Please fill out this form, or
write all over It, and send It to us. We promise to read it

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning

{] other

Is it quick and easy to find the information you need in this manual?
[]always []often []sometimes [] seldom [] never

Comments
what makes this manual easy to use?

what makes this manual hard to use?

what do you like most about the manual?

what do you like least about the manual?

Please comment on, for example, accuracy, level of detail, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the
index, organization, suitability to your particular needs, readability.

what languages do you use on your Lisa? (check each)
[JPascal []BASIC []cCoBOL []other
How long have you been programming?

[10-1years []1-3 []4-7 []Jover 7 []not a programmer
what is your job title?
Have you completeg:

[] nigh school [] some college [] BABS [] MAMS [] more
what magazines do you read?

Other comments (please attach more sheets if necessary)

029-0369-A

- FOLD

PLAC
ST
HERL

‘appkz computer
'POS Publications Department
20525 Mariani Avenue

Cupertino, California 95014

TAPE OR STAPLE

