
Lisa . BASIC-Plus 2.0 User's Guide

BEGIN SORT LOOP

FOR X1% = 1% TO X%(ll%)
V3% = X%(36% + X1%)

'------.... -., X2$ = SPACE$(V3%)
~7" : 110" - 385!1i • X. (13")
\ V2!1i : FNV!Ii(W~, 18041J!1i)
\ Vi" : INSTR(1lt X$, '
\ V2" : FNU!Ii(6" . 180ao.. W~.
\ V2" : FNU"(7., 18040", W7!Ii,

IF (VO!li-365!1)
CALC ADDRESS OF I,Il
GET ~ eUOCK
CHECK FOR AVAI LABUE
ERROR IF NONE 1540
ERROR IF OVER LIMIT

\ W9% = V3% + 4%
\ V4% = 509% I W9%
\ W7% = 46% + (X 1%-1%) • 7%
\U7$ = SPACE$ (511%-V4%*W9%)
\ FIELD 111%, W9% * (W4%-1%) AS X4$, W9% AS U$

FOR W4% = 1% TO V4%

FOR W4% = 7% TO 1% STEP -1%
\ W1% = X% (W7% + W4%)

\ IF W1% THEN LSET X2$ =
MID rV$, V2%(W 1%), X%(129% + (W 1%

I STEP THROUGH' FIELD NUMBERS
I IF NOT ZERO THEN ADD APPROPRIATE

Workshop User's Guide

for the Lisa'"

Licensing Re(JJiremenu for Software Oevel~n

Apple has a low-cost Ucenslng program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code fUes
into their prOducts. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

@1983 by Apple Computer, Inc.
20525 Mariani Avenue
CUpertino, california 95014
(408) .996-1010

Apple, Usa and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published In the USA and Canada

customer satisfactioo
If you discover physical defects in the manuals distributed with a Usa product
or in the media on which a software product is distributed, ~ple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Pro<lJct Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receIve notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product. You should check periodically
with your authorized Lisa dealer.

Umltatlon on Wanmtles cnj Llcnllity

All lmplled warranties concernlng this manual and media, including implled
warranties of merchantabiUty and fitness for a particular purpose, are limited
in duration to ninety (90) days from the date of original retail purchase of this
prodUcL

Even though Apple has tested the software described In this manual and
reviewed its contents, neither Apple nor its software suppl1ers maKe any
warranty or representation, eIther express or Implled, with respect to this
manual or to the software described in this manual, their quallty, performance,
merChantablllty, or fitness for any partiCular purpose. ~ a result, this
software and manual are sold "as is," and you the purchaser are assuming the
enUre risk as to theIr quaUty and performance.

In no event will Apple or its soft'Nare suppliers be liable for direct, indirect,
special, incidental, or consequential damages resul tlng from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reprOducing these programs or data

The warranty and remedIes set forth above are exclusive and In lleu of all
others, oral or written, express or impl1ed. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

iil

License CI1d COpyrl~t

This manual and the software (computer programs) described in it are copy­
rig.t"!ted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by the Lisa Software license Agreement signed by each Lisa
owner. under the copyright laws a'1d the License Agreement, this manual or
the programs may not be copied, in whole or in part without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License· Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for thIs purpose. For some products, a multiuse llcense may
be purchased to allow the software to be used on more than one computer
owned by the purChaser, inclUdIng a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

tv

!9-03~2-A

Olapter 1
Int.J()(l£tion

Contents

The Workshop provides tools for program development. It provides facilities
for edIting, language processing, and debUgging, as well as commands for
managing files and configurIng the system. The system also includes many
other utilities.

Olapter2
The File Ma1ager

The Flle Manager enables you to manage and manipulate fUes and volumes.

Ct'Q)ter3
TIle System Ma1ager

The System Manager enables you to set default and configuration parameters
for the Usa, and manage processes.

Olapter4
The Editor

The Editor enables you to create and mOdify text fUes. These text files are
used as input to the Compiler and the Assembler.

Ct'Q)ter5
The Pascal ~ner

The COmpUer translates Pascal source COde Into ob]eet code. Translation
requires two steps: first the compHer translates Pascal into I-code; then the
code Generator translates the I-code Into Object code.

Olapter6
The AssefTtller

The Assembler translates assembly language programs lnto object code.

Ct'Q)ter7
The LInker

The Unker combInes Object COde fUes Into executable programs.

Olapter 8
The DebJQger

The Debugger enables you to examIne memory, set breakpolnts, and perform
other run-time debuggIng functions.

v

O'q)ter 9
Exec Flles

Exec fUes enable you to execute a series of commands and progrcms
automaticall y.

Chapter 10
The TralSfer Progran

The Transfer Program enables you to transfer files between the Lisa and a
remote computer. It can also let you use the Lisa as a terminal for a
remote computer.

Olapter 11
The UtillUes

Utility programs are provided for debugging, configuring the system, and
manipulating files.

AppencJlxes

A Enor Messages
This section contains a list of error messages for the system, the Linker,
and the Assembler.

B The Lisa OlaraCter set
This section defines the complete Usa character set.

C Screen cmtrol ~ters
This section lists character sequences that can be used for controlling the
screen display.

o cormm Problems
This section contains some common problems and suggestions for handling
them.

Imex

vi

0353-A

Preface

This manual Is intended for experienced Pascal, BASIC, or CCECl..
programmers. It describes the WorkShop system, which is the environment in
which these languages are used. We assume you have read the Ljsa {}..Iner's
Gujde and are familiar with your Lisa system.

Related Doctments
F or Pascal programming:

• Pascal Reference Manual for tile Ljsa

• MC68000 16 BH Microprocessor User's Manual

• cperaUng ~ystem Reference Manual fOJ" the Ljsa

For BASIC programming:
• BASIC-Plus LJse.r's GuIde fOJ" the Ljsa

For C(]3(L programming:

• ClBa User's Gt/ide for tile Ljsa

• clBa Reference Manual for tile Lisa

Type cnj Syntax conventloos
Boldface type Is used In thIs manual to dIstinguIsh program text from Engllsh
text.

Italics are used when technical terms are introduced.
Syntax dIagrams are used to descrIbe fIle speci fIers and the syntax of exec
fUes. For example, the following diagram describes a wild-card-spec:

wlld-card-spec

vii

Start at the left and follow the arrows through the diagram. Several paths
are possible. Every path that begins at the left and ends at the arrowhead on
the right is valid, and represents a valid way to construct a file specifier.
The boxes traversed by a path through the diagram represent the elements
that can be used to construct a wild-card-spec. Thus the diagram embodies
the following rules:

• A wHd-card-spec can begin wlth a string (string-l) or the string can be
omitted.

• A wild-card-spec must contain one of " .. II, II?II, or 11:r1•

• The "",", "?", or II$"' can be followed by a string (strlng-2) or the string can
be omitted.

The name contained in a rectangular box is the name for some other
syntactic construction that is specified by another diagram. The name in a
rectangular box is to be replaced by an actual instance of the construction
that it represents.

Symbols SLich as reserved words, operators, and punctuation, are enclosed in
circles or ovals. Text In a circle or oval represents Itself, and Is to be
written as shown (except that capitalization is not required~

viii

NOTES

-OO54-A

Chapter 1
Introduction

1.1 Ttle WOrkstlop 0000000000000000000000000000000000000 0 •••••••••••••••••••••• 0 •••• 0 •••••••• 0 ••••••• 1-1
The WOrKStlOp provides the functions necessary to develop and IU'l
programs on the Lisa The Workshop can be bOOted from either a
diskette or a ProFlle.

12 st.artlrYJ Ule WOrkShOJ>. o. 0 ••••• 0 •• 1-2
The Workshop is started by bOOting the Lisa from a disk containing the
Workshop software. You can use the Envlronment~ windOw to select
one of several available envirorments.

1.3 Ttle WOrt<.sI'loJ) caTlnlar K1 LIne n ... 1-3
The WOrkShOp command Une gives you access to the main system
functions and subsystems. All the WorkshOp commands are described in
thIs section.

1.4 Flle System ()qJWzatlon CI'ld Ncmlrg ••••••••••..•.• 0 ••••• 0 ••• 0 1-6
Files are stored on dIsk volumes and are accessed by specIfyIng the
volume name and the flIe name.

15 Ttle WOIkst'q) lJser Interface .•.•••.•• 0 .. 1-6
This section gives information on the user interface conventions used in
the WOrkshop system.

1.6 UUllty PIllgrcI'ns nnn n .. 1-9
Utility programs provide additional functions for the Workshop. A
utillty program is started by choosing the RLN command from the
WorkShop command line.

1.7 How 00 I Install the Pascal L~ System? .•........•..••..•.•....•.•...•... 1-9
This section provides Instructions for installing the Pascal Language
System onto your Profile.

1.8 How Do I write CIld RU'l a Pascal Progn:m? •••••••••••••••••••••••••••••••••••• 1-11
A Pascal program Is written with the Editor. The source fUe must be
complled and linked before it can be run.

1.9 How 00 I write CI'ld Ru'l 81 Assermly L~ Progn:m? ••••••••••••••• 1-11
M assembly language program Is written with the Editor. It must be
assembled and linked with a Pascal main program before it can be run.

1.10 ~ Do I Install the BASIC lCl'lgU8Qe System? •.•••••••••••••••••••••••••••••• 1-12
This section provides instructions for installing the BASIC Language
System onto your ProFile.

1.11 ~ Do I Use the BASIC Interpreter? ... 1-13
A BASIC program can be written using either the Editor or the BASIC
Interpreter to create the source f11e. The BASIC Interpreter will run
the program.

1.12 l-bw 00 I Install the aB(L lCl'lgU8Qe System? 1-13
This section provides instructions for Installlng the CCBCL Language
System onto your ProFile.

1.13 l-bw Do I write a 0Bl... Pr'ogr'Bn? ... 1-15
A CCBCl.. program is written with the Editor. After writlng the
program, enter the Ccaa... language system to compile and run the
program. The CCBCl... system is invOked by pressing C In response to the
WorkShop command prompt

1.14 lJsil1Q the Printer ..•................ 1-15
Thls section provides instructions on how to conflgure your Llsa for a
printer. Information is also provided on how to specify a default
printer when you have more than one printer connected to your Lisa

1.15 The ~ratlrlg System ••• 1-16
The Workshop runs under the qJeratlng System for the Usa computer.
You can access qJerating System routines thrOUgh the SYSCALL
interface. More information about this interface can be found in the
tpeJat/ng System Refemnce Manual for t/Je Lisa

Introduction

1.1 The WoIkstql
The Workshop allows you to develop and run programs on the Lisa It
provides tools necessary to write, debug, and run programs in Pascal, BASIC,
and COOCl... This manual explains how to use the Workshop and all of 1 ts
tools.

COfT1I718I7d lines provide access to all Workshop functions. The main command
line, WffiKSHCP, allows you to edit programs, run utilities or user programs,
and use the languages available on the system. It also provides access to two
Subsystems: the File Manager and the System Manager.

The File Manager allows you to copy, delete, rename, and list disk files. It
includes a backup function, and functions for manipulating volumes. These
functions are listed in the FILE-MGR command line. (See Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command Une.
(see Chapter 3.)

The Usa system can display one of two screens, called the main SCJ'l!elJ and
the altemate screen. The Workshop system normally displays on the main
screen. The alternate screen 1s used by the system Debugger. You can
change to the other screen display by_ pressing the right hand [CPTICI'J] key and
holding it down while you press the [ENTER] key. The System Manager
contains the Console command, which can be used to specify where the
Workshop shoUld display.

You can currently use the Workshop to write programs in Pascal, CCBCL, and
BASIC. To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Progranming:

• PSSCBl Reference Hanual for the Lisa

• fvlC68000 16 Bit Microprocessor User's MentI8l (if you want to use
assembly language or the Debugger)

• tpersting System Reference HBnual for the Lisa (for information on
system calls)

For BASIC Programming:

• BASIC-Plus User's Guide for the Lisa

1-1

WofkSl1qJ User's Guide IntrodUctim

For CCl3Cl. Programming:

• ClBt1. User's Guide for the Lisa

• ClBlJ... RefeJ'lJlnJ /'1anU8l for t/Je Lisa

If you have only a BASIC or COOCl.. system, you w111 not have all the software
described in this manual. Speci ficall y, you wUl not have the Debugger ana
can disregard the sections that pertain to it. The portions of this manual that
will be most useful to BASIC and COOCl.. programmers are:

• The Introduction, whIch describes how to use the WorkShop.
• The File Manager, which describes files and how to manipulate them.

• The System Manager, which describes setting up the system configuration
parameters.

• The Editor, which describes how to create and modify text files, which are
used as source files.

You may also use some of the utilities if they are included in your software.
1.2 startlrYJ the WoIkstql

The Workshop can be booted from a diskette or a ProFile". It will most
commonly be used with a ProFile, because hard disks have more space and are
faster. See the Lisa OWner's Guide for instructions on booting the system.
To start the system, boot from a dIsK that contains the WorkShOp software. If
your disK contains onl y the Workshop envirorment, the Workshop command
Une will appear at the top of the screen. If you have more than one
environment (for example, the WorKshop and the Office System) you can use
the EnvIronments window to start up the envIronment you want, and switch
between environments.
The Environments window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically when you boot the system. To access the Environments windOw
while booting the system, press any key while the Lisa Is starting up. The
Environments windOw w111 be displayed.
The EnvIronments wIndOw is shown In Figure 1-1. It displays fIve bUttons:
~r Off Tum off the Lisa
Restart Reboot or reset the Lisa
start Start the selected environment
set Default Set the default to the selected environment
~ Defadt Display the Environments window on startup.

1-2

InlJVdl/ctim

To select an environment, move the pointer to the checkbox of that
environment and cllck the mouse button. Then move the polnter to the start
button and click. The selected environment will starL
To access the Environments window from the Workshop, for example, to select
another envIronment, use the QuI t command from the WOrkshop command lIne.

Env i romnent!

[Restart (Power ON

• WorkShop (Set Default

o ON ice Systn
No Dehult

Start

FlgJTe 1-1
The Envirorments Window

1.3 The WOr1<stq> COlli ra Id Line
When you select the Workshop enVironment, the WOrkshop command line
appears at the top Of the screen. This command line lists all the primary
WOrkShOp commands and gives access to several SUbsystems with additional
commands. The Workshop line displayed contains oni y some of the commands
available. You can see the rest of the commands by pressing "?", the last
symbol on the line. To return to the original command line, press [RETURN].
Pressing the first letter of a command initiates the command.
Most commands will ask for addi tiona! information. Type in the information
uslng the Usa keyboard. Some questions have a default value, displayed in
square brackets ([default] ~ To accept the default value, press [RETURN]. If
you don't want the default value, type In the value you want.
Two other SUbsystems have separate command lines: the File Manager and the
System Manager. Their command lines can be accessed from the Workshop
command line, and are used the same way.

1-3

WOd<sIJqJ user's Guide Introduction

The maln, or WoI1<shop, command line is as follows:
W£RKSI-IP: FD...E~, SYS~, Edit, Rt.I1, Pascal, Bastc, CCilol, QJ1t,?

The addlt10nal portton" displayed by pressing "r, Is:
Assemble, DebUg, Generate, MakeBackgrot.lld, Link, TransfeIProgrcm

All the main command line commands are described as follows:
FllE-MGR (r=)
This command puts you into the File Manager subsystem, which Is used to
manipulate the files and volumes on the system. For more information on the
flIe manager, see Chapter 2 in this manual.
SYSl£t-1-tvK;R (S)
ThIs command puts you Into the System Manager SUbsystem. thIs subsystem
provides various configuration and utility functions. See Chapter 3 In this
manual for more Information.
Edit (E)
The Edit command puts you into the text editor" which is used to create and
modify text files. The Editor Is used to create source fUes for BASIC, C(BCl.."
and Pascal. It Is also used for assembly language programming and to create
exec files. The Editor is described in Chapter 4 in this manual.
Rlrl (R)
The Run command causes a complled and lInKed program to execute. This
command Is used for user-wrItten Pascal programs, utility programs, and any
otner software tnat runs under tne WOI1<snop. The Run command asks you for
the fIle to run. This fUe must be an executable object fUe or an exec fIle.
wnen you gIve the Run command a flIe name witn no .CBJ extensIon, It wIll
fIrst search for that fUe name. If It is not found, it will searcn for
fllename.ObJ. If you dO not specIfy a volume name, the Run command wIll
search through up to three default volumes for the fUe. (see Section 2.4.1 for
an explanation of volume ncrne.) TheSe defaults can be set by the Flle
Manager's Prefix command. see Chapter 2 for more information on the Prefix
cOmmand.
The Run command will also accept an "exec flle" as input. M exec fUe Is a
scenario of commands for the Workshop system to carry out. An exec fUe
name must be preceded by a "<" or "exect' to be processed correctly. For
more information on exec fUes, see Chapter 9 in this manual.
Pascal (P)
This command starts the Pascal COmpiler. The Compiler asKs for the input
fUe, whiCh must be a text f11e; tne listing f11e; and tne output f11e, wh1cn will
contain the object code. The Pascal compUer Is described in Chapter 5.
Further information on the Pascal language can be found in the Pascal
Reference Manual for t!Je Lisa.

1-4

Worksllop User's Guide Int.rodllction

Compllatlon Is In two steps. The first step, done by the Pascal command,
produces an intermediate code flIe. After this, you must use the Ganerate
command, (press G) to generate an obJect fIle from the intermedIate code fHe.
Basic (8)
This command puts you into the BASIC Interpreter. More information on
BASIC programmIng can be found in the BASIC-Pllls User's Guide for tile
Lisa.

COOOl(C)
This command puts you into the COBOL language system. More information
on COBOL programmIng can be found In the COBa User's Guide for tile Lisa
and the coea.. Reference H8nu8l for tile Lisa

Qult(Q)
The Quit command ends the Workshop environment You can use it to access
the Environments windOw to start another environment or to tum off your
Lisa

The following prompt line appears after you confirm that you want to leave
the Shell:

WOrkShop_shell, Another_shell, Reboot, Power_off
Type the first letter of what you want to do, for example, type A to access
the Environments wIndow.
Assermle (A)
The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MC6800016 Bit Microprocessor
User's Manual

IJeO.Ig (0)
The DebUg command causes your program to run with a breakpoInt inserted at
the first instruction in the program, so you can use the debugger on the
program. More information on the Debugger can be found in Chapter 8 of
this manual.

Generate (G)
The Generate command converts intermediate code files produced by the
Pascal compiler into object code. It is used with the Pascal CompUer and is
described in Chapter S.
MakeBackgJ'Ol.Rj (M)
The MakeBaCkground command allows you to start up a background process,
then continue using the Workshop for other functions. It is assumed that the
background process wIll not try to dIsplay on the console or requIre keyboard
input.

1-5

WorksIJqJ User's Guide

Lin< (L)
The Link command executes the Linker. The Linker Is used to prepare
compiled Pascal programs and assembled routines for execution, and to link
together separately compIled pieces of a program. The Linker is described in
O'lapter 7.

Tl81SfeIPrOQld Ii (T)
The Transfer Program allows your Lisa to communicate with a remote
computer. It can be used as a terminal, or to transfer files between the Lisa
and the remote computer. The Transfer Program is described in Chapter 10.

1.4 File System Organization ~ Naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains. A file is specified by giving
the name of the volume and the name of the file:

-volumename-filename
The Workshop maintains a working directory; you can access files in it
without specifying a volume name. The working directory can be changed by
using the File Manager's Prefix command. Files on the working directory can
be specified by just the file name, with no leading "-":

fUencrne
Further information on the file system can be found in Chapter 2 of thb
manual and in the Q:Jerating System Reference M8I1tI81 for the Lisa.

15 1he Workshop User Interface
This section describes conventions and standards used in the Workshop system.
These ways of requesting input from the user are standard throughout the
system to make it easier to use.

LS.l FUe Ncme Pror'Illts
Many of the Workshop prompts are for file names. In the Lisa q:Jerating
System, you have few restrictions on what characters you can put In file
fYcITleS. I-klwever, you should be aware that the following restrictions exist in
the WOrkshop:
1. You can embed blanks, but leading and trailing blanks and tabs will be

removed when the Workshop processes your file prompt input.

2. cases are preserved as you specify them.
A patl1name has three parts: a device name, a fUe name, and an extension.
The following conventions apply to a path name:

device (or voll.lTle) name is up to 32 characters long, excludIng "_".
fUe name is composed of alphabetic or numeric

characters; spaces are permitted.

1-6

WoIkstJop User's Gukte

extension

Introdl.lcuon

is composed of alphabetic or numeric
characters; spaces are permItted. M
extension is optional. If present, it is the
fInal '.' and any characters that follow
(there must be at least one) in the
pathname.

The combined length of the file name, plus extension, cannot exceed 32
characters.
Prompts often Include default values. You do not have to enter parts of fUe
names already suppUed by defaults.
If a prompt includes a default extension which you don't Ylant (except if the
file n<rne consists of only a logical device name), put a period at the end of
the file name. The periOd wIll be removed and no extension will be added.
The followIng sections explaIn the standard responses allowed to prompts.

15..1.1 The a..EAR Key
The [CLEAA] key on the Lisa keyboard is an escape key. You can use it in
response to a file name prompt to abort out of the command or program. No
[RETURN] is required after pressing the key.

15.1.2 Prmllts with SlJlJle DefaJIt Values
When a default value for part of a flIe name exists, it is shoWn enclosed in
brackets in the prompt message; for example, [.text] IndIcates that there Is a
default flIe name extension value, and that that value is .text. If a default
value Is present, you need specIfy only the flIe name part not supplIed by the
default
Extensions will not be added to file specifications consIsting of device names
only. Therefore, if you want to specify only a device when there is an
extension default (for example, when prompted for a listing fUe with a default
extensIon .TEXT and you want -printer), simply use -printer.
To use the default value for an entire file name, respond with [RETURNl If
you do not want any fUe to be used, even if a default value exists ... respond
with a baCkslash "'".

15.1.3 ~ with Alternate Defallt values
Alternate defaults are Indicated by a slash. For example:

[-console],{.text]
means you have a choice of either the console or a lI.text" file. To choose the
console, simply press [RETURNl To choose a text fUe, respond with a fUe
name.

15.1.4 f>Im1Jts with Separate Default Values
Each of the parts of a file name might have a separate default value, such as
[-paraport] [-IntrInsic] [.llbl If each of the defaults Is Independent:

1-7

Workshop User's Gujde Introducljon

• a response with no device specification gives you the default device.

• a response with no file name gives you the default file name.

• a response with no extension gives you the default extension.

Sometimes the defaults depend upon each other. For instance, the prompt
[-paraport-intrinsic] [Jib] indicates dependency, because the first two
components are enclosed in the same set of brackets. When defaults are
dependent, if you choose one or the other of them, you will get both. Be sure
to look at what has been included in the brackets to see whether the defaults
are independent or not

15.15 Pr'orTllts with No Default Values
If you find that no default value is given in the file name prompt, use
[RETURN] or a backslash to specify no file. Sometimes a file is required for
the system to perform its function. If this is the case, and you specify no
file, the program terminates.

15.1.6 Ending a list of PIUrIllU
Some Workshop tools prompt for lists of files, as does the Linker. To indicate
that you are finished responding to a prompt for a list of files, use [RETURN].

15.1] The? Response
If you need help, or a list of program options, respond to a file name prompt
by pressing the? key followed by [RETURN]. Then proceed according to the
information that appears on your screen.

1.5.2 HeN to Terminate CIl qJeratioo
You can terminate the operation of most commands and programs by pressing
.-period, although termination might not be immediate if the program being
run does not recognize .-period.

f'.IJlE

Note that most Workshop tools check for .-period from the keyboard
even when running under exec files. This means that you can abort
Workshop tools in exec files.

Unless user programs are written to recognize the .-period key combination
as an abort mechanism, pressing those keys will not terminate the program
being run. (See PASLIBCALL, Section 5.4, for information on the function
PAbortFlag, which tells whether or not those keys have been pressed.) If this
is the case, you can either:

• wait for the user program to terminate so that .-period can be recognized
by something else, or

• press the NMI key, which forces the system into the Debugger. The NMI
key is the "-" key on the numeric keyboard.

See Section B.2 for instructions on how to stop a user program early.

1-8

Workshop User's Guide Int.rodtlction

1.53 How to Halt a SCreen Display
If you want to temporarily stop the screen dIsplay" press the • key and type
S" which stops the program from running by blocking its current output
operation. When you want to restart the screen dIsplay, agaIn press .-S.

1.5.4 Inserting a1d Ejecting DIskettes
You can usually insert a diskette at any Urre. It will be mounted and
accessible after you press any key" except the ." [CAPS LOCK], [CPTl(}\J], or
[SHIFT] key" on the keyboard. You can usually eject a diskette by pressing
the diskette button and then hitting any key on the keyboard. (When you are
in the Editor" the Preferences tool" or TransferProgram, you do not need to hit
a key after pressing the diSKette button.)
Mounting and unmounting disKettes is handled by the Pascal run-time system
in the WOrkshop. Therefore, the act of InsertIng a dIskette or pressing the
eject button is not recognized until Pascal liD is performed" thUS the necessity
of hitting a key. If the program you are running does not use Pascal 110" you
must first return to the Workshop command line. Then enter the FUe Manager
and Mount or LJnrnot.nt your diskette.

1.6 UtIlity prognms
The WOrkshop provides various utility programs" which support functions used
less often than the functions you obtain through primary commands. The
utilities are described in Chapter 10.

You must Run utilities. ChOose the Run command from the main command
line by pressing R when the main command line is displayed. The system will
ask you for the name of the fHe to run. Type in the name of the util1ty you
want to run.

1.7 t1JW Do I Install the Pascal La-guage system?
Because the Usa Office System is a standard product, you must install it
before you install any optional language systems.
To Install the Pascal language system, start wIth your ProFlle on and your
LIsa off.
1. Insert the "Pascal 1" Language System diskette into your Lisa's upper or

lower disk drive.
2. Press the on-off button.

3. Hold down the " key and type either 1" if you put the dIskette in drive 1
(the upper drive)" or 2" if you used drive 2 (the lower dTive~

4. Wait. It will take about 3 minutes for the Lisa to load in the tperatlng
System and the Workshop shell from the diskette.

1-9

Workshop User's Gujde Introduction

If you want to stop the loading process at any time after the system
has booted, hold down the • key while you type a period. The system
will stop copying files and you will enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the clstart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for yes.)

• The system will ask you where the target ProFile is attached. It must
be attached to the built-in parallel connector (PARAPCRT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLOT2CHAN1, respectively~

• The system will then ask you to insert the second WOrkshop diskette,
"Pascal 2".

• The system will then ask if your ProFile needs to be initialized. Do
not initialize your ProFile if there Is already an OffIce System on it!

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the ProFile, then "enough space" means
about 700 blocks. (The language systems share about 800 bloCkS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it. Answer Y if the ProFile has ever been used with
a Lisa. .

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actuaU y being executed.
If you get any error messages, stop the process by typing .-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple@) Support Hotline to find out what to do.

When all the flles on the "Pascal 2" dIskette have been copied, the system
will eject the diskette and ask you to insert the "Pascal 3" diskette, then
continue to copy files.

1-10

WoIkstJt:p User's Guide In/.rT:JtiJclion

When the system is finished copying files, the Workshop command line will
appear.

L8 I-klw 00 I Write cn:2 RlIl a Pascal Progrcm?
To write and run a Pascal program, proceed as follows:

1. Use the Editor to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on edi ling the file. see the
Pascal ReFerence fvIlnt.JaJ For tIJe Ljsa for information on the language.

2. Compile the program with the Pascal command (press P while the
Workshop command line is displayed~ The output from the compiler is an
intermediate file.

3. The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object file. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more information on compiling Pascal programs.

4. Link the program with the Link command. In order' to be executable, the
program must be linked with the Pascal support routines contained in
IOSPASLIB.CBJ. If you are using any REAL variables, you must link your
program to IOSFPLIB.CBJ. For other applications you can also use other
libraries and units, or ass8mbl y language routines. More information on
the Linker can be found in Chapter 7.

5. The linker .prOdUCes an executable Object file. Press R to run the program.

Information on making system calls from Pascal can be found in the tperaling
System Retemnce /'t1aru8J For UJe Lisa

1.9 f-bw Do I WrIte cnj RlIl B1 AsserTtlly Lav..eage Progrcm?
Assembly language programs must be called as procedures or functions from a
Pascal main program. To write an assembly language routine, proceed as
follows:

1. Use the Editor to create an assembly language source program. See
Chapter 6 of this manual for information on assembly language. Chapter 4
describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text fUe
you created and produces an Db ject file.

3. Declare the routines you wrote in assembly language as EXTERNAL in the
main Pascal program that calls them.

4. Use the Pascal and Generate commands to create an object file from the
Pascal program. see Section 1.8 for more information.

1-11

Wo.rkslJop User's Guide Introcfllction

5. Use the Link command to link the Pascal object file, the assembly object
fUe, IOSPASLIB.OOJ, and any other needed units or libraries.

6. Use the RLI1 command to run the resulting object file.

1.10 How Do I Install the BASIC Language System?
Because the Usa Office System is a standard product, you fTltISt install it
before you install any optional language systems.

To install the BASIC language system, start with your ProFile on and your
Lisa off.

1. Insert the "BASIC 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

3. !-told do'Wn the " key and type either 1, if you put the diskette in drive 1
(the upper drive) .. or 2, if you used drive 2 (the lower drive~

4. Wait. It will take about 3 minutes for the Usa to load in the ~rating
System and the Workshop shell from the diskette.

NJTE

If you want to stop the loading process at any time after the system
has booted, hold down the " key While you type a period. The system
will stop copyIng files and you will enter the Workshop environment.

5. When the system Is finished booting, you will see some Information about
the cistart.text exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

• The system will then ask you where the target Profile is attached. It
must be attached to the buUt-in parallel connector (PARAP£RT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLOT2CHANl, respect1vely~

• The system will then ask you to insert the second Workshop diskette,
"BASIC 2".

• The system wIll then ask If your ProFile needs to be initialized. Do
not initialize your ProFile if there is already an Office System on it!

1-12

WOIksllqJ User's Guide Int.n:Jt:i£tioo

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
WOrkShop Language System on the ProFile, then "enOUgh space" mecr1s
about 700 blocks. (The language systems share about 800 blocks.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on il Answer Y if the ProFile has ever been used with
a Lisa.

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.
If you get any error messages, stop the process by typing .-period, tum off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.
1.11 How Do I use the BASIC Interpreter?

To use the BASIC Interpreter, proceed as follows:
1. Use the Basic command by pressing B when the main command line is

displayed. You will enter the BASIC Interpreter.
2. Enter the BASIC language statements and commands necesary to write and

execute your program. The BASIC Interpreter can execute statements
immediately or save them to run later. You can return to the main
command line by using the BASIC command BYE.

You may also use the Editor to prepare or modify the BASIC source program,
then use the BASIC Interpreter to run i l See Chapter 4 in this manual for
more Information on the Editor.
See the BASIC-Plus User's Guide for tfJe Lisa for more information on the
language.

1.12 How Do I Install the ca:n. L8r9J8Qe System?
Because the Lisa Office System is a standard product, you I17LISt install it
before you install any optional language systems.
To install the CCBCl. language system, start with your ProFile on and your
Lisa off.
1. Insert the "C(]3(l. 1" Language System diskette into your Lisa's upper or

lower disk drive.
2. Press the on-off button.
3. Hold down the • key and type either 1, if you put the diskette in drIve 1

(the upper drive), or 2, if you used drive 2 (the lower drive).

1-13

WO.lksl7t:p user's GlOre

4. Wail It will take about 3 minutes for the Lisa to load in the cperating
System and the WorkshOp shell from the diskette.

I\IJTE

If you want to stop the loading process at any time after the system
has booted" hold down the • key while you type a perIod. The system
will stop copying files" display "Exec processing aborted", and you will
enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the cistarltext exec file and about initializing ProFiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

• The system will ask you where the target Profile is attached. It must
be attached to the built-in paranel connector (PARJ)p(RT), or the
upper or lower comector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLOT2CHAN1, respectively~

• The system wIll then ask you to insert the second WOrkShOp dIskette,
"CffiO.... 1".

• The system will then ask if your ProFile needs to be initialized. Do
not initialize your Profile if there is already an Office System on it!

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the Profile, then "enough space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it. .Answer Y if the Profile has ever been used with
a Lisa

You wIll now see a lot of text flash by on your screen--don"t worry, thIs is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.

If you get any error messages, stop the process by typing .-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.

1-14

Worksflop User's Guide Introduction

1.13 How Do I Write a am.... Progrt:m?
To write a CCEa.. program, proceed as follows:

1. Create a text file containing the source program by using the Editor. See
Chapter 4 in this manual for more information on the Editor.

2. Press C to enter the CCEa.. language system. More information on CCECL
programming can be found in the cma.. User's Gldde for tIJe Lisa and the
C03IL Refe.rence MlI1uaJ For tIJe Lisa.

Use the Quit coomand to exit back to the main command line.

1.14 Using the Printer
To use a prInter wIth the Workshop system, you must set up the printer
correctly, and configure your system for the printer. If you have more than
one printer you w111 want to set up one of them as the default printer. These
operations are explained below.

Set~ ~ the Printer
The procedure for setting up a printer varies with the type of printer. See
the instruction manual that came with your printer for directions on how to
set it up correctly.

If your printer is an Apple Imagewriter, the default standards which have been
factory preset should be satisfactory for normal use. However, if you want to
modify the performance of the Imagewriter, you can get the technical
specl fications from the Apple lmagewrlter User's ManlJal, Part I- Reference.

Coof1~ Your Lisa for a Printer
Follow these steps to configure your Lisa for a printer.

1. From the WorkshOp command lIne, press S to enter the System Manager
subsystem.

2. Then press P for Preferences. The Preferences tool is used to set up the
configuration of the Lisa system and the Workshop.

3. Click on Device Connections to display what devices are connected to the
Lisa

4. Select the port to which your printer is connected. When you select the
port, all devices that can be connected to that port are displayed.

5. Select printer, and additional confIguration options are displayed.
6. When you are fInished configuring your printer, select Quit from the Tools

rnenJ.

7 _ Then ex! t from the System Manager back to the Workshop command line
by pressing Q for Quit

1-15

WoJ1<shop User's Guide Introducaon

Nly changes made with the Preferences tool are made immediately to
Parameter Memory~ but changes in device connections do not take effect until
the next time the Lisa is booted. Therefore, if you want to continue working,
it Is necessary to reboOt your Lisa now. For addItional information on the
Preferences Tool~ refer to Section 3.3.
To reboot~ perform the following steps:
1. Press Q for Quit

2. Select Y in answer to "Are you SURE you want to LEA \IE the shell 1"
3. Press R for Reboot.
When the system has finished reboOti~ the changes you made will be in
effect.

setting a Default with MJItiple Printers
If you have multiple printers connected to your Lisa~ you can specify which
one is to be the default printer. This means. that you can establish which
printer wUl be desIgnated by -printer.
First configure all of the devices you want connected to the Lisa (See the
previous section and section 3.3 for instructions on configuring devices.)
After you have rebooted~ return to the System Manager command line. Select
o for DefaultPrinter, and enter the device name of the default printer. If you
do not want to change the device name, because you want the default to
remain as it is, press [RETURN] to exit back to the system Manager command
line.

Rebooting is not required for the default printer setting to take effect.
However., If output redirect to the printer Is In effect you wUl have to do the
output redirection again.

oetails on the DefaultPrinter option are available in section 3.2.
1.15 The qleratlrl;) System

The WOrkshop runs under the ~rating System of the Lisa computer. You can
use some ~ratIng System routines from a Pascal program to perform special
system functions for you. These system calls are defined in the intrinsic unit
SYSCK.L. The dependencies of the Lisa Workshop environment are ShOwn in
Figure 1-2 on the follO'tJing page.

More information on the SYSC,ALL interface and routines can be found in the
Usa ~rating System docl.Inentation.

1-16

Worksnop User's Gujde Introduclion

QuickDraw

Bit-Map Graphics

Fit Pt Library

Full IEEE Numerics

Pascal Run-Time Library

I/O

Lisa Operat:i..ng System

Memory Mgmt File System Process Mgmt

Figure 1-2
Lisa Iorksrop Envi.n:n1elt

1-17

NOTES

Chapter 2
The File Manager

2.1 TIle FIle IVIarlager .. 2-1
The FUe Manager allows you to manipulate files, volumes" and devices.

2.2 lJslng the FIle IVIarlager .. 2-1
Press F at the Workshop command line to display the File Manager
commands. The first letter of each FUe Manager command InvOkes
that command.

2.3 llle FIle IVIarlager COITIllaIm .. 2-1
This section Usts and defines all Flle Manager operatlons.

2.4 llle WoIkstlop \flew of Flies ...•.................. 2-8
Each disk can contain a volume which has a directory of files. File
extensions (.TEXT, Jl3J, and so forth) are added to some flIes with
speCial uses.

2.5 lJsing Wild card Olarctcters .. 2-11
WUd card Characters allow you to name groups of flIes by giving
filename patterns to be matched. The wild card characters are ." $, 1.

2.6 I-tow [)() I List Exlstirlg Files? ... 2-13
To Ust all the flles on a volume, use the Ust command or the Nemes
command. You can use wild cards to list subsets of the fUes on the
volume.

2.7 I-tow Do I c:opy a File?••........••.........•...•...........•.•.....•................ 2-13
To copy a flIe, use the FUe Manager c:opy command. Similar to the
Copy conmand, the Backt.p command Is also used to copy files. If you
want the old file deleted after the copy operation is successful, use the
Tnnfer command. You can copy multiple fUes by using wUd cards.

2.8 t-tow Do I [)elete a FUe? .. 2-14
To delete a file, use the File Manager Delete command. You can
delete more than one fUe by using wlld cards.

2.9 I-tow Do I create cn1 Use a Volune? .. 2-15
Use the initialize command to create a volume. The volume must be
mounted before you can use It.

2.10 How Do I ChCI'lge the NBne of a File or VOlt.me?•.•.......•.•.•....... 2-15
To change the name of a fUe or volume, use the Rencme command.

The File Manager

2.1 The Flle Manager
The File Manager is a subsystem of the Workshop. It provides file and device
manipulation facilities, and handles most of the tasks of transferring
information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directories, rename or delete f11es,
find out what volumes are on line, initialize new disks or diskettes, print files,
and so on. See the tpemting SjlStem Refemnce Manual for tI7e Lisa for more
information on the File System and supported devices.

2.2 ~ the File t-1aI eger
To use the File Manager, press F in response to the Workshop command
prompt The File Manager begins executing, and displays the File Manager
prompt line:

FlLE-M3R: Backl4l, Copy, Delete, List, Prefix" Rerane, Transfer, Quit, ?

Pressing "7' displays the additional command line:

Equal, FlleAttrlbutes, Initialize, Mull Nemes, cn1lne, scavenge, U'motnt

To redisplay the original conmand line, press (RETURN}

To execute any command, press the first character of that command name
WhIle· the File Manager coomand llne Is displayed. Most commands aSk for
file names, or other input parameters. If there is a default value for a
parameter, It Is dIsplayed in square brackets ([default] ~ To accept the
default, just press [RETURN} If you do not want the default, type in the
value you want

To manipulate files with the File Manager you need to address the file with a
file specifier. A file specifier can be an 00 pathname (representing a fHe on
a disk or diskette), an OS vOlt.me name (for example, -MYDISK), the name of a
physical device (for example -RS232A), or the name of a logical device (for
example -printer~ File specifiers can contain wildcards enabling them to
specify a collection of files. See Sectioo 2.5 for more information on
wildcards. See Section 2.4 for more ·information on file specifiers.

2.3 1he FUe MlnIger Coma ds
The File Manager conmancJs are Usted In the Flle Manager prompt line. They
are: Backup, Copy, Delete, Ust, Prefix, Rename, Transfer, QJit, Equal,
FlleAttributes, InitialIze, I"bJnt, Names, O'lline, scavenge, and lJ"mounl

Each of these operations is described below. Information on wnd card
characters can be found in Section 2.5.

2-1

WoIksf1qJ User's Guide 711e File I-1an8ger

2.3.1 Back'4l (8)
The Backup command executes a sImple backup util1ty, slmllar to Copy. It
asks for source and destination file specifiers, which will most likely contain
wild cards (see section 2.5~ It then compares the source fUes to the
destination fIles. Whenever the contents of the two fUes are not equal, the
source fIle is copied. If a source flIe is missIng from the destination, It Is
copied. Thus it copIes only dil'fe.rent files from the source to the destination.

f\IJTE

The destination file is temporarily named Workshop. temp, and the
source file is automatically copied. If the copy is successful, the
destination file is renamed with its original name, and the fUes are
COf1lJ8red. If the fUes are different, the first file is deleted. Ordering
the process this way prevents deletion of the destination fUe before
veri fication that the source file is good.

Because the file name WOrkshop.temp is internally involved in the
Backup cornmaIld, do not assign that name to your files.

2.3.2 COpy (C)
The Copy corrmand copies files. It asks for a source file specifier and a
destination fUe specifier. You can use wild cards if you want to copy more
than one file. The source fHe(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate commard in the System Manager. If you change the
default, the source file is compared to the destination file after the copy
operation to ensure that they are the same. The ValIdate command is
described in Chapter 3.

Text files are handled specially when. copied to the -printer or -console
logical devices. Leading blanks in a line of text might have been replaced by
a (DlE~t) pair to save disk space. ~ such patterns are detected, they are
replaced by (count) blanks in the copy of the file sent to the printer or
console. All other flIes are sent byte by byte unchanged.

2.3.3 Delete (0)
The Delete command is used to delete a file or a number of files specified by
a wild card expression. It asks you to specify the files to be deleted.

2.3.4 List (L)
The List command lists information about the files .matchlng the given file
specification. If all you need is the names of the files, use the Names
command described in Section 2.3.13.

2-2

Works!1op User's Guide TI1e File Man8ger

• If the file specifier is a fUe name (for example -MYDISK-example.text)
Information from only that fUe Is Usted.

• If the file specifier Is a volume name (for example -MYOlSK), information
about all fUes on the volume is listed.

• If the file specifier includes a wildcard character (for example,
-MYDISK--.text) information about all matching files iS'listed.

The list command displays the following information:

Fllerane The name of the fIle.

Size
Pslze
Last-Mld-Date
creaUm-oate
Attr

The logical fUe length in bytes.
The physical flIe length in blocks (512 bytes~
Date and time the fUe was last changed.
Date and time the fUe was created.
FUe attribUtes, a combination of the following:

C File was closed by the qlerating System.
L FUe is locked. It cannot be deleted until the file

safety switch Is turned off. (See FlleAttribUtes
command later in this section.)

o File was left open when the system crashed.
P FUe is protected.
S Flle has been scavenged.

AA example of the Ust display is shown In Figure 2-1.

Contents of volume -paraport-=
F i lenarae Size Ps.iu Las. t -Mod-Da t e Creat ion-Date AUr

---- ----- ------------- -------------
SYSTEM. DEBUG2 14848 29 03103183-15:46 06110/82-21 :57
SYSTEM.IUDIREClORY 7168 14 07/18/83-09:31 02123/83-10: 33
SYSTEM.LLD 9216 18 06/0V82-00 :24 OV23183-1 0: 24
SYSTEM. LOG 2992 6 07/18183-16:56 06/08/83-17: 49 0
SYSTEM.OS 188928 369 05104183-10 :08 05/04183-10: 08 CO
SYSTEM. SHELL 8704 17 06/0V82-00 : 26 03129/83-15: 14 CO
XEJEC1EM.OBJ 512 1 06/0V82-00 :27 03/29/83-15: 22

F1\J.1I8 2-1
TIle Un Dl3play

Z3.5 PrefIx (P)
The Prefix conmand enables you to set up default voltme names to searCh
when you specify a file name without a volt.me name. You can set up to three
volune na'TleS that will be searched In order, when you try to nn a program,
until the file Is found. The first prefix Is the name of the ~rking directory.

2-3

WOl'ksl1op User's Guide The File M8I78§'er

It wUI be searched anytime you specIfy a fUe name wIthOUt a volume name.
The second and thIrd prefIxes are searched When you try to Run a program
wIthoUt specIfyIng the volume it Is on.

I\DTE

The second and third prefixes affect the running of programs directly
from the Workshop shell. They are not searched for programmatic fHe
operations, such as opening files, or for other File Manager operations.

The last option of the PrefIx command asks If you want to Initia112e the
PrefIx set at boot time. Answer Y If you want what you have entered to be
establ1shed as defaults when you boot.

ThIs command asks you for the three prefIxes. If you want to accept the
default, If any, press [RETURNl If you want to set a prefix, type In the
volume name that you want If you want to have no prefIx, press [CLEM] as
the prefix for that level.

2.3.6 Rerane (R)
The Rename command enables you to change the name of a file. It asks for
the file name to change and the name to change it to. You can also use the
Rename command to change the name of a vOlt.me. The Rename command
can change the name ofa number of files specified by wild cards. See
sections 2.5 and 2.10 for more information on using wild cards and renaming
fUes.

2.3.7 Transfer (T)
The Transfer command asKs for an Input fUe specIfier and a destination fIle
specifIer. It copIes the Input flle(s) to the destination and then, if the copy
was successful, deletes the Input flle(s). However, If you Transfer to the
-console or the -prInter, the Input flle(s) wIll not be deleted.

2.3.8 Quit (Q)
The Quit command exits from the File Manager subsystem back to the
Workshop command Une.

2.3.9 ECJJ8l (E)
The Equal command compares the contents of two files to determine if they
are exactly the same. It asKs for the names of the fUes to compare, then
COf11l8res them byte by byte and tells you if they are equal or unequal.

2.3.10 FlleAtt.rtrutes (F)
This command is used to set and clear fUe attributes. You can set the safety
attribute, which prevents you from accidentally deleting a fUe. You can also
make a fUe into a protected master (see below~
To use the FileAttribUtes command press F in response to the File Manager
command prompt It displays the corrvnand line:

FlleAtt.rlbJtes: ClearAttributes, safety, Protect, QuIt.

2-4

WO.rksflOp USer's Guide The File Manager

These commandS are accesseo by presslngtne first Character of the corTllla1C1.
They perform the following flllCtions:
elearAtt.rlbutes (e)
The ClearAttrlbutes command clears the C, 0, and S attribUtes on the
specified voll.lTle, fUe, or set of files with wildcards. These attribUtes are set
by the system, and have' the following meanings:

e File was closed by the q>erating System.
o FHe was left open when the system crashed.
S File has been scavenged.

see the Scavenge command in Section 2.3.15 for more information.
Safety (8)
The Safety command allows you to set or remove the safety attribUte (L) on
any f11e. When the safety attribute Is set, the file Is called "Locked" and
cannot be deleted. To delete a fUe with safety on, use the Safety cornrncrld
to remove the attribUte, then delete the fUe.
Protect(p)
The Protect command is used to make an executable Object file into a
protected master. This is a form of copy protection for programs. O'lce a
fUe Is made into a protected master, this protection cannot be removed. A
protected. master has the follOWing characteristics:

• It can be run on any Lisa machine
• It can be copied on any Lisa machine.
• COpies made will run only on the Usa that· made the nnt copy of the

f11e.

O'lce a fHe Is made Into a protected master, there Is no way to
LIlprotect It Be sure you understand the Characteristics of a protected
master before you create one.
This protection scheme is for executable object fUes. Note that
protecting a file dOes not prevent you from deleting it.

Q.d.t(Q)
The QuIt command exits from the FlleAttrlbUtes SUbsystem to the Flle
Manager.

2.3.11 Inlt1a1lze (I)
The Initialize command is used to format and initialize the File System on a
diskette or Profile. It asks you for the device name to initialize, the number
of blocks to initialize, and the volume name. If you want the entire device to
be initiaUZed, press [RETURN] for the runber of blocks (accepting the

WOd<shop USer's Guide T!Ie File Maneger

default). If the device is a diskette, It is formatted (ProFlles are factory
formatted). Boot tracks are automatically written to any device that is
init1allzed. M initialized device is automatically mounted.
The inItialIze corrmand warns you if you attempt to Initialize a diSl< that
already contains a volume, beCause the contents will be erased. A volume Is
initialized to allow a certain maximum number of fUes. You can make this
runber larger or smaller (if you know you wlll have a large number of small
fUes, for example) When InItialIzIng It

2.3.12 Mwlt (M)
The Mount command Is used to make an OS devIce accessIble. It requests a
deVice name. It ShoUld be used Whenever you connect a new device, such as a
ProFlle. The unmount command, descrIbed in section 2.3.16, Is used to
remove a device. All configured devIces are mounted at boOt time. The
configuration ccrl be Changed wIth the Preferences tool, Whlctl Is descrIbed In
section 3.3.

2.3.13 Nemes (N)
The Names command is a faster version of the List corrmand. It gives you a
Ust of fUe I"8TleS only. It asks for a fUe specifier, and displays the names of
all fUes matChing the given fUe specifIer.

2.3.14 Qlline (0)
The DlUne command prodUCeS a llst of all the devIces that are currently
moulted a'lCI avallable, with the following informatim

DevlceNlme The name of the device.
VOltJ1leNEme The name of the vollJlle.
VOlSlze The runber of blocks on the vollme.
FreeBlks The . number of blocks stlll avaUable.
FUes The runber of fUes stored on the volume.
qBl The runber of fUes open on the vollJlle.
Attr The attribUtes of· the voltMlle:

B The Boot volt.me.
P The Prefix voll.fre (prefix 1).
M Voltrne is currently fTlOU'lted.

The DlUne display Is ShoWn in Figure 2-2.

2-6

TIle File ft1InBger

FILE-MGR: BaCKUP, Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?I

Volumes on line
DeviceName Vo luuNne VolSize FreeBlks Fi les Open Attr
---------- ---------- --------
PARAPORT Fred's Workshop 9698 754 178 16 MBP
SLOT2CHAN2 e e e e M
RS232A a e e a M
RS232B a e a a M
MAINCONSOLE e e e 1 M
ALTCONSOLE e e e e M

fl~ 2-2
TIle Dlline Display

2.3.15 scavenge (8)
The SCavenge conmand runs the OS SCavenger, WhIch restores Mmaged flIes.
FlIes can be damaged any time the q>erating System terminates abnOrmally.
The scavenger searches through a disk and restores its directories, flIes, a'ld
allocation tables to a consistent state.
To scavenge a disk, use the scavenge command and specify the device rane.
After the scavenge is complete, use the Mount command to mount It again,
and continue using It me bOOt volume cannot be unmounted; therefore It
cannot be scavenged. If the ProFlle Is normally your boot vOlt.me and you
need to scavenge It, It Is necessary to bOOt from a diskette or another ProFIle
and run the scavenger from it.

If a fUe Is Changed in any way by the scavenger, the fUe attributes are set to
S, for scavenged. This attribute Is displayed by the LIst command. The
changeS made to the fUe might or might not affect the data in the fUe,
depending on What state the fUe was In When It \+laS scavenged. Examine any
fUe that has the scavenged attribUte before relying on its contents. After the
fUe has been checked, you can remove the scavenged attribUte with the
FUeAttrIbute command.

2-7

WOJ1<stqJ User's Guide The File Manager

A disk's File System can get into an inconsistent state if the qJeratlng
System terminates abnOrmally, becaUSe the directories and allocation
tables are kept in memory and only written out to disk periodically. If
there is an abnormal termination, such as a power failure, the charlges
to the state of the File System since these tables were written to disk
might be lost Information can also be lost if you disconnect a Profile
from the Usa without first tnTlOUI1tlng it If the disk is used after
such an event, more data can be lost if the system allocates the same
blocks to more than one file.

The scavenger always returns the disk to a consistent state, bUt It is
possible to lose data when the system crashes. ThIs damage can
become even worse If the dIsk Is used whlle In an InconsIstent state.

All scavenged fUes shOUld be checKed before you depend on their
contents.

2.3.16 LmnIlt (U)
This corrvnand makes a device Inaccessible (takes It off llne~ It asks for a
device name. For diskettes, use a volume name to unrTlOl.I'\t, ora device name
to UI"lI1lO\.I'lt and eject, the dIskette. Always unmount a cJevicebefore
disconnecting it from a running machine.

2A The WOIkstqJ View of files
Workshop users are provided with a view of files and devices that is actually
a compos1te of what Is provided by the Usa q,erating System, the Pascal
run-time system, and the. File Manager itself. Each contributes a specific set
of facilities:

• The Usa qleratlng System provIdes support for a varIety of Input and output
devices, InclUding both IJlock-stJtctunJd ~ires(dISks and diskettes) and
setp!I1t/aJ deVices (RS232 ports, consoles~

• The Pascal lU'l-time system provides support for several loglcaJ-devlres
(console, printer, KeybOard) which are not provided by the OS.

• The FUe Manager provIdes wlld-card facilities which enable many Flle
Manager corrmands to be applied to a whOle set of fUes, rather than just
one at a time.

2.4.1 OS Volt.meS on Disk
Every block-structured device is organized as a single volure with a flat
directory structure. Volumes can be initially created on a disk by using the
File Manager's Initialize COITVTlald. The Initialize commaIld:

1. Fonnats the disk (If necessary~

2. Records its assIgned volume name of up to 32 characters.

2-8

Wol1<sI1op User's Guide The File Manager

3. Creates lts InltIa1... empty directory (also callect a cat81og~
4. Mounts the 1n1 tiallzed disk.
When an object is created on a disk, its fUe name of up to 32 characters Is
entered In the dIsk·s dIrectory. Flle names must be unIque within a volume so
that every Object can be clearly Identified.

2.4.2 File Speclfiers
Within the Workshop, fUe specifiers are used to iC1entify the volume, C1eVice,
fUe, or set of fUes an operation applies to. The diagrams that follow show
the makeup of a fUe specifier and its components.

flle-speclf1er
flle-rane

J'lyslcal-deVice

loglca1-oevtce

LPPER

LOWER

PARAP(RT

RS232A

RS232B

2-9

WO.rkSflop User's Guide The File M8n8ger

A physical device name refers to a specific hardware device or port, whether
or not there Is actually a1ythlng comected or mounted there. When a devIce
1s block-structured and mounted, its physical device name can be used in a
fHe specifier instead of the disk or diskette's volume name. Since sequential
devices are not mass storage devices, they never have volume names. The
only way to specify them Is to use theIr physical device names followed by
dummy fHe· names; for example, "-RS232A-X". Logical devices are also not
mass storage devices and do not have volume names. They can be referred to
by their logical device names only.

2.4.3 The WOddrYJ Directory em the PrefIx .
Sometimes, specifying the same volume name or physical device name again
and again is inconvenient With the FHe Manager's Prefix command you can
establish a particular volume as the OS's working directory. otherwise, the
default working directory is the voltme the system was bOOted from. If a fHe
specifier omits the volume or physical device name, the file or set of fUes is
assumed to be in the WOrking directory. For example, if the WOrking directory
Is -MYDISK, the file specifier PROORAM1.CBJ refers to the same fHe as
-MYDISK-PROORAM1JEJ.

-lA'ER The upper dISkette; drIve 1.
-LOWER The lower dIskette; drive 2.
-PARAPCRT ProFlle attached to. the parallel connector.
-SLOTIlO-Wtl ProFlle attached to the Parallel Interface card In slot m,

Channel n (Where m Is a slot between 1-3, crld n Is
channel 1 or 2~

2-10

Wo.rkslJop I.Jser's GulliJ The File fvJanageI

To avoid confusion within the system, do not assIgn a device name to a
voll.lTle.

There are also two serial devIces, -RS232A and -RS232B. These provide
access to external RS232 devices.
There are three logical devices that can be used for input and output. These
deVices are:

-ccNSa...E Used for output to the screen and input from the keyboard.
The actual devIce that Is used as the console can be
changed by the console command in the System Manager.
see Section 3.2 for l~formation on the console command.

-PRINTER lJsecI to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tool,
described In Section 3.3.3. If you have more than one
printer, the one that will be used is specified by the
DefaultPrinter command deScribed in Section 3.2.

-KEYBOARD Used as a nonechoing input device from the keyboard. This
is the Keyboard on the console devIce.

certaln types of fUes In the system have standard file extensions. These
extensions make it easier to keep track of the different types of files. These
fUe extensions are:

.TEXT This indicates a text file in the format created by the Editor.
J13J This inct1cates an Object cOde fUe. (l)ject fUes are created by

the code Generater, the Assembler, and the Linker. (l)ject fUes
created by the Linker are executable .

.1 ThIs indicates an Intermediate (I-code) flIe prodUced by the
Pascal compUer. The Generate command converts an
intermedIate fUe into an Object code fUe .

. LIB This indicates a l1brary directory.
25 USing Wild can:t CIlarooten

WUd card characters allow you to specify a set of flIes to operate 00. The
command is perfOrmed on all flIes whOse pathname matcheS the set specified.
Wild card characters are .'.", "7', and liS". cnly one wild card character can
appear In a file specifier. These Characters are used as follows:
stImJl-strlng2
The "." character stands for any sequence of zero or more characters that
can be ignored in the search. The surrounding strings (string1 and string2)
must be matched exactly, ignoring case. EIther or both strings can be null.

2-11

WoJ1<sI7op User's GukJe The File Manager

Here are some examples of usIng the It_,. wIld card Character as a source fUe
name:

ds-.text
-.OOj

All f11es beginning with ds and ending in .text.
All files ending with .ooj.
All fUes.

When "-" Is used In a deStination fUe name, It Is replaced wIth the characters
that were matched by a wild card In the source fUe. ThIs enables you to do
operations llke change the name of a llst of fUes as they are copIed. Here
are examples of usIng "_N as a destination fHe name:

dS-.text to OO/ds-.text Change all fIles starting with ds and ending
with .text so they begin with 00/.

qcJ. - to quickdraw.- Change all files starting with qd to begin wIth
qulckdraw.

Stl1t'YJl ?strlng2

The IIr character is the same as the "_", except that the system asks you to
confirm each flIe name before performIng the operation. The "?" wild card
can be used only in a source string.
When you use a "?II In a source specifIer, you are presented wIth a list of fUes
that match it. You can move backwards and forwards through the list by
using the up and doWn arrows on the numeric keypad. Press Y besIde every
fUe that you want to be processed. When you have selected all the files you
want" press [RETURN]. The operation wlll then be performed on the files you
selected after confirmation.
When using the List command" you cannot use the"?" wUdcard in response to
the prompt for a voh.me name.

st.l1rYJ1$strlrYd2
The "SII character can stand for part of a destination fUe name only. It is
replaced by the enUre source fUe name. For example" If you haVe the source
files matChing ds-.text:

dsfmgr.text
dssmgr.text

If the deStination expression is bk$" the output fUes will be:

bkdSfmgr. text
bkdssmgr.text

contrast this with the output expression bk-.text" Which results in:
bKfmgr.text
bksmgr.text

2-12

Workshop Users Guide The File Hanager

Hint: You can adopt conventions for naming files that pretend there is a
hierarchical file system: for example,

SourcelF1.text
SourcelF2. text
SOurcelXYZ.text

2.6 How Do I List Existing Files?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command, but
it gives you only the file names.

L If you are not in the File Manager sUbsystem, enter it by typing F in
response to the Workshop command prompt

2. Execute the List command by pressing L, or the Names command by
pressing N.

3. If you want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed. (The "?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default volume, press [RETURNl

The listing produced by the List command is explained in Section 2.3.4.

You can send a copy of the directory to a file by following the specification
with a comma and then the name of the file to send the directory to. For
example,

-paraport -bk/ ... ,faa. text

sends the directory to foo. text.

For more information on wild card characters, see Section 2.5 in this chapter.

2.7 How Do I Cq:Jy a File?
You can Copy a file and leave the original file intact, or you can Transfer a
file, which copies the file, then deletes the original file. To copy a file:

L If you are not in the File Manager sUbsystem, enter it by typing F in
response to the Workshop command prompt

2. Press C to start the Copy command. (Press T, for Transfer, if you want
the original fUe to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press [RETURN].

4. Enter the pathname you want the fUe to be copied to. Press [RETURNl

The fUe is copied or transferred as you specified.

2-13

Workshop User's Guide The File Manager

If you want to copy a number of files with similar names, or all the files on a
volume~ you can use wild card characters. See Section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all
the copies of the selected files.

The following are examples of copy and transfer operations:

Copy from what existing file(s)? myprog
Copy to what new file? -backup-$

(This copies the file myprog on the WOrking directory to the volume
-backup with the same name~ myprog.)

Copy from what existing file(s)? ds=
Copy to what new file? -backup-$

(This copies all files beginning with "ds" on the working directory to
the volume backup with the sar:ne file name.)

Transfer from what existing file(s)? -osback-osg=
Transfer to what new file? -oswork-$

(This copies all files beginning with "osg" on the volume -osback to the
volume -os work using the same file name. When the files have been
copied successfully, the Original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (,) in response to
the request for the source file.

Transfer from what existing file(s)? -osback-osg=,-oswork-$

(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? dS=,-backup-backds=

(This copies all files beginning with "ds" in the working directory to the
volume -backup with back inserted as the begiming of each file name.)

The Backup command is another 'Way to copy files. It is selective, in that
only different files will be copied. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for more information on the Backup
command.

2.8 I-klw Do I Delete a File?
To delete a file:

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the Workshop command prompt.

2. Invoke the Delete command by pressing D.

2-14

Works!1op User's Guide The File Manager

3. Enter the pathname of the flIe you want to delete.
4. The system asKs you to confirm that you want to delete the fUe. Repl y Y

to delete the fUe or N to Keep it
I f you want to delete more than one flle, you can use wIld cardS. See Section
2.5 for more information on using wIldcardS.

2.9 I-kJw Do I Create cnj Use a VOltme?
A volume can be created on either a disKette or a ProFlle disk. Each disK
can contain one volume. Creating a volume on a disK gIves the disk a name
and sets up a dIrectory for flIes.
1. If you are not in the File Manager subsystem, enter it by typing F in

response to the workshop command prompt
2. Press I to invoke the Initialize command. This command asKs fo~

a The device name (upper or lower for a diskette, slot2chan2 or paraport
for a ProFlle, and so forth)

b. The number of pages to initiaUze; the default is to initialize the whole
device.

c. The volume name.
d. The maximum number of files on the deVice; the default is a good

value unless you are using a large number of very small fUes or a few
very large files.

The volume is initialized, with an empty directory. (If the device is a
diSkette, It Is first formatted.) The system warns you If you are Inltlal1zing a
device that has an existing volume on it, and gives you a chance to change
your mind before destroying the exIstlng volume.
After initialization, the device is automatically mounted so it can be used.

2.10 How Do I Change the Ncme of a File or VOlllTle?
The Rename command allows you to Change the name of any fUe or volume.
1. If you are not in the File Manager SUbsystem, enter it by typing F in

response to the Workshop command prompt
2. Execute the Rename command by pressIng R

3. Enter the pathname of the fUe or volume you want to rename.
4. Enter the new name. (The same device name Is assumed for a file.)
The name Of the file or volume is changed.

You can use the Rename conmand to Change the ncme of a group of fUes by
usIng ¥IUd card expressions.

2-15

NOTES

Chapter 3
The System Manager

3.1 TIle System rvtarlager •.••••.•.•.•••••••...•.•••.•.•••••••••••••••••.••••••••••••••••••••••.•• 3-1
The System Manager allows you to set certain system defaults and set
up the Usa configuration, including external device connections and the
startup devIce.

32 TIle System rvtarlager FlIlCtiorlS•........•.•.....••.•....•.........•...•.•.•. 3-1
The System Manager is activated by preSSing S in response to the
Workshop command llne. Its functions are accessed from a command
line similar to the WOrkShop command line.

3.3 TIle PrefererlCeS Tool ... 3-3
The Preferences tool allows you to set up the system configuration and
to specify what external devices are connected.

3.4 ~ I'1aI aagernellt .. 3-9
The process management subsystem allows you to make selected
processes reSident, display the status of all currently existing processes,
and remove processes.

The System Manager

3.1 The System Manager
The System Manager allows you to set system defaults and specify the system
configuration. Using it, you can:

• Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating keys.

• Set the configuration of external devices such as disks and printers.

• Set the defaul t startup device.

• Set processes to be resident or nonresident, for performance tuning your
Workshop system.

• Set which device is to be the console.

• Redirect output from the console to a file or external device.

• Monitor all currently existing processes, and remove processes.

32 The System Manager Fl.flCtioos
By pressing S in the main comand line, you can enter the System Manager
subsystem.

The System Manager command line is:

SYSTEM-fvK3R: MCIlageProcess, o.rtputRedirect, Preferences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing .,?., shows you the additional line of commands:

Console, FilesPrivate, Validate, Default:Printer

Each System Manager command is described below_

MCIlageProcess (M)
This command puts you into a process management SUbsystem, which allows
you to select which processes should be resident for performance reasons. A
resident process will not be removed from memory when it terminates, so it
will not have to be reloaded when it is run again. It also allows you to
display the status of all currently existing processes, and remove processes.
The process managment SUbsystem is described in Section 3.4.

OJtpJtRedirect (0)
This command allows you to send a copy of all output that is displayed on the
console to another device, such as the -printer, or to a file on a disk. The
command asks you for the pathname to send the copy to. In order to return
to displaying only on the console, use the command again and redirect the
output to the -console device (which is the default).

3-1

WoJ1<shop User's Guide Tile System Manager

Prefererees (P)
This command starts the Preferences tool which allows you to set up the
confIguration of the Usa system and the Workshop. The Preferences tool Is
described in Section 3.3.

TIme (T)
This command allows you to set the hardware clock/calendar's date and time.
see the Lisa OWners Guide for more information on the system clock and
calendar. The date and time values are used for the creation and
modification dates on your files, so they should be kept correct.

QuIt (Q)
This command exits from the System Manager and returns to the main
WOrkShOp command lIne.
console (e)
This command allows you to change where the Workshop console is displayed.
It may be displayed on the main screen, which is the default, on the alternate
screen, where the Debugger displays, or on an external terminal connected to
the RS232A or RS232B connector. When the main or alternate screen is used
for the console, output can be stopped and restarted by pressing .-S. If an
external terminal is used with X01IXOff processIng enabled, then control-S
stops output and control-Q restarts it.

The console can be moved to the alternate screen when you run a graphIcs
program to prevent output from wri telns from appearing on the graphIcs
screen (the maIn screen). You can dIsplay eIther the alternate or the maIn
screen by pressing CPTI(J\J-ENTER. When the console is moved to the
alternate screen, both the console output (wrltelns) and the Debugger output
will be mixed together on the same screen.

FllesPr1vate (F)
This command enables or disables the selection of private system files. The
Lisa Office System uses file names begiming with the "r character for its
tools and documents, and the WOrkshop user shoUld rarely be concerned with
such files. These files are called "private". When selection of private files is
disabled (the default), the Workshop File Manager's wild card mechanism will
exclude them from its selections unless the file specifier explicitly includes
the leading "rl.
There are just a few private files which are used by the Workshop (for
example, {Tll}menus.text~ You must enable the selection of private flles If
you want a single file specIfier to refer to the entire set of WOrkshop system
fUes.

3-2

WoJ'kshop User's Guide The System Manager

validate M
This command is used to set up how much veri fying you want the Workshop to
do for you. There are two values you can set with this command. The first
is whether or not to verify file copies. The system verifies a copy by
comparing the original file with the copy to be sure they are the same. The
defaul t is to never verify. You should have no reason to verify unless you
suspect something is wrong with your disk. The second vall)e you can set is
whether or not your selections for File Manager commands are verified.
Selections are verified by listing the, file names and asking you to confirm the
operation.

Default:Printer (0)
This command is used when you have more than one printer connected to your
Lisa It tells the system which one will be the -printer logical device. It
first gives you a list of all the physical devices that have been configured by
the Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as -printer.

33 The Preferences Tool
Start the Preferences tool by pressing P in response to the System Manager
command line. It displays a window with four checkboxes and a tools menu.
The Preferences display is shown in Figure 3-1.

Tools
lj 111111 PreFeretlCes III1I1

OConvenience Settings o startup ODevice Connections OWorkshop

FigJre 3-1
The Preferences Window

After you have finished with the Preferences tool, you can exit back to the
System Manager by selecting Quit from the Tools menu.

III

The Preferences tool allows you to set up your Workshop system the way you
want it. It contains four sections:

• Convenience Settings that allow you to regulate screen contrast, the
speaker VOlume, and repeat delays.

• Device Connections that tell the Lisa system what external devices are
connected.

3-3

Workshop User's Guide The System Manager

• Startup, which tells the Lisa what device to use as a startup device.

• Workshop which sets up defaults for the Workshop.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 10 hours when the Lisa is unplugged. If your Lisa is without
power for longer than this, and the parameter memory is lost, the preference
settings will be restored from information on the startup disk.

My changes made with the Preferences tool change parameter memory
immediately, but some of them, such as device connections and startup
options, have no effect until the system is booted again.

The Preferences tool displays a window containing a number of buttons and
checkboxes. You set the vaJues you want by using the mouse to move the
pointer to the desired options and clicking.

F our areas of preferences are described briefly below. More information on
the first three areas can be found in the Lisa Owners Guide, Section 0,
Desktop Manager Reference Guide. Select the area you want to view or
change by moving the painter with the mouse to the checkbox in front of the
section name and clicking.

3.3.1 CQnvenience Settings
The Convenience settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa These
characteristics are divided iota three sections: Screen COntrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-2.

3-4

Workshop User's Gujde The System Manager

Tools

'11111 PreFerences lilli'
IConvenience Settings o startup oDevlce (onnectlons OWorkshop

oSet All Convenience Settings to lisa Defaults

Screen (ontrast
Normal Level

dark 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 bright

Hlnutes IkItll Screen DIms
01-2 12-4 05-10 010-20 015-30 030-60

Dim Level
dark 0 0 000 0 1 0 0 0 0 0 0 0 0 0 bright

Speaker Volume
Silent (Flash menu bar) 0 Soft 1 0 0 0 0 Loud

Repeating Keys
Delay

Short 0 1 0 0 0 0 Long

Rute
Fast 1 0 0 0 0 0 Slow

House Double (lick Delay
Short 0 1 0 0 Long

Fi~ 3-2
CcrnIenience Settings

SCreen Contrast
The contrast portion contains three sections. The first allows you to select
the normal screen contrast level. Check in a contrast box until the contrast
level is comfortable. CheCking a box immediate} y changes the contrast

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place is set with the Minutes Until Screen Dims section.

3-5

WOrkstqJ User's Guide The System /'4anager

The third section allows you to set the dim contrast level. Checking a box in
the Dim Level section makes the screen dim to that level until you move the
mouse.

Speaker Volt.me
The speaker volume section allows you to set how loud the Lisa's audible
alerts will be. Checking a box demonstrates the volume by causing two beeps
at the level you selected.

Rates
There are three rates that can be set, two for the keyboard and one for the
mouse. The fiIst is the initial keyboard repeat delay. This is the length of
time a key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how quickly a key repeats after it has
started repeating. The third rate is the mouse double click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click. These three values should be set for your most comfortable use.

3.3.2 ~
The Startup display allows you to specify the boot device and the type of
memory test to be performed on startup. The Startup disp1?iY is shown in
Figure 3-3.

The Startup display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you wanL

The Startup display also allows you to select a long or short memory test
The brief test takes about 20 seconds, the long test takes about 40 seconds.

Changes made to the Startup display are put into parameter memory
immediately, but have no effect until the system is booted again.

3-6

WOIkshop User's GlIjde The System H8nB!Jer

~;IIII Preferences 111'1

OConvenience Settings .Startup OOevice Connections DWorkshop

Start Up Fmm:
OOiskette in Orive 1 (Upper)
OOiskette In Orive 2 (lower)
.Disk Attached to Parallel Connector

Memory Test
.Brief
OThorough

:: :.
" l:" :;';:'.: :':::.

Fi~ 3-3
lhe St.art.l4> Display

3.3.3 Device canectioos
The Device Connections display allows you to specify what external devices
are attached to the Lisa When you choose Device Connections, the Lisa
displays a table showing all the connectors available, and the device (if any)
that is attached to it.

To tell the Lisa that you are attaching, removing, or changing an external
device, check the box for. the connector you are using. The Lisa will· display
a list of all devices that can be attached to that connector. Check . the
correct device. If you are removing a device, check No Device.

For some devices, such as printers, another set of specifications appears.
Check the appropriate boxes for the device you are attaching.

3-7

Worksnop User's Guide TtJe System Manager

My Changes made to the device connections are made immediately to
parameter memory, but they do not take effect until the Usa Is rebOOted.
For the two serial ports, see the PortConflg ut1l1ty in Section 11.10. A
typical devIce connections display Is shown in FIgure 3-4.

loolS

11111 Preferences 11111:

o (onvenience Settings 0 Startup I Device (onnections 0 WorkSholJ

Connectors Oeyi[es Currentlg Connected
o Expansion 2 lower ProFile
o Expansion 1 upper Dot Matrix Printer
o Parallel ProFile
I Serial A Nothing (onneded
o Serial B Nothing (onnected

Devl[e You Intend to Conned:

3.3.4 WOIkstql

INo Device ODoisy Wheel Printer ODot Matrix Printer
~emote (omputer

Fi~ 3-4
A Device GaT1ectlms Display

: ';

The Workshop display, shO\tln in Figure 3-5, allows you to set parameters of
the Workshop system. These parameters will not go into effect untU you
rebOOt the system. Then they are stored in parameter memory and will stay in
effect until you Change them.

Note that changes to the memory sIze affect all other systems (for example,
the Office System) and will prevent large programs from runnIng.
WIth mouse scaling, equivalent X and Y movements of the mouse cause
diagonal cursor movement on the rectangular Lisa screen. Without scaling,
the cursor would move at a true 45-degree angle on the screen when X and Y
movements of the mouse are the same.

3-8

WOrkshop User's GlIjde TI1e System Manager

Tools

11111 Preferences Iii:'

D(onveniencf Settings DStartup DOevice (onnections .Workshop

Memory to use(ouuming 1 megabyte mochine)
Ifull megabyte Dthree quarter megabyte Dhalf megabyte

Enoble House Scollng?
Ino Dyes

Fl~ 3-5
The Workshop Display

335 The Tools MenJ
The tools menu provides you with two functions: Set all of PM to defaults,
ancJ Quil Set all of PM to defaults resets parameter memory to the standard
Lisa defaults. Quit exl ts from the Preferences tool, and puts a copy of the
current settings of parameter memory on the disk.

3.4 Process MalI8geI1leI It
The process management subsystem is started by preSSing M in response to the
System Manager command line. This SUbsystem displays the following
command line:

Manage Process: AfiResident, DeleteResident, KillProcess, ProcessStatus, Quit ?

3-9

Workshop User's Guide Tile System Manager

This subsystem is used to control which processes will be resident After a
resident process runs to completion, it is suspended and retained in memory, if
possible, rather than terminated and removed from memory. This allows it to
restart faster, because the process does not have to be recreated. For
example, if you are often using the Pascal Compiler and the Editor, you can
improve the performance of your Workshop system for these applications by
making the Compiler and the Editor resident This will allow much more
rapld Shifting between the two.

See the tpe17:Jting System Reference Manual for tile Lisa for more
information on processes

PaResldent (A)
The AddResident command adds a process to the list of processes that are
resident. You supply the flIe name of the object file that you want to be
made resident the next time it is executed.

DeleteResIdent (D)
The DeleteResident command removes a process from the list of resident
processes, but does not Kill the process if it is currently running.

KlllProcess (K)
The Kil1Process command terminates a currently existing process, including a
bacKground process, but does not remove it from the list of resident processes.

ProcessStatus (P)
The ProcessStatus command gives you information about all currently existing
processes. It provides the following information:

Patmcrne The name of the processes object file.
Process_ID The unique Identifier assIgned to the process.
State The current state of the process: Active, Suspended, or

WaIting.
Resident Tells you if this is a resident process.

QJit
The Quit command exits from the process management SUbsystem back to the
System Manager command line.

3-10

NOTES

Chapter 4
The Editor

III TIle Ed! tor ... 4-1
The Editor is used to create and mOdify text files.

42 LJslf1g tJ1e Editor .. 4-2
Start editing by pressing E in response to the command prompt. The
EdItor creates a new file or edIts an exIsting one. ~erat1ons are
provided in five menus: File., Edit, SearCh., Type Style., and Print.

4.3 Selectil'lg Text•.. 4-4
The mouse is used to select text and to move the insertion poInL

4.4 Scrolling arx1 MoVlf1g the DIsplay .. 4-5
The display can be scrolled by using the scroll bar on the right side of
the window. The window can De moved oy cliCking in the title bar.
The size of the window can be changed by using the size control box.

4.5 TIle File FlIlCtioos .•.....•.•.•...•.•.......••.......•.......•.•...•.•.•...•...••.•.•.••.•.•.•• 4-6
The fUe functions are used for retrIevIng and savIng text files. You
can also save or revert to a previous version and exit the Editor.

4..6 TIle Edit FlIlCtiorlS •.•....•..•.••......••....•..•.....•.•.•.........•........•...•....•...•..• 4-8
The three basiC edit functions are cut., paste, and copy. The Edit menu
also gives you functions to adjust text to the left and right., and to set
tabs.

4.7 Tlle Search FlJ1CtiOt'lS .. 4-9
Search gives you functions to find text strings in the file., and
optionally replace them.

4.8 Tlle TYPE! style FlIlCtiOt'lS .. 4-11
The Type Style menu enables you to change the font that the file is
displayed and printed in.

4.9 llle PrInt FlIlCtiot'lS .. 4-12
The Print menu enables you to print the file, and to specify the format
1 t should be printed in.

The Editor

ill The Editor
The Editor is used to create and modify text files. These files can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen, a portion of the file
is displayed. This "window" into the file can be moved to display any part of
the file you want. An example of the Editor display is shown in Figure 4-1.

FII~ Edit S~arch TUp~ StUI~ Print

EJ 0111:11

2
file
Seve & Put ~~
Save e Copy in ...
Seve & Continue
Revert to Previou$ Verdon

Open ...
Duplicate ...
Tear Off Stationery ...

Exit Editor

3
Edit
Undo· Last· Chenge

CutlX
CopylC
Psste/V

Shift LertA
Shift RightlR

Fi~e 4-1
The Editor Display

6¥ []: -

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a special
window called the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion point. The insertion point is
marked by a bUnkIng vertical llne where the next character will be placed.
Any characters typed or pasted from the Clipboard are inserted at this pOint.
This Is true even if the insertlon point Is not currently displayed In the
window. The window is automatically scrolled to show the insertion point ..

4-1

Workshop User's Guide Tile Editor

The Editor is memtJlY based. This means that there is a physical limit
on the size of the file that can be edited. If a file is too big to edit,
it should be split into more than one fUe of manageable size. The
FileDiv and FileJoin utilities can be used for this. They are described
in Chapter 11.

The mouse is used to scr()ll the text in the window, move the insertion pOint,
select text to be cut or copied, point to menus, and select items on menus.

ll.2 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press [RETURN] for the default, which is blank paper, or enter a name.
For more information on stationery, see Section 4.2.3.

The file that you are working on is called the active document You can have
several documents open and accessible at anyone time, but only the active
doCument can be edited. The active window is indicated by a darkened title
bar and scroll bars, and is always on top of all the windows.

To leave the Editor, select Exit from the file menu, and you will return to the
Workshop command line.

42.1 Editlng qJeratlons
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut or copied. ::;elect text by moving the
mouse while holding down the button. See Section 4.3 for complete
information on selecting text Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

4.2..2 TIle Merus
~rations are provided in five menus: File, Edit, Search, Type Style, and
Print The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
Search provides for finding strings in the active document The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

4-2

Workshop User's Guide The Editor

You select an operation from a menu by moving the arrow pOinter to the
menu name on the menu bar and holding down the button. The menu is
displayed. Choose the menu item by moving the mouse down until the item
you want appears in reverse video. Releasing the mouse button starts the
operation.

4.23 Creating and UsirYJ stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired text. To
use any stationery other than the default blank paper, choose Tear Off
Stationery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing the text you want on the
stationery. Save this document on the disk. To use this stationery, choose
Tear Off Stationery from the Edit menu, and give it the fUe name of the
stationery you created.

4.2.4 Editing MJltlple Files
More than one document can be open at one time, but only one document is
the active document. To read in a document when you already have an active
document, choose ~en from the File menu. It asKs you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pOinter into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

This capability of working with more than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations:

• ~en the document containing the text you want to copy.

• Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if you
want the text to be removed from its original file.

• cpen the document you want the text to be copied to. It becomes the
active document.

• Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

• Choose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

4-3

Workshop User's Guide The Editor

4.3 SelectirYJ Text
The basic editing functions are cut, copy, and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion point where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pOinter on
the screen.

Within an active document, the pointer will have one of three shapes:

Text pointer in a document

Arrow pOinter for menus and scroll bars

Hourglass when an operation will take over 20 seconds

Use the mouse to move the pOinter on the screen. The Shape of the pointer
changes when you move in and out of the document window.

Within the window, the text pointer is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, words, or lines. Selected text is displayed in
reverse video.

4.3.1 fvklving the Insertim Point
The insertion point is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion pOint, move the pointer to where you want it to be and
click. Note that the insertion. poInt moves when you select text.

4.3.2 Selecting Characters
To select characters, move the text pointer to the begiming of the characters
you want to select, press and hOld the mouse button while moving to the last
character you want to select

AA alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
begiming of the text you want to select and click the mouse button. Then
move the pointer to the end of the text you want selected and shift click.
Shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrolling controls to display the end of the
text you want selected if it is too big to fit in the window.

4..3.3 SelectirYJ Words em Lines
To select a word, move the pointer into the word and click the mouse button
twice. To select a line, move the pointer into the line and click the mouse
button three times.

4-4

Workshop User's Guide The Editor

To select multiple words or lines, click the mouse button the required number
of times, and hold. Move the painter to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, the selection expands or contracts by lines.

AA alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item
you want selected, shift click, and the entire block of text becomes selected.

4.3.4 AdjJsting the ArrlotIIt of Text Selected
To change the amount of text selected, move the pointer to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

4..4 ScrollirvJ and Mlvirg the Display
When a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part is
displayed by "scrolling" through the display. The vertical bar on the right side
of the active window is the scroll bar. AA example of a text window showing
the scroll bar is in Figure 4-l.

The display window can be changed in size and moved on the screen. This
enables you to have multiple documents displayed on the screen. These
operations are done using the title bar and size control box as explained in
Section 4.4.2.

4.4.1 SCrolllrYJ the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative pOSition of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the position of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the window makes use of the view buttons. The
view bUttons are the boxes at each end of the scroll bar. If you move the
pointer to a view button and cllck, the display moves one windowful toward
the beginning or end of the document, depending on which button you clicked.

4-5

The Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the vie\\' buttons. If you move the arrow pOinter to the
bottom scroll arrow and Click, the display window will move one line toward
the end of the document If you hold the button down, the window will
continue to move a line at a time until you release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document

1l.l1.2 Mlving the Wirmw
You can move the window on the screen and change its size. This lets you
display multiple documents on the screen. You can make any visible window
be the active window by moving the pointer into it and clicking.

To move a window, move the pointer to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.

To change the size or shape of the active window, move the pointer to the
size control box" press the button" and move the pOinter until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. O1ly the active window can be resized.

4.5 The File FlJ'lCtions
The file menu provides functions for reading in and writing out documents,
updating documents" copying documents" and exiting the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.

Save 8.. Put Away
This writes out the active document and closes it

Save a Copy in ...
This writes out a copy of the active document to another document name.
You are prompted for the name of ~he document to write to.

Save 8.. Contiooe
This saves all changes made so far by writing out the document to disk,
without closing the document

Revert to Previous Venion
This returns the document to the way it was before you started editing it., or
when you last saved it. This is done by reading in the document from the
disk.

4-6

Wo.rkshop User's Guide

(llen ...

Save & Put Away
Save a Copy in .11

Save & Cont i nue
Revert to Previous Version

Open,"
Duplicate ".
Tear Off Stationery. II

Exit Editor

Figure 4-2
The File Meru

The Editor

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active documenL The Editor supplies
the .TEXT extension on the file name. If the file name that you want does
not end in .TEXT, you must end the file name with a period. See section 1.5,
The Workshop User Interface.

Cqlllcat.e . . .
This enables you to read in a copy of an existing document to edit Into a new
document. It is read in with the default name "untitled"

Tear Off Statimery ...
This gets a new piece of stationery and makes It the active documenL See
Section 4.2.3 for more information on stationery. The stationery is given the
default name "untitled".

Exit Editor
This first asks you if you want to put away any modified documents. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor reSident, you can exit and restart the Editor without losing
any information between invocations. Section 3.4, Process Management, gives
instructions on how to make the Editor resident.

4-7

Workshop User's Guj(je The EdHor

4.6 The Edit FlIlCtlons
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.

The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting it in the active document,
and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion point with the paste operation.

Cut
C()PlA
Paste

ShiH: Left:

Shift n'~Jht

Set Tabs II.

Select All of Document eiA

Fig.are 4-3
The Edit Menu

For example, to move text from one place in a document to another:

1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

It Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion point.

The Edit menu also enables you to adjust selected text left or right by
inserting or deleting spaces, and to set tabs.

4-8

WoIkshop User's Guide Tile Editor

Some edit functions can also be done by holding down the " key and pressing
another key. The key that corresponds to each function is shown in the Edit
menu, as you can see in Figure lj.-3.

um Last 0BYJe
This command puts the document back to the way it was before the previous
operation, if possible. You will receive a warning message if the last
operation cannot be undone.

CUt
Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the active document. You can also Cut by pressing the
X key while holding down the " key.

COpy
Copy places a copy of the currently selected text onto the Clipboard, but
does not remove it from the active document. You can also Copy by pressing
the C key while holding down the " key.

Paste
Paste inserts a copy of the text on the Clipboard at the insertion point in the
active document If a section of text is selected, Paste replaces it You can
also Paste by pressing the V key while holding down the " key.

Shift Left
Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing the L key while holding down the " key.

Shift Ri~t
Shift Right is similar to ShIft Left, except that it moves the selected text to
the right by inserting spaces at the begiming of each line. This can also be
done by pressing the R key while holding down the " key.

Set Tabs ...
Set Tabs enables you to set the spacing of the tab stops.

Select All of Ooru1lent
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the " key.

4..7 1lle Search Ft.IlCtions
The Search menu gives you the ability to search ·for a text string in the
active document. The basic operation is Find,. which locates the next
occurrence of the string and selects it. Find & Paste All replaces each
occurrence of the string with the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

4-9

WoIkshop User's Gujde

IBiiIk------ ------
Find III .F
Find Same .S
Find Ei Paste All

...tSeparate Identifiers
All Occurrences

...t[ases Need Not Agree

Cases Must Agree

Fi~e 4-4
The searcn Meru

The EdHor

All searches start at the insertion poInt, and go to the end of the document.

There are three search operations in the Search menu, as follows:

Find ...
FInd prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it is selected. If not, the system tells you.
The Find command can also Oe executed Oy pressing the F key whUe hOlding
down the " key.
Find Sane
Find Same repeats a previously specified Find, and selects the next occurence
of the string. You can do a Find Same by pressing the S key while holding
down the • key.

Find & Paste All
Find & Paste All finds all occurrences of the specified string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case must be matched. The options current! y in effect have a check mark in
front of them. To change the option, you choose a new one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

WoJkshop USefS Gujde The EdHof

Separate Identifiers
When Separate Identifiers is chosen, the search operation looks for a "token"
or word to match the search string. A token is a word bounded by spaces.

All (b;urrences
When All Cccurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a 'Word.

The next options indicate if case is significant in finding a match:

cases Need Not Agree
When Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

Cases rvtJst Agree
When Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

4.8 The Type style FlI1Cti«:m
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a line, and
whether or not the display is proportionally spaced. When a document is
printed, it is printed In the same type style it is displayed in, If that type
style is available on your printer.

Type Style'
20 Pitch Gothic
15 Pitch Gothic
12 Pitch Modern
12 Pitch EI ite
10 P itch Modern
10 Pitch Courier

PS Modern
PS Executive

Figure 4-5
The Type Style Meru

4-11

WoJ1<sI1tJp USef:r Gukie The EdHlJI

4.9 The Print FLrCtions
The Print menu provides functions for printing a document You can print all
or part of a document, choose what form of footers are to be printed, specify
if Pascal keywords are to be emphasized, and tell what type of printer is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of Docunent
The Print All of Document command prints the entire documenl

Print Selectim
The Print Selection command prints only the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the print is to be
performed. They are organized into three sets of two options. The currently
selected option in each set is indicated by a check mark. You can choose any
combination of options you wanl

Print All of Document

Print SeletUoTl

vlFul1 Footers
Page Numbers On I y

vlPlain Keywords

Differentiated Keywords

vlDot Matrix Printer

Daisy Wheel Printer

Fi~e 4-6
The Print Meru

The first options control what type of footers are printed at the bottom of
the page.

4-12

Workshop UseIs Guide The EditOI

Full Footers
When Full Footers is chosen, each page prInted has a footer consisting of the
document name, the page number, and the date. If the document is less than
one page long, no footer will be printed.

Page Nt.rrber 011 y
Choosing Page Number Illl y resul ts in only a page number on the bottom of
each printed page. If the document is less than one page long, no page
number will be printed.

The next options are used for printing Pascal programs.

Plain Keywords
Choosing Plain Keywords causes Pascal keywords to print as normal text.

Differentiated Keywords
Choosing Differentiated Keywords causes Pascal keywords to print with
underlining. In addition, the read procedure, write procedure, and other
standard Pascal procedures and functions are underlined.

You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
Wheel Printer.

4-13

NOTES

·57-A

Chapter 5
The Pascal Compiler

5.1 The Pascal Cc:lnlliler ..••.••••...•.........•.•.•••.•..........•.•.•.•...••.•..•.......•.•.... 5-1
The Pascal CompHer translates Pascal source statements into Object
Code. This translation Is In two steps. The source statements are first
translated Into Intermediate code (I-COde), then the I-code Is translated
into Db ject code.

5.2 l.Jslng the Pascal Cc:lnlliler .. 5-1
The Compller expects as input a text flle containIng a Pascal program.
The CompHer translates source code into intermediate code (I-COde),
then the COde generator translates I-cOde Into object cOde.

5.3 1lle Pascal Cc:lnlliler C::O' ••• lCIm .. 5-2
You enter Compiler commands into the Pascal source file. They
provide for symbolic debUgging information and condiUonal compilation.

5.4 The ~ Rt.rl-T1rTle Environment .. 5-3
This section explains how to use the PASLIBCALL unit, which provides
some special system funcUons to Pascal programs. It also explains how
the Pascal heap operates.

The Pascal Compiler

5.1 'The Pascal Compiler
The Compiler translates Pascal source statements into Object code. ThIs
translation is done in two steps. The first step, parsing, converts the program
Into semantically equIvalent tree structures called I-COde. The second step
translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the PBSCBl Refemnce Manual
for the Lisa. A Pascal program can call assembly language routines. More
information on assembly language is in Chapter 6 of this manual.

The ~rating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in the
SYSCALL unit, which is described in the Q:Jerating System Reference M8ntJ8J
for the Lisa.

The Pascal run-time support routines are in the library IOSPASLIBJl3J. The
support routines for floating point operations are in IOSFPLIB.CBJ. After
generating the object code, it is necessary to link the program with
lOSPASLIB.CBJ before you can run it If you are using real numbers, you must
also link with IOSFPLIBJEJ. For information on how to link the program, see
Chapter 7 in this ma1Ual.

S2 UsiI'VJ the Pascal CompUer
The Compiler expects a text file contaInIng a Pascal source program as input
You can create this text file USing the Editor.

When you have prepared a source program, use the COmpiler to translate it
into object code. Start the CompHer by preSSing P in response to the
Workshop command prompt The Compiler first asks:

Input file[.TEXT]
Type the name of the file that contains the source program. You do not need
to add the • TEXT extension. The Compiler then asks:

List file[.TEXT]
Type the name of the file that you want the listing to go to, or press
[RETURN] if you don't want a listing. You can display the listing on the
console by using the -console pathname. The Compiler next asks you where
to store the I-code form of the program:

I-code file[<input name>][.I]

5-1

WorkstJep User's Guide Pascal Compiler

If you want the I-code to be stored in a file with the same name as the
source file, but with a .I extension instead of the .TEXT, just press [RETURN).
If you want another name, type the name and press [RETURNj.
After the last input, the Compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they are displayed in
the listing file, or on the console if there is no listing file. When a message
is displayed on the console, you are given a choice of aborting the compile by
pressing [CLEAR], or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $E Compiler command.

5.2.1 Using the Code Generator
To translate the I-code into object cOde, press G in response to the Workshop
command prompt. The code generator first asks:

Input file [.1] -
Type the name of the I-code fUe. You 00 not need to add the .I extension.
The generator then asks:

OUtput File [<input name>][.OBJ] -
To accept the default name, press [RETURN). If you want a dIfferent name
for the output file, type the name and press [RETURN} The .CBJ extension
will be added to the name for you.
The output file from the code generator is Object code, but It is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB.CBJ, and
IOSFPLIB.CBJ for floating poInt operations. These routines must be added to
the Object file by using the Linker. See Chapter 7 in this manual for more
Information on the Linker.

5.3 1lle Pascal Con1lller Co ,.,B MIs
Compiler commands allow control of code generation, input file control, listing
control, and conditional compilation. The commands all start with a $, and
are placed as commellts in the source program where you want the command
to take effect All the Compiler commands are 11sted In Table 5-1. A
complete explanation of the Compiler commands is found in the Pascal
Reference Manl/aJ for tIJe Lisa.

5-2

Wo.rkshop User's Guide

$1 filename

$U filename

$C+ or $C-

$R+ or $R­

$S segname

$X+ or $X-

$0+ or $0-

$E filename

$l filename

$l+ or $l­

$OECL list

$SETC

$IFC

$ELSEC

Pascal Compiler

Table 5-1
Pascal Con1Jiler Cormlar Ids

Mea1ing
Include contents of filename in this compilation.

Search filename for units used.

Turn code generation on (+) or off (-) for a procedure.
Default $C+.

Turn range checking on (+) or off (-~ Default $R+.

Start putting code modules into segment segname.

Turn automatic stack expansion on (+) or off (-~
Default $X +.

Turn procedure name generation for Debugger on (+)
or off (-~ Default $0+.

List Compiler errors in filename.

Produce Compiler listing in filename.

Turn source listing on (+) or off (-). Default $l +.

Declare compile time variables.

Assign a value to a compile time variable.

Begin conditional compilation section.

Begin ELSE clause of conditional compilation.
$ELSEC is optionaL

$ENDC End of conditional compilation section.

5.4 The Pascal Rt6l-TIme Envirorment
The Pascal run-time environment provides a unit PASLIBCALL which allows
you to use some special system functions. It also provides special heap
manipulation functions.

5.4.1 The PASLIBCPLL Ulit
The unit PASLIBCALL provides you with some additional system functions. In
order to access the PASLIBCALL routines, you must use the units SYSCALL
and PASLIBCALL:

USES
{$U syscall} SYSCALl,
{SO paslibcall} PASllOOAL.L;

This gives you access to the routines listed below. These routines are
contained in IOSPASLIBJEJ, so programs using them require no additional
inputs to the Linker.

5-3

Workshop User's Guide Pascal Compiler

fUlCtioo PAbortflag : boolem

This function tells whether or not the .-period key combination has been
pressed. It enables programs to exit out of long operations. The flag is
cleared when PAbortFlag is called. If you want your program to stop
when you press .-period .. you must use this function in the program to
detect that the key combination has been pressed. For example:

{This progran frcgJB1t ha1gs in a1 infinite loop tIltil _-period
is pressed}

aborted : =false

Repeat {lait for ei-period. Yru mi~t Wa"lt to do other things
here}

aborted : =PAbortFlag;

lI1til cDlrted.

procec1Jre SCreenctr (contrflll : integer);

This procedure provides standard screen control functions .. and enables
programs to perform screen control without having to to use escape
sequences. Escape sequences are explained in Appendix C. The parameter
speci fies the screen control function. It is defined in the constants as
follows .. in the P~LlBCALL unit:

Function

clear screen
clear to the end of screen
clear to end of line
move cursor to hOme posi lion
cursor left one position
cursor right one posi lion
cursor up one line position
cursor down one line position

Screen control example:

Constant
Value

DecTrnal Hex

CclearScreen 1
CclearEScreen 2
CclearELine 3
CgoHome 11
CleftArrow 12
CrlghtArrow 13
CupArrow 14
CdownArrow 15

1
2
3
B
C
o
E
F

{ThiS progran fr8f}lBlt clears the screen, and positions the
cursor 00 the third line}

SCreerctr (CgcjtJme);
screer£tr (CclearScreen);
SCreerctr (Cdo.-.Arrow);
SCretn:tr (CdolnArrow);

5-4

tv'orkshop User's Guide Pascal Compiler

proceciJre GetGlrefix (var prefix: patt'Tale);

This procedure provides your program with the first level prefix setting in
the File-Mgr in the Workshop.

procerure Ge1PrOevice (var PrOevice : e_nanE);

This procedure returns the corresponding default printer device name so
that you can perform add! tional device control functions using
DEVICE_CCNTRCL. (The t:pemting System Reference H8nuBJ for the Lisa
explains the device control call.) The default printer device name is the
one corresponding to the logical device '-printer'. Note that the device
name returned contains a leading '-'.

proceciJre PlINIll£AP (var enun, refrun:integer;
size, delta: longint
Idsn : integer;
swapBlle:booleal);

where:

ern..m

size

refn.m

delta

Idsn

is the error number returned if the procedure has any
problems making a data segment having a mem _size of
size bytes. Appendix A contains an explanation of the error
codes for the Workshop.

is the number of bytes in the heap.

is the refnum of the heap.

is the amount you want the data segment to increase when
the current space is used up. If you use a large heap, use a
large number for delta.

is the logical data segment number used for the heap. The
default is 5. For more information see the t:pemting System
Reference Manual for tIJe Lisa.

~le is the boolean that determines if the system can s'Wap the
heap data segment out to disk if it needs to.

This procedure can be used 'When you have special needs; for example,
when you 'Want to specify your own Idsn or heap size. When you use
PLINITHEAP, you must call it before calling other heap routines. For
more information on the heap, see Section 5.5.

5.4.2 The Pascal ~
The Pascal heap is one contiguous piece of memory, a data segment, 'Which
works automatically without any initialization calL See Chapter 11 of the
Pascal Reference H8ntJ8J for tile Lisa for information on the normal heap
functions.

s-s

Wo.rkshop User's GlIkfe Pascal Compiler

When a Pascal program starts execution, no heap space is allocated (no data
segment made~ en the first call to one of the heap routines or on the first
PLINITHEAP call, the heap is created with either a default size of 16k bytes
or the size specified in the PLINITHEN> call.

PLINITHEAP makes the heap as a private data segment so that the ~erating
System removes it when the process calling PLINITHEAP terminates. Note
that when the heap is initialized, size and delta are put on 512 byte block
boundaries. Therefore, if you use the PLINITHEAP call and specify values for
size and delta that do not fall on block boundaries, the procedure increases
the values to the next block boundary.

If the heap runs out of space while it is being used, the size of the heap is
increased by the default of 16k or the delta specified in PLINITHEAP. The
default ldsn used is 5. If you want a different Idsn for the heap data
segment, call PLINITHEAP. Remember that the size of a data segment is
limited by the Idsn you use. For Idsn 16, you can get only 128k (actually 96k
safely), for Idsn 15 you can get only 256k, for Idsn 14 you can get only 384k,
and so forth. See the cperoting System Reference M8I71181 for the Lisa for
more information on Idsn's and data segments.

If swapable is true, the heap is made with disc_size equal to size so the data
segment is not memory resident. This uses up disc_size bytes on the startup
disc. The default for swapable is false. When swapable is false, the
procedure creates a data segment that has a disc_size of 0 (zero), which
makes it memory resident.

The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and
rEAPRESUL T.

• If you call NEW and not enough space is available, the size of the heap is
increased by either the default of 16k or the delta size specified in
PLINITHEAP.

• MEMAVAIL provides the maximum number of words you could ever expect
to get, taking into account the Idsn you used as well as the amount of free
space the ~rating System currently has available. If another process is
using memory concurrently, its use of memory also affects MEMAVAIL.
MEMAVAIL does not show the amount of memory left in the heap's data
segment alone, since the heap's data segment can grow and shrink over
time.

• MARK sets a painter to the lowest free area on the heap. It is used with
RELEASE to deallocate variables from the heap.

• RELEASE deallocates variables from a marked area of the heap. If you
release the heap to a po1nt with1n the original size of the heap data
segment, the heap data segment is reduced to its original size. More
information on MARK and RELEASE can be found in the Pascal Reference
I'18nuB} for the Ljsa.

5-6

Workshop User's Guide Pascal Compiler

• HEAPRESUL T returns a 0 if the last heap operation was successful,
otherwise it contains the ~erating System error number indicating what
failed. A list of the ~erating System errors is in Appendix A

5-7

NOTES

Chapter 6
The Assembler

6..1 1'he Asserntller .. 6-1
The Assembler translates 68000 assembly language Into macnine
language.

6.2 lJsillQ ttle Assen't)ler ... 6-1
Tne Assembler accepts a text file as Input and prodUCes a macnlne
language (.CBJ) fUe as outpuL

6.3 Assermler ~ ...•.......................... 6-3
Tne Assembler opcooes are tne standard 68000 opcodes, wltn a few
alternate forms for some instructions.

6..4 Asserntller S}'\'ltax ... 6-5
Nt Assembler statement consIsts of an optlonal label, me opcode, and
one or two operands. Tne operands can contain expressions.

6..5 Assembler Directives•.•.•..•..•..........•........•••...............••.•••........•...•. 6-9
TIle Assembler dlrecUves provIae for procedure and fUnctlon Cleflnltlon,
macros, label and constant declaration, listlng control, storage
allocation, and condItional assembly.

6..6 CXlrTrTUllcatlon wi tn Pascal •.•..•....................•••..••...•.......•.•••.•.••...•..• 6-16
Assembly language routines can be eitner procedUres or functions called
from a Pascal program. Parameters are passed on tne Pascal stack.

6.7 Assembly Language EXCIfl)les .. 6-21
Tnis section provides example assembly language routines 1l1ustrating
parameter passing and otner functions.

The Assembler

6.1 The Assermler
The Assembler is a program that translates assembly language source
statements into Object code. The Assembler accepts a text file containing the
source statements as input, and produces an object file as output. The object
file produced must be linked wi th a Pascal main program before it can be
executed.

Assembly language routines are used to implement low level or time critical
functions. This chapter describes how to use the Assembler, and the syntax of
assembly language programs. Information on the machine instructions
available on the 68000 processor can be found in the Motorola MC68000
Reference Manual.

6.2 Using the Assembler
To assemble a program, press A from the Workshop command line. Then
specify the input file (the file that contains your source program) and two
output files: an optional listing file and the object file (the file that will
contain the object code produced by the Assembler).

The input file must be a text file containing assembly language source
statements. You can create this file with the Editor. The output file produced
is an object file (.CEJ) that must be linked with a Pascal main program to be
run.

MY errors in the program will be indicated by messages on the console or in
the listing file. A complete list of Assembler error messages is found in
Appendix A of this manual.

6.2.1 Assembler Options
When you start the Assembler, the option settings are displayed. You can
enter the options selection mode by responding to the input file prompt with
"7'. There are two Assembler options:

P Pretty listing.
S Print information about available space.

Each option may be set to + or -:

+ 01
Off

When pretty listing is on, the forward referenced labels or offsets are filled in
wi th the correct values in the listing.

After setting options, press [RETURN1 and the Assembler asks you for the
name of the input file. The Assembler then asks you for the name of the
listing, and the object files.

6-1

Workshop Users Gujde The Assembler

6.2.2 The Input File
The input file is a text file containing Assembler language source statements.
A file created using the Editor will be in text file format.

When the Assembler asKs you for the name of the input file, type "1" if you
want to change Assembler options at this time; otherwise type the pathname
of your source file. File naming is explained in Chapter 2.

6.2.3 The Object File
The object file prOduced by the Assembler contains a machine code version of
your source program. The name of an object file ends with JBJ. A raw
assembly object file is not executable; it must be linked with a Pascal
program that calls it. See Section 6.6 for further information.

The output file will be an object file which must be linKed with a Pascal main
program before it can be executed. The object file goes to the same volume
as the input text file was on unless another volume is speci fied.

6.2.4 The Listing File
The listing file produced by the Assembler contains a list of source statements
and their machine-language equivalent. If pretty listing is off, all addresses
for forward referenced labels will be presented in the listing file as asterisKs
(*). If pretty listing is on, the actual values will be filled in.

Source statement errors are flagged in the listing. Refer to the Appendix for
a list of Assembler error messages.

M example of an Assembler listing file is shown in Figure 6-1. Figure 6-2
shows the same file listed wi th the pretty list option.

6-2

Wo.rkshop 1..JseJ"'s Guide

0000 I 0000 000 1
0000 0000 0020
0000
0000 303C 0020
0004 4240
0006 '240
0008 6700 ••••
OOOC 60re

one . equ 1
lebel2 .equ $20

move
clr

IIlebel2, ~
~

" ~;:"'''' /' "
11 lee dete, eO

bra.s done

; show listing patch.ng
; eddress filled in
; for beckwerd brenching

; sane more code ...

nap

done rts

deta .byte 2', $30, 19 ; odd nllllber of bytes
.lI1ign 2 ; meke sure next instruction

; is on even

Figure 6-1
Assermler Listing

If you specify a device name such as -printer or -console for the listing file,
the listing will be printed on that device. If you specify a disk file, the
listing will be created as a text file; you may then print it by using the Copy
command in the File Manager command line.

NDlE

If you want pretty listing, the listing output must be sent to a file, not
to a device. Pretty listing is done by making an additional pass
through the listing file to patch in the forward references. There must
be enough disk space for two listing files for this operation to succeed.

6-3

Wo.d<stJop User's Guide

~I
XXI) I ((I()() 000 1
XXI) ((I()() 0020

XXI) I
XXI) 303C 0020
0004

1

4240
0006 5240
0008 6700 0004
oooc 60fB

XX£I

~141fA 0008
0012 6002
0014
0014
0014
0014 4E71
0016 4E7~
0018

1 J01S 19 30 13
X1181 00

6.3 Asserrt>ler ~

.proc

one .cqu
labe12 .equ

lIIove
clr

112 add
beq
bra

ex~nple

1
$20

III abel 2, Ii)
Ii)

liane, Ii)
111 i show listing patching
112 i address filled in

i for backward branching

111 lea date, eD

done

bra.s done

i sCIlle more code ...

nop
rts

The Assembler

data . byte 25, $30, 19 i odd nlJllber of bytes
. align 2 ; make sure next instruction

i is on even

Fi~re 6-2
Pretty Listing

The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User's Manual. The Assembler has two variant mnemonics for branches that
are more indicative of how the instruction is being used after unsigned
comparisons. These variants are BHS (Branch on High or Same) for BCC, and
BLO (Branch on Low) for BCS. The default radix is decimaL

The size of an operation (byte" word" or long) is specified by appending either
.8" .W, or .L to the instruction. The default operation size is Word. To cause
a short forward branch (an 8-bit displacement rather than a word
displacement), append a .S to the instruction. The default branch size is Word.

Note that the T PS (test and set) instruction is not implemented on the Lisa
hardware. Using this instruction may cause timing problems.

Note that the Assembler accepts generic instructions and assembles the
correct form. The instruction ADO, for example, is assembled into ADO,
ADDA, ADOQ, or ADO!, depending on the context.

ADO 03, AS
becomes AOOA 03, AS.

MOVE, CMP, and SUB are handled in a similar manner.

6-4

Workshop User's Gujde The Assembler

6.4 AsserJt)ler Syntax ,
This section describes the form in which the Assembler expects an assembly
language program. The structure of an assembly language program is shown in
Section 6.4.1. Rules for forming constants" identifiers" labels" expressions" and
addressing modes are provided in the following sections.

6.4.1 Structure of ~ Asserrbly L~ Progrcm
An assembly language program contains one or more procedures or functions.
The structure of an assembly language source file is shown in Figure 6-3. The
source file contains an (optional) section of operations that doesn't generate
code. Constants or macros are usually defined here. Next it conains one or
more procedures (.PROC) or functions (.FUNC~ These each contain a sequence
of directives and code generating operations. A procedure or function ends
when the Assembler encounters the next .PROC or .FUNC. The .END directive
is the last statement that is processed by the Assembler. Any text beyond the
.END is ignored.

naJ cotil g::nemting tpeIl1ti07S

.PRCC (or.fLt.C)
a:x.k! genemUty tpenJUlTIS and Illy dimcUves neetkJt1

.PROC

.FLNC
etc.

Fi~ 6-3
structure of iI'l Assentlly L~· Program

The directives that don't generate code are:

.EQU .MACRO .IF .LIST

.REF

.DEF

6.4.2 Constants

.ENDM .ELSE .NCLIST
.ENDC .PAGE

.TITLE

.MACRCLIST

.NCJV1ACRIl..JST

.PATCHLIST

.N{PATCHLIST

COnstants in the Assembler can be either numeric or string constants.

6.4.2..1 ~ric constalts
Numeric constants in the Assembler can be expressed in decimal" hexadecimal..
octal.. or binary. The default radix is decimal. Numeric constants are
expressed as follows:

6-5

WOrkshop User's Guide The Assembler

Decimal
Decimal numbers are formed with the decimal digits (0-9~ Examples:

10
13
137

Hexadecimal
Hex numbers can be expressed in two ways:

1. Preceed the number wi th a "$". Examples:

$FF13
$127

2. Follow the number with an "H". Using this form, the number must start
with a digit (O-9~ Examples:

OFF13H
195H

Q;tal
(ctal numbers are followed by the character "a'. Note thaf this is the letter
0, not the number zero (O~ Examples:

770
1040

Binary
Binary numbers are followed by the character "S". Examples:

10118
1110008

6.4.2.2 strirg Constants
String constants are delimited by matching pairs of single or double quotes.
Examples of string constants are:

"this is a string constant"
'using single quotes as delimiters lets you include "double" quotes'

6.4.3 Identifiers
011y the first eight characters of identifier names are meaningful to the
Assembler. The first character must be alphabetic; the rest can be
alphanumeric, period, underbar, or percent sign.

Examples of identifiers are:

UIP
EXIT PRe
NUM-
num64%

6-6

Workshop User's Gujde The Assembler

6.4..4 Labels cnj Local Labels
Labels begin in column one. They can be followed by an optional colon.

Local labels can be used to avoid using up the storage space required by
regular labels. The local label stack can handle 50 labels at a time. It is
cleared every time a regular label is encountered. A local label is an .,
followed by a string of decimal digits (0-9~ Examples of local labels are:

@l123
@2

mJ79

6.4..5 Expressions ~ ~raton
All quantities are 32 bits long unless constrained by the instruction.
Expressions are evaluated from left to right wi th no operatoI precedence.
Angle brackets can be used to control expression evaluation. The operators
are:

*
/
\
I
&

<>

positive sign or binary addition
unary minus or subtraction
ones complement (unary operator)
exclusive or
mul tiplication
division (OIV)
MOO
logical CJ<
logical .AND
equal (used only with .IF)
not equal (used only with .IF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 .. 4, the addition is performed first. To perform the
multiplication first, rewrite the expression with angle brackets to show
precedence: 2 + <9 .. 4>; or reorder the operands: 9 * 4 + 2.

6.4.6 Addressing Modes
Refer to the Motorola 68000 manual for detailed information on the
addreSSing modes supported by the 68000 microprocessor. Table 6-1 gives a
summary of the addressing modes including their syntax.

6-7

The AsseniJlef

Table 6-1
Slmnary of Addressing Modes

Mode Register Syntax Mealing Extra Words

0 0 .. 7 Di Data direct 0
1 0 . .7 Ai Address direct 0
2 0 . .7 (Ai) Indirect 0
3 0 . .7 (Ai)· Postincrement 0
4 0 .. 7 -(Ai) Predecrement 0
5 0 .. 7 ~Ai) Indexed 1
6 0 . .7 Ai..Ri) Offset indexed 1
7 0 e ~solute short address 1
7 1 e Absolute long address 2
7 2 e PC Relative 1
7 3 e(Ri) PC Relative indexed 1
7 4 1~e Immediate 1 or 2

Notes:

The indexed and PC relative indexed modes are determined by the opcOde.

The absolute address and PC relative address modes are determined by the
type of the label (absolute or relative~

The absolute short and long address modes are determined by the size of the
operand. Long mode is used only for long constants.

The number of extra words for immediate mode is determined by the opcode
size modifier (.W or .L~

All programs that run under the Lisa OS must be relocatable.
Addresses should not be absolute.

6.4.7 Miscellaneous Syntax
ccmnents
A comment in an assembly language program begins with a semicolon. The
Assembler ignores all characters after a semicolon in a line. Examples are:

; This is a COIIIIBlt on a line by itself
CLR.l DO ;comment after a statement

6-8

Workshop User's Guide The Assembler

CUrrent Progrcm Location
The current program location is indicated in assembly language by the symbol
"*". Examples of its use are:

.l'P*
JIl *-4

Move MJltiple (tvUVEM)

, loop infinitely
; Jump back 4 bytes

To specify which registers are affected by Move Multiple (MOVEM), specify
ranges of registers with "-" and specify separate registers VJith "t'. For
example, to push registers 00 through 02, 04, and AD through All onto the top
of the stack:

tIlVEM_l DO-D2/D4/AO-M,-(A7)

6.5 Assembler Directives
Assembler directives tell the Assembler to do various functions besides
generating executable code. These functions include defining symbols and
constants, defining macros, doing conditional assembly, and controlling listing
options.
The Assembler directives (pseudo-ops) are shown in Table 6-2.

Toole 6-2
TIle AssefTt)ler Directives

Directive ~ra1ds Mea1ing
.PR(C <identi fier> begin procedure
.FUNC <identi fier> begin function
.OEF <identi fier -1 i st> make identi fiers externally available
.REF <identi fier-list> declare external identifiers
.SEG '<name>' put code of next .PROC in segment 'name'
.END end of entire assembly

. ASCII '<char -string>' place ASCII string in code

.BYTE <value-list> allocate a byte in code for each value

.BLOCK <length>[,value] allocate length bytes of value

.WCRD <value-list> allocate a word for each value

.L()\JG <value-list> allocate a long word for each value

.ALIGN <Expr> allign next code on multiple of Expr

.eRG <value> place next byte at <value> relative to
beginning of assembly

.RCRG <value> same as .eRG

.EQU <value> set label equal to <value>

.MACRO <identifier> begin macro defini lion

.ENDM end macro defini lion

6-9

WoIkshop Use['s Guide

Directive qlerands
.IF <expr>
.ELSE
.ENOC

.LIST

.NClJST

.PAGE

.TITLE '<title>'

.MACRa...IST

.N()v1ACRCLIST

.PATCHLIST

.NCP A TCHLIST

.INCLUDE <filename>

Table 6-2 (contirued)
The Asserrbler Directives

lV1eanirg
begin conditional assembly
optional alternate to .IF block
end conditional assembly

turn on assembly listing
turn off assembly listing
issue a page feed in listing

The .4ssemble[

ti tle of each page in listing
turn on macro expansion listing
turn off macro expansion listing
turn on patchlist
turn off patch list

include contents of <filename> in assembly

65.1 Space Allocation Directives
The space allocation directives are .ASCIl, .BYTE, .WCRO, .LCNG, and .BLOCK

..ASCII 'string'
Converts 'string' into the equivalent ASCII byte constants and places the bytes
in the code stream. The string delimiters must be matching single or double
quotes. To insert a single quote into the code use double quotes as delimiters.
Similarly for double quotes:

. ASCII -don't" ; string containing sirgle (JJOte

. ASCII 'a "glitch'" ; string containing double qulte

.BYlE <values>
Allocates a byte of space in the code stream for each of the values given.
Each value must be between -128 and 255 .

• BLOCK <length>{,value)
Allocates <length> bytes, each filled with the value given. If no value is
given, a block of zeroes is allocated .

• W(R[) <values>
Allocates a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65535.

6-10

Workshop User's Guide

For example ..

TEMP.IORD 0,65535,-2,17

creates the assembled output:

0000
ffFF
FFFE
0011

.L£NG <values>

The Assembler

Allocates two words of space for each value in the list. For example ..

STlFF .L(Nl 0,65535, -2, 17

creates the output:

00000000
OOOOffff
FFFFFFFE
00000011

<label> .EQU <value>
Assigns <value> to <label>. <value> can be an expression containing other
labels .

.eRG <value>
Puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are inserted from the current location to
<value>.

RCRG
is similar to .eRG. It indicates that the code is relocatable. Because the
loader does not support absolute loading.. .CRG and .RCRG accomplish the
same function. All addressing must be PC relative.

6..5.2 Macro Directives
A macro consists of a macro name .. optional arguments .. and a macro bOdy.
When the Assembler encounters the macro name .. it substitutes the macro body
for the macro name in the assembly text. Wherever "%11" occurs in the macro
body (where n is a single decimal digit) .. the text of the n-th parameter is
substituted. If parameters are omitted .. a null string is used in the macro
expansion. A macro can invoke other macros up to five levels deep. In the
assembl y listing, the listing of the expanded macro code is controlled by the
options .MACRCl..IST and .N(]v1ACRa...IST. These options are described in
Section 6.5.5.

6-11

WOrkShop User's Guide The Assernbler

.HACRO <identifier>

.EtD1

defines the macro named <identifier>. The following is an example of a
macro:

• MACRO
I1JVE
All)

.ENJt1

Help
%1,00
00,%2

If "Help" is called in an assembly with the parameters "Alpha" and "Beta", the
listing created would be:

Help Alpha, Beta
, I1JVE Alpha, 00
, ADO DO, Beta

6.5.3 Conditiooal Assen1Jly Directives
The conditional assembly directives .IF, .ELSE, and .END~ are used to include
or exclude sections of code at assembly time based on the value of· the
conditional expression .

.IF <expressioo>
ldenti fies the beginning of a block of source statements that is assembled only
under certain conditions. If <expression> is false, the Assembler ignores all
statements until a .ELSE or .ENDC is found. The statements between the
optional .ELSE and .ENDC are assembled if <expression> is evaluted to be
false at the time of assembly. Otherwise they are ignored.

<expression> is considered to be false if it evaluates to zero. My non-zero
value is considered true. The expression can also involve a test for equality
(using <> or =). Strings and arithmetic expressions can be compared.
Condi tionals can be nested. The macros HEAD and TAIL given in Section
6.6.1 provide examples of the use of conditionals. The general form is:

.IF <expr>
;assentJled if <expr> is true

.
[.ELSE] ; optional

;assentJled if <expr> is false

.Ett:£

6-12

Wolkshop User's Gujde The Assembler

6.5.4 External Reference Directives
Separate routines can share data structures and subroutines by linkage
between assembly routines using .DEF and .REF. These directives generate
link information that allows separately assembled routines to be linked
together .

. OEF and .REF directives associate labels between assembly routines, not
between assembly routines and Pascal.The only way to communicate data
between Pascal and assembly routines is by using the stack. This is done by
passing the data as parameters in the procedure or function call. Information
on parameter passing between Pascal and assembly language routines is found
in Section 6.6 .

. DEF <identifier-list>
Identifies labels defined in the current routine as available to other assembly
routines through matching .REFs. The .PROC and .FUNC directives also
generate code similar to that generated by a .OEF with the same name, so
assembly routines can call external .PROCs and .FUNCs with .REFs .

. PROC Simple, 1

. OfF Al~, Beta

BNE Beta

Alpha tINE

RTS
Beta tIlVE

RTS
• Eft)

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF .

. REF <identifier-list>
Identifies the labels in <identifier-list> used in the current routine as
available from some other assembly routines, which defined these identifiers
using the .OEF directive .

. PROO Simple

.REF Alpha

JSR Alpha

• Eft)

This example uses the label "Alpha"' declared in the .DEF example.

6-13

Workshop User's Guide The Assembler

When a .REF is encountered, the Assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of D's) and
a short external reference with an address pOinter to the word of D's following
the opcode. If the referenced label and the reference are in the same
segment module, the Linker changes the addressing mode from short absolute
to single-word PC relative. If.., however, the referenced procedure is in a
di fferent segment, the Linker converts the reference to an indexed addressing
mode (off AS), and the word of zeros is converted into the proper entry offset
in the jump table. If the referenced procedure is in an intrinsic unit (and
therefore in a different. segment), the IUJSR, IULEA, IUJMP, and IUPEA
instructions aTe used. The Linker blindly assumes that the word immediately
before the word of zeros is an opcode in Which the low order 6 bits are the
effective address. Thus, a .REf label cannot be used with any arbitrary
instruction. The .REF labels 8Ie intended for .lSI?" .lMp" PEA., and LEA
instroctions.

.SEG
Default segment name is " " (8 blanks~ .SEG "segment name" puts the
code in segment called "segment name". The .SEG directive takes effect
when the next .PROC or .FUNC is reached. Thus it is not possible to split one
procedure into two segments. This is an example of how the .SEG directive
works:

.SEG 'namel'
.PROC A

{code in FROC AI

.SEG 'name2'

{code still in .PROC AI {thiS code will still be in segnent 'namel1

FROC B {code of .PROC B will be in segnent 'ncme21

655 Listing Control Directives
The directives that control the Assembler's listing file output are .LIST,
.NCLIST, .PAGE, .TITLE, .MACRCLIST, .N(]v1ACRCLIST, .PATCHLIST, and
.NCPATCHLIST. If you do not specify a name for the listing file in response
to the Assembler's prompt, the listing directives are ignored.

The default for the Assembler is for .L1ST, .MACRCLIST, and .PATCHLIST to
be in effect when the Assembler starts. . TITLE defaults to blank .

. LIST am .f'.D...IST
Can be used to select portions of the source to be listed. The listing goes to
the specified output file when .LIST is encountered. .NCLIST turns off the
listing. .LIST and .NCl.IST can occur any number of times during an assembly.

6-14

Workshop User's Gujde

.P1V3E.
Causes the next line of the listing file to be printed on the next page .

. TITLE '<title>'
Specifies a title for the listing page. <title> can contain up to 80 characters,
and can be enclosed in either single or double quotes. For example:

. TITlE 'Interpreter'
places the word, "Interpreter", at the head of each page of the listing .

. PATCt-LIST
Patches the forward referenced labels in the listing. It must be on if you
want pretty listing. See Section 6.2.4 for more information on pretty listing .

. NC.PATa-LIST
Turns off patching of forward references .

. MACRCl..IST
Turns on listing of the expanded code from a macro.

NMACRCl..IST
Turns off listing of macro expansion. See Figure 6-4 for examples of macro
listing.

~I
0000
0000
0000
0000
0000

~I
0000\

~I
~I
~I

51 5440
0002
~1524C

00041 0443 OOfr
0008

2 paremctcrs in ltC;
%1 - the Mlount to 8dd to

rcgister that is passed as %2
; %2 - register nMla
. macro ItC
add It'd, %2
.endm

paremeters passed to LEI:
%1 - Mlount to subtract

from register %2
; %2 - regist er nMle
.macro CfC
sub #%1 %2
.endm '

.proc Macnfxemple
ItC 2, dO

fa) #2 dO
ItC 1, a4 '

fa) #1 a4
CfC $rf, dJ

SL5 #$rr, d3
.end

Fi~ 6-4
Macro Listing

6-15

Workshop User's Guide

6.5.6 File Directive
JNCLL()E <filerane>

The Assembler

Causes the contents of <filename> to be assembled at the point of the
.INCLUDE. You need not specify the .TEXT suffix. An included file cannot
itself contain an .INCLUDE statement.

6.6 Cormulicatioo with Pascal
Assembl y language routines must be called from a Pascal program. In order
to call an assembly language routine" the Pascal program declares the
assembly language procedure or function to be EXTERNAL If the assembly
routine does not return a value, declare the assembly routine as a
PRCCEDURE in the Pascal program. If a function result is to be returned
from the assembly routine" declare it as a FUNCTICN in Pascal and space for
the returned value is allocated (by the Pascal Compiler) on the stack just
before the function parameters" if any. The amount of space allocated
depends on the type of the function. A Longint or Real function result takes
two words" a Boolean result takes one word with the result in the high order
byte" and other types take one word. A Boolean result of 0 indicates false"
any non zero value indicates true.

f'lJ1E

Assembl y language programs are in read only memory segments. Thus
they have no data space to write into. My data space needed must be
allocated by the Pascal Compiler. A pointer to the space is then
passed to the assembly language routine. "Writes" to the data space
are done by pointer references using modes like (Ax)" i(Ax)" etc. For
examples of this technique see Section 6.7.5

In the following example, an assembly language routine is linked to a Pascal
program. The assembly language routine accepts two integers and returns the
logical AND of them. The Pascal host file is:

PROGRAM BITTEST;
VAR I, J: INTEGER;
FtmcTI~ IcnJ(i, j INTEGER): INTEGER;

EXTERNAL; (* external = Assentlly l~ *)

BEGIN
i := 255;
j := 33;
WlITELN (I, J,' Nf) = ., IcnJ (I, J»;

EM) •

6-16

Workshop User's Gujde

The Assembler file is:

.FlJ£
t'llVE.L
t'llVE .•
t'llVE.1f
AND ••
t'llVE.W
J'P
• END

IAN)

(Al)+, AO
(Al)+,OO
(A7)+,01
01,00
00, (A7)
(AO)

; return address
; J
; I
; I AND J

The Assembler

; put function result on stack

In the example given above little attempt has been made to make the
assembly language procedure mimic the structure of a procedure generated by
the Pascal Compiler. A complete description of this structure requires some
preliminary discourse.

6.6.1 The RlI1-Time stack
Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment is large enough before the procedure is
entered, the Compiler emits code to 'touch' the lowest point that will be
needed by the procedure. If we 'touch' an illegal location (outside the current
stack bounds), the memory management hardware signals a bus error that
causes the 68000 to generate a hardware exception and pass control to an
exception handler. See the Ljsa Hardware Manual for more information on
the memory management hardware. This code, provided by the Operating
System, must be able to restore the state of the world at the time of the
exception, and then allocate enough extra memory to the stack that the
original instruction can be reexecuted without problem. To be able to back
up, the instruction that caused the exception must not change the registers, so
a TST.W instruction with indirect addressing is used.

In the normal case, the procedure"s LINK instruction should be preceded by a
TST.W e{Al), which attempts to reach the stack location that can accomodate
the static and dynamic stack requirements of the procedure. If the static and
dynamic stack requirements of your assembly language procedure are less than
256 bytes, you can assume that the Compiler's fudge factor will protect the
assembly language procedure, so the TST.W can be omitted. If the
requirements are greater than 32K bytes, e{A7) may not be sufficient because
only 16 bits of addressability are available. In this case, the Compiler
currently emits code that in some cases looks like:

t'llVE.L A7,AO
SUB.L lSize,AO ;.size=dynamdc + static needed
TST.. (AO)

If the Compiler option 0+ is in effect (the default), the first eight bytes of
the memory area following the final RTS or JMP (AO) contain the procedure
name, in upper case (produced by the Pascal Compiler~ The Debugger gets
the procedure name from this block, allowing you to use procedure names in

6-17

Workshop Usef's GlIjde The Assembler

the Debugger. The following example shows how an assembly language
programmer can provide the Debugger with information it needs to perform
symbolic low level debugging. Note that all procedure names must oe in
upper case to be compatible with the Debugger.

,
; ASSEtft.. V LANGUAGE EXAtRE

· ,
;
· ,
;

· ,

;
· ,
;
· ,
· ,
· ,
;
· ,
· ,
· ,
;
· ,
· ,
· ,
;

DEBUGF • EQU 1 ; true => allow debugging with
; proc rlaIIES

!-EAD -- This MACRO ccn be used to signal the
begiming of an assentJl y lCl'lQlJ8ge procerure. I-EAD
should be used IlIhen you 00 not .a1t to build a stC£k
fraroo based on A6, rut 00 .ant debugging information.

No argtllEflts

. MACRO I£AO
.IF 0fBt.G=

LINK A6,IO ; fcn:y to> used by Debugger
.ENDC

.EtD1

TAIL -- This HACRO ca1 be used as a generalized exit
sequence. There are tw cases. First, if you ruild
a stack fraroo, TAIL cal be used to undo the stack
frCIIE, delete the parCIIEters (if any) CIld return.
Second, if you do not want to build a stack fraoo
based on A6, this HACRO cal be used to sigtal the
end of an assentlly language procedure. In either
case if DEBlJiF is true, the Proce£iJre rlaIIE
is dropped by the MACRO as an 8-charaCter naDe.

TIIIO argt.l1Blts:
1) todJer of bytes of paranEters to delete
2) ProcedJre_NaIE as string exactly 8 char~ters,

nust be l4lP8r case.

.MACRO TAIL
IN..K A6
.IF %1 = 0

RTS , 0 bytes of parCllEters
• ELSE

.IF %1 = 4
tIlVE.l (A7)+, (A7) ;" bytes of paraneters
RTS

6-18

Wo.rksl7op User's Guide The Assembler

;
,
;

. ,

. ELSE
t()VE.L
ADD. I
.J1l

.ENOC
.ENJC
.If DEBlIlF

. ASCII ~
.ENJC

.EtD1

(A7)+,AO
ftl,A7
(AO)

, put return addr into AO
, renDVe parans fmn stack
; return to caller

The following e>aJ)le denDnstrates the use of the
TAIL IIBCro for the purpose of debugging. The e~le
assunes that you want to build a stack frane based
on A6. In a real assentJI y language procewre the
zeroes below would be replaced by the local size and
parmeter size .

. PROC SURE
LIN< A6,1O ; zero bytes of locals
MF ; body of procewre
TAIL 0, • SItA...E • ; zero bytes of paraneters
.Et()

These two macros, HEAD and TAIL, can be used to make it easier to debug
assembly language routines called from Pascal programs.

Upon entry to the assembly routine, the stack is as shown in Figure 6-5.

6-19

Workshop User's Gujde

caJle~ Stack. Frame
r----..... ---.-.--.-----

Fl.IlCt.1oo Result (if a ft.nctioo)
1-------_···_-_· __ ·

ProceaJre Ar1J..menU (If iI"IY)

Static Lin< (if iI"IY)

Return AOcJress

___ D_ynaml_C_L_in<_(O_ld_AD_) __ _

Local Frame
f-------------

A7 --+ '--_______ Low Menmy

Figure 6-5
"Ire Pascal Rtn-TIme Stack

The Assembler

The ftnclilKJ result is present only if the Pascal declaration is for a function.
It is either one or two words. If the result fits in a single byte (a boolean,
for example), the most significant half (the lower-addressed half) gets the
result value.

Procedure aTglJfflents are present only if parameters are passed from Pascal.
They are pushed on the stack in the order of declaration. All reference
parameters (parameters declared as VAA.'s in the Pascal Procedure or Function
declaration) are represented as 32-bit addresses. Value parameters less than
16 bits long always occupy a full word. A boolean parameter passed by value
occupies a word with the value in the most significant byte (the
lower-addressed byte~ All non-set value parameters larger than 4. bytes are
passed by reference.

The static Jjnk is present only if the external procedure's level of declaration
is not global. The link is a 4-byte pointer to the enclosing static scope.

It is the responsibility of the assembly language procedure to deallocate the
return address, the static link (if any), and the parameters (if any~ The SP
(stack pointer) must point to the function result or to the previous top of
stack upon retum Registers 04 through 07 and A3 through A7 must be
preserved. We recommend that you also preserve 03 and A2..

6.6.2 Register Conventions
The followIng are the register conventions used in the Lisa system. It is your
responslbill t y to preserve these registers.

6-20

Wo.rkstJop User's Gukie

DO-D2/AO-Al: Scratch registers (can be clobbered)
D3,A2: Scratch registers, but should be preserved

Used for code optimization (must be preserved)
Pointer to user globals (must be preserved)
Pointer to base of stack (must be preserved)
Top of stack

D4-07/A3,A4:
A5:
A6:
SP:

Registers 03 and A2 may be used at some time in the future by the Compiler
for code optimization, so you should preserve them also.

6.6.3 Parcmeter Passing Between Pascal cn:1 Asserrol Y L~
Parameters are passed between Pascal and assembly languagp routines in the
following ways:

by value:
boolean a word on the stacK with the boolean value in the

most significant byte of the word (lower, or even
address~

integer a word
longint two words
data structure by address (4 bytes~ It is the responsibility of the

assembl y language routine to interpret the data
structure cor recti y.

by reference (VAA parameters):
all types by address (4 bytes on the stacK)

6.7 Assen1l1y L~ EXffilJles
6.7.1 UsirlJ REF and .DEF Directives

The first example illustrates the use of .REF and .OEF. These two directives
allow an assembly language routine to reference other assembly routines.

The Pascal host file is:

program WasteTime;
procedure leit (time : integer);

external;
begin

writeln ("Going to waste SOOE tillE');
wait (50);
writeln ('Finished wasting time');

en:L

The assembly language file is:

.proc wait

.ref cycle

• ref DDre time
lJIlVe.l (a7)+,aO

; need to use a piece of code
; ttlose entry point is cycle
, defined outside procewre walt
; arother outside procedure
; return address in aO

6-21

nDVe • W (a7) + , dO

Jsr cycle
jsr more time
j~ (aO)-

T/7e Assemblef

, need to wait this na1y cycles
; a parameter for cycle

, wste DDre tire
, return

; the stbroutine used by wait is defined in the
; follo"irl!} code. this proc could do other things
; besides the cycle rwtlne
.proc def_cycle
.def cycle ; cycle visible to other procs
,
; code can go here
;
rq>

cycle

Sli>
me
rts
,

'1, dO
cycle

; e~le of a line of code
; begiming of the cycle rrutine
; parameter is in dO

; more code can go here . ,
.proc
elr

iil aa:i
me
rts

.eM

more tiRE
dO -
12, dO
ill

6. 7 .2 strirl!} Parcmeters

; wste RDre tiRE
; use dO as tirer

The followIng program Illustrates how to pass a Pascal strIng to an assembly
language program, mOdify the string, and return it Pascal strings have their
length stored as the fIrst byte In the string.

I\IJTE

Assembly language routines are in read only segments and dO not have
theIr own data (read/wrIte) area. All read/write data should be
deClared in Pascal and passed to the assembly routines using pointers.

6-22

Workshop User~ Guide

The Pascal source file is:

progran pasStr;

type strType = string[80];
var str : strType;

ch : char;

procedure AsmStr (var str strType);
external;

begin
str := 'initial string in Pascal main program';
writeln (str);
AsmStr (str);
writeln (str);
Initeln;
write ('press any key to centime');
read (ch);

end.

The assembly language file is:

. prce AsmStr

The Assembler

move. I (A7)+,AO
RDVe.1 (A7)+,Al
move. I A2,-(A7)

;return address saved in AD
;address of string from Pascal
; save scratch register A2

lea
clr.l
nnve.b

move.b
copy subq

blo
move.b
bra

done move.l
jql

size .byte
myStr

.ali\Jl

size,A2
DO
(A2),DO

(A2)+, (Al)+
'1,00
done
(A2)+, (Al)+
copy

(A7)+, A2
(AO)

38
. ascii
2

6.7.3 Writing a FlIlCtim

;get size of string

;copy size of string
;done copying string?
; yes, return to Pascal
; one char of string

;restore scratch register
; return to Pascal

'this string is from the Lisa Assembler'
; get on a word bolIldary

The following example shows how to write a function in assembly language.
This function returns a boolean value.

6-23

Workshop User's Gujde

The Pascal program is:
program boolealflllCtion;
var int: integer;

ch : char;

ft.rlCtion swapBytes (var int : integer) : boolean;
external;

{ if a parameter is passed by reference
(a var parmEter) its addesss is passed
to the assentlly rrutine on the stack }

begin
int := 256;
writeln ("the initial value of int = ", int:1);
repeat

if swapBytes(int) then
writeln ("int = ", int:1)

else writeln ("int = 0, ft.rlCtion value is false");
int := int - 1;

until (int < 0);
write ("press any key to continue");
read (ch);

end.

The assembly language function is:
. ft.rlC swapBytes
move. 1 (A7)+,AO
move. 1 (A7)+,A1
rove (Al), 00
ror 18,00
IID\Ie 00, (Al)

bne iit

; pop retum address
; get address of .-oro to swap
;-, get the rumer
; swap the bytes
; ~ it back

The Assembler

clr (A7) ; rutler = 0 so return false (0)
bra iit2

ii1 IID\Ie t$fFFF, (A7) ; return result true (non zero)
iJ2 j~ (AO) . return. to calling program ,

• end

6-24

WOJ'kshop User's Gujde The Assembler

6.7.4 Galling Pascal 110 Routines
The following example illustrates how to call Pascal routines from assembly
language to do 110. Note the use of macros for calling the Pascal routines.
progran AsmIO;

type strType = string[80];

var str:strType;
f1, f2: text;
ch: char;

procerure main;
external;

{llE FG..LOIIMi FlJ£TI~ ARE CAlLED FROM 1l£ ASSEtft..V LAtQJAGE
PRffiRAt1 MAIN TO PERFrntI I/O}

function f_rewrite (f_num: integer; f name: strType):integer;
begin

case f num of
1: rewrite (f1, f natE);
2: rewrite (f2,f-natE);

end; -
f re.rite := ioresult;

end;
function f reset (f num: integer; f name: strType): integer;
begin - -

case f num of
1: reset (f1, f_nanE);
2: reset (f2,f name);

end; -
f reset : = ioresul t;

end;

procetlJre writeLine (f_ruD: integer; var S: strType);
begin

case f run of
0: write (s); {file id = 0 means write to -console}
1: write (f1, s);
2: write (f2, s);

end;
end;

procedure .riteLF (f_ruD: integer; var S: strType);
begin

6-25

WOJi<sllop User's Guide

case f run of
0: writeln (s);
1: writeln (f1,s);
2: writeln (f2, s);

end;
end;

procedJre f_close (f_run: integer; lock_file: boolea1);
begin

case f run of
1: if lock file then

close-(f1,lock)
else

close{fl);
2: if lock file then close(f2,lock)

else close{f2);
end-,

end;

{TI£ HAIN PROGRAt1 CAllS Tl£ ASSEtfl.V lAtGJAGE HAIN}

begin

The Assembler

writeln ('test program - using assembly main routine to do 1/0');
writeln;
lIBin·
wri~ ('press any key to continue');
read (iJl)Ut,ch);

end.

The assembly language file is:
.proc main

;== . , EXTERNAl REFEREta:S AN) C(H)TANTS
;==

. ref wri telF

. ref writeline

. ref f rewrite
_ ref f-reset
.ref (~Close

first file .ecJJ
printerId .equ

1
2

; id , of file one
; id , of file '-printer'

; return address to the Pascal l18in routine is left on the stack

6-26

WOJ'kSlJqJ User's Guide

ft====================================== ,
; t1.AffiOS TO CAll PASCAL FLtCTI~
-====================================== ,

Gal

Gal

.macro open_write_file ; '1 --- file ,
,
elr

~ --- file name
-(a7)

I1DVe 1%1, -(a7)
lea ~,aO
RDVe.l aD, -(a7)
jsr f rewrite
I1DVe (87)+,aO
ble iiI
error %2

.erdn

.mero open _read_file ; '1 --- file ,
,
elr

%2 --- file name
-(a7)

flDVe
lea
nnve.l
jsr
nDVe
ble
error
.enin

A1, -(a7)
%2,80
aO, -(a7)
f reset
(87)+,80
ii1
~

.macro .rite file
; '1 --- fife ,

; reserve space for ftrCtim
; resul t flUD f rewri te
; file id , as first param
; secc:nj paran is fIle raE

; pop IOresul t

; IDresult > 0 -> error
; (nested macro call)

; reserve ~ for ftrCtlm
; result of f _reset

; pop IOresul t

; IDresult > 0 -> error

; .rite a line (.ith ro linefeed)

; %2 --- label of strirg to be written
IIDVe "1, -(a7)
lea %2,al
RDVe .1 aI, -(a7)
jsr writeLine

; puSh strirYJ aa:ttess roto stack
; .rite it out .

.enctn

.lIBCro .riteln_file ; .rite a line of text .ith
; l1nefeed

; '1 --- file ,
; ~ --- label of string to be written

6-27

Wo.rkslxp UseIY Gukie

mve
lea
RDVe.1
jsr
.eoon

n1, -(a7)
\2,al
aI, -(a7)
writeLF

.macro close fIle
; '1 --- fife ,

TtJe Assemblel"

; puSh string adaress onto stack
; write it rut

; t2 --- close status code
; 0 - $(lOff oormal close
; S0100 - Sffff lOCk
move "1,-(a7)
move '~,-(a7)
jsr f_close
.er"On

.lnOCro error
; '1 --- file name
write_file O,erIStr

writeln file 0,'1
rts -
.erQn

; wrIte error message
; to -coosole
; (file id , 0)
; rutpJt fIle rmE also
; ,,,,It

;=====================================
MAIN ASSEtIl. Y lNGJAGE PRWW1

;=====================================

open_write_file first file,file1 ; open IO/record.text
open_wrIte_file pr1nterI~ prlnter

writeln_flle 0, qJenstr ; write the openstr
; to -console (fIle' 0)

wr iteln_f 1 Ie first_file, string ; write string to
; first file

writetn_fIle prlnterld,strl ; wrlte:strl to printer

close file first flle,SOlOO ; lOCk first fIle
close = file prlnterld, 0 ; dO not lock the printer

open_reed_file l,file1 ; no error shoUld occur
close_file 1,$1fff ; preserve fllel

6-28

; no errFile arolnt. struld
; cause error.

Works!7op User's Guide

rts

;=====;;=========
; (lH;TMlTS
;===============

file1

printer

strirg

strl
myStr

openstr

errStr

errfl1e

. byte

.ascii

.aligl

. byte

.ascii

.aligl

. byte

. ascii

.aligl

. byte

.ascii

.aligl

. byte

. ascii

.allgl

. byte

. ascii

.all~

. byte

. ascii

.all~

.en:.t

The Assembler

; book to Pascal main
; program

14
, IO/record. text ·
2

8
';Jrinter'
2

38
· this string is fron the lisa Asselltller'
2 ; make sure on even menDry

34
'another strirg from Lisa Assentller'
2

26
'opened file IO/record.text'
2

22
'error 1n opening file '
2

6
'mile'
2

6-29

Wo.rksfJq:J UseE:S- Guide The AsserrOler

6.7.5 Using Pascal Data Areas
Assembly language routines are in read only segments and do not have a data
area. Any data area that must be written into must be declared in the Pascal
program and referenced in the assembly language program by pointers. The
following two examples illustrate the correct and incorrect ways of doing this.
The correct example illustrates how to do a READLN from an assembly
language program.

The first example illustrates the "obvious" and jncDEfect way of doing a
RE.ADLN from an a5semb} y language program. The Pascal program is as
follows:

progrCIR AStIJenD;

{ BAD EXAtR.E: Note that this eXCllllle does not wrk, becaJse
it tries to write into a neoory space reserved by the
Assent>ler. Data space IJlJst be set l4J in the Pascal progran
<nj refereoced by a pointer vari~le. The following e~le
illustrates the correct .ay of doing this. }

type
PasStr = string[255];

var
ch: char;

procedure w_write(S: PasStr);
begin

write(s);
erxj;

procedUre w_writeln;
begin

writeln;
end' ,

procewre w __ readln(var s: PasStr);
{ read aline fran -aJGl.E cnj put it into

(wri te to) string s }
begin

readln(s);
em;

procewre lIBin; external;

begin {AStI)em}
min; { call to assent>ly ICl"9JSQe routine }
wrl tee · That • • s all folks, type space to cootlr..e·);

6-30

Workshop Users Gujde

repeat reoo(ch); lIltil ch = • ';
end. {ASttleAD}

This is the corresponding jncorll!Ct assembly language program:

.proc Ein

. ref __ write, __ writeln, __ remln

.lIIBCro

lea
1IIlVe.1
jsr
.erdn

.lIIBCro

%1, ao
ao, -(a7) ___ rite

a writeln

jsr __ writeln
.erDn

. macro a readln

; (s: passtr)
; %1 = string label

; I'm paralEters

; (var s: passtr)
; %1 = string label

The Assembler

; ===================================

lea

rove. I
jsr
.erOn

; Put the address of the strirg into
, Ihich a line is to be rem m the
; stack cnj call Pascal routire to
; read the string.

=================================== ,
%1, aO

aO, -(a7)
_ readln

; This space has been
; reserved for the string.

=============================== ,
; MAIN ASSEt&.. V LAtGJAGE PR(GW1

; ===============================
a write stringl
a-Riteln
a-.rite hello

6-31

; This _ill write a string
; a1d a ne_Iine.

Workshop User's Guide TI7e Assembler

========================= ,
a_reooln strirYJspace , NlTE: this will fail

, with a bus error
, because strirYJspace is
, in progrCIII space (read
, lIlly), rot in read/write
, IIBIDry space.

========================= ,
a writeln stringspace
rts

hello . byte 13
. ascii 'Type a line: ,

.ali~ 2

StrirYJSpace . block 256 , save SOle space for a
, readln. This block of
, IIEI1Dry is inprogrClJ1
, space, therefor it is
, read lIlly.

.ali~ 2

Stri~l . byte 39
. ascii 'This strlrYJ is from the Lisa Assembler . ,
.ali(}'l 2

. cOO

This is the cor.rect way of doing a REAOLN from an assembly language
program. Note that the string "s", declared in the Pascal program, is used in
the 'wi _readln function and passed to the assembly language program by
pointer.

progrCIII AStIlenD;

{ (D]) EXAtR.E: This e~le does a readln by uSirYJ a pointer
variable as a paraneter. This allows the string to be
reserved by the Pascal ~ller. }

type
PasStr = string[2SS];
ByteP = APasStr;

var
s: PasStr; {this strirlJ is allocated in read/write

IIBIDry by the Pascal ~ller }

6-32

Workshop Usefs Gujde

ch: char;

procewre w_write(S: PaSStr);
begin

write(s);
end;

procedure w_writeln;
begin

writeln;
end;

function w_readln: ByteP;

The Assemble]"

{ This flllCtion reads a line into the strirg s (space
allocated by the Pascal Compiler in read/write memory
sef}1EI1t) cn:J returns address of s to assentJly rrutine }

begin
readln(s);
w_readln := pointer (~s);

end;

proced.Jre min; external;

begin {AStflenD}
fEin; { call to assentlly l~ routine }
write('That"s all folks, type space to continue');
repeat read(ch); lI1til ch = ' ';

end • {AStIlenIl }

This is the COfrect assembly language program:

.proc RBin

.ref w_write, ._writeln, w_readln

. macro a write ; (s: passtr) ; '1 = string label
lea '1, aO
rove. I aO, -(a7)
jsr w_write
.encb

.mero a_writeln ; no parCIIEters

jsr w_writeln
.erOn

6-33

WoJ1<sIJop user's Guide

hello

StrlrYJl
. ascii
.al1g-a

; f~tial I _readln: ByteP;
; ==
; This flR:tim expects the Pascal rrutlne
; I _readln to return the pointer to the
; strlnJ in Ihlm a line has been read
. ==

elr.l ~(a7)
jsr I_readln
.erDI

a_,rite stringl
a ,rlteln
a-,rite hello
a:=readln

jsr '_W'ite

a Iriteln
rts

13

; this lill Irite a string
; a1d a newline

; leaves the cDttess of
; string read at top of
; stad<
; takes top of stack as
; paraweter

. byte

. ascii

.allg-a
'Type a line: '
2

.byte 39
'This string is from the Lisa Assembler.'
2

.em

6-34

NOTES

"'OJS9-A

Chapter 7
The Linker

7.1 TIle Linker .. 7-1
The Linker is a program that combines object files to create an
executable file.

7.2 lJslr.g ttle Linker .. 7-2
The Linker combines object files to prodUce executable programs.
Inputs to the Linker are object files, command files, or options.

7.3 TIle Linker ~tions ... 7-2
The Linker options control how a link Is performed. A Itst of the
current option settings is displayed when you enter a "?" to the options
prompt.

7.4 I-bw 00 I Uri< a Main Progmn? ... 7-4
A main program is linked by giving the Linker the object file from a
Pascal program" along with all assembly language routines, complIed
units, and libraries that the program uses.

75 RegJlar CI1d Intrinsic Lklits .•.......•....•..•... 7-4-
Regular and intrinsic units are both Pascal units" separately complled.
A .regula.r unjt is linked wi th a main program and becomes part of the
executable file. An intrinsic unit Is shared among all programs that
use it" both on disk and in memory.

7.6 1l1e Linker Listing .. 7-5
The Linker listing provides a summary Of the linking process and
resources used. cptionally ... you can request lIsts of all symbols used

7.7 ResolvtrlQ ExtelTlal I\IarneS .•..••••..••••••.•..••••.••••••.•••••••.•.•.••••••••..•••.••.•••. 7-6
Extemai names are symbolic references to separately compiled modules.
The Linker maps them to actual addresses.

7.8 I'1odule Irlclusioo , .. , .. 7-6
The Linker only InclUdes modUles that are actually referenced.

7.9 ~tation ... 7-7
segmentjnga program allows portions of it to be swapped out of
memory when not in use. Segmentat10n Is controlled by a combinat1on
of compiler commands, Linker options, and the Changeseg utility.

The Linker

7.1 The Lin<er
The Linker combines object files. Its input consists of coornands and object
files. Its output consists of Object files, link-map information, and error
messages. The output of the Pascal compiler must be linked with
IOSPASLIB.CBJ before it can be executed. Other object files, including
intrinsic unit libraries, and object fUes produced by the Assembler, can also be
linked into the output Db ject file.

When a program is compiled into an Object file, it contains the following sorts
of things:

• (l)ject code, in the form of relocatable machine language, that expresses
the algorithm of the program.

• Symbolic (named) references to all locations that were not known at
compile time. These include externally compiled routines (units and
intrinsic units) and the Pascal library support routines (IOSPASLlB.CBJ).

• Other information to be used by the Linker.

The purpose of the Linker is to resolve all the symbolic references (link
references to definitions), and output an object file that can be executed. The
Linker also sorts the code modules into named segments. These segments are
swapped into memory at run time by the ~rating System.

The Linker does its work in two phases. In the first phase, it reads all the
input files, and finds all symbolic references and their corresponding
definitions. Errors such as duplicate and missing references are detected
during phase one. In the second phase, the Linker copies code from the input
files into the output files in executable formal

If the Linker can't find something that is addressed symbolically, this is an
error. M error message will be printed, indicating the missing module. This
process of finding the real addresses that correspond to the symbolic addresses
is called resolving the extemaJ refeJ1!Jl7CB.t

The Linker expects to find the file INTRINSIC.LIB. INTRINSIC.L1B is a
directory of Ubraries and intrinsic units, and includes information for the use
of the Linker. INTRINSIC.L1B defines all the intrinsic units supplied with the
Workshop system.
To create an executable fUe, the Linker must have the following inputs:

• The object file from a main Pascal program.

• IOSP ASLIB.C6J to provide the standard Pascal procedures and fl.llCtions.

7-1

Workshop User's Guide TI7e Linker

• IOSFPLlBJEJ ... If you are usIng any floating poInt varIables.

• (l)ject files for any other external procedures referenced by the main
program. These can be Pascal units, assembly language routines, or
intrinsic un1 ts defined in INTRINSIC.LIB.

The Linker combines these files and creates an executable object file. If it is
unable to link these files correctly to create a legItimate output file, the
Linker displays an error message. If there is an error ... the object file is not
prOdUced.

When linking a main program, all references to external objects must be
resolved. Partial links are not supported.

Whlle It Is lInkIng a maIn program, the LInker does a dead COde analysis and
does not include any routines that are not referenced. unnecessary routines
are ellminated from the main program ... and from the regular unIts gIven as
Inputs to the link.

7.2 USlr'J the LIrj(er
The Linker is started by pressing L in response to the Workshop command
prompt. The Linker prompts you for the input files, the listing fUe, and the
output fUe. ~tions can be entered after entering "?" in response to the input
file prompt. After all file names and options are entered, the link begins.
Hence the set of options in effect is the same throughout the link. It is not
pOSSible to change options part way through the link. When entering an input
file name, it is not necessary to enter the .CBJ extension; the Linker will
provide that as needed for input files.

The Linker w1ll accept optIon commands and Input fUe names from a
command f11e. A command file Is a text file containing the file names and
optlons, one per lIne. If a blank Hne exiSts In the fUe, the Linker treats thIs
as the [RETURN] that sIgnals the end of the Input flIes. You use a command
fUe by typing "<00 followed by the name of the text file the commands are in.
lt is not necessary to enter the . TEXT extension; the Linker will provIde that
as needed for all Input conmand flIes. Create the text fUe by using the
Editor.

The default listing Is -console. You can send the listing to a text file by
entering its name in response to the listing file prompt. When sending the
listing to a text file, you do not need to provide the . TEXT extension, since
the Linker provides it.

After entering the ouput file name, the link begins. If no errors occur during
the llnk and all external references are resolved, the output file 1s executable.
A message is printed at the end of the link to tell you if the output is
executable.

7.3 The Lln<er ~t1ons
To enter the Linker options mode, type O'? [RETURNJ" in response to the
prompt for an input file. To leave options mode and return to entering input
files, press [RETURN] in response to the options prompt. The order in Which

7-2

Workshop User's Gujde The Ljnker

options are entered is unimportant, because they have no effect until the link
begins. The last value entered for an option is the value used when the link
is performed.

Q:ltions are represented by a single character. A to+" in front of the character
makes that option take effect. A "_to sets the Linker so that option will not
happen. In addition to being set on or off, some options have additional
parameters. Numeric parameters can be in either decimal or hexadecimal.
Hexadecimal numbers are indicated with a leading "$". The current setting
of all options can be displayed by entering a "?" in response to the request
for an input file or an option.

The Linker options are as follows:

+A Alphabetical listing of symbols. The default is -A

+0 Debug information. The default is -D.

-H num -H sets the initial disk space allocated to the program's stack.
The default is to automatically include space for the program
variables and the value specified in the +S option.

+L Location ordered listing of symbols. The default is -La The
location is the segment name plus offset.

+M fromName toName
+M maps all occurrences of the segment fromName to the
segment toName. This allows you to map several small segments
into a single larger segment You can thereby postpone
segmentation decisions until link time by using many segment
names in the source code.

f'IJTE

Because options have an effect only when the link begins, it is not
possible to map a segment name to several different names using this
option. Also, you camot use this option to map segments to or from
the blank segment.

+S num +S sets the starting dynamic stacksize to 'num'. The default is
10000.

+ T num + T sets the maximum allowed location of the top of the stack to
'nurn'. The default is 128K.

+ W + W tells the Linker to get intrinsic unit information from a file
other than INTRINSIC.LIB.

? Prints the options available and their current values.

7-3

WO.rf<s/Jop User's Guide TI1e Linker

7.4 How 00 I Lin< a MaIn Progrcm?
A main progJ'8fT7 consIsts of a Pascal program llnked wIth all routines
necessary for it to run. A main program is the only type of executable object
file produced by the Linker. To Unk a main program you must have the
following:

• A compiled Pascal PROORAI'1 object file.

• (J)ject files for any other unIts the program uses. ThIs Includes flIes for
regular units and assembly language routines. My intrinsic units used
must be defined in INTRINSIC.LIB.

• IOSP ASLIB.CBJ, and lOSFPLIB.CBJ (if any real varIables are used~

When you have all the above fUes, proceed as follows:

1. Execute the Linker by pressIng "L" when the Workshop command prompt Is
displayed. The Linker dIsplays a header and asks you for an input fUe.

2. Enter any desired options. To enter the options mode, press "? [RETURN1"
in response to the request for an input file. See section 7.3 In this
chapter for information on Linker options. Press [RETURN] after each
option entered. When you have entered all the options, press [RETURN] to
begIn entering Input fUe names.

3. Enter the fUe names for all the object fUes, pressing [RETURN] after each
one. The file names can be entered in any order. You do not need to
enter the J13J extension; the Linker will automatically append it

4. Press [RETURN] to Indicate the end of the Input flIes.

5. The Linker prompts you for a listing fUe. Enter the fUe name desIred, or
press [RETURN] to accept the default of dIsplayIng the listing on the
-console.

6. The Linker prompts you for the' output fUe. Enter the rrcme of the
executable fUe you want produced. You do not need to enter the J13J
extension; it is supplied automatically.

The linking process begins when you press [RETURN] after entering the output
file name. If the llnk Is successful, the message II{)Jtput is executable" will be
displayed. If the link is not successful, error messages are displayed.

75 RegJlar ald intrinsIc Ullts
The two types of units are regular units and intrinsic units. Each is a
separately compUed code module that may be used by a main program or
another unit The syntax of a Pascal unit is explained in the Pascal
Refemnce Mantl81 for tI7e Lisa.

A regular unit is combined with a main program by the Linker and included in
the resulting object file. M intrinsic unit, on the other hand, is stored
separately on the disk, and loaded at run time. Thus, only one copy of an
intrinsic lIllt is kept on the disk, no matter how many main programs use it.

7-4

· WorksIJqJ Llsef's Guide The Ljnkef

In addition to being shared on the disk, an intrinsic unit is also shared in
memory.

The current implementation has no provisIon for users to create new
intrinsic LIlits. All intrinsic units are supplied by Apple Computer.

7 5.1 ~ 00 I Lin< with a R~ar U1lt?
A regular unit is a separately compiled segment of code. It Is written in
Pascal, and compiled like a regular program. See the PBScol Refemnce
M8nl/al fOf tIJe LjS8 for information on how to write a LI1it. See Chapter 5
in this manual for information on compiling the unit.

After you have created a unit, the routines in it can be accessed from any
other program or regular unit you write. The Linker combines a main program
with all units it uses. The result is an executable object file containing all
the needed routines.
To use regular units with a main program, follow the procedure in Section 7.4.
~ input, you must give the Linker:

• The object file of the main program.

• The object files of all mits used by the main program.

• IOSPASLIB.OOJ, and IOSFPLIB.OOJ (if any floating point variables are USed~
The Linker combInes all these object files into an executable object fUe. It
also does a dead code analysis to eliminate any routines that are not used, to
redUce the sIze of the object f11e.

7.6 The lin<er Listing
A listing is produced each time a program is linked. This listing can be sent
to a file, or displayed on the console (the default~ The +A option gives you
an alphabetical list of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced in stages, as follows:
1. The input files are reacJ, and a summary of the resources used is prInted.
2. . The linking process begins. Information about the si2e of each segnent is

printed.
Errors are reported as they are found, and you are told whether or not the
output is executable.

If you requested optional listings, they are also printed. M example of a
Linker listing with no options requested is shown in Figure 7-1. Linker
listings are mainly used for debugging at the machine code level. See
O'lapter 8 for more information on the Debugger.

7-5

Workshop User's Gujde TI7e Ljr1ker

B~glnnlng .nor'l - 262~89
Aftpr static allocat! on. anor'l - 196915
Input tI I. [. OBn ? TRANSVOL
Input til. LOBn ? IOSPASLlB
Input (II. [. OBn ?
Llstln\l fill' [CONSOLEr)/[. m<TJ -
Output f II. LORJl - TRANSFERJLS
Rudlng fll.1 TRANSVOL.OBJ
Rudlng fll.: 10SPASLlB.OBJ
Rtad 2 f lIn. u,,· 199

~ If;nnh. IlX· 129
16 udul 1"· HS9
32 .ntrln. lax· 2999
38 rtf. lists. 11K· ege9

12~ rthr.ncn. UK • 16ege
Link Ing Hlln Progr ...
Actlvt: ~ of 16 rnd.
Vlslblt: 1 of 32 r.ad.
Global data: .ge967C
Co .. on data I ,eeeeee
Link Ing SI\I.tnt W: B I f II. (JT) "\II 1 .Iul 2999

B4!\llnnln\l ... or'l - 18H97
Endln; n.orv - 194932

e Error. d.t.chd.

Tht' output Is ,x!Cutablt.
Elapud tlw" 298 and 394/1e99 Itconds.
That'. all Folks I"

Fig.ae 7-1
A Lin<er ListilYJ

7.7 Resolving External Nanes
M external name is a symboliC entry point into an object module. All such
names are visible at all times--there is no notion of the nesting level of an
external name. External names can be either global or local. A locel name
begins with a $ followed by 1 to 7 digits. Local names are generated by the
Pascal compiler. A globel neme is any name that is not a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global names are not allowed. O1ly one definition of a given
global name can occur in a given link. The one exception to this is that the
Linker accepts duplicate names where one instance is in a main program or
regular unit, and the other is in an intrinsic library file. In this case .. a
warning is issued, and the entry in the main program or regular unit is used.

The scope of the local name is limi ted to the file in which it resides. All
references to a given local name must occur within the same input file.
When a link is done .. global names are passed through to the output file
unmodified, but local names are renamed so that no conflicts occur between
local names defined in different files.

7.8 Module Inclusim
When linking an intrinsic unit .. all code modules in the unit are included.
When linking a main program with regular units .. the Linker does a dead code
anal ysis and does not include any modules that are not called.

7-6

Wo/1(StJop User's Guide TI7e Linker

7.9 Segnentatloo
Segmenting a program makes it possible for portions of t.re program that are
not being used to be swapped out to disk, thUs making better use of memory.
The way a program is segmented affects its performance.

Segmentation is controlled by three things:

• The $S Compiler command and the .SEG Assembler opUon, which assign
segment names to source code modules.

• The +M Linker option, which enables you to remap compiler segment
names into new segment names.

• The Changeseg utility, which enables changing the segment names prior to
linking. See Chapter 10 for Information on Change5eg.

7-7

NOTES

Chapter 8
The Debugger

8.1 llle lJetJlIgger ... 8-1
The DeOUgger allows you to examine and modi fy memory ~ set
breakpoints, assemble and disassemble instructions, and provides other
functIons for run-time debugging.

82 InadVertent Entry Into the [)et)ugger .. 8-1
If you have a bug in your program or a system malfunction, you may
inadvertently enter the Debugger. This section tells you hOw to deal
with this.

8.3 lJstflQ the lJetJlIgger .. 8-6
Enter the Debugger by pressing 0 in response to the command prompt,
or by pressing the NI'11 key. The Debugger prompt (» indicates that it
1s ready to accept commandS.

8.4 TIle [)et)ugger en I" tar Ids n 8-10
Commands are available for assembly and disassembly of instructions,
displaying memory and registers ... setting breakpoints and traces ... memory
management, and base conversions.

85 StrrITlary of [)et)ugger CorTrTlaIIds .. 8-20

The Debugger

8.1 The OeDgger
The Debugger allows you to examine and modify memory, set breakpoints,
assemble and disassemble instructions, and perform other functions for
run-time debugging.

Procedure names are available to the Debugger for program units compiled
with the 0 option on. The Debugger uses the symbolic names wherever
appropriate.

The Debugger's symbol table contains the user symbol table and the
distributed procedure names. The user symbol table contains symbolS the user
defines while using the DebUgger and the predefined symbols for reglsters.
Section 6.6 in this manual contains more information about the run-time
environment of programs.

When you enter the Debugger, the Debugger screen is made visible by the
Debugger. You can display the main screen by pressing [CPTICN) and [ENTER]
to see the state of the program before the Debugger was entered. Redisplay
tne Debugger screen (by pressing [CPTJ()\IHENTERJ again) to continue with
debugging.

8.2 Inadvertent Entry into the Debt..gger
Accidental entry into the DebUgger can be caused by a bug in the program
you are running or by some malfunction in the system A message from the
Debugger will suggest the type of prOblem. The messages and the actions you
can take for program bugs are described in Section 8.2.1 below. System
malfunctions are described in Section 8.2.2.

8.2.1 Progrcm Bugs
You can enter the Debugger while your program is executing for any of the
following reasons. More information. on these conditions can be found in the
/VIC68000 16 Bit Microprocessor User's MBnuBl.

• A value range error

• AA illegal string index

• A bus error or address error
• M illegal instruction or a privilege violation

• Integer division by zero

• Spurious interrupt or unexpected exception

• OVerflow when TRAPV is executed

• Line 1111 Emulator

8-1

Worksl1op User's Guide The Debugger

• System malfunction
• Intentionally, by pressing the NMI key. This is the way to terminate an

infinite loop (when ti-period doesn't stop your program~ 00 not use NMI
when running system programs.

Usually the system will tell you the most appropriate action to take, for
example, "type g to continue". Follow these instructions unless you have a
special reason for doing something different.
Programming errors are described in Section 8.2.1.1 below. Stopping an
infinite loop is described in Section 8.2.1.2 below.

82.1.1 Prognm errors
If you have an error in your program it will drop into the Debugger and
display one of the following messages:
If a range check error occurs in application code, the message displayed is:

or:

VALUE RANGE ERROR in process gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going .to Lisabug, type 9 to continue.

ILLEGAL STRING INDEX in process of gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper boUnd = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to LisabUg, type 9 to continue.

where:
<gggg>

<vvvv>
<nnnn>
<uuuu>
<pppppp>

<cccccc>

is the global process 10 of the process that incurred the
exception.
is the value that is outside the range.
is the lower bound of the range.
is the upper bOUnd of the range.
is the address of the statement after the call to the range
check routine in· Pasl1b.
is the address of the link field at the time of the call to
Pasl1b.

During execution applications can field hardware exceptions. Refer to the
MC6800016 Bit Microprocessor User's M8nlI81 for definitions of these
hardware exceptions. If such an exception occurs, the system displays one of
the following messages:

8-2

workshop User's Guide

Bus error or address error exception:
EXCEPTION in process of gid <ggggp
Process is about to be terminated.

The Debugger

access address = <aaaaaaaa> ::: I1I1U/t <nmn> (segment nane), offset
<0000>
inst reg = <rrrr> sr = <ssss>
saved registers at <xxxxxxxx>
Going to LisabUg, type g to continue

My other hardware exceptim:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to LisabUg, type 9 to continue

where:

EXCEPTION is one of:
BUS ERROR
ADDRESS ERROR
ILLEGAL INSTRUCTION
PRIVILEGE VIOLATION
SPURIOUS INTERRUPT
UNEXPECTED EXCEPTION
ZERO DIVIDE
CHI< RANGE ERROR
OVERFLOW
LINE 1111 EMULATOR

pc = <pppppp>

<gggg> is the global 10 of the process that incurred the exception.
<aaaaaaaa> is the address that caused the bus or address error
<rmm> is the segment number represented by <aaaaaaaa> and
<0000> is the offset wi thin that segment
<rrrr> is the value of the instruction register at the time of the

exception
<ssss> Is the value of the status register at the time of the

exception
<pppppp> is the value of the program counter at the time of the

exception
<xxxxxxxx> is the address of the saved regIster information

All numbers displayed are decimal; the segment name is displayed only if the
segment number makes sense to the QJerating System.
If the exception Is divIde by zero, overflow, or CHK out of boUnds, the
process is not terminated and the line to that effect is not shown. If the
process has declared an exception handler for this exception, control passes to

8-3

Workshop User's Guide Tne Debugger

the handler after you type 9 to LisaBug, and the process then continues
execution. I f no handler has been declared, the system default handler
terminates the process. If the exception is a bus error and the segment name
is 'stack seg', a stack overflow has probably occurred. To find your bug you
can do a SC (stack crawl) and IL (immediate disassemble) to find where you
are in the program. The instruction register tells you the exact. instruction
being executed. The PC might be 2 to 10 bytes ahead.

You can declare an exception handler in your program to handle divide by
zero, overflow, or CHK out of bounds exceptions. Then your process will not
be terminated by the system if this type of exception occurs. You can also
declare an exception handler for the "SYS _TERMINATE" exception in your
program. This exception handler will then get executed if your process has a
fatal error as described above. This allows you to clean up your program,
close your files, etc. (in this exception handler) before your program is
terminated. See the tpenJUng System ReFeJlJl1Ce fo1afV8J for the Lisa for
how to declare an exception handler.

8.2.12 Tenninating al Infinite Loop
NJTE

The following procedure should be used on user programs only. To
terminate a systems program use ti-periOd.

If your program is in an infinite loop, or appears to be doing nothing, you can
enter the DebUgger by pressing the NMI key (the - key on the numeriC
keypad~ This will put you into the Debugger and show the trace display,
which looks something like:

Level 7 Interrupt
aaaaaaaa bbbb <instr>
PC=xxxxxxxx SR=xxxxxxxx US=xxxxxxxx SS=xxxxxxxx DO=d PROC=yyy
DO=xxxxxxxx 01 =XXXXXXXX D2=xxxxxxxx 03=xxxxxxxx
04=Xxxxxxxx OS=xxxxxxxx 06=xxxxxxxx 07 =XXXXXXXX
AO=xxxxxxxx A1 =XXXXXXXX A2=xxxxxxxx A3=xxxxxxxx
A4=xxxxxxxx AS=xxxxxxxx A6=xxxxxxxx A7 =XXXXXXXX
>

where:

aaaaaaaa is the· current address
bbbb is the contents of the current address
<instr> is the current instruction disassembled
xxxxxxxx is the contents of the specified register
d is the current domain (0 - 3)
yyy is the process 10 of the interrupted prtK:eSS

This information is used In debugging your program. If your program is in an
infinite loop, proceed as follows:

8-4

Workslx:p User's Guide

1. Check the domain (DO-d). If the domain is zero, you are currently
executing in system code. You must be executing user code before you
can work on your program (domain 1 - 3). see section 8.2.1.3 "User Break"
below for a procedure to get you into user code.

2. Make sure you are In your own process, instead of another process that
may be running in the background. If the current address does not show
the name of one of your procedures, type SC (stack crawl). The procedure
names displayed should be from your program.

3. If you are 1n a tight loop you can step the PC beyond it by using other
Debugger commands. In order to do this you must be familiar wi th 68000
assembly language and the Debugger commands. Most often you will just
want to stop your program. This is explained below.

4. First make sure the domain is not zero. Type "PC 0" and press [RETURN~
This will cause an exception when you restart your program.

S. Type "G" and press [RETURN~ Your program will restart, cause an
exception, and immediatly drop back into the Debugger with an exception
message that includes the instructions "Type g to continue".

6. Type "G" and press [RETURN~ Your program will be terminated.
8.2.1.3 User Break

The user break facility stops processing in user process code. Use this
procedure if the trace display indicates that the domain is zero. (Either
DCMAIN-O or DCMAIN - n DV'ERRIDDEN TO 0.) The UBR command will set a
breakpoint at the next instruction to be executed In the user process. To stop
your program in user process code, proceed as follows:
1. Type "U8R" and press [RET~Nl
2. The system will continue executing until it retums to user process code,

then it will drop back into the Debugger. You can now proceed to work
on your code.

8-S

Worksllop User's Guide The Debugger

There are two cases when UBR will not set a breakpoint. The first is
if the system is interrupted while a system process is running (PROCESS
= 0, 1, or 2). The second is if the system is interrupted while the
scheduler is running and it has not chosen a process to run. If UBR
does not seem to be working, check for this as follows:

Type "10 PC-if' and press [RETURN} If the STCP instruction Is
displayed, you are in the scheduler. You must press "G" and return to
start the system running agaIn and press NMI agaIn.

If your program Is doing a RE.AD or RE.ADLN, the system will display
the STCP instruction. The only way to continue execution is to press
"G" and enter something from the keyboard to satisfy the read.

&22 System Malft.rlctlons
If there is a system malfunction, the system will enter the Debugger with a
message indicating a system error or an EXCEPTI(J\I display with the domain
zero. The message will include instructions telling you what command to
type. Ususally it wlll tell you to type OSQUIT. It may be necessary to type
this command several times.

If you are having problems with system malfunctions, call your support hotline
for more information. It will be useful to have copies of the messages that
were displayed. If you have a printer connected to the lower or upper port,
use PL or PU to generate a bug report.

&3 Usirg the Debugger
Type 0 to the command prompt to invoke the Debugger. It asks:

Debug what OS file?

Enter the name of the object file you want to debug. It is run with a
breakpoint set at the first instruction and drops you into the Debugger
inrnediately. The Debugger command prompt is >. The default radix is
hexadecimal.

Another way of getting into the Debugger is by pressing the NMI key, which
is the "-" key in the top row of the numeric keypad.

When you get the command prompt, the Debugger Is ready to accept
commands that allow you to:

• Display and set memory locations

• Set and display regIsters

• Assemble and disassemble instructions

• Set breakpoints, patchpoints, and traces

8-6

WorkstJop User's Guide The Debugger

• Manipulate the memory management hardware

• Set up timing buckets for execution timing

• Perform utility functions including:

• Symbol and Jase conversion

• Move the Debugger windOw

• Print Debugger information

8.3.1 EXBfT1l1es of Using the Deb IQ9E!r
This section gives examples of hOw to use the Debugger. M explanation of
all Debugger commands is in Section 8.4. A summary of all Debugger
commands is in Section 8.5.

If you type a file name to the prompt from the Debug command, the
DebUgger starts up with the program counter at the start of the program. To
see one instruction disassembled at 32F96, type:

>ID32F96

10 stands for Immediate Disassemble. Each SUbsequent 10 command, if given
without any address, disassembles the next instruction found. In addition to
printing the value of each byte, the Debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period.

To disassemble 20 consecutive addresses, type

>IL

IL, Immediate Disassemble Lines can also be followed by an address.
SUbsequent IL commands disassemble successive blocks of 20 consecutive
locations in memory.

If the object file being examined was compiled with the 0+ Compiler option,
the procedure names are available in the Debugger and can be used in any
expressions. For example,

>IL Foo 5

disassembles the first 5 lines of procedure "Foo".

>BR Foo+40

sets a breakpoint 40 bytes into procedure "Foo".

8-7

Workshop User's Guide

You can also use labels in immediate assemblies:
>sy Ken 6000

>A Ken NCP

T/1e De/Jugger

assembles a NCP instruction at the address "Ken", which in this case is 6000.

>A 6000

>Rich: JMP $100

> [RETURN]

enters the immediate assembler at 6000, defines the label 'Rich', and
assembles a JMP instruction.

8.32 A Pascal EXB1ll1e: RcnJe Errors
The Debugger can be used for run-tilre debugging of Pascal programs. Its
displays and commands reference· Pascal procedure names to ·make it easier to
debug programs. If your program has a fatal run-time error, it will drop into
the Debugger and give you a trace display. The trace display will include the
name of the procedure that was executing.
O1e common reason for dropping into the Debugger is if you get a range error.
Range errors can be caused by array indexes, string value parameters, and
assignments to variables of a subrange type. If you get a range error, you
will drop into the Debugger with the RANGE ERRCR exception message.
To help find the error in your program, give the Debugger an IL PC-20
command. This will give you a display of the previous 20 lines of assembly
code. You should see an instruction of the form:

CHK #<lim> ,<data reg>
where <Urn> is an integer, and <data reg> is a data register (DO - D7~ Lim is
the allowable value. The contents of the data register is the actual value
that was out of range. The contents of all the registers can be displayed with
the TO (trace display) command.

Figure 8-1 shows a Pascal program that produces a check range error. Figure
8-2 shows the resulting Debugger display, with an explanation of what the
display means.

8-8

workS170P User's Guide

proqram check;
var ch:char:

procedure localproc;
var

i:integerj
a:array[O •• 10J of 1 .. 7:

begin
i := 9;
a(3J:= i:

end;

begin
l,ojr i tel n(-'press space to run ... -') j

read(ch) ;
localproc;

end.

FigJre 8-1
Pascal Program that Prcx1Jces a Oleck Rcrge Error

CHK RANGE ERROR in process of gid 25
sr = 0 pc = 2359338

saved registers at 13369278
Going to Lisabug, type 9 to continue.

Lev!." 1 7 I nterrur-t ;-0

TtJe Debugger

LOCALPRO+801A 1D48 FFFS PC MOVE.B DB,SFFF5(A6)
pC= 08248822 SR= 8808' ~ .. Q 'I lIS=08F7FBECSS= BBCBFEE8 00= 1 PIt=880 19
D8=88180889 D1=0088~D2=8888e8C9 D3=898264A7
D4=80888881 DS=4EF98884 D6=12CC4EF? D7=888488ee
A8=88F8126E A1=88CCA22A A2=e824~e6e A3=88CCA22A
A4=aaccft22A A5=88F7FC44 A6=89F7FBFA A7=eeF7FBEC

/3'\ (~l pc -20'·
~ I.:: 248882-"-' 80A4 8824 eeee 4A6F EFF2 4ES6 FFF2 3D7C ... $.. J o .• NV .. = I

LOCALPRO+8e88 4A6F EFF2 LOCALPRO TST.W SEFF2(A7) ~
LOCALPRO+8884 4E56 FFF2 LINK A6,ltSFFF2 (p
LOCALPRO+8008 3D7C 8889 FFFE t10\/E. W U0889, iFFFE (A6) S
LOCALPRO+eeeE 382E FFFE MOVE. I·! $FFFE(A6)~e
LOCALPRO+OS12 3288 MOVE.W D8,D1 ~
LOCALPRO+0814 5341 SUBQ.~I It.U~@
LOCALPRO+ee16 43BC eee6 GI CHK rue~ D1
LOCALPRO+881A 1D48 FFFS PC 'i MOVE. B ~$FFFS (A6)
LOCALPRO+881E 4E5E UNLK A6
LOCALPRO+8828 4E75 RTS
> P 1 Figure 8-2

0leCk R~ Deb IQQ8l Display

8-9

Wol1<S170P User's Guide Tile Debugger

Notes:
1. Debugger display produced by check range error.
2. Actual value in 01. This is the value that w-as checked and found out of

range.
3. Disassembly command typed in to display the assembly language display of

the program causing the error.
4. LooK for the CHK instruction near the PC.
S. Note that the previOUS identifier is LOCALPRO, therefore the error

occurred near the oeglming of LOCAL PRO.
6. Value in register 01 was supposed to be In range 0 .. 6.

7. Pascal lower limit (1t$1) was subtracted from 01. Therefore the range In
the Pascal type was 1..7.

More Infonnatlon on the run time envIronment of a Pascal program Is found In
Chapter 6.

8.4 The DetxJgger Ga", a m
This section gives the definition of each Debugger command.
are grouped together according to function.

The commands

8..4.1 Det1nlUoos
Constant
$Constant
&Constant
'ASCII String'
Name
Expr

Exprl1st
Register

RegName

A constant in the default base.
A hex constant.
A decimal constant.
Nt ASCII strIng.
A symbol in the symbol table.
Nt expression. Expressions can contain names, regnames ..
strings, and constants. Legal operators are + - * I.
Expressions are evaluated left to right * and / take
precedence over .. and -. (and) can be used to indicate
Indirection. < and > can be used to nest expressIons. In those
cases where an odd value Is probably a mistake, the
Debugger warns you that you are trying to use an odd
address. If you decide to go ahead, It subtracts one from the
address gIven. If the Compiler option 0+ was used,
procedure names are legal In expressions.
A llst of expressIons separated by blanks.
Tr~ name for any of the 68000 registers, as follows: 00 .. 07
are the data regIsters, AD .. A7 are the address registers, the
program counter PC, the status registers SR, US, or SSt Note
that A7 is SP (the stacK pointer~
ROO .. R07, RAO .. RA7, PC, US, or SSe A predefined symbol in
the symbol table with a value set by the Debugger. The
value is equal to the value of the regIster in question. The
Debugger automatically updates the values of these symbols.

8-10

Wol1<shop User's Gujde The Debllgger

The H' is appended to dIstinguIsh the register names from
hexadecImal numbers.

8.4.2 Display CI1d set f'1errory Locations
Tne fOllowIng commands display and set memory locations.
SM exprl exprllst
Set memory with exprlist starting at exprl. SM assumes that each element of
exprlist is 32 bits long. To load different length quantities" use SB or SW
described below. If the expression given is longer than 32 bits" SM takes just
the upper 32. For example" if we ask the Debugger to:

SM 1000 'ABCDE'
it deposlts the ASCII equivalent of "ABeD" starting at 1000.

SB exprl exprl1st
Set memory in bytes with exprlist starting at exprl.
sw exprl exprllst
Set memory in words with exprlist starting at expr1. Expr1 must be an even
address, or the address w111 be rounded down to tne nearest even address.
SL exprl exprllst
Set memory in long words with exprlist starting at exprl. Exprl must be an
even address or it will be rounded down to the nearest even address. For
example"

SL 100 1

is equivalent to

SM 100 0000 0001
(J"1 expr
Display memory. Display 16 bytes of memory starting at expr. OM RA3+10"
for example, displays the contents of memory from 10 bytes beyond the
address pOinted to by A3. OM (110) displays the contents of the memory
location addressed by the contents of location 110. Expr must be an even
address or it will be rounded down to the nearest even address.
G1 exprl expJ2
Display memory. If expn < expr2, then display memory from expr1 to expr2.
Otherwise, display memory for expr2 bytes starting at expr1.
00 expr
Display memory as bytes. Expr can be any byte address.
OWexpr
Display memory as wordS. Expr must be an even address or It wIll be rounded
down to the nearest even address.
l1. expr
Display memory as long words. Expr must be an even address or it will be
rounded down to the nearest even address.

8-11

Worksl7op User's Guide

8.4.3 Finding Patterns in Memory
FB exprl expr2 exprllst

Tf1e Debugger

Find Byte. Find the byte or bytes 'exprlist' in the address range specified. If
expr 1 < expr2 then search the range from exprl to expr2. otherwise search
for expr2 bytes starting at exprl.

fM exprl expr2 exprlist
Find Memory.

FW exprl expr2 exprlist
Find Word.

FL exprl expr2 exprlist
Find Long word.

8.4.4 Set CI1d Display Registers
TO
DIsplay the Trace Display at the current PC. M example of the trace dIsplay
is shown in Figure 8-3. It shows the instruction executing at the time the
program was Interrupted, the current value of all the registers, and the
current ~ain and process .

• Level 7 Interrupt
LOCALPRO+BB1A 1D4B FFF5 MOVE,B DB,$FFF5(A6)
PC=BB24BB22 SR=BB00 0 US=00F7FBEC SS=00CBFEE0 DO=1 P#=00019
D0=013C0009 Dl=BBBBBBBe D2=B00BBBCB D3=BB199752
D4=00900001 DS=S36S67Se D6=78487A2B D7=eeeeBe0e
AB=BBF8126E A1=BBCCB614 A2=BB24BB6B A3=BBCCB614
A4=BeCC7SFC A5=e0F7FC44 A6=BBF7FBFA A7=BBF7FBEC

register

Fi~ 8-3
The Trace Display

Display the current value of the register. DO, for example, Is a command to
the Debugger to display the current value in the register DO. ROO, on the
other hand, Is a name automatically placed in the symbol table to give you a
handle on the contents of DO in an expression. Thus, to display the current
value in the DO data register, type the command DO. To display the
instruction pointed to by the AD address register, type the command 10 RAO
(immediate dissassemble at the address RAO, which Is predefined to be the
contents of the AD register.)

8-12

Wol1<s/1op User's Guide The Debugger

register expr
Set the register to expr. For example, to set register 03 to zero, type 03 O.

8.45 Assen1l1e cn:1 Disasserrllie Inst.n£tlons
These commands are used to display code in 8ssembl y language format, and to
enter code in the form of assembly language statements.

A expr statement
Assemble one or more assembly language statements (instructions) starting at
expr. You can continue assembling instructions into consecutive locations,
pressing [RETURN] after each statement Press just [RETURN) to exit the
immediate assembler. Note that the immediate assembler cannot assemble
any intrinsic unit instructions, but they are correctly disassembled. Code
segments can be write protected, which prevents you from assembling
instructions into them. This can be overridden with the WP 0 command to
disable write protection.

A expr
If you use the form A expr, the Debugger prompts you for the statement to be
assembled.
10
Disassemble one line at the next address.

10 expr
Disassemble one line at expr.

IL
Disassemble 20 lines at the next address.

IL expr
Disassemble 20 lines startlng at expr.
IL exprl expI2
Disassemble expr2 lines starting at exprl.

IX statement
Immediate execution of a single instruction. The user's PC is not challQed by
this operation.

8.4.6 set Breakpoints cn:1 Traces
These commands are used to trace program execution.

BR
Display the breakpoints currently sel You can set up to 16 breakpoints with
the Debugger. BreakpOints are displayed both as addresses and as symbols. An
asterisk marks the point of the breakpoint in the disassembly.

8-13

BR exprllst
Set each breakpoint in exprllst. SymbOlS are legal, of course, so you can:

BR Ralph+4

if Ralph is a known symbol.

Expressions can be of the form:

pp:aaaaa

where pp is the process 10, and aaaaa is the address in that process where
you want the breakpoint set. If the process 10 is 0, the breakpoint is set in
system code in domain O. If no process Is glven, the current process Is
assumed. The current process is shOwn in the TO display described above.

BreakpoInts cannot be set on intrinsic unit instructions.
Cl.
Clear all breakpoints.

Q exprllst
Clear each breakpoint in exprlist.

G
Start running at the current PC.

G expr
Starting running at expr.

T
Trace one instruction at the current PC.

T expr
Trace one instruction at expr.

SC expr
Stack Crawl. Display the user call chain. Expr sets the depth of the display.
It can be omitted. The Stack Crawl display Is shown in Figure 8-4. More
information on the Pascal stack can be found in Section 6.6.

>sc
At LOCALPRO+ee1A
Stack frame at eeF7FBFA called from CHECK+ee38
Stack frame at eeF7FC44
> Figure 8-4

The Stack Crawl Display

8-14

WorkS/lOp LJ.s'er's Glljde The Debugger

procedUre ncme
This calls a user proceduJe or function. It is your responsibility to save and
restore registers and puSh any necessary parameters. If you want execution to
stop upon ret.urn~ you must set a breakpoint on the current PC. For example:

BR PC ; set breakpoint on PC.
IX MOVEM.L DO--A6,--(A7) ; save registers.

; push params if needed.
Fa) ; call procedure roc).
IX MDVFM.L (A7)+))O-N:; ; restore registers.
Cl. PC ; remove break point.

A function can be called in a similar manner. Remember to allocate space
for the function result before pushing any parameters. Use either CLR.W
-(A7) or CLRL -(AI).

(l)Ql,.JIT
A procedure that might need to be called is OSQUIT. It exits from the OS.
We recommend that you avoid tnis wtlenever possible.

U3R
UBR is a procedure that sets a breakpoint in the IJser code so that you will
drop into the Debugger as soon as you reenter user code. UBR is explained in
Section 8.2.1.3.

8.4..7 McI1ipulate the Mermry Mallagement Hardware
These commands crlange the memory management hardware of the Lisa. More
information on the memory managment hardware can be found in the Ljsa
I-laJriware Manual

LP expr
Convert logical address to physical address.

00 expr
Set the SEG1/SEG2 bits. These bits determine the hardware domain number.
If the Status Register shows that you are in supervisor state~ then the
effective domain is zero .. and the domain number returned by the Debugger is
the domain that would be active if the SR were changed to user state. Note
that if you crlange domain, you should restore the original domain before you
type g.

WP 0 or 1
Disable (0) or Enable (1) Write Protection. The default is l.

rvM start [end_or_COlSIt]
MM with one or two arguments displays information about the MMU registers.
The second argument defaults to 1. If the starting address is greater than the
second argument~ the second argument is a count of the number of MMU
registers to be displayed. If the starting address is less than the second
argument .. the second argument is the last register displayed.

8-15

WOd<sI1op User's Gujde

MM 70
displays

Segment[70] Origir(OOO] Limit[OO] Control[C]

The Oe/JUgger

These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU register. ~ can be seen from a careful perusal of
the hardware documentation, a Control value of C means the segment in
question is unused (invalid~ If the Control value is valid (7, for example), the
Debugger also displays the Physical Start and Stop addresses of the segment.

MM &100 8

displays the MMU register information for the 8 registers starting at register
64 (decimal 100~

t+1 run org 11m rotrl [end_or_CWlt]
The MM command followed by four arguments sets the MMU information for
segment 'nurn'. The Origin, Limit, and control bits can be changed.

MM 70 100 ff 7
sets the Origin of segment 70 to 100 and the control bits to 7 (a regular
segment). The segment limit of -1 makes the segment 512 bytes long.

8Jl8 TimlrYJ FUlCtiOOS
The Debugger allows you to create up to 10 timing buckets for measuring
execution times. Using the microsecond timer in Drivers, time is accumulated
in each bucket and saved along with a count of the number of Urnes the
bucket was entered.
Typically, this would be done as follows:
1. Enter the Debugger and enter the process number that you want to time

using the BT conmand.
2. Create one or more timing bUckets with the TB command.

3. Set a breakpoint to stop execution at some point.
4. Go.

s. When the breakpoint is reached, print the timing summary with the PT
comrnaIICt.

6. Use the End Timing (ET) command to remove all timing buckets.
The timing commands are as follows:
6T mcpr
Begin timing. Expr specifies the process number. If the expr Is not given, the
current process is assumed. A process number of 0 can be used to indicate
domain O.

8-16

WorkstJop User's Gukie

TB addr1 aa:n2
A timing bucket is created from addrl to addr2.
PT
Print timing summary. There are five columns printed:

ET

1. Bucket number
2. Total time In this bucket
3. Number of times this bucket was entered.
4. Starting address for this bucket.
S. Ending address for this bucket.

The Debtlgger

End timing. This command prints the timing summary and removes all the
timing buckets.
KB expr
Kill Bucket. This can be used to remove a single bucket. Expr is the number
of the bucket to remove.
RT
Reset timers. This resets the timing and count tables while leaving the
bucket definitions intacl
Note that all addresses are in the same process. The process number is
defined by either the BT command or the first TB, PT, KB, or RT command.
If the process number is not given in the BT command, the current process is
assumed.

8.ll9 Utility fu1ctions
The utility functions include:

• Symbol and base conversion
• Moving the Debugger window
• Setting the NMI key
• Printing Debugger displays
• Dumping memory to a dIskette

8.119.1 Syntxlls em Base C01Versim
Sy
Display the values of all symbols.
SY rane
Display the value of the symbol name.
SY rane expr
~sign expr to the symbol name.

8-17

Workshop User's Guide

CVexprlist
Display the value of each expression In hex and decimal.

SH
Set the default radix to hex.

SO
Set the default radix to decimal.

8.4.9.2. Moving the Debugger Wirmw
CS
The CS command clears the Debugger screen.

P expr
Set port number to expr. Valid port numbers are:

o Lisa keyboard and screen (default)
1 Serial A
2 Serial B

The Debugger

If you move the port to a serlal port you must have a modem eliminator
connected .to that port.

RS
Di splay the patch Return address Stack

8.4.9.3 Setting the NVII Key
NvI
Displays the key code for the NMI key.

N'1 expr
Sets the NMI key to be key code expr. A value of zero disables the NMI key.

I'oCTE

This affects the entire system. If the NMI key is disabled, you cannot
use it to stop an infinite loop, or a system hang.

F or example:

>NM $21

Sets the NMI key to be hex 21, which is the "-" key in the top row of the
numeric keypad. This is the default NMI key.

8.4..9A Printing from the Debe gger
The following commands allow you to print information from the Debugger on
the dot matrix printer ..

PR expr
The PR command enables or disables printing to the two-port card. When
printing is enabled, all Debugger output to the screen is printed.

8-18

WOl1<sI7cp User's Guide

expr = 1
expr ... 2
expr = 0

enable printing upper port
enable printing lower port
disable printing

NJTE

The Debugger only supports printing to a printer connected to the
lower or upper port. The serial pril1ter is not supported. If the printer
is not connected the Debugger will hang when you try to print with the
PL, PU, or PS commard.

PS expr
The PS command prints the entire primary or alternate screen. Printing must
be enabled (the PR command) before PS is used. Expr tells which screen to
print:

FF

expr ... 1
expr = 0

print primary screen
print alternate screen

The FF command sends a form feed to the printer if printing is enabled.

PL and PU
The PL and PU commands print a bug report on the lower and upper ports
respectivly. The bug report consists of the following:

Dump of the primary screen
Dump of the alternate screen
Description of the exception
Trace Display
Stack Crawl
Disassemble of 20 lines from PC-$20
Di splay wordS from RA6-$20 for $80 bytes

8.4.9.5 Dt.I"f1ling Memory to Diskette
The following commands allow you to create a copy of the contents of
memory on a diskette.

M.. B1d MJ
The ML and MU commands dump a copy of memory to the lower and upper
diskette respectivly. This information can be used to reconstruct the
conditions at the time of a crash, for example. These commands work as
follows:

• If there Is a disK in the drive, it is ejected.

• You are prompted to insert a disk.

• The disk is formatted and all necessary information is copied to iL This
process takes about 3 1/2 mirutes.

8-19

WoIkshop USer's Guide The Debugger

8..5 s.mnary of the Debugger COOmar Ids
procedure name Call the procedure.
register Display the current value of the register.
register expr Set the register to expr.
A expr statement Assemble statement at expr.
A expr Assemble one statement (instructlon) at expr.
BR Display the breakpoints currently set.
BR exprlist Set each breakpoint in exprlist
BT expr Begin timing process expr
CL' Clear all breakpoints
a... exprlist Clear each breakpoint in exprlist
CV exprlist Display the value of each expression in hex and

DB expr
DL expr
OM exprl expr2
DO expr
DR
DWexpr
ET
FB exprl expr2 exprlist
FF
FL expri expr2 exprlist
FM exprl expr2 exprlist
FWexprl expr2 exprlist
G
G expr
10
10 expr
IL
IL expr
lL expri expr2
IX statement
KB expr
LP expr
I'1L
MM exprl expr2
MI'-1 num org lim ctrl
MR
MU
!\1M
NVI expr
OSQUIT
P expr
PL
PR expr

decimal.
Display memory as bytes.
Display memory as long words.
Display memory.
Set the SEGlISEG2 bits.
Display index or ranges of dump RAfv1.
Display memory as words.
End Timing; print summary and remove buckets
Find Byte.
Send form feed to printer
Find Long word
Find Memory
Find Word
Start running at the current PC
Starting running at expr
Disassemble one line at the next address
Disassemble one line at expr
Disassemble 20 lines at the next address
Disassemble 20 lines starting at expr
Disassemble expr2 lines starting at expri
Immediate execution of one instruction
Kill Bucket expr
Convert logical address to physical address.
Dump memory to lower diskette
Display MMU information
Set MMU information
Set a value level IS interrupt on a word change.
Dump memory to upper diskette
Displays the keycode of the NMI key
Sets NMI keycode to expr
Exits from the operating system *
Set port number to expr.
Print bug report on lower port
Enable printing. O-disable, I-upper port, 2-lower
port

8-20

Workshop User's Guide

PS expr
PT
PU
RB
RS
RT
SB expr1 exprllst
SC expr
SO
SH
SL expr1 exprllst

SM expr1 exprlist
SW exprl exprlist
SY
SY name
SY name expr
T
T expr
TB addrl addr2
TO
U3R
WP 0 or 1

Print screen. O=aletrnate, 1 =primary
Print timing summary
Print bug report on upper port
Reboot
Display the patch Return address Stack
Reset timers
Set memory in bytes with exprllst starting at exprl
Stack Crawl.
Set the default radix to decImal
Set the default radIx to hex
Set memory in long words with exprllst starting at
exprl.
Set memory with exprllst starting at exprl.
set memory in words with exprllst starting at exprl
Display the values of all symbols
Display the value of the symbol name
Assign expr to the symbol name
Trace one instruction at the current PC
Trace one Instruction at expr
Create Timing Bucket from addrl to addr2
Display the Trace DIsplay at the current PC
User break"
Disable (0) or Enable (1) WrIte Protection.

.. These are procedure calls to qlerating System procedures. They are
explained in section 8.2.

8-21

NOTES

('61-A

Chapter 9
Exec Files

9.1 Exoo Files ... 9-1
Exec fUes are scenarios of commands to be automatically performed by
the Workshop system.

9.2 Exoo File StaterTlerlts ... 9-2
Exec fHe statements are of two types: normal lines" that contaIn
Workshop commands" and exec command lines" that tell how to process
the exec fHe. Exec command lines inclUde lines to set parameter
values" perform input and output" and control conditional execution.

9.3 Exec Files ... 9-14-
Exec files are invoked using the Workshop Run command. This
invocation line can set the values of parameters, as well as select exec
options.

9.4 ExarTllle Exec FlIes .. 9-18
This section contains examples of exec files.

9.S Exec File Prograrnrnit'lg Tips ... 9-22
ThIs· section contaIns tips on wrIting exec fHes.

9.6 Exec File Errors .. 9-23
This section explains the format in which errors are reported, and lists
the errors.

Using Exec Files

9.1 Exec Files
Exec files are scenarios of commands to the Workshop system. They are
contained in text files, created with the Editor, and are executed with the
Run command. Exec files consist of characters you type to the Workshop to
perform the functions you want, and special exec fBe commands, which enable
you to use parameters and conditions to vary portions of the scenario.

In its simplest form, an exec file contains the characters you press to perform
a desired operation. AA example of an exec file to compile a Pascal program
is:

$EXEC
Pmyprog

SEta:XEC

{ Vru need to enter tw blank lines here }
{ to 1Ul the COOpiler }

where P is the command to invoke the Pascal Compiler, and myprog is the
name of the source file. Further lines to Generate, Link, and Run the
program might follow.

Two separate activities occur while running an exec file: processing and
running. First, during process lim~ the exec processor creates a temporalY
file, which consists of a stream of Workshop commands. This temporary file is
then sent to the WorkShop, which executes the command stream at run lime.
A simple diagram Of this procedure follows:

exec file (s) exec processor WorKshop

r... • -+ .>{+ temp file /

,

___ r-- ~'~ '~~1~~:~ •. ~ tJ~~ - ... ~ [} II,·, ':,:,~,:, ','~,.).,:;,;, ~.
':': ~,: ': :":

y

\ process time run time

With special exec file commands, you can use parameters and conditionally
perform the Workshop commands. All example of an exec file for a simple
Pascal program is shown in Figure 9-1.

9-1

Workshop UseJ"'s Gujde Exec FjJes

$EXEC { -tnakeprog- -- This exec file conpiles, generates, and
links a Pascal program. }

P%O
{ no listing file}
{ default I-code file}
~O
{default object file}
L'O

IOSPASlIB
{ end of lInker I~t }
{ no list file }
'Of output fi Ie rare }

SBf)EXEC

Figure 9-1
E~le Exec File

You have several options available to you when running the exec file
processqr. The Step Mode option, which enables you to selectively skip
command lines going to the temp file, could be used in the above example to
choose whether to do only the compile, generate, or link. Section 9.3.1
contains additional information on the exec file options.

92 Exec File statements
Exec flIe statements are Hne oriented. Two types of exec file lines exist:
exec cornrnalld lkJes and lJOln"Jal jjne~: Normal lines contain Workshop
commands. Exec command Hnes handle the other features of· exec files .. such
as parameters and condi tional statements.

You can use up to 10 parameters in an exec file, numbered %0 through %9.

parameter

---@--C 0 ... 9)---.

You can pass parameters when you invoke an exec file and use them during
the execution of the exec file. For example ... if you wanted to pass a
parameter in the Example Exec File shown in Figure 9-1, you would Run:

<nD<eprog (myprog)

The value "myprog·· would then be assIgned at each reference to %0.

When a parameter appears in a normal line, it is replaced by the string value
of that parameter. These parameters can be used both as inputs to the exec
file and as temporary variables within it.

9-2

Workshop User's Guide Exec Files

Exec command lines start with a $ (dollar sign~ They control the operation of
the rest of the exec file. Exec command Hnes are free format, as long as the
order of their elements is preserved. You can have any number of spaces
before or after any element of a command line. These can go on to more
than one line. The processor will look on the next line if it does not have a
complete command at the end of a llne.
Normal lines contain commands for the Workshop system. These lines are sent
to the Workshop as they appear .. with the following exceptions:
1. Leading and traHlng blanks are removed from these lines unless the "B"
option is in effect. See section 9.3.1 for more on the "s" option.
2. Comments are removed.
3. Parameters are expanded.
4. The tilde C) literalizing character is processed.
Comments are delimited by brackets { } .. and can appear in either a normal or
an exec command line. These can cross Hne boundaries. They can be used to
comment out carriage returns in normal lines.
The is used as a literalizing character in normal lines .. meaning it passes
the character following it through without processing. With a tilde you can
pass the character $.. % .. or { to the Workshop system without having it be
interpreted as part of an exec command .. a parameter .. or a comment. To
represent a tilde .. use a double tilde (...... ~
Note that whlle the exec fIle processor Is not case sensltlve .. It does preserve
the case of parameters and strings supplied by the user.
A description Of eaCh exec command fOllows.

9.2.1 BeglmlrYJ CIld EOOlng Exec FUes
Generally .. exec files must begin with an EXEC line and must end with an
ENJEXEC 11ne. The exceptions to this basiC rule, for tnose who embed exec
files in their program sources .. are: (1) one line of text can preceed the EXEC
line if the I (Ignore) invocation option Is used, and (2) any amount of text can
follow the EI'DEXEC line .. but it is ignored.

9.2.2 setting Parameter values
You can set parameter values in an exec file by using the SET and CEF All.. T
commands. The REQl£ST command prompts the user for the value Of a
parameter.

9-3

WOrkslJop User's Guk1e Exec Files

922.1 The SET a1d DEFALl. T commands
The SET and DEF})LL T commands provide ways to change the value of a
parameter inside of an exec file. The forms of these commands are:

set statement

-{ $ SET}-1 parameter ~tring expressionl-+-

and

default statement

$ DEFAULT parameter

string expression

"string expression" is described In Section 9.2.5.

The SET command changes the value of the specified parameter to the value
of the given string expression. The CEF AU.. T command is similar to the
SET command" except that the assignment takes place only if the value of the
specified parameter is the null string when the DEF~ T command is
encountered. Thus, you can use this command to supply default values to
parameters that have been left unspecified or empty in the exec invocation
line.
These commands also allow you to use unused parameters as variables wI thin
the exeo f11e.

9.2.22 The REQLEST ca trna Id
The RFQLEST command provides a way to prompt for values from the
console. The form of this command is:

request statement

$ REQUEST· parameter

string expression

9-4

Worksl7op User's GlIjde Exec FjJes

The REQUEST command prlnts the gIven string expressIon to the console, and
reads a line" which it assigns to the specified parameter" from the console.
Thus, "str expr" prompts the user for the value.

9.2.3 Input a1d OJtput
You can request input to an exec file with the REAC1.N and REACCH
commands. You can output values by using the WRITE and WRITELN
commands.

9.2.3.1 The REACl.N a1d REAOCH COOTnarIds
The READLN and REACJCH commands enable exec files to read in text from
the console" and to assIgn it to a parameter variable. You can use these
commands to:

• obtain parameter values
• obtaln values to control condIt1onal selection
• pause until Ule user indicates to continue

The forms of these commands are:

readln statement

~EADLN)-1 parameter ~

and

readch statement

-{ $ READc~)---{iarame~

The REAI1N command reads a llne from the console and assigns It to the
specified parameter. The READCH command reads a sIngle Character from
the console. If you press [RETURN], READCH w111 interpret it as a space.

92.3.2 The WRITE Md WRITELN COIIIIS m
The WRITE and WRIlELN commands enable exec files to write text to the
console screen. You can use this text for informatory messages or prompts.
The forms of these commands are:

9-5

E%'eC Files

write statement

string expression

and

wr1teln statement

$ WRITELN

string expression

These commands take an arbitrary number of string expressions, separated by
commas, as arguments. The strings are written to the current console line.
The WRITELN command adds a final carriage return.

9.2.4 CondItional Statements - the IF statement
Conditional statements enable you to perform commands depending on
condItions existing at process time (when the temporary flle Is created~ The
condition is stated in the form of a boolean expression, and can inclUde
built-in boolean functions.

The IF, ELSEIF, ELSE, and El\[)IF commands enable conditional selection in
exec files. The forms of these commands are:

if statement

$ ENOIF

elseif part else part

9-6

WOlks170p Use, s Gujde Exec FjJes

if part

---(iOji)--{ boo 1 e an ex pre s s ion ~--."
/.---_._ •.... _. __ ._._._._._._---_ ... __ ..)
~ THEN H stuff I •

elseif part

ELSEIF HbOOlean expreSSi0iJ--

---- ------------ --------- ---- -- ----- --------- ---- -- - ---)
~ THEN ~ stuff ~

else part

-($ ELSE)--[ituff J-.
where "boolean expression" is described in Section 9.2.4.1, and "stuff' is
composed of arbitrary normal and command lines, other than commands that
would be a part of the current IF construct. Tne IF statement is multiline ...
meaning that the components IF ... ELSEIF ... ELSE, ENJIF", and "stuff" each need
to be on separate lines.
The IF construct is evaluated in the usual way. First, the boolean expression
on the IF command itself is evaluated. If it is true, the "stuff" between the
IF and the next ELSEIF (if any) ... or ELSE (if any) ... or ENJIF is selected;
otherwise ... it is not selected. The remaining parts of me IF comtruct, up to
the ENJIF command ... are parsed ... but are not selected once one of the boolean
expressions is true and its corresponding "stuff" is selected. Selecting "stuff"
means that any normal lines are processed by the WorkShop, and any command
lines are processed. Conversely ... if "stUff" is not selected .. any normal lines
and command lines are not executed. However ... the command lines are parsed
for correctness.
If the boolean expression on the IF construct is not true ... the ELSEIF or ELSE
command that follows is processed. If an ELSEIF command is next, its
boolean expression is evaluated. If true ... its corresponding "stUff" is selected
and the remainder of the IF construct is not selected. Processing the IF

9-7

£)(eC Files

construct continues until one of the boolean expressions on an IF or ELSEIF
command is true, or until the ENJIF is reached. If no boolean expressIon is
true before the ELSE (if any) Is reached, the "stuff" correspondIng to the ELSE
command is selected.

IF constructs can be nested within each other to an arbitrary level.
9.2.4.1 BooleCfl ExpressIons -- COrTlmlsal <rid Logical qJerators

Boolean expressions enable you to test strIng values and check properties of
fUes. The syntax for bOolean expressIons is:

boolean expression

boolean term

boolean term

----~boolean factor~--------------------~~

boolean expression

boolean factor

----~boolean function ~----~----------~~

string expression

string expression

9-8

Exec Flies

The basic element of a boolean express lon, a "bool factor", is either a boolean
function (see Section 9.2.4.2) or a string comparison, testing string expressions
for equa11ty or Inequal1ty (see Section 9.2.4.3~ The basIc elements can be
combined with the logical operators Af\I), (R, and r-.lJT, with parentheses for
grouping. These operators function in the usual 'Way.

9.2.4.2 Boolean FLI1Ctions -- FXISTS cn1 !\EWER
Several functions returning boolean result~ are provided for use with the
conditional contructs.

boolean function

-----=---i:EXISTS)-<1)-i string expression

string expression

The EXISTS function enables you to determine whether or not a file, volume,
or device exists. If you specify a device, the function will return a value of
TRUE if the device has a volume mounted on it. The string expression
arguments to these functions should specify names of files. Typically these
string expressions 'Will be expanded string constants, discussed in Section
9.2.4.3, such as "%1.0bj".

The NEWER functlon enables you to determlne 1 f one fHe Is newer than
another file; that is, whether or not its last-modified date Is more recent than
the last-modified date of another fHe. A value of TRUE Is returned if the
first file is newer than the second. OUring processing, an error 'Will occur if
one of the files does not exist.

9.2.4.3 String Expressicns
A string expression can specify a string in a variety of waYSI as noted in the
following:

9-9

WorA:S/10p Us,!/':r Guhfe Exec Fjjes

string expression

---1----r~~-~:~~:~:~a~~:~:::~~~:~::~".-----:l
! .. -'l~~(~~C:~~~~ ... ~~.! ~~9_,_c:?!,'.:.~.~~~.~J·······-"i

t :_;::x:~::~~9;ft~:~~~1::}:-_ ~:i _ ..
• /-\ parallleter ha') me fOHn "0I'l.

• A J'fl/l7!:l c(Jn,~'lant has the standard form of text. delirnitecj by single quot.es
., with an embel1ded quote specified by the l10ublf: quote rule, as in . Trlat"s
all, folkS".

• An expal7t1t;J(/ stJj/~q {:()lJst..9nt is similar to a string constant, except. t.hat.
double quotes" are used as delimiters, and parameter reference~: are
expanded wi thin the strinq.

• A strj/~q function is an exec file processor function that returns a strinq
value. A detailed description of string functions is provided in Ule
following section.

• An ext.'c fllllction call is an invocation of an exec file that. return~: a
string value, as described in Section 9.2.5.3.

9.2.4.4 String Functions C£NCAT and lPPERCASE
The string functions aNCA T and lJ'PERCASE can oe applied to other string
expressions to produce new string values.

The CCNCAT function enables you to combine several string expressions to
produce a single string result. The CCl\!CAT function takes a list of :>tring
expressions, separated by commas, as arguments.
The lJPPERCN>f. function converts any lo'wercase let ters in its argument to
upper case.

9··10

The form of these functions is:

string function

string expression

~~ONCA~)---(D-T1 string expression ~
L------()r---....-.-----'

An example of the use of the UPPERCASE functlon is
$ SET %0 TO lPPERCASE (%0)

E):ec FHes

which sets parameter 0 to an uppercase version of its previous value.
92.5 Nestirg Exec Files

Exec flIes can be nested in two ways. Ole is to use the SU3MIT command to
call another exec file in the same way that you would call a procedure.
Alternately, you can call exec files as functions (returning string values to a
string expression), as explained in Section 9.2.5.3.

9.2.5.1 The SU3MIT CooIJald
The SlJ3MIT command enables you to nest exec files; that Is, you can call
one exec file within another exec file. The form of the st..eMlT command is:

submit statement

where "exec commancf' is an exec command of the same fonn as would
follow the execl or < at the Workshop command level. This exec command
can include parameters and exec options in the usual fashion (see Section 9.3~
The St...eMIT command processes the specified exec file, putting any generated
exec output text into the current exec temporary fHe. ThUS, while a slngle
exec· file can have several nested subexec files, only one temporary output
file is generated. This fHe contaIns the output generated by all of the input
files. Exec files can be nested to an arbitrary level.

9-11

Wofksnop User's Guide Exec Files

Wi thin the text of the exec command, references to %n parameters are
expanded, and the literalizing character tilde C) is processed. Be aware that
this Is the only processing that takes place within the exec command.
Everything up to the first left parenthesiS, or the end of the line if no
parameter list is present, is taken to be the exec file name. If a left
parenthesis exists, the parameter list is taken to be everything between this
parenthesis and the next right parenthesis. The exec command cannot be split
across lines.
Note that only the I (Ignore first line) and B (Blanks significant) options are
valid on a SLeMIT command. The R (Rerun), S (Step mOde), and T (Temporary
file saved) options are applicable only from the main exec invocation line.

92.5.2 The RETlFN COOTnarwJ
The RETURN command allows exec files to return string values to other
(calling) exec files. Thus the RETl.RN command can transform an exec fUe
into a function. The form of the RETl.RN command is:

return statement

$ RETURN

string expression

Executing a RETLRN command terminates the current exec file, and returns
to the calling exec file with the specified string value. (Section 5.2.5.3
describes how exec functions are called.) You can use a RETl.RN command
without a string expression to exit from exec files Which are not used as
functions.
Ole way you can use exec functions Is to determIne 1 f a program fIle,
including any corresponding include fIles, has been mOdified since its last
compllatlon. ThIs function can then be used to condItionally submIt compUes.
If written generally enough, such a function could be used by many exec files.
Exec functions can produce side effects; that Is, they can contain normal lines
that get placed in the temporary file. While the intentional use of such sIde
effects is unlikely, inadvertent instances can occur and are potentlall y
hazardOUS to your exec fUes. AA unexpected blank 11ne In the middle of an
exec flIe can often throw it out of sync.

9.2.5.3 Exec Ft.rlCtloo Galls
Exec function calls return string values, and are thus one of the basic
elements of strIng expressIons. They can also appear In boolean expreSSions,
supplying arguments for string comparisons. A typical use of an exec function
Is to return a Ooolean value by returning either the string T or F. The form
of an exec function call is:

9-12

Workshop User's Guide Exec Files

exec function call

filename

parameter list

Where < Is the character that sIgnals a function Invocation, in the same way
that this character identifies exec flies for the Workshop'S Run . command.
The "file name" and optional "parameter list" are the same as described in the
SlBMIT command section, Section 9.2.5.1.

Due to the liberal conventions concerning what characters, including blanks,
can appear In file names, the exec fBe processor must make some assumptions
about how to identify the exec function file name and the argument list.
The following rule Is used: if the exec function invocation has an argument
list, the fUe name is assumed to be everything between the "<" and the "C.
beglmlng the argument Ust; otherwise, the fUe name Is assumed to be
everything between the "<" and the end of the line. This means that If the
function call Is not the last thing on the command Une, you must supply an
empty argt.ment list to an exec function with no arguments.

Processing the text of a function call is the same as with a SU3MlT
command; that is, the only processing that takes place is the expansion of %II
parameters and recognition of the lIteraUzing character This means that
the text of a function call cannot contain an embedded function call. Note
also that a function call cannot be spH t across lines.

9-13

Workshop User's Guide Exec Files

9.3 USing Exec Files
You invOke the exec file processor in response to the Workshop Run command
prompt. An invocation line for the exec file processor has t~e form:

exec invocation line

~exec comman~
exec command

filename

parameter list~------------~~~

The "exec flIe" Is the name Of the exec file you want to run. M extensIon Of
".TEXT" Is assumed if no extensIon is specIfied. However, you can override
the mechanIsm that suppl1es the ". TExr' extensIon by endIng your exec flIe
name with a period; for example, using "foo." causes the exec fUe processor to
search for the flIe "foo" rather than "foo, text".
The optional "parameter list" is enclosed in parentheses. The parameter list
can be empty or It can inclUde up to ten parameters separated by commas.
For example, an exec fUe to run compiles, which takes volume and source file
parameters, might be Invoked with "compUe(foo,-wOrk)'". You can om1t
parameters, leaving them as null paramaters, by speCifying them with the null
string, as In "complle(foo,j". The volume that was present in the previous
example has been omitted. Alternately, parameters can be left unspecified
altogether, as in ··complle(fooj". In this case, they also get null values. O1e
reason to omit parameters Is that the exec fUe might have been set up to
supply default values, as described In Section 9.2.2.1.
The exec options that follow the closing right parenthesis of the parameter
list consist of single-letter commands, which change the behavior of the exec
fUe processor; for example, you use the letter S to lndlcatethat you want to
step through the exec fUe as it is being proceSSed, conditionally selecting
\-mich commands are to be sent to the WOrkShOp. The exec options are
discussed in detail in Exec Invocation QJtions, Section 9.3.1.

9-14

WOIksl7op User's Guide Exec Files

The exec file processor's output is a temporary file with a ". . text" extension.
The temporary file is the processed version of your exec commands; that is,
all exec command lines have been processed and removed, leaving only the
resul ling WorkshOp commands. This temporary file Is passed to the Workshop
when the processing is completed. The Workshop then runs the temporary
exec file, and automatically deletes it when finished.

I'IlTE

To terminate the processing of the exec file while the exec file
processor is running, you press .-period.

9.3.1 Exec Invocatioo qJtions
Several options are available when running the exec file processor. You can
specify these options when invoking the exec file processor or on SlJ3MIT
commands. The options are specified by single letter commands following the
exec parameter list. A null parameter list should be used if you want to use
options without parameters, as in "<fo~". The options are as follows:

B indicates that the exec file processor should not trim blanks on output
lines. Normall y the exec file processor trims off leading and trailing
blanks on the lines that it outputs to the temporary file. Trimming
enables you to indent normal lines (lines that are not exec command lines)
without worrying about generating spurious blanks. In other words, the
exec file processor assumes that leading and trailing blanks are
insignificant. While this assumption is true for Workshop commands, it
might not be true for some other programs you can run with exec files.
USing this option tells the exec file processor not to trim such blanks.
The option applles to only the exec file being run or SU3MITted, and not
to any nested exec files.

indicates that the first line of the exec file is to be ignored by the exec
file processor. This option is intended for those who embed exec files in
their program sources. When using this option, you should begin the first
line of the source with a "(*", and follow the end of the exec file with a
"*1', thus commenting it out of the program source. Note that you should
yse "(*" and "*)" instead of "f' and "}"', since the latter are comment
delimiters in exec files.

T indicates that the temporary file, which is created (I.e., the expanded form
of the exec file), should not be automatically deleted after it is run. This
option enables you to to rerun an exec file created with the step option
(see below) without going through the stepping prompts a second time by
running a previously created expanded exec file. The R exec option,
described next, is used to run old temporary exec files. Note that the T
option is not allowed on SU3MlT commands.

9-15

WoJ1<s/1op User's Guide ExecFIJes

R indicates that the an exec temporary fUe, saved with the T option, should
be rerun, bypassIng the normal processing by which the temporary was
created. For example, "foo" might be an exec file that generates a
complicated system using a large number of nested exec files that take a
significant amount of time for the processor to digest If you know you
are goIng to run "foo" repeatedly, you might want to generate the
temporary file only once but run it several times. The first time you
would invoke the exec fUe processor with ""<fOc()t .. to Indicate that the
temporary file should not be automatically deleted after it is run.
SUbsequently, you would invoke the exec fUe processor wIth ""<fo«)r" to
rerun the old temporary file. Note that the R option overrides any others
that might be specIfied; sInce, If you are rerunnIng an old exec temporary
fl1e, all the processing has been performed and the other options make no
sense. UsIng the R option Is not allowed on SLeMlT cornrnan<ls.

S indicates that the exec file shOuld be processed in "Step Mode", Which
allows selective skipping of output lines and Sl.J3MITs.

9.3.1.1 USing the Step FlIlCtlm
If you use the step option, the following prompts appear when you invoke the
exec fUe processor:

step Hode:
-- in response to "InclUde ?" answer:

Y, N, A (Abort), K (Keep rest), or I (Ignore rest~
-- in response to "Submit ?" answer:

Y, N, S (Step), A (Abort), K (Keep rest), or I (Ignore rest~
More details? (Y or N) [No]

If you repond with Y (yes) to the "More details 7" pronpt, you get
addi tional information as to what each of stepping responses means.
When you Invoke an exec fHe with the step option, you are prompted When a
Une has been generated and is abOUt to go Into the temporary file. The Une
is displayed followed by .. <- Include 1".

• A response of Y InclUdes the line In the expanded exec file.
• A response of N omits the displayed line.
• A response of A aborts out of the exec file processor, and no exec file is

run.
• A response of K keeps (inclUdes) all the remaIning l1nesof the exec fUe,

leaving step mode.

• A response of I Ignores the remaInder of the exec file. No more Unes are
inclUded.

9-16

Workshop Usef's Guide Exec Files

When a Sl..EMIT command is encountered in stepping, the SlBMIT line is
displayed followed by "<= Submit 7".

• A response of Y performs the SlI3MIT unconditionally; that is, without
stepping through it.

• A response of N ignores the SllJVIlT.

• A response of S steps through the SU3MIT file.

• A response of A aborts out of the exec file processor, and no exec file is
run.

• A response of K keeps the rest of the exec file, leaving step made.

• A response of I ignores the remainder of the exec file.

~

A reponse of ? to a "Submit?" or "Include ?.. prompt elicits an
explanation of the accepted responses.

Some examples of how to use the exec file processor's stepping facility follow.

Stepping can be used to resume execution of an exec file that did not run to
termination. For example, if your "compile" exec file includes both a compile
and a generate step, and if you want to resume with the generate step, you
invoke the exec file with "compile(foo,-work)s". Then, in response to the
"Include?" prompt for lines corresponding to the compile step, you hit N to
skip the lines. Upon reaching the first line of the generate step you respond
with K to keep the rest of the file. Thus the generate step of the exec
process would be performed.

The stepping mechanism can be used to run only selected parts of an exec
file. Say, for instance, that you have a modular set of exec files, which
generates a whole system of programs, such as the Workshop, and that one
exec file called "make/all" can generate the whole system by Sl..EMITting
exec files for each of the component programs. The exec files for each
component program (development system tool) make use of other exec files to
perform such standard activities as compiling (and generating) a Pascal unit or
prOgram, performing an assembly, installing a library, or manipulating files
with the Workshop's filer. If you perform a system build and find yourself
constantly having to regenerate parts of the system, the ability to step by
Sl...&1ITs proves very useful. You can regenerate arbitrary parts of the
system by running "<make/alIOs" (our master exec file invoked with the
stepping option), and selectively submitting the subexec files for only those
things that you want to rebuild, while stepping over the others.

9-17

Workshop User's Gujde Exec Fjles

Stepping in conjuction with the T option, for saving the temporary file created
by the exec file processor, can be useful when you are going to be
regenerating a single component of a program or system a number of times in
succession; for example, when you are fixing a bug in an element of a system
build and you expect that several iterations will be needed to correct the
problem. To continue the previous example, suppose that while building the
development system, you have a problem with the "fileio" unit of the
"objiolib" library. Suppose also that an exec file called otmake/objiolib"
generates and installs the library, submitting compiles and assemblies for all
of its units, linking everything together, and finally performing the
installation. By invoking the exec file processor with "make/objiolit:()st", you
can go into step mode and submit only those things related to the compilation
of the "fBeio" unit, the link, and the installation of the library in the intrinsic
library. Then, after each successive refinement of "fHeio", you can run the
saved temporary file by running "<make/objioli~" without having to go
through the stepping process. The alternatives to this procedure are: to
create another exec file to generate only the selected parts, to run (and rerun)
the exec file for the whole library, or to run each subprocess independently
(which requires more of your attention).

9.4 EXiflllle Exec Files
9.ll.l An Exec File to 00 a Pascal CorT1lile

This exec file does a Pascal compile and generate. Note how comments are
used· to make the single character Workshop commands more intelligible.

$EXEC { "COO'p" -- perform a Pascal COO'pile
'0 -- the OCIIE of the tIli t to conpile }

P{Pascal COO'pile}%O{source}
{no list file}
{default i-code file}

G{generate code}'O
{default obj file}

SENlEXEC

9.4.2 Nt Exec File to Do an AsserOOly
This exec file performs an assembly, and allows for an optional output file
name which can be different from the source name.

$EXEC { "assentl" -- perfom an assentJl y. .
'0 ~- the rae of the· tIli t to assemle } '1 -- (optimal) al temete rBIE of OOJ output }

$OEFALLT '1 TO '0 { use source nanE if no output I'l8IIE is given}
A {assemble}'O {source}

{no list file}
%l{obj file}

SENlEXEC

9-18

Workshop Use/'s Guide Exec Flies

9.4.3 A ~re Flexible Exec File to Do Pascal COCTlllles
This exec fi Ie performs compiles .. allowing for an output file wi th a di fferent
name than the sauce.

$EXEC { "C0fJ1)1" -- perform a Pascal COfJl)lle
%0 -- the 1"900 of t~ unit to COOlJile
%1 -- (optional) alternate name for ~J flle }

$OEF All.. T %1 TO %0 { if no alternate OOJ name use sarre name as
source}

P{~dscal compile}%O{source}
{no list file}
{default i-code file}

G{generate code}%O
%1{(R) file}

$Etff:XEC

9.4.4 A "Smart" Exec File to lXJ Pascal COO1Jlles
This compile exec file only performs the compile H either the Object file does
not exist or the source file is newer than the Object file; that is, the source
has changed since it was last compiled. It uses the campi exec file shown in
Section 9.4.3 above.

$EXEC { llcoop211 -- perform a Pascal c~ile (mly if really
reQ,l1roo)

%0 -- the 1"900 of the lXlit to COf1llile
'1 -- (opt1onal) alternate name for OBJ file }

$DEFAULT %9 TO %1 { set %9 to name of output OBJ file}
ftFALl. T '9 TO '0
$IF EXISTS (1I%9.objll) THEN

$IF t£IJER (11%0. text ll, "'9.00j-)
ll£N {recall> if source newer than object}

$SUBMIT comp1(%O,'1)
$ENJIF

$ELSE {OOJ file ooes not ex1st, so generate it }
$SUBMIT cornp1(%O,%1)

SENJlf
SENEXEC

9.4.5 Exec Flle Ctlaln1ng
This example, "make/Prog", uses the smart compile exec file ("comp2")
CJeflned In the last example to demonstrate hOW to Chain exec fHe executlon.
Assume you want to generate a particular program composed of three units
(unit1, unlt2 ,unit3), and that you have written "link/prog", a smart exec fBe
which performs a link only when one of the object fUes for one of the units is
newer than tne llnked program fUe. Your generation exec fHe uses tnese
smart exec files to perform the minimal required amount of wOrk. Thus it
can be used to ensure that you have the latest version Of the program wi tnout
performing a full regeneration.

9-19

Wo.rkshop Users Guide

$EXEC {·nB<e/Pro~t -- smart version, only ~iles
& links .r.en it has to}

$SUBMIT comp2(unitl)
$SUBHIT comp2(unit2)
$SUBMIT comp2(unit3)

Exec FjJes

R<linklProg { Run link exec file after compiles have

SEt()f)(fC

run so that it gets the correct file
dates. This is one exanple of Wlen you
should note the difference between
process time and run time.}

Note that in the last line of the above exec file you have scheduled an exec
file to be run at a later time, as opposed to Sl...D'-1ITting it now, so that the
file dates for the link step are accessed after the compiles have had a chance
to run. The differences between running and Submitting and exec files are
demonstrated in the following scenario. When an exec file is submitted, it is
processed immediately by the exec file processor. Its output goes to a
temporary file, which is then passed back to the Workshop. The Workshop
runs the commands in the temporary file until it comes to the command to
Run another exec file. At this point it discards the remainder of the
temporary file, and runs the exec file processor with the new exec command.
This exec file invocation results in another temporary file of commands, which
is then run by the WOrkshOp. Thi s means· that some exec processing has been
scheduled to follow some exec running, rather than all of the processing
taking place first.

9.4.6 A Recursive Exec File to Do Pascal Corl1liles
This compile exec file performs up to 10 compiles. It takes an argument list
wi th the names of the units to be compiled.

$EXEC { "rCOllll" -- perform any rumer (~ to 10) Pascal COIIfliles.
It calls "oomp" on its first argument and then calls
itself recursively with its arguments shifted left }

$IF ~O <> ., ll£N
$SlD1IT ~(%O) {"coop" the first one }
${ "rcomp" the rest, less first}
$SlB1IT rcoq:J(%1, %2, %3, %4, %5, %6, %7, %8, %9)

$Eft)IF
$EN)EXEC

9.4..7 A BASIC EXS11l1e
This exec file demonstrates, by generating the BASIC Interpreter, some of the
constructs in the exec file processor's meta language. The comments in the
body of the example should be sufficient to describe what is taking place.
The essential idea is that BASIC is made of three components and that you
might want to generate only one or two of them at a time.

9-20

Workshop Users Guide Exec Files

$EXEC { "nO<e/basic" -- generate the BASIC Interpreter.
There are three paraooters -- if a paratEter is a "'V"
(yes) the correspooding part of the system should be
generated:

(0) the b-code interpreter
(1) the IU1-tire system
(2) the COOII&ld interpreter

If no parameters are specified, the exec file prompts to
see .tlat parts of the system should be generated. }

$lRITELN 'Starting generation of the BASIC system'
SIF %0 = " AND %1 = " AND %2 = " THEN

$ {no parans SlWlied -- prompt for info}
SlRITE '00 you WCYlt to assent>le the b-code interpreter?',

'(yor [n])'
$REAlX}f %0
$lRIffiN {this .ri teln puts us on a new line for the next

p~t }
SlRITE '00 yru wmt to coopile the IU1-tillE system?',

'(y or[n]) ,
$REAlni %1
~ITELN
ftRITE '00 you WCIlt to conpile the COOI1B1d interpreter?',

• (y or [n])'
$RE~ %2
$WRITELN

$ENlIF
S
SIF UPPERCASE(%O) = 'V' THEN {assemble the b-code interpreter}

$SUBMIT assemb (int.main)
$EN)IF
$
$IF UPPERCASE(%l) = 'V' THEN {compile the run-tire unit}

$SUBMIT comp(b.rtunit)
$ENlIF
$
$IF UPPERCASE(%2) = 'V' OR UPPERCASE(%l) = 'V' THEN

${ compi Ie the COIII1H id interpreter }
${ compile also if the run-tire unit has charged }
$SlIJ1IT OO1p(b. basic)

$ENlIF

9-21

WoIkshop User's Guide

S
${ link it all together }

L{link} b.basic
b.rtt..lit
int.l11Bin
h.intl
iosfplib
iospaslib
basic{executable output}

$fta:XEC

9.4.8 M Exec File FLn;tion

Exec Files

This exec file is a function which prompts the user for the location of a
ProFile, and returns a string with the name of the device to which the ProFile
is attached. Note that the function calls itself recursively until a valid
device name is specified.

a:XEC { "GetProfLoc" -- get location of Profile by asking user }
SRE(J.EST %9 WITH
'Where is the Profile attached (paraport/slot2chanl/slot2chan2)'
$SET %9 TO lPPERCASE (%9)
SIf (~9 <> 'PARAPORT') AND (~9 <> 'SLOT2CHAN1')

AN) (%9 <> 'SLOT2CfWQ') Tl£N
$WUTELN • That is not a valid device I'lCI1E _ Let II s try again _ •
$RETmN <Ge1:ProfLoc {recursi ve flllCtion call }

$ELSE
$RETmN %9

$ENJIF
SEf«:XEC

9.5 Exec File Progrmming Tips
The following paints might be useful to remember when creating exec files.

1. Use modular exec files. Think of exec files as procedures that are
called by the SlBMIT command. The more modular your exec files are,
the easier it is to use the stepping facility on them.

2. Create standaId exec flles for common functions; for example, use one
exec file to perform all your compilations. Therefore, if changes become
necessary, you have only one place to Change.

3. Use cptknaJ parameters to support features of your exec files that you
do not always use. The parameter mechanism enables you to ignore
optional parameters if you do not need the functions they support

9-22

WOI1<S!7qJ UseI:r Guide Exec FHes

4. Write your exec files to prorrpt for information not supplied in the
parameters. Thus you do not need to remember the meaning of a large
number of parameters.

9.6 Exec File Errors
The exec file processor can recognize a number of errors during its invocation
and execution. The format in which errors are reported is:

where

ERRCP in <err loc>
<cun line>
<err marker>
<err msg>

<err loc> is either 'invocation line' or 'line 1t<n> of file "<file>".

<curr line> is the text of the current exec line where the error was
detected.

<err marker> is a line with a question mark indicating Where the exec
file processor was in <curr line> when the error was
detected.

<err msg> is one of the messages listed below.

110 errors are followed by an additional line with the text of the OS error
raised during the liD operation. The errors detected are listed below.

9.6.1 I/O Errors
Unable to open input file "<file>".
Unable to open tel1lJorary file "<file>".
Unable to access file "<file>".
Unable to rerun file "<file>".

9.6.2 other Errors
File does not begin with "$EXEC".
End of Exec file before "$ENDEXEC".
$EXEC command other than at start.
No Exec file specified.
Hare than 10 parameters.
No closing ")" found.
Line buffer overflow (>255 chars).
Invalid Exec option: <option char>.
Invalid Exec option on SUBHIT: <option char>.
End of Exec file in comment.
Invalid percent: not "%n" form.
Garbage at end of command.
No argument to SUBMIT.
ELSE, ELSElf, or ENDlf not in If.
ELSElf after ELSE.
File contains unfinished IF.

9-23

Wofkshop User's Guide

and

Nothing following "<tilde>".
Out of memory. Processing aborted.
Bad terrp file naIregenerated: "<file>".
No value returned from file called as function.
RETURN with value in file not called as function.

Invalid command. <token> expected.
~here <token> might be:

String value
"%n" parameter
Terminating string delimiter
":" or "<>"
"<>"
Boolean value
Comma (list delimiter)
"("
")"
Valid command keyword
Conmand

9-24

Exec Files

NOTES

29-04'7-A

Chapter 10
The Transfer Program

10.1 Introduction•...........•...•..•..........................•.......•.................... 10-1
The Transfer program is a communications package that allows you to
transfer text between your Lisa and a remote computer.

10.2 rJaraware ~tiOl'lS arl(j Q:JrlfiguraUon •.....•..•......••..•....••...•.....•.•.. 10--1
To use the transfer program you need a mOdem connected to one of
the serial ports. Use the Preferences tool from the System Manager to
configure the Usa to use the modem.

10.3 setting Tra'lSfer Progrcm Charoctertstlcs ... 10-1
Use the menus to set the baud rate, parity, handshake, and full or half
duplex so that the transfer program will be compatible with the remote
computer.

10.4 LJsing the Transfer Program .. 10--5
The transfer program can be used to transfer a file from a remote
computer to the Lisa, or from the Lisa to the remote computer. It can
also allow you to use the Usa as a termInal connected to the remote
computer.

Workshop User's Guide Ttle Transfer pmgram

The Transfer Program

10.1 Intr()(i£Um
The transfer prog:-am is a data communications package that allows you to
transfer text flles from your Usa to another computer. You can also receive
text from the remote computer and store it in a text file, 'Which can then be
read by the Editor.

To use the transfer program, you must either:

• Get the necessary modem and attach it to the Serial A or Serial B
connector on the back of your Usa. Then tell the Preferences tool in the
System Manager the you are attaching to a Remote Computer.

• Or, get the necessary modem eliminator cable and attach it to the Senal A
or Serial B connector on your Usa Then attach the other end to a serial
port on another computer, and tell the Preferences tool that you are
attaching to a Remote Computer.

When you have completed either action, set the Transfer Program
characteristics to match the requirements of the remote computer.

These operations are explained In Sections 10.2 and 10.3 below. Section 10.4
explains how to use the Transfer Program to send and receive data

102 Hardware QnlecUms <rid COnt1~UCI1
In order for the Lisa to communicate to a remote computer the Lisa can be
connected to a modem or a modem eliminator cable through either the Serial
A or the Serial B comector on the back of the Usa.

In addltion to connecting the hardware, you must configure the software To
do this, use the Preferences tool from the system Manager command line.
Access the Device Connections display, and set either Serial A or Serial B to
Remote Computer. More information on the Preferences tool can be found in
Section 3.3.

You must also set the active Transfer Program to access the correct
connector. 00 this by selecting either Serial A or Serial B from the
COnnector menu. The default Is SerIal A

103 Settlng Transfer ProgJan Characteristics
In older to communicate with a remote computer .. the Transfer Program must
be set up so that it transmits and receives data in the same way as the host
These settings are made by using the 6aud Rate, Parity, Handshake, Duplex,
and Control menus. These settings are explained below.

10-1

WoIf<shop User's Guide Tile Transfer Prog.ram

BaIj Rate
The baUd rate is the speed at which data passes to and from the remote
computer. The baud rate must be set to agree with the remote computer and
modem you are using. The baud rate menu is shown in Figure 10-1. The
default Is 1200 baud. See the note in Section 11.10, PortConfIg, for the valld
baUd rate settings for each Serial port.

ParIty

110
134.5
150
200
300
600

v'1200
1800
2000
2400
3600
4800
9600
19200

Fi~lo-l
TIle Baud Rate twIenJ

Parity refers to the process of checking that data was not. damaged in
transmission. Parity should be set to agree wIth the host computer. Parity
can be even, odd, or turned off (none~ Select the option desired from the
Parity menu. The default Is none. The parity menu Is ShOWn In FIgure 10-2.

10-2

Workshop User's Gwoe

Hcn1shake

.. ~,
v'None I~

Even
Odd

FiC}Jre 10-2
The Parity MenJ

The Transfer Program

The handshake menu, shown In Figure 10-3, selects either an X01/XOff
protocol, or no handshake. The X01IXOff protocol allows the remote computer
and the Transfer Program to tell each other whether they are ready to
receive more information. Using this protocol, the Lisa can stop transmission
from the host by sending XOff, and start it again by sending XOl. The host
can start and stop transmission from the Transfer Program by sending X01
and XOff to the Lisa. The X01 character is a control-Q, XOff is control-So
The default is for handshaking to be turned on.

~rmtiej1jl' I . None
v'XOn/XOff

Figure 10-3
1he HMdshake Meru

l:qJlex
This menu allows you to select Full or Half duplex. Full duplex sends all
characters typed from the Lisa keyboard to the remote computer, but does not
display them on the Lisa screen. All characters sent from the host are
displayed on the screen. Using full duplex, you will only see what you type if
the remote computer sends back the characters you type. Most hosts you are
likely to use with a Lisa do send back the characters they receive to be
displayed.

Half duplex displays the characters typed on the keyboard, bacause it does not
expect the host to send them back. The default is full duplex. The duplex
menu is shown in Figure 10-4.

10-3

Wo.rkshop Users Guide

control

Figure 10-4
The ~lex Menu

The T.rensrer Program

The control menu allows you to set two delay times, if needed. The first is a
delay between each character sent, the second is the delay between· each line.
80th are in milliseconds. Delays are used to simulate typing speeds when
transmitting to a remote computer .that can not keep up with full speed
transmission. The default is for no delay. The control menu is shown in
Figure 10-5.

li.hiDi1lk ~-----.
I Record to
f · .. · .. "· "· .. · .. · .. "" .. ·" .. ",,·,,· .. ·,· ",, ",,·,, .. · ,,·,,· ...

I Record All Text

l~-~.~~~~-:.~~~-~~~~-~-~~~-
I Play Back From .. .

[harocter Del ay .. .
Line Delay .,,

Exit

Fi~ 10-5
The Control f'-1eru

10-4

Workshop User:r Guide The Transfer Progmm

10.4 UsirYJ the Trcnsfer Prognm
Start the Transfer Program by pressing T in response to the Workshop
command line. The Transfer Program will display a windo\Y on the screen
with menus at the top. You must configure the Transfer Program to match
the remote computer you wish to communicate with. Information on
configuring it can be found in Section 10.3 earlier in this chapter.

After the Transfer Program comes up, it is ready to act as a terminal
emulator. Evrything you type on the keyboard will be transmitted through the
modem to the remote computer.

The Transfer Program can also be used to transfer files back and forth
between the Lisa and the remote computer. The functions for doing this are
in the Control menu. The control menu is shown in Figure 10-6.

To transfer a file from the Lisa to the remote computer, select "Play Back
From ... " from the control menu. It will ask you for the file name to play
back. It expects a .TEXT file. The contents of that file "'ill be transmitted
to the remote computer.

To transfer a file from the remote computer to the Lisa, select "Record to
from the control menu. It will ask you for the name of the file to record to.
After you have set up the remote computer to transmit the file you want (by
typing commands at the keyboard) select "Record All Text" from the control
menu. When you tell the remote computer to transmit the file, it will be
recorded in the file you specified. This command will record the file exactly
as transmitted, including all control characters. If you don't want the control
characters, select "Record Filtered Text". This option changes carriage
returns to newlines and replaces tabs by the appropriate number of spaces.
All other control characters are thrown away. The filtering option affects
only the disk file, not what Is displayed on the screen. The default is "Record
Filtered Text".

To transmit control characters from the keyboard, hold do\Yn the « key and
press the character. Other special purpose characters can be transmitted as
shown in Table 10-1. [ption keys are treated as no-ops.

10-5

Workshop User's Guide The Transfer P/vgram

Table 10-1
Transmitting Special Characters from the Keyboard

KeytJolUd Tnnsm/ts

Apple backspace del

clear esc

ENTER (alpha keyboard) break

ENTER (numeric· keypad) return

arrow keys their symbols

Apple Q X01

Apple S XOff

10-6

NOTES

)362-A

Chapter 11
The Utilities

11.1 Byte[)lff .. · 11-1
ByteOlff compares two flles, byte by byte, and shows where they are
different.

11.2 0&1geSeg ••••••.••••••.••••.•....•.•..•.•.••.••..•.•••••.••.••••.•.•.•.•.•••.••...•..•.••••... 11-2
CtlangeSeg allows you to Change the segment names In the moaels In
an unlinked object file.

11.3 QxieSlze .. 11-3
CodeSize gives you a summary of the contents of an object fHe

11.4 Diff•......•.....................•...•...................... 11-6
Oiff compares two text files and shows their differences.

11.5 ~J•... 11-S
Oump(l)j displays the contents of an Object file.

11.6 CJl.IllpF>atdl .. ~ ••.•••••••..•••••.••..•••••••• 11-9
DumpPatch displays and edits the contents of any fUe.

11.7 File[)lv and FileJoln .. 11-11
FlleOlv dIvides largefUes into smaller ones. FlleJoin rejoins the
resul ting small files back into the original large file.

11.S Firld .. 11-12
Find searches a text fHe for a pattern, such as Ictentiflcation.

11.9 GXRef .. 11-13
GXRef provides a glObal cross reference of subroutines and mOdUles.

11.10 PortC:orlfig ... 11-14
PortConfig enables you to configure the RS232 ports.

11.11 ~•.•.....•...........•..........•.••......•. ~ ...•...•.•..........•.......•. 11-16
SegMap prodUCes a segment map for one or more Object files.'

11.12 SXRef ... 11-17
SXRef prOdUces a cross reference of· source flIes.

11.13 UXRef .. 11-18
UXRef produces across reference of USES statements in programs
and units.

11.1 ByteOiff
Synopsis

The Utilities

ByteDiff compares the contents of two flles and reports which bytes (words)
are dIfferent.

Olalog
Source file?
Target file?
Descrtptlon
ByteOiff compares the source file to the target file and reports on their
differences. This utility is useful for finding the first differences between
files or for finding a small number of differences.

The program prompts for an input fUe and an output file. The two files can
be in any format: .text, .Obj, .1, and so forth.

The output Is of the form:

Where:

Bytes $xxxxxx differ aaaabbbb

xxxxxx is the byte address In hex
aaaa is the word (two bytes) from the source fUe
bbbb is the word from the targetflle

After 20 lines of output the user can either terminate by pressing [CLEAR] or
continue by presslng the space bar.

see Also
Diff, E(qual command of the File Manager

t«ltes
ByteDiff compares any binary files, but once it finds a difference between the
two flIes, it dOes not try to resynchronlze. This utmty dOes blocK-at-a-time
110. The program stops at the first end-of-file ~ has no termination
message. ByteDiff Is nonstandard user Interface.

11-1

WOr/(sfJop User's Guk1e

112 CtlcnJeSeg
Synopsis

TIle Wi/ties

Change5eg Changes the segment name In the modUles In an unl1nked object
fUe.

Dlalog
Flle to Change:
Map all Names (YIN)

DescrlpUoo
The first prompt asks for the unlinked object file you want to change.

You are next asked if you want to map all names. If you want to change
segment names In all modules .. respond Y. If you want to be prompted for the
new segment name for each module .. type N. A response of [RETURN] accepts
the default name.

t-btes
Changes are made In place (the fUe . Itself Is changed).

11-2

Worksllop User's Guide

11.3 COOeSlze
SynopsIs

Tile UtilHies

Determines the code size and code segmentation for a unit, a program, or a
llbrary.

Dialog
Input fne [.CBJ] -
Resident fHe [. TEXT] -
ClItput flIe [-CXNSCLE]t1. TEXT] -

The resident flle is the fUe that contains the segemnt names that are
considered resIdent. The names In the fBe must be the same case as In the
code file itself. The resident information is used in the summary reports to
automatically sum the resident and swappIng cOde.

At any time when specifying the file names, the run-time options can be
turned on or off. The run-time options are:

+% turns the mappIng of calls to system extemals on or off. System
externals are procedures whOse names begin with a U%". using this
option, the system will count the number of procedures that call a
particular system external. This option Is used to determine which
system routines are beIng uSed, for example, If WRITELNs are left
in the code.

+E turns the mapping of calls to llOI7System extemals on or off.
Nonsystem externals are procedures in a segment other than the
calling procedure. Using this option, the system will count the
number of procedures that call a particular nonsystem external.
This option is used to determine which routines are being used, for
example, which library routine the code is using.

+M tells CodeSize that a particular segment is mapped onto another
segment. This information generates the segment mapplng summary
and the segment summary. This option is used when smaller
segments are mapped into larger segements, and the sizes of the
smaller and reSUlting larger segements are needed.

+S turns the maIn report on and off. Sometimes the summary report Is
all that is needed. Use this option to print only the summary
report.

DescrtpUm
COdeSIze generates two types of reports depending on the type of input flle(s):
maln report and summary report. The input fUe can be an execution fUe, a
library, or an object file. For each fUe, the report format will be:

11-3

WOrkshop User's Guide Tile Utilities

Type of FUe

Execution file
Main Report

segment information
Slmnary Report
segment summary
main summary

Library fUe un! t information
segment information

unIt summary
segment summary
main summary

(])ject fUe unit information
procedure information

external summary(+E or +%)
unit summary
segment mapping summary(+M)
segment summary
main summary

The contents of the report section are:
Segment information

segment type
segment· name
segment size

unl t Information
unit name
unit global sIze
unit type

ProcedUre information
procedure name

associated segnlBnt
procedUre size
interface information

external references

External summary
external procedure name
It of occurrences

U11t summary
unit name
unit size
unit type
unit global size

intrinsic, nonintrinsic, main program
first eight charcters of the segment's name
size of the segment in decimal or hex

first eight characters of the unit name
how much global space the unit uses
intrinsic, shared intrinsic, regular

first eight characters of the procedUre's
name
first eight characters of its segment's name
size of the procedure in decimal or hex
is the procedure in the interface of the
vnit?
list of all the external calls the procedure
makes. This is triggered by the +E or +%
options

name of the procedUre
how many different procedUres called the
procedUre. This is triggered by the +E or
+% options.

first eight characters of the unit's name
size of the unit In decImal or hex
intrinsic or not
how much global space the unIt uses

11-4

WOd<shop USer's Guide

Segment mappIng slKl"Iffiary
original segment name
new segment name
segment size

segment summary
segment type

segment name
segment size

Main summary
total COde sIze
total resIdent code

total swapping COde

total data globals
total main prog glooals

total globalS

total jump table

The Utilities

name of the original segment
name the segment Is belng mapped Into
size of the segment being mapped. This is
trIggered by the +M optlon.

swapping or resictent. ResIdent segment Is
specified to CodeSlze by' the "resident file".
first eight characters of the segment's name
size of the segment in decimal or hex

summation of the code sIze
summation of the code that Is considered
resictent all the time. Resident code Is
specIfied to COdeSlze by "resIdent f11e".
summation of the cOde that Is consIdered
swappIng all the time. Swapping code Is
specified to COdeSlze by "resIdent flle."
summation of the glObal space for data
summation of the global space in the maIn
program
sum of maln program glObals plus data
globals
size of the jump table

11-5

Workshop USer's Guide

11.4 Dlff
Synopsis

The UtilIties

Diff is a program for comparing .TEXT files, In the WorkShOp. Diff is
desIgned to be used wi th Pascal or Assembler source files.

Dlalog
(Type '?' to change or display options.)

New file name [.TEXT] -
Old file name [.TEXT] -
Listing file [.TEXT] «CR> = -CONSOLE)-
Descriptioo
Diff first prompts you for two Input fHe names: the "new" fUe, and the "old"
file. Oiff appendS ".TEXT" to these file names, if It Is not present Diff then
prompts you for a filename for the lIsting fUe. Press [RETURN] to send the
UstIng to the console.

Diff does not know about INCLUDE files. However, Diff does enable the
processing of several pairs of files to be sent to the same listing file. Thus,
when OUf is finished with one pair of files, it prompts you for another pair of
input files. To terminate Diff, simply press [RETURN] in response to the
prompt for a new file name.

The output prOdUced by 01 ff consists of blocks of "Changed" llnes. Each blocK
of ChangeS Is surrounded by a few· Unes of "context" to aid in finding the Unes
in a hard-copy llstIng of the flIes.

There are three kInds of change blocks:

INSERTICN a block of lines in the "new" file which does not appear
In the "old" fHe.

CELETICN

REPLACEMENT

a block of lines In the "old" fUe whIch does not appear In
the "new" fUe.

a block of lines In the "new" flIe WhIch replaces a
correspondIng block of different Hnes In the old flIe.

Large blocks of changeS are printed in summary faShIon: a few Unes at the
begInnIng of the changes and a few Unes at the end of the Changes, wIth an
indication of how many Unes were skipped.

oiff has three options:

C change the number of context lines displayed.

M the number of lines required to constitute a match.

o the number of lines displayed at the begiming of a long blOCk.
of differences.

11-6

Workshop User's Guide TI7e Utilities

To set one of these numbers, type the option name and [RETURN1 followed by
the new number to the prompt for the first input file name. M entry of 0
[RETURN] 100, for example, causes otff to prInt out up to 100 Hnes of a
block of differences before using an ellipsis. The maximum number of context
Hnes you can get is 8. You can get a display of the current optlon settings
by pressing "?" in response to the first file prompt.
oiff is not sensitive to upperllower case differences. All input is shifted to a
uniform case before comparison is done. This is in conformance with the
language processors, Which ignore case differences.

Diff Is not sensItive to blanKS. All blanKs are SkIpped dUrIng comparIson.
This is a potent1al source of undetected changes, since some blanks are
signlflcant (In string constants, for lnstance~ HOwever, olff Is InsensItive to
trivial changes, SUCh as indentation adjustments, or insertion and deletion of
spaces around operators.
oiff does not accept a matching context which is too small. The current
threshold for accepting a match is 3 consecutive matches. The M option
allows you to change this number. This has two effects:

1. Areas of the source where almost every other line has been Changed will
be reported as a sIngle Change block, rather than beIng broken Into several
small change blocks.

2. Areas of the source whIch are entirely different are not broken Into
different change blocks because of trivial similarities (suCh as blank 11nes,
lines wIth only begin or end, and so forth)

01 ff makes a second pass through the input flIes, to report the changes
detected, and to verify that matching haSh codes actually represent matching
Unes. MY spurious match found during verI flcaUon Is reported as a
"JACKPOT". The prObability of a JACKPOT 1s very low, since two dIfferent
Hoes must hash to the same code at a location In each file WhIch extends the
longest common SUbsequence, and In a matching context which is large enough
to exceed the threShOld for acceptance.
see Also
ByteDiff

~te$
oiff can handle files with up to 2000 lines.

11-7

WOrkshop User's Guide

115 ~J
Synopsis

The Utilities

Dump(l)J Is a dIsassembler for 68000 COde. this opUon provIdes a SymbOllc
and formatted l1sUng of the contents of Object fUes. It can disassemble
eIther Cll enUre f11e, or specIfic modUles wIthIn the f11e.
Dialog
Input file? [.OBJ]
Output file? [-CONSOLE]

Dump A(ll, S(ome, or P(articular modUles [S]?
Dump file positions [N]?
Dump selected object code [N]?

DescripUon
Durnp(l)J first aSks for the Input fUe WhIch shOUld be an unl1nked object f11e.
The output (l1sUng) fUe defaults to -CO\ISO..E. You are asked whether you
want to dUmp All, some, or Particular modUles.
If you respond S,DurnpCl)j asks you for confirmation before dUmping each
module. A response of [ClEAR] gets you back to the top level. If you
respond p,. Durnp(l)j asks you for the particular module(s) you want dumped.

The file position is a number Of the form [0,000] where the first digit Is the
block number (decimal) within the fUe and the second number Is the byte
nt.mber (heXadecimal) within the block at which the modUle starts. This
Information can be used in conjunction with the DumpPatch program.

If you want the selected Object code to be dUmped, respond Y to the final
prompt. The default for this prompt Is N.

See Also
DumpPatch

I'tltes
Durnp(l)j displays only the low order 24 bits of longint fields, which are
interpreted as addresses. This is consistent with the hardware, but causes
some bytes of the fUe not to be displayed.

11-8

WorkslJop User's Gl/jde

11.6 Dlfl1lPatch
Synopsis
Dump and/or patch a fIle
Dialog
Dl.IrnJaPatch - Hexadecimal Dump and Patch
File: - OJtput: [-CCNSCLE} i.TEXT] -

TtJe Utiljties

If you want to select the default of [-CCNSCLE1 press [RETURN] and select
the block number you want to start with; for example, 2.
If you type a file name, the following prompt appears:
Woul{j you llke to access (Input fUe name) Interactively? (Y or N)
If you respond Y, you will be prompted for the block number you want to
start with. If you respond N, you will be prompted for starting and ending
block numbers. The default values are 0 for the starting block number and
ECF for the endt.ng block number.
Description
DumpPatch provides a textual representation of the contents of any file and
the ability to change its contents In eIther the ASCII character or
hexadecimal form. The file dump is block oriented with the hexadeCimal
representation on the left and the corresponding ASCII representation on the
right. If a byte cannot be converted to a printable character, a dot is
substituted. The patCh fac1l1ty uses the arrow keys to move around within the
displayed block and change the value of any byte.
When OumpPatch is Run, you will be asKed for the full name of the input file.
No extensions are appended. Pressing [RETURN] will exit DumpPatch. If the
input file can be found, you will be asKed where you want to direct the
output. The default for the output fUe is [-printer). If you type an output
file name, a .TEXT extension will be added if necessary. If you type a device
name; for example, -printer, no extension wUl be appended.

If an output file name or a valid device name was entered, you will be asked
if you would llke to access the Input fHe interactively. If you answer No, you
will get a quick dump of the input file and will be prompted for the starting
block to dump. The default [RETURN] for the last block to be dUmped Is the
last blocK of the input file. If you specIfy a block that is beyond the
end-Of-flle, you will be given the blOCk number of the last blocK In the fUe.
PreSSing [CLEM] enables you to exit with no dumping.

Cl'lce a file has been completely dUmped, DumpPatch asks you for the next
input file. Press [RETURN] to exit the program.

11-9

Workshop User's Guide TI1e Utilities

If you access the input fHe interactively, you will be asked for the block to
dump. The output will be dUmped to the screen with the option of dUmping it
to the output fUe When you are ready to leave that block. Press the space
bar to lOOk at the next halfblock. Press [CLEAR] to go Into patch mode.
Press [RETURN] to quit the present blOCk.

When you are in patch mode, the cursor will be found in the upper left comer
at word 0 of the block. The arrow keys are used to move the cursor around
in the current blOCk and to previous or successive blocks. Press [TAB] to
toggle between the hexadecimal and the ASCII portions of the display. A
change made on one side of the display is automatically updated on the other
side as well. Until you get ready to move out of the current block you may
undo any changes by pressing [CLEAR} When .leaving a block in which you
made changes, you wUl be asked if you want to write the changed block back
to the input file. This is your last chance to undo any unwanted changes! If
you specified output to something other than the console, you will also be
askedlf you want to dump the current block to the output file when you try
to leave that block. To exit patch mode press [RETURN}

See Also
OJrnpCIlj

11-10

Workshop User's Guide

11.7 FlleD1v em Flle.bln
synopsis

Tfle Utilities

FlleDlv can be used to oreak a large fUe Into several smaller pIeces. FlleJoin
can then be used to rejoin these pieces into one flIe. These functions are
most useful wnen saving and restoring very large fUes, or When you want to
break a large text fUe into smaller ones to be viewed in the Editor.
Dialog
Is this a . TEXT file? (Y or N)

Infile name : [.text]
OJtflle name : [.text]

You mIght want to keep portions of a file on more than one disk. To give
you an opportl.l11ty to dO that, FlleDlv contains the fOllowing additional
prompts:

NlOther disk? (Y or N)

Have you inserted the next disk? (Y or N)

Descrlptlon
Do not include the SUffix in the file name. If, for example, you want to
dIvIcJe TEMP.TEXT, give TEMP as the Input fUe, and TEMP (or Whatever) as
the output file. FlleDiv w111 create a group of fUes named TEMP.1.TEXT,
TErvIP.2. TEXT, and so on, untll TEMP. TEXT Is completely dIvIded up.
To rejoin the pieces of the file, Run FUeJoin. The dialog is the same as for
FUeDlv.

11-11

WoJ1<sfIop User's Guide

11.8 Flrn
Synopsis
FIno searches a text flIe for a pattern.

Dialog
tyPe "?" to display or change options
Enter input file name [.TEXT] (name of the file to be searChed)
Enter output file name [-CCNSa...EM.TEXT] (default is the console)
Enter pattern: (pattern to be matched)

Description

TI7e Utilities

FInd searches text flIes for l1nes whIch match a strIng pattern. Llnes found
are printed to the console. The following options are recognized:

+C Matches are ·case sensItive

+S Matches are space sensIt1ve.

+0 Print dots as lines which do not match are scanned.

+L As lines are reported, print out the relative line numbers.

+ T Report the files that are being sCanned.

TypIng ? In response to any Of the Input prompts wIll dIsplay a description of
the options ·aval1able and read In the options. You can leave FInd by typIng
[RETURN] or [CLEAR] .In response to the Input or pattern prompts.

More than one fUe can be Input at a t1me~ FInes supports the same wildcard
scheme as the WOrkshop FUe Manager. So SUbmItting It-paraport-ch·1t will
dIrect Find to search all of the text flIes begInning with "ch" on the paraport
dIrectory. Find can also search predefined lists of fUes; suppose the flIe
Hfoobar.text" contained:

It hOOha. text
grOk.text
bruhaha text"

Then SUbmitting "<foobar.text" will direct Find to search, sequentially,
HhoOha.text", "grok.text", and then "bruhahatext". If you type "foabar.text"
(without the leading '<') then Find will search "foobar.text", not the files listed
therein, for the pattern.

t.btes
FInd truncates output lInes to 256 Characters.

11-12

Wo.rksllqJ User's GuJde

11.9 GXRef
Synopsis
Glot;;)al Cross Rete,renee.

Dialog
Input file [.Q8J] ?
Listing file [CONSCl.E:)/[. TEXT] -

DescrtpUon

TIle Utilities

GXRef llsts all tne rnedUles WhiCh call a given procecJure, and all tile modules
WhiCh that p~ocedUre cells. It provideS a glObal cross reference of subroutines
and roockJles.

GXRef accepts any t'\UITIller of Object flle as if1)Ut. When you have entered all
the object files, pre~ [RETURN] in response to the input file request.

11-13

Wo.rl<stJop User's Guide

lLl0 PortCmflg
Synopsis
Portconflg enables you to configure the RS232 ports.
Dialog
first you must supply information on how to c~figure the port.
Which RS232 port do you want to configure ? (A or B)

What parIty settlng ?
0) No parity
1) Ojd parity; no input parity cheCking
2) o:Jd parity; input parity errors - 00
3) Even parity; no input parity checking,
4) Even parity; input parity errors - $80

Enter selection (0 - 4) (0]

What output handshake protocol ?
0) None
1) OTR handshake
2) X(]\J/)(CFF handShake
3) Delay after CRJ..F

Enter selection (0 - 3) [0]

What baud rate? [9600]

Receive and buffer input how ?
0) Buffer Input until full request Is satisfied
1) Return whatever is receiVed

Enter selection (0 - 1) [1]

What Input handshake protocol ?
0) None
1) OTR handshake
2) X~IXCFF handshake

Enter selection (0 - 2) (0]

Adjust type-ahead buffer hOw ?
0) FlUSh only
1) FluSh and re-slze
2) FluSh, re-slze, and set thresholds

Enter selectlon (0 - 2) [0]

What form of disconnect detection ?
0) None
1) BREAK detected means disconnect

Enter selection (0 - 1) [0]

Timeout on output after how many seconds (0 - no timeout)? [0]

11-14

The Utilities

Worksllop User's Guide The Utilities

~tomatic linefeed insertion ?
0) Disabled
1) Enabled

Enter selection (O - 1) [0]

We are now ready to configure the port. Shall we proceed? (Y or N)

PortConfig contains a series of questions. After you answer one, you will be
prompted for an answer to the next one. The default values for each question
are shown in brackets.

IJescrlptloo
With the PortConfig utility, you can configure the RS232 ports, and establish
such things as the parity setting, handShake protOCOl, baud rate, discOIY1ect
detection, and so forth. If you are using Pascal and want additional
information on port configuration, see Section 2.10.12 in t:peJ11ting System
Reference Manual for tile Lisa.

For Serial A and Serial B ports" the baud rate can be set to 50, 75,
110, IS0, 200, 30B, 600, 1200, 1800, 2000, or 2400. Serial A can also be
set to 4800 or 9600.

For output only, SeTtal B can also beset to 3600, 4800, 7200, 9600, or
19200.

11-15

11.11 ~
Syt'q)Sls
8egMap prOduces a segment map of one or more Object fUes.
DIalog
FUes to Map ? [.03J]
Listing File? [-CCJ\ISfLE]

Descl1pUoo

711e Utilities

segtv1ap accepts either an Object file name or a command file name, which
enables you to InclUde predefined lists of files.
A command fHe ·must be preceded with a "<". segtv1ap addS the .TEXT SUffix
to the corrmaIld file name.

For example, If the file "Apple. text" contains:
"COde"
"pascal"
"basic"

SUbmitting "<.AWle" directs segMap to accept, sequentially, "cOde.obr,
"pascaI.Obr, and "baslc.roT.
The map information inclUdes the Object file -name, the name of the lI'lit in
the fUe, the names of the segments used tn that unit (If any), and the new
segment names.

11-16

WO/'kS!1Op User's Gl/lde

11.12 SXRef
Syt'qlSis
Pascal cross reference utlllty

DIalog
Source File? [.TEXT]
OJtput file for Listing? [-CrossRef] [.TEXT]
Do you want a numbered listing of the source? (Y or N)

Tile Utl/ltles

Flag the declarations and assignments of each indentifier ? (Y or N)
Declaration Character? [*]
Assignment Character? [..]
Text file of words to emit? [SXRef.emit] [.TEXT]

Description
SXRef gives a numbered listing of the source fUes and an alphabetical listing
of Identlflers found. For each identifier, all references to the identifier are
listed in the order in which the references were encountered. ProcedUre and
function names along with all references to them w111 be found at the end of
the cross reference listing.

Identifiers follow current Lisa Pascal conventions: the first eight characters,
without regard to case sensistivity. Case insensitivity is achieved by shifting
identifiers to lower case, within the Cross Reference section.

INCLUDE flIes are automatically processed. User Interfaces are not
processed. Comments and strings are recognIzed and skipped. There Is no
condItional compilation processing or eUmlnatlon Of COde controlled by
bOOlean constants.

SXRef will accept multiple source ftIes. This can be used to get a cross
reference of a set of Main Programs together with the Units which the
programs use. References are given by file number and line number within
the f11e. A directory of files read is printed at the end of the source listing,
and before the cross reference section.

SXRef attempts to read a fIle for a list of wordS to omit from the cross
reference. The default name Is SXRef.oml L text, bUt other names can be
gIven. If the fHe cannot be opened, execution proceeds normally without
omitting any identifiers.

SXRef will optionally flag where all identifiers are declared and assigned
values. The default flag characters are: [*] for declaration and [a] for
assignment

If SXRef runs short of storage, an error message Is gIven and the program
aborts.

see Also
GXRef, UXRef

11-17

WoIksl7op User's Gl/jde Tile UtjJjtjes

11.13 UXRef
Synopsis
Show unit dependencies of one or more Pascal source programs
Dialog
Type "?" to see current opt1ons
Source File ? [. TEXT]
OJtput file for Listing? [-Cross Ref] [.TEXT]
Text File of unit names with unexpected pathnames ? [UXRef.UMap] [.TEXT]
Description
UXRef gIves an alphabetical llstIng of . programs and unIts. Each program or
trllt listed InclUdes two parts: 1) alphabetically l1sts all programs and units
that USE that program or unit, and 2) alphabetically lists all unIts that ARE
USED BY that program or unIt.
UXRef recognizes conditional compUation and w111 determine the truth value
of any {$ifC ••• } expression. CompUe-time variables can be of both boolean
and integer types and a {$setc ... } can change a variable to a new type.
Warnings will be sent to the console if a syntactical or semantic error is
found in an {$ifc ... } expression.
Warnings about units that canl be found are sent to the console. Even thOUgh
a unit cannot be found it wUl stlll show up on the Cross Reference listing.
CPUons may be turned on or off during fUe name prompt stage of UXRef.
Four options are included:

+C You will be asked to manually clarify a compile-time expression
or variable that cannot be evaluated correctly. Enter 'r for
true and 'F' for false. If this option is off, the entire expression
will be treated as false.

+F As each file Is opened, a message will be prInted on the
-console specifying the fUe name and the unit name being read.

+1 "InclUde FlIes" wIll be treated as lKlits and wlll Show up on the
Cross Reference IIsUng. 011 Y those "InclUde fUes" that are
founcJ between the begImlng of the program/unit and the end of
the uses section will be listed.

+W All warnings wUl be written at the beglmlng Of the Cross
Reference listing as well as on the console.

By enterIng ? dUring the flIe name prompt stage a Short descrIption of each
option wIll appear along· with theIr current values. The default values of the
options are: -C, +F, -I, and -We

UXRef prOVides a facUlty to map a unIt to an unexpected pathname. For
example, the unIt "FOO' might not be compiled yet (e.g., "FOOCBJ" dOes not
exist) and the source Is named "UNIT !Fro TEXT". UXRef will attempt to read
a fUe for a Ust of logically connected units and pathnames and if
FOO,-UPPER-UNIT!Fen TEXT Is an entry in that fUe then "UNIT !FOOTEXT"

11-18

WOrkSl1Op User's Guide The Utilities

wIll be located and searched on the UPPER diskette when the unit FOO Is
referenced. The unit name and the pathname must be separated by a comma
with no extra spaces between. In addition this same facillty can be used to
shut off unnecessary warnings that occur when an inaccessable unit is
referenced. Normally warnings will be printed when a unIt cannot be found,
but if the unit name followed by a comma appears on UXRef.OTIiL TEXT (or
some other name provided by the user) the warnings for that unit will be
bypassed. Example entries are:

FOO,-UPPER-UNIT IFOO. TEXT
SYSCALL

see Also
GXRef, SXRef

11-19

NOTES

Appendix A
Error Messages

Al Assembler Errors ... A-I
A2 LInker Errors .. A-3
A3 Messages Generated by CbjICLib ... A-6
A4 qleratlng System Errors .. A-7

Error Messages

At Assermler Errors
The following errors can be produced by the Assembler.
1 undefined label
2 q>erand out of range
3 Must have procedure name
4 Number of parameters expected
5 Extra garbage on 11ne
6 Input line over 80 characters
7 Not enough .IF s
8 Illegal use of .REF label
9 Identifier previously declared

10 Improper format
11 .EQU expected
12 Must .EQU before use if not to a label
13 Macro identifier expected
14 Word addressed machine
15 Backward JRG currently not allowed
16 Identifier expected
17 Constant expected
18 Invalid structure
19 Extra special symbOl
20 Branch too far
21 Variable not PC relatlve
22 unexpected .ENOM
23 Not enough macro parameters
24 ~rand not absolute
25 Illegal use of special symbols
26 Ill-formed expression
27 Not enough operands
28 Too many undefined lables in this expression
29 Constant overflow
30 Illegal decimal constant
31 Illegal octal constant
32 Illegal binary constant
33 Inval1d key wOrd
34 Macro stack overflow - 5 nested limit
35 InclUde fUes cannot be nested
36 Unexpected end of input
37 This Is a bad place for an .INCLUDE fHe
38 (1) Y labels and comments may occupy col 1
39 Expected local label
40 Local label stack overflow

A-I

WO.lksflop User's Guide

41 StrIng constant must be on one llne
42 StrIng constant exceedS 80 Characters
43 Illegal use of macro parameter
44 Illegal use of .DEF label
45 Expected Key word
46 String expected
47 Nested macro definItions 1llegal
48 '.' or '<>' expected
49 Cannot .EQU to undefIned labels
50 Not even a register
51 Not a Data Register
52 Not an Address RegIster
53 RegIster expected
54 RIght paren expected
55 RIght paren or comma expected
56 unrecognIZable operand
57 CW location counter
58 comma expected
59 O'le operand must be a Data Register
60 Dn.,Dn or -(An), -(An) expected
61 No longs allowed
62 FIrst operand must be immedIate
63 First operand rrust be on or IE
64 (An+).-CAn +) expected
65 second operand must be an An
66 second operand must be a on
67 #<data>..on expected
68 First operand mJSt be a on
69 An,#<dIsplacement> expected
70 An Is not allowed wIth byte
71 O'lly alterable addressIng modes allowed
72 O'lly data alterable addr modes allowed
73 AA Is not allowed
74 USP, SR, and CCR not allowed
75 cannot move from CCR
76 DxA:Ay) or c(Ay)JJx expected
77 O'lly memory alterable addr modes allowed
78 O'lly control addressing modes allowed
79 Must branch backwards to label
80 Patch out of code buffer bOUndaries
81 COde bUffer overflow
82 segment ncrne must be In a string
83 camot .DEF macro
84 MACRO defIned already
85 Illegal use of MACRO
86 ERRCR While WRITING SYMBCL. TABLE FILE
87 Not enough Ef\OCS

A-2

Error Messages

WOrksflOp User's Guide

88 MJst have an <EA> (effective acJClress)
89 unimplemented Motorola directive
90 Qlerana size I'TlUSt be a word
91 No undefined or forward label in .BLOOK
92 011y byte-size displacement value allowed

A.2 UMer Enon

Error Messages

Linker errors are eiUler Warnings ... Errors ... or Fatal Errors. All Linker errors
are listed below ... along wlth a brief descrlption of their probable cause. The
Linker can also prOdUCe errors from ())jI(].Jb. These errors are llstecJ in
Section A3.

A.2.1 wamlngs
A warning message Is an indication of a potential error. However ... the link is
allowed to continue normally and may prOdUce a valid output file. Warnings
cannot be ignored! You must make sure that the conditions indicated by the
waming are what was intended. When in doUbt ... attempt to remedy the
conditions which caused the warning message to occur .
....0 startlrJJ Locaticn

The file containing the main Pascal program has probably been omitted.
lJt41l1cate entry deftnitiOlS:

All entry name haS been found in a library fHe which is the same as a
name in the maln program. References to the name are interpreted as
referring to the main program entry. (NOTE: this can be an error if a Unit
In the link was trying to reference the library entry.)

Cmfllct with IntrinsiC Ullt Nmne:
A regular unit in the link has the same name as a library Intrinsic unit.

Also ml 1U segnent:
A segement in the link has the same name as as a library segment.

A.2.2 Erron
A error message is an Indicatlon Of a cond1tIon WhIch prevents the prOdUction
of a valId output f11e. The link Is allowed to continue, in order to detect any
other errors. HoWever ... the output fHe will not be produced.
MJJUple start locations.

More than one main program file has been provided as input to the Linker.
~Ilcate cJeflnltlm ofU'llt Ncme
fJotj)ly defined Global Data area:

Two units Of the same name nave been provided as Input to the LInker.
D4l1lcate entry deflnltlals..

Two entries Of the scme name have been found in the Linker Input fHes.

A-3

Enor /'1esSages

Uldef1ned entry:
The entry name has been referenced, bUt not defIned. EIther an Input fIle
haS been omItted or a spellIng error was made In a procedUre name.

Uldeflned COde MJdule:
The module name has been referenced, but not defined. Either an input
file has been omitted or a spelling error was made in a procedure name.

Uldeflned data area:
The unit name has been referenced, but not defined. EIther an input fUe
has been omitted or a spelling error was made In a unIt name.
~t rane not fOllld In IntrlnslcJ1b:

A name WhICh occurs ·In an IntrInsic library flIe does not appear in the
dIrectory fUe. Probably indIcates an "arChItecture" consistency error; that
Is, the l1brary flIe was not l1nked against the serna directory as the current
directory.

Bad blOCk In llbmry fUe.
The llbrary flIe being read dOes not have valId contents.

Relooatlon BlOCk.
COI •• ,DI Deflnltlon BlOCk.

The IULinker does not support these Object blOCks. Either the object file
Is very old, or an error has occured in the object fUe format.

Bad blOCk, start of file:
Bad blOCk type

The Object flIe dOeS not have valId contents. tvIost llkely a dISk error has
caused to object flIe to be damaged. You ShOUld regenerate the object
fUe or ObtaIn a copy from a backup dIsk.

Bad MoclJJe type:
This indicates an internal Unker error, or perhaps an lI1detected memory
error.

IU COde with main prognm
The Input contaIns bOth lIl11nked IntrInsic unIts and an unllnked main
program. Unk the Intrinsic unIts into a library file. Then Unk the maln
program, using the Intrinsic llbrary as Input

Mlre tt&l 32K Of glObalS
The glObals requIred by the maln program and regular l.I11ts exceeds the
current limitation Of 32K. You will need to recompile the program or the
units, moving some large variables to the heap.

COde SIZe too bIg:
The code in the segment being linked exceeds the current limitation Of
32K. You w11l need to resegment the program eIther usIng the +M linker
option, or by recompiUng with different $S compiler options.

A-4

WOJ1<sflop User's Guide Error Messages

segs 1-16 are ReseJVed:
The directory Indicates that a segment name has been associated with one
of the segments reserved for physical addresses.

A2.3 Fatal Errors
A fatal error indicates a concJi tlon which prevents the link from contl~ing.
Un<er error -

Indicates an error in internal Linker logic, perhaps caused by an
undetected disk or memory error.

Irmnslstent IntrlnslcJlb.
Probably indicates an 1/0 error, such as bad media, which has corrupted the
directory fUe, or the specification of a bad directory.

Ccrl"t ~ lnFUe: xxxxxxx
IVl 1/0 error has occured which prevents the opening of fUe 'xxxxxxx' for
phase 2 processing. Examine the file USing the File Manager, or
regenerate the fUe. Then attempt to do the link again

Too lllCI'ly COde segnents.
The program has too many small segments. The current limitation is for
segments numbered 17 through lOS. RedUCe the number of segments by
combining small segments with the +M option in the Linker.

Regular U11t 0Jrlng Intl1nslc LIne..
Intrinsic U11t 0Jrlng RefJJlar Ut1<.
MalrProg as part of intrinsic Library Lin<:

The Linker has detected an unlinked regUlar unit or main program mixed
with unlinked intrinsic t.nits.

~ar U11t In Intrlnslc seg File:
The Linker has detected an unlinked regular unit in an intrinsic library
flle.

~t MaIn or Intrlnslc lin<:
The Linker has not seen a valid input file to decide What type of link is
desired.

~ startIrYJ locatloo, l~ MaIn Program:
The fUe contaIning the Pascal matn program has been omitted from the
Input list, or Is damaged.

BE or rmre IU 8egs not In IntrlnsIc.Llb:
IVl intrinsic segment name does not appear In the directory fUe. Probably
Indicates an architecture consistency error; that is, the library file was not
linked against the same directory as the current directory.

Bad Ullt BlOCk (Old J:BJ rue?)
EIther thIs Is a very old Object fUe, not supported by thIs Linker .. or a dIsk
error has occured.

A-S

Worksllop User's Guide Error Messages

A3 Messages Generated by (J)jUl...ib
The IULinker uses a number of units from the (l)JICl..ib intrinsic library file.
These units are also used by the Compiler, Code Generator, and object file
utmty programs. These units detect some error conditions and issue messages.

A3..1wamtngs
No COde Block to..m In i~ .LIB file.

For the o.S. LOader, there should be a Code Block in the directory file.
Perhaps this is an old directory file, or a directory for another operating
system.

Errors detected: No o.rtput .LIB file written.
When the error count is nonzero, the directory fHe is not rewritten.

A.3.2 Enors
am Peek
Baj Peek2:

Indicates an internal error in the (l)jICl..ib library, perhaps caused by a disk
or memory error. Check your hardware then retry the link.

110 error, cal't write last Wffe~
Either the volume dOeS not have enough space for the flIe or a hardware
error has occurred.

Men ''"'IcI1 Error:
All error has occurred In the managing of storage elements. Usually this
error is due to insufficient initial space (Allocation error) or dUe to
eXhaustion of available space (Memory Full~ The cause of the error is
indicated on the next output line.

AttefT1lt to delete vertex with arcs.
AqJ.ment to qlpOSltevertex Is not 5l erqnlnt:

These are errors reported by the Graphs unlt If they occur Whlle the
Linker is executing, there has been an internal logic error, perhaps caused
by an undetected liD or memory error.

A.3.3 Fatal Errors
I/O error.

All 110 error has occurred within FileID. Usually this is the result of a
voltme being almost full or a hardware failure. The previous message line
indicates whether the error occurred dUring reading or writing and at what
position within the f11e the error OCcurred.

I'b V8morcootrol Blod<.
I'b UUt Table.
I'b SEgnent Table.
I'b File NEmes Table:

Indicates a bad format for the directory f11e. The Indicated blOCk Is
missing from the directory, bUt is requIred.

A-6

WorkslJOp l.Jser~ GuIde Error fvlessages

Errors dII1ng Installation:
Indicates errors during the Installatlon of an Object fBe library.

set(1)jInvar: VarSlze Is rot divisible by variCWlt size:
Indicates an Internal logic error In OJjlO. Either InltiaUzation was not
called ... or (l))10 globals have oeen clOOOerea.

File Buffer less thCI'l 2 blooks:
Indicates an Internal logic error In FlIeIO. Perhaps Initial1zatIon was not
called.

AtterqJt to delete item not 00 list:
This is an error reported by the Lisats unit. If it occurs while the Linker
is executing, there has been an internal logic error ... perhaps caused by an
undetected I/O or memory error.

A4 qleratlng System Errors
-6081 End of exec fIle Input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset non text fUe with text type
-1885 Profile not present during drIver initialization
-1882 ProFIle not present dUring driver Inltlallzatlon
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted ... and system crashed
-1173 File was last closed by the OS
-1146 O1ly a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Usa or not most recent

boot volume
-1060 Attempt to mount a foreign boot dIsk following a temporary unmount
-1059 The bad blOCk directory of the diskette Is almost full or difficult to

read
-696 Printer out of paper dUring initialization
-660 Cable disconnected dUring ProFlle Inlt1allzation
-626 Scavenger indicated data are questionable ... but may be CK
-622 Parameter memory and the disk. copy were bOth Invalld
-621 Parameter memory was Invalid bUt the disk copy was valid
-620 Parameter memory was valid but the dISk copy was Invalid
-413 Event channel was scavenged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly invalid.
- 320 Could not determine size of data segment
-150 Process was created ... but a library used by program has been scavenged

and altered
-149 Process was created ... but the specIfied program fHe has been scavenged

and altered
-125 Sepcified process is already terminating
-120 SpecIfied process Is already active

A-7

WOrkshop User's GlIk1e

-115 SpecIfIed process Is alreaay suspenaea
100 Specified process does not exist
101 SpecIfied process Is a system process
110 Invalid prIorIty specifIed (must be 1 .. 225)
130 Could not open program fHe
131 Flle System error while tryIng to read program flIe
132 InvalId program flIe (Incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not set up communicaUon channel for new process
138 Error accessing program file whUe loadIng
141 Error accessing a llbrary fUe WhHe lOadIng program
142 cannot run protected file on this machine

Error Messages

143 Program uses an IntrInsIc unit not found In the IntrinsIc LIbrary
144 Program uses an intrInsIc unIt Whose nameltype does not agree wIth

the IntrInsIc LIbrary
145 Program uses a shared segment not found In the Intrinsic Library
146 Program uses a shared segment whose name doeS not agree with the

Intrinsic Library
147 No space In syslocal for program fHe descrIptor dUring process creation
148 No space In the shared IU data segment for the program's shared IU

glObalS
190 No space In syslocal for program file description during List_LlbFlles

operation
191 Could not open program fUe
192 Error tryIng to read program fUe
193 Cannot read protected program file
194 InvalId program file (Incorrect format)
195 Program uses a Shared segment not found In the Intrinsic Library
196 Program uses a shared segment whOse name dOes not agree with the

Intrinsic Library
198 DISk lID error trying to read the Intrlnsic unIt dIrectory
199 Specified library flIe number does not exIst In the IntrInsic LIbrary
201 No such excepUon name declared
202 No space left In the system data area for Declare _ Excep _Hdl or

Slgnal_Excep
203 Null name specified as exception name
302 Invalid LQSI\J
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name Is Invaltd
308 Data segment already exists
309 Insufficient diSk space for data segment
310 M invalid size has been specified
311 InsufficIent system resources

A-8

Worksl1op USer's Gl.Jjde

312 unexpected FIle System error
313 Data segment not found
314 Invalid address passed to Info_Address
315 Insufficient memory for operation
317 DIsk error whlle tryIng to swap In data segment
401 Invalid event c~l name passed to MaKe_Event_Chn

Envr Messages

402 No space left in system glObal data area for ~n_Event_ em
403 No space left In system local data area for q:>en_Event_Chn
404 f\JOn-block-structured deVIce specIfied in pathname
405 catalog Is full in Make_Event_Chn or (pen_Event_Ctn
406 No such event channel exIsts In Kill Event Cm
410 Attempt to open a local event chanrel to Send
411 Attempt to open event channel to receive when event Channel has a

receIver
413 unexpected File System error in ~n_Event_ em
416 Gcn'lot get enough diSk space for event Channel In ~_Event_cm
417 unexpeCted Flle System error in Close_Event_Chn
420 Attempt to wait on a channel that the call1ng process did not open
421 Wait_Event_ em returns empty because sender process could not

complete
422 Attempt to call Walt_Event_Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned whlle readIng from event channel not of

expected size
425 Event channel empty after being unblocked, Walt_Event_Chn
426 Bad request pointer error returned In Walt_Event_Chn
427 Wait_LIst has lllegal length specIfIed
428 Receiver unblocked because last sender closed
429 unexpected Flle System error In Walt_Event_Chn
430 Attempt to send to a channel Which the calling process does not have

open
431 Amount of data transferred whIle writing to event Channel not of

expected size
432 Sender unblocked because receiver closed in Send Event Chn
433 unexpected FIle System error In Senct_Event_ Chn - -
440 unexpected File System error in Make_Event_Chn
441 Event Channel already exists In Make_Event_Chn
445 unexpected FUe System error In Klll_Event_Chn
450 unexpected File System error In Flush_Event_ Chn
530 Size of stack expansion request exceeds limit specified for program
531 cannot perform explicIt stack expansion dUe to lack of memory
532 Insufficient disk space for explicit stack expansion
600 Attempt to perform 110 operation on non· 110 request
602 No more alarms available dUring driver initialization
605 can to nonconflgured device driver
606 Cannot find sector on floppy diskette (disk unformatted)
608 Illegal length or dIsK address for transfer

A-9

WOJ1<sllop User's GuIde £l11Jr I'1essages

609 Call to nonconflgured deVIce ariver
610 No more room In sysglobal for I/O request
613 unpermitted airect access to spare track wIth sparlng enableC1 on

floppy arive
614 No aisk present In arlve
615 Wrong call version to floppy arlve
616 unpermitted floppy arive function
617 Checksum error on floppy dISkette
618 Cannot format, or write protected, or error unclamplng floppy aiSkette
619 No more room In sysglobal for I/O request
623 Illegal aevice control parameters to floppy arlve
625 scavenger indicated data are bad
630 The time passed to Delay_Time, convert_TIme, or 8ena_Event_CI'ln has

Inval1d year
631 Illegal timeout request parameter
632 No memory available to Inl tiaUze clOCk
634 Illegal timed event Id of -1
635 Process got unblOCKed prematurely dUe to process termination
636 Timer request did not complete successfully
638 Time passed to Delay_Time or 8end_Event_Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or illegal date from system clock in

Get Time
640 RS-232 driver called with wrong version number
641 RS-232 read or write InItiated wIth illegal parameter
642 Unimplemented or unsupported RS-232 driver function
646 NO memory avallable to Inlt1al1ze RS-232
647 Unexpected RS-232 timer interrupt
648 unpermitted RS-232 Initialization, or disconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not Inltlal1zed prIor to ProFlle
653 No room In sysglobal to initiaUze Profile
654 Hard error status returned from ortve
65S Wrong call version to ProFlle
656 unpermitted ProFUe function
657 Illegal device control parameter to Profile
658 Premature end of fUe When reading from driver
659 COrrupt File System header Chain found in driver
660 Cable disconnected
662 Parity error whUe sending command or wrltlng data to Profile
663 Checksum error or CRC error or parity error In data read
666 Timeout
670 Bad command response from drlve
671 Illegal length specIfied (must - 1 on input)
672 unimplemented console drlver function
673 No memory available to Inltiallze console
674 Console drIver called with wrong versIon r'IlIrRler

A-l0

Wo.lkSfltp user's GuIde

675 Illegal device control
680 Wrong call version to serial driver
682 unpermitted serial driver function
683 No room In sysglobal to initialize serial driver
685 Eject not allowed' this device
686 No room in sysglobal to initialize n-port card driver
687 unpermitted n-port card driver function
688 Wrong call version to n-port card driver
690 Wrong call version to parallel printer
691 Illegal parallel printer parameters
692 N-port card not Initialized prior to parallel prInter
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 PrInter out of paper
698 Printer offline
699 No response from prInter

Error f\1essages

700 Mismatch between loader version number and ~erat1ng System version
number

701 OS eXhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create drIver
706 Cannot Initialize floppy disk driver
707 Carmt initialize the File System volume
708 Hard disk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devices
724 The bOot tracKs dO not know the right FUe System version
725 Either damaged File System or damaged contents
726 Boot device read faHed
727 The OS will not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.a::t-FIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD Is corrupt
733 Loader range error
734 Wrong driver Is found. For instance, storing a diskette loader on a

ProFile
735 SYSTEM.LLD is missIng
736 SYSTEM.UNPACK is missIng
737 unpack of SYSTEM.OS wIth SYSTEM.UNPACK faIled
801 ICResult <> 0 on 1/0 usIng the Monitor
802 Asynchronous 1/0 request not completed succeSSfully
803 Bad combination of mode parameters
806 page speel fled Is out of range

A-11

WO.J1<s/JqJ user~ GuIde

809 Inval1d arguments (page, address, offset, or count)
810 The requested page could not be read In
816 NOt enough sysglobal space for FIle System bUffers
819 Bad device number
820 No space In sysglooal for asynctlronous request Ust
821 Already initialized I/O for this devIce
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on deVice
828 Error In parameter values (Deallocate)
829 Partial ooallocatlon only (ran Into unallocated region)
835 Invalld s-flle number
837 unallocated s-fIle or 110 error
838 Map overflow: s-flIe too large
839 Attempt to compact fUe past PECF
841 Unallocated s-flle or 110 error
843 RequeSted exact flt, bUt one could not be provided
8~7 Requested transfer count is <- 0
848 End of flIe encountered
849 Inval1d page or offset value in parameter list
852 Bad unit number
854 No free slots in s-llst directory (too many s-flles)
8SS No available tUSk space for fUehlnts
856 Device not mounted
857 Empty, locked, or InvaUd s-fUe
861 Relative page is beyond PECF (bad parameter value)
864 No sysglobal space for volume bitmap
866 WrongFS version or not a valld Usa FS volume
867 Bad unit number
868 Bad unit number
869 Unit already mounted (mount)lno unit mounted
870 No sysglObal space for DCB or MOOF
871 Parameter not a valId s-flle 10
872 No sysglobal space for s-file control block
873 Specified fUe Is already open for private access
874 Device not mounted
875 Invalid s-flle 10 or s-flle control block
879 Attempt to postion past LECF
881 Attempt to read empty flIe
882 No space on volume for new data page of fUe
883 Attempt to read past LECF

Error /'1essages

884 Not first auto-allocation, bUt file was empty
885 COUld not update flleslze hints after a write
886 No syslOCal space for 110 request list
887 catalog pointer does notlnd1cate a catalog (bad parameter)
888 Entry not found in catalog
890 Entry by that name already exists

A-12

Worksl1Op User's Guide

891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not fOund, or catalog Is damaged
895 Invalid entry name
896 Safety switch Is on--cannot KIll entry
897 Invalid bootdeV value
899 Attempt to allocate a pIpe
900 Invalid page count or FeB pointer argument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Invalid label size
926 Pathname invalid or no such device
927 Inval1d label size
941 Pathname Invalid or no such device
944 ClJject Is not a fBe
945 FUe is not in the Killed state
946 Patnname Inval1d or no such device
947 Not enough space In syslOCal for File System refdb
948 Entry not found In specified catalog
949 Private access not allowed if fUe already open shared

Error Messages

950 Pipe already In use, requested access not possIble or dwrlte not allowed
951 File is already opened In private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specIfied object
956 Attempt to posItion FMARK past LECF not allowed
957 Negative request count Is lliegal
958 Nonsequential access is not allowed
959 System resources eXhaUSted
960 Error writing to pIpe whIle an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LECF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMAAK and LECF (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathname invalid or no SUCh deVice
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count Is nonposlt1ve
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for speCified file
983 Not a blocK-structured device

A-13

Workshop User's Guide

985 Bad refnum
986 No space has been allocated for specified fHe
987 Not a bloCk-structured device
988 Bad refnum
989 Caller Is not a reader of the pipe
990 Not a bloCk-structured deVice
994 Invalid refnum
995 Not a blOCk -structured device
999 Asynchronous read was unblocked before It was satisfied

1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname, check for '-' in string
1024 New name already exists In catalog
1031 Pathname invalid or no such entry
1032 Invalld transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 No such entry fourd
1051 No device or volume by that name
1052 A volume is already mounted on device

Error Messages

1053 Attempt to mount temporarily unmounted boot volume just unmounted
from this Usa

1054 The bad block directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume Is mounted on device
1071 Not a valid or mounted volume for WOrking directory
1091 Pathname Invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device, not mounted ... or catalog Is damaged
1128 Invalid pathname, device; or'volume not mounted
1130 File Is protected; cannot open dUe to protection violation
1131 No device or volume by that name
1132 No volume Is mounted on that deVIce
1133 No more open files In the file list of that deVice
1134 Cannot find space In sysglobal for open fHe l1st
1135 cannot find the open fHe entry to modlfy
1136 Boot volume not mot.rlted
1137 Boot volume already unmounted
1138 Caller cannot have higher priority than system processes When call1ng

ubd
1141 Boot volume was not unmounted when calling rbd
1142 some other volt.me still mounted on the boot device when calling rbd
1143 No sysglobal space for MDDF to dO rbd
1144 Attempt to remount volUme which Is not· the temporarIly unmounted

boot volume

A-14

Wo.rksf1op User's Gl/j(je

1145 No sysglObal space for bit map to do rOd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested whlle boot volume was unmounted
1160 Destination device too small for traCk-by-track copy
1161 Invalld final shUtdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume Is mounted on the devIce
1166 A valld volume is already mounted on the device
1167 Not a block-structured deVIce
1168 Device name is Invalid

Error tvtessages

1169 Could not access devIce before InIt1al1zaUon usIng default devIce
parameters

1170 Could not mount volume after InIt1allzation
1171 '-' is not allowed in a volume name
1172 No space avallable to Ini tlallze a bItmap for ttle volume
1176 Cannot read from a pipe more than half of its allocated physical sIze
1177 Camet cancel a read request for a pIpe
1178 Process waiting for pipe data got unblocked because last pipe writer

closed it
1180 Cannot write to a pipe more than half of its allocated physical size
1181 No system space left for request blOCk for pIpe
1182 Writer process to a pipe got unblOCked before the request was satisfied
1183 Cannot cancel a wrIte request for a pipe
1184 Process waiting for pipe space got unblocked because the reader closed

the pipe
1186 Cannot allocate space to a pipe while it has data wrapped around
1188 Cannot compact a pipe whUe it has data wrapped around
1190 Attempt to access a page that 1s not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 SomethIng Is stU I open on devlce--cannot unmount
1197 Volume is not formatted or cannot be read
1198 Negative request count Is Ulegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blank file parameter
1202 Error writing destination fUe
1203 Invalid UCSO directory
1204 FUe not found
1210 Boot track program not executable
1211 Boot track program too bIg
1212 Error reading boot track program
1213 Error wrIting OOOt track program
1214 Boot track program fHe not found
1215 Cannot write ooot trackS on that devIce

A-IS

WOrkShop USer's Guide

1216 Could not create/close Internal bUffer
1217 Boot track program has too many code segments
1218 Could not flnd confIguration information entry
1219 Could not get enough WOrking space
1220 Premature E(F In bOot track program
1221 Post tion out of range
1222 No device at that post tion

Error Messages

1225 Scavenger has detected an internal inconsistency symptomatic of a
software bUg

1226 Invalid device name
1227 DevIce Is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFOB segment)
1237 Error rebUilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1296 Bad string argument has been passed
1297 Entry name for the Object Is Invalid (on the volume)
1298 S-llst entry for the Object Is inval1d (on the volume)
1807 No disk in floppy drIve
1820 Write-protect error on floppy drive
1822 unable to clamp floppy cJr1ve
1824 Floppy drive write error
1882 Bad response from ProFlle
1885 Profile timeout error
1998 Invalid parameter address
1999 Bad refnum
6001 Attempt to access unopened fHe
6002 Attempt to reopen a fHe which is not closed using an open FIB (file

Info blOCk)
6003 q>eration incompatible with access mode with which file was opened
6004 PrInter offUne
6005 FUe record type Incompatible with character devIce (must be byte

sized)
6006 Bad integer (read)
6010 QJeration incompatible with fHe type or access mOde
6081 Premature end of exec file
6082 Inval1d exec (temporary) fHe name
6083 Attempt to set prefix with nun name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to relnltallze heap already In use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request

A-16

Error I'-'lessages

6154 Attempt to RELEASE outside of heap
~rating System Error COdes

The error codes listed below are generated only when a nonrecoverable error
occurs while in ~erating System code.

10050 Request block is not chained to a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 M error was returned from SetUp_Directory or a Data Segment routine

(Setup _ IUInfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count > 1 (Init_.Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code (Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than 110 while scheduling is disabled

(SimpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep
10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def_Hdlfrom Enable_Excep
10213 Error in Force_ Term_Excep, no space in En~Ex_Data
10401 Error from Close Event Cm in Ec Cleanup
10582 Unable to get space in Freeze _ Seg-
10590 Fatal memory parity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter sIze of segment that is not data or stack (Alt_DS_Slze)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (Take __ Free)
10600 Error attempting to make timer pipe
10601 Error from K1ll_ClJject of an existing timer pipe
10602 Error from second Make_Pipe to maKe timer pipe
10603 Error from q>en to open timer pipe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from

nonconfigured device
10609 Interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive #2
10612 Spurious interrupt from floppy drive $11, or no syslocal space for timer

list element
10613 Error from Read_Data of timer pipe

A-17

------------ - --- -----~-~------------ ------------------- -- ----------_. __ ._------------------._-_._ .•. _._--- - - ---- - ---

Workshop User's Guide Error Messages

10614 Actual returned from Read Data is not the same as requested from
timer pipe -

10615 Error from open of the receiver's event channel
10616 Error from WrIte Event to the receIver's event channel
10617 Error from Close-Event Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down floppy disk controller while drive is still busy
10637 Not enough memory to . initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel prInter drIver
10700 Mismatch between loader version number and C4lerating System version

number
10701 OS eXhausted its internal space during startup
10702 Carnot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize floppy disk driver
10707 Cannot initialize the File System volume
10708 Hard disk mount table unreadable
10709 Cannot map screen data
10710 Too many slot -based devices
10724 The boot tracks do not know the rIght File System version
10725 Either damaged File System or damaged contents
10726 Boot devIce read faHea
10727 The OS will not fit into the available memory
10728 SYSTEM.OS Is missing
10729 SYSTEM.C()\IFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 wrong drIver is found. For instance, storing a diskette loader on a

ProFile
10735 SYSTEM.LLD Is mIssIng
10736 SYSTEM.UNPACK is mIssIng
10737 unpaCk of SYSTEM.OS with SYSTEM.UNPACK failed
11176 Found a pending wrIte request for a pipe while in Close_(I)ject When it

is called by the last wTI ter of the pipe
11177 Found a pending read request for a pipe While in CloseJl>ject when it

Is called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the

pIpe
11180 Found a pending write request for a pipe while in Write_Data to the

pipe
118xx Error xx from diskette RCM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is bad

A-18

0

0 NUl

1
S(II

2 STl<

3 Ell<

4 EOT

5 ENO

6 ACK

1

DlE

DCl

DC2

DC'
DC4

NAK

SVN

Appendix B
Workshop Character Set

2 345 6 7 8 9 ABC 0 E F

SP 0 @ p ,

q

.. 2 B R b r

7 BEL ETB • 7 G W g w })%U j/\Y nY}~ ?))~< I~({ H~}})\UU ~~)\}
8

9

A

B

C

0

E

F

BS CAN (8 H X h x ~f~~~~) ~{~l~~~~~~ H~>n)~H? {H~? H~~~[)~ j~[~[C) l[l~f~r
HT Eft

I Y i
IF SUB * J Z j
VT ESC

+ K [k
FF FS

L "- I <
CR os

M] m =
so RS N " n >
SI US 0 0 / ?

The first 32 characters and DEL are nonprlntlng control codes.

The shaded area Is reserved for future use.

B-1

Appendix C
Screen Control Characters

To perform standard screen control functions in Pascal, use the ScreenCtr
procedure of PASLIBCALL as detailed In section 5.4. For an alternative
method of screen control" you can use WRITE or WRIlELN's wi th the
correspondIng character strIng from Table C-l.

In BASIC" you should use PRINT 'Nith the a-R$ function and the argument
that corresponds to the desired action. For example:

10 print Chr$(27); dlr$(42); chrS(lO); chrS(lO)
20 eRj

rtI1

should erase the screen" and position the cursor on the third line.

Desired function

position to home

one posltlon left

one position right

position up one line

poSition down one line

erase to end of line
. erase to end of screen

erase screen

Tcmle C-l
SCreen Control Olaracter Strings

single-character string
ASCII
Char HEX Decimal

1E 30

BS 8 8

FF C 12

VT B 11

LF A 10

C-l

2-character string
ASCII
Char HEX Decimal

ESC-T 1B-54 27-84

ESC-Y 1B-59 27-89

ESC-* 1B-2A 27-42

Appendix D
Common Problems

0.1 What to Do When You Find Yourself in the Debugger 0-1
0.2 How to Stop Your Program .. 0-2
0.3 What to Do When a Diskette Won't Eject ... 0-2
0.4 What to Do When You Get a Range Error .. 0-2
0.5 What to Do When the System Does Not Respond 0-2
0.6 What to Do with a Runaway Exec File ... 0-3

Common Problems

This section presents the most common problems that programmers seem to
have with the Workshop with suggestions for handling them.

0.1 What to Do When Yw find Yourself in the Derugger
You can tell you have entered the Debugger When you suddenly end up with
cryptic looking numbers and symbols on your screen. You are actually viewing
the alternate screen, and the numbers and symbols are a disassembly of the
code where you have stopped and the values of the machine registers. To
return to the normal screen to see where you were before you entered the
Debugger, hold down the [CPTI(]\J] key and press the [ENTER] key. Additional
information on the alternate screen is avallable in section 3.2.

Often the Debugger display will include suggestions for what to do next, such
as "Press 9 to continue". Figure 0-1 Is an example of what appears on the
screen when you enter the Debugger.

Level 7 Interrupt
LOCALPRO+881A 1048 FFFS PC MOVE.B 08,$FFFSCA6)
PC=08248022 SR=8800 0 US=00F7FBEC SS=00CBFEE0 00=1 P~=00019
00=00100009 01=00000008 02=000000C0 03=000264A7
04=00800801 05=4EF98084 D6=12CC4EF9 D7=88848888
A8=88F8126E A1=88CCA22A A2=88248868 A3=88CCA22A
A4=08CCA22A AS=80F7FC44 A6=00F7FBFA A7=80F7FBEC

Figure 0-1
Derugger SCreen DIsplay

You can enter the Debugger In a number of ways, most commonly by having
an error In your program, presSing the NMI (nonmaskable interrupt) key, or
havIng a memory parity error. The NMI key Is the "_eo key on the numeric
keypad.
More information on handling the DebUgger is given in Chapter 8. Section 8.2
will help you handle accidental entry into the DebUgger. Section 8.3.2
contains information aboout Pascal run-time errors, particularly range errors.

0-1

WoJ1(sl7op User's Guide Common Problems

0.2 How to stop Your Progran
If your program has been runnIng for longer than you think it needs to, it
might be in an infinite loop. Before you stop the program, you shOUld:

• Check the alternate screen. Maybe your program is waiting for input.
• Try .-periOd to see If It responds.

If neither of these actions WOrks, press the NMI key, which stops your program
in the Debugger. see Section 8.2 for information about what you can do from
the Debugger.

0.3 What to 00 When a Diskette Won't Eject
The eject request buttons are only recognized after the WorkshOp system does
a Pascal 110 operation. Thus when you press an eject button, nothing will
happen untll you press a key, or 110 happens for some other reason. (When
you are in the Editor, the Preferences tOOl, or TransferProgram, you do not
need to hit a key after pressing the diskette button.)
In general, 1 f a diskette will not eject, It means that the file system stUI has
some file open on it Use the O1line command to check the open count,
which will tell you if any fUes are still open. Then use the List command
from the File Manager to list the contents of the diskette. If some fUes are
open, there is prObably a resident process that has a file open or a data
segment open that has been mapped to the disk. Use the ManageProcess
subsystem in the System Manager to kill the process. This will close the files
and the disk will eject.
Further information on the LIst command can be found In sectlons2.3 and 2.6.
The ManageProcess sUbsystem Is described In section 3.4.

0.4 What to 00 When Yru Get a RCI'lge Error
A range error drops you into the Debugger. Instructions for handlIng range
errors are In section 8.3.2.

05 What to Do When the System Does Not Respond
SOme of the reasons your WO!1<shOp mIght not respond are:
1. You mIght be runnIng a program with an infInite loop.

2. You might have stopped console output by pressing .-s.
3. You might have the alternate screen Showing.
4. You might have altered the NMI character.
Press the NMI key (the "-"key on the numeric keypad) to drop into the
Debugger. See Section 8.2 for further instructions.
If preSSing the NMI key does not WOrk, power off your Lisa and reboot the
system.

0-2

Worksl1op User's Guide Common Problems

0.6 What to Do with a RU18W8Y Exec File
If you think that your exec file has gone wlld, how do you stop it?

When the exec file processor has finished processing your exec file (s), it has
created a temporary file with the stream of characters that are to perform
the actions in the exec file. The Workshop then sets the run-time
environment so that standard input comes from the temporary file, and begins
executing the commands in the temporary file. While they are executing, the
Workshop ignores the keyboard, although the characters you type will be
remembered.

You can terminate standard Workshop programs by preSSing c-period, although
termination mIght not be Immediate If the program being run does not
recognize c-period.

f'.UTE

Note that most WorkShop tools checK for .-perIOd from the KeybOard
even When runnIng under exec files. This means that you can abort
WorkshOP tools In exec flIes.

Unless user programs are written to recognize the c-period Key combInation
as an abort mechanism, pressing those keys w1ll not terminate the exec file If
a user program is being run. (See PASLIBCALL, Section 5.4, for information
on the function PAbortFlag, which tells whether or not those Keys have been
pressed.) If thIs is the case, you can either:

• walt for the user program to terminate so that .-perlod can be
recognized by something else, or

• press the NMI key, which forces the system into the Deougger.

If the user program does recognize .-perIod, pressIng It wIll termInate the
program but not the exec f11e. To terminate the exec fUe, walt until the
WorkShop prompt appears and press .-period agaIn.

see section 8.2 for instructions on hOw to stop a user program early.

0-3

NOTES

----------A----------
active document 4.2
AddResident command 3.4
address error exception 8.2.1.1
addressing modes 6.4.5
All Occurrences 4.7
alternate screen 1.1
_-period Key 1.5.2, 5.4.1 .-s Key 1.5.3
ASCII Assembler directive 6.5.1
Assemble command 1.3
Assemble instruction in Debugger

8.4.5
Assembler 6

addressing modes 6.4.5
assemble from exec file 9.4.1
Assembler direct1ves 6.S
calling Pascal lID 6.7.4
comments 1n program 6.4.7
conditional assembly directives

6.5.3
constants 6.4.2
current program location 6.4.7
error messages A.1
expressions 6.4.5
external reference directives

6.5.4
function, how to write 6.7.3
generic instructions 6.3
labels and local labels 6.4.4
listing file 6.2.4
macro directives 6.5.1
Object file 6.2.3
opcodes 6.3
operators 6.4.5
options 6.2.1
Pascal data areas 6.7.5
program structure 6.4.1
pseudo-ops 6.5
space allocation directives

6.5.1
asterisk 6.4.7

029-0~67-A

Index

Index-l

----------B----------
Backup command 2.3.1, 2.7
BASIC

installing 1.10
Interpreter 1.11

Basic conmand 1.3
Baud Rate menu 10.3
.BLOCK Assembler directive 6.5.1
block-structured device 2.4.1
Boolean expression, in exec file

9.2.4.1
Boolean function, in exec file

9.2.4.2
boot device 3.3.2
booting 1.2
breakpoint, Debugger 8.2.1.3,

8.4.6
bus error 8.2.1.1
.BYTE Assembler directive 6.5.1
ByteDiff utility 11.2

----------c----------
Cases Must Agree 4.7
Cases Need Not Agree 4.7
Chaining exec files 9.4.5
ChangeSeg utility 11.2
changing a volume or file name

2.10
character set, Lisa B
CLEAR key 1.5.1.1
Clipboard 4.1, 4.6
CObol Comnand 1.3
COdeSize utility 11.3
command file, Linker 7.2
cOfflllafld line

file Manager 2.2, 2.3
System Manager 3.2
Workshop 1.1, 1.3

commands, Debugger 8.S
corments in· AssentJler program

6.4.7
comments 1n exec file 9.3.1

I/Iorksnop User IS Guide

communications. See Transfer
program.

comparing binary files 11.1
comparing .TEXT files 11.4
Compiler~ Pascal 5
Compiler commands~ Pascal 5.3
CONCAT function in exec file

9.2.4.4
conditional assembly directives

6.5.3
configuring an RS232 port 11.10
connectors 3.3.3
Console COmmand 3.2
constants, Assembler 6.4.2
Control menu 10.3
Convenience Settings 3.3.1
Copy 4.6
Copy command 2.3.2, 2.7
copying

files 2.7
text 4.2.4

cross-reference, Pascal 11.12,
11.13

cross-reference utility 11.9
current program location,

Assembler 6.4.7
Cut 4.6

----------0----------
data communications. See Transfer

program.
date~ file 9.2.4.2
dead code analysis 7.1.1, 7.8
Debug command 1.3
Debugger 8

ASSemble instruction 8.4.5
breakpoint 8.2.1.3, 8.4.6
commands 8.3-8.5
Disassemble instruction 8.4.5
display memory 8.4.2
display registers 8.4.4
execution time, measuring 8.4.8
memory dUmp to diskette 8.4.9.5
memory management hardware,

changing 8.4.7
NMI key, setting 8.4.9.3

Index-2

Index

printing 8.4.9.4
problem diagnosis 0.1
and run time stack 6.6.1
search memory 8.4.3
symbols and base conversion

8.4.9.1
trace commands 8.4.6
UBR command 8.2.1.3
window, moving 8.4.9.2

.DEF Assembler directive 6.5.4
DEFAULT exec file command 9.2.2.1
DefaultPrinter command 3.2
Delete command 2.3.3, 2.8
DeleteResident command 3.4
deleting a file 2.8
Device Connections option 3.3.3
DEVICE_CONTROL system call 5.4.1
Differentiated Keywords 4.9
Diff utility 11.4
directives, Assembler 6.5
directory~ working 1.4
Disassemble instruction, Debugger

8.4.5
disassembler utility 11.5
diskette

mounting and unmounting
1.5.4

nonejecting 0.3
volume 2.4.1

domain 8.2.1.2
dumping a file 11.6
DumpObj utility 11.5
DumpPatch utility 11.6
Duplex nenu 10.3
Duplicate... 4.5

----------E----------
Edit

Cut 4.6
Paste 4.6

Edit command 1.3
Edit menu 4.2.2, 4.6
Editor 4

copying text 4.2.4
Edit menu 4.2.2, 4.6
File menu 4.2.2, 4.5

lIIorksl7op User's Guide

menus 4.2.2
multiple files 4.2.4
operations 4.2.1
Print menu 4.9
Search menu 4.2.2~ 4.7
Type Style menu 4.2.2~ 4.8

.ELSE Assembler directive 6.5.3
ELSE exec file command 9.2.4
ELSEIF exec file command 9.2.4
.ENDC Assembler directive 6.5.3
ENDIF exec file command 9.2.4
.ENDM Assembler directive 6.5.2
Environments window. 1.2
Equal command 2.3.9
error messages A

Assent>ler A.l
Linker A.2
ObjIOLib A.3
Operating System A.4

errors/ program. See program bugs.
errors in exec file 9.6
escape key 1.5.1.1
exception handler 8.2.1.1
exec file 9

as function 9.4.8
assellDly 9.4.1
Boolean expression 9.2.4.1
Boolean function 9.2.4.2
chaining 9.4.5
command 1 ines 9 .2
comments 9.2, 9.3.1
CONCAT string function 9.2.4.4
conditional statements 9.2.4
DEFAULT command 9.2.2.1
ELSE command 9.2.4
ELSEIF command 9.2.4
ENOIF command 9.2.4
errors 9.6
EXISTS function 9.2.4.2
function calls 9.2.5.3
IF command 9.2.4
nesting 9.2.s
NEWER function 9.2.4.2
options 9.3
parameter list 9.3
pararreters 9 .2

Index-3

Index

Pascal cOfll)lle 9. 4 .1~ 9.4. 3~
9.4.4" 9.4.6

processor 9.3
programming tips 9.5
READCH command 9.2.3.1
READLN command 9.2.3.1
recursive function 9.4.6
REQUEST command 9.2.2.2
RETURN command 9.2.5.2
SET command 9.2.2.1
statements 9.2
stopping execution 0.6
string expressions 9.2.4.3
string functions 9.2.4.4
SUBMIT command 9.2.5.1~ 9.3.1.1
temporary file 9.1" 9.3.1.1
UPPERCASE string function

9.2.4.4
WRITE command 9.2.3.2
WRITELN command 9.2.3.2

execution time" measuring 8.4.8
EXISTS exec file function 9.2.4.2
Exit Editor 4.5
expressions" Assembler 6.4.5
extension to file name 2.4.3
external procedures and functions"

6.6
external reference directives,

Assembler 6.5.4
external references/ resolving

7 .1~ 7.7

----------F----------
file

copying 2.7
deleting 2.8
dump utility 11.6
exec temporary 9.1
FlleDiv utility 11.7
listing 2.6
patch utility 11.6
search utility 11.8

FileAttributes command 2.3.10
file date 9.2.4.2
FileDiv utility 11.7
FlleJoin utility 11.7

ItIorksnop User's Guide

File Manager 2
File Manager commands

Backup 2.3.1~ 2.7
ClearAttributes 2.3.10
Copy~ 2.3.2 2.7
Delete, 2.3.3 2.8
Equal 2.3.9
FileAttributes 2.3.10
Initialize, 2.3.11, 2.4.1 2.9
List 2.3.4, 2.6
Mount 2.3.12
Names 2.3.13, 2.6
Online 2.3.14
Prefix 2.3.5
Protect 2.3.10
Quit 2.3.8
Renane 2.10, 2.3.6
Safety 2.3.10
Scavenge 2.3.15
Transfer 2.3.7
unmount 2.3.16

File menu 4.2.2
F1LE-HGR command 1.3
file name 1.4, 4.5

changing 2.10
pronpts 1.5.1, 1.5.1.2-1.5.1.6
standard extension 2.4.3

file specifier 2.2, 2.4.2, 2.5
FilesPrivate command 3.2
Find... 4.7
Find & Paste All 4.7
Find Same 4.7
Find utility 11.8
font 4.8
full dUplex. see Duplex menu.
Full Footers 4.9
function, how to write in

Assenbler 6.7.3
function as exec file 9.4.8
function calls in exec file

9.2.5.3
function result 6.6.1

----------G----------
Generate command 1.3

Index-4

Index

generic instructions, Assembler
6.3

GetGPrefix procedure, Pascal 5.4.1
GetPrDevice procedure, Pascal

5.4.1
global cross-reference utility

11.9
global name 7.7
GXRef utility 11.9

----------H----------
half duplex. See Duplex menu.
Handshake menu 10.3
hardware exception 8.2.1.1
HEAD macro 6.6.1
heap, Pascal 5.4.2
HEAPRESULT, Pascal heap routine

5.4.2
help 1. 5 .1. 7

----------1----------
I-code 5.1, 5.2, 5.2.1
.IF Assembler directive 6.5.3
IF exec file command 9.2.4
.1 file extension 2.4.3
.INCLUDE Assembler directive 6.5.5
infinite loop 8.2.1.2, 0.2
Initialize command 2.3.11, 2.4.1,

2.9
insertion point 4.1, 4.3.1
installing

BASIC 1.10
COBOL 1.12
Pascal 1.7

intrinsic units 7.5

----------K----------
keyboard repeat delay 3.3.1
KillProcess commands 3.4

----------L----------
labels, Assembler 6.4.4
.LIB file extension 2.4.3

IfIOrkS170p User's Guide

Link command 1.3
Linker 7

error messages A.2
listing 7.6
options 7.3

Lisa character set 8
.LIST Assembler directive 6.S.S
List cOl'llnand 2.3.4, 2.6
listing file, Assentller 6.2.4
listing files 2.6
Literal search 4.7
local labels, Assembler 6.4.4
local name 7.7
.LONG Assentller directive 6.5.1
loop 8.2.1.2, 0.2

----------H----------
.MACRO Assembler directive 6.5.1
macro directives, Assembler 6.5.1
.MACROLIST Assembler directive

6.5.5
main corrmand line. see WorkshOp

coomands line.
main program, linking 7.4
main screen 1.1
HakeBackground conmand 1.3
HanageProcess corrrnancJ 3.2
HARK, Pascal heap routine 5.4.2
HEMAVAIL, Pascal heap routine

5.4.2
rerory

display in Debugger 8.4.2
dumping to diskette

8.4.9.5
parameter memory 3.3, 3.3.5
test 3.3.2

lrerory management hardware,
changing 8.4.7

modem 10.2, 10.3
Mount conmand 2.3.12
mounting a diskette 1.5.4
rouse 4.1
mouse double click delay 3.3.1
moving the d1splay window 4.4.2

Index-5

----------N----------
Names command 2.3.13, 2.6
nesting exec files 9.2.5

Index

NEW, Pascal heap routine 5.4.2
NEWER exec file function 9.2.4.2
NHI key 8.3, 8.4.9.3
.NOLlST Assembler directive 6.5.5
.NOHACROLIST Assembler directive

6.5.5
nonmaskable interrupt key (NHI) 8.3,

8.4.9.3
.NOPATCHLIST Assembler directive

6.5.5

----------0----------
.OBJ file extension 2.4.3
object code, Pascal 5.1, 5.2.1, 7.1
Object file, Assembler 6.2.3, 7.1
ObjIOLib errors A.3
on 1 ine ConmancJ 2.3.14
opcodes, Assembler 6.3
Open... 4.5
Operating System error lressages

A.4
operators, Assembler 6.4.5
options for file narre proq')ts

1.5.1.7
options in exec f1le 9.3
.ORG Assembler directive 6.5.1
OUtputRedlrect command 3.2

----------P----------
PAbortFlag function, Pascal 5.4.1
.PAGE Assembler directive 6.5.5
Page NtJntler O1ly 4.9
parareter list in exec file 9.3
parareter memory 3.3, 3.3.5
parareter passing 6.6.3
Parity menu 10.3
Pascal Conpi ler 5
Pascal

conpile from exec file 9.4.1,
9.4.3, 9.4.4, 9.4.6

Conpiler commands 5.3

(fIorkstJop User 's Guide

cross-reference utility 11.12,
11.13

t'leap 5.4.2
HEAPRESULT 5.4.2
MARK 5.4.2
MEMAVAIL 5.4.2
NEW 5.4.2
object code 5.1, 5.2.1
printing a program 4.9
RELEASE 5.4.2

Pascal command 1.3
PASLIBCALL unit, Pascal 5.4.1
Paste 4.6
patChing a file 11.6
.PATCHLIST Assembler directive

6.5.5
patt'lnarre 1 . 5 . 1
Plain keywords 4.9
PLINITHEAP procedure, Pascal

5.4.1, 5.4.2
PortConfig utility 11.10
Preferences command 3.2, 3.3

Convenience Settings 3.3.1
Device Connections 3.3.3
Rates 3.3.1
SCreen Contrast 3.3.1
Speaker Volume 3.3.1
Startup option 3.3.2
Tools menu 3.3.5
workshop option 3.3.4

prefix 2.4.3
Prefix command 2.3.5
pretty listing, Assembler option

6.2.1, 6.2.4
Print All of Document 4.9
printer 1.14
printing

from the Debugger 8.4.9.4
Pascal programs 4.9

Print menu 4.2.2, 4.9
Print Selection 4.9
problems D
procedure arguments 6.6.1
Process Management commands

AddResident 3.4
DeleteResident 3.4
KillProcess 3.4

Index-6

ProcessStatus 3.4
Quit 3.4

processor, exec file 9.3
ProcessStatus command 3.4
program bugs 8.2.1

Index

programming tips, for exec file
9.5

program structure, Assembler 6.4.1
protected master 2.3.10
pseudo-ops 6.5

----------Q----------
Quit command 1.3, 2.3.8, 3.2, 3.4

----------R----------
range check error 8.2.1.1, 8.3.2
Rates option 3.3.1
READCH exec file command 9.2.3.1
READLN exec file command 9.2.3.1
recursive function 9.4.6
.REF Assembler directive 6.5.4
register conventions 6.6.2, 8.4.1
registers, display in Debugger

8.4.4
regular units 7.5
RELEASE, Pascal heap routine 5.4.2
remote computer 10.1, 10.2
Rename command 2.10, 2.3.6
REQUEST exec file command 9.2.2.2
RETURN exec file command 9.2.5.2
Revert to Previous Version 4.5
.RORG Assembler directive 6.5.1
RS232 port, configuring 11.10
Run command 1.3
running

Assembly language program 1.8
Pascal program 1.8

run time stack 6.6.1

----------s----------
Save a Copy in... 4.5
Save & Continue 4.5
Save & Put Away 4.5
Scavenge command 2.3.15

ltIorksl7op User's Guide

Screen Contrast option 3.3.1
screen control

characters C
functions 5.4.1
stopping the display 1.5.3

SCreenCtr procedure, Pascal 5.4.1
scrolling 4.4.1
search file for pattern 11.8
Search menu 4.2.2, 4.7
.SEG Assembler directive 6.5.4
segHap utility 11.11
segmentation 11.3, 7.9
segment map utility 11.11
segment name

Assembler 6.5.4
changing 11.2

Select All of Document 4.6
selecting text 4.3
Separate Identifiers 4.7
SET exec file command 9.2.2.1
Set Tabs 4.6
setting Workshop parameters 3.3.4
Shift Left 4.6
Shift Right 4.6
space allocation directives,

Assembler 6.5.1
Speaker Volume option 3.3.1
stack 6.6.1
stack overflow 8.2.1.1
Startup option 3.3.2
statement, in exec file 9.2
static link 6.6.1
stationery 4.2.3
stopping

screen display 1.5.3
operation 1.5.2

string expressions, in exec file
9.2.4.3

SUBMIT exec file command 9.2.5.1,
9.3.1.1

SXRef utility 11.12
symbolic references 7.1
system malfunctions 8.2.2
System Manager 3
System Manager commands

Console 3.2
Convenience Settings 3.3.1

Index-7

OefaultPrinter 3.2
FilesPrivate 3.2
ManageProcess 3.2
OutputRedirect 3.2
Preferences 3.2, 3.3
Quit 3.2
Time 3.2
Validate 3.2

SVSTEM-HGR command 1.3

----------T----------
TAIL macro 6.6.1
TAS Assembler opcode 6.3
Tear Off Stationery 4.5
temporary exec file 9.3.1.1
test and set instruction 6.3
text, selecting 4.3
.TEXT f1le extension 2.4.3
Time command 3.2

Index

.TITLE Assembler directive 6.5.5
Token search 4.7
Tools menu 3.3.5
trace commands in Debugger 8.4.6
Transfer COmmand 2.3.7
Transfer program 10
TransferProgram COmmand 1.3
Type Style menu 4.2.2, 4.8

----------U----------
UBR COmmand, DebUgger 8.2.1.3
underlining 4.9
undo Last Change 4.6
unmount Command 2.3.16
unmounting a diskette 1.5.4
UPPERCASE function, in exec file

9.2.4.4
user break facility 8.2.1.3
utilities 11

ByteDiff 11.1
Changeseg 11.2
CodeSize 11.3
comparing binary files 11.1
comparing .TEXT files 11.4
Diff 11.4
disassembler 11.5

IIorksllop User's Guide

dump a f1le 11.6
DuIlpObj 11.5
DumpPatCh 11.6
FileDiv 11.7
FileJoin 11.7
Find 11.8
GXRef 11.9
patch a file 11.6
PortConfig 11.10
searCh file for pattern 11.8
segMap 11.11
segmentation 11.3
segment mapp1ng 11. 3
SXRef 11.12
UXRef 11.13

UXRef utility 11.13

----------V----------
Validate command 3.2
voltJlOO 2.4.1

Changing the name 2.10
creating 2.9

----------IJ,I----------
wild card Characters 2.5
windOw

Debugger 8.4.9.2
Environments 1.2

window, moving 4.4.2
.WORD Assembler directive 6.5.1
worKing directory 1.4, 2.4.3
WorKshop conmancl 1 ine 1.1, 1. 3
IJJorKshop conmands

Asseoole 1.3
Basic 1.3
CObol 1.3
DebUg 1.3
Edit 1.3
FllE-HGR 1.3
Generate 1.3
link 1.3
Hakebackground 1.3
Pascal 1.3
Quit 1.3
Run 1.3

Index-8

SYSTEM-MGR 1.3
TransferProgram 1.3

WorKShop option 3.3.4

Index

WRITE exec file command 9.2.3.2
WRlTElN exec file command 9.2.3.2

~IS MANUAL was produced using
LisaWrite, L is aD raW", and

LisaList.

AIL PRINTING was done with an
. Apple Dot Matrix Printer.

the Li~'"
... we use it ourselves.

WorkSf1op USer's GuJde HaJl-Back Form

Apple publlcatlons wOUld llKe to learn about reaaers and wt1at you thInk abOUt thIs
manual In order to make better manuals in the future. Please f1ll out this form, or
wrl te all over It, and sena It to us. We promIse to reaa it
How are you using this mcnaal?
[] learning to use the product [] reference [] both reference and learnIng
[]ower __ ___

Is it quiCk and easy to find the information you need In thIs manual?
[] always [] often [] sometimes [] seldom [] never
commenu __ _
What makes thIs mcnJal easy to use? _____________________________ _

What makes this manual hard to use? _________________________ _

What do you like most abOUt the manual? ________________________ _

What dO you llke least abOUt the manual? ________________________ _

Please comment on, for example, accuracy, level of detail, runber and usefulness of
exarf1)les, length or brevity of explanation, style, use of graphIcs, usefulness of the
index, organization, suitability to your particular needS, readablllty.

What languages do you use on your LIsa? (cheCk each)
[] Pascal [] BASIC [] cooa.. [] other ___________ ___

How long haVe you been programmIng?
[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What Is your job tltle? ________________________________ _

HaVe you completed:
[] high school [] some college [] BAleS [] MAIMS [] more
What magazines dO you reacJ? __________________________ _

Other comments (please attach more Sheets if necessary) ______________ _

029-0l69-A

'" HlD

.. FaD···

t.
.~ppk! computc!r

POS Publications Department

20525 Mariani Avenue
Cupertlno .. Cal1fornla 95014-

TAPE (R STAPLE

PLAt
.... rllJ.
H£R~

