
Li~a .Workshop User's Guide

BEGIN {main program}
{----- Initialization - Generic to all applications using QuickDraw -----}
QDInit(@heapBuf, @heapBuf[8192], @heapError);

OpenPort(@myPort);
PaintRect(thePort' .portRect);
InitIcons; {moved to here from below stuffhex}
InitScales; {moved to here from below stu££hex}

DrawStuff;
REPEAT UNTIL KeyBdEvent(FALSE,FALSE,event) AND

(event.ascii <> CHR(l));

PaintRect(thePort' . portRect);
SetRect(srcRect,O,O,720,360) ;
myPicture := OpenPicture(srcRect);
DrawStuff;

PROCEDURE Dr awfi gure(vi twAng, rollAng, pi tChAng :
BEGIN

Vi ewAngl e(vi ewAng);
Identi ty;
Roll(rollAng);
Pi tch(pi tChAng);
Er mRect(port1" . portRect);
Fr iMeRect(portl" . portRect);
PI otGri d;

Workshop User's Guide

for the Usa

Copyri.-

This manual and the software described in it are copyrighted with all rights
reserved. Under the copyright laws, this manual or the software may not be
copied, in whole or in part, without the written consent of Apple, except in
the normal use of the software or to make a backup copy. The same
proprietary and copyright notices must be affixed to any permitted copies as
were affixed to the original. This exception does not allow copies to be
made for others, whether or not sold, but all the material.purchased (with all
backup copies) may be SOld, given, or loaned to another person. Under the
law, copying includes translating into another language or format.
You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Apple dealer for information on multiuse licenses.)

licensing Requiremerts fer Software Developers

Apple has a low-cost licensing program, which permits developers of
software for the Lisa to incorporate Apple-developed libraries and object
codes into their products. 80th in-house and external distribution require a
license. 8efore distributing any products that incorporate Apple software"
please contact Software Licensing at the address below for both licensing and
technical information.

i1983, 1984 Apple Computer, Inc.
20525 Mariani ProJe.
Cupertino, CA 95014
(408) 996-1010

Apple, Lisa, ProFile, MacWorks, and the Apple logo are trademarks of Apple
Computer, Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.

Priam is a registered trademark of Priam" Inc. Sony is a registered
trademark of Sony Corporation. Centronics is a registered trademark of
Centronics Data Computer Corporation. VT52 and VT 100 are trademarks of
Digital Equipment Corporation.

Simultaneously published in the U.S.A. and Canada.

Reorder Apple Product 1620-6148-8.

Limited W8mriy on Media and Manuals

If you discover physical defects in the media on which this software is
distributed, or in the manuals distributed with the software, Apple will
replace the media or manuals at no charge to you, provided you return the
item to be replaced with proof of purchase to Apple. or an authorized Apple
dealer during the 9O-day period after you purchased the softwere. In some
countries the replacement period may be different; check with your
authorized Apple dealer.

ALL JMlI..IED WARRANTIES ON Tt£ MEDIA AN) MANJAL, INCLlDlNG
lMPLIED WARRANTIES OF I'£RCHANTABIUTY AN) FIThESS FOR A
PARTICUlAR Pl.RlOSE, ARE LIMITED IN DURATION TO NIN:TY (g)) DAYS
FROM TI-£ DATE OF Tt£ ORIGINAL RETAIL PURCHASE OF TI-£
PRODUCT.
Even though Apple has tested the software and reviewed the documentation, ,
APPLE MAKES NO WARRANTY OR REPRESENTATION, EITt£R EXPRESS
OR IMlLIED, WITH RESPECT TO THIS SOFTWARE, ITS QUAlITY,
PERFORtwIANCE, tERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESUlT, THIS SOFTWARE IS SOLD ·AS IS,· AN) YOU,
Tt£ PURCHASER, ARE ASSlJt.1ING TI-£ ENTIRE RISK AS TO ITS QUAlITY
MD PERFORMANCE..

IN NO EVENT WILL APPLE BE t£LD LIABLE FOR DIRECT, INDIRECT,
SPEClA..., INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESUL. TING FROM
ANY DEFECT 1N:rtE SOFTWARE OR ITS [)()CUtu£NTATION, even if advised
of the possibility of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with Apple products,
including the costs of recovering such prOgI'8ITIS or data.

Tt£ WARRANTY AND REtwEDIES SET FORTH ABOVE ARE EXCLUSIVE AN)
IN LIEU OF ALL OTt£RS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights which vary from state to state.

Chapter 1
Int.IlXU::t1on

Contents

The Workshop provides tools for program development. It provides facilities
for edIting, language processing, and debUgging, as well as commands for
managing files and configuring the system. The system also includes many
other utilities.

Chapter 2
The File ~r

The Flle Manager enables you to manage and manIpulate flIes and volumes.

Chapter 3
The System ~r

The System Manager enables you to set default and configuration parameters
for the Usa, and manage processes.

Chapter 4
The Editor

The Editor enables you to create and modify text fUes. These text fUes are
used as input to the Compiler and the Assembler.

ChapterS
The Pascal ~ner

The Compller translates Pascal source code Into object code .. Translation
requires two steps: first the compiler translates Pascal into I-code; then the
code Generator translates the I-code Into Object COde.

Chapter 6
The Assembler

The Assembler translates assembly language programs Into object Code.

Chapter 7
The LInker

The LInker combines object code fBes Into executable programs.

Chapter 8
The Debugger

The DebUgger enables you to examIne memory, set breakpoInts, and perform
other run-time debuggIng functions.

C'Q)ter9
Exec FUes

Exec flIes enable you to execute a series of commandS and programs
automatically.

~ter 10
The TralSfer Prognm

The Transfer Program enables you to transfer files between the Lisa and a
remote computer. It can also let you use the Lisa as a terminal for a
remote computer.

Chapter 11
The UtillUes

Utility programs are provided for debugging, configuring the system, and
manipulating fUes.

AppendIxes

A Error Messages
This section contains a list of error messages for the system, the Linker"
and the Assembler.

B The Lisa O'laracter set
This section defines the complete Usa character set.

C SCreen Cmtrol Characters
This section lists character sequences that can be used for controlling trle
screen display.

o coomoo Problems
This section contains some common problems and suggestions for handling
them.

IndeX

Preface

The Workshop I..lser'$ Guide for the Liss describes the Workshop environment
for developing, testing, and running programs written in assembly language,
Pascal.. and other high-level languages.

This manual is written for programmers who ere familiar with the Lisal
system.

Related Documerts
F or all programmers:

• Lis8 2 Owner~ Guide

For Pascal and assembly-language programmers:

• Pascal Reference Manusl for the Liss

• ,..1680«) 16/32-Bit J..1icroproc8S$OT: Progr8l7?mer~ ·Reference f..1snlJsJ

• Operating system Reference MI!lmI81 for the Lisa

For BASIC programmers:

• BASIC-Plus User's Guide for the Liss

For Macintosh programmers:

• Inside "'18cintosh

Whet This Manual Contains
The contents of the Workshop User's Guide are summarized below.

• Chapter' I, Introduction.. describes the Workshop environment for program
development and discusses the conventions used by the Workshop tools.
It tells you how to install the Workshop and how to use the main
Workshop command line.

• Chapter' 2, The File Manage,., describes file-naming conventions; tells
you how to list directories; how to copy, rename .. and delete files; and
how to mount, unmount, initialize, and repair volumes.

• Chapter' 3, The system Manager, tells you how to set system defaults
and specify device connections.

• Chapter 4, The Editor .. tells you how to create, modify, search, save .. and
print text files.

• Chapter 5, The Pascal Compilei', tells you how to use the Compiler and
the Code Generator to turn a Pascal source program into an object file.

i

Preface

• Chapter 6, The Assembler, tells you how to assemble a 68000
assembly-language source program into an object filei it also describes
how your assembly-language program can communicate with a Pascal
program.

• Chapter 7, The linker, tells you how to combine compiled or assembled
object files into a single executable object file. It discusses regular
and intrinsic units, external nemes, and segmentation.

• Chapter 8, The Debugger", describes how to set breakpoints in your
program; how to display memory and registers; how to trace the
program flow; and other fun-time debugging functions.

• Chapter 9, Exec Files, tells you how to create a fHeof commands to
run programs under the Workshop automatically; the commands consist
of Workshop and program commands plus a special high-level exec
language.

• Chapter 10, The Transfer Program, describes a date. communications
package for transferring keyboard input or text files between the Lisa
and a remote computer.

• Chapter 11, The utilities, documents a set of utility programs that
perform file comparing, file searching, cross-referencing, Lisa-Macintosh
communication, and various other functions.

• Appendix A, Error f\1ess:ages, provides the text of error messages from
the Assembler, the Linker, ObjIOLib, SULib, PasLib, the Exec Processor,
and the Lisa Operating System.

• Appendix 8, lisa Extended Character" Set, is a table of ASCII character
codes and special characters.

• Appendix C, Sa'een Cortrol Characters, contains information on screen
control in Pascal and BASIC.

• Appendix 0, Common Problems, contains troubleshooting suggestions.
Type and Syntax Conventions

Boldface type is used in this manual to distinguish program text from English
text.

ItBlics are used when technical terms ere introduced.
Syntax diagr8J'TlS show how to enter filenames and other syntactic
constructions. For example, the following syntax diagram from Chapter 2
describes a wild-card-spec:

11

Workshop ,..1snusJ

Start at the left and follow the arrows through the diagram. Alternate paths
are possible. Every path that begins at the leftmost arrow and ends at the
rightmost arrow is valid.
Circles and ovals contain reserved words, operators, or punctuation symbols
that must be written as shown, except that capitalization is not required.
Boxes contain the name of a syntactic construction that is described by
another syntax diagram. Replace the name with an instance of the
construction.
The wild-cerd-spec diagram embodies the following rules:

• A wild-cerd-spec can begin with an optional string (String-l).
• A wild-cerd-spec must contain =, 1, $, -, or L.
• The =, 1, $, -, or i. can be followed by an optional string (String-2).

Here are some examples that conform to the wild-card-spec syntax:

-vol-$. text
?obj
=

/1/

Chapter 1
IntrodJction

1.1 Introduction to the 'Nm'kshop ••••••• _. ___ • ___ • _____ ._. ___ ._. ___ ._._ •• __ 1-1
1.2 ststirlg ttIe Workshop __ ._. ______ • _______________ • __ ._._._._. ________ •• _ 1-1

1.2.1 The Environments Window 1-2
1.2.2 Installation Overview ... 1-3
1.2.3 Installing the Workshop Pascal Software 1-3

1.3 I-t8rdw8l'e Confi~ation __ • _____ • ____ • __ • ___ • __ ._. ____ • _______ ._. _____ • 1-10
1.3.1 Specifying Hardware Connections 1-11
1.3.2 Printer Configuration .. 1-11

1.3.2.1 Setting Up a Printer 1-11
1.3.2.2 Configuring the Workshop for a Printer 1-11
1.3.2.3 Specifying a Default Printer

1.4 Tt1e '-*bkshop SIleU _ .•. ___ • __________ • __ • ___ ._. _______ • ___ . ___ . __ . _____ 1-12
1.4.1 Exec Files ... 1-12
1.4.2 The Main Command Line _. 1-12
1.4.3 Automatic Actions Taken by the Shell 1-15

1.4.3.1 User Startup and Shutdown Procedures 1-15
1.4.3.2 Automatic Mounting of Disks 1-15
1.4.3.3 Automatic Setting of Prefixes 1-16

1.4.4 The Main Screen and the Alternate Screen _ . .. 1-16

1.5 Wm1cshop Cc:nIentions and standar'ds n • .0 .0 _ .on .on _.0 nn _ .0 _ nn 1-16
1.5.1 File System Conventions

1.5.1.1 File Names .. 1-16
1.5.1.2 Defaults in File Name Prompts 1-17

1.5.2 Getting Help .. 1-18
1.5.3 Getting Out _ 1-18

1.5.3.1 Canceling a Program 1-18
1.5.3.2 Canceling a Prompt 1-18
1.5.3.3 Halting a Screen Display 1-19

1.5.4 Standard Error Messages _.......... 1-19

IntrodJcti<Xl

1..1 Irtroduction to the Wm1cshop
The Workshop contains a collection of tools for preparing and running
programs. These tools allow you to

• Configure the Usa and set system defaults.

• Write.. compile or assemble, link, and run programs.
• Debug programs that run under the Lisa Operating System.

• Create and run files of Workshop and program commands using a
high-level exec language.

• Initialize, list, copy, rename, delete, compare, search, cross-reference,
and otherwise view and modify files, catalogs, and volumes.

• Transfer data between the Lisa and a remote computer.
The Workshop lets you develop Macintosh programs on the Lisa. You can
also transfer files between Lisa and Macintosh by running the MacCom
utility program. With MacWorks, you can even run Macintosh programs on
the Lisa. Several programming languages are available, including 68000
assembly language .. Pascal, BASIC, C, and others.

The Workshop tools run under the Lisa Operating System (OS). The as
enables programs to do file handling.. process management, and memory
management; it provides some facilities for which there are no p&allels in
the Workshop. If you are writing programs to run under the Lisa OS, you
should be familiar with the Operating S}·'Stem Reference """8I7tI81 for the List!
If you are writing programs to run under the Macintosh OS, you should be
familiar with Inside Mt1cintosh.

You use the main Workshop features by typing a single character response to
8. comml'JI?d Jine that lists available programs. The main command line is
described in this chapter. The File Manager and the System Manager have
their own command lines, described in chapters 2 and 3.

1.2 starting the WOI'kshop
If yl,,)u have already installed the Workshop from micro diskettes, boot from
the Workshop startup disk. Either the Workshop commend line or the
Environments window appears on the screen. For a description of the
Workshop command line, see Section 1.5.1. The Environments window allows
you to start the Workshop or another environment such as the Office System.
For a description of the Environments window, see Section 1.2.1.

If you have not yet installed the Workshop software onto a startup disk,
tollow the instructions in Section 1.2.2.

1-1

Workshop l..lser's Guide Introduction

1.2.1 The ErMronments Window
If your startup disk contains only the Workshop environment, booting
automatically starts the Workshop and its command line appears. If the
startup disk contains more than one environment, the Environments window,
below .. lets you select which environment you want. The window displays a
checkbox for each environment plus the following five buttons:

Power orr Turn off the Lisa.
Restart Reboot or reset the Lisa.
start Start the selected environment.
Set. Def"ault Set the default to the selected environment.
No Default Always display the Environments window on startup.

Environments

[Restart (Power OfT

~ WorkshOp (Set Oefaul t

D ofTice S~stem
NO DefQul t

start

To start the Workshop or another environment from the Environments window,
move the pOinter to the check box of the environment you want to start and
click the mouse button. Then move the pointer to the Start button and click.

To return to the Environments window from the Workshop, use the Quit
command in the Workshop command line. Reply Y when asked if you really
want to leave the Workshop. Then type A for Another_shell.

To go to the Workshop or another environment automatically at startup time,
select the environment's check box and click Set Default. To go to t.he
Environments window automatically at startup time .. click No Default.

Togo to the Environments window when booting the system, press any key
while. the Lisa is starting up.

1-2

Workshop l..(ser~ Guide Introduction

You can create your own environments. Arry object file named
SHELL.filename will appear in the Environments window as an alternate
environment.

1.22 Installation OVerview
The Workshop Pascal softw8l'e comes on nine micro diskettes, "Workshop
Pascal 1-9." Installing the Workshop involves transferring copies of files
from these micro diskettes to a hard disk that you designate. This hard disk
will then be called a stsrlup disk or boot disk.

Here is an overview of the steps you must follow to properly install the
Workshop Pascal software. The actual instructions are in the next section.

• Physically hook up the Lisa and any peripheral devices, such as printers
and external hard disks. If you have not yet physically set up the Lisa
hardware, turn to Appendix A .. Setting Up Your System .. in the Lisa 2
Owner~ Guide.

• Insert the "Workshop Pascal 1" micro diskette and use it to install the
startup software from the first six micro diskettes ('Workshop Pascal
1-6") onto a hard disk that you designate. These diskettes produce a
startup disk containing the minimum Pascal Workshop, which is capable
of editing, assembling, compiling .. linking, running programs, managing
files .. and configuring various hardware and software options.

It will take about 15 minutes to install the minimum Pascal Workshop.. a
little over 2 minutes per micro diskette.

• Start the Workshop and use the System Manager's Preferences tool to
describe your Lisa's particular configuration of disks.. printers, and other
devices.

• Use the Workshop's File Manager to copy to the hard disk any additional
files that you need from the remaining micro diskettes ("Workshop
Pascal 7-9").

1.23 Installing the Wcrkshop Pascal Software
Follow these step-by-step instructions to install the Workshop Pascal
software.

It's a good idea to read through this entire procedure before starting.

1. If the Lisa is on, turn it off by pressing the on-off button.

2. Have the nine micro diskettes handy ("Workshop Pascal 1-9"). If your
system has an external hard disk, be sure it is on and the rea~ light
is steady.

Do not write-protect the micro diskettes. If you try to install the
software from a write-protected diskette, the Lisa will fail, try to
boot, and continue to fail.

1-3

~\Iorkshop User~ Guide Introduction

3. Insert the "Workshop Pascal ttl micro diskette into the drive. Make
sure the arrow embossed on the diskette points toward the drive.

4. Turn the Lisa on by pressing the on-off button once. About four
seconds later, after you hear a click from the cabinet, hold down the * key and type a 2 on the main keyboard. Do not use the 2' on the
numeric keypad.

If you type *-2 correctly, the Lisa will go through a self-test that
checks to make sure the Central Processing Unit (CPU), Memory
(Mem), Input-Output (110), and expansion slots are working properly.
Proceed to step 5.

TESTING ••.

o
If you type a 2 without pressing the " key, the startup menu will
appear. Hold down the • key and type 2' again.

If you type *-2 late--after you hear a second click from the
cabinet--this screen will appear. Hold down the " key and type 3..
The startup menu described in the preceding paragraph appears. Type
*-2.

1-4

Workshop t..lS'er~ Guide Introduction

~ RESTART

• ~ STARTUP FROM •••

,_ When the Main Menu appears, use the mouse to move the pointer to
the Install box. Click the mouse button once. The box will darken,
indicating that you have selected it .

•
L.~ Workshop Pascal System 3.0
1!I1983, 1984 _apple computer inc.

This micro diskette is used to repair the Lisa
Workshop Pascal System startup disk and to
install the startup software. The startup disk is
attached to the internal connector.

(lick Finished if you are Finished.

(lick Repair to fix a damaged disk.

(lick Install to put new startup software on the
disk.

(lick Restore to restore the disk from backup
diskettes or archive tapes.

(Finished)

Repair J

M@",
[Restore)

Clicking the Repair box performs the same function as the Scavenge
command in the File Manager (see Chapter 2); select it only if your
hard disk is damaged and you want to try. to preserve its files. The
Restore box is of irterest only to Office System users.

6. A message will tell you that the Lisa is looking for any attached hard
disks. It will only find disks that are attached and powered on.

Then you will be asked to select the stlJItup disk,= that is, the disk on
which you want to install the Workshop Pascal software.

1-5

l-\lorkS'hop l.,1ser's Guide

•
Do you want to use the disk attached to the
parallel connector?

Click Cancel if you do not want to specify any
disk to use at this time.

Click OK if you want to select this disk.

Click More if you want to select a different disk.

Introduction

(-OK-)

(More)

To select the herd disk identified by the first paragraph of the screen
message, click OK.

To select a different herd disk, click More. The Lisa will continue
looking for other attached disks.

You can keep clicking More each time a disk is presented for
approval. If the screen notifies you that no more disks are available,
click Retry to start over or click Main Menu to return to the screen
shown in Step 5.

7. After you select your stertup disk, one of two screens will appear.

a If the disk you have chosen is a new disk that has never before
been used, or if it is a disk containing software unusable by the
Lisa, you will see the message shown below.

Click Continue .

•
cr

The disk is either damaged or has not yet been
initialized. Before installing the lisa Workshop
Pascal System soFtware, the lisa will erase and
initialize the disk.

If you choose to Continue, all files on the disk
will be erased before the Lisa Workshop Pascal

(ancel

System software is installed. CliCk Cancel if [)
. Continue ~

you do not want the disk to be erased. "t

b. If the hard disk you select as your startup disk already has Lisa
files on it, you will be asked if you want to erase it. You can't
share the disk with MacWorks unless you initialize or erase it.
Click Erase to erase everything on the disk.

1-6

WOJ"kshop User's Guide

•
Do you want the disk erased?

Click Erase only if you are starting new
work and want to destroy all information
now on the disk.

Introduction

Don't Erase

Erase

If the herd disk contains files that you want to keep, click Don't
Erase; 00 to step 9.

8. You will be asked if you want to use part of the disk with MacWorks
(the Macintosh environment for the Lisa system).

If you don't want to store Macintosh files on this disk, click Don't
Share.

Do you wish to use part of the specified disk
with MacWorks?

Click Don't Share if you do not wish to split
the disk between the Lisa Wcr"kshop Pascal
System and MacWorks.

Click Share if you want to be able to use
part of the disk with MacWorks.

Don't Share

Share

If you plan to use part of the hard disk for Macintosh files" click
Share. You will be asked how much space you want to reserve. The
only choice possible for a 5-MegaByte ProFile is 2000 blocks (1
MegaByte). Click one of the buttons.

The specified disk has a total size of 19448
blocks. How many blocks do you wish to use
with MacWorks?

(lick Don't Share iF you do not wish to share
the disk with MacWorks.

Note that disk blocks used by MacWorks
cannot be used by the Lisa Workshop Pascal
System.

1-7

Don't Share

2DOO

6000

10000

Introduction

9. A wait message will appear while the startup disk is erased and
initialized. It takes a few minutes for the disk to be formatted and
initialized.
When the startup disk has been initialized, the Lisa will automatically
begin installing the Workshop software from the "Workshop Pascal 1"
micro diskette. You will see a message telling you that the startup
software is being installed. The first micro diskette will soon be
ejected from the drive.

10. When the message on the screen tells you to insert the next micro
diskette, remove the "Workshop Pascal 1" micro diskette from the
drive and insert the "Workshop Pascal 2" micro diskette. The
installation process will automatically continue. You do not need to
click either of the boxes shown.

Please insert the lisa Workshop Pascal System 2
micro diskette into the micro disk drive.

Click Cancel to cancel installation.

Cancel

Continue

If you insert a micro diskette out of sequence, the diskette will be
ejected, and this message will appear.

You inserted a Workshop Pascal System diskette out
of sequence.

The correct diskette to insert at this time is the
Lisa Workshop Pascal System 2.

The Install will continue. OK

Replace the diskette with the correct one. Click OK; the installation
procedure will continue automatically.

11. Insert the remaining diskettes when you are prompted for them.
If you cancel the automatic installation process before installing
softw8J'e from the first six diskettes, you will have to repeat this
procedure beginning with the "Workshop Pascal 1" diskette. You will
not be able to use the Workshop until software from the first six
diskettes have been installed.

1-8

Introduction

12.. After the Lisa has installed the softwere from the sixth ("Workshop
Pascal 6") micro diskette, you will be asked to reinsert the "Workshop
Pascal 1" diskette.

Insert the diskette.

Please reinsert the Lisa Workshop Pascal System
1 micro diskette at this time. The Lisa will not
be able to finish installing the Lisa Workshop
Pascal System software until the Lisa Workshop
Pascal System 1 micro diskette has been
reinserted.

(Cancel)

Continue

13. When the message informs you that the Workshop Pascal softwere has
been installed,. click OK.

The Lisa Workshop Pascal System software has been
installed.

14. The Main Menu will reappeer. Click Finished.

The minimum Pascal Workshop is now installed .

0\(

.!.~ Workshop Pascal System 3.0 1M',
@1983, 1984 «apple computer inc.

This micro diskette is used to repair the Lisa
Workshop Pascal System startup disk and to
install the startup software. The startup disk is (Repair)
attached to the internal connector.

Click Finished iF you are Finished.

Click Repair to fix a damaged disk.

[lick Install to put new startup software on the
disk.

[lick Restore to restore the disk from backup
diskettes or archive tapes.

1-9

(Install)

(Restore J

15. When this message appears, click Start Up .

•

Should the Lisa turn off or start up from the
disk?

1l7tl'oduction

Off

The "Workshop Pascal 1" diskette will be ejected. Put it in a safe
place.
Your Lisa will go through a series of self-tests similar to those that
occurred when you first turned it on.

TESTING ...

o
16. The Workshop will be started from the startup hard disk. If the Lisa's

clock/calendar has not been set, the Workshop asks you to set the
correct time and date. You should do this now, because some
functions in the Lisa applications require a correct date and time.

17. Use the Workshop System Manager's Preferences tool to tell the Lisa
what peripheral devices are physically connected and what default
settings to use each time you turn on the Lisa Starting the Workshop
is described in Section 1.3. The System Manager subsystem and the
Preferences tool are described in Chapter 3.

18. Decide what tUes you need trom the remaining diskettes ("Workshop
Pascal 7-9"). Use the Workshop's File Manager to copy these files to
the startup disk (or any hard diSk, if you have more than one). See
Chapter 2, The File Manager, for instructions. Unless you plan to use
a file frequently, you may prefer to access it directly from the micro
diskette rather than take up space on the hard disk.

Your Workshop Pascal software is now fully installed.

1.3 dware Configwation
In order to use a device with the Workshop, you must do two things: first,
tell the Workshop it exists; and second, connect it to the Lisa Telling the
software about the hardware is known as configuring the system The
configuration information you provide is saved on the boot disk and in the

1-10

Introduction

Lisa's pararneter rnemory, so you only have to reconfigure if you change to a
different boot disk or if you connect or disconnect devices.

If you have just installed new software on your boot disk,. you should check
its configuration now.

1.3.1 Specifying dwa'e Comections
The File Manager's Online command tells you what hardware the Workshop
software thinks is connected to your Lisa. If a device that is connected to
the Lisa is not listed by Online, use the Preferences command in the System
Manager command line to tell the Workshop about the device. If Online
pauses unexpectedly while listing devices, or if it reports an error, it is
probably looking for a device that the software thinks is connected. If the
device is not present, use Preferences to detach it.

Preferences also lets you specify various defaults such as which device to
boot from,. which printer to associate witt. the logical printer device
(-printer), normal and dimmed brightness levels for the screen, and so on.

1.32 Printer Cort'igw-ation
Before using a printer with the Workshop, you must set up the printer and
tell the Workshop where it is connected.

Refer to the instruction manual that carne with your printer for directions on
how to set it up. If you have more than one printer you will want to
configure one of them as the default printer, as described in Section 1.3.2.3.

1.3.2.1 Setting up a Prrier
The procedure for setting up a printer varies with the type of printer.
Follow the manufacturer's instructions.

During startup, or when you attach a printer using the Preferences tool, the
Workshop sends a control sequence to set the printer to 9600 baud, auto line
feed, OTR handshake, and no parity. If your printer is an Apple Imagewriter,
the default standards which have been factory preset should be satisfactory.
However, if you want to modify the performance of the lmagewriter, see the
technical specifications in the Apple lmagewriter t....iser~ "'1am."8~. P8It I:
Reference.

1.3.22 Configuring the Wm"kshop tor a Printm"
Follow these steps to configure your Lisa for a printer:

I. From the Workshop command line, press S to enter the System
Manager subsystem.

2. Press Pfor Preferences. The Preferences tool is used to set up the
configuration of the Lisa system and the Workshop; refer to Section
3.3 felT mOTe information on Preferences.

3. Click on the Connect Device Software box to see what devices are
connected to the Lisa.

1-11

Workshop User's Guide

4. Select the connector to which your printer is connected. All devices
that can be connected to that connector are displayed.

,. Select Printer; additional configuration options ere displayed.

6. When you ere finished configuring your printer, select Quit from the
File menu.

7. Exit from the System Manager back to the Workshop command line by
pressing ~ for Quit.

1..3.2..3 Specifying a Default Printer
If you have more than one printer connected to your Lisa, you can specify a
default printer--the one you can refer to as -printer. First use the
Preferences tool to configure the printers and other devices connected to the
Lisa. Then choose Select Defaults in Preferences. See Section 3.3, The
Preferences Tool, for more information.

Another way to specify the default printer is to type D for OefaultPrinter in
the System Manager command line and enter the device name of the default
printer (for example, 11011 or its alias RS232A). Or, if you want to keep the
current default, press [RETURN]. See Section 3.2, The System Manager
Command Line, for more information on the OefaultPrinter command.

The default printer you specify using the Preferences tool is also the default
for the Office System if you have it installed; the default printer you specify
using the OefaultPrinter command affects only the Workshop environment.

1.4 The Wm"kshop Shell
The Workshop shell is the highest-level program in the Workshop
environment. Programs you run from command lines or using the Run
command return control to the Workshop shell when they're finished. The
shell provides an exec file mechanism and performs a number of automatic
actiOns; its Command Interpreter communicates with you at the level of the
main commsnd line. The Workshop uses the command line to provide you
with access to system functions at a single keystroke.

1.4.1 Exec Files
Exec files let you automate Workshop utilities and user progrems, make
programmed decisions (for example, whether to recompile a source prooram),
modify the Workshop environment, automate test procedures, and more. Exec
source files can contain a high-level command language, Workshop
commands, and input to user programs. Common uses of exec files include
standard compile procedures and standard application runs. See Chapter 9,
Exec Files, for more information.

L42 The Main Command Line
When you enter the Workshop environment, the Workshop's main command
line appears at the top of the screen. It shows:

1-12

Workshop U~er's Guide /titrtJdJlction

• Two subsystems, the File Manager and the System Manager, that have
their own command lines.

• The Run command, which lets you run Workshop utilities and arry
program that you or someone else wrote to run under the Workshop.

• The main tools provided by the Workshop.

The main command line actually comes in two parts because the screen isn't
wide enough to show all the commands on a single line. The first part of
the main command Une looks like thiS: I

WORKSHOP: FlLE-ft.1GR, SYSTEM-MGR, Edit, Run, Debug, Pascal, Basic, Quit, ?

You can see the rest of the commands by pressing ?, the last symbol on the
line. To return to the first pert of the command line, press [RETURN]. The
second part looks like this:

Assemble, Genel'ate, Make8ackground, Unk, TransferPr09'8In

Type the first letter of a command to use a tool. For example, type E or e
to run the Editor. You can use all of the commands no matter which part of
the main command line is showing when you type the command letter. The
Workshop looks for the tool on the boot volume;: if it doesn't find it there, it
looks on the Prefix volumes.

Some commands will ask for additional information. Default values are
displayed in square brackets ([clefault]). To accept a default value, press
[RETURN]. If you don't want the default value, type in the value you want
and then press [RETURN]. If you make a mistake, press [CLEAR] to escape.
See Section 1.5.1.2, Defaults in File Name Prompts, for more information.

The main command line commands are described below. The letter you type
to access the command is shown in parentheses.

FILE-MGR (F)
The FILE-MGR command give you access to the File Manager subsystem,
described in Chapter 2. This subsystem is used to manipulate files, catalogs,
and volumes.

SYSTEM-MGR (S)
The SYSTEM-MGR command gives you access to the System Manager
subsystem, described in Chapter 3. This subsystem provides various
configuration, process management, and utility functions.

Edit (E)
The Edit command gives you access to the Editor in order to create, modify,
and print text files. You can use the Editor to write exec files, data files,
and programming language source files, as well as memos or other
documents. The Editor is described in Chapter 4.
Run (R)
The Run command has two functions. You can use it to execute an object
progr8ITI (a Workshop utility program, a user-written program, or any other

1-13

Workshop User's Guide Introduction

software designed to run under the Workshop), and you can use it to cause an
exec fiJe to be processed end executed.

The Run command asks you what file you want to run. The default is the
last program or exec file you ran. To run the same file again, just press
[RETURN). To run a different file, type the program or exec file name
followed by [RETURN]. The name of an exec file must be preceded by < or
exec/.

If the Run command doesn't find the file under the name you supplied, it
adds the standard extension if you didn't give one (.OBJ for program files,
.TEXT for exec files) end looks for the file again. If you don't specify a
volume name, the Run command searches through the first Prefix volume for
an exec file or through up to three Prefix volumes for a program file; then,
if necessary, it looks on the boot volume. Prefixes can be set through the
File Manager's Prefix command.

Debug (D)
The Debug command inserts a breakpoint at the first instruction 1n your
program, so you can use the Debugger. Then it executes the program just as
the Run command does. More information on the Debugger can be found in
Chapter 8.

Pascal (P)
The Pascal command starts the Pascal Compiler, described in Chapter 5.
More information on the Pascal language can be found in the Pascal
Reference f..18ntI8J for the Lis8.

Basic (8)
The Basic command starts the BASIC Interpreter. More information on
BASIC programming can be found in the BASIC-Plus User's Guide for the
Lisa.

Quit (Q)
The Quit command lets you leave the Workshop. If you opened files in the
Editor and didn't save them, you'll receive a reminder. The follo.wing prompt
line appeers after you confirm that you want to leave the shell:

Wm'kShop_shell, Another_shell, Reboot, Power_off

Type W to return to the Workshop environment.

Type A to go to the Environments window. If you have the Lisa Office
System installed, you can go from the Workshop to the Office System by
means of the Enviror.ments window.

Type R to reboot the Lisa.

Type P to turn off the Lisa.

Assemble (A)

1-14

l+'orkshop l./ser's Guide Introduction

The Assemble command starts the Assembler, described in Chapter 6.
Additional information on assembly language can be found in the I\16&'\,'O
16.,·'..,V2-Bit I\1icroprocessor manuaL

Generate (G)
The Generate command, described in Chapter 5, converts intermediate code
files produced by the Pascal Compiler into object code. (The Compiler
performs this step automatically unless you specify otherwise.)

MakeBack~otn.I (M)
The MakeBackground command lets you run a program as a background
process while you continue using the Workshop for other functions. The
background process should not display on the console or request keyboard
input.

Link (L)
The Link command executes the Linker, described in Chapter 7. The Linker
is used to prepare compiled or assembled programs for execution, or to link
together separately compiled pieces or a program.

TransterPrevam ro
The TransferProgram command starts the Transfer program, described in
Chapter 10. This program allows your Lisa to communicate with a remote
computer.

1.4.3 PI.tomatic Actic:n Taken by the Shell
Certain actions are automatically performed by the Workshop shelL These
include running a user exec file during startup and shutdown, mounting disks,
and establishing the logical console and default printer devices.

1.4.3.1 User' startup and Shutdown Procedures
During startup, the Workshop shell looks for a user exec file named
CISTART.TEXT and runs it if it exists. You can create your own CISTART
(Command Interpreter startup) file to modify the Workshop environment or
set up a user application. Arty commands that ere valid in a normal exec
file are valid in CIST ART. See Chapter 9 for more information on exec
files.

The following CIST ART file sets the Validate command so that file transfers
are not verified and file selections ere not confirmed with messages like
nAre you SURE you want to copy ... ?" (see Section 3.2, The System Manager
Command Line, for more information):

SEXEC
S(ys-M;J1V{alidateJN(~uit}

$ENJEXEC

You can also create an exec file named CIFINIStl TEXT that will be run
automatically when you leave the Workshop shell.

1.4.3.2 PI.tomatic Motding of Disks

1-15

(.J/orkshop l..lser's Guide Introduction

Devices must be mounted before you can read from them or write to them.
At startup time, the Workshop mounts any physically attached disk that has
been logically connected using the Preferences tool. (See Section 3.3.3,
Device Connections, for more information.)

1..4.33 Attomatic Setting ft' Pref'ixes
Prefixes tell the Workshop where to look for a file when you don't specify a
full pathname. The File Manager's Prefix command lets you specify three
levels of prefixes that remain in effect until you change them or until you
power off.

You can also set the prefixes so that they are automatically reestablished
during startup, by answering l" to the Prefix command's question

Initialize this Prefix Set. at boot. time? (Y ... N)

1..4.4 The Main Screen and the Alternate Screen
The Lisa can show you two different displays; they are known as the main
screen (-MAINCONSOLE) and the alternate screen (- AL TCONSOLE). By
convention, the Workshop (except for the Debugger) displays output on the
main screen; that is, the logical console, -console, is normally set to the
main screen. The Debugger uses the alternate screen so that its messages
are not intermingled with program output. The Console command in the
System Manager lets you choose which screen is the logical console.

To switch to whichever screen is not currently Viewed, hold down the Option
key on the right side of the Lisa keyboard while you press the Enter key on
the numeric keypad.

Your program can direct output to the alternate screen by opening and
writing to a file named "-ALTCONSOLE-x", where x is any file name.

1..5 Workshop CorMriions and Standards
This section describes file name conventions and other standards used in the
Workshop. In· general, these features are not available in user programs
unless you specifically provide for them. (Refer to The StdUnit Unit in the
third binder of this set for more information on how to program these
features.)

l..5.1 File SVstem CorMriions
This section introduces file naming conventions end tells you how to respond
to prompts that ask for a file name. Most of the Workshop tools follow
these conventions.

A more complete description of the File System can be found in Chapter 2
and in the Operating S),·stem Reference "''!anUM for the Lisa

1..5.1..1 File Names
When the Workshop prompts you for a file, you must supply a valid
pathname; the following rules apply:

1-16

Workshop User's Guide Introduction

• A pathname has three perts:
Device, volume, or
catalog name

File name

Extension

Starts with "_"; defaults to Workshop
Prefix 1 if not supplied.

Composed of alphabetic and/or numeric
characters; spaces are permitted.

Composed of alphabetiC andlor numeric
characters; spaces are permitted. If present, it
is the final "." and any characters that follow.
The standard extensions are .TEXT, .08J, .I, and
.L1B.

• The length of the full pathname must not exceed 255 characters. The
length between dashes (-) or between a dash and the end of the
pathname must not exceed 32 ch81"acters.

• Leading and trailing blanks or tab characters will be discarded by the
Workshop.

• Uppercase and lowercase are usually preserved as you specify them and
are ignored in distinguishing between file names.

When entering a list of files, indicate that you are finished by pressing
[RETURN].

1..5_12 Defaults in File Name PrOl11U
Prompts may display default values, shown in square brackets ([]). If 8,

file name prompt contains no default value, enter [RETURN] or a backslash
(\) if you don't want to specify a file.
To accept a default extension, type the file name without an extension. For
example, when a prompt displays

[_text]

and you do not enter an extension, lI.text" will be added to the file name you
enter.
To prevent an extension from being added, enter the file name with a period
at the end. The Workshop won't add an extension to a device, volume, or
catalog name, so you don't have to follow these with a period.
To accept a default file name, respond with [RETURN]. If you do not want
the default file or any other file, enter a backslash (\).

Alternate defaults are indicated by a slash (I). For example,

[-console)(.text]

1-17

Workshop User's Guide Introduction

lets you default to either the console device or a text file. This option is
made available in c~es where you may want to display output on the screen
or save it in a file. Press [RETURN] if you want the Workshop to use the
console. Enter a file name if you want the Workshop to use a file. (If you
don't supply an extension, ".text .. is added.)

A separate default may be shown for each part of a pathname. For example,

[-parapcn] [-irtzinsic] [.lib]

shows a default value for the device,. file name, and extension. If you leave
out arty part of the pathname, the Workshop supplies the default value for
that part. Sometimes parts of a pathname are shown within the same set of
brackets if the parts cannot be accepted independently of one another; for
instance

[-paraport-intrinsic) [.lib]

1.52 Getting Help
If you need help or want to see a list of program options, respond to a file
name prompt by typing ?followed by [RETURN]. Help information appears
on your screen if it is available. (Not all programs provide help screens.)

L5.3 Getting out
You may want to stop what you're dOing--cancel a program that's running,
cancel a command prompt,. or temporarily stop a screen display. This
section tells you how.

1.5.3.1 canceling 8 Prt'qam
You can terminate the operation of most Workshop tools and utilities by
pressing the tI-period keJ·· combination.. Most Workshop tools check for
.-period even when running under exec files.

Unless a user program was written to recognize the _-period key
combination,. pressing those keys will not terminate the program. (The
function PAbortFlag tells a program whether or not _-period has been
pressed. For more information, see PASLlBCALL, Section 5.4.) If _-period
doesn't work,. you can do one of the following:

• Wait for the program to terminate.

• Press the NMI (nonm~kable interrupt) key, which forces the system into
the Debugger. The minus (-) key on the numeric keyboard is normally
set to be the NMI key. See Section 8.2.1.2, Terminatino an Infinite
Loop, for further instructions.

1.532 Canceling 8 Prompt

1-18

14orkshop l..Iser's Guide Introduction

The Clear key on the numeric keypad is an escape key. You can use it in
response to a file name prompt. For example, if you1re in the File Manager
and you type D for Delete by mistake, press the Clear key to return to the
File Manager command line. You donlt have to press [RETURN] after
pressing [CLEAR].

1..5.3.3 Halting a Saeen Oisp~
To stop the screen display while a program is running, press the j-S key
combination. The program temporarily halts. To restart the screen display,
just press j-S again. This feature works for all programs that do screen
output through the Pascal run-time system.

1.5.4 standard EnOl" t-1essages
Every error reported by the Operating System or the Workshop has a number
associated with it. If the file containing the text of the error message is
available at the time of the error, the full message is displayed; if the error
file is not available, only the error number is displayed.

The error files are:

OSEJrs.ERR Errors reported by the Operating System

PasEns.ERR Compile errors reported by the Pascal Compiler

WorkshopErrs.ERR Errors reported by the Ex ec Processor

F or a list of all error numbers and their associated message text, see
Appendix A.

1-19

Chapter 2
The File Manager

2_1 The File Manager __ 2-1

22 Using the File Manager __ 2-1

23 The File COf11I'Tl8IKts _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ __ _ _ _ _ _ __ _ _ _ __ _ _ _ __ __ _ _ _ __ _ _ __ _ _ __ 2-1

2.3.1 Backup .. 2-2
2.3.2 Copy ... _ 2-2
2.3.3 Delete , 2-2
2.3.4 List ... _ 2-2
2.3.5 PrefiX', .. _ 2-3
2.3.6 Rename ... 2-4
2.3.7 Transfer _. 2-4
2.3.8 Quit .. _._ 2-4
2.3.9 Equal ... _._ 2-4
2.3.10 FileAttribut.es .. 2-4
2.3.11 Initialize _. _ 2-5
2.3.12 Mount. .. _ ._._ 2-6
2.3.13 Names .. 2-6
2.3.14 Online _ _.... 2-6
2.3.15 Scavenge _._._ 2-7
2.3.16 Unmount _._ 2-6

2.4 The Workshop View rI the Files ______________________ . _______________ 2-8
2.4.1 OS Volumes on Disk _._ 2-6
2.4.2 File Specifiers _ _.............. 2-6
2.4.3 The ""larking Directory and the Prefix .. _ ... _ _ 2-10

2.5 Using Wild Card Characters __ 2-11

2_6 How Do I List Existing Files? ________________________ . ______________ 2-13

2_7 How Do I Copy 8 File? ________________________________ . ______________ 2-14

2_8 How Do I Delete a File? ______________________________ . ______________ 2-14

2_9 How Do I Oeste and Use 8 Volume? ________________ . ______________ 2-15

2_10 How Do I Change the Name rI a File or Volume? . ______________ 2-15

See 81so the Release .J.O Notes to/· this ch8.pter.

The File Manager

2.1 The File Manager
The File Manager is a subsystem of the Workshop. It provides file and device
manipulation facilities, and handles most of the tasks of transferring
information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directOries, rename or delete files,
find out what volumes are on line, initialize new disks or diskettes, print files,
and so on. See the t:perating System Reference ManlIal for the Lisa for more
information on the File System and supported devices.

2.2 Using the File Mal mger
To use the File Manager, press F in response to the Workshop command
prompt. The File Manager begins executing, and displays the File Manager
prompt line:

FlLE-+I3R: Back'4l, Copy, Delete, List, Prefix.r Rename, Transfer, Quit, ?

Pressing "7' displays the additional command line:

Equal, FlleAttr:lbutes, initialize, Mull Nemes, 01llne, scavenge, Umot.rlt

To redisplay the original command line, press (RETURNl

To execute any command, press the first character of that command name
while the FHe Manager command line is displayed. Most commands ask for
file names, or other input parameters. If there is a default value for a
parameter, it Is displayed in square brackets ([default] ~ To accept the
default, just press [RETURNl If you do not want the default, type in the
value you want

To manipulate files with the File Manager you need to address the file with a
file specifier. A file specifier can be an OS pathname (representing a file on
a disk or diskette), an OS volume name (for example, -MYDISK), the name of a
physical device (for example -RS232A), or the name of a logical device (for
example -printer). File specifiers can contain wildcards enabling them to
specify a collection of files. See Section 2.5 for more information on
wildcards. See Section 2.4 for more information on file specifiers.

2.3 1he File Manager CmmaI m
The FHe Manager commands are llsted in the File Manager prompt line. They
are: Backup, Copy, Delete, Ust, Prefix, Rename, Transfer, ~it, Equal,
FlleAttrlbutes, Initiallze, t1:lunt, Names, O1line, SCavenge, and U1moUnt

Each of these operations is described below. Information on wild card
characters can be found in Section 2.5.

2-1

WOd<sI1op User's Guide The File I'18nager

2.3.1 Backt4l (8)
The Backup command executes a simple backup util1ty, simUar to Copy. It
asks for source and destination file specifiers, which will most likely contain
wild cardS (see section 2.5~ It then compares the source fUes to the
destination files. Whenever the contents of the two files are not equal, the
source file is copied. If a source fUe is missing from the destination, It is
copIed. Thus It copIes only diFferent files from the source to the destination.

t«rTE

The destination file is temporarily named WorkshOp. temp, and the
source file is automatically copied. If the copy is successful, the
destination file is renamed with its original name, and the fUes are
compared. If the files are different, the first fUe is deleted. ordering
the process this way prevents deletion of the destination fUe before
verification that the source fUe is good.

Because the fUe name WOrkshop.temp is internally involved in the
Backup command, do not assign that name to your files.

2.3.2 COpy (C)
The Copy command copies files. It asks for a source file specifier and a
destination fUe specifier. You can use wild cards if you want to copy more
than one file. The source file(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. If you change the
default, the source file is compared to the destination file after the copy
operation to ensure that they are the same. The Validate conmand is
described in Chapter 3.

Text files are handled specially When copied to the -printer or -console
logical devices. Leading blanks in a line of text might have been replaced by
a (DLE,count) pair to save disk space. As such patterns are detected, they are
replaced by (count) blanks in the copy of the file sent to the prInter or
console. All other files are sent byte by byte unchanged.

2.33 Delete (0)
The Delete command is used to delete a file or a number of files specified by
a wild card expression. It asks you to specify the files to be deleted.

2.3.4 List (L)
The List command liSts information about the files matching the given file
specification. If all you need is the names of the fUes, use the Names
command described In section 2.3.13.

2-2

Worksl1Op User's Guide T!Ie File /VI8n8ger

• If the fUe specifier is a fUe name (for example -MYOISK-example.text)
information from only that file is listed.

• If the fUe specifier is a volume name (for example -MYDISK), information
about all files on the volume is listed.

• If the file specifier includes a wUdcard character (for example,
-MYDISK--.text) information about all matching files is listed.

The list command displays the following information:

Fllerane The name of the f11e.
Size The logical file length in bytes.
Ps12e The physical fUe length in blocks (512 bytes~
Last-MxHJate Date and time the fUe was last changed.
creatlon-Date Date and time the fHe was created.
Attr FUe attributes, a combination of the following:

C File was closed by the ~ratIng System.
L FUe is locked. It cannot be deleted until the file

safety switch is turned off. (See FHeAttribUtes
command later in this sectlon.)

o File was left open when the system crashed.
P File is protected.
S File has been scavenged.

AA example of the list display Is shown in Figure 2-1.

Contents of volume -paraport-=
FiltnilTle Sin Psize last-Mod-Dah Creation-Date AUI'

---- ----- ------------- -------------
SYSTEM. DEBUG2 14848 29 03103183-15 :46 06110/82-21 :57
SYSTEM. 1 UD I RECTORY 7168 14 07/18/83-09 :31 02123183-10 :33
SYSTEM.lLD 9216 18 06/02182-00: 24 02123183-10 :24
SYSTEM. LOG 2992 6 07/18183-16:56 06/08/83-17:49 0
SYSTEM.OS 188928 369 05l04l83-tO :08 05/04/83-10 :08 CO
SYSTEM. SHELL 8704 17 06/02182-00: 26 03129/83-15:14 CO
XEJECTEM.OBJ 512 1 06/02182-00: 27 03/29/83-15:22

FI~ 2-1
"The List Display

2.35 Prefix (P)
The Prefix command enables you to set up default volume names to search
when you specify a file name withoUt a volume name. You can set up to three
volume names that will be searched in order, when you try to run a program,
until the file is found. The first prefix Is the name of the working directory.

2-3

WO.d<sI1op User's Guide The File Manager

It will be searched anytime you specify a fHe name wIthOUt a volt.me name.
The second and third prefixes are searched when you try to Run a program
wIthout specifyIng the volume It Is on.

I\IlTE

The second and third prefixes affect the ruming of programs directly
from the WorkshOp Shell. They are not searChed for programmatic fUe
operations, such as opening files, or for other File Manager operations.

The last option of the Prefix command asks if you want to initiaUze the
Prefix set at boot time. Mswer Y if you want What you have entered to be
establ1shed as defaults When you boot.

thIs command asks you for the three prefixes. If you want to accept the
default, if any, press [RETURNl If you want to set a prefIx, type In the
volume name that you want. If you want to have no prefIx, press [CLEAR] as
the prefIx for that level.

2.3.6 Rersne (R)
The Rename command enables you to change the name of a file. It asks for
the file name to change and the name to change it to. You can also use the
Rename command to change the name of a volume. The Rename command
can change the name of a number of fUes specified by wUd cards. See
Sections 2.5 and 2.10 for more information on using wUd cards and renaming
files.

2.3.7 TI8'lSfer (T)
The Transfer command asks for an Input file speci fler and a destination fHe
specifier. It copies the input flle(s) to the destination and then, if the copy
was successful, deletes the Input flle(S~ However, if you Transfer to the
-console or the -printer, the Input flle(s) wIll not be deleted.

2.3.8 QJlt (Q)
The Quit command exits from the File Manager subsystem back to the
Workshop command line.

2.3.9 E(JJ8l (E)
The Equal command compares the contents of two fUes to determine if they
are exactly the same. It asks for the names of the fUes to compare, then
compares them byte by byte and tells you if they are equal or unequal.

2.3.10 FileAttrtbutes (F)
This command is used to set and clear fUe attributes. You can set the safety
attribute, which prevents you from accidentally deleting a fUe. You can also
make a fUe into a protected master (see below~
To use the FileAttributes command press F in response to the File Manager
command prompt. It displays the command une:
FlleAttribJtes: ClearAttrtbutes, safety, Protect, QuIt.

2-4

WOrkShop USer's GIIlde TIle FIle Manager

These cornrTlCfldS are accessed by pressIng the fIrst Character of the corrmcni
They perform the following flflCtions:
ClearAttrbltes (C)
The ClearAttribUtes command clears the C, 0, and S attribUtes on the
specified voltrne, fUe, or set of files with wildcards. These attribUtes are set
by the system, and have the following meanings:

C File was closed by the ~rating System.
o FUe was left open When the system crashed.
8 FUe has been scavenged.

see the SCavenge command in section 2.3.15 for more information.

safety (8)
The Safety command allows you to set or remove the safety attribute (L) on
any fUe. When the safety attribute Is set, the fUe is called "LOCked"' and
cannot be deleted. To delete a fUe with safety on, use tre Safety comma"ld
to remove the attrlbUte, then delete the file.

Protect (P)
The Protect command is used to make an executable object fUe into a
protected master. This is a form of copy protection for programs. 01ce a
fUe is made into a protected master, this protection cannot be remoVed. A
protected master has the following characteristics:

• It can be run on any Usa machine

• It can be copied on any Usa machine.

• COpIes made wIll run only on the LIsa that made the Hrst copy of the
fUe.

O'lce a fUe Is made Into a protected master, there Is no way to
unprotect it Be sure you understand the Characteristics of a protected
master before you create one.
This protection scheme is for executable object flIes... Note that
protecting a fUe dOes not prevent you from deleting it.

QJ1t (Q)
The Quit command exits from the FlleAttribUtes sUbsystem to the Flle
Manager.

2.3.11 InlUa11ze (I)
The Initialize command is used to format and initialize the File System on a
diskette or Profile. It asks you for the device name to initialize, the number
of blocks to initialize, and the volume name. If you want the entire device to
be initialized, press (RETURN] for the ntJITt)er of blocks (accepting the

2-5

Workshop User's Guide The File Manager

default~ If the device is a diskette, It is formatted (ProFIles are factory
formatted~ Boot tracks are automatically written to any device that is
initialized. M initialized device is automatically mounted.
The Initialize command warns you if you attempt to initialize a diSk that
already contains a volume, beCause the contents will be erased. A volume is
inltlal1zed to allow a certain maximum number of fUes. You can make this
number larger or smaller (if you know you wUl have a large number of small
flIes, foraxample) When initializing it.

2.3.12 Moult (M)
The Mount command Is used to make an OS devIce accessible. It requests a
deVice name. It shoUld be used Whenever you connect a new device, such as a
ProFlle. The unmount command, descrIbed In section 2.3.16, Is used to
remove a device. All configured devices are mounted at boot time. The
configuration can be Changed wI tJl the Preferences tool, whIch Is described In
section 3.3.

2.3.13 Nemes (N)
The Names command is a faster version of the List command. It gives you a
Ust of fUe names only. It asks for a fUe specifier, and displays the names of
all files matChing the given fUe specifier.

2.3.14 ()lline (0)
The O111ne command prOdUceS a l1st of all the devIces that are currenUy
mounted and avallable, with the following informatlal:

DevlceNcme The name of the device.
VoluneName The name of the voll.lTle.
VOlSize The runber of blocks on the voltme.
FreeBlks The number of blocks st1l1 avallable.
FUes The rumer of fUes stored on the volume.
qa, The runber of fUes open on the volume.
Attr The attribUtes of the voll.llle:

B The Boot volune.
P The Prefix volt.me (Prefix 1~
M Volume Is currently mounted.

The O111ne display is ShOWn in Figure 2-2.

2-6

WOrkShOp user's GuIde 71Ie File Msnager

fILE-MGR: Backup, COpy, Delete, List, Prefix, Rename, Transfer, Quit, ?I

Vo 1 U1IIeS on Ii nl
Devic:eNne Volu1IIIN VolSize freeBlks riles Open Attr
---------- ---------- --------
PARAPORT fred's Workshop 9699 754 178 16 MBP
SLOT2CHAN2 9 9 9 9 M
RS232A 9 9 9 9 H
RS232B 9 9 9 9 M
MAINCONSOLE 9 9 9 1 M
ALTCONSOLE e e e e M

fl~2-2
1he Olline Display

2.3.15 scavenge (8)
The scavenge command nIlS the OS SCavenger, WhiCh restores cJamaged flles.
Flles can be cJamaged any tlme the Qleratlng system terminates abnOrmally.
The scavenger searChes through a disk and restores Its dIrectories, flIes, and
allocation tables to a consistent state.
To scavenge a dIsk, use the scavenge command and specIfy the device ncme.
After the scavenge Is complete, use the MolIlt command to mount It again,
and continue using It The bOOt voltme cannot be unmotJ'lted; therefore it
cannot be scavenged. If the ProFlle is normally your boot voltme and you
need to scavenge it, it Is necessary to bOOt from a diskette or another ProFUe
and IU'l the scavenger from It
If a fUe is changed in any way by the scavenger, the fUe attributes are set to
S, for scavenged. This attrIbUte Is displayed by the LIst command. The
changes macJe to the fUe might or might not affect the data in the fUe,
depending on What state the fUe was In When It was scavenged. Examine any
fUe that has the scavenged attribute before relying on its contents. After the
file has been Checked, you can remove the scavenged attribUte with the
FileAttrlbute command.

2-7

TIle File Manager

A disk's FHe System can get into CI1inconsistent state if the QJerating
System terminates abnOrmally, because the directories and allocation
tables are kept in memory and only written out to diSk periodically. If
there is an abnormal termination, such as a power failure, the changes
to the state of the File System since these tables were written to disk
might be lost Information can also be lost if you disconnect a ProFHe
from the Lisa without first t.nTlOUt1ting it If the diSk Is used after
such an event, more data can be lost If the system allocates the same
blocks to more than one file.

The scavenger always returns the dIsk to a consIstent state, but It Is
poSSible to lose data When the system crashes. ThIs damage can
beCome even worse If the dIsk Is used whlle In an InconsIstent state.

All scavenged flIes shOUld be checked before you depend on their
contents.

2.3.16 lhnOU'lt (U)
This command makes a device inaccessible (takes it off Une~ It aSks for a
device name. For diSkettes, use a volume name to unmount, or a device name
to unmount and eject, the diSkette. Always unmount a deVice before
disconnecting it from a running machine.

2.4 TIle WOIkstqJ View of Flies
Workshop users are provided with a view of files and devices that is actually
a composite of what is provided by the Lisa QJerating System, the Pascal
run-time system, and the File Manager itself. Each contributes a specifiC set
of facilities:

• The LIsa Q:>eratlng system provIdeS support for a varIety of Input and output
devIces, inCluding bOth blOCk-sllwtu.red deIIlces (diskS and diskettes) and
setpJI1t1aJ tkJfIices (RS232 ports, consOles~

• The Pascal run-time system provIdes support for several logical-devices
(console, printer, keyboard) which are not provIded by the OS.

• The FHe Manager provIdes wUd-card facilitIes whIch enable many File
Manager commands to be appUed to a whole set of files, rather than just
me at a time.

2..4.1 OS VOlunes on Oh1<
Every block-structured device is organized as a Single volt.me with a flat
directory structure. Volumes can be Initially created on a disk by using the
FHe Manager's Initialize corrmand. The Initialize cornrna1d:

1. Formats the diSk (If necessary~

2. Records Its assigned volume name of up to 32 characters.

2-8

WOJ1<s!1op User's Guide The File Manager

3. Creates its Initial, empty dIrectory (also called a cat81og~

4. Mounts the InltlaUzed disK.

When an object is created on a disk, its fUe name of up to 32 characters is
entered In the diSk's directory. FUe names must be unique within a volume so
that every Object can be clearly identified.

2.112 File SpecIfiers
Within the Workshop, file speCifiers are used to identify the volume, device,
fUe, or set of files an operation applies to. The diagrams that follow show
the makeup of a fUe specifier and its components.

flle-speclfler
f1le-ncme

voll.lTle-f&Tle wild-card-spec

physlcal-devlce

logical-devlce

physlcal-deVlce
LPPER

LOWER

PARAP£RT

SLOTrtCI-IAf\n

RS232A

RS232B

1~~re8 CCNSa..E

8 PRINTER

KEYBOARD

2-9

WOrkshop User's Guide The File Manager

I StrlrYJ-l I---e-t

A physical deVice name refers to a specific hardWare device or port, Whether
or not there is actually anything comected or mounted there. When a device
is block-structured and mounted, its physical device name can be used in a
file specifier instead of the disk or diskette's volume name. Since sequential
devices are not mass storage devices, they never have volume names. The
only way to specify them is to use their physical device names followed by
dummy flle names; for example, tI-RS232A-X". Logical devices are also not
mass storage devices and do not have volume names. They can be referred to
by their logical device names only.

2.4..3 1lle WOI1dBJ Directory em the PrefIx
sometimes, specifying the same volume name or physical device name again
and again is inconvenient. With the Flle Manager's Prefix command you can
establish a particular volume as the OS's working directory. otherwise, the
default working directory Is the volume the system was booted from. If a fHe
specifier omits the volume or physical device name, the file or set of files is
assumed to be in the working directory. For example, if the WOrking directory
is -MYDISK, the file specifier PROORAI'11.CBJ refers to the same file as
-MYDISK-PROORAM1.CBJ.

-LPPER The upper dIskette; drive 1.
-LOWER The lower diSkette; drive 2.
-PARAPlRT ProF!le attached to the parallel comector.
-SLOT~ Profile attached to the Parallel Interface card in slot m,

channel n (where m Is a slot between 1-3, and n is
channel 1 or 2~

2-10

WOd<SI1cp User's GlIlde 7lJe File /'1an8ger

To avoid confusion within the system, dO not assign a device name to a
vOlt.rne.

There are also two serial deVIces, -RS232A and -RS232B. These provIde
access to external RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

-aJ'-.IS(LE

-PRINTER

USed for output to the screen and input from the keybOard.
The actual device that Is used as the console can be
changed by the COnsole command in the System Manager.
see Section 3.2 for information on the console command.
used to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tOOl,
described In section 3.3.3. If you have more than one
printer, the one that will be used is specified by the
DefaultPrinter command described in section 3.2.

-KEYBOARD Used as a nonechOing input device from the keyboard. This
Is the keyboard on the console device.

certain types of fUes in the system have standard file extensions. These
extensions make it easier to keep track of the different types of fUes. These
fUe extensions are:

.TEXT This indicates a text file in the format created by the Editor .

• OOJ This indicates an object code file. Cbject files are created by
the code Generater, the Assembler, and the Linker. Cbject files
created by the Linker are executable .

.I This indicates an intermedIate (I-code) fUe prodUced by the
Pascal Compiler. The Generate command converts an
Intermediate fUe into an object code fUe .

. LIB This indicates a library directory.

25 USing Wild card Charooters
Wild card characters allow you to specify a set of fUes to operate on. The
command is perfOrmed on all fUes whose pathname matches the set specified.
Wlld card characters are ".", "7°, and ""0. O'lly one wlld card character can
appear in a flIe specifier. These characters are used as follows:

str1ngl-strlng2

The " ... character stands for any sequence of zero or more characters that
can be ignored in the search. The surrounding. strings (string1 and string2)
must be matched exactly, Ignoring case. Either or both strIngs can be null.

2-11

Wo.r!<s!7op User's Guide The File Manager

Here are some examples of usIng the "." wlld card character as a source fHe
name:

ds-.text
.... OOj

All fUes beginning with ds and ending in . text.
All fUes ending with .OOj .
All fUes.

When "-" Is used In a deStinatlon fUe name, It Is replaced wIth the characters
that were matched by a wild card In the source fUe. This enables you to do
operations llke change the name of a llst of fHes as they are copIed. Here
are examples of usIng "." as a destination file name:

dS-.text to bu/ds-.text Change all fUes starting wIth ds and ending
wi th .text so they begin with but.

qd.- to quickdraw.- Change all fUes startIng with qd to begin wIth
quickdraw.

st.rlt'YJl ?strlng2

The ,or character is the same as the ".", except that the system asks you to
confIrm each fUe name before performIng the operation. The It?" wlld card
can be used only in a source string.

When you use a "?" in a source specifier, you are presented with a Ust of fUes
that match it. You can move backwards and forwards through the list by
using the up and down arrows on the numeric keypad. Press Y beside every
fUe that you want to be processed. When you have selected all the files you
want, press [RETURN]. The operation wUI then be performed on the fUes you
selected after confirmation.

When using the List command, you cannot use the .. ?" wildcard in response to
the prompt for a volume name.
st.rlrYJ1$st.rlrYJ2
The , ... ' character can stand for part of a destination file name only. It is
replaced by the entire source file name. For example, If you have the source
fUes matching ds-.text:

dsfmgr.text
dssmgr. text

If the destination expression is bk$, the output files will be:

bkdsfmgr. text
bkdssmgr.text

COntrast this with the output expression bk-.text, Which results in:

bkfmgr.text
bksmgr. text

2-12

WOrkshop User's Guide TI7e File Manager

Hint: You can adopt conventions for naming files that pretend there is a
hierarchical file system: for example,

SOurcelF1.text
SourcelF2.text
SOUrcelXYZ.text

2.6 J-tJw 00 I List Existing Files?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command, but
it gives you only the file names.

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the Workshop command prompt

2. Execute the List command by pressing L, or the Names command by
pressing N.

3. If you want to list an entire VOlume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed. (The "?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default volume, press [RETURNl

The listing produced by the List command is explained in Section 2.3.4.

You can send a copy of the directory to a file by following the specification
with a comma and then the name of the file to send the directory to. For
example,

-paraport -bKl= ,foo. text

sends the directory to foo.texL

For more information on wild card characters, see Section 2.5 in this chapter.

2.7 I-bw Do I CqJy a File?
You can Copy a file and leave the original file intact, or you can Transfer a
file, which copies the file, then deletes the original file. To copy a file:

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the Workshop command prompt

2. Press C to start the Copy command. (Press T, for Transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press [RETURNl

4. Enter the pathname you want the file to be copied to. Press [RETURNl

The fUe is copied or transferred as you specified.

2-13

WoIkshop User's Guide The File Manager

If you want to copy a number of files with similar names, or all the files on a
volume, you can use wild card characters. see Section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all
the copies of the selected files.

The following are examples of copy and transfer operations:

Copy from what existing f11e(s)? myprog
Copy to What new file? -backup-$

(This copies the file myprog on the working directory to the volume
-backup with the same name, myprog.)

Copy from what existing file(s)? ds=
Copy to what new file? -backup-$

(This copies all files beginning with "ds" on the working directory to
the volume backup with the same file name.)

Transfer from What existing file(s)? -osback-osg=
Transfer to what new file? -oswork-$

(This copies all files beginning with "osg" on the volume -osback to the
volume -oswork using the same file name. When the files have been
copied successfully, the original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (,) in response to
the request for the source file.

Transfer from what existing file(s)? -osback-osg=,-oswork-$

(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? ds=,-backup-backds=

(This caples all files begimlng with lids" In the working dIrectory to the
volume -backup wIth baCk Inserted as the beglmlng of each file name.)

The Backup command is another way to copy files. It is selective, in that
only different files will be copied. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for more information on the Backup
command.

2.8 How 00 I Delete a FDe?
To delete a file:

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the Workshop command prompt.

2. Invoke the Delete command by pressing O.

2-14

workshop user's GtIlde The File Manager

3. Enter the pathname of the file you want to delete.
4. The system asks you to confirm that you want to delete the file. Reply Y

to delete the flle or N to keep Il
If you went to delete more tna1 one file, you can use wild cards. see sectlon
2.5 for more Informatlon on using wlldcards.

2.9 t1Jw Do I create and Use a VOltme?
A vollma can be created on either a diSkette or a Profile diSk. Each diSk
can contain one volune. creatlng a volune on a disk gives the disk a ncme
and sets up a directory for files.
1. If you are not In the File Manager Subsystem, enter It by typing F in

response to the WorkshOp command prompt.
2. Press I to InVOke the Initialize corrmancJ. this command asks for:

a The device name (upper or lower for a diskette, slot2chan2 or paraport
for a ProFile, and so forth)

b. The number of pages to Initialize; the default Is to Initialize the whOle
deVice.

c. The volume name.
d. The maximum runber of flIes on the device; the default Is a good

value l.flless you are using a large I'lUrft)er of very small files or a few
very large files.

The volume is initialized, with an empty directory. (If the deVIce is a
diskette, It Is first formatted.) The system warns you If you are Initializing a
device that has an existing volume on it, and gives you a chance to change
your mind before destroying the exlstlng volume.
After initialization, the device Is automatically mounted so It can be used.

2.10 How 00 I Ctalge the NEme of a File or VOlt.me?
The Rename command allows you to Change the name Of any flIe or volume.
1. If you are not in the File Manager subsystem, enter it by typing F in

response to the WorkShop command prompt.
2. Execute the Rename command by pressing R

3. Enter the pathname of the file or volume you want to rename.
4. Enter the new name. (The same device name Is assumed for a flle.)
The name of the file or volume is Changed.
You can use the Rename command to change the name of a group of files by
using wild card expressions.

2-15

Chapter 3
The System Manager

3_1 The System Manager ________________________________ . _________________ 3-1

3..2 The system Manager Conmand Line _____________ . _________________ 3-1

33 The Preferences Tool _______________________________ . _________________ 3-3
3.3.1 Set Conveniences.. 3-4

3.3.1.1 Screen Bright.ness and Contrast. _. 3-4
3.3.1.2 Screen Dim ... 3-4
3.3.1.3 Speaker Volume 3-4
3.3.1.4 Repeating Keys 3-5
3.3.1.5 Mouse Double-Click Del8.\J......................... 3-5

3.3.2 Select Defaults .. 3-5
3.3.3 Peripheral Device Connections 3-6

3.3.3.1 Linking to Expansion Cards 3-9
3.3.3.2 Linking to Printers 3-9
3.3.3.3 Linking to External Hard Disks 3-11
3.3.3.4 Linking to Other Devices 3-12

3_4 Process Management ____ . ___________________________ . ________________ 3-12

The System Manager

3_1 The system Manager
The System Manager allows you to set system defaults and specify the
system configuration. Using it, you can:

• Set the Lisa system characteristics such as screen contrast .. speaker
volume, and time lags for repeating keys.

• Inquire or set the hardware clock's time and date.

• Set the configuration of external devices such as disks and printers.

• Set the default startup device.

• Set which device is t.o be the console.

• Redirect output from the console to a file or external device.

• Monitor all currently existing processes .. and remove processes.

3..2 The System Manager Command Line
By pressing S in the main comand line,. you can enter the System Manager
subsystem.

The System Manager command line is:

SYSTEM-MGR: ManageProcess, OutputRedirect, Preter-ences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing? shows you the additional line of commands:

Console, FilesPrivate, Validate, DeraultPrinter

Each System Manager command is described below.

MaI.ageProcess (M)
This command puts you into a process management subsystem, which allows
you to display the status of all currently existing processes.. and to remove
processes. The process management subsystem is described in Section 3.4.

OutputRedirect (0)
This command allows you to send a copy of all output that is displayed on
the console to another device, such as the -IWRer .. or to a file on a disk.
The command asks you for the pathname to send the copy to. In order to
return to displaying only on the console, use the command again and redirect
the output to the -console device (which is the default).

3-1

{4orkshop l.,lS'er's Guide

NOTE
Console output frequently contains control characters and escape
sequences for such things as positioning the cursor and clearing the
screen; these special characters will be part of the redirected output as
welL If the output has been redirected to a printer, the control
characters may cause "special effects" such as overprinting. If the
output has been redirected to a text file, the characters will be
embedded within the text file (the Editor will show such characters as
inve.rted question marks).

Prefel'enee& (P)
This command starts the Preferences tool which allows you to set up the
configuration of the Lisa system and the Workshop. The Preferences tool is
described in Section 3.3.

Time (1)
This command allows you to set the hardware clock/calendar's date and time.
See the Lisa Owners Guide for more information on the system clock and
calendar. The date and time values are used for the creation and
modification dates on your files, so they should be kept correct.

Quit (Q)
This command ex its from the System Manager and returns to the main
Workshop comm,and line.

Console (el
This command allows you to change where the Workshop console is displayed.
It may be displayed on the main screen, which is the default, on the
alternate screen, where the Debugger displays, or on an external terminal
connected to the RS232 A or RS232B connector. When the main or alternate
screen is used for the console, output can be stopped and restarted by
pressing .t-S. If an external terminal is used with XOn/ XOff processing
enabled, then .t-S stops output and .t-Q restarts it.

The console can be moved to the alternate screen when you run 8 graphics
program, to prevent output from writelns from appearing on the graphics
screen (the main screen). To display the screen not currently displayed, hold
down the right-hand OPTION key, and press ENTER on the numeric keypad~
When the console is. moved to the alternate screen, both the console output
(writelns) and the Debugger output will be mixed together on the same
screen.

filesPrivate (F)
This command enables or disables the wild-card selection of private system
files. The Lisa Office System uses file names beginning with the (character
for its tools and documents, and the Workshop user should rarely be
concerned with such files. These files are called "private". When selection

3-2

Workshop Lw's Guide The System f.18J?sger

of private files is disabled (the default), the Workshop File Manager's wild
cerd mechanism will ex clude them from its selections unless the rile
specifier explicitly includes the leading (.

There are just a few private files which are used by the Workshop (for
example, (Tll}BUTTONS). You must enable the selection of private files if
you want a single rile specifier to refer to the entire set of Workshop system
files.
Validate (V)
This command is used to set up how much verifying you want the Workshop
to do for you. There are two values you can set with this command. The
first is whether or not to verify file copies. The system verifies a copy by
comparing the original file with the copy to be sure they are the same. The
default is to never verify. You should have no reason to verify unless you
suspect something is wrong with your disk. The second value you can set is
whether or not your selections for File Manager commands are verified.
Selections are verified by listing the file names and asking you to confirm
the operation before it is performed.

DefaultPrinter (0)
This command is used when you have more than one printer connected to
your Lisa It tells the system which one will be the -Jll"inter logical device.
It first gives you a list of all the physical devices that have been configured
by the Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as -,rinter.

3.3 The Preferences Tool
The Preferences tool lets you specify what disks, printers, and other devices
are connected to your Lisa, which should be the defaults, and how you want
the special convenience settings adjusted. When you start Preferences (by
pressing P in response to the System Manager command line), it displays a
window with five checkboxes:

Set Conveniences is used to customize the Lisa's screen brightness, key
delays, etc. See Section 3.3.1, Set Conveniences.
Select Defaults is used to specify your default printer and startup disk, and
the length of the automatic memory test. See Section 3.3.2, Select
Defaults.

Connect Device Softw8I"e is used to connect your Lisa to peripheral
devices. See Section 3.3.3, Peripheral Device Connections.
Install Device Software is used to install a device software driver. This is
used in cases where your lisa does not already have the software it needs
for a particular peripheral device you wish to use. See Section 3.3.3,
Peripheral Device Connections.

3-3

l¥ork$hop User's Guide The System fo.18178gfff

Remove Device Software is used· to erase a software driver from your startup
disk when you no longer want to use the peripheral device. See Section
3.3.3 .. Peripheral Device Connections.

After you have finished with Preferences, you can get back to the System
Manager by choosing Quit from the File menu.

3.3_1 Set Conveniences
When you first. check the Set Conveniences box of Preferences, each
convenience setting already has one option marked. These prechosen options
are known as default settings. Whenever you click the first item in the list,
Set All Convenience Settings to Lisa Defaults, the default settings are
chosen.

3.3.1.1 Screen Brightness and Contrast
Always adjust the screen brightness before setting the contrast. The
brightness is adjusted through the brightness control knob while contrast is
set through Preferences.

To set the screen brightness and contrast:

1. Find the brightness control knob (the higher of the two white knobs
extending from the back of the cabinet).

2. Turn the brightness control down unt.il your screen is entirely black.

3_ Turn the knob back up just until the black rectangle turns to gray.

4. Slowly turn the knob back down, just until the rectangle is distinctly
black .. with no video scan lines visible, and there is a clean line on all
borders.

5. Set the Normal Level (Contrast) by clicking different boxes under
Normal Level until the screen is at a comfortable contrast level for
you.

3.3.1.2 Screen Dim
In order to protect the screen from prolonged high-intensity illumination, the
screen dims when not in use. If a period of time passes without the mouse
being moved or any keys struck on the keyboard, the screen automatically
dims to a lower level of illumination. As soon as the mouse is moved or a
key struck it returns to the normal brightness. You can set the amount of
time that passes before dimming with Minutes Until Screen Dims .. and you
can adjust the level it dims down to with Dim Level.

3.3.1.3 Speaker Voltme
From time to time, the Lisa communicates by sounding various beeps and
tones. The meanings of these signals are explained in the Lisa Owner's
Guide. The Speaker Volume setting controls the loudness of these beeps and
tones.

3-4

Workshop User's Guide

Each time you click one of the boxes under Speaker Volume, the Lisa sounds
two tones, at the low and high extremes of the level you have chosen.
Experiment with different settings until you find one you like. ·

3.3.1.4 Repeating Keys
Most of the Lisa keys repeat automatically when held down. The line of
sters that appear when you click one of the Delay boxes demonstrates how
long you have to hold a key down before it starts repeating. The line of
sters that appear when you click one of the Rate boxes demonstrates how
f~t the cheracters will be repeated.

The correct settings depend on your typing speed and the way you use the
Lisa. If you find that the Lisa often generates multiple letters when you
intended to type only one, change the repeat delay to a setting nearer the
long end of the scale. If you use the repeating keys often, you probably
want to specify a short delay and a fast repeat speed.

3.3.1.5 Mouse Double-Click DeI~
Some of the desktop functions are accomplished by double-clicking the
mouse button (rapidly clicking the button twice). The Mouse Double Click
Delay setting determines the time lag between releas~ of the first click and
the start of the second click that the Lisa interprets as one double- click.

Like the keyboard repeat delays, this setting should reflect your habits and
work style. If the Lisa often treats your double clicks ~ two single clicks"
try adjusting the delay to a longer setting. If the Lisa often interprets two
single clicks as one double-click" try adjusting the delay to a shorter setting.

3.3.2 Select Defaults
When you check Select Defaults, Preferences lists all the printers and disks
currently connected to the Lisa" and the length of the memory test it
performs at startup time" indicating the current defaults.

To select your defaults:

1. Default Printer:: If you have connected any printers to your Lisa with
Connect Device Software (see Section 3.3.3, Peripheral Device
Connections), the printer(s) you specified will be listed under Use This
Printer as Default. Check the printer you normally wish to use. If
you have connected more than one printer, the default printer will be
the one identified as the logical device -prirUr, and used by the
Editor. If you wish to use some other printer for a particular
document, you can specify the physical device name of the printer
(such as -RS232A-p or -ilOll-p). (You can also change your default
printer with Preferences at any time.) Note that if you have the
Office System on the same disk as the Workshop, the printer you
specify will be the default print.er in the Office System, too.

3-5

Workshop '-iser's Guide The S).<Siem f.1anager

2. Default startup Disk: When the Lisa is turned on, it looks to the
startup disk for its initial instructions. Under StBJ't Up From, check
the disk you wish to use as a stBJ'tup disk. For the Workshop this will
be a hBJ'd disk. The stBJ'tup disk should be the disk containing all of
your Workshop software.

Note: If you wish a new disk to be the startup disk, you will need to
install the Workshop on the new disk. Once you have finished setting
your defaults and device connections, you will also have to turn off
the Lisa before the new disk becomes the startup disk.

3. Default MeI'1'lmy Test: Under Test Memory, check either Briefly or
Thoroughly. The memory test setting determines how thoroughly the
Lisa's memory is tested during the automatic startup test. If you
check Briefly .. the test takes about 20 seconds. If you check
Thoroughly, the test takes about 40 seconds.

333 Peripheral Device Connections
A peripheral device can be an external hard disk, a printer, a graphics
plotter, or any other mechanism connected to your Lisa In order to use a
peripheral device, your Workshop software must know where the device is
connected, how to communicate with it, and how to operate it. In software
terminology, the set of codes and instructions that tell your computer how to
operate a device is called a dri er. Your Workshop already includes software
drivers for some of the most common devices, and if you wish to connect
some other mechanism, you can install the proper software driver from the
micro diskette supplied with that particular device.

To establish the necessary software connection between your Lisa and a
peripheral device, the proper software driver must be linked to the hardware
connection that the device is attached to. This is accomplished through use
of the Preferences tool.

To connect device S'oftwsrs:

1. Enter Preferences and click the Connect Device Software box. You
will see a screen that lists all the possible connectors (or ports) at the
back of your Lisa, and what, if anything.. is attached to them.

If you are using a Lisa 2/5, your screen will display an additional box
labelled ParalleL

2. To link a peripheral device to your Workshop, click the box of the
connector to which the device is physically attached. The screen will
then display a listing of what devices your Lisa currently has software
to link to from that connector.

3. If the peripheral device you wish to use is now listed, simply click the
box next to its name. The device name will then appear opposite the
appropriate connector and you are finished with the linking process.
The device can be used immediately.

3-6

Workshop User's Guide The System ft.1snBgeT

If the device you wish to use is not listed after you click the
connector box in step 2, it means that the connector you have clicked
cannot be used with that peripheral or your Lisa lacks the software
driver needed to link up with the device. If lack of software is the
problem, first install the necessary driver as described below under
Install/Remove Device Software, and then repeat these steps 1
through 3.

Expansion C.-ds
When you attach an expansion card to one of your three expansion slots (see
your Lisa Owners Guide, Attaching an Expansion Card), the card itself will
contain one or more connectors which you can use to attach peripheral
devices. Because more than one connector may be part of an expanion card,
an addltional level of Preferences becomes necessary to link a device to the
Workshop through an expansion card.

To connect an exp8l7Sion c8Td:

L Enter Preferences and click connect Device Software.

2. When you click one of the Expansion Slot boxes, the screen will
display a listing of the cards that your Lisa can currently link to. (If
the card you wish to use is not listed, it means that your Lisa lacks
the driver needed to link up with that card, and you will need to first
install the necessary software as described below under Install/Remove
Device Software and then return to step 1.)

3. Click the box of the card. you wish to use, and a list of the
connectors on that card will be displayed (Connector 1, Connector 2,
etc.). Connectors on cards are numbered from the bottom up, thus,
the bottom connector is always number 1-

4. Click the box of the connector that you are going to use, and a list of
the devices that the Lisa can link to for that type of connector will
be displayed. (If the device you wish to use is not listed, it means
that your Lisa lacks the software needed to link up with that device,
and you will need to first install the necessary driver as described
below under Install/Remove Device Softwere and then return to step
1.)

Note: In some cases there are different types of connectors on a
single expansion card, or a certain connector can only accept a
specific device. If a particular connector cannot accept a certain
device, the device will not be listed when you click that connector's
box even if you have installed the appropriate software driver on your
Lisa.

,. Click the box of the device you wish to use, and it will be named
OPPOSite the connector number. This indicates that you are finished
with the linking process. The device can be used immediately.

3-7

~J"orkshop l.lser's Guide The System "'''anager

Disconnecting m- Changing Device Software
If you wish to attach a different device to a connector .. simply repeat the
procedure described above and click the name of the new device. If you
wish to disconnect a device simply click Nothing in the list of devices.

NOTE

Deterred Detadment: If you click Nothing or some new device driver
for a connector that is linked to a disk storage device (such as a
ProFile) .. or a connector linked to a peripheral that is currently in
operation (a printer that is in the midst of printing a document .. for
example) .. you will get a message telling you that the device cannot be
disconnected and asking if you wish to Defer Detachment. If you
answer Yes, the new driver (or Nothing) will not go into effect until the
Workshop is restarted (either by turning the Lisa off and then back on
or by going to the Environments window and clicking Restart) and you
will be unable to use that connector for anything else until then.

lnstaillRemove Device Soft e
If Preferences does not list the device you wish to use, you have to install
the device software driver. This is done with the Install Device Software
choice in Preferences and the micro diskette you received with the device.

To inst811 device softwl!Ire:

L Click the Preferences choice Install Device Software.

2. Insert the micro diskette in the disk drive. A list of the drivers
contained on the disk will be displayed.

3. Click the box beside the name(s) of the device(s) you wish to install.
The software driver will be copied from the micro diskette and
installed on your Lisa.

Note: If you install from a micro diskette a driver that is already on
your Lisa (that is .. 8. driver that already shows up under Connect
Device Software), the version on the micro diskette will replace the
version that had been on the Lisa.

4. When you have installed the device driver(s) you wish, click Connect
Device Software to leave the Install Device Software menu. When you
are finished with Preferences, the micro diskette can be ejected in the
normal manner (j-E).

To remove det.·'ice software:

L Click Remove Device Soft were. A list of all the software drivers
currently installed on your Lisa will be displayed.

2. Click the de\lice drivers that you want to erase.

3-8

Workshop l.,1ssr's Guide

Note: You cannot erase a driver for a device that is in use. You
must cease using the device.. and in some cases disconnect it .. before
you can erase its driver.

3.3.3.1 Unking to Expansion cards
As with arry other device .. your software must be told about an expansion
card connected to one of your Lisa's expansion slots. For a discussion of
using Preferences to link peripheral devices to your tt'Jorkshop,. see Section
3.3.3, Peripheral Device Connections.

To hoOk up 8n expansion CBTd:

L With the power to your Lisa turned off .. insert the expansion card in
the appropriate slot at the rear of your Lisa as explained in Appendix
1 of your Lisa Owner's Guide and the documentation included with
the card.

2.. When the card has been properly attached, turn on your Lisa.

3. Enter Preferences.

4. Click the Connect Device Software box.

,. Click the box for the appropriate expansion slot number (Expansion
Slot 1, for example).

6. If the type of expansion card you are installing is listed .. click the
appropriate box and go to step 8.

7. If the expansion card you wish to install is not. listed .. take the micro
diskette that came with the expansion card and insert it in the micro
drive. Click in the Preferences box to reactivate the Preferences
window. Now click Install Device Software. The software driver(s) on
the disk will be displayed.

Click the box beside the name of the expansion card you wish to
instalL

8. If you are installing other expansion cards .. repeat steps 1 through 6 or
7. If you are ready to connect a peripheral device to the expansion
card .. follow the appropriate instructions in the sections below.

3.33.2 Linking to Prirters
For a discussion of using Preferences to link peripheral devices to your
Workshop,. see Section 3.3.3, Peripheral Device Connections.

3-9

{.t.lorkshop User~ Guide The Sy.stem f.1anager

To connect 8 printer:

1. Connect the printer to the appropriate connector at the back of your
Lisa .. as explained in the documentation that comes with the printer
and Lisa Owners~ Guide. If you intend to attach the printer to an
expansion card .. you will first have to attach the card and link it. to
the Workshop as explained in the instructions that came with the card
and section 3.3.3.1 above.

1. Enter Preferences.

3. Click the Connect Device Software box.
4. Click the box for the connector you are using for your printer.

s. If you are connecting the printer to one of the built-in serial ports~
click either Serial A or Serial B. (Serial A is the port next to the
mouse port.)

b. If you wish to connect your printer to an expansion card, click the
appropriate box. (If the expansion card is not named in t.he options
1ist~ you will have to install the card's software driver.)

When you select an expansion card .. the Lisa asks which of the two
or three connectors on the card you wish to use. Connect.ors on
cards are numbered from t.he bottom uP .. thus~ the bottom connector
is always number 1-

,. Once you have selected the connector you wish to use .. the Lisa
displays a list of devices that can be attached to that connector.
Click the appropriate printer (Apple Imagewriter or Apple Dais'yl,vheel ..
for example).

If the printer you wish to install is not listed, take the micro diskette
that came with the printer and insert it in the micro drive. Now click
the Inst.all Device Software box. A series of printer choices appears;
click the name of the printer you wish to use. The printer software
driver on the diskette will be aut.omatically installed .. and the name of
the printer listed under Connect Device Software for you to select.

Note: Expansion cards usually have two or three connectors. In some
cases these connectors are different, and each one can only accept
specific devices. If~ after inst.alling the software driver as explained
above, you do not see the peripheral you want listed in the menu, try
one of the other connectors on the expansion card.

6. If you are installing additional devices or expansion cards .. you can set
Preferences for them before proceeding to the next step.

7. Load the paper into the printer as explained in the documentation that
came with the printer.

3-10

HJorkshop User's Guide The System f-.1l1178ger

B. Turn on the printer and run the printer's self -test to make sure the
printer, independent of the Lisa, will run correctly. See the manual
that came with the printer for instructions on running the self -test.

33.33 Linking to External Hard Disks
In addition to the 5-megabyte ProFile or 10-megabyte internal hard disk you
are already using, you can attach other hard disks to your Lisa for additional
storage.

For a general discussion of using Preferences to link peripheral devices to
your Workshop,. see Section 3.3.3 .. Peripheral Device Connections.

To connect an e:rtern81 herd disk:

1. After installing an expansion card at the back of your Lisa, connect
the disk to the card's connector, as explained in the documentation
that comes with the disk and yow- Liss Owners's Guide.

2. Enter Preferences.

3. Click the Connect Device Software box.

4. Click the box for the expansion card you are using. If the expansion
card is not listed, you will have to install the card software driver as
explained above.

When you select an expansion card, you will be asked to click which
of the two or three connectors on the card you wish to use.
Connectors on cards are numbered from the bottom up, thus the
bottom connector is always number 1.

5. Once you have selected the connector you wish to use, you will see a
list of devices that can be attached to that connector. Click the
appropriate hard disk.

If the hard disk you wish to install is not listed, take the micro
diskette that came with the disk and insert it in the micro drive.
Now click the Install Device Software box and then click the name of
the hard disk you wish to use when it is displayed. The disk software
driver on the diskette will be automatically installed, and the name of
the hard disk listed under Connect Device Software for you to select.

Note: If the hard disk comes with an expansion card, you may also
have to install the driver for the card. Check the instructions that
accompany the hard disk for the names of the drivers needed to
operate the hard disk.

6. If you are installing additional devices or expansion cards, you can set
Preferences for them before proceeding to the next step.

If you wish the new disk to be the startup disk.. you will need to install the
Workshop on the new disk.

3-11

Workshop US'er's Guide The System fo."eneger

3.3.3.4 Linking to other Devices

Other devices mery be connected to your Lisa.. and selected with Preferences.
For a general discussion of using Preferences to link peripheral devices to
your Workshop,. see Section 3.3.3 .. Peripheral Device Connections.

It is recommended that only devices approved for use with the Lisa, and
supplied with Lisa software drivers, be purchased for connection to the Lisa.
However, if you wish to use a peripheral that does not have a Lisa software
driver, but is connected to the Lisa by means of a parallel or serial cable,
you may be able to operate it by selecting the software driver for Parallel
Cable or Serial Cable.

For example .. by connecting a device's serial cable to Connector B.. clicking
Serial B under Connect Device Software, and then Serial Cable, you may be
able to use the device. Depending on the particular peripheral device, this
may or may not be adequate.

In technical terms, to use the Serial Cable driver the device must use an
RS232C serial cable .. no more than 9600 baud .. and either asynchronous 8-bit
or 7-bit with parity-checking communications. In case of doubt .. consult your
dealer.

In technical terms the Parallel Cable driver is for devices using the standard
Centronics'" Parallel Interface Protocol.

3.4 Process Management
The process management subsystem is used to monitor and kill suspended
and background processes. It is started by pressing M (for ManageProcess) in
response to the System Manager command line. (See the Operating System
Reference r.18J1U81 for information on processes.)

The process manager displays the following command line:

ManageProcess: KillProcess, ProcessStabB, Quit

KillProcess (K)
The KillProcess command terminates a currently existing process, including a
background process.

ProcessStatus (P)
The Processstatus command gives you information about all currently
existing processes. It provides the following information:

P8thname. The name of the process's object file.
PrOCt!SS_1D The unique identifier assigned to the process.
state The current state of the process: Active, Suspended.. or

Waiting.
QuIt (Q)
The Quit command exits from the process management subsystem back to
the System Manager command line.

3-12

Olapter 4
The Editor

4_1 l1le Editor ___ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4-1

4..2 Using the Editor ___ 4-2

4.2.1 Editing Operations .. 4-2
4.2.2 The Menus ... , , 4-3
4.2.3 Creating and Using Stationery _ _ 4-3

4..3 Selectirlg Text _______ . ___ 4-.4

4.3.1 Moving the Insertion Point 4-4
4.3.2 Selecting Characters .. 4-4
4.3.3 Selecting Words and Lines 4-4
4.3.4 Adjust.ing the Amount of Text Selected 4-5

4.4 Scrolling and Moving the Display _____________________________________ 4-5

4.4.1 Scrolling the Display ... 4-5
4.4.2 Moving the Window ... 4-6

4..5 The File Functions __ 4-6

4_6 l1le Edit Functions __ 4-8

4_7 The Sealrch Functions ___ 4-9

4_8 l1le Type style Functions ___ 4-11

4_9 l1le Print Functions __ 4-12

See also Release 3.(,1 Notes fOT this chspte.r.

The Editor

4.1 The Editor
The Editor is used to create and modify text files. These files can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen, a portion of the file
is displayed. This "window" into the file can be moved to display any part of
the file you want. M example of the Editor display is shown in Figure 4-1.

file Edit Search Type style Print

[l 1111.~1

2
File
Save & Put Away
Save a Copy in ...
Save & Conti nUB
Revert to Previous Venion

Open ...
Duplicate ...
Tear orr Stationery ...

Exit Editor

3
Edit
Undo Last Change

Cut IX
CopylC
Paste/V

Shift Leftll
Shift RightlR

Figure 4-1
The Editor Display

()I

G =

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a special
window called the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion pOint. The insertion point is
marKed by a blinking vertical l1ne where the next character wUI be placed.
Any characters typed or pasted from the Clipboard are inserted at this pOint.
This Is true even if the insertion point Is not currently displayed in the
window. The window is automatically scrolled to show the insertion point ..

4-1

Workshop User's Guide The Editor

The Editor is metTIOIJI based. This means that there is a physical limit
on the size of the file that can be edited. If a file is too big to edit,
it should be split into more than one file of manageable size. The
FileDiv and FileJoin utilities can be used for this. They are described
in Chapter 11.

The mouse is used to scroll the text in the window, move the insertion point,
select text to be cut or copied, point to menus, and select items on menus.

4.2 l.IsinJ the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press [RETURN] for the default, which is blank paper, or enter a name.
F or more information on stationery, see Section 4.2.3.

The file that you are working on is called the active document. You can have
several documents open and accessible at anyone time, but only the active
dOCument can be edited. The active wIndow is indicated by a darkened tit),e
bar and scroll bars, and is always on top of all the windows.

To leave the Editor, select Exit from the file menu, and you will return to the
Workshop command line.

42.1 Editing qlerations
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut or copied. Select text by moving the
mouse while holding down the bUtton. See Section 4.3 for complete
information on selecting text. Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any pOint in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

4.2.2 The MenJs
qJerations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

4-2

Workshop User's Guide TIle Editor

You select an operation from a menu by moving the arrow pointer to the
menu name on the menu bar and holding down the button. The menu is
displayed. Choose the menu item by moving the mouse down until the 1 t.ern
you want appears in reverse video. Releasing the mouse button starts the
operation.

Il2.3 CreatirvJ and Usin:J stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired text. To
use any stationery other than the default blank paper, choose Tear Off
Stationery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing the text you want on the
stationery. save this document on the disk. To use this stationery, choose
Tear Off Stationery from the Edit menu, and give it the fIle name of the
stationery you created.

4.2.4 Editing MJItlple Files
More than one document can be open at one time, but only one document is
the active document. To read in a document when you already have an active
document, choose ~en from the File menu. It asks you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pointer into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

This capability of working with more than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations:

• ~en the document containing the text you want to copy.

• Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if you
want the text to be removed from its original file.

• qJen the document you want the text to be copied to. It becomes the
active document.

• Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

• Choose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

4-3

Workshop User's Guide The Editor

4.3 Selecting Text
The basic editing functions are cut, copy, and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion point where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pOinter on
the screen

Within an active document, the pointer will have one of three shapes:

Text pointer in a document

Arrow pointer for menus and scroll bars

Hourglass when an operation will take over 20 seconds

Use the mouse to move the pointer on the screen. The shape of the painter
changes when you move in and out of the document window.

Within the window, the text pointer is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, words, or lines. Selected text is displayed in
reverse video.

4.3.1 Moving the Insertion Point
The insertion point is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion point, move the pointer to where you want it to be and
click. Note that the insertion point moves when you select text.

43.2 Selecting Characters
To select Characters, move the text pointer to the beginning of the characters
you want to select, press and hold the mouse button while moving to the last
character you want to select

Al1 alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pOinter to the
beginning of the text you want to select and click the mouse button. Then
move the pointer to the end of the text you want selected and shift click.
Shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrolling controls to display the end of the
text you want selected if it is too big to fit in the window.

4.3.3 Selecting Words Bld Lines
To select a word, move the pOinter into the word and click the mouse button
twice. To select a line, move the pOinter into the line and click the mouse
button three times.

4-4

Workshop User's Guide Tile Editor

To select multiple words or lines, click the mouse button the required number
of time~, and hold. Move the pointer to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, the selection expands or contracts by lines.

Nt alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pOinter to the last item
you want selected, shift click, and the entire block of text becomes selected.

4..3.4 Ad)Jsting the ArnotJ'lt of Text Selected
To change the amount of text selected, move the pOinter to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

4..4 ScrollirYJ and IVbving the Display
When a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part is
displayed by "scrolling" through the display. The vertical bar on the right side
of the active window is the scroll bar. Nt example of a text window showing
the scroll bar is in Figure 4-l.

The display window can be changed in size and moved on the screen. This
enables you to have multiple documents displayed on the screen. These
operations are done usIng the title bar and size control box as explained In
Section 4.4.2.

4..4.1 Scrolllng the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative position of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the position of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the window makes use of the view buttons. The
view buttons are the boxes at each end of the scroll bar. If you move the
pointer to a view button and cllCK, the display moves one windowful toward
the beginning or end of the document, depending on which button you clicKed.

4-5

WOIks/Jop Use['s Guide The Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document If you hold the button down, the window will
continue to move a line at a time until you release it The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document

1l1l.2 fvk1ving the Wiroow
You can move the window on the screen and change its size. This lets you
display multiple documents on the screen. You can make any visible window
be the active window by moving the pointer into it and clicking.

To move a window, move the pointer to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.

To change the size or shape of the active window, move the pOinter to the
size control box, press the button, and move the painter until the window is
the right size and shape. Release the button and the resized window will be
di splayed. The size control box is the box in the lower right hand corner of
the window. Olly the active window can be resized.

4.5 The File F\.I'lCtions
The file menu provides functions for reading in and writing out documents,
updating documents, copying documents, and exiting the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.

save &. Put Away
This writes out the active document and closes i L

Save a Copy in ...
This writes out a copy of the active document to another document name.
You are prompted for the name of the document to write to.

Save &. Contiooe
This saves all changes made so far by writing out the document to disk,
without closing the document.

Revert to Previous Version
This returns the document to the way it was before you started editing it, or
when you last saved it This is done by reading in the document from the
disk.

4-6

Workshop User's Guide

~ ...

Save & Put Away
Save a Copy in •••
Save & Continue
Revert to Previous Version

Open ...
Duplicate ...

Tear Off Stationery "'

Exit Editor

Figure 4-2
TIle File Meru

The Editor

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active documenL The Editor supplies
the .TEXT extension on the file name. If the file name that you want does
not end in .TEXT, you must end the file name with a period. See Section 1.5,
The Workshop User Interface.

~licate ...
This enables you to read in a copy of an existing document to edit into a new
document. It is read in with the default name "untitled"

Tear Off Stationery . • .
This gets a new piece of stationery and makes it the active document. See
Section 4.2.3 for more information on stationery. The stationery is given the
default name "untitled",

Exit Editor
This first asks you if you want to put away any modified documents. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor reSident, you can exit and restart the Editor withOUt losing
any information between invocations. Section 3.4, Process Management, gives
instructions on how to make the Editor resident.

4-7

Workshop User's Guide The Editor

4.6 The Edit FlIlCtlons
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.

The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting. it in the active document,
and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion pOInt with the paste operation.

Cut:
COPl~
Paste

ShlH: U.~H:

Shift J:U9ht

Set Tabs I II

Select All of Document .A
figure 4-3

The Edit Menu

F or example, to move text from one place in a document to another:

1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

It Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion pOint.

The Edit menu also enables you to adjust selected text left or right by
inserting or deleting spaces, and to set tabs.

4-8

Workshop User's Guide The Editor

Some edit functions can also be done by holding down the" key and pressing
another key. The key that corresponds to each function is shown in the Edit
menu, as you can see in Figure 4-3.

Uldo Last 0la1ge
This command puts the document back to the way it was before the previous
operation, if pOSSible. You will receive a warning message if the last
operation cannot be undone.
QJt

Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the active document. You can also Cut by pressing the
X key while holding down the " key.

Copy
Copy places a copy of the currently selected text onto the CUpboard, but
does not remove it from the active document. You can also Copy by pressing
the C key while holding down the" key.

Paste
Paste inserts a copy of the text on the Clipboard at the insertion point in the
active document. If a section of text is selected, Paste replaces it. You can
also Paste by pressing the V key while holding down the " key.

Shift Left
Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing the L key while holding down the" key.

Shift Ri~t
Shi ft Right is similar to Shift Left, except that it moves the selected text to
the right by inserting spaces at the begiming of each line. This can also be
done by pressing the R key while holding down the " key.
set TctJs __ _
Set Tabs enables you to set the spacing of the tab stops.

select All of Ooct.rnent
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the • key_

4..7 1he Search FlI'lCtions
The Search menu gives you the ability to search for a text string in the
active document. The basic operation is Find, which locates the next
occurrence of the string and selects it. Find &. Paste All replaces each
occurrence of the string with the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

4-9

Workshop User's Guide

l----~.
Find III elF
Find Same els
Find & Paste All

";Separate Identifiers
R II Occurrences

";Cases Need Not Agree
Cases Must Agree

Figure 4-4
The search MenJ

The Editor

All searches start at the insertion point, and go to the end of the document.

There are three search operations in the Search menu, as follows:

Find •..
Find prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it is selected. If not, the system tells you.
The Find command can also be executed by pressing the F key while hOlding
down the • key.

Find same
Find Same repeats a previously specified Find, and selects the next occurence
of the string. You can do a Find Same by pressing the S key while holding
down the • key.

Find & Paste All
Find & Paste All finds all occurrences of the specified string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case must be matched. The options currently in effect have a check mark in
front of them. To change the option, you choose a new one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

Workshop User's Guide The Editor

separate Identifiers
When Separate Identifiers is chosen, the search operation looKs for a "token"
or word to match the search string. A toKen is a word bounded by spaces.

All (£currences
When All Occurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a word.

The next options indicate if case is signi ficant in finding a match:

Cases Need Not Agree
When Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

Cases fvlJst Agree
When Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

4..8 The Type Style Fmctions
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a line, and
whether or not the display is proportionally spaced. When a document is
printed, it is printed In the same type style It Is displayed in, if that type
style is available on your printer.

Type Style'
20 Pitch Go hic
15 Pitch Gothic
12 Pitch Modern
12 Pitch EI ite
10 Pitch Modern
10 Pitch Courier
PS Modern
PS Executive

Figure 4-5
The Type Style MerlJ

4-11

workstJop User's GlUde The Editor

4.9 The PrInt FU'lCtions
The Print menu provides functions for printing a document. You can prInt all
or part of a document, choose what form of footers are to be prInted, specify
If Pascal keywords are to be emphasized, and tell what type of printer Is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of Ocnrnent
The Print All of Document command prints the entire document.

Print Selection
The Print Selection command prints only the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the print is to be
performed. They are organized into three sets of two options. The current! y
selected option in each set is indicated by a check manc You can choose any
combination of options you want.

ull Footers
Page Numbers Only

I a i n Keywords
Differentiated Keywords

Dais Wheel Printer

Fi~ 4-6
The Print MerlJ

The first optlons control what type of footers are printed at the bottom of
the page.

4-12

Workshop User's Guide Tile Editor

Full Footen
When Full Footers Is chosen, each page printed has a footer consIsting of the
document name, the page number, and the date. If the document is less than
one page long, no footer will be printed.

Page Nt.mber lnly
Choosing Page Number 011y results in only a page number on the bottom of
each printed page. If the document is less than one page long, no page
number will be printed.

The next options are used for printing Pascal programs.

Plain Keywords
Choosing Plain Keywords causes Pascal keywords to print as normal text.

Differentiated Keywords
Choosing Differentiated Keywords causes Pascal keywords to print with
underlining. In addition, the read procedure, write procedure" and other
standard Pascal procedures and functions are underlined.

You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
Wheel Printer.

4-13

Chapter 5
The Pascal Compiler

5_1 ~ PfISC8I Compiler ___ 5-1

5..2 Using the Pscal Compilei' __ 5-1

5.2.1 Using the Code Generator 5-2

53 The PfISC8I Compiler Commands ______________________ u __ __ __ __ __ _ __ _ 5-2

5.4 The PfISC8I Run-Time Environment ___________________ . _______________ 5-3
5.4.1 The PASLIBCALL Unit 5-3
5.4.2 The Pascal Heap .. 5-5

See also the Release 3.0 Notes for this ch8pter.

The Pascal Compiler

5.1 The Pascal Cor'rlliler
The Compiler translates Pascal source statements into object cOde. This
translation is done in two steps. The first step, parsing, converts the program
into semantically equivalent tree structures called I-code. The second step
translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the Pascal RefeJ7!!l7Ce Manual
for the Lisa. A Pascal program can call assembly language routines. More
information on assembly language is in Chapter 6 of this manual.

The ~rating System provides a number of routines that can be caned from a
Pascal program to perform various system functions. These routines are in the
SYSCALL unit, which is described in the t:pemting System Reference H8nt1aJ
for the Lisa.

The Pascal run-time support routines are in the library IOSPASLlB.CBJ. The
support routines for floating point operations are in IOSFPLIB.CBJ. After
generating the object code, it is necessary to linK the program with
IOSPASLIB.CBJ before you can run it. If you are using real numbers, you must
also link with IOSFPLlB.CBJ. For information on how to linK the program, see
Chapter 7 in this manual.

52 UsiI'YJ the Pascal Cor'rllUer
The Compiler expects a text file containing a Pascal source program as input.
You can create this text file using the Editor.

When you have prepared a source program, use the Compiler to translate it
into object code. Start the CompUer by pressing P in response to the
Workshop conmand prompt The Compiler first asks:

Input file[.TEXT]
Type the name of the file that contains the source program. You do not need
to add the . TEXT extension. The Compiler then asKs:

List file[.TEXT]
Type the name of the file that you want the listing to go to, or press
[RETURN] if you don°t want a listing. You can display the listing on the
console by using the -console pathname. The Compiler next asks you where
to store the I-cOde form of the program:

I-code file[<input name>][.I]

5-1

Workshop User's Gldde Pascal Compjler

If you want the I-code to be stored in a file with the same name as the
source file, but with a .I extension instead of the .TEXT, just press [RETURN].
If you want another name, type the name and press [RETURN).

After the last input, the Compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they are displayed in
the listing file, or on the console if there is no listing file. When a message
is displayed on the console, you are given a choice of aborting the compile by
pressing [CLEAR1 or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $1: Compiler command.

5.2.1 Using the Code Generator
To translate the I-code into object cOde, press G in response to the Workshop
command prompt. The code generator first asks:

Input file [.IJ -

Type the name of the I-code file. You do not need to add the .I extension.
The generator then asks:

OUtput File [<input name>][.OBJ) -
To accept the default name, press [RETURN]. If you want a different name
for the output file, type the name and press [RETURN). The .CBJ extension
will be added to the name for you.

The output file from the code generator is object code, but it is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIBJEJ, and
IOSFPLlB.CBJ for floating point operations. These routines must be added to
the object file by using the Linker. see Chapter 7 in this manual for more
information on the Linker.

5.3 The Pascal COf11lller COI'I' B m
Compiler commands allow control of code generation, input file control, listing
control, and conditional compilation. The commands all start with a $, and
are placed as comments in the source program where you want the command
to take effect All the Compiler commands are listed in Table 5-1. A
complete explanation of the Compiler commands is found in the Pascal
Reference Manual for tIJe Lisa.

5-2

Wo.rksl7op User's Guide

$1 filename

$U filename

$C+ or $C-

$R+ or $R

$S segname

$X+ or $X-

$0+ or $0-

$E filename

$L filename

$L+ or $l

$OECL list

$SETC

$IFC

$ELSEC

Pascal Compiler

Table 5-1
Pascal GorTlliler Corrmands

MeCl'ling

Include contents of filename in this compilation.

Search filename for units used.

Turn code generation on (+) or off (-) for a procedure.
Default $C+.

Turn range checking on (+) or off (-). Default $R+.

Start putting code modules into segment segname.

Turn automatic stack expansion on (+) or off (-).
Defaul t $X +.

Turn procedure name generation for Debugger on (+)
or off (-). Default $0+.

List Compiler errors in filename.

Produce Compiler listing in filename.

Turn source listing on (+) or off (-). Oefaul t $l + .

Declare compile time variables.

Assign a value to a compile time variable.

Begin condi tional compilation section.

Begin ELSE clause of conditional compilation.
$ELSEC is optional.

$ENDC End of conditional compilation section.

5.4 The Pascal Rlfl-TIme Envirorment
The Pascal run-time environment provides a unit PASLIBCALL which allows
you to use some special system functions. It also provides special heap
manipulation functions.

5.4..1 The PASLIBCALL lXIit
The unit PASLIBCALL provides you with some additional system functions. In
order to access the PASLIBCALL routines" you must use the units SYSCALL
and PASLIBCALL:

USES
{$U syscall} SVSCALL,
{SO paslibcall} PASlIBCALL;

This gives you access to the routines listed below. These routines are
contained in IOSPASLIB.OOJ" so programs using them require no additional
inputs to the Linker.

5-3

Workshop User's Guide Pascal Compiler

fll1Ctioo PAbortfiag : boolea1

This function tells whether or not the .-period key combination has been
pressed. It enables programs to exit out of long operations. The flag is
cleared when PAbortFlag is called. If you want your program to stop
when you press .-period, you must use this function in the program to
detect that the key combination has been pressed. For example:

{This progran frafJlBlt hcJ1gs in CI1 infinite loop lIltil .-period
is pressed}

aborted : =false

Repeat {wait for et-period. You miglt WCI'lt to do other things
here}

cD:Jrted : =PAbortflag;

tIltil aborted.
procerure SCreenCtr (contrflll : integer);

This procedure provides standard screen control functions, and enables
programs to perform screen control without having to to use escape
sequences. Escape sequences are explained in Appendix C. The parameter
specifies the screen control function. It is defined in the constants as
follows, in the PASLIBCALL unit:

Function

clear screen
clear to the end of screen
clear to end of line
move cursor to home position
cursor left one posi tion
cursor right one posi tion
cursor up one line position
cursor down one line position

Screen control example:

Constant
Value

Dec1iTl8l Hex

CclearScreen 1
CclearEScreen 2
CclearELine 3
CgoHome 11
CleftArrow 12
CrightArrow 13
CupArrow 14
CdownArrow 15

1
2
3
B
C
o
E
F

{ThiS program fr8f}1Blt clears the screen, and positioos the
cursor 00 the third line}

SCreeri!tr (CgoHome);
SCreeri!tr (CClearSCreen);
SCreeR!tr (CdoWlArrow);
SC~tr (CdoWlArrow);

5-4

Worksllop User's Guide Pascal Compiler

proan.tre GetGPrefix (ver prefix : pattnlle);

This procedure provides your program with the first level prefix setting in
the File-Mgr in the Workshop.

proceWre Ge'tPrDevice (var PrOevice : e _ nane);
This procedure returns the corresponding default printer device name so
that you can perform additional device control functions using
DEVICE _ C()\ITRCL. (The t:perating System Reference M8nu8J for tIJe Lisa
explains the device control call.) The default printer device name is the
one corresponding to the logical device '-printer'. Note that the device
name returned contains a leading '_I.

proan.tre PlINIll£Nl (var enun, refrun:integer;
size,delta:lc:IYJint
Idsn: integer;
swapable:boolean);

where:

errun is the error number returned if the procedure has any
problems making a data segment having a mem _size of
size bytes. Appendix A contains an explanation of the error
codes for the Workshop.

size is the number of bytes in the heap.

refrun is the refrun of the heap.
delta Is the amount you want the data segment to increase when

the current space is used up. If you use a large heap, use a
large number for delta.

ldsn is the logical data segment number used for the heap. The
default is 5. For more information see the t:perating System
Reference Manual for tile Lisa.

swapable is the boolean that determines if the system can swap the
heap data segment out to disk if it needs to.

This procedure can be used \tIhen you have special needs; for example,
when you want to specify your own Idsn or heap size. When you use
PLINlTHEAP, you must call it before calling other heap routines. For
more information on the heap, see Section 5.5.

5.4.2 The Pascal ~
The Pascal heap is one contiguous piece of memory, a data segment, which
works automatically without any initialization calL See Chapter 11 of the
Pascal Refemnce Manual for the Lisa for information on the normal heap
functions.

5-5

Wo.t1<shop User's Guide Pascal Compiler

When a Pascal program starts execution, no heap space is allocated (no data
segment made~ 01 the first call to one of the heap routines or on the first
PLINITHEAP call, the heap is created with either a default size of 16k bytes
or the size specified in the PLINITHEAP call.
PLINITHEAP makes the heap as a private data segment so that the qJerating
System removes it when the process calling PLINITHEAP terminates. Note
that when the heap is initialized, size and delta are put on 512 byte block
boundaries. Therefore, if you use the PLINITHEAP call and specify values for
size and delta that do not fall on block boundaries, the procedure increases
the values to the next block boundary.
If the heap runs out of space while it is being used, the size of the heap is
increased by the default of 16k or the delta specified in PLINITHEAP. The
default Idsn used is 5. If you want a different Idsn for the heap data
segment, call PLINITHEAP. Remember that the size of a data segment is
limited by the Idsn you use. For Idsn 16, you can get only 128k (actually 96k
safely), for Idsn 15 you can get only 256k, for Idsn 14 you can get only 384k,
and so forth. See the t:perating System Reference Manual for the Lisa for
more information on Idsn's and data segments.
If swapable is true, the heap is made with disc_size equal to size so the data
segment is not memory resident. This uses up disc_size bytes on the startup
disc. The default for swapable is false. When swapable is false, the
procedure creates a data segment that has a disc_size of 0 (zero), which
makes it memory residenl
The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and
f-EAPRESUL T.

• If you call NEW and not enough space is available, the size of the heap is
increased by either the default of 16k or the delta size specified in
PLINITHEAP.

• MEMAVAIL provides the maximum runber of words you could ever expect
to get, taking into account the Idsn you used as well as the amount of free
space the qJerating System currently has available. If another process is
using memory concurrently, its use of memory also affects MEMAVAIL.
MEMAVAIL does not show the amount of memory left in the heap's data
segment alone, since the heap's data segment can grow and shrink over
time.

• MARK sets a pOinter to the lowest free area on the heap. It is used with
RELEASE to deallocate variables from the heap.

• RELEASE deal locates variables from a marked area of the heap. If you
release the heap to a point within the original size of the heap data
segment, the heap data segment is reduced to its original size. More
information on MARK and RELEASE can be found in the Pascal Reference
Mantlal for tI1e Lisa.

5-6

Workshop User's Guide Pascal Compiler

• HEAPRESUL T returns a 0 if the last heap operation was successful,
otherwise it contains the qJerating System error number indicating what
failed. A list of the ~erating System errors is in Appendix A

5-7

Chapter 6
The Assembler

6_1 The Assembler
__ 6-1

6_2 Using the Assembler ___ 6-1

6.2.1 Assembler Options .. 6-1
6.2.2 The Input File ... 6-2
6.2.3 The Object File ... 6-2
6.2.4 The Listing File ... 6-2

63 ~Ier Opcodes ________ . ____ . _______ . _______________________________ 6-.4

6_4 ~bler ~ __ 6-5
6.4.1 Structure of an Assembly Language Program............. 6-5
6.4.2 Constants... 6-5

6.4.3
6.4.4
6.4.5
6.4.6
6.4.7

6.4.2.1 Numeric Constants................................ 6-5
6.4.2.2 String Constants................................... 6-6
Ident.ifiers .. 6-6
Labels and Local Labels 6-7
Expressions and Operators................................... 6-7
Addressing Modes ... 6-7
Miscellaneous Synt.ax Comment.s 6-8

6..5 Assembler Directives ___________________ . ___________________ . ___________ 6-9
6.5.1 Space Allocation Directives 6-10
6.5.2 Macro Directives ... 6-11
6.5.3 Conditional Assembly Directives 6-12
6.5.4 External References Directives 6-13
6.5.5 Listing Control Directives 6-14
6.5.6 File Directive ... 6-16

6_6 Communication with Pascal _______________________________________ . __ 6-16
6.6.1 The Run-Time Stack ... 6-17
6.6.2 Register Conventions .. 6-20
6.6.3 Parameter Passing Between Pascal

and Assembly Language 6-21

6_7 Assembly Language Examples __ 6-21

6.7.1 Using .REF and .DEF Directives 6-21
6.7.2 String Parameters .. 6-22
6.7.3 lNriting a Function ... 6-23
6.7.4 Calling Pascal 110 Rout.ines 6-25
6.7.5 Using Pascal Data Areas 6-30

See 81so the Release 3.0 Notes for this chapter.

The Assembler

6.1 The Assermler
The Assembler is a program that translates assembly language source
statements into object code. The Assembler accepts a text file containing the
source statements as input, and produces an object file as output. The Object
file produced must be linked with a Pascal main program before it can be
executed.

Assembly language routines are used to implement low level or time critical
functions. This chapter describes how to use the Assembler, and the syntax of
assembly language programs. Information on the machine instructions
available on the 68000 processor can be found in the Motorola MC68000
Reference Manual.

6.2 Using the Assembler
To assemble a program, press A from the Workshop command line. Then
specify the input file (the file that contains your source program) and two
output files: an optional listing file and the Object file (the file that will
contain the object code produced by the Assembler~

The input file must be a text file containing assembly language source
statements. You can create this file with the Editor. The output file produced
is an object file (JEJ) that must be linked with a Pascal main program to be
run.
My errors in the program will be indicated by messages on the console or in
the listing file. A complete list of Assembler error messages is found in
Appendix A of this manual.

6.2.1 Assembler Options
When you start the Assembler, the option settings are displayed. You can
enter the options selection mode by responding to the input file prompt with
"?". There are two Assembler options:

P Pretty listing.
S Print information about available space.

Each option may be set to + or -:
+ On

Off

When pretty listing is on, the forward referenced labels or offsets are filled in
with the correct values in the listing.

After setting options, press (RETURN)' and the Assembler asks you for the
name of the input file. The Assembler then asks you for the name of the
listing, and the object files.

6-1

Workshop User's Guide The Assembler

6.2.2 The Input file
The input file is a text file containing Assembler language source statements.
A file created using the Editor will be in text file format.

When the Assembler asks you for the name of the input file, type .,?" if you
want to change Assembler options at this time; otherwise type the pathname
of your source file. File naming is explained in Chapter 2.

6.2.3 The Object file
The object file produced by the Assembler contains a machine code version of
your source program. The name of an object file ends with Jl3J. A raw
assembly object file is not executable; it must be linked with a Pascal
program that calls it See Section 6.6 for further information.

The output file will be an object file which must be linked with a Pascal main
program before it can be executed. The object file goes to the same volume
as the input text file was on unless another volume is speci fied.

6.2.4 The Listing file
The listing file produced by the Assembler contains a list of source statements
and their machine-language equivalent. If pretty listing is off, all addresses
for forward referenced labels will be presented in the listing file as asterisks
(*~ If pretty listing is on, the actual values will be filled in.
Source statement errors are flagged in the listing. Refer to the Appendix for
a list of Assembler error messages.

Nt example of an Assembler listing file is shown in Figure 6-1. Figure 6-2
shows the same file listed with the pretty list option.

6-2

Workshop UseJ"'s Guide

0000 I 0000 0001
0000 0000 0020
0000
0000 303C 0020
0004 4240
0006 '240
OOOB 6700 ••••
OOOC 60FB

one .equ 1
l!lbel2 .equ $20

move 'label2, dO
clr dO

12 !ldd 'one, dO

7
beq 11 ; show listing p!ltchlng
br!l 12 ; eddress fUled in

• ; for b!lckward brenchlng

11 leI! dl!tll, riJ
br!l.s done

; sane more code '"

nop

done rh

dl!tl! .byte 2', $30, 19 ; odd ntJllber of bytes
. !!lign- 2 ; make sure next instruction

; is on even

Figure 6-1
Asserrtller listing

If you specify a device name such as -printer or -console for the listing file,
the listing will be printed on that device. If you specify a disk file, the
listing will be created as a text file; you may then print it by using the Copy
command in the File Manager command line.

N01E

If you want pretty listing, the listing output must be sent to a file, not
to a device. Pretty listing is done by making an additional pass
through the listing file to patch in the forward referertces. There must
be enough disk space for two listing files for this operation to succeed.

6-3

WO.lkslJop User's Glide The Assembler

~I .proc eXlIllple

00001 0000 0001
one .equ 1

0000 0000 0020 label2 .equ $20

~ 303C 0020 lIIove IIlabel2, a:l
0004

1

4240 clr a:l
0006 5240 12 add lIone, a:l
0006 6700 0004 beq 11 i show listing petching"
OOOC 6OF6 bra 12 i address filled in

i for beckwerd branching
OOOE
OOOE
OOOE 41FA 0008 11 lea date, e{)

0012 6002 bre.s done
0014
0014 ; sOOIe more code ...
0014
0014 4E71 nop
0016 4E75 done rts
0016
0019 19 30 13 data .byte 25, $30, 19 i odd nunber of bytes
00161 00 .lI1ign 2 ; make sure next instruction

; is on even

Fig.ue 6-2
Pretty Listing

6.3 AssemOler qx:ooes
The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User's Manual. The Assembler has two variant mnemonics for branches that
are more indicative of how the instruction is being used after unsigned
comparisons. These variants are BHS (Branch on High or Same) for BCC, and
BLO (Branch on Low) for BCS. The default radix is decimal.

The size of an operation (byte, word, or long) is specified by appending either
.B, .W, or .L to the instruction. The default operation size is Word. To cause
a short forward branch (an 8-bit displacement rather than a word
displacement), append a .S to the instruction. The default branch size is Word.

Note that the T PS (test and set) instruction is not implemented on the Lisa
hardware. Using this instruction may cause timing problems.

Note that the Assembler accepts generic instructions and assembles the
correct form. The instruction ADD, for example, is assembled into ADD,
ADDA, ADOQ, or ADD I, depending on the context.

ADO 03, AS
becomes ADOA 03, AS.

MOVE, CMP, and SUB are handled in a similar manner.

6-4

Workshop User's Guide Tile Assembler

6.4 Assembler Syntax
This section describes the form in which the Assembler expects an assembly
language program. The structure of an assembly language program is shown in
Section 6.4.1. Rules for forming constants, identifiers, labels, expressions, and
addressing modes are provided in the following sections.

6.4.1 Structure of ~ Assentlly L~ ProgIall
M assembly language program contains one or more procedures or functions.
The structure of an assembly language source file is shown in Figure 6-3. The
source file contains an (optional) section of operations that doesn't generate
code. Constants or macros are usually defined here. Next it conains one or
more procedures (.PROC) or functions (.FUNC~ These each contain a sequence
of directives and code generating operations. A procedure or function ends
when the Assembler encounters the next .PROC or .FUNC. The .END directive
is the last statement that is processed by the Assembler. My text beyond the
.END is ignored.

nm Ct1d!! generaUng operaUlKIS

PRoo (or.F\...N::)
cotk! genemUIY cpemUlI1S anti any dlmcUIIf!S neetB1

PRoo

FLtC
etc.

Fi~ 6-3
structure of ~ Nsefmly L~ Prognm

The directives that don't generate code are:

.EQU .MACRO .IF .LIST
.ENDM .ELSE .NOLIST

.REF .ENDC .P p.f3f.

.DEF .TITLE

6.4.2 COnstants

.MACROLIST

.NOMACRClJST

.PATCHLIST

.NlPATCHLIST

COnstants In the Assembler can be e1 ther numerIc or strIng constants.

6.4.2.1 f\lmeric Constalts
Numeric constants in the Assembler can be expressed in decimal, hexadecimal,
octal, or binary. The default radix is decimal. Numeric constants are
expressed as follows:

6-5

WoIkshop User's Gujde The Assembler

Decimal
Decimal numbers are formed with the decimal digits (0-9~ Examples:

10
13
137

Hexadecimal
Hex numbers can be expressed in two ways:

1. Preceed the number with a "$". Examples:

$FF13
$127

2. Follow the number with an "H". Using this form" the number must start
with a digit (0-9~ Examples:

OFF13H
195H

lktal
Octal numbers are followed by the character ·'a'. Note that this is the letter
0, not the number zero (O~ Examples:

770
1040

Binary
Binary numbers are followed by the character "B". Examples:

10118
1110008

6..4.2.2 String Constants
String constants are delimited by matching pairs of single or double quotes.
Examples of string constants are:

"this is a string constant"
'using single quotes as delimiters lets you include "double" quotes'

6.4.3 ldenti fiers
011y the first eight characters of identifier names are meaningful to the
Assembler. The first character must be alphabetic; the rest can be
alphanumeric" period" underbar, or percent sign.

Examples of identi fiers are:

L((P
EXIT PRe
NUM-
num64%

6-6

Workshop User's Guide The Assembler

6.4.4 Labels CI1d Local Labels
Labels begin in column one. They can be followed by an optional colon.

Local labels can be used to avoid using up the storage space required by
regUlar labels. The local label stack can handle SO labels at a time. It is
cleared every time a regular label is encountered. A local label is an fAt
followed by a string of decimal digits (0-9~ Examples of local labels are:

@l123
@12

(1)79

6.4.5 Expressions CI1d ~raton
All quantities are 32 bits long unless constrained by the instruction.
Expressions are evaluated from left to right with no operator precedence
Angle brackets can be used to control expression evaluation. The operators
are:

*
/
\
I
&

<>

positive sign or binary addition
unary minus or subtraction
ones complement (unary operator)
exclusive or
multiplication
division (OIV)
MOO
logical CR
logical ,AND
equal (used only with .IF)
not equal (used only with .IF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 * 4, the addition is performed first. To perform the
multiplication first, rewrite the expression with angle brackets to show
precedence: 2 + <9 * A>; or reorder the operands: 9 * A + 2.

6.4.6 Addressing fvtodes
Refer to the Motorola 68000 manual for detailed information on the
addressing modes supported by the 68000 microprocessor. Table 6-1 gives a
summary of the addressing modes including their syntax.

6-7

Wo.rkshcp UseE's Guide The AssetmleE

Table 6-1
SLmnary of Addressing Modes

Mode Register Syntax Mealing Extra Words

0 0 .. 7 Di Data direct 0
1 0 .. 7 Ai Address direct 0
2 0 .. 7 (Ai) Indirect 0
3 0 .. 7 (Ai)+ Postincrement 0
l1. 0 .. 7 -(Ai) Predecrement 0
5 0 .. 7 ~Ai) Indexed 1
6 0 .. 7 Ai.,Ri) Offset indexed 1
7 0 e ~solute short address 1
7 1 e Absolute long address 2
7 2 e PC Relative 1
7 3 e(Ri) PC Relative indexed 1
7 l1. 1te Immediate 1 or 2

Notes:

The indexed and PC relative indexed modes are determined by the opcode.

The absolute address and PC relative address modes are determined by the
type of the label (absolute or relative~

The absolute short and long address modes are determined by the size Of the
operand. Long mode is used only for long constants.

The number of extra words for immediate mode is determined by the opcode
size mOdifier (.w or .L~

f',()'ll:

All programs that run under the Lisa OS must be relocatable.
Addresses should not be absolute.

6.4.7 MiscellMeOUS Syntax
Cmments
A comment in an assembly language program begins with a semicolon. The
Assembler ignores all characters after a semicolon in a line. Examples are:

; This is a COIIIEI1t on a line by itself
ll..R.l DO ; oommt after a statenelt

6-8

Workshop User's Guide The Assembler

CUrrent Progrcm Location
The current program location is indicated in assembly language by the symbol
"*". Examples of its use are:

.l'P *

.J1l *-4
Move JvtJltiple (MOVEM)

; loop infinitely
; .lJnp back 4 bytes

To specify which registers are affected by Move Multiple (MOVEM), specify
ranges of registers with "_" and specify separate registers with "/'. For
example, to push registers 00 through 02, 04, and AD through A4 onto the top
of the stack:

tIlVEM.l OO-D2/D4/AO-M,-(A7)

6.5 Assembler Directives
Assembler directives tell the Assembler to do various functions besides
generating executable code. These functions include defining symbols and
constants, defining macros, doing conditional assembly, and controlling listing
options.
The Assembler directives (pseudo-ops) are shown in Table 6-2.

Table 6-2
The Assembler Directives

Directive q>erCYlds tv1eaning
.PROC <identi fier> begin procedure
.FUNC <identi fier> begin function
.DEF <identi fier-list> make identi fiers externally available
.REF <identi fier-list> declare external identi fiers
.SEG '<name>' put code of next .PROC in segment 'name'
.END end of entire assembly

. ASCII '<char-string> . place ASCII string in code

.BYTE <value-list> allocate a byte in code for each value

.BLOCK <length>[,value] allocate length bytes of value

.WCRD <value-list> allocate a word for each value

.LCNG <value-list> allocate a long word for each value

.ALIGN <Expr> allign next code on multiple of Expr

.eRG <value> place next byte at <value> relative to
beginning of assembly

.RCRG <value> same as .eRG

.EQU <value> set label equal to <value>

. MACRO <identi fier> begin macro definition

.ENOM end macro defini tion

6-9

Workshop User's Guide

Directive qJeIalds
.IF <expr>
.ELSE
.ENOC

.LIST

.NQ.IST

.PAGE

. TITLE . <ti tIe>'

.MACRClJST

.N(]v1ACRQ.IST

.PATCHLIST

.NIFATCHLIST

.INCLUDE <filename>

Table 6-2 (contirued)
The Assermler Directives

Mealing
begin condi tiona} assemb} y
optional alternate to .IF block
end conditional assembly

turn on assembly listing
turn off assembly listing
issue a page feed in listing

The Assembler

title of each page in listing
turn on macro expansion listing
turn off macro expansion listing
turn on patch list
tum off patchlist

include contents of <filename> in assembly

6.5.1 Space Allocation Directives
The space allocation directives are .ASCII, .BYTE, .WCRO, .LCNG, and .BLOCK

.ASCII "string"
Converts 'string' into the equivalent ASCII byte constants and places the bytes
in the code stream. The string delimiters must be matching single or double
quotes. To insert a single quote into the code use double quotes as delimiters.
Similar I y for double quotes:

. ASCII -don't- ; string containing single quote

. ASCII • a -glitch"' ; string containing dot.ble quote
.BYlE <values>
Allocates a byte of space in the code ~tream for each of the values given.
Each value must be between -128 and 255 .

• BLOCK <length>[,value]
Allocates <length> bytes, each filled with the value given. If no value is
given, a block of zeroes is allocated .

• W(R() <values>
Allocates a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65535.

6-10

Workshop User's Guide

For example,

TEMP . wrno 0,65535, -2, 17

creates the assembled output:

0000
FFFF
FFFE
0011

.LCI\IG <values>

The Assembler

Allocates t'Wo 'Words of space for each value in the list. For example,

STUFF . LONG 0,65535,-2,17

creates the output:

00000000
OOOOFFff
FFFFFFFE
00000011

<label> .EQU <value>
Assigns <value> to <label>. <value> can be an expression containing other
labels .

. eRG <value>
Puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are inserted from the current location to
<value> .

. R£RG
is similar to .CRG. It indicates that the code is relocatable. Because the
loader does not support absolute loading, .CRG and .RCRG accomplish the
same function. All addressing must be PC .relative.

6.5.2 Macro Directives
A macro consists of a macro name, optional arguments, and a macro body.
When the Assembler encounters the macro name, it substitutes the macro body
for the macro name in the assembly text. Wherever "%11" occurs in the macro
body ('Where n is a single decimal digit), the text of the n-th parameter is
substituted. If parameters are omitted, a null string is used in the macro
expansion. A macro can invoke other macros up to five levels deep. In the
assembl y listing, the listing of the expanded macro code is controlled by the
options .MACRI1.IST and .NCJv1ACRCLIST. These options are described in
Section 655.

6-11

Workshop User's Guide The Assembler

.MACRO <identifier>

.ENI1

defines the macro named <identifier>. The following is an example of a
macro:

. MACRO
HOVE
AOO
.EN)t1

Help
%1,00
00,%2

If "Help" is called in an assembly with the parameters "Alpha" and "Beta", the
listing created would be:

Help Alpha, Beta
, HOVE Alpha, DO
, ADD DO, Beta

6.5.3 Conditional Asserrtlly Directives
The conditional assembly directives .IF, .ELSE, and .ENDC are used to include
or exclude sections of code at assembly time based on the value of the
condi tional expression .

.IF <expressiCll>
Identifies the beginning of a block of source statements that is assembled only
under certain conditions. If <expression> is false, the Assembler ignores all
statements until a .ELSE or .ENDC is found. The statements between the
optional .ELSE and .ENDC are assembled if <expression> is evaluted to be
false at the time of assembly. Otherwise they are ignored.

<expression> is considered to be false if it evaluates to zero. Any non-zero
value is considered true. The expression can also involve a test for equality
(using <> or =~ Strings and arithmetic expressions can be compared.
Conditionals can be nested. The macros HEAD and TAIL given in Section
6.6.1 provide examples of the use of conditionals. The general form is:

.IF <expr>
;assembled if <expr> is true

[.ELSE] ; optional
; assentJled if <expr> is false

.ENlC

6--12

WOrkshop User's GlIjde The Assembler

6.5.4 External Reference Directives
Separate routines can share data structures and subroutines by linkage
oetween assembly routines using .DEF and .REF. These directives generate
link information that allows separately assembled routines to be linked
together .

. DEF and .REF directives associate labels between assembly routines, not
between assembly routines and Pascal. The only way to communicate data
between Pascal and assembly routines is by using the stack. This is done by
passing the data as parameters in the procedure or function call. Information
on parameter passing between Pascal and assembly language routines is found
in Section 6.6 .

. DEF <identifier-list>
Identifies labels defined in the current routine as available to other assembly
routines through matching .REFs. The .PROC and .FUNC directives also
generate code similar to that generated by a .DEF with the same name, so
assembly routines can call external .PROCs and .FUNCs with .REFs .

. PROC Simple, 1

.DEF Alpha, Beta

BNE Beta

Alpha tIlVE

RTS
Beta tDVE

RTS
• EN)

This example defines two labels, Alpha and Beta, which another assembly
routine can access wi th .REF .

. REF <identifier-list>
Identifies the labels in <identifier-list> used in the current routine as
available from some other assembly routines, which defined these identifiers
using the .DEF directive .

• PROC Simple
. REF Alpha

JSR Alpha

• EN)

This example uses the label "Alpha" declared in the .DEF example.

6-13

WoIkshop Users Guide The Assembler

When a .REF is encountered, the Assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of D's) and
a short external reference with an address pointer to the word of D's following
the opcode. If the referenced label and the reference are in the same
segment module, the Linker changes the addressing mode from short absolute
to single-word PC relative. If, however, the referenced procedure is in a
di fferent segment, the Linker converts the reference to an indexed addressing
mode (off AS), and the word of zeros is converted into the proper entry offset
in the jump table. If the referenced procedure is in an intrinsic unit (and
therefore in a different segment), the IUJSR, IULEA, IUJMP, and IUPEA
instructions are used. The Linker blindly assumes that the word immediately
before the word of zeros is an opcode in which the low order 6 bits are the
effective address. Thus, a .REF label cannot be used with any arbitrary
instruction. The .REF labels aTe intended for .JSR, .JMp, PEA ... and LEA
instmctions.

.SEG
Default segment name is .. " (8 blanks~ .SEG "segment name" puts the
code in segment called "segment name". The .SEG directive takes effect
when the next .PROC or .FUNC is reached. Thus it is not possible to split one
procedure into two segments. This is an example of how the .SEG directive
works:

.SEQ 'namel'
.PROC A

{code in .PROC AI

.SEG 'name2'

{code still in .PROC At {thiS code will still be in segnent 'namel1

.PROC B {code of .PROC B will be in segnent 'ncme21

6.5.5 Listing Control Directives
The directives that control the Assembler's listing file output are .LlST,
.Na..IST, .PAGE, .TITLE, .MACRCl..IST, .NCJV1ACRCl..IST, .PATCHLIST, and
.NCPATCHLIST. If you do not specify a name for the listing file in response
to the Assembler's prompt, the listing directives are ignored.

The default for the Assembler is for .LlST, .MACRCLIST, and .PATCHLIST to
be in effect when the Assembler starts. . TITLE defaults to blank .

.LIST and .I'O...IST
Can be used to select portions of the source to be listed. The listing goes to
the specified output file when .LlST is encountered. .NCl..IST turns off the
listing. .LIST and .NCl.IST can occu~ any number of times during an assembly.

6-14

WaJ1<stJop User's Guk1e The Assen1bleJ"

.Ptv:£
Causes the next line of the listing file to be printed on the next page .

. TITLE '<title>'
Specifies a title for the listing page. <title> can contain up to 80 characters,
and can be enclosed in either single or double quotes. For example:

. TITLE 'Interpreter'
places the word, "Interpreter", at the head of each page of the listing .

. PATCI-LIST
Patches the forward referenced labels in the listing. It must be on if you
want pretty listing. See Section 6.2.4 for more information on pretty listing .

. N£PATa-LIST
Turns off patching of forward references .

. MACRIl..IST
Turns on listing of the expanded code from a macro .

. I\KMACRIl..IST
Turns off listing of macro expansion. See Figure 6-4 for examples of macro
listing.

~I
0000
0000
0000
0000
0000

51
~I
~I
~I

51 5440
0002
00021 524C
0004
00041 0443 OOFF
0006

2 paremeters in 11£:
%1 - the emount to add to

register that is passed as %2
i %2 - register neme
. macro He
edd #'41, %2
.enlin

paremeters pes sed to etc:
%1 - Mlount to subtract

from register %2
i %2 - register nMle
. macro etC
sub '%1, %2
.enlin

.proc HacrcfxMlple
11£ 2, dO

iOO '2 dO
11£ 1, e4 '

iOO '1 !14
C£C $ff, d3

SLe #$ff, d3
.end

Fi~ 6-4
Macro Listing

6-15

Wo.d<shop User's Guide

6.5.6 File Directive
JNCLLDE <filerane>

The Assembler

Causes the contents of <filename> to be assembled at the point of the
.INCLUDE. You need not specify the . TEXT suffix. An included fHe cannot
itself contain an .INCLUDE statemenL

6.6 Cormulication with Pascal
Assembly language routines must be called from a Pascal program. In order
to call an assembly language routine, the Pascal program declares the
assembly language procedure or function to be EXTERNAL. If the assembly
routine does not return a value, declare the assembly routine as a
PROCEDURE in the Pascal program. If a function result is to be returned
from the assembly routine, declare it as a FUNCTICN in Pascal and space for
the returned value is allocated (by the Pascal Compiler) on the stack just
before the function parameters, if any. The amount of space allocated
depends on the type of the function. A Longint or Real function result takes
two words, a Boolean result takes one word with the result in the high order
byte, and other types take one word. A Boolean result of 0 indicates false,
any non zero value indicates true.

f'o.lJTE

Assembl y language programs are in read only memory segments. Thus
they have no data space to write into. Any data space needed must be
allocated by the Pascal Compiler. A pointer to the space is then
passed to the assembly language routine. "Writes" to the data space
are done by pointer references using modes like (Ax), i(Ax), etc. For
examples of this technique see Section 6.7.5

In the following example, an assembly language routine is linked to a Pascal
program. The assembly language routine accepts two integers and returns the
logical AND of them. The Pascal host file is:

PROGRAM BITTEST;
VAR I, J: INTEGER;
FUNCTIOO ICIld(i, j INTEGER): INTEGER;

EXTERNAL; (* external = Assentll y language *)

BEGIN
i := 255;
j := 33;
MUTELN (I, J,' AN) = ., ICIld (I, J»;

Bt).

6-16

WoIkshop· User's Guide

The Assembler file is:

.FlJ£
tlJVE.L
tlJVE._
tlJVE.W
ANl._
tlJVE._
.:tP
• EM)

IAN)
(A7)+,AO
(A7)+, DO
(A7)+,01
01,00
DO, (A7)
(AO)

; return address
; J
; I
; I AND J

Tile Assembler

; put flllCtion result (Xl stack

In the example given above little attempt has been made to make the
assembl y language procedure mimic the structure of a procedure generated by
the Pascal Compiler. A complete description of this structure requires some
preliminary discourse.

6.6.1 The RlI'l-Time stack
Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment is large enough before the procedure is
entered, the Compiler emits code to 'touch' the lowest point that will be
needed by the procedure. If we 'touch' an illegal location (outside the current
stack bounds), the memory management hardware signals a bus error that
causes the 68000 to generate a hardware exception and pass control to an
exception handler. See the Lisa Hardware Manual for more information on
the memory management hardware. This code, provided by the cperating
System, must be able to restore the state of the world at the time of the
exception, and then allocate enough extra memory to the stack that the
original instruction can be reexecuted without problem. To be able to back
up, the instruction that caused the exception must not change the registers, so
a TST.W instruction with indirect addressing is used.

In the normal case, the procedure's LINK instruction should be preceded by a
TST. W e(A7), which attempts to reach the stack location that can accomodate
the static and dynamic stack requirements of the procedure. If the static and
dynamic stack requirements of your assembly language procedure are less than
256 bytes, you can assume that the Compiler's fudge factor will protect the
assembly language procedure, so the TST.W can be omitted. If the
requirements are greater than 32K bytes, e(A7) may not be sufficient because
only 16 bits of addressability are available. In this case, the Compiler
currently emits code that in some cases looks like:

tlJVE.L A7, AO
SW.l lSize,AO ;'size=dyranic + static needed
TST._ (AO)

If the Compiler option D+ is in effect (the default), the first eight bytes of
the memory area following the final RTS or JMP (AO) contain the procedure
name, in upper case (produced by the Pascal Compiler~ The Debugger gets
the procedure name from this block, allowing you to use procedure names in

6-17

Workshop User's GlIjde The Assembler

the Debugger. The following example shows how an assembly language
programmer can provide the Debugger with information it needs to perform
symbolic low level debugging. Note that all procedure names must be in
upper case to be compatible with the Debugger.

I

; ASSEtft. V LAtGJAGE EXAtR.E

OEBOOF • EQU 1 ; true => allo. debugging .ith
; proc flaIIES

; t-EAD -- This MACRO ca1 be used to signal the
; begiming of an assentll y language procedure. I£AD
; should be used \\!hen yw do not ..-.t to build a stack
; fraoo based on A6, but do IIICI'lt debugging information.

; No arQll1El1ts

;
· ,
;
· ,
;
;
;
· ,
· ,
· ,
;
· ,
· ,
· ,
;
· ,

.MACRO J-EAD
.IF DfBt..G=

LINK A6,IO ; fancy NP used by Debugger
.ENDC

.EtD1

TAIL -- This MACRO can be used as a generalized exit
selJJ9I1Ce. There are tw cases. First, if you build
a stack fraoo, TAIL can be used to t.I1do the stack
frCIIE, delete the parCIIEters (if any) and return.
Second, if you do not want to build a stack frame
based on A6, this MACRO cal be used to si~l the
end of an assentll y language procedure. In either
case if DEElJGF is true, the Procewre nanE
is dropped by the MACRO as an 8-charaCter 1lCIIE.

T.o argtJlB'lts:
1) tUtJer of bytes of paranEters to delete
2) ProceciJre _ NanE as string exactly 8 characters,

IIlJst be l.4JPer case.

.MACRO TAIL
lH..K A6
.IF %1 = 0

RTS ; 0 bytes of parCllEters
. ELSE

.IF %1 = 4-
tIlVE.L (A7)+, (A7) ; 4 bytes of paralBters
RTS

6-18

Workshop User's Gujde The Assembler

;
; . ,
; . ,
;
-,

• ELSE
tIlVE.L
ADO ••
..l'P

.ENOC
.ENlC
.IF DEBlIlf

. ASCII %2
.ENlC

.EtD1

(A7)+,AO
H1,A7
(AO)

; put return addr into AO
; reroove parans from stack
; return to caller

The following exatp1e denD1strates the use of the
TAIL macro for the purpose of debugging. The exaJ1l1e
assunes that you want to build a stack frane based
on A6. In a real assentJ1y language proceWre the
zeroes below would be replaced by the local size and
paraneter size.

.PROC SII'PlE
LINK A6,1O ; zero bytes of locals
rtF ; body of procedure
TAIL 0, • SItPlE • ; zero bytes of paraneters
• EN)

These two macros, HEAD and TAIL, can be used to make it easier to debug
assembl y language routines called from Pascal programs.

Upon entry to the assembly routine, the stack is as shown in Figure 6-5.

6-19

WOfkshop User's Gldde The Assembler

C81len Stack Frame
~- .,.

C8llen Dynamic LInk --~ .. ,

Ft.rotlon Result (if 8 flnctlon)
. _.

ProceOJre ArgLments (If ~y)

static LInk (If ~y)
-

Return Aadress

Dynamic LInk (Old 1(6) ~

Local Frame

DyrwnI.c Stack Area
Low Memory

Figure 6-5
The Pascal RtJl-TIme Stack

The finctimmsult is present only if the Pascal declaration is for a function.
It is either one or two words. If the result fits in a sIngle byte (a boolean,
for example), the most significant half (the lower-addressed half) gets the
result value.

P.rocedtJm arguments are present only if parameters are passed from Pascal.
They are pushed on the stack in the order of declaration. All reference
parameters (parameters declared as VAA.'s in the Pascal Procedure or Function
declaration) are represented as 32-bit addresses. Value parameters less than
16 bits long always occupy a full word. A boolean parameter passed by value
occupies a word with the value in the most significant byte (the
lower-addressed byte). All non-set value parameters larger than 4 bytes are
passed by reference.

The static link is present only if the external procedure's level of declaration
is not glObal. The link is a 4-byte pointer to the enclosing static scope.
It is the responsibility of the assembly language procedure to deallocate the
return address, the static link (if any), and the parameters (if any). The SP
(stack pointer) must point to the function result or to the previous top of
stack upon retum Registers D4 through 07 and A3 through A7 must be
preserved. We recommend that you also preserve 03 and A2..

6.6.2 Register Conventions
The followIng are the register conventions used in the Lisa system. It is your
responsibility to preserve these registers.

6-20

Wo.rksfJop User's Guide The AssentJler

DO-D2/AO-Al: Scratch registers (can be clobbered)
D3,A2:
D4-D7/A3,A4:
AS:
A6:
SP:

Scratch registers, but should be preserved
Used for code optimization (must be preserved)
Pointer to user globals (must be preserved)
Pointer to base of stack (must be preserved)
Top of stack

. Registers 03 and A2 may be used at some time in the future by the Compiler
for code optimization, so you should preserve them also.

6..6.3 Panmeter Passing Between Pascal Bld Assembly L~
Parameters are passed between Pascal and assembly languagp. routines in the
following ways:

by value:
boolean a word on the stack with the boolean value in the

most significant byte of the word (lower, or even
address~

integer a word
longint two words
data structure by address (4 bytes~ It is the responsibility of the

assembly language routine to interpret the data
structure correctly.

by reference (VAA parameters):
all types by address (4 bytes on the stack)

6.7 Assembly L~ E>alllies
6.7.1 Using .REF and .DEF Directives

The first example illustrates the use of .REF and .OEF. These two directives
allow an assembly language routine to reference other assembly routines.

The Pascal host file is:

program lasteTime;
procerure lait (tinE : integer);

external;
begin

writeln ("Going to waste SOOE tiRE");
wait (50);
writeln ("Finished wasting time");

end.

The assembly language file is:

.proc wit

. ref cycle

. ref IIDre time
fJDVe.l (a7)+, aO

; need to use a piece of code
; mse entry point is cycle
; defined outside procedUre wei t
; another outside procedure
; return address in aO

6-21

Wod<sflop User's Guide

ODVe.W (a7)+,dO

jsr cycle
jsr nore tinE
jnp (ao)-

The Assembler

; need to wait this many cycles
; a parameter for cycle

; waste rore tine
; return

; the Slbroutine used by wait is defined in the
; following code. this proc could do other things
; besides the cycle routine
.proc def_cycle
.def cycle ; cycle visible to other procs
,
; code can go here
;
rq>

cycle

sti>
roe
rts
,

'1, dO
cycle

; exalq)le of a lIne of code
; beg1ming of the cycle routine
: parameter Is In dO

; rore code can go here
;
.proc
clr

ill add
bne
rts

.eM

rore tinE
dO -
12, dO
al

6.7.2 string Parcmeters

; waste rore tinE
; use dO as tillEr

The followIng program illustrates how to pass a Pascal strIng to an assembly
language program, modify the string, and return it Pascal strings have their
length stored as the flrst byte In the string.

I\IJTE

Assembly language routines are in read only segments and do not have
their own data (read/write) area. All read/write data should be
declared in Pascal and passed to the assembly routines using pointers.

6-22

Wod<sllop User's Guide

The Pascal source file is:

progran pasStr;
type strType = string[80];
var str : strType;

ch : char;

procedure AsmStr (var str strType);
external;

begin
str := 'initial string in Pascal main progrcw";
writeln (str);
AsmStr (str);
writeln (str);
writeln;
write ('press any key to continue');
read (ch);

end.

The assembly language file is:

.proc AsmStr

Tile Assembler

move. 1 (A7)+,AO
move.l (A7)+,Al
move.l A2,-(A7)

;return address saved in AO
;address of string from Pascal
;save scratch register A2

lea
clr.l
nDve.b

roVe.b
copy subq

blo
move.b
bra

done move.l
jnp

size .byte
myStr

.alig-a

size,A2
00
(A2),OO

(A2)+, (Al)+
11,00
done
(A2)+, (Al)+
copy

(A7)+,A2
(AO)

38
. ascii
2

6.7.3 writing a Ft.I1Ctim

;get size of string

;copy size of string
;done copying string?
; yes, return to Pascal
; one char of string

;restore scratch register
; return to Pascal

'this string is from the lisa Assembler'
; get on a word bolrldary

The following example shows how to write a function in 8ssembl y language.
This function returns a boolean value.

6-23

Workshop User's Guide

The Pascal program is:
program boolecn=l.IlCtion;

var int: integer;
ell : char;

fLllCtion swapBytes (var int : integer) : boolean;
external;

{ if a parmeter is passed by reference
(8 var parameter) its addesss is passed
to the assenoly routine on the stack }

begin
int := 256;
l1'iteln Cthe initial value of int = " int:1);
repeat

if swapBytes(int) then
writeln ('int = " int:1)

else writeln ('int = 0, function value is false');
int := int - 1;

until (int < 0);
tn'ite ('press CI'ly key to continJe');
read (ch);

end.

The assembly language function is:

. fl.llC swapBytes

rove.l (A7)+,AO
move.l (A7)+,A1

rove (AI), DO
ror '8,00
rove ~O, (AI)

; pop return address
; get address of .oro to swap

; get the t'UltJer
; swap the bytes
; put it back

The Assembler

bne
elr
bra

ii1
(A7)
i12

; rutJer = 0 so return false (0)

ii1 IIDVe

i12 j~

. end

I$fFFF, (A7)
(AO)

; return result true (non zero)
; return to calling program

6-24

Workshop User's Gujde The Assembler

6.7.4 Calling Pascal 110 Routines
The following example illustrates how to call Pascal routines from assembly
language to do I/o. Note the use of macros for calling the Pascal routines.
progran AsmIO;

type strType = string[80];

var str:strType;
fl, f2: text;
ch: char;

procedure main;
external;

{HE FOlLOWING FUNCTIONS ARE CALLED FROM THE ASSEtB..V LANGUAGE
PROGRAt1 MAIN TO PERFORt1 I/O}

function f_re~rite (f_num: integer; f name: strType):integer;
begin

case f run of
1: rewrite (fl,f name);
2: rewrite (f2,f-name);

end; -
f rewrite := ioresult;

end;
function f reset (f num: integer; f name: strType): integer;
begin -- --

case f run of
1: reset (fl,f name);
2: reset (f2,f-name);

end;--

f reset : = ioresul t;
end;
procedure writeLine (f_num: integer; var S: strType);
begin

case f num of
0: .itte (s); {file id = 0 REans write to -console}
1: .rite (fl,s);
2: write (f2, s);

end;
end;

procedure writeLF (f_Il1m: integer; var S: strType);
begin

6-25

WOJ1<shop User's Guide

case f run of
0: .rite In (s);
1: .riteln (fl, s);
2: .riteln (f2, s);

end;
erd;

procewre f_close (f_ruR: integer; lock_file: boolecJ1);
begin

case f run of
1: if lock file then

close-(fl,lock)
else

close(fl);
2: if lock_file then close(f2,lock)

else close(f2);
end;

end;

{TIE HAIN PROGRN1 CAllS TI£ ASSEtB..V lNOJAGE HAIN}

begin

The Assembler

writeln ('test progran - using assentJly main routine to do I/O');
. writeln;
lIBin;
write (Ipress any key to continue l

);

read (iflll.l't, ch);
end.

The assembly language file is:
.proc main

;==
; EXTERNAl REFEREta:S AN) flWSTANTS
;==

. ref .ri telF

. ref .riteline

. ref f re.ri te

. ref f-reset

. ref f:=close

first file . equ
printerId .equ

I
2

; id , of file one
; id , of file '-printer'

; return address to the Pascal main routine is left on the stack

6-26

WorksIqJ User's Guide The Assembler

;======================================
; twalS TO CALL PASCAL. FlI£n~
;======================================

ii1

iil

.macro open_write_file
; '1 --- file ,
,
clr

~ --- fIle name
-(a7)

rove "1, -(a7)
lea ~,aO
rove. 1 aO, -(87)
Jsr f rewrite
rove (87)+,aO
ble ill
error ~

.erdn

.ECro open_read_file ; '1 --- file ,
,
clr

%2 --- file name
-(a7)

lOOVe
lea
lOOVe.1
jsr
IOOVe
ble
error
.erdn

"1, -(a7)
~,aO
aO, -(a7)
f reset
(87)+,80
ii!
~

.macro write file
; '1 --- fife ,

; reserve space for f~tim
; result fJ'(JII f -re.rite
; file id , as first param
; secoRj paran 1s f1le name

; pop Ioresult

; IDresuit > 0 -> error
; (nested macro call)

; reserve space for f~tim
; resul t of f _reset

; Jq) IDresul t

; IDresuit > 0 -> error

; write a line (with no linefeed)

; %2 --- label of string to be written
IOOVe "1, -(a7)
lea %2,al
rove. I al, -(a7)
Jsr writeLine
.erdn

; puSh string address mto stack
; write it out

.ECro writeLn_file ; write a line of text with
; l1nefeed

; '1 --- file ,
; ~ --- label of string to be written

6-27

Wo.rksl1Op User's G.dde

rove
lea
rove. 1
jsr
.erdn

"1, -(a7)
~,a1
a1, -(a7)
writeLF

.macro close file ; '1 --- fife •

The AssemIJler

; puSh strirg address onto stack
; write it out

; ~ --- close status code
; 0 - $(lOff normal close
; SOloo - $ffff lock
move '%1,-(a7)
rove '%2,-(a7)
jsr f_ClOse
.erdn

.macro error
; %1 --- file name
write_file O,errstr

writeln file 0,%1
rts -
.erQn

; write error message
; to -console
; (file id • 0)
; output file rane also
; quit

;=====================================
; MAIN ASSEt&. Y lNGJAGE PROGRAM
;=====================================

open_write_file first file, filel ; open IO/record. text
operLwrite_file prtnterld, printer

writetn_file O,openstr ; write the openstr
; to -console (file • 0)

writeLn_file first_file, string ; write string to
; first file

wrlteLn_file prlnterld, strl ; write -strl to printer

close file first file,S0100 ; lock first f1le
Close=file prlnterld,O ; do not lock the printer

open_reed_file 1,filel ; no error ShoUld occur
close_file 1, Sffff ; preserve filel

6-28

; no errFile arot.I1d, should
; cause error.

Wo.rf<shop User's Guide

rts

;===============
; D:WSTMTS
; ===============

file1

printer

string

strl
myStr

openstr

errStr

errf1le

. byte

. ascii

.aligl

• byte
. ascii
.aligl

. byte

. asci 1

.aligl

. byte

. ascii

.allgl

• byte
. ascii
.allgl

. byte

. ascii

.al1gl

. byte

. ascii

.allgl

• end

7l1e Assembler

; book to Pascal main
; program

14
I IO/record.text,
2

8
"-printer"
2

38
'this string is from the l1sa Assembler'
2 ; make sure on even menDry

34
'another string fran lisa Assenoler'
2

26
'opened f1le lO/record.text'
2

22
• error in opening file '
2

6
'nofile '
2

6-29

Wo.lksfJop User's Guide The AssetmJer

6.7.5 Using Pascal Data Areas
Assembly language routines are In read only segments and do not have a data
area. Any data area that must be written into must be declared in the Pascal
program and referenced in the assembly language program by pOinters. The
following two examples illustrate the correct and incorrect ways of doing this.
The correct example illustrates how to do a READLN from an assembly
language program.

The first example illustrates the "obvious" and incormct way of doing a
READLN from an assemb} y language program. The Pascal program is as
follows:

progran AStIleI.oo;

{ BAD EXNR..E: Note that this exanple does not Mlrk, because
it tries to write into a IIBIIlry space reserved by the
Assen'bler. Data space RUst be set l4l in the Pascal progran
and refel'ereed by a pointer variable. The following eX8lple
illustrates the correct way of doing this. }

type
Passtr = string[2S5];

var
ch: char;

procedJre w _ wri te(S: Passtr);
begin

write(s);
end· ,

proceWre w_writeln;
begin

writeln;
end;

proceWre w_readln(var s: Passtr);
{ read a line frooa -cctQl.E ald put it into

(write to) strit":J s }
begin

readln(s);
end;

proceWre main; external;

begin {AStIlenD}
main; { call to assenbly lmguage routire }
wri te("1llat I I S all folks, type space to contirue I);

6-30

Workshop User's Guide

repeat read(ch); lIltil ch = • ';
end. {AStI)efII) }

This is the corresponding incorrect assembly language program:
.proc main

.meIO

lea
rove. I
jsr
.ench

. macro

'1, an
aO, -(a7)
,,_.rite

jsr "_.riteln
.endn

. macro

; (s: passtr)
; %1 = string label

; no parameters

; (var s: passtr)
; %1 = string label

The Assembler

- ===================================

lea

111M!. I
jsr
.endn

~ Put the address of the string into
; .. ich a line is to be read 00 the
; stack and call Pascal rrutine to
; read the string.
; ===================================
'1, aO ; lhis space has been

aO, -(a7)
._readln

; reserved for the string.

=============================== ,
; t1AIN ASSEtII.. V LANGUAGE PROOfWt
; ===============================
a .rite stringl
a-.riteln
a=.rite hello

6-31

; lhis .ill .rite a string
; and a neWline.

Workshop User's Guide The Assembler

; =========================
a_readln stringspace · NlTE: this .ill fail ,

; .i th a bus error
· becaJse stringspace is ,
; in progran space (read
; ooly), not in read/vite
; IRBIIDry space.
; =========================

8 .riteln stringspace
rts

hello . byte 13
. ascii 'Type a line: ,
.aligl 2

StringSpace . block 256 ; save SOlIE space for a
; readln. This block of
· IlEllDry is in progran ,
; space, therefor it is
· read ooly. ,

.aligl 2

Stringl . byte 39
. ascii 'This string is from the lisa Assembler.'
.aligl 2

• end

This is the COfnJCt way of doing a READLN from an assembly language
program. Note that the string "s", declared in the Pascal program, is used in
the w_readln function and passed to the assembly language program by
pointer.

progran AStIlenIl;

{ GOD EXAtfllE: This exanple does a readln by using a pointer
variable as 8 par8lEter. This alla.s the string to be
reserved by the Pascal ~11er. }

type
PasStr = str1ng[2551;
8yteP = APasStr;

var
s: PasStr; {this string is allocated in read/wite

IIBJI)ry by the Pascal ~iler }

6-32

Workshop User's Guide

ch: char;

procewre w_write(S: PasStr);
begin

,rite(s);
end;

procedure w_writeln;
begin

writeln;
end· ,

function ,,_readln: 8yteP;

The Assembler

{ This fU1Ction reads a line into the string s (space
allocated by the Pascal CoIJ1liler in read/write IlEllDry
~t) CYld returns address of s to assenbly routine }

begin
readln(s);
,_readln := pointer (as);

end· ,

procedure main; external;

begin {AStIlenD}
min; { call to assentJly lagJage routine }
write('That"s all folks, type space to continue');
repeat read(ch); l6ltil ch = • ';

end. {AStflenI) }

This is the correct assembly language program:

.proc main

. ref "_"rite, __ writeln, w_readln

. macro 8 _rite ; (s: passtr)
; '1 = string label

lea %1, aO
rove.l 80, -(a7)
jsr w_write
.enctn

. macro a_writeln ; no paranEters

jsr w_writeln
.endm

6-33

WO.lkshop Llser's Guide

hello

String1
. ascii
.ali~

; flllCtlon ._reacHn: ByteP;
; ==
; This flllCtlm expects the Pascal routine
; w_realnn to return the pointer to the
; string 10 .. lett a line has been read

elr.l :<;;)=====================================
jsr "_readln
.enm

a_write stringl
a writeln
a-write hello
a:=readln

jsr ,,_write

a writeln
rts

. byte

. ascii

.aligl

13
'Type a line: '
2

.byte 39

; this "ill "rite a string
; and a ne.line

; leaves the address of
; string read at top of
; stack
; takes top of stack as
; parallEter

'This string is from the Lisa Assembler.'
2

.em

6-34

Chapter 7
The Linker

1_1 l1"e Unker ___ : ___________ 1-1

1.2 Using the linker __ 1-2
1.3 l1"e Unker Options ___ 1-2

7_4 How Do I link a Main Program? _____________________________________ 7-4

7.5 RegulS' and Intrinsic Units __ 7-4
7_5_1 How Do I Link with a Regular Unit"? 7-5

1_6 l1"e Unker listing __ 1-5
7.7 Resolving External Names ___ 7-6

7_8 Module Inclusion _' _______________________________________ . _______________ 7-6
1_9 ~ation ________________ . ___ 7-1

See also the Release ... ,,(0 Notes for this chapter.

The Linker

7.1 The Lin<er
The Linker combines object files. Its input consists of commands and object
files. Its output consists of object files, link-map information, and error
messages. The output of the Pascal compiler must be linked with
IOSPASLIBJEJ before it can be executed. Other object files, including
Intrinsic unit libraries, and object fUes produced by the Assembler, can also be
linked into the output object file.

When a program is compiled into an object file, it contains the following sorts
of things:

• Cbject code, in the form of relocatable machine language, that expresses
the algorithm of the program.

• Symbolic (named) references to all locations that were not known at
compile time. These include externally compiled routines (units and
intrinsic units) and the Pascal library support routines (IOSPASLIB'(EJ~

• Other information to be used by the Linker.

The purpose of the Linker is to resolve all the symbolic references (link
references to definitions), and output an object file that can be executed. The
Linker also sorts the code modules into named segments. These segments are
swapped into memory at run time by the ~rating System.

The Linker does its work in two phases. In the first phase, it reads all the
input files, and finds all symbolic references and their corresponding
definitions. Errors such as duplicate and missing references are detected
during phase one. In the second phase, the Linker copies code from the Input
files into the output files in executable format

If the Linker canOt find something that is addressed symbolically, this is an
error. M error message will be printed, indicating the missing module. This
process of finding the real addresses that correspond to the symbolic addresses
is called msolving the extems) mf'eIEH7Ce~

The Linker expects to find the file INTRINSIC.L1B. INTRINSIC.LIB is a
directory of libraries and intrinsiC units, and includes information for the use
of the Linker. INTRINSIC.LIB defines all the intrinsic units supplied with the
Workshop system.

To create an executable fUe, the Linker must have the following inputs:

• The object file from a main Pascal program.

• IOSPASLIBJEJ to provide the standard Pascal procedUres and functions.

7-1

Workshop User's Guide Tfle Linker

• IOSFPLIB.03J" If you are using any floating point variables.

• ():) ject files for any other external procedures referenced by the main
program. These can be Pascal units" assembly language routlnes" or
intrinsic units defined in INTRINSIC.LIB.

The Linker combines these fUes and creates an executable object fUe. If It is
unable to link these fUes correctly to create a legitimate output file" the
Linker displays an error message. If there is an error" the object file is not
prodUced.

When linking a main program" all references to external objects must be
resolved. Partial links are not supported.

Whlle 1t Is lInkIng a main program" the Linker does a dead COde analysis and
does not include any routines that are not referenced. Unnecessary routines
are ellminated from the main program" and from the regular units gIven as
Inputs to the llnk.

7.2 USing the Lln<er
The Linker is started by pressing L in response to the Workshop command
prompt. The Linker prompts you for the input files, the listing file, and the
output fUe. ~tions can be entered after entering "?" in response to the input
file prompt. After all file names and options are entered, the link begins.
Hence the set of options in effect is the same throughout the link. It is not
possible to change options part way through the link. When entering an input
file name, it is not necessary to enter the .CSJ extension; the Linker will
provide that as needed for input files.

The Linker will accept option commands and Input fIle names from a
command f11e. A command file Is a text file containing the flIe names and
options, one per lIne. If a blank Hne exiSts In the fUe, the Linker treats this
as the [RETURN] that signals the end of the 1nput fUes. You use a command
file by typing "<" followed by the name of the text fUe the commands are in.
It Is not necessary to enter the .TEXT extenSion; the Linker will provide that
as needed for all Input command fnes. Create the text fHe by using the
Editor.

The default listing is -console. You can send the listing to a text file by
entering its name in response to the listing file prompt. When sending the
listing to a text file, you do not need to provide the . TEXT extenSion, since
the Linker provides it.

After entering the ouput file name, the link begins. If no errors occur during
the lInk and all external references are resolved, the output fIle is executable.
A message is printed at the end of the link to tell you if the output is
executable.

7.3 TIle Lll1<er qltlons
To enter the Linker options mode" type "? [RETURN]' in response to the
prompt for an input file. To leave options mode and return to entering input
files, press [RETURN] in response to the options prompt. The order in which

7-2

Workshop User's Guide The Linker

options are entered is unimportant, because they have no effect until the link
begins. The last value entered for an option is the value used when the link
is performed.

~tions are represented by a single character. A U+" in front of the character
makes that option take effect. A U -" sets the Linker so that option will not
happen. In addition to being set on or off, some options have additional
parameters. Numeric parameters can be in either decimal or hexadecimal.
Hexadecimal numbers are indicated with a leading "$". The current setting
of all options can be displayed by entering a "?" in response to the request
for an input file or an option.
The Linker options are as follows:

+A Alphabetical listing of symbols. The default is -A

+0 Debug information. The default is -D.

-H num -H sets the initial disk space allocated to the program's stack.
The default is to automatically include space for the program
variables and the value specified in the +S option.

+L Location ordered listing of symbols. The default is -L. The
location is the segment name plus offset.

+M fromName toName
+M maps all occurrences of the segment fromName to the
segment toName. This allows you to map several small segments
into a single larger segment You can thereby postpone
segmentation decisions until link time by using many segment
names in the source code.

~

Because options have an effect only when the link begins, it is not
pOSSible to map a segment name to several different names using this
option. Also, you cannot use this option to map segments to or from
the blank segment

+S num +S sets the starting dynamic stacksize to 'nurn'. The default is
10000.

+ T num + T sets the maximum allowed location of the top of the stack to
'nurn'. The default is 128K

+ W + W tells the Linker to get intrinsic unit information from a file
other than INTRINSIC.LIB.

? Prints the options available and their current values.

7-3

Workshop USer's Guide TIle Linker

7.4 How Do I Lin< a fVIaIn Prognm?
A main progmm consists of a Pascal program llnked wIth all routines
necessary for It to run. A main program is the only type of executable object
fUe prOduced by the Linker. To link a maIn program you must haVe the
fOllowing:

• A compiled Pascal PROORAM Object file.

• (])ject files for any other units the program uses. This Includes flIes for
regular units and assembly language routines. My intrinsic units used
must be defIned In INTRINSIC.LIB.

• IOSPASLIB.CBJ, and IOSFPLIB.CBJ (if any real variables are used~

When you have all the abOve files, proceed as follows:

1. Execute the Linker by pressing tiL" when the Workshop command prompt Is
displayed. The Linker displays a header and asks you for an input flIe.

2. Enter any desired options. To enter the options mode, press If? [RETURN]'
In response to the request for an Input file. See section 7.3 In thIs
chapter for information on Linker options. Press [RETURN] after each
opUon entered. When you have entered all the opUons, press [RETURN] to
begIn enterIng input fIle names.

3. Enter the file names for all the object files, pressing [RETURN) after each
one. The file names can be entered in any order. You do not need to
enter the .CEJ extension; the Linker will automatically append it

4. Press [RETURN] to indicate the end of the Input fUes.

5. The Linker prompts you for a listing file. Enter the file name desired, or
press [RETURN] to accept the default of displaying the listing on the
-console.

6: The Linker prompts you for the output file. Enter the name of the
executable fUe you want prOdUCed. You do not need to enter the JEJ
extension; it is supplied automatically.

The linking process begins when you press [RETURN] after entering the output
file name. If the link is successful, the message "llJtput is executable" will be
displayed. If the link is not successful, error messages are displayed.

7 5 Regular ald Int.rlnslc Ullts
The two types of units are regular units and intrinsic units. Each is a
separately compUed code module that may be used by a main program or
another unit The syntax of a Pascal unit is explained in the Pascal
Reference Manual for tIJe Lisa.

A regular unit is combined with a main program by the Linker and included in
the resulting object file. An intrinsic unit" on the other hand, is stored
separately on the disk, and loaded at run time. Thus, only one copy of an
intrinsic unit is kept on the disk" no matter how many maIn programs use it.

7-4

WoIkslJop User's Guide The LiMer

In addition to being shared on the disk, an intrinsic unit is also shared in
memory.

The current implementation has no provision for users to create new
intrinsic units. All intrinsic units are supplled by Apple Computer.

75.1 How Do I lin< with a Regular UUt?
A regular unit is a separately complled segment of code. It is written in
Pascal, and compiled like a regular program. See the Pascal Reference
MBnlI81 for tile Lisa for information on how to write a unit see Chapter 5
in this manual for information on compiling the unit.

After you have created a unit, the routines in it can be accessed from any
other program or regular unit you write. The Linker combines a main program
with all units it uses. The result is an executable object file containing all
the needed routines.

To use regular units with a main program, follow the procedure in Section 7.4.
I\s input, you must give the Linker:

• The object file of the main program.

• The object files of all units used by the main program.

• IOSPASLIBJEJ, and lOOfPLIBJ13J (if any floating point variables are used~

The Linker combines all these object files into an executable object file. It
also does a dead code analysis to eliminate any routines that are not used, to
reduce the size of the object file.

7.6 The Linker Llstlng
A listing is produced each time a program is linked. This listing can be sent
to a file, or displayed on the console (the default~ The +A option gives you
an alphabetical list of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced in stages, as follows:

1. The input files are read, and a summary of the resources used is printed.

2. The llnking process begins. Information aboUt the size of each segment is
printed.

Errors are reported as they are found, and you are told whether or not the
output is executable.

If you requested optional listings, they are also printed. An example of a
Linker listing with no options requested is shown in Figure 7-1. Linker
listings are mainly used for debugging at the machine code leveL See
Chapter 8 for more information on the Debugger.

7-5

Workshop User's Guide Tile Linker

B~glnnlng Inory - 262~ee
After static allocation, anory - le6815
Input fll~ ['OBJ] ? TRANSVOL
Input fllo LOBJJ ? 10SF'ASLIB
Input file ['OBJJ ?
Listing fl Ie [CONSOLE!]/[. TEXTJ -
Output fll, [, ODJ] - TRANSF"ER]LS
Reading fll.1 TRANSVOL.OBJ
Reading flit! IOSF'ASLlB.OBJ
Rtad 2 fllu, IIX' 18e

4 segunh, 11)(' 128
16 udulu, 11)(' 1459
32 .ntrlu, 11)(' 2ee8
3e ref. lists, 11)(' eeee

124 rl!hrencos, IIX • 168ee
LI nk Ing Ha In F'rogr
Active: 4 of 16 read.
Vlslbll!: 1 of 32 rud.
Global dahl S99967C
Co .. on dahl See98e8
Link Ing ngunt HI 8 I fli. un IlIg! 1 .Iz.. 2gee

Bpglnnlng leury - 184487
Ending ... orl/ - 184932

9 Error. d.t.ctod.

Tht output 15 e)(ecuhbl,.
ElapSl!d tll.1 298 and 384/1989 ncondl.
That'. all Folks!!! •••

Fi~ 7-1
A Lin<.er Listing

7.7 Resolving External Nanes
An external name is a symbolic entry point into an object module. All such
names are visible at all times--there is no notion of the nesting level of an
external name. External names can be either global or local. A lOCBl f18IT7e
begins with a $ followed by 1 to 7 digits. Local names are generated by the
Pascal compiler. A globBl nBn7e is any name that is not a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global names are not allowed. 011y one definition of a given
global name can occur in a given link. The one exception to this is that the
Linker accepts duplicate names where one instance is in a main program or
regUlar unit, and the other is in an intrinsic library file. In this case, a
warning is issued, and the entry in the main program or regular unit is used.

The scope of the local name is limited to the file in which it resides. All
references to a given local name must occur within the same input file.
When a link is done, global names are passed through to the output file
unmodified, but local names are renamed so that no conflicts occur between
local names defined in different files.

7.8 Module Inclusim
When linking an intrinsic unit, all code modules in the unit are included.
When linking a main program with regular units, the Linker does a dead code
analysis and does not include any modules that are not called.

7-6

Workshop User's Guide The Linker

7.9 8egnentaUon
Segmenting a program makes it possible for portions of the program that are
not being used to be swapped out to disk, thus making better use of memory.
The way a program is segmented affects its performance.
Segmentation is controlled by three things:

• The $S Compiler command and the .SEG Assembler option, which assign
segment names to source code modules.

• The +M Linker option, which enables you to remap compiler segment
names into new segment names.

• The ChangeSeg utility, which enables changing the segment names prior to
llnklng. See Chapter 10 for information on Changeseg.

7-7

Chapter 8
The Debugger

8_1 1119 ~ ._ •• _._. __ • __ ••. ___ • ___ • _____ • _____________ • ___ • __ •• ________ ~1

8.2 Ift8IiIertert. Entry ir*o the [)ebI1ggeI" ____ • ___________________________ • 8-1

8.2.1 Program Bugs
8.2.1.1 Program Errors 8-2
8.2.1.2 Terminating an Infinite Loop 8-4
8.2.1.3 User Break ... 8-5

8.2.2 System Malfunctions .. 8-6

8_3 l.Jsirtg the DeIJugger . ___ • __ •. __ •• ___ • ___________________ . ___ • ___ • ________ 8-6

8.3.1 Examples of Using the Debugger
8.3.2 A Pascal Example: Range Errors 8"'8

8_4 TtIe ~ CtJillnelits •. __ •• ___ . _______ . ___________ . _______ . ___ • ___ 8--10
8.4.1 Definitions _ .. 8-10
804.2 Display and Set Memory Locations
8.4.3 Finding Patterns in Memory 8-12
BAA Set and Display Registers•.. 8-12
804.5 Assemble and Disassemble Instructions 8-13
804.6 Set Breakpoints and Tracers................................ 8-13
8.4.7 Manipulate the Memory Management Hardware 8-15
BA.8 Timing Functions _ .. 8-16
8.4.9 utility Functions ... 8-17

8.4.9.1 Symbols and Base Conversion 8-17
8.4.9.2 Moving the Debugger Window 8-18
8.4.9.3 Setting the NMI key 8-18
8.4.9.4 Printing from the Debugger•..
8.4.9.5 Dumping Memory to Diskette 8-19

8..5 SWnrrBy fI ~ Coil.ltelats ___ unnnn ____ n __ unn ______ nn 8--20

See sJso the Release :1.0 NotllS for this ChBpter."

The Debugger

8.1 The Deb Jgger
The Debugger allows you to examine and modify memory, set breakpoints,
assemble and disassemble Instructions, and perform other functions for
run-time debugging.

Procedure names are available to the Debugger for program units compiled
with the D option on. The DebUgger uses the symbolic names wherever
appropriate.

The Debugger"s symbol table contains the user symbol table and the
distributed procedure names. The user symbol table contains symbols the user
defines while using the DebUgger and the predefined symbols for registers.
Section 6.6 in this manual contains more information about the N'l-time
environment of programs.

When you enter the Debugger, the Debugger screen is made visible by the
Debugger. You can display the main screen by pressing [CPTICN) and [ENTER)
to see the state of the program before the Debugger was entered. Redisplay
the Debugger screen (by pressing [CPTICNHENTER] again) to continue with
debugging.

8.2 Inadvertent Entry into the Debugger
Accidental entry into the Debugger can be caused by a bug in the program
you are running or by some malfunction in the system. A message from the
Debugger will suggest the type of problem. The messages and. the actions you
can take for program bugs are described in Section 8.2.1 below. System
malfunctions are described in Section 8.2.2.

8.2.1 Program Bugs
You can enter the Debugger while your program is executing for any of the
following reasons. More information on these conditions can be found in the
fVlC6800016 Bit Microprocessor User's M8171.18l

• A value range error

• AA illegal string index

• A bus error or address error

• M illegal instruction or a privilege violation

• Integer dIvision by zero

• Spurious interrupt or unexpected exception

• OVerflow when TRAPV is executed

• Line 1111 Emulator

8-1

Worksllop User's Guide The Debugger

• System malfunction
• Intentionall y ~ by pressing the NMI key. This is the way to terminate an

infinite loop (When .-period doesn't stop your program~ Do not use NMI
when running system programs.

Usually the system will tell you the most appropriate action to take~ for
example~ "type 9 to continue". Follow these instructions unless you have a
speCial reason for doing something different.
Programming errors are described in Section 8.2.1.1 below. Stopping an
infinite loop is described in Section 8.2.1.2 below.

8.2.1.1 Program errors
I f you have an error in your program it will drop into the Debugger and
display one of the following messages:
If a range check error occurs in application code~ the message displayed is:

or:

VALUE RANGE ERROR in process gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabu~ type g to continue.

ILLEGAL STRING INDEX in process of gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisab~ type 9 to continue.

where:
<gggg>

<vvvv>
<nnnn>
<uuuu>
<pppppp>

<cccccc>

is the global process 10 of the process that incurred the
exception.
is the value that is outside the range.
is the lower bound of the range.
is the upper bound of the range.
is the address of the statement after the call to the range
check routine in Paslib.
is the address of the link field at the time of the call to
Paslib.

OUring execution applications can field hardware exceptions. Refer to the
MC6800016 Bit Microprocessor User's Manl/BJ for definitions of these
hardware exceptions. If such an exception occurs~ the system displays one of
the following messages:

8-2

Womsl7op User's Guide The Del:Jtlgger

Bus error or address error exception:

EXCEPTION in process of gid <ggggp
Process is about to be terminated.
access address = <aaaaaaaa> = mmu# <mmm> (segment name), offset
<0000>
inst reg = <rrrr> sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type 9 to continue

Any other hardware exception:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type 9 to continue

where:

EXCEPTION is one of:
BUS ERROR
ADDRESS ERROR
ILLEGAL INSTRUCTION
PRIVILEGE VIOlATION
SPURIOUS INTERRUPT
UNEXPECTED EXCEPTION
ZERO DIVIDE
CHI(RANGE ERROR
OVERFLOW
LINE 1111 EMULATOR

<gggg> is the global IO of the process that incurred the exception.
<aaaaaaaa> is the address that caused the bus or address error
<1111111> is the segment number represented by <aaaaaaaa> and
<0000> is the offset within that segment
<rrrr> is the value of the instruction register at the time of the

exception
<ssss> is the value of the status register at the time of the

exception
<pppppp> is the value of the program counter at the time of the

exception
<xxxxxxxx> is the address of the saved register information

All numbers displayed are decimal; the segment name is displayed only if the
segment number makes sense to the qJerating System.

If the exceptIon is dIvIde by zero, overflow, or CHK out of bounds, the
process is not terminated and the line to that effect is not shown. If the
process has declared an exception handler for this exceptIon, control passes to

8-3

Workshop User's Guide The Debugger

the handler after you type g to LisaBug, and the process then continues
execution. If no handler has been declared, the system default handler
terminates the process. I f the exception is a bus error and the segment name
is 'stack seg', a stack overflow has probably occurred. To find your bug you
can do a SC (stack crawl) and IL (immediate disassemble) to find where you
are in the program. The instruction register tells you the exact instruction
being executed. The PC might be 2 to 10 bytes ahead.

You can declare an exception handler in your program to handle divide by
zero, overflow, or CHK out of bounds exceptions. Then your process will not
be terminated by the system if this type of exception occurs. You can also
declare an exception handler for the "SYS _TERMINATE" exception in your
program. This exception handler will then get executed if your process has a
fatal error as described above. This allows you to clean up your program,
close your files, etc. (in this exception handler) before your program is
terminated. See the tperatJng System Reference /VIanlIal for the Lisa for
how to declare an exception handler.

8.2.1.2 TellTlinatlng CI1 Infinite Loop
NJTE

The following procedure should be used on user programs only. To
terminate a systems program use .c-period.

If your program is in an infinite loop, or appears to be doing nothing, you can
enter the Debugger by pressing the NMI key (the - key on the numeric
keypad~ This will put you into the Debugger and show the trace display,
which looks something like:

Level 7 Interrupt
aaaaaaaa bbbb <instr>
PC=xxxxxxxx SR=xxxxxxxx US=xxxxxxxx SS=xxxxxxxx OO=d PROC=yyy
OO=xxxxxxxx 01=xxxxxxxx 02=xxxxxxxx 03=x:xxxxxxx
04=xxxxxxxx 05=xxxxxxxx 06=xxxxxxxx 07 =:xx:xx:xx:xx
AO=xxxxxxxx Al=X:XX:XX:XXx A2=xxxxxxxx A3=xxxxxxxx
A4=:xx:xx:xx:xx A5=xxxxxxxx A6=xxxxxxxx A7=xxxxxxxx
>

where:

aaaaaaaa is the current address
bbbb is the contents of the current address
<instr> is the current instruction disassembled
xxxxxxxx is the contents of the specified register
d is the current domain (0 - 3)
yyy is the process 10 of the interrupted process

This information is used in debugging your program. If your program is in an
infinite loop, proceed as follows:

8-4

Wo.lksl1t:p User's Guide The lJeIJugger

1. Check the domain (OO-d~ If the domain is zero, you are currently
executing in system code. You must be executing user code before you
can work on your program (domain 1 - 3~ See Section 8.2.1.3 "User Break"
below for a procedure to get you into user code.

2. Make sure you are in your own process, instead of another process that
may be running in the background. If the current address does not show
the name of one of your procedures, type SC (stack crawl~ The procedure
names displayed should be from your program.

3. If you are in a tight loop you can step the PC beyond it by using other
Debugger commands. In order to do this you must be familiar with 68000
aS8embi y language and the Debugger commands. Most often you wlll just
want to stop your program. This is explained below.

4. First make sure the domain is not zero. Type''PC 0" and press [RETURN}
This will cause an exception when you restart your program.

S. Type "G" and press [RETURN} Your program will restart, cause an
exception, and immediatly drop back into the Debugger with an exception
message that includes the instructions "Type g to continue".

6. Type ""G" and press [RETURN} Your program will be terminated.
82.1.3 User Break

The user break facility stops processing in user process code. Use this
procedure if the trace display indicates that the domain is zero. (Either
[)(J-1AlN-O or DCJv1AIN - n OVERRIDDEN TO 0.) The UBR command will set a
breakpoint at the next Instruction to be executed in the user process. To stop
your program in user process code, proceed as follows:
1. Type "UBR" and press [RETLRN).
2. The system will continue executing until it returns to user process code,

then it will drop back into the Debugger. You can now proceed to work
on your code.

8-S

Workshop User's Gujde The DeblIgger

There are two cases when UBR will not set a breakpoint. The first is
if the system is interrupted while a system process is running (PROCESS
= 0, 1, or 2~ The second is if the system is interrupted while the
scheduler is running and it has not chosen a process to run. If UBR
does not seem to be working, check for this as follows:

Type "10 PC-/!" and press [RETURN} If the STCP instrUction is
displayed, you are in the scheduler. You must press "G" and return to
start the system running again and press NMI again.

If your program is doing a READ or READLN, the system will display
the STCP instruction. The only way to continue execution is to press
"G" and enter something from the keyboard to satisfy the react

8.2..2 System Malftrlctions
If there is a system malfunction, the system will enter the Debugger with a
message indicating a system error or an EXCEPTICN display with the domain
zero. The message will include instructions telling you what command to
type. Ususally it will tell you to type OSQUIT. It may be necessary to type
this command several times.

If you are having problems with system malfunctions, call your support hotline
for more information. It will be useful to have copies of the messages that
were displayed. If you have a printer connected to the lower or upper port,
use PL or PU to generate a bug report

8.3 UsirY:J the Debugger
Type D to the command prompt to invoke the Debugger. It asks:

Debug what OS file?

Enter the name of the object file you want to debug. It is run with a
breakpoint set at the first instruction and drops you into the Debugger
immediately. The Debugger command prompt is >. The default radix is
hexadecimal.

Another way of getting into the Debugger is by pressing the NMI key, which
is the "_" key in the top row of the numeric keypad.

When you get the command prompt, the Debugger is ready to accept
commands that allow you to:

• Display and set memory locations

• Set and display registers

• Assemble and disassemble instructions

• Set breakpoints, patchpoints, and traces

8-6

Workshop User's Guide

• Manipulate the memory management hardware

• Set up timing buckets for execution timing

• Perform utility functions including:

• Symbol and base conversion

• Move the DebUgger window

• Print Debugger information

83.1 Exarf1l1es of Using the DebgJel
This section gives examples of how to use the Debugger. M explanation of
all Debugger commands is in Section 8.4. A summary of all Debugger
conmands is In Section 85.

I f you type a file name to the prompt from the Debug command, the
Debugger starts up with the program counter at the start of the program. To
see one instruction disassembled at 32F96, type:

>ID32F96

10 stands for Immediate Disassemble. Each subsequent 10 command, if given
without any address, disassembles the next instruction found. In addition to
printing the value of each byte, the Debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period.

To disassemble 20 consecutive addresses, type

>IL

IL, Immediate Disassemble Lines can also be followed by an address.
SUbsequent IL commands disassemble successive blocks of 20 consecutive
locations In memory.
If the object file being examined was compiled with the 0+ Compiler option,
the procedure names are available in the Debugger and can be used in any
expressions. For example,

>IL Foo 5

disassermles the first 5 lines of procedure ""Foo".

>BR Foo+40

sets a breakpoint 40 bytes into procedure "F 00".

8-7

Workshop User's Guide

You can also use labels in immediate assemblies:

>sy Ken 6000

>A Ken NCP

The Debugger

assembles a NCP instruction at the address "Ken", which in this case is 6000.

>A 6000

>Rich: JMP $100

> [RETURN]

enters the immediate assembler at 6000, defines the label 'Rich', and
assembles a JMP instruction.

8..3.2 A Pascal EXB"f1l1e: RB1ge Errors
The Debugger can be used for run-time debugging of Pascal programs. Its
displays and commands reference Pascal procedure names to make it easier to
debug programs. If your program has a fatal run-time error, it will drop into
the Debugger and give you a trace display. The trace display will include the
name of the procedure that was executing.

Ole common reason for dropping into the Debugger is if you get a range error.
Range errors can be caused by array indexes, string value parameters, and
assignments to variables of a subrange type. If you get a range error, you
will drop into the Debugger with the RANGE ERRCR exception message.

To help find the error in your program, give the Debugger an IL PC-20
command. This will give you a display of the previous 20 lines of assembly
code. You should see an instruction of the form:

CHK ~~<lim>, <data reg>

where <Urn> is an integer, and <data reg> is a data register (DO - D7~ Lim is
the allowable value. The contents of the data register is the actual value
that was out of range. The contents of all the registers can be displayed with
the TO (trace display) command.

Figure 8-1 shows a Pascal program that produces a check range error. Figure
8-2 shows the resulting Debugger display, with an explanation of what the
display means.

8-8

Workshop User's Guide The Debl.lgger

CD

program checK;
var ch:char;

procedure localproc;
var

i : integer;
a:array[O .. 10] of 1 •. 7;

begin
i := 9;
a[3] := i;

end;

begin
writeln(~press space to run ••. ~);
read(ch);
localproc;

end.

Figure 8-1
Pascal Program that Pnx1Jces a Check Rmge Enor

CHK RANGE ERROR in process of gid 25
sr = a pc = 2359330
saved registers at 13369278

Going to Lisabug, type 9 to continue.

Level 7 Interrupt /-0
LOCALPRO+BB1A 1D40 FFFS PC MOVE.B D8,$FFFSCA6)
PC=0B24e822 SR=BeeS' 'o~US=eeF7FBEC SS=eeCBFEEe DO=1 p#=eee19
De=ae1eee89 D1=8Bee~D2=aeaaaace D3=8ee2G4A7
D4=aeaaaSB1 D5=4EF9aa84 D6=12CC4EF9 D7=ae84aeaa
A9=BBF8126E A1=BBCCA22A A2=e9249a69 A3=9aCCA22A
A4= ~ 22A A5=BaF7FC44 A6=eeF7FBFA A7=aSF7FBEC
>il c-2e
0248S82 eBA4 8824 eeaa 4A6F EFF2 4E56 FFF2 3D7C •.. $ •• Jo .. NV .• =1

LOCALPRO+aeea 4A6F EFF2 LOCALPRO TST.I~ $EFF2(A7) ~
LOCALPRO+Be04 4E56 FFF2 LINK A6,#$FFF2
LOCALPRO+8eae 3D7C 8e89 FFFE I~OVE. H 1U8eS9, $FFFE (AG) S
LOCALPRO+8aaE 382E FFFE MOVE. I-! $FFFE(A~) e
LOCALPRO+ea12 320a MOVE.I-! DS,D1 7
LOCALPRO+0e14 5341 SUBQ.I·j tu1~
LOCALPRO+SB16 43BC aeeG CHK cge~ D1
LOCALPRO+0a1A 1D4e FFF5 PC ~MOVE.B ,$FFFS(A6)
LOCALPRO+0a1E 4ESE tt' UNLK A6
LOCALPRO+8e28 4E75 RTS
> pi Figure 8-2

01eck RcnJe oeD agger Display

8-9

Workshop User's Guide The Debugger

Notes:

1. Debugger display produced by check range error.

2. Actual value In 01. This is the value that was checked and found out of
range.

3. Disassembly command typed in to display the assembly language display of
the program causing the error.

4. Look for the CHK instructlon near the PC.

5. Note that the previous identifier is LOCALPRO, therefore the error
occurred near the beglmlng of LOCALPRO.

6. Value in register 01 was supposed to be in range 0 .. 6.

7. Pascal lower limit (~t$1) was subtracted from 01. Therefore the range in
the Pascal type was 1..7.

More Informatlon on the run tlme envIronment of a Pascal program Is found in
Chapter 6.

8.4 The DetxJgger COI.maI os
This section gives the definition of each Debugger command.
are grouped together according to function.

The commands

8.4.1 Deflnltlons
COnstant
$Constant
&constant
'ASCII String'
Name
Expr

Exprl1st
Register,

RegName

A constant in the default base.
A hex constant.
A decimal constant.
M ASCII string.
A symbol in the symbol table.
M expression. Expressions can contain names, regnames,
strings, and constants. Legal operators are + - * I.
ExpressIons are evaluated left to rIght. * and I take
precedence over + and -. (and) can be used to indicate
indirection. < and > can be used to nest expressIons. In those
cases where an odd value Is probably a mistake, the
DebUgger warns you that you are trying to use an odd
address. If you decide to go ahead, it subtracts one from the
address gIven. If the Compiler option 0+ was used,
procedure names are legal in expressions.
A llst of expressions separated by blanks.
The name for any of the 68000 registers, as follows: 00 .. 07
are the data registers, AO .. A7 are the address registers, the
program counter PC, the status registers SR, US, or SS. Note
that A7 Is SP (the stack polnter~
RoO .. R07, RAO .. RA7, PC, US, or SS. A predefined symbol In
the symbol table with a value set by the Debugger. The
value is equal to the value of the register in question. The
DebUgger automatically updates the values of these symbols.

8-10

WorkShop User's GlIide

The 'R' Is appended to dIstinguish the regIster names from
hexadecimal numbers.

8.4.2 Display cn:i set Memory Locations
The followIng commands display and set memory locations.

SM exprl exprllst
Set memory with exprlist starting at expr1. SM assumes that each element of
exprlist is 32 bits long. To load different length quantities, use sa or SW
described below. If the expression given Is longer than 32 bits, SM takes just
the upper 32. For example, if we ask the Debugger to:

SM 1000 'ABCDE'

it deposits the ASCII equivalent of "ABOD" starting at 1000.

sa exprl exprllst
Set memory in bytes with exprl1st starting at exprl.

SW exprl exprllst
Set memory in words with exprlist starting at exprl. Exprl must be an even
address, or the address will be rounded down to the nearest even address.
SL exprl exprllst
Set memory in long words with exprlist starting at exprl. Exprl must be an
even address or it will be rounded down to the nearest even address. For
example,

SL 100 1

is equivalent to

~ 100 0000 0001
[J"1 expr
Display memory. Display 16 bytes of memory starting at expr. OM RA3+10,
for example, displays the contents of memory from 10 bytes beyond the
address pointed to by A3. OM (110) displays the contents of the memory
location addressed by the contents of location 110. Expr must be an even
address or it will be rounded down to the nearest even address.

G1 exprl expr2
Display memory. If exprl < expr2, then dIsplay memory from expr1 to expr2.
otherwIse, display memory for expr2 bytes starting at exprl.

00 expr
Display memory as bytes. Expr can be any byte address.

OWexpr
DIsplay memory as words. Expr must be an even address or it will be rounded
down to the nearest even address.
Cl... expr
Display memory as long words. Expr must be an even address or it will be
rounded down to the nearest even address.

8-11

Wod<sl1op User's Guide

8.4.3 Finding Patterns in Memory
FB exprl expr2 exprlist

Tile De/JlIgger

Find Byte. Find the byte or bytes 'exprlist' in the address range specified. If
expr 1 < expr2 then search the range from exprl to expr2. otherwise search
for expr2 bytes starting at expr1.

FM exprl expr2 exprUst
Find Memory.

FW exprl expr2 exprlist
Find-Word.

FL expr1 expI2 exprlist
Find Long word.

8.4.4 Set md Display Registers
1D
Display the Trace Display at the current PC. All example of the trace dIsplay
is shown in Figure 8-3. It shows the instruction executing at the time the
program was interrupted, the current value of all the registers, and the
current domain and process.

I
Level 7 Interrupt
LOCALPRO+BB1A 104B FFF5 MOVE.B OB,$FFF5(A6)
PC=B024B022 SR=0000 0 US=00F7FBEC SS=B0CBFEE0 00=1 P~=00010
00=013C0009 01=00000008 D2=000000C0 D3=00199752
D4=00000001 DS=S3656750 D6=78487A20 D7=00B00000
A0=00F8126E A1=B0CCB614 A2=0024B060 A3=BBCCB614
A4=B0CC75FC A5=BBF7FC44 A6=0BF7FBFA A7=BBF7FBEC

register

Fi~ 8-3
The Trace Display

Display the current value of the register. 00, for example, is a command to
the Debugger to display the current value in the register 00. ROO, on the
other hand, Is a name automatically placed In the symbol table to gIve you a
handle on the contents of DO in an expression. Thus, to display the current
value in the 00 data register, type the command 00. To display the
instruction pointed to by the AO address register, type the command 10 RAO
(immediate dlssassemble at the address RAO, which is predefined to be the
contents of the AD register.)

8-12

WoIkshop User's Guide The Debtlgger

register expr
set the reglster to expr. For example, to set register 03 to zero, type 03 O.

8.llS AsserTtlle cn:J Disassermle Instructions
These corrmands are used to display code in assembly language format, and to
enter code in the form of a88embl y language statements.

A expr statement
Assemble one or more assembly language statements (instructions) starting at
expr. You can continue assembling instructions into consecutive locations,
pressIng [RETURN] after each statement Press just [RETURN] to exit the
immediate assembler. Note that the immediate assembler cannot assemble
any intrinsic unit Instructions, but they are correctly dIsassembled. Code
segments can be write protected, which prevents you from assembling
instructions into them. This can be overridden with the WP 0 command to
disable write protection.

A expr
If you use the form A expr, the Debugger prompts you for the statement to be
assembled.
10
Disassemble one line at the next address.

10 expr
Disassemble one line at expr.

Il
Disassemble 20 lines at the next address.

Il expr
Dlsassemble 20 llnes startlng at expr.

Il exprl e>epr2
Disassemble expr2 lines starting at expr1.

IX statement
Immediate execution of a single instruction. The user's PC is not changed by
this operation.

8.4.6 set Breakpoints cn:J Traces
These commands are used to trace program execution.

BR
Display the breakpoints currently set. You can set up to 16 breakpoints with
the Debugger. BreakpOints are displayed both as addresses and as symbols. An
asterisk marks the point of the breakpoint in the disassembly.

8-13

BR exprllst
Set each breakpoint In exprllst. SymbOls are legal, of course, so you can:

BR Ralph+4

if Ralph is a known symbol.

Expressions can be of the form:

pp:aaaaa
where pp is the process 10, and aaaaa is the address in that process where
you want the breakpoint set. If the process 10 is 0, the breakpqint is set in
system code in domain O. If no process is given, the current process is
assumed. The current process is shown in the TO display described aoove.

BreakpoInts cannot be set on intrInsIc un1 t instructions.
CL
Clear all breakpoints.

Q exprllst
Clear each breakpoint in exprlist.

G
Start running at the current PC.

G expr
Starting running at expr.

T
Trace one instruction at the current PC.

T expr
Trace one instruction at expr.

SC expr
Stack Crawl. Display the user call chain. Expr sets the depth of the display.
It can be omitted. The Stack Crawl display is shown in Figure 8-4. More
information on the Pascal stack can be found in Section 6.6.

)sc
At LOCALPRO+881A
StaCK frame at aaF7FBFA called from CHECK+8838
Stack frame at a8F7FC44
) Figure 8-4

TIle Stack crawl Display

8-14

Workshop User's Guide Tfle Debugger

procetiJre name
This calls a user procedure or function. It is your responsibility to save and
restore registers and push any necessary parameters. If you want execution to
stop upon return, you must set a breakpoint on the current PC. For example:

BR PC ; set breakpoint on PC.
IX MDVEM.L DO-A6,-(A7) ; save registers.

FOO
IX MDVEM.L (A7)+ ,oO-A6
CL PC

; push params if needed.
; call procedure FOO.
; restore registers.
; remove break poInt

A function can be called in a similar manner. Remember to allocate space
for the function result before pushing any parameters. Use either CLR. W
-(A7) or CLR.L -(Al).

£EQUIT
A procedure that might need to be called is OSQUIT. It exits from the OS.
We recommend that you avoid this whenever possible.

l.BR
UBR is a procedure that sets a breakpOint in the user code SO that you will
drop into the Debugger as soon as you reenter user code. UBR is explained in
Section 8.2.1.3.

all7 Mcnpulate the Merrory MaI.agemer It Hardware
These commands change the memory management hardware of the Lisa More
information on the memory managment hardware can be found in the Lisa
Hardware Manual

LP expr
Convert logical address to physical address.

00 expr
Set the SEG1/SEG2 bits. These bits determine the hardware domain number.
I f the Status Register shows that you are in supervisor state, then the
effective domain is zero, and the domain number returned by the Debugger is
the domain that would be active if the SR were changed to user state. Note
that if you change domain, you should restore the original domain before you
type g.

WP 0 or 1
Disable (0) or Enable (1) Write Protection. The default is 1.

fvM start [end_or_COU'lt]
MM with one or two arguments displays information about the MMU registers.
The second argument defaults to 1. If the starting address is greater than the
second argument, the second argument is a count of the number of MMU
registers to be displayed. If the starting address is less than the second
argument, the second argument is the last register displayed.

8-15

WoJ'ksl1op User's Guide

MM 70
displays

Segment{70] Origir(OOO] Limit{OO] Control[C]

The Debugger

These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU register. As can be seen from a careful perusal of
the hardWare documentation, a Control value of C means the segment in
question is unused (invalid~ If the Control value is valid (7, for example), the
Debugger also displays the Physical Start and Stop addresses of the segment.

MM &100 8

displays the MMU register information for the 8 registers starting at register
64 (decimal 100}
M'1 run oIg 11m mtrl [enccor_cotrlt1
The MM command followed by four arguments sets the MMU information for
segment "num". The Origin, Limit, and control bits can be changed.

MM 70 100 ff 7

sets the Origin of segment 70 to 100 and the control bits to 7 (a regular
segment~ The segment limit of -1 makes the segment 512 bytes long.

8..4.8 TIming Ft.IlCUons
The Debugger allows you to create up to 10 timing buckets for measuring
execution times. Using the microsecond timer in Drivers, time is accumulated
in each bucket and saved along with a count of the number of times the
bucket was entered.
Typically, this would be done as follows:
1. Enter the Debugger and enter the process number that you want to time

using the ST command.
2. Create one or more timing buckets with the TS command.
3. Set a breakpoint to stop execution at some point.
4. Go.

S. When the breakpoint is reached, print the timing summary with the PT
command.

6. Use the End TIming (ET) command to remove all timing buckets.
The timing commands are as follows:
8T expr
BegIn timing. Expr specifies the process number. If the expr is not given, the
current process is assumed. A process number of 0 can be used to indicate
domain O.

8-16

WorkstJop User's Guide The Debugger

TB aott1 cdn2
A timing bucket is created from addr1 to addr2.
PT
Print timing summary. There are five columns printed:

1. Bucket number
2. Total time in this bucket
3. Number of times this bucket was entered.
4. Starting address for this bucket.
5. Ending address for this bucket.

ET
End timing. This command prints the timing summary and removes all the
timing buckets.
KB expr
Kill Bucket. This can be used to remove a single bucket. Expr is the number
of the bucket to remove.
RT
Reset timers. This resets the timing and count tables while leaving the
bucket definitions intact.
Note that all addresses are in the same process. The process number is
defined by either the BT command or the first TB, PT, K8, or RT command.
If the process number is not given in the BT command, the current process is
assumed.

8.4..9 utility ft.IlCtions
The utility functions include:

• Symbol and base conversion
• Moving the Debugger window
• Setting the NMI key
• Printing Debugger displays
• Dumping memory to a diskette

8.1&..9.1 SyntKlls CI1d Base CCJ'lVersial
Sy
Display the values of all symbols.
SY name
Display the value of the symbol name.
SY name expr
Assign expr to the symbol name.

8-17

Wod<shop User's Guide

CVexprlist
Display the value of each expression in hex and decImal.
SH
Set the default radix to hex.

SO
Set the default radix to decimal.

8.4..9.2 Moving the Debugger Window
CS
The CS command clears the Debugger screen.

P expr
Set port number to expr. Valid port numbers are:

o Lisa keyboard and screen (default)
1 Serial A
2 Serial B

The Debugger

I f you move the port to a serIal port you must have a modem eliminator
connected to that port.

RS
Di splay the patch Return address Stack

8.4.9.3 setting the f\Ml Key
NM
Displays the key code for the NMI key.

f\I'1 expr
Sets the NMI key to be key code expr. A value of zero disables the NMI key.

t-.mE

This affects the entire system. If the NMI key is disabled, you cannot
use it to stop an infinite loop, or a system hang.

F or example:
>NM $21

Sets the NMI key to be hex 21, which is the "_" key in the top row of the
numeric keypad. This is the default NMI key.

8Jl9.4 Printing from the Deb IQQ8r
The following commands allow you to print information from the Debugger on
the dot matrix printer.

PR expr
The PR command enables or disables printing to the two-port card. When
printing is enabled, all Debugger output to the screen is printed.

8-18

WOIkshqJ User's Guide

expr = 1
expr .. 2
expr = 0

enable printing upper port
enable printing lower port
disable printing

f\IJTE

The Debugger only supports printing to a printer connected to the
lower or upper port. The serial printer is not supported. If the printer
is not connected the Debugger will hang when you try to print with the
PL, PU, or PS command.

PS expr
The PS command prints the entire primary or alternate screen. Printing must
be enabled (the PR command) before PS is used. Expr tells which screen to
print:

FF

expr - 1
expr = 0

print primary screen
print al ternate screen

The FF command sends a form feed to the printer if printing is enabled.

PL CI1d PU
The PL and PU commands print a bug report on the lower and upper ports
respectivly. The bug report consists of the following:

Dump of the primary screen
Dump of the alternate screen
Description of the exception
Trace Display
Stack Crawl
Disassemble of 20 lines from PC-$20
Display words from RA6-$20 for $80 bytes

8.4..9.5 Dumping Memory to Diskette
The following commands allow you to create a copy of the contents of
memory on a diskette.

M.. CI1d M..J
The ML and MU commands dump a copy of memory to the lower and upper
diskette respectivly. This information can be used to reconstruct the
conditions at the time of a crash, for example. These commands work as
follows:

• If there Is a disk in the drive, it is ejected.

• You are prompted to insert a disk.

• The disk is formatted and all necessary information is copied to iL This
process takes about 3 1/2 ml,...,tes.

8-19

Wo.d<sI1op User's Guide The Debugger

8..5 Slmmary of the Debugger Gmmarm
procedure name Call the procedure.
regIster Display the current value of the register.
register expr Set the register to expr.
A expr statement Assemble statement at expr.
A expr Assemble one statement (instruction) at expr.
BR Display the breakpoints currently set.
BR exprlist Set each breakpoint in exprlist.
BT expr Begin timing process expr
CL Clear all breakpoints
CL.. exprlist Clear each breakpoint in exprlist
CV exprlist Display the value of each expression in hex and

DB expr
DL expr
OM exprl expr2
DO expr
DR
DWexpr
ET
FB exprl expr2 exprlist
FF
FL exprl expr2 exprlist
FM exprl expr2 exprlist
FW exprl expr2 exprHst
G
G expr
10
10 expr
IL
IL expr
IL exprl expr2
IX statement
KB expr
LP expr
tv1L
MM exprl expr2
MM num org lim. ctrl
MR
MU
NM
f'..IVI expr
OSOOIT
P expr
Pl
PR expr

deCimal.
Display memory as bytes.
Display memory as long words.
Display memory.
Set the SEG1/SEG2 bits.
Display index or ranges· of dump RAfv1.
Display memory as words.
End Timing; print summary and remove buckets
Find Byte.
Send form feed to printer
Find Long word
Find Memory
Find Word
Start running at the current PC
Starting running at expr
Disassemble one line at the next address
DIsassemble one line at expr
Disassemble 20 lines at the next address
Disassemble 20 lines startIng at expr
Disassemble expr2 lines starting at exprl
Immediate execution of one instruction
Kill Bucket expr
Convert logical address to physical address.
Dump memory to lower diskette
Display MMU information
Set MMU information
Set a value level #5 interrupt on a word change.
Dump memory to upper diskette
Displays the keycode of the NMI key
Sets NMI keycode to expr
Exits from the operating system *
Set port number to expr.
Print bug report on lower port
Enable printing. O=disable, l=upper port, 2-lower
port.

8-20

Worksl7op User's Guide

PS expr
PT
PU
RB
RS
RT
SB exprl exprllst
SC expr
SO
SH
SL exprl exprllst

SM exprl exprlist
SW exprl exprlist
SY
SY name
SY name expr
T
T expr
TB addrl addr2
TO
U3R
WP 0 or 1

Print screen. O=aletrnate, 1 =prlmary
Print timing summary
Print bug report on upper port
Reboot
Display the patch Return address StacK
Reset timers

Tfle DeblIgger

Set memory in bytes with exprlist starting at expr1
StacK CrawL
Set the default radix to deCimal
Set the default radix to hex
Set memory in long words with exprllst starting at
exprl.
Set memory with exprllst starting at exprl.
set memory in words with exprlist starting at expr1
Display the values of all symbols
Display the value of the symbol name
Assign expr to the symbol name
Trace one instruction at the current PC
Trace one instruction at expr
Create Timing BucKet from addrl to addr2
Display the Trace Display at the current PC
User breaK*
Disable (0) or Enable (1) Write Protection.

* These are procedure calls to ~erating System procedures. They are
explained In Section 8.2.

8-21

Chapter 9
Exec Files

9 _1 Introduction to Exec Files _________________________ 9-1
9.1.1 The Exec Processor ... 9-2
9.1.2 Distinguishing between Exec Lines and Workshop Lines 9-3

9.1.2.1 The Dollar-Sign Convention 9-3
9.1.3 Introduction to Variables and Parameters 9-4

9.1.3.1 Variable Names and Numbers 9-4
9.1.3.2 Setting Variable Values............................. 9-6

9.1.4 Syntax of Exec Lines and Workshop Lines 9-7

9..2 Writing an Exec PrI:9'&m ______________ . _ ... ___ . ___ . ___ . ___ . __________ 9-10
9.2.1 Declaring 8.nd Setting Yariables 9-10

9.2.1.1 The EXEC and ENDEXEC Commands 9-10
9.2.1.2 The SET and DEF AUL T Commands 9-11
9.2.1.3 The REQUEST Command 9-11

9.2.2 InplJt and Output ... 9-12
9.2.2.1 The RESET,. REWRITE, and CLOSE Commands 9-12
9.2.2.2 The READCH and READLN Commands 9-13
9.2.2.3 The WRITE and WRITELN Commands 9-13
9.2.2.4 The RESETCAT Command

and NEXTFILE Function , 9-14
9.2.2.5 The IORESUL T Function 9-15
9.2.2.6 The Program Communication Buffer 9-15

9.2.3 Conditional Statements 9-17
9.2.3.1 String and Numeric Comparisons in Boolean

Expressions .. 9-18
9.2.3.2 The IF Statement 9-19
9.2.3.3 The WHILE 8.nd REPEAT Statements 9-20
9.2.3.4 The EXISTS and NEWER Boolean Functions 9-21

9.2.4 Built-In String Functions 9-22
9.2.4.1 The CONCAT Function 9-22
9.2.4.2 The UPPERCASE and LOWERCASE Functions. 9-23
9.2.4.3 The LENGTH, COPY, and POS Functions 9-23
9.2.4.4 The CHR and ORO Functions , 9-24
9.2.4.5 String Arithmetic Using the EYAL Function 9-24
9.2.4.6 The RETSTR Function 9-25
9.2.4.7 The TRIMBLANKS Function 9-25

9.2.5 Controlling the Screen Display 9-26
9.2.5.1 The CLEAR Command 9-26
9.2.5.2 The CURSOR Command -....................... 9-27
9~2.5.3 The GOTOXY Command 9-27

9.2.6 Calling Another Exec Program 9-28
9.2.6.1 Calling an Exec Procedure with

the SUBMIT Command 9-28
9.2.6.2 The RETURN Command 9-29
9.2.6.3 Calling a User Function 9-29

9.2.7 Commands that Control the Exec Processor 9-31
9.2.7.1 The HALT and ABORT Commands 9-31
9.2.7.2 The Exec RUN and ENDRUN Commands 9-31
9.2.7.3 The DOlT Command 9-32

9.3 RtnUng an Exec Program ___ 9-32

9.3.1 The Workshop Run Command _ 9-33
9.3.2 Processor Options .. 9-33
9.3.3 Using the Step Option , _ .. 9-35
9.3.4 The File Cache and the Input Buffer 9-37

9.4 Sample Exec Programs __ 9-37

9.4.1 Exec File Chaining ... 9-38
9.4.2 A Recursive Exec Program 9-40
9.4.3 A Recursive User Function 9-40
9.4.4 An Exec Application ... 9-41

9.5 Exec File Errors ___ 9-44

9.5.1 Syntax Errors ... 9-44
9.5.2 I/O Errors ... 9-46
9.5.3 other Exec Errors '.' ... ".'.' ... 9-46

Exec Files

9.1 Introduction to Exec files
Sitting at your computer and typing Workshop commands is like driving a car
yourself. Using exec files is like teaching a chauffeur the route, then saying,
liT ake me there again" and sitting back while the chauffeur drives. With
exec files you can execute Workshop commands automatically, without
retyping them each time.

An exec file is actually a program. You can pass parameters to the exec
file .. and you can execute its statements conditionally. Its programming
language consists of the exec commsnds described in this chapter plus
~\lorkS'hop comml1i7Cls you already know.

F or instance .. you can create a test procedure called TESTEXEC that runs a
set of application programs. Then each time you modify a program you can
rerun the entire test simply by typing the Workshop Run command

R<TESTEXEC
Here's what TESTEXEC looks like:

$EXEc
Rsales
Rexpenses
Rgenledger

$ENDEXEC
The first and last lines of TESTEXEC ere exec commands. The other lines
each contain a Workshop Run command.

Like other programs .. an exec program doesn't run directly from its source
statements--it has to be processed first. You use the Editor in the
Workshop to create an exec source file. Then at proc-ess tirne you invoke
the Exec Processor to create an exec run file which is run by the Workshop
at run time,. as shown in Figure 9-1.

9-1

Exec Processc:a'

1[',:[\":[:[:] • s:~ r.I'IIIIIII'11111111 ·

process time

exec
run 1-+
file

FIp.9-L OWIv1ew f6' Exec Files

9.1.1 The Exec Processor

Exec Files

.. ...

run time

The Exec Processor operates under the Workshop Run command. When you
type

R<pathn_e
or

REXEC/pathname
in the Workshop command line, the < or E>CEC/ (upper or lower case) tells the
Exec Processor to process an input file. The input file is usually an exec
source file but it may be a previously created exec run file.

The exec run file--the output of the Exec Processor--contains only Workshop
commands. The Exec Processor looks at variables in the exec source file
and determines their process-time value; then, based on conditional ex ecution
of exec commands, it determines which Workshop lines to place in the exec
run file. The Exec Processor's final step is to give the exec run file to the
v.,lorkshop, which runs it.

An exec source file normally has a file name with a ".text" extension. An
exec run file always has the same file name with a " .. text" extension:

Exec Source File Exec Run File
myexec.text ==) myexec .. text
lIYexec ==) ayexec .. text
lIY.exec.text ==) lIy.exec .. text
lIy.exec ==) lIy.exec .. text

The normal Exec Processor function is "process-and-run," but a number of
commands and options are provided for greater flexibility. For instance, the
roIT command tells the Exec Processor to give the current contents of the
exec run file to the Workshop to run immediately; the Workshop then returns
control to t.he Exec Processor so it can continue processing the the source

9-2

l,t/orkshop User's Guide Exec Files

file. The Keep and Rerun Processor options allow you to save the exec run
file and run it again without reprocessing. (For more information on exec
run files, see Section 9.3, Running an Exec Program.)

NOTE

To terminate processing when the Exec Processor is running, press
.-period.

9.12 Distinguishing between Exec Unes and Wcrkshop Lines
There are two kinds of exec source lines: exec lines and Workshop lines.

Exec lines contain exec commands, written in a language similar to Pascal;
these commands are described in Section 9.2, Writing an Exec Program.
Exec commands allow you to change variable valUes, skip over Workshop
lines under exec control, perform I/O, and control the Exec Processor.

Each exec command must begin on a new text line; it can occupy more than
one text line. The Exec Processor looks for a continuation line only if the
command is syntactically incomplete. In the following example, line 5
completes a valid command, so line 6 is flagged as an error:

1. repeat

~. until reply = 'YES'
6. or count) 5

To notify the Exec Processor that the command continues, rewrite line 5 so
that it is syntactically incomplete:

~. until reply = 'YES' or
6. count) 5

Workshop lines contain either responses to the Workshop command line-
such as File-Mgr and Linker commands--or input to any programs you run
under the Workshop. Workshop lines should be typed in the exec source file
just the weN you would enter them from the keyboard, following the
dollar-sign convention you have chosen (see below).

9.L2.1 The Dollar-Sign CorMriion
The doJlBT-sign (J,1 convention allows the Exec Processor to distinguish
between exec lines and Workshop lines.

If the first line of your exec program, the EXEC command, begins with a
dollar sign, the Exec Processor considers every line that begins with a dollar
sign to be an exec line, except if the line is the continuation of a comment;
other lines are considered Workshop lines.

9-3

l,.\JoTkshop I.jS"eT~ Guide cree Files

If the EXEC command does not begin with a dollar sign, every line without
an initial dollar sign is considered an exec line, and you must precede '!Nery
Workshop line with a dollar sign.

NOTE

The command formats in this chapter are shown without an initial dollar
sign, but many of the examples use the dollar sign on exec lines. If
you write an exec that calls another exec, the two exec files need not
use the same dollar-sign convention.

9_13 Introduction to Variables and Parameters
A ~''fII'i8bJe is a string whose contents can change during execution of an exec
program. Variables allow)lOU to generalize an exec program so that you can
use the same exec in a variety of situations.

Variables in exec language are Jocsl to the exec that declares them. If you
give a variable the same name in two different exec files, you will still have
two separate local variables.

A parameter is a variable to which you expect to give an initial text value
from outside the exec program. You can pass a list of parameter values to
an exec when you invoke it either from the main command line or from
another ex ec.

Variables and parameters are identified either by a name or by a number.
They are written in one of the following w~:

~ where n is a variable number (0-9): 13
x where x is a variable name in an exec line: var3
[x] where [x] is a variable name in a Workshop line or an exec

invocation: (parMtl3]

9_13_1 Variable Names and Numbers
You can declare up to twenty named variables or parameters. The first ten
of them can be referred to by number as well. Numbered variables have the
advantage of not having to be declared; named variables provide more
meaningful documentation. Values are assigned to variables in the same
wt!f:.J whether you use names or numbers. You can use both numbers and
names in a given exec program, and you can refer to the first ten variables
either by name--if you declared them--or number.

When you use variable numbers, these rules apply:

• The numbered variables are shown as a percent sign followed by a
number from 0 to 9: SO through 19.

9-4

Workshop l.lser's Guide Exec Files

• You can supply initial values for numbered variables in an invocation
parameter list (see Section 9.3.1). The value for *0 must be first in
the list, the value for 11 next, and so on in numeric order.

When you use variable names, these rules apply:

• Variable names must be cleclared in the EXEC command's variable
declaration list. The list is enclosed in parentheses and contains
variable names separated by comm~; for instance,
(payday ,paytype,..-orftshare,bank).

• You can supply initial values for named variables in an invocation
parameter list. The values must be listed in the order in which the
corresponding variable names were declared; for instance,
(05lO4l85)w:u'Iy,.0276,Firststate) supplies values for the variable
declaration list above.

• A variable name must be alphanumeric and must begin with an
alphabetic character; the name can be as long as you like, but only the
first eight characters are significant.

• A variable name in a Workshop line, an expanded string constant, or an
exec invocation must be enclosed in square brackets ([]) to distinguish
it from ordinary text.

• You can refer to the first ten named variables either by name or by
number. If you declare five variable names, they correspond to
variables ro through 14.

The two examples shown below function identically. The first example uses
numbered variables:

exec {tUtBERED VARIABLES
~=source file na.e, ~l=counter}

if exists(·~_text·) then
set ~1 to eval(~l-l)
$F{iler}D{elete}~_text
$Q{uit the filer}

endif

endexec

9-5

Exec Files

The second example uses variable names (note the variable declaration list
following the EXEC command):

exec (oldsource,counter) {HAMED VARIABLES}

if exists("[oldsourcel.text") then
set counter to eval(counter-l)
Sf{iler}D{elete} [oldsource].text
$Q{uit the Filer}

endif

endexec

9.1.3.2 Setting Variable Values
You can 8lter the Wi/tie of a variable by using the SET, DEFAlLT, and
REQUEST exec commands described in Section 9.2.1.
The initi81 ~"8JJ.Jes of variables at process time are supplied in an irn·'Ocation
p8Tlfmeter /ist--a list in parentheses following the exec name ina Workshop
Run command, a SUBMIT command, or a user function. Values in the list
consist of text separated by commas. If a parameter value is not provided
for a given variable, its inital value is the null string.
Whether you use numbered or named variables, the invocation parameter list
is the same. For instance, the following Run command will work with either
example in Section 9.1.3.1 above. The value of the 10 or oldsource variable
is "-backup-oct6"; the value of the 'lor counter variable is "4".

R<files(-backup-oct6,4)
You can supply initial values for some, none, or all of the variables your
exec program uses. The Workshop Run command below contains initial
values for parameters to and '2--or their named equivalents. A value for
'1 is not supplied.

R<exsales(-lower-custoaers"Accounts Receivable)
To demonstrate the use of variables to make an exec more versatile, let's
generalize the l18keoneprog exec, shown in the next example.

9-6

14orkshop US'er~ Guide cree Files

$EXEc { -.akeoneprog U
-- This exec file conpiles and

links a speciric Pascal progr. n.ed ONEPROG_ }
P{ascal ca.pile}ONEPROG

{ no listing file }
{ default object file }

l{ink}OtEPROG
IOSPASlIB
{ end of linker input }
{ no list file }
OHEPROG{ output file naae }

SENDEXEC
If you want to compile and link a Pascal program named OTI-ERPRCXi, you
can't use the lIBkeoneprog exec file. To compile and link any Pescal
program, change the name of the Pascal program in the exec from ONEPROG
to ANYPROG and declare it es a variable. We'll call the new exec
make8l1YP'og.

$EXEC (ANYPROG) { H.akeanyprogH -- This exec file
compi I es and links any Pascal progr __ }

P{ascal compile}[ANYPROG]{program-na.e variable}
{ no listing file }
{ default object file }

l{ink}(ANYPROG)
IOSPASlIB
{ end of linker input }
{ no list file }
(AHYPROG]{ output file name }

$Etl>EXEC

You can run makeanyprog to compile and link the ON:PROG program. The
initial value "ONEPROG" replaces every occurrence· of the variable
ANYPROG when you use the following Workshop Run command:

R<makeanyprog(ONEPROG)
To compi Ie and link the OTHERPROG program, you can run make8lT!lprog
again .. simply ctlanging the Run command:

R<makeanyprog(OTHERPROG)
9_1-4 syntax of Exec Unes and Wcrkshop Lines

This section contains rules for writing exec lines and Workshop lines. You
can use it first as a general introduction and later as a reference tool.

The Exec Processor places a Workshop line in the exec run file after
performing the following processing:

9-7

Workshop User's Guide Exec Files

• Removing the inital dollar sign, if any.

• Processing tildes.

• Substituting the current values of variables.

• Removing comments.
• Eliminating leading and trailing spaces (unless the Blanks process-time

option was specified).

SpeciBl chtJracters are used as delimiters and as signals to evoke special
processing by the Exec Processor; they include

s ,
[]
{ } , .
.. u

<

ExecA\for'kshop distinguishing character
Numbered variable char'acter
Variable name delimiters (W)
Convneri delimiters
Simple string corBtant delifl:liters (E)
Expanded string ~ delimiters (E)
Tilde literalizing character (W)
Exec irMlC&ion cIl8I"acter

(W) means this character has special significance only in Workshop lines. (E)
means this character has special significance only in exec lines.

Commtmts can be included in exec or Workshop lines. A line that consists
of nothing but comments is considered an exec line or a Workshop line
depending on the doll81-sign convention. A comment can extend aver more
than one line, as in the exec program examples in Section 9.1.3.2. Any
information in braces ({ }) is considered a comment and is ignored by the
Exec: Processor. For example, the Workshop line

A%O

can be documented with comments; in the example shown below, the first
line is a Workshop line and the second line is an exec line:

A{sseable)~{source file}
${Use a separate line if .ore comaents are necessary.}

It·s good practice to write all sep81ate comment lines as exec lines because
a Workshop line with nothing but comments causes a [RETURN] to be placed
in the ex ec run file"
~ and lower CMe in Workshop lines is passed intact to the exec run file.
In exec lines, case is significant only in string constants; that is, varl is the
same variable name as VARl, but 'YES' is not equal to 'yes'.

Spsces are delimiters in exec lines (extra spaces are ignored). In Workshop
lines, leading and trailing spaces are remot.·'ed before the line goes into the

9-8

Workshop User's Guide Exec Files

exec run file unless you specify the Blanks option at process time; whether
spaces are significant within Workshop lines depends upon the program you
are running.

The doll. sign (S) is used to distinguish between Workshop lines and ex ec
lines. See Section 9.1.2.1, The Dollar~Sign Convention, for more information.

The tilde r) is used as a liter81izing char8cter (Workshop lines only). The
special character that follows the tilde is not interpreted by the Exec
Processor but is placed in the exec run file as is; for example,

-$40, 723.78 -{Cost of Sales} 35 _ 5-'

In this example the dollar sign is not interpreted according to the dollar-sign
convention. The information '''''ithin braces, which would normally be
discarded as a comment, is placed in the ex ec run file. (Because a tilde
cancels the effect of the left brace as a comment delimiter, the right brace
has no meaning and does not require a tilde_) The' is not interpreted 8S
the first cheracter of a numbered veriable.

To represent the tilde itself in a Workshop line, use two tildes in a row.

The exec invt:Jt::«iOll cltliractl!JT «) should be followed by the pathname of an
exec file. This character is used to call a user exec function; in the
following example, devname is an exec file that returns a function result:

$set checkvol to <devna.e([checkvol],-myvol}
The invocation character can also be used in a Workshop Run command to
cause chaining to another exec program (see Section 9.4.1, Exec File
Chaining):

R<linkif
Sinf:J/B string ctJt'IStsrb(exec lines only) consist of text surrounded by single
quotation m8Iks: 'text'.

NOTE
The maximum length of any string is 255 characters.

ExptJJllded string ~(exec lines only) consist of text and/or variables
surrounded by dotlble quotation mBrks: --rext [var] text" or --rext 10 text-.
The Exec Processor places the current value of each variable in the string
before executing the exec command.

String fUnctions (exec lines only) ere built-in functions or user-defined
functions that return a string value. See Section 9.2.4; compare Boo/elJl'"l
functionS".

String exfll'1'J5Si1Jt'l8 (exec lines only) contain one or more of the following:
simple string constants, expanded string constants, string functiOns, and
variables.

9-9

l-\Iorkshop l.lser's Guide Exec Files

BooItNJI'I ct1fIStI1nls(exec lines only) are true and false.

Boolean nn%ions (exec lines only) are built-in functions that return a
Boolean result true or false. You cannot write an exec that returns a
Boolean value.

Boolean exl'essiOl'lS (exec lines only) are expressions that return a Boolean
result true or false. Th~1 can contain the following: Boolean constants,
Boolean functions, comparisons of string expressions or numeric expressions,
and combinations of the preceeding with logical operators. See Section
9.2.3.1, String and Numeric Comparisons in Boolean Expressions, for more
informatiorl.
Numeric constants (exec lines only) are integers, not enclosed in quotes; for
example: 0, -255, 1984. Numeric constants are permitted in numeric
expressions, where they are treated as numbers, and in string expressions,
where they ere treated as strings.

Numeric eX/llJS$iOl'lS' (exec lines only) are resolved arithmetically, not as
strings; they return a numeric result that can be used only where specified in
the syntax for each exec command. To produce a string containing the
result of' a numeric expression, make the numeric expression the argument of
the EVAL function. Numeric expressions consist of numeric constants,
string functions that yield a numeric value, variables that contain a numeric
value .. and numeric operators (see Section 9.2.4.5; String Arithmetic Using the
EVAL Function).

9.2 ""-riting an Exec Program
This section describes all the available ex ec commands. These commands
are executed by the Exec Processor; before the exec run file is run.

9.2..1- Declaring and Setting Variables
The commands described in this section tell you how to declare named
variables and how to change the value of a variable.

9.2_1-1 The EXEC and ENJEXEC Commands
Every exec program must begin with the EXEC command and end with the
ENJEXEC command. The EXEC command is where you identify the names
of any named variables you use in the exec.

The first line of an exec program has the format

EXEC (variable-declaration-list)

where (V8r'iable-declaration-list) is a list in psrentheses containing variable
names separated by commas. It is required only if you use variable names
for parameters or internal variables (see Section 9.1.3.1; Variable Names and
Numbers). For example,

$exec (leapyear,debits)

9-10

yalorkshop l.,iser's Guide

declares variables named leapyear and debits.

The last line of an exec program has the format

ENDEXEC

Exec Files

The last line in the ex ec program doesnlt have to be the last line in the file.
Itls possible to imbed an exec program in a Pascal program or another
programming language source file by using the Imbed Processor option; see
Section 9.3.2, Processor Options, for more information.

9..2..12 The SET and DEF All-T Corrmands
The SET and DEFAULT commands let you assign a value to a variable within
the exec program.

The SET command replaces the current value of a variable with a new value;
it overrides an initial value specified in the invocation parameter list. The
format of the SET command is

SET variable TO string-expression
The format of string expressions is described in Section 9.1.4, Syntax of Exec
Lines and Workshop Lines. Examples of the SET command follow:

$set %0 to l-backup-oct6"
Sset counter to "4 1

The DEFAULT command is executed only if the specified variable h~ the
null string as its value. DEFAULT does not override an initial value supplied
in the invocation parameter list. The format of the DEFAU.. T cOmmand is

DEfAULT variable TO string-expression
If execA contains these commands

Sexec (vol,.onth,day)
$default vol to --paraport H

Sset month to aJuly
Sdefault day to -17-

and is run with this invocation parameter list

R<execA(,Sept_ber,23)
then--after the commands are executed--the results are as follows:

The value of .onth becomes "July
The value of vol becomes --paraport
The value of day becc:aes -23-

9..2..1..3 The REQUE~T Command
The REQUEST com'Tland prompts the user for keyboard input. Like the SET
command, the REQUEST command replaces the current value of the variable.

9-11

Workshop User's Guide Exec Files

REQUEST causes the Exec Processor to wait until [RETURN] is typed. The
format of this command is

REQUEST variable WITH string-expression
F or instance"

$request ~ with -month?-
string-expression is displayed on the console as a prompt. Variable is set to
whatever value the user types in response to the prompt.

9.2.2 Input and 0UtJU.
In addition to using the invocation parameter list and the REQUEST
command" you can provide input to an exec program and create output from
it through the commands discussed in this section. You can

• Read a character or a line from the keYboard or a text file (READCH
and READlN commands).

• lNrite to the screen or a text file (WRITE and WRITELN commands).

• Open and close a text file (RESET, REWRITE, and CLOSE commands).

• Obtain filenames from a directory (RESETCAT command and NEXTFlLE
function).

• Check for successful completion of 110 (IORESUL T function). All of the
above commtmds- set the IORESUL T function.

9.2.2.1 The RESET, REWRITE, and CLOSE Corrmands
Use these exec commands when reading or writing text files. RESET opens a
file for input; REWRITE opens a file for output; CLOSE closes an open file.
These commands set the IORESUL T function, which is described in Section
9.2.2.5.
The format of the commands is

RESET file-id, filename
~TE file-id, filename
CLOSE file-id

File-id is associated with a file when the file is opened; it identifies the file
for subsequent read, write, and close commands. It is a global file identifier
that is allocated when the file is opened. It is deallocated either when the
file is closed or when the exec program finishes running. It is not a string
variable and can be used only where a file identifier is expected. It does
not have to be declared in the EXEC command. Its name follows the rules
for variable names. Its identifier can be any number of alphanumeric
characters, but only the first eight characters are significant; the first
character must be alphabetic.

9-12

Jr.1orkshop US'er~ Guide Exec Files

Filename is any string expression that yields a valid pathname; it must refer
to a text file.

Here are some examples of exec commands that open and close files:

$reset fileone, nexecdata.textM
$r.rite errlDsg, --pay-.fg-address.update.errs.text M

$close err.sg

9.2.2.2 The REAOCH and READLN Commands
With the REAOCH and READLN commands you can read data from the
keyboard or from a textfile and essign it to a variable. READCH reads one
character. READlN reads one line--up to and including the next [RETURN].
These commands set the IORESUL T function. The format of the commands
is

READCH (file-id) variable
READLN (ti I e-i d) V8I"i abl e

(File-id) associates the read command with the pathname specified in the
RESET command. If (file-id) is not specified, the READCH or READLN
command reads from the keyboard. This causes your exec to pause until a
value for variable is typed; for READLN, the value must be followed by
[RETURN]. When reading from the keyboard, it's a good idea to prompt the
user using 'NRITE or WRITELN to indicate what information the exec
program is waiting for.

Variable identifies the variable that will hold the information to be reacf. If
end-of-file is encountered while reading, variable is set to 'EOF'. In the
first example below, a character is read from a file into a numbered
variable, n, in the second example, a line is read from the keyboard into a
named variable, title.

$readch (fileone) ~3 {read one character frOID a file}
$readln title {halt/read a title from the keyboard}

9.2.2..3 The WRITE and WRITElN Commands
With the WRITE and WRITELN commands you can write data to the screen
or to a textfile. 'lJRITELN ends its output with [RETURN] and WRITE does
not; otherwise the commands are identical. These commends set the
IORESUL T function. The format of the commands is

WRITE (file-id) string1, string2, ... stringN
WRITELN (file-id) string1, string2, ... stringN

(File-id) is required only if you are writing to a textfile; it associates the
write command with the pathname specified in the REWRITE command fOl"
the same file.

9-13

Workshop l.,1ser's Guide Exec Files

stringl through stringN represent any number of string expressions separated
by commas. The strings are written consecutively--at the current cursor
location in the case of screen output, or at the current location in the file in
the case of textfile output. Here are some examples:

kite 'ReadV to stop? Type Y or N ... '
kiteln (percentage) -value of ~ is ~7-%
kiteln 'finished writing to file ',outfile

9.2..2.4 The RESETCAT Command and tEXTFlLE Function
The RESETCAT command opens an OS directory; NEXTFD..E is a string
function that returns the name of a file in the open directory. These
commands set the IORESUL T function. The format of the RESETCAT
command is

RESETCAT directoryname
Direct.myname is a string expression that specifies the pathname of a
volume, catalog, or file; the wildcard character = may be used in the
filename P6J't only. For instance,

$resetcat --[VOl]·
$resetcat '=.obj'

If directoryname includes a filename part but no wildcard, the filename part
is used as a prefix. In other words, RESETCAT H-{voIHcatHtile)" is
equiv~ent to RESETCAT H-{vol]-{catHtile]=-.

\
When RESETCAT is executed, the value of N:XTFILE is set to the first
pathname in the directory that meets the criterion specified in
directoryname. (In searching a directory,. NEXTFllE returns catalog names as
well as filenames.) In the examples shown above, after the first execution of
RESETCAT the value of N:XTFllE is as described below:

Directmyname Value of NEXTFILE
·_[vol]a .first file in [vol] directory
'=.obj' ·first file with .obj suffix on

the default (prefix) volume
When NEXTFIlE is called again, it contains the name of the next file (or
catalog) in the directory that meets the directoryname criterion. When no
such file eXists, or if the directory is empty, NEXTFIlE returns an empty
string. Here's an example of an exec routine that checks for a blank volume
and lists filenames:

9-14

exec (vol,ior,savefile,count)
resetcat --[vol]-
if ioresult <> II then

set ior to ioresult
writeln IBad volume l

writeln ior
else

set savefile to nextfile
if savefile = II then

writeln vol,' has an empty directory_I
else

set count to 1
while savefile <> do

writeln -file [count] on voluae [vol] is -,
savefile

set count to eval(count+l)
set savefile to nextfile

endwhile
endif

endif

9n..5 The IORESUL T Function

Exec Files

IORESUL T is a string function that tells you if an error occurred during a
previous RESET, RE'NRITE, REAOCH, READLN, WRITE, WRITELN,
RESETCAT.. or NEXTFILE operation. If the 110 operation was successful, the
value of the 1000SlL T function is an empty string. If an error occurred,
IORESUL. T contains an Operating System error message in the form

Error <number>: <.essage>
You can display the error message as follows:

Sreset infile
Sset err.sg to ioresult
Sif er~sg <> II then

$writeln err.sg
Sendif

"This example demonstrates the need for an intermediate variable to save the
contents of IORESUL T before displaying it because the WRlTELN command
also sets the 1000SlL T variable.

9n_6 The Program Communicaion Buffer-
Programs that run under the Workshop can communicate with each other by
writing and reading in a lK-byte communication buffer made available by
the ProgComm unit. (See The ProgComm Unit in the third binder of this

9-15

Workshop User's Guide £l:ec Files

set.) You can open and close the communication buffer and write to or read
from it from an exec program by using the exec IlO commands (REWRITE ..
RESET.. ClOSE .. READCH .. READLN .. 'NRITE, and WRITElN) with a special
keyword file identifier, COMMBUFR.

Some of the 110 commands require an 1!tCCeSS. key that limits access to the
buffer. Access-key is a string expression. Since several applications can
share the buffer .. programs within each application must agree upon a value
for access-key. The format of the 110 commands for use with the program
communication buffer is

RESET COHHBUfR, access-key
REWRITE COHHBUfR, access-key
CLOSE COtI18UfR, access-key
REAOCH (Cotl1BUfR) variable
READLN (CotttIBUfR) variable
WRITE (COHHBUFR) stringl, string2, ... stringN
WRITELH (COHHBUfR) stringl, string2, ... stringN

These formats correspond to the formats described earlier in Section 9.2.2
except for the CLOSE command, which requires an access key when used
with the communication buffer.

NOTE

Do not close C~R after a write command. The communication,
buffer should be closed after reading, in order to empty it. CLOSE
flushes the buffer for the specified access key; RE'NRITE flushes the
buffer unconditionally.

The following exec program demonstrates communication buffer I/O:

exec (key, line, iar, n, ch)
repeat {do one cycle of writing, then reading}

clear screen
request key with 'Open CoIRBufr far write ... key ? '
rafl"ite coabuf.r, key
request line with 'Write what to buffer ? '
while line <> " do {terllinate input with ellpty line}

wri teln (OOIIIbufr) line
request line with 'Mrite what ? '

endwhile
writeln
repeat {try opening until we succeed}

request key with "Open CoIRBufr far read ... key ? '
reset CtDIbuf.r, key
set iar to iaresult
if iar (> " then

writeln 'ca.Butr open failed: " iar
endif

9-16

Workshop User's Guide Exec Files

... til ior =
set n to It I
repeat {write out CmnIButr lines}

readln (ctalbufr) line
if line <> IEDfI then

writeln 'CB(I, n, I): ., line
set n to eval(n + 1)

endif
... til line = 'EDf"
writeln
write "Do you want to try another test? (Y or [N)) I

readch ch
... til uppercase(ch) <> 'Y'
halt 'Done'
endexec

9..2..3 Conditional statements
Like other programming languages, exec language allows you to execute
commands under some circumstances but not others. The IF, ~E, and
REPEAT statements described in this section are similar to their Pascal
counterparts, but the conditions they test are examined at process time, not
run time.

The example that follows below and on the next page demonstrates the use
of IF, '-"'I-DLE, and REPEAT statements to prompt for a series of directories
and list their contents:

EXEC (cat,ioerr,file)
RENRITE text, ·catlist.text'
If IORESULT = ,. THEN {successful list file open}

REPEAT
REQUEST cat WITH 'Search what directory?
If cat = I' (R LOWERCASE (cat) = 'quit' Tt£H

CLOSE text
HALT 'Done '

ENDIf
RESETCAT cat
If IORESULT = "THEN {successful cataloG open)

SET file to NEXTfILE
WHILE file <> " DO

WRITELN (text) file
SET file to NEXTfILE

EN>tIHILE
ELSE

SET ioerr TO IORESUL T
WRITELN 'Could not open ',cat
WRITELN ·os error: ., ioerr

EN>If

9-17

Workshop '-.fser's Guide E.-.:ec Files

UNTIL fALSE {endless loop}
ELSE

SET ioerr TO IORESULT
NRITELN 'Could not open output file'

ENDIf
ENDEXEC

9..2..3.1 String and Nt.meric Comparisons in Boolean ExfWessions
The condition tested tf\l a conditional statement is in the form of a boolean
expression--an ex pression whose value is either true or false. The constants
true and false may also be used in boolean expressions. In the boolean
expression

uppercase(answer) = I NO'
upperC8SE(answer) is a string function with its argument, = is a string
comparison operator" and lNO' is a string const.ant.; the value of the
expression is true if the value of answer is any one of the following: NO, No,
nO, no.

Use the string comp8J"ison operators in a boolean expression to compare
string expressions:

= {equal}
<> {not eq~}
) {~eater than}
)= {{J'eat.er than or equal}
< {less thaIi
<= {less than or equal}

Use the numeric compsrison operators in a boolean ex pression to compare
string expressions that yield a numeric result:

EQ {equal}
NE {not equal}
GT {~eater than}
GE {~eater than or equal}
LT ' {less ~
LE {less than or equal}

String comparisons proceed character by character; numeric comparisons
cause two numeric values to be compared. The results may be the same
either way: COUNT = 1 (string comparison) is equivalent t.o COUNT EQ 1
(numeric comparison). Usually, however" the results are not the same. For
example .. the string comparison 1006 < 509 is true (because '1' is less than
'51), while the conesponding numeric comparison 1006 L T 509 is false.

9-18

t-\Iorkshop User's Guide Exec Files

You can use the following logical operators in a boolean expression:

AND {expr-ession is true if both tenns are true __ .. A AN) B }
OR {expr-essioo is true if either term is true _ _ _ _ A OR B }
NOT {expr-ession is true if the term is false ______ NOT CA) }

The expression following NOT must be enclosed in parentheses_ The default
sequence of evaluation of a boolean expression is left to right. You can also
use parentheses to control the sequence according to the rules of algebra.
For instance,

not (A) or B {true if A is false or B is true }}
not (A or B) {true if A and B are both false

9..2..32 The IF statement
The IF statement lets you choose an action depending on conditions
evaluated at process time; it consists of the IF, ELSElF, ELSE.. and ENDIF
commands. Each command must begin on a new line and may occupy more
than one line. ENJIF always ends an IF statement. ELSEIF and ELSE are
optional. More than one ELSEIF may be present in an IF statement. Nesting
is permitted; that is .. any number of IF statements can be contained within
an IF statement.

The format of the IF statement is shown below.

If boolean-expression THEN
Workshop and exec commands

ELSEIf boolean-expression THEN
Workshop and exec commands

ELSEIf __ _
ELSE

Workshop and exec commands
ENDIf

The IF statement is evaluated in the order it appears in the exec source file.
y..,lhen the first true boolean expression in an IF or ELSEIF command is
encountered, its corresponding THEN clause is selected --that is.. its
Workshop commands are processed and placed in the exec run file, and its
exec commands are executed. If no true condition is encountered, the ELSE
Workshop and exec lines, if present .. are selected. Exec lines that are not
selected are examined for correct syntax. Here is an example of an IF
statement that submits a different exec file depending on the day of the
week:

9-19

Workshop User's Guide

exec (date,ledger,payroll,payable,bankbal,personnel)
if date = ·FRIDAY· then

submit endweek([ledger], [payroll])
writeln 1iave a good weekend"

elseif date = 1IJtOAY· then
submit startwk([payable], [payroll])

else {tuesday, wednesday, thursday}
su~it .idweek([bankbal], [personnel])

endif
endexec

Exec Files

Here are the Workshop Run commands needed to run this exec file on three
different days of the week:

R<weekday(FRIDAY,-ledger.march,-payroll.hourly)
R<weekday(HONDAY,,-payroll.exempt,-payable.march)
R<weekday(HIDWEEK",,-bankbal.march,-personnel)

9..2.33 The WHILE and REPEAT Statements
The 'NHILE statement lets you repeat an action while 8 condition remains
true,: the condition is tested before the action is performed. The REPEAT
statement lets you repeat an action until 8 condition becomes fl1lst!/; the
condition is test.ed tJlter the action is performed. The condition is in the
form of a boolean expression. Each command in a REPEAT or WHILE
st.atement must begin on a new line and may occupy more than one line.

The WHILE statement consists of the WHILE and E~E commands.
EN)\lJHD..E always ends a 'NHILE statement. The format of the WHILE
st.atement is

WHILE boolean-expression DO
Workshop and exec commands

ENDWHILE
When the boolean expression in a 'NHILE command is true .. the Exec
Processor selects the corresponding DO clause by executing its exec
commands and placing its Workshop lines in the exec run file. Then the
Exec Processor reevaluates the 'NHILE command. If the expression is still
true, the DO clause is selected again. When the expression becomes false ..
processing continues at the command following ENDWHILE. Commands that
are not selected are examined for correct syntax. Here is an example of a
WHIlE statement that deletes a series of object files named fileN .. fileN-l ..
and so on:

9-20

14orkshop l.,1ser~ Guide

f{iler}
$while inputval > '0' do

D{elete}-[vol]-[tile] [inputval].obj
$set inputval to eval(inputvaI-l)

$endwhile
Q{uit}

Exec FJ1es

The REPEAT statement consists of the REPEAT and UNTIL commands. The
format of the REPEAT statement is

REPEAT
Workshop and exec commands

UNTIL boolean-expression
The example shown above for the 'NHILE statement can be rewritten using
the REPEAT statement:

f{iler}
Sit inputval) '0' then

$repeat
D{elete}-[vol]-[file][inputval].obj
$set inputval to eval(inputval-l)

Suntil inputval = '0'
Sendit
Q{uit}

9.23.4 The EXISTS and I\EWER Boolean Ftn:tions
The EXISTS function returns a value of true if the specified file, catalog,
volume.. or device is online at process time; otherwise the value false is
returned. A volume or device is online if it is mounted; a file is online if it
exists on a mounted device. The format of the function is

EXISTS (pathname)
Pathname is any string expression that yields a valid file, volume, or device
name. Some examples follow:

Sit exists (--slot2chant-) then
Sif exists (H-[vol]") then
Sif exists (--paraport-~l.obj") then

{device}
{vol .. e}
{file}

The NEWER function returns a value of true if the Last-Mod-Date of the
first file specified is more recent than that of the second file; otherwise the
value false is returned. Both files must be online at process time or an
error will be reported. The format of the function is

NEMER (filet, file2)
Filet and tile2 can be any string expressions that yield a valid pathname.
Some examples follow:

9-21

(.tlorkshop User's Guide

Sif newer (H-[fed]-taxesH, U-[state]-taxesH)
then {calc state}

Exec Files

Sif not (newer CH-%3.objH, H-%3.backupn») then {backup
is current}

Sif newer(H[pgm] .TEXT-, H[pgII] .OBJ 11
) then {recompile}

9.2.4 Built-In Stzing Functions
A string function is a function whose result is a string (text) value. The
types of strings used in exec files are described in Section 9.1.4, Synt.ax of
Exec Lines and Workshop Lines. Even a function result that is a number (for
example .. ORO) is returned as a string. Since the ORO .. POS, LENGTH .. and
EVAL functions always return a number .. they may always be used in a
numeric expression even though the function result is a string. In fact .. arry
string function can be used in a numeric expression as long as it returns a
number.

Several built-in string functions are included as part of the exec language. In
addition .. you can write your own functions (see Section 9.2.6.3, Calling a
User Function). The built-in string functions prO'vided by the Exec Processor
are

CONCAT
UPPERCASE
LO'NERCASE
LENGTH
COPY
POS
CHR

ORO

EVAL
RETSTR
TRIMBLANKS
NEXTFILE
IORESULT

Combines strings
Converts a string to uppercase
Converts a string to lowercase
Gives the length of a string
Copies all or part of a string
Gives the position of a string within another string
Translates a number into its corresponding ASCII
character
Translates an ASCII character into its
corresponding number
Provides string arithmetic
Returns the ProgComm return string.
Trims leading and trailing blanks.
Refer to Section 9.2.2.4.
Refe.r to Section 9.2.2.5.

9.2.4.1 The CONCAT Function
The CONCAT function lets you combine string expressions and functions to
produce a single string result. The format of the CONCAT function is

CONCAT (stringl, string2, _. stringN)

stringl is a string expression .. string2 through stringN are optional string
expressions. The function result is a string containing the string perameters
in the order they were given. Here's an example that combines two string
variables and three string constants:

9-22

l-\Iorkshop l.,tser's Guide E,rec Files

exec (vol,file,psthname)

set psthnaae to concst('-',vol, '-',file,' .text')
Note that you can accomplish the same result by using an expanded string
constant:

set psthn_e to --[vol]-'[file]. text-
9.2.4.2 The UPPERCASE and LONE:RCASE Ftn:tions

The UPPERCASE function converts any lowercase letters in a string to
uppercase. The LOtNERCASE function converts any uppercase letters in a
string to lowercase. Nonalphabetic characters remain unchanged. For
instance .. UPPERCASE converts ABc,dEt.3$gh to ABC,DEF.3$GI-L The format
of the functions is

UPPERCASE (string-expression)
LOWERCASE (string-expression)

You can save the result of the function in the same variable it converts:

Sset psthname to uppercsse(pathname)
You can also convert a string in order to compare it. In the following
example, the expression is true whether the value of reply is YES, yes, or
any other uppercase and lowercase combination of these three characters.

$while lowercase(reply)='yes' do
9.2.4.3 The LENGTH, COPY, and POS Functioos

LENGTH gives the number of characters in a string, COPY duplicates part or
all of a string, and POS gives the location of a substring within a string.

The LENGTH function returns the length of a string in its function result.
(The length of a null string is '0'.) The format of the LENGTH function is

LENGTH (string-expression)
For example ..

Sif length(word) GT 24 then
$writeln word,' is even longer than

'disestablishBentariani .. ,'
$endif

The COPY function copies all or part of a string into the result string. The
format of the COPY function is

copy (source, position, count)
Source is the string expression containing the substring (part of a string) to
be copied. Position is a numeric expression indicating the place in SOW'Ce of
the first character to be copied; the first position in source is L Count is a
numeric expression indicating the number of characters to be copied. If
fewer than ~ characters are found at position.. those that are found are

9-23

Workshop User's Guide Exec Files

placed in the function result. (Note that this differs from the Pascal Copy
function.) If position is beyond the end of the source string.. COPY returns a
null function result. The following example copies establistlfl1ent out of
disestablishment8li.anism:

set ~ to copy(·disestablishBentarianis.·,4,13)
The POS function returns the pOSition of a substring within a string. If the
substring does not appear in the string" the function result is 101. The format
of the POS function is

POS (substring, source)
SUbstring and SOW"C8 are string expressions. In the Copy example above"
you can use the POS function if you donlt know the position of establishment
in the source string:

set %7 to 'disestablishmentarianisa'
set ~ to copy(~7,pos('est8blishment',~7),13))

9.2.4.4 The CHR and ORO functions
The CHR function returns a one-character string that represents the
character value of a number. The ORO function returns a string that
represents the numeric value of an ASCII character or any other character in
the Lisals extended character set. For any character x, a-tR(ORI::(x») is x.

The format of the CHR function is

CHR (numeric-expression)
Numeric-expression must result in a whole number; it is taken MOD 256"
producing an intermediate result in the range 0 . .255. Ct-R ret.urns the
character that corresponds to the intermediate result.

You can' use the CHR function to generate a non keyboard character. The
following example writes a BEL character:

Sif ioresult<>" then {there's an error}
$write chr(7) {ring bell}

Sendif
The format of the ORO function is

ORO (string-expression)
string-expression must not be an empty string, or a process-time error will
occur. If string-expression yields a string longer than one character" the
numeric value of the first character is placed in the ORO function result.

9.2..4.5 string Arithmetic Using the EVAl function
The EVPL. function lets you do long-integer arithmetic. It evaluates a

9-24

kJorkshop User's Guide Exec Files

numeric expression and returns an integer value in the function result string.
The format of the function is

EVAL (numeric-expression)
Numeric-expression consists of numeric (decimal) constants, variables that
contain integer values, string functions that yield integer values (such as
LENGTH, POS, and ORO), string constants with integer values (such as 1251),
and the operators listed below. You can use parentheses to control the
sequence of operations as in algebra. The numeric operators are:

+ Addition
Subtraction

• Multiplication
I Division
MOO Modulo

Here is an example of an exec routine that takes a word and writes it
vertically, one character per line:

set count to length(word)
while count GT 0 do

writeln copy(word, 1, 1)
{write first char}

set count to eval(count-1)
{reduce count by i}

set word to copy(word,2,count)
{remove first char from word}

endwhile

92.4.6 The RETSTR Function
The RETSTR function returns a string containing whatever is currently in the
ProgComm unit's return string. The format of the RETSTR function is

RETSTR

The value of RETSTR dan be set by any program that uses the ProgComm
unit's PCSetRetStr procedure. (Refer to the System Software Manuals binder
of this set. for more information about the ProgComm unit.) If you run a
program containing PCSetRetStr from an exec file, you can check the results
using the RETSTR function. For example,

exec
run 'coma.proQ.obj'
if retstr <) 'SUCCESS' then

abort 'Program failed.'
endexec

92.4.7 The TRIMBLANKS Function
The TRiMBlANKS function strips leading and trailing blanks and tab

9-25

l-\Jorkshop User's Guide Exec Files

characters from a string. The format of the TRIMBLANKS function is

TRIHBLANKS (string-expression)
9.2..5 Cortrolling the Scr'een Display

When you write to the screen with 'NRITE or WRlTELN, the information is
displayed at the current cursor location. Three commands--GOTOXY,
CLEAR, and CURSOR--are provided to let you do custom formatting of a
screen display by moving the cursor and/or clearing the screen.

9.2.5.1 The ClEAR Con'mand
The CLEAR command erases all or part of the screen. The format of the
CLEAR command is

CLEAR option
Option is one of the following keywords:

SCREEN Clears screen, moves cursor to home position.
ENJSCREEN Clears screen from current cursor position to end.
ENJlINE Clears current line from cursor position to end.

For instance, the following exec program demonstrates the use of all three
forms of the a.£AR command, plus the GOTOXY command, to display text
on a diagonal across the screen:

exec (DisplayStr, x, y)
clear screen
repeat

gotoxy 0,0 {_ove cursor to home}
clear endline {clear for input, but don't destroy

previous display}
write 1)1 {prompt}
readln DisplayStr {get text}
if lowercase(DisplayStr)=lquit l then

halt IDone l

else {display text on diagonal, one char at a ti.e}
set x to 20
set y to 6
clear endscreen {leave proapt, clear display}
while DisplayStr () II do

{display high-order char, then delete}
write copy (DisplayStr, 1, 1)
set DisplayStr to copy (DisplayStr,2,255)
{move cursor to next point on the diagonal}
set x to eva! (x+2)
set y to eva! (y+l)
gotoxy x, Y

9-26

l-\Iorkshop User~ Guide

endwhile
endif

until false
endexec

9..2.52 The CURSOR Command

Erec Files

The CURSOR command lets you move the cursor relative to its current
location. (To move the cursor to an absolute coordinate .. use the GOTOXY
command described in the next section.) The only change the CURSOR
command makes to the screen display is to relocate the cursor. The format
of the CURSOR command is

ClRS1:R option
Option is one of the following keywords:

HOME Cursor moves to location 0.,0 (upper left corner).
UP n Cursor moves n positions up from current location.
DOWN n Cursor moves n posit.ions down from current location.
LEFT n Cursor moves n positions left from current location.
RIGHT n Cursor moves n positions right from current location.

N is an optional numeric expression; if you don't give it a value, it defaults
to 1. Here is an ex ample of the CURSOR command where the value of n is
determined by the EVAL function:

$write %6
$cursor left eval(length(~6)-1)) {aove curSDr to start

of previous write}
9..2..5.3 The GOTOXY Comnand

The GOTOXY command moves the cursor to the screen coordinates you
specify. (To move the cursor relative to its current position .. use the
CURSOR command.) The format of the GOTOXY command is

GOTOXY x,Y

X and y are numeric expressions representing screen coordinates: x
represents the location of the cursor in the horizontal plane; y represents its
location in the vertical plane. The top left corner of the Lisa screen is
location 0,0; the lower right corner is location 79,31. If you supply a value
of x or y beyond the limit for the coordinate, the limit value will be
substituted.

If lestx and lesty represent the rightmost location and the down most location
respectively .. the following example moves the cursor to the center of the
screen:

$gotoxy lastx/2, lasty/2

9-27

Workshop l)ser~ Guide Exec Files

9.2_6 C81ling Another Exec Program
One ex ec program can call another either as a user function, which returns a
string result to its caller, or as an exec pTocedur~ which does not return a
result. Although a single exec program can call any number of execs as
procedures or functions, only one exec run file is generated. Nested calls
are pe.rmitted; that is, a called exec may in turn contain exec procedure and
function caUs.

I-\Jhen an exec is caJled as 8 pt·ocedlO·e by using the SUBMIT command,. it
must not return a function value. The exec procedure may end by executing
its last line or by issuing a RETURN command with no argument.

I-\Jhen an exec is called 8S a user function, it must end with a RETURN
command that returns a string result. See Section 9.2.6.3, Calling a User
Function, for more information.

In the case of both exec procedures and user functions, the Exec Processor
executes the exec lines in the called exec .• processes its Workshop commands
and places them in the exec run file. The exec run file contains the output
from processing all of the input exec files.

The irfl.location of an exec procedure or user function specifies the pathname
of the called exec, its parameter list, and Processor options where permitted.
The Exec Processor treats the invocation as text--es if it. were in a
Workshop line. Within this text, imbedded built-in and user function calls
are not permitted. The invocation must be on a single line. The length of
the invocation after processing must not exceed 255 characters. The only
processing performed on the invocation is as follows:

• Process tildes.
• Substitute the current values of variables. (Named variables must be

enclosed in square brackets .. as in Workshop lines.)

• Remove comments.
9.2_6_1 CeIling an Exec PrOCEKUewith the SUBMIT Corrmand

The SUBMIT command calls an exec procedure. The Exec Processor
processes the called exec and puts its Workshop lines into the current exec
run file.

The SUBMIT command must be on a single line_ The format of the SUEMIT
command is

SUBMIT exec-run-cODmand
Exec-run-c ... and is the invocation text and follows the rules described in
the previous section. The format of exec-run-command is

filename (invocation-parameter-list) option-list
Fllename is the pathname of the exec procedure.

9-28

l4orkshop User's Guide Exec Files

Jnlocation-parameter-list is an optional list of initial values to be passed to
the exec procedure; the values must be separated by commas. If the
parameter list is empty and is followed by options or other significant text,
its place must be indicated by parentheses.

Option-list is an optional list of Processor options; only the Imbed and
Blanks options are valid on a S\.BItIT command. See Section 9.3.2 for more
information on Processor options.

Some examples of the SUBMIT command follow:

subltit testexec
submit .akeanyprog.text(oneprog)I
submit noparams()B
submit endweek ([ledger], [payroll])

9.26.2 The RETURN Command
The RETURN command tells the Exec Processor to resume processing the
calling exec. In a user function, the RETURN command must be the last
command ex ecuted. The format of the RETURN command is

RETURN function-value
Function-value is a string expression that contains the value returned by the
called exec. If the called exec is a user function, rWlCtion-value is required;
if the called exec is a procedure, fund.ion-value is not permitted. Here are
some examples of valid RETURN commands:

$return
$return -The data is ~5.
$return Idone l

An exec procedure needs a RETURN command only if the exec procedure
does not end by executing the ENJEXEC command. In the exec procedure
shown below, the RETURN command terminates an endless loop:

EXEC
\lJHI LE TAlE 00

If <condition> THEN
RETURN

ENDlf
ENDNHlLE
El'f)fXEC

9.26.3 caning a UseI" function
A user function is a user-written exec program that returns a string value
using the RETURN command. You can call a user function from another
exec wherever you would use a string expression. If the user function
contains Workshop lines, including comment lines, they will be processed and
placed in the exec run file.

9-29

Workshop User~ Guide Exec Flles

The format of a user function invocation is

< filenaae (invocation-parameter-list)
where < tells the Exec Processor to process a user function. Filename is the
pathname of the user function exec file. Jnvocation-parameter-list is
optional and follows the rules for the exec-run-comm8I1d (see Section 9.2.6.1).
For instance,

$while <-taxes-quarter()) 1 0 1 do
Here is an example of a user function, GETDATA, that returns data to the
calling exec each time the function is invoked; when no more data can be
read, GETDATA returns t.he string value ·done' in its function result.. The
function contains two RETURN commands; one or the other is executed as
the last command. The count variable is set by the calling exec.

exec (count, data) {GETDATA}
if count eq 1 then {open datafile}

reset indata, data_ text
endif
read (indata) data
if ioresult = II then

return data
else

close indata
return 'done'

endif
endexec

The routine below is from an exec program that calls the GETDATA function.
(This routine does not use the same dollar-sign convention as GETDATA.)

$exec (counter, reply)

$set counter to '1 1

$set reply to <getdata((counter])
$while reply <> Idone'

$writeln '.',count, "= ',reply
$set counter to eval(counter+l)
$set reply to <getdata([counter])

$endwhile

9-30

Workshop User's Guide Exec Files

9..2..1 Commands that Control the Exec Processm'
There are four exec commands that affect the running of the Exec Processor:

• HALT tells the Exec Processor to stop processing and run the exec run
file created thus far.

• ABORT tells the Exec Processor to stop processing without running the
exec run file.

• RUN tells the EXEC Processor to run a program and then resume
processing the exec file.

• DOlT tells the Exec Processor to run the current contents of the exec
run file and then resume processing the exec file.

9..2..1.1 The HALT and ABORT Commands
The HALT command tells the Exec Processor to stop processing the exec
source file and run the exec run file in its present state. The ABORT
command terminates processing without running the exec run file. With
either command you can display a message. The format of the commands is

HALT string-expression
ABORT string-expression

string-expression is optional; if present, the contents are displayed on the
console. For instance,

Shalt 'Processing stopped at program '3'
AB£RT "Incorrect date [INDATE] in parameter list-

9..2..1.2 The Exec RUN and evRUN Commands
The exec RUN command is a command within an exec program--it is not the
same as the Workshop Run command. The format of the exec RUN
command is

RUN filen8lle
Filename is a string expression resulting in the pathname of a program you
want to run during exec processing. When the Exec Program finds the RUN
command, it suspends processing of the exec source file and runs the
program; then it resumes processing; for example,

$if day = '1' then
$run '-monthly-firstday.obj·

$endif
The 8DRUN command is required only if you want to supply input data to
the program named in the RUN command. In this case, you must also
specify the INPUT keyword in the RUN command as follows:

RUN filename INPUT
input lines

ENDR~

9-31

yalorkshop User's Guide Exec Fl1es

The input lines between RUN and ENlRUN are placed in a temporary file
and have no effect on the exec run file.

The Generate Processor option disables the exec RUN command.

9.2.7.3 The OOIT Conmand
In a simple exec program without DOlT commands, all of the exec commands
are executed (by the Exec Processor) before any Workshop lines are executed.
The OOIT command allows the execution of Workshop lines to be interleaved
with the ex ecution of ex ec commands. The format of the DOlT command is

DOlT
When the Exec Processor finds the OOIT command, the following actions are
taken:

1. Processing of the exec source file is suspended.

2. The current contents of the exec run file are run by the
Workshop.

3. The contents of the exec run file are erased, and a new exec run
file is started.

4. Processing of the exec source file resumes at the point where it
was suspended.

These actions occur even if you are stepping through the ex ec source file
using the step option. However, the Generate option disables the OOIT
command. (For more information see Section 9.3.2, Processor OptiOns.)

You can use the DOlT command to display run-time messages as Workshop
lines are executed. If the DOlT command is omitted from the following
example, the "Backup completed" message will be displayed before the
backup actually takes place:

exec (fromVol, toVol)
writeln 'Now starting backup ... '
$F{iler}B{ackup} [fromVol]-=, [toVol]-$
$C{uit the Filer}
DOlT
writeln 'Backup of ·,fro.Vol,· to ',toVol,

I co.pleted.'
endexec

9.3 Running an Exec Program
Exec programs are run under the main command line using the Workshop Run
command. The Run command calls in the Exec Processor to read your exec
source file, execute its exec commands .. and create an exec run file
containing only Workshop lines. The Workshop then runs the exec run file,
which is automatically deleted at the end of the run unless you specified the
Keep Processor option.

9-32

f'.Iorkshop l.,lser~ Guide Exec Files

t,.,'hen a Workshop Run command is used to invoke an ex ec from within
another exec, the reslJlt is chaining.. The difference between submitting an
exec procedure (see Section 9.2.6) and chaining is that an exec procedure is
processed before any Workshop commands are executed; a chained exec is
processed after all of the Workshop commands in the chaining exec have
been executed. See Section 9.4.1, Exec File Chaining, for more information.

9.3.1 The Workshop RWl Conmand
The format of the Workshop Run command that invokes the Exec Processor
is

R<exec-run-cammand
or

REXEC/exec-run-comaand
The format of the exec-run-command invocation (also discussed in Section
9.2.6.1) is

filename (invocation-parameter-list) option-list
For example ..

r<testexec
r<nopar8lls()sb
rexec/-upper-ca.pile(-lower-testprog)i

Filename is the pathname of the exec program you want to run. An
extension of .TEXT is assumed unless you override the extension by adding a
period at the end of filename. For example ..

You tyoe The Wm'kshoo looks for
abc abc. text
abc.xyz abc.xyz.text
abc. abc

lrMlcation-parameter-Ust is an optional list of initial values for parameters;
if present, it is enclosed in parentheses. It can be empty, or it can include
up to 20 parameter values separated by commas. Omitted parameters are
specified by commas; for example (10" Hay). If a parameter is not
specified, its value is an empty string (I I).

Option-list refers to the options described below.

9.3.2 Processor Options
You can modify the Exec Proces-sor1s operation by specifying one or more
single-letter Processor options following the invocation parameter list.
Processor options allow you to tailor the processing of your exec

• By controlling the Wf!oj spaces are handled--Blanks option.

• By proceeding even if errors are encountered while running--Error
option.

9-33

140rkshop l..,1sel'~ Guide Exec Files

• By processing the exec file without running it--Generate option.

• By imbedding your exec in a source file--Imbed option.

• By saving the exec run file that is normally deleted--Keep option.

• By stepping through an ex ec source file" selectively including Workshop
lines for its 8X-eC run file--step option.

• By running from a previously saved run file--Rerun option.

To request an option, type the option letter after the exec parameter list.
Include an empty parameter list if you want to specify options but not
perameters. For example"

R<firstexec(apples"Dranges)BE {Blanks, Errors}
REXEC/anotherexec(9,17,7,23)S {Step}
Ssubmit lastexec()i {I.bed}

The default condition for all options is that they are not in effect unless
specified. Most Processor options are global--they apply to the exec on
which theylre specified and also to any execs it calls; they are therefore not
permitted on a SUBMIT command invocation. The two exceptions are the
Blanks and Imbed options, which are local and are permitted 1\'Jith SUBMIT.
You may not specify Processor options when invoking a user function.

B The B/.fJnk.s option tells the Exec Processor not to remove leading and
trailing blanks from the Workshop lines it places in the exec run file.
Leading blanks result from indenting lines to improve exec readability.
(Leading and trailing blanks are not significant to ~vorkshop programs" but
they might be significant to other programs you run under the Exec
Processor.) ,

E The Errors option tells the Exec Processor to continue processing even if
errors are encountered that would normally stop exec file execution. This
option is useful for forcing the completion of a test series.

G The Generate option tells the Exec Processor to generate an exec run file
without running it. Syntax errors are flagged. The DOlT and RUN
commands are disabled. By specifying the Keep option with the Generate
option, you can retain the exec run file and examine or modify it using
the Workshop Editor. If K is not specified, the exec run file is deleted.

I The Imbed option tells the Exec Processor to ignore the first line of the
exec file because the exec is imbedded in a source program. For
instance, the exec file can also be the source file for the Pascal
Compiler. To use this technique, begin the first line of the exec file with
the Pascal comment delimiter (* and follow the ENDEXEC command with
the Pascal comment delimiter *); then begin the source program.

9-34

~vorkshop l.,(s-er's Guide Exec FJ1es

Imbedding works with any language that allows you to extend a comment
over more than one line,. including exec language. Here is a Pascal
source program in file -Pascal..prog..text that contains an imbedded exec
program:

(* This Pascal program compiles itself'
$exec {Pascal test)
P{ascal CORpile}Pascaltest
Pascaltest.list
Pascaltest.obj
$endexec
*)
PROGRAM Pascal test;
USES •••
TYPE •••
VAR ...
BEGIN ••.
END.

To compile this program, simply type the following Workshop Run command:

R<Pascaltest()I
K The Keep option tells the Exec Processor not to delete the exec run file

after the Workshop runs it. You may then rerun the file using the R
option.

R The Rerun option tells the Exec Processor to run a previously processed
exec run file that was served using the K option. This option overrides all
other options.

S The step option puts the Exec Processor in step mode so that it displays
the exec run file one line at a time .. prompting you for selective skipping
of output lines and SUBMIT commands. Specify the Keep option also if
you want to keep the exec run file. This option is further described
below.

9.3.3 Using the Step OI:tion
With the Step option,. the Exec Processor processes the exec source file one
line at a time and prompts you for a decision:

<= Include? for a Workshop line.

<= Submit? for a SUBMIT command line.

When you first enter Step mode .. you can get an explanation of the possible
responses by answering Y to the Mere det.aiJs ? prompt. You can also get
help by answering? to the decision prompts. The responses are:

Y Include the Workshop line or submitted exec program in the exec
run file.

N Omit the line or submitted exec program.

9-35

Workshop User's Guide

S Step through the submitted exec (with SUbmit 1 only).

A Abort processing; the exec run file is not run.

K Keep the remaining lines of the exec source file as is (process
exec lines, include Workshop lines without further prompting), and
run the exec run file.

I Ignore the remainder of the exec source file, keep previously
included Workshop lines, and run the exec run file.

You can use the step option to skip over the first portion of an exec
file--for instance, when debugging a series of programs. Step through the
ex ec that runs the series, responding with N to eliminate the programs that
ran successfully. Then when you get to the program that failed and has been
corrected, respond with K to generate the exec run file with only the
remaining programs in it.

You can also select seperate sections or modules of a lerge application. In
this case you can use Step mode most easily if you place each module in a
seperate exec file, as in the following high-level exec file called RUNALL
which runs modules A, B, C, 0, and E:

exec {RUNALL}
sutnit Aexec
submit Bexec
subllit Cexec
submit Dexec
submit Eexec

endexec
To select only modules B and 0, invoke RUNALL in step mode. If you want
to k.eep the exec run file so that you can run it again without going through
the selection process, specify the Keep option as well as the step option:

r<runall()sk
Your dialog with the Exec Processor in Step mode as you select Bexec and
Dexee for running is shown below, with your responses in italics:

Step Hode:
----- in response to -Include 1- answer:

Y, N, A (Abort), K (Keep rest), or I (Ignore rest).
----- in response to nSubitit 111 answer:

Y, N, S (Step), A (Abort), K (Keep rest), or I
(Ignore rest).

Hore details? (Y or N) [No]

9-36

14orkshop Llser~ Guide

submit Aexec
sut.it Bexec
submit Cexec
subloit Dexec
submit Eexec

NOTE

(= Submit? N
(= Submit? Y
(= Submit? N
(= Submit? Y
(= Submit ? I

Exec Files

If the exec you are stepping through contains a DOlT command, the
contents of the exec run file are executed when the DOlT line is
encountered (unless it's in the false part of a conditional statement);
then you are returned to stepping.

9.3.4 The File Cache and the Input 8lIfer
The Exec Processor uses a file cache for improved performance. If you need
to optimize the performance of an exec program that calls exec procedures
and user functions, understanding the file cache can help you.

The file cacne consists of five pages (a page is two blocks) that can contain
five small files at a time in memory. A small file has a listed size of four
blocks--according to the File Manager's List command--and contains one
header page and one page of text. If an exec procedure or user function is
called repeatedly--within the range of a WHILE statement .. for example--it
should be a small file so that it can be read from memory rather than from
disk.

Small files that are accessed by a SUBMIT command or a function call are
placed in the cache. Subsequent access to these files is made from the
cache rather than from disk. The cache is maintained on a
least-recently-used basis. That is .. once the cache is full,. the file least used
recently is the one whose space is relinquished for a new small file.
If your exec modifies itself and then calls itself (and we don't recommend
this),. the modified version won't execute if the previous version is still in
the cache. To avoid tt'lis problem, make U"le self-modifying exec 181ger than
four blocks.

The input buffer is the area in memory where large exec files 81e read. If
one large file is called repeatedly by a second large file, both files must be
read from disk each time through the loop. To optimize performance,
modularize the large files so that at least one file can be accessed from the
cache.

9.4 Sample Exec Programs
The following sections contain a series of actual exec programs that
demonstrate some useful techniques like chaining and recursive calls.

9-37

~vorkshop l..lser's Guide Exec Files

9.4.1 Exec File Chaining
Chaining takes place when the Workshop Run command is used from within
an exec: the Workshop is executing the current exec run file--the chaining
exec program--when it encounters a Workshop Run command; it then closes
the current exec run file and invokes the Exec Processor to begin processing
the new exec source file named in the Workshop Run command--the chained
exec program. The chaining exec is not returned to for further processing;
the Workshop Run command is effectively its last command. In the example
illustrated by Figure 9-2 below, exec program A invokes exec program B by
means of the Workshop Run command. Exec run file A is executed. Its last
command is

R<ExecB.text

The Workshop then returns control to the Exec Processor, which processes
exec source file B and gives its exec run file to the Workshop to run.

E£ {A}

R<8.TEXT
EIClEXEC

source
file

Fge 9-2. ChaIring eec FIles

Here is a set of four exec files that demonstrates the use of exec file
chaining, USing Pascal compiles as an example.

• COMP performs a basic Pascal compile.

• COMPIF submits COMP only if the object file does not already exist or
if the source file is newer than the object file.

• lINKIF links the three units if ~I of them was changed since the last
link.

• COMPlINKIf, the calling exec, submits COMPIf for three separate
Pascal units--conditionally compiling them--and then chains to lINKIF.

The COMP exec program follows:

E><EJ: (unit, objnaae) { ••• C(JI) ••• Pascal CODpile
unit: source to CCIIpile
objname: al ternate name far object file }

IEffIJL T objname m unit {if no alternate naae use source nane}
sP{Pascal compile}[unit]

${no list file}
$[objname){object file}

ENE<E:I:

The COMPIF exec program follows:

9-38

Workshop User~ Guide

EXEC (undt,Objna.e) { ••• OOHPIf ••• conditi~ compile
uni t: source to COIIPile
Objmlle: nate of (BJ file

Exec Files

[EFfU.. T Objmne TO unit {if no 8l. ternate naae use source naIe}
If EXISTS (- [ObjnERe] .Obj-) TI£H

If NBNBR (-[unit].text-, -[Objna.e].Obj-)
ltEN {rec_pile if source newer than object)

9.BtIT cOllP([uni t], (Objmne])
fN)If

ELSE {object file does not exist, so generate it }
9B1IT C«RP([urn t], [Objn8lle])

fN)If
ENEXEI:

The LINKIF ex ec program follows:
EXEC {... lIN<.If ••• link the object IIOdules into a

new executable progr_ if 8RtJ
of them was recompiled.)

If tBER (. urn t L Obj', • progrEII. Obj')
(R teER (·unit2.Obj·, 'progral.Obj')
(R I£\IER ('unit3.Obj', 'progrEII.obj') llEN
Sl{ink}ooitt
Sunit2
$unit 3
SiospaSlib
S{end of input}
SIno list file}
SprogrEII{executable output file}

EN>If
ENEXEI:

The CQt4Jl..JN(lf exec program follows:

E><EI: (..utI, unit2,..ut3) { ••• -OOHPlIN<.If- ••• COIPile
if neceSSBIY, then chain to
link}

9B1IT coapif([unitt])
9B1IT co.pif([unit2])
9.BtIT compif([unit3])
SR<lIN<IF { Chain to link exec file after coapiles

have run so that lIN<If exec gets the
correct file dates. Note the
difference between process ti_ and rim
tiM.}

9-39

'nlorkshop UseT~ Guide

Here's what happens when COMPLINKIF is run:

1. COMPIF is invoked for unitt. If unit1 needs to be compiled,.
COMP is submitted and the Workshop lines for the compile
are placed in the exec run file.

2. In the same way,. CQtwt3IF is invoked for trd.t2 and unitl,.
until the exec run file contains all of the commands necessary
to compile any unit that requires it. The Workshop then runs
the exec run file.

3. When the Workshop finds the command to Run the LINKIF
exec it calls on the Exec Processor to start a new exec run
file. LINKIF now h~ available the dates of the most recent
compiles. If LINKIF were submitted rather than chained to,.
the compiles would execute after LINKIF compared dates.
(But you could accomplish the same effect as chaining by
adding a DOlT command to force the compiles and then
submitting LINKIF.)

4. The Workshop gives control back to the Exec Processor to
process LJN.<.IF,. which creates a new exec run file containing
commands for the Linker.

9.42 A Recursive Exec Program
The RCOMP exec performs up to ten Pascal compiles ... using t.he CQtv1P exec
described in the previous section. RCOIVP takes an argument list with the
names of the units to be compiled.

E><EC { AlJP - perfOl1l 8ITY' m.nber (up to 10) Pascal ct:npiles.
It calls a:tP on its first arguaent and then calls itself
recursively with its argtllents shifted left }

If ~ <> I' 1I£N
SlBtIT cOlP(~) {-cmtp- the first one }

{ -rcotp- the rest, less first}
SlBtIT rct:np(~l,~, %3, ~, l5, ~, ~7, %8, ~)

EH>IF
EJflEXEI:

9.43 A Recursive User FtmCtion
The GETPROFLOC exec 1s a function that prompts the user for the location
of a ProFile and returns a string with the name of the device to which the
ProFile is attached. The function calls itself recursively until a valid device
name is specified.

E)(fC (ploc) {***t£TPA)fLOC**· pn:apt user far Profile location)
A:IlEST ploc WI1H
IWhere is the Profile attached (parapart/slot2chanVslot2chan2) I

SET ploc 10 1.AlEA:f&: (ploc)
IF (pLoc <> IPfRfRRTI) AN> (ploc <> ISI..OT2DIfI'I1 I)

fit) (ploc <) 'SLOT2D1f1f2I) 1I£N

9-40

(""orks-hop User~ Guide Exec Piles

NUlELH 'That is not 8 valid device naae. Let' 's try again. '
RET1.Ri <GetProfLoc {recursive function call }

ELSE
RET1.Ri ploc

EN>IF
ENECEC

9.4.4 An Exec Application
The application listed below verifies the contents of a disk: Cl-ECK lists
missing files, and CHECK2 lists extraneous files. The disk to be verified is
compared against GoodUstFile, a text file containing the list of valid files,
one per line. The application consists of two main execs (Ct-ECK and
CHECK2), a user function (DEVNAME), and an exec procedure
(CHKIORESlA...l). Both main exec programs call the DEVNAME function to
format device names and the OiKIORESUL T procedure to handle 1/0 errors.

The DEVNAME user function follows:

E><El: (DeuN8IIe, DevDefaul t) { a::vtRE function returns device
naae with leading I_I }

I:EFfIJL T DeuN8IIe 10 DevDefaul t
IF a:py (DevN8IIe, 1, 1) <> I_I 11£N

SET DeuN8IIe 10 eot:AT (I - I, DeuN8IIe)
EN>IF
RET1.Ri DevtIaIIe
ENECEC

The CHKJORESUL T exec procedure follows:

E><EI: (Errmttsg, llRes) {OI<ImESlLT will abort if we get an
I(HSlLT error; sooods bell and prints llessage }

IF I(HSlL T < > I I 11£N
SET IeRes 10 I(HSlL T { so MUlEs belOllf "ill not change its

value }
tRI1ELH DR(7), E:Irarttsg
tRIlELN 1(Res
fBRT 'Bye'

EN>IF
ENECEC

9-41

t4orkshop User's Guide Exec Files

The CHECK exec program follows:

E><E[: (GoodListfile, Check.Vol, fileName)
{ OEIX looks far missing files on CheckVoli Goodlistfile is a

text file containing an alphabetical list of the
files that should be on CheckVol, one file name per
line. }

IEffU. T Goodlistfile 10 I GoodfileL.ist . Text I
~ CheckVol 10 <deuN8IIe([Check Vol],-I1YWL)

{ check far missing files }
RESET Goodfile, GoodListfile
SUSHIT chkIOResult(COuld not open [Goodlistfile])
WUlEUf ICheck of I, Check Vol, I against GoodListfile (I,

Goodlistfile, I) I
lIRllEUf

REPEAT { get file n8lle and see if file exists on CheckVol }
A::fI)LN (Goodfile) fileName
If fileName <> IEDfI THEN

If rtJT (EXISTS (. [Check Vol]-[fileName]·» ll£N
tRllEUf OR(7), IHissing file: I, fileNaae

EN>If
EN>If

UNrIl fileName = '8Of'
ClOSE Goodfile
EtI£XEC

The CHECK2 exec program follows:

EXEC (Goodlistfile, Check Vol, Goodiene, fileName, LastGoocfolalle)
{ CHBCK2 looks far extraneous files on CheckVoli GoodListfile

should be the ntlle of a text file with an
alphabetized list of the files that should be
present, one file name per line. }

{ Note: this will not work if the volume being checked has
sub-catalogs, since the NlIIes cmmand will not
return the full pathnllleS far files within the
catalogs. }

IEffULT GoodListfile 10 I GoodfileL.ist . Text I
SET CheckVol 10 <devNaIe([CheckVol],-I1YWL)
{ get the nflles of the files on CheckVol }
SF{ileHMgr}N{lIIes} [CheckVol]-=,CHEOK.TMP.TEXT
$O{quit}
OOIT { execute file-l1gr coaands to create list of files in

(]£[K. TMP.1EXT)

9-42

~\Iorkshop User's Guide Exec FJ1es

IE:iET NaIIeFile, '(]£I](.lI'P . TEXT '
stB1IT Chkl(Result(Could not open (}E[K.lI'P .TEXT)
I£II>LN (Naaefile) fileNene {ignore 3 title lines frCD Hales

alnd }
A::fI)l.N (Nantefile) fileName
RBl>L.N (Namefile) filetfalle
A:SET Goodfile, Goodlistfile
stB1IT chkIOResult(Cound not open [GoodListfile])
SET LastGootftne 10 'A' {alphabetically first }
RBl>L.N (Goodfile) Goodiame { prill8 the PUlPS }
I£II>LN (Namefile) fileName

fBJEAT
SET Goodiame 10 lFPERCH (Gorntlaae)
SET fileName 10 lFPERCH (fileNaae)
IF (Goottiene < LastGooc:t4&ae) flO (Gooclifne <) 'EOF') 1tEN

NUlELN OR(7), GoocftDe, , is not alphabetical in I I

GoodListfile
IHRT 'Bye'

EN>If
SET LastG~aae 10 Good'taae
IF (GoocliE1118 = 'El)f ') AN> (fi leN8lle = 'EDf') n£N

HALT I Done I
ELSEIf Goocliame = IEDf I nEN

NiILE fileName (> IEIF' DO
NUlELH OR(7), 'Extra file: I fileNaRe
A:t1>LH (NfneFile) fileNaae

EtlMiILE
HAL. T I Done I

ELSEIf fileNene = IEDfI THEN { missing files will be
detected by other test }

HALT I Done I
ELSEIf fileNaae = Gooctlene ThEN

A::ADLN (GoodFile) Goofttale
I£fI>LH (Nfnefile) fi leNaae

ELSE { misaatch -- list extra files & resynchronize }
IF GoodNaBe < fileName THBN {missing files}

A:PEAT
A::fI)LH (GoodFile) Good'lalae
SET GoodieIIe to lJlFIER:H(GooctIaIIe)

ltfTIL (GooctiEIRe >= fileNale) m (Gooctlaae = I EDF I)

EN>If
IF Goocli8118 (> fileN8118 ThEN

REPEAT
NUlELN OR(7), "Extra file: I fileNtDe
If fileNE1118 (Goolltame 1I£N

REfI)l.N (Nlllefile) fileNtDe

9-43

YtJorkshop User's Guide

SET FileHtne 10 lJlIlER:ASE (Filetlale)
EN>IF

Exec Files

ltfTIL (FileNalle)= GoocfieIIe) m (FileNslle = IEDFI)
EN>IF
IF FileNale = GoocfieIIe 1tEN

REII>LN (Ha.eFile) FileNaae
EN>IF
I;EfI)LN (Goodfile) GoocfieIIe

EN>IF
lHTIL FALSE
EJD:)(8;

9..5 Exec File Errors
The Exec Processor reports syntax errors, 110 errors, and other process-time
errorsi it also reports errors resulting from Operating System calls. The
format in which the Exec Processor reports errors is:

ERROR in <errm location>
<curreri line>
<errm marker>
<errm message>

where

<errm location> is either 'invocation line' or 'line #<n> of file
<file>'.

<current line> is the text of the exec line in which the error was
detected.

<errm marker> is a question merk indicating the place in <current
line> where the error was: detected.

<errm message> is one of the messages listed below. The error
message begins with an error number.

9..5.1 synt.ax Er.ron
The line containing the syntax error does not conform to the rules of the
exec language. Check to see that you have typed the line correctlYi refer to
Section 9.1.4, Syntax of Exec Lines and Workshop Lines, and to descriptions
of the individual commands and options for more information.

1 More than 20 parameters on exec procedure/function call
2 No closing) found
3 End of Exec file before ENDEXEC
4 No Exec file specified
6 End of Exec file in comment
7 Invalid percent: not "trail form
8 Gerbage at end of command
9 File does not begin with EXEC

10 No 81gument to SUBMIT

9-44

14orkshop User~ Guide Exec Files

11 ELSE, ELSEIF or ENDIF not in IF
12 ELSEIF after ELSE
13 Nothing following -
14 EXEC command other than at start of file
16 More than 20 variables declared
19 ENDWHILE not in WHILE
20 Duplicate p81amet.er/variable name
21 Bad number. Numeric constant expected
22 Number too 181ge
23 ORD requires a string argument of at least one character
24 UNTIL not in REPEAT
25 Bad Number for first argument to numeric comparison
26 Number too large for first 81gument. to numeric comparison
27 End of Ex ec file in RUN command input
28 Bad Number. String expression with numeric result expected

Invalid command. <token> expected.
<token> is one of the following:

String value
Numeric value
Number
String expression with numeric result
Boolean value
Parameter name
Parameter Ivariable
String compare operator
<>
Comma (list delimiter)
Command
Terminating string delimiter
Valid command keyword
(
)
IIENDIFII
IIENDWHILE"
IIUNTIL"
Catalog specification
File Identifier
Clear command (Screen, EndScreen EndLine)
Cursor command (Home, Up, Down, Right, Left)
Program name

9-45

~\Iorkshop l.,lser~ Guide Exec Files

9.5.2 1/0 Er.ren
The I/O error reported by the Exec Processor is followed by an additional
line with the text of the corresponding Operating System error message.

201 Unable to open input file "<file>"
202 Unable to open exec run file "<file>"
203 Unable to access file "<file>"
204 Unable to rerun file "<file>"
205 Unable to reread file "<file>"
211 Unable to reopen input file "<file>"

9-46

~\Iorkshop User's Guide Exec Files

9.5.3 other Exec Errms
5 Line buffer overflow (> 255 chars)

15 Out of memory. Exec processing aborted
17 No value returned from file called as function
18 RETURN with value in file not called as function
28 Bad Number. String expression with numeric result expected
29 Number returned by string expression is too large
206 File variable "<id>" already in use
207 File variable lI<id>1I is undefined
208 File variable lI<id>1I is not open for input
209 File variable lI<id>1I is not open for output
210 Bad exec run file name generated: lI<file>1I

9-47

Chapter 10
The Transfer Program

10_1 Introduction ___ 10-1
10_2 Hardware Connection and Software Configuration ________________ 10-1
10.3 Setting Transfer Prot;J"8m Characteristics __________________________ 10-2

10.3.1 The Connector Menu ... 10-2
10.3.2 The Baud Rate Menu .. 10-3
10.3.3 The Parity Menu ... 10-4
10.3.4 The Handshake Menu .. 10-4
10.3.5 The Duplex Menu .. 10-5

lOA Using the Transfer Program ___ 10-6
1004.1 The Control Menu .. 10-6

1004.1.1 Receiving Text 10-7
10.4.1.2 Sending Text 10-8
10.4.1.3 Suppressing Text Display 10-8
10.4.1.4 Exiting From the Transfer Program 10-8

10.4.2 Transmitting Special Characters 10-9

The Transfer Program

10.1 Introduction
The Transfer program 'is a data communications utility that supports the
transfer of text between your Lisa and another computer that weIll call the
remote computer. The Transfer program can send text from a file to the
remote computer. It can also act as a terminal emulator: Everything you
type on the Lisa keyboard is transmitted to the remote computer. Text
received by your Lisa can be stored in a standard text file that you can read
using the Workshop Editor.

10.2 Hs"dWeI'e Connection and SOftware Conf'igwation
Before you can use the Transfer. program you must establish a physical
connection between your Lisa and the remote computer. Then, in order t.o
transfer data properly from one computer to another, you must set certain
data communications characteristics on the Lisa to match the remote
computer. Establishing this software connection is known as configuration

If J"ou W8J'1t to connect the Lisa to the remote computer by' teJephone;. attach
a modem to your phone jack and to the Serial A or Serial B connector on the
back of the Lisa.

If you W8J'1t to connect the Lisa directlJ·· to the remote computer, connect a
modem eliminator cable to an RS232 cable; attach the modem eliminator end
of the cable to a serial port on the remote computer; attach the RS232 end
of the cable to the Serial A or Serial B connector on the back of the Lisa.

To configure the Worl<shop software,. let the Workshop know what's connected
to the serial ports by selecting the Preferences tool from the System
Manager command line and using the Device Connections menu to set either
Serial A or Serial B to Remote Computer.

To configlJl'e the Transfer progrsm software at· the beginning of a transfer,
choose a value from each of the following menus (described in detail in the
next section):

• Baud Rate The speed at which data is transferred. Ten baud represents
about one character per. second; for example, 300 baud is equivalent to
30 cps.

• Parity The lIinsurance policy" that ensures the valid transmission of
data.

• Handshake The hardware or software mechanism for synchronizing data
transmission.

10-1

Workshop User's Guide The TrlJl"i$fer Progr8m

• Duplex The type of information flow between the Lisa and the remote
computer.

• Connector The serial port you plan to use (A or B).

To contra} trsnsmission while the transfer session is in progress, use the
Control menu:

• Control Start or stop receiving or sending data; filter out control
characters; increase transfer speed by suppressing text display;
set line delay; exit from the Transfer program.

NOTE
When the Workshop shell is initialized, all serial ports are configured as
follows: 9600 baud, OTR handshake, automatic linefeed insertion. When
you leave the Transfer program, these defaults are automatically
restored.

10.3 Setting Transfer Program CharaLUristics
In order to communicate with a remote computer, the Transfer program
menus must be set so that the Lisa transmits and receives data in the same
way as the remote computer. If you are dialing a service on a mainframe
computer, use the settings specified in the mainframe computer manual. If
you are connecting your Lisa to another Lisa, make sure that both Lisas are
set to the same characteristics.

Each menu has a default setting that is in effect when you start the
Workshop. To change the default, open the menu and click on the setting
you want. When you exit from the Transfer program, the Workshop saves the
last settings you used: In other words, you automatically create your own
custom default settings that last until you change them.

103.1 The Connector ~
This menu allofrlr'S you to specify which serial port you will use to connect
your Lisa to the remote computer. (You can only use a connector if it is
specified in the Preferences menu.) The default is Serial A. For more
information on the serial connectors, see the Hardware chapter in the Lisa 2
Owner~ Guide.

Connector
~Serial A

Serial B

10-2

Workshop ljser's Guide The Transfer Program

1032 The Baud Rate Menu
Baud rate is the speed at which data is transmitted to or from the remote
computer. The baud rate must be set to agree with the remote computer
and modem you are using. The default is 1200 baud. Valid baud rate
settings for the serial ports are shown in the IPortConfig" section of the
Utilities chapter. Note that 3600 .. 7200, and 19200 baud are not available on
Serial A.

On telephone-line connections .. the faster the baud rate .. the less reliability
the data will have. If you are getting garbled transmission or missing data,
you might need to use a lower baud rate (but remember to synchronize with
the remote computer). Standard rates for transmission over telephone lines
are 300 baud and 1200 baud.

Baud Rate
50
1S
110
134.5
150
200
300
600

v'1200
1800
2000
2400
3600
4800
9600
19200

10-3

The Trsnsfer Program

10.3.3 The Parity f\1enu
Data transmission between computers can be unreliable because of pops,
clicks, crosstalk, and noise on telephone lines; hard-wired lines ere also
subject to interference and weak signals. Parity error detection is the most
common method of detecting data communications errors. This method does
not correct errors; it merely points· them out--the Transfer program displays
characters with bad parity as highlighted question marks.

Parity error detection depends on the fact that the ASCII character set
requires only seven bits of an eight-bit byte to encode the standard 128
characters. The eighth bit, known as the parit)/ bit, can be set to make each
character transmitted contain either an even number of 1-bits (even p8J"it~~l
or an odd number (odd p8Tit}.;l If a bit in a character is inadvertently
changed during transmission, the number of 1-bits will not match parity and
the byte will be highlighted as an error. (Note that this method can detect
only an odd number of bit changes in a character. If two, four, or six bits
change, parity checking will not detect an error. This means that parity
checking works best with relatively reliable lines.)

Parity should be set to agree with the remote computer. The parity choices
provided by the Transfer program are Even, Odd, or None. The default is
None. If you are sending or receiving characters from the extended
character set, choose None (see Section 10.4.2, Transmitting Special
Characters, for more information).

10.3.4 The Handshake Menu

-.I NOne

Even
Odd

Handshaking is the exchange of predetermined Signals between two computers
in order to synchronize transmission. The Handshake menu allows you to
select XON/XOFF (a software hendshake), OTR (a hardware handshake), or
None. The default is None.

XONI XOFF is a software protocol for use with a modem or a modem
eliminator. It allows the transfer of a continuous string of characters,
pausing only when the receiving buffer is nearly full. Using this protocol,

10-4

(,I.Jorkshop User's Guide The TTlmSfer ProgrlJln

the Lisa can stop transmission from the remote computer by sending XOFF
and start it again by sending XON; likewise, the remote computer can stmt
and stop transmission from the Transfer program by sending XON and XOFF
to the Lisa.

NOTE

If you use XON/XOFF and the information transmitted includes an XON
or XOFF, the transmission will halt and the Lisa will time out. The
XON and XOFF characters are the same as the ASCII Control-Q ($11)
and Control-S ($13) characters.

OTR (Data Terminal Ready) is a hardware handshake for use with a modem
eliminator cable or modem. The RS232 handshake lines associated with
serial ports A and B are monitored for control signals that suspend or allow
transmission of characters. This arrangement works well if you are
connecting your Lisa to another Lisa.

If you get error message 647, the Transfer program failed to receive the
appropriate handshake from the remote computer after e. timeout. The
session terminates. Before retrying, make sure that the characteristics
settings for the Lisa are in agreement with those of the remote computer.

10..3..5 The Duplex Menu

vlNone
XOn/XOff
OTR

This menu allows you to select Full or Half duplex. Most remote computer
connections are made using full duplex mode. The default is Full duplex.
Full duplex transmission allows information to flow in both directions at
once; both the Lisa and the remote computer can send end receive
information simultaneously. Half duplex transmission allows information to
flow in only one direction at a time; when the Lisa is sending, the remote
computer can only receive,: and vice versa.

In full duplex mode, the characters you type are sent but not displayed on
the Lisa screen. (Ch8Tacters received from the remote computer 8Te

10-5

Workshop User's Guide The TrBnSfer Program

displayed.) Normally in full duplex mode the remote computer sends: back
the charact.ers you type so that. you can see them on the screen; this is
known as echoing.

In half duplex mode, the characters you type are both sent and displayed.
Normally the remote computer does not echo in half duplex mode. If it
does, you'll see two characters for each one you type.

Half

10.4 Using the Tl'8I1Sfer Program
Start the Transfer program by typing T in response to the Workshop
command line. Then use the characteristics menus described in Section 10.3
to configure the Lisa so that it matches the remote computer you want to
communicate with. The Transfer program begins in termin81 emulation mode:
Whatever you type on one computer is received on the other computer. To
send from a file or receive to a file, select the appropriate options from the
Control menu.

10A.1 The Control Menu
The Control Menu allows you to control transmission by receiving, sending, or
exiting from the Transfer program. Some of the menu items in t.he Control
menu are toggles: selecting a toggle item turns it on, selecting the same
item again turns it off, and so forth. The toggle items are Receive From
Remote, Suppress Text Displery, and Transfer to Remote. The item is on if it
has a checkmark next to it.

The Suppress Text Display option applies to either sending or receiving.

10-6

~\Iorkshop User's Guide

10A.1.1 Receiving Text

·- ... ·~o::ar·""'ive from remote ...
Receive RII Text
Receive Fi Itered Text

Slw"ess Text Display

Transfer to remote ...
Line Delay

Exit

The Transfer Program

When the Transfer program start.s~ you are able to receive text from the
remote computer in terminal emulation mode. The first item on the Control
menu~ Receive From Remote~ lets you specify a file in which to save the
text sent by the remote computer. When you select Receive From Remote~
the following message appears.

1'.'Uii." Connector Baud Rate Parity Handshake Duplex

~ Write to Filename [.text]?

Type the name ot' the file you want to save the transmitted data in. It must
be a text t'ile.

Two options are associated with Receive From Remote. You must choose
one of them; Receive Filtered Text is the default.

Receive All Text lets you store the transmitted data in the receiving file
exactly as they are received~ including control characters.

Receive Filtered Text does not save control characters in the receiving file.
This option changes [RETURN] to [NEWLINE] and replaces [T AB] characters
with the appropriate number of spaces. All other control characters are
discarded.

10-7

"""orks-hop User's Guide The Transfer PrOl}I8m

To stop storing text in the file" toggle Receive From Remote to close the
file. You can then read the file using the Workshop Editor or any program
that reads standard text files. The Transfer program does not insert a
[RETURN] at the end of the file" so if your file is a program file or other
file that must end with [RETURNl use the Editor to insert one.

10A.1.2 Sending Text
The Transfer to Remote menu item lets you send data directly from a text
file rather than typing it at the keyboard. When you toggle Transfer to
Remote to begin sending .. you are prompted for the name of the text file.

The Line Delay option is associated with Transfer to Remote. When you
select this menu it.em.. you are prompted for the number of milliseconds the
Transfer program will wait before sending each line of text. The default is
zero. Specify a line delay when you are transmitting to a remote computer
that is losing data because it cannot keep up with full speed transmission.

li.hUI.'. Connector Baud Rate Parity Handshake Duplex

Set Delay between Lines [in milliseconds] ?

10A.13 SuWessing Text Display
The Baud Rate menu lets you select a maximum transfer speed. However ..
the actual transfer rat.e may be slower because of the processing time
required to displery the text as it is sent or received. Suppress Text Display
is a Control menu item that may be used with either Receive From Remot.e
or Transfer to Remote. You can toggle it on or off at any time. When
Suppress Text Display is selected .. text that. is received or sent is not
displayed on the Lisa screen.. and the data transmission speed is usually
improved.

10.4.1.4 Exiting from the Transfer Program
When you have completed your communications session .. select Exit from the
Control menu. The current characteristics settings are saved and you are
returned to the Workshop command line.

)-'01.1 milSt explicitly log off Jf the remote computer has 8 logoff procedl.lre.
If you choose Exit without logging off .. neither the session nor the telephone
connection is automatically terminated. When you return to the Transfer
program .. the session will still be active and you can proceed as if you'd
never exited.

10-8

l-\Iorkshop User's Guide The Transfer Program

10.4.2 Transmitting Special Characters
By using special keys~ you can type standard terminal control characters. To
transmit a control character from the keyboard, hold down the Apple key and
type a character~ as shown in Table 10-1.

You can also send international, mathematical, and scientific symbols and
other characters from the Lisa's extended character set (see Appendix B, Lisa
Extended Characte.r Set) if the remote computer is a Lisa. The extended
character set uses the eighth (parity) bit as part of the character identity, so
both Lisas must operate with parity set to None; if parity checking is on, the
parity bit will be stripped and the character will be received as an ASCII
character.

To transmit a character from the extended character set~ hold down the
Option key (or the Option key together with the Shift key) and type a
character.

Table 10-1
TnnmitfDd Special CharalteIs from the Keyboard

KeytJoBnJ Tmnsmlts

.-baCkspace DEL

clear ESC

ENTER (alpha keyboard) BREAK (233ms)

ENTER (runeric keypad) RE1t.RN

arrow keys their SymbOls

.-Q XON

.-s XOFF

.-character other control
charaCters

Optlon-charaCter Extended
Optlon-Shlft-character Charalter Set

(see Appendix B)

10-9

Chapter 11
The Utilities

11_1 ByteDiff ___ 11-2

11_2 ChangeSeg ___ 11-3

11.3 CharCotri ___ 11-4

11_4 CodeSize __ 11-5

11..5 Compare ___ 11-8

11_6 Concat __ 11-12

11.7 Copy __ 11-13

11_8 Di" ___ 11-14

11_9 OumpObj ___ 11-16

11_10 OumpPatch ___ 11-17

11_11 ErrTool __ __ 11-19

11_12 FileOiv and FileJoin __ 11-20
11_13 Find ___ 11-21

11_14 GXRef __ 11-22

11_15 IUManager __ 11-23

11_16 LineCount __ 11-26
11_17 LWCCOtrt __ 11-27

11_18 MacCom __ 11-28
11_19 P8SJTl8t __ 11-31

11_20 POJtConfig __ 11-45
11.21 ProcNarnes ___ 11-47

11.22 RMaker ___ 11-5()
11.23 Search __ 11-51

11.24 SegM&fJ ___ 11-53

11.25 Showlnterface __ 11-54

11_26 SXRef ___ 11-56
11_27 Translit ___ 11-57

11_28 UXRef __ 11-58

11_29 WordCount ___ 11-6()
11_3() Xref ___ 11-61

The Utilities

The Utilities are general-purpose programs that run in the Workshop
environment. To run a utility program" use the Workshop Run command. For
example .. to run the Copy utility .. type

RCOPY

from the Workshop command line. You can also run a utility program from
an exec file.

The Utilities are arranged alphabetically in this chapter. Each utility
program is documented as follows:

Synopsis T ells briefly what the program does.

Dialog

Desa-iption

Notes

Lists the program prompts and tells how to
respond to them.

Gives details on input" output" and processing.

Brings special information to your attention.

11-1

lLl ByteOiff
Synopsis

The i...ltilities

ByteOiff compares the contents of two files and reports which bytes (words)
are different.

Dialog
Source fil e?
T8Iget file?

Description
By teO iff compares the source file to the target file and reports on t.heir
differences. This utility is useful for finding the first differences bet.ween
files or for finding a small number of differences.

The program prompts for an input file and an ·output file. The two files can
be in any format: .t.ext., .obj,. j, and so fort.h.

The output is of t.he form:

Bytes $xxxxxx differ aaaa bbbb

where:

xxxxxx is the byt.e address in hex
aaaa is the word (two bytes) from the source file
bbbb is the word from t.he target file

After 20 lines of output the user can either terminate by pressing [CLEAR]
or cont.inue by pressing the space bar.

See Also
Diff, E(qual command of the File Manager

Notes
ByteOiff compares any binary files, but once it finds a difference bety,'een the t.wo

files ... it. does not try to resynchronize. This utility does block-at-a-time 1/0.
The program st.ops at the first end-of-file and has no termination message.
ByteOiff is nonstandard user interface.

11-2

112 ChangeSeg
Synopsis

The Utilities

ChangeSeg changes the segment name in the modules in an unlinked object
file.

Dialog
File to change:
Map all Names (YIN)

Desaiption
The first prompt .. "File to Change",. asks for the unlinked object file you want
to change. To exit from the ChangeSeg utility at this point, type <CLEAR>
<RETURN>.

'{ou are next asked if you want to map all names. If you want to change
segment names in all modules .. respond Y. If you want to be prompted for
the new segment name for each module .. type N. A response of [RETURN]
accepts the default name.

Notes
Changes are made in place (the file itself is changed).

11-3

14orkshop LAser's Guide

11.3 CharCount
Synopsis
Char Count counts the number of characters in its input.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: <stdin >stdout

Description

The t.../tilities

CharCount counts t.he number of characters in its input (Stdln), anct writes
the total to its output (StdOut). The defaults for both StdIn and StdOut are
the console. If the input is from the console .. use '-C to indicate the end of
file.

All characters are counted .. including RETURN and OLE characters.

11-4

11_4 CodeSize
Synopsis

T,?e Utilities

Determines the code size and code segmentation for a unit, a program, or a
library.

Dialog
Input file [.OBJ] -
Resident file [.TEXT] -
Out.put file [-CONSOLE]/[.TEXT] -
The resident fHe is the file that contains the segment names that are
considered resident. The names in the file must be the same case as in the
code file itself. The resident information is used in the summary reports to
automatically sum the resident and swapping code.

At any time when specifying the file names, the run-time optiOns can be
turned on or off. The run-time options are:

+% turns the mapping of calls to system externs/s on or off. Syst.em
externals are procedures whose names begin with a 1/%1/. Using this
option, the syst.em will count t.he number of procedures that call a
particular system external. This option is used to determine which
system routines are being used, for example, if WRITELNs are left in
the code.

+E turns the mapping of calls to nonsystem externals on or off.
Nonsystem exte.rnals are procedures in a segment other than the
calling procedure. Using this option, the system will count the
number of procedures that call a particular nonsystem external. This
option is used to determine which routines are being used, for
example, which library routine the code is using.

+M tells CodeSize that a particular segment is mapped onto another
segment. This information generates the segment mapping summary
and the segment summary. This option is used when smaller
segments are mapped into larger segements.l and the sizes of· the
smaller and resulting larger segements are needed.

+S turns the main report on and off. Sometimes the summary report is
all that is needed. Use this option to print only the summary report.

Description
CodeSize generates two types of reports depending on the type of input
fBe(s): main report and summary -report. The input file can be an execution
file .. a library, or an object file. For each file .. the report format will be:

11-5

WOl"kshop l..iser's Guide The Utilities

Type of File

Ex ecution file

Main Repm.
segment information

Slmmary Report

segment summary
main summary

Library file unit information
segment information

unit summary
segment summary
main summary

Object file unit information
procedure information

external summary(+E or +%)
unit summary
segment mapping summary(+ M)
segment summary
main summary

The contents of the report section are:

Segment information
segment type
segment name

segment size

Unit information
unit name
unit. global size
unit type

Procedure information
procedure name

associated segment

procedure size
interface information

external references

External summary

intrinsic, nonintrinsic, main program
first eight charcters of the segment's
name
size of the segment in decimal or hex

first eight characters of the unit name
how much global space the unit uses
intrinsic .. shared intrinsic, regular

first eight characters of the procedure's
name
first eight characters of its segment's
name
size of the procedure in decimal or hex
is the procedure in the interface of the
unit?
list of all the external calls the procedure
makes. This is triggered by the +E or +%
options

external procedure name name of the procedure
I of occurrences how many different procedures called the

procedure. This is triggered by the +E or +% options.1Unit summary
unit name first eight characters of the unit's name
unit size size of the unit in decimal or hex
unit type intrinsic or not
unit global size how much global space the unit uses

Segment mapping summary
original 'segment name name of the original segment

11-6

""'orkshop i..,iser's Guide

new segment name
segment size

Segment summary
segment type

segment name

segment size

Main summary
total code size
total resident code

total swapping code

total data globals
total main prog globals

total globals

total jump table

The i..ltilities

name the segment is being mapped into
size of the segment being mapped. This
is triggered by the +M option.

swapping or resident. Resident segment
is specified to CodeSize by the "resident
file".
first eight characters of the segment's
name
size of the segment in decimal or hex

summation of the code size
summation of the code that is considered
resident all the time. Resident code is
specified to CodeSize by "resident file".
summation of the code that is considered
swapping aU the time. Swapping code is
specified to CodeSize by "resident file. II
summation of the global space for data
summation of the global space in the main
program
sum of main program globals plus data
globals
size of the jump table

11-7

~\Iorksh()p User~ Guide

11..5 Compare
Synopsis

The l..itilities

Comp81·e compares the lines of two text files and prints out all their
differences. Options let YOll compress blanks .. delete trailing blanks, ignore
case .. set the number of lines that are allowed to mismatch and the number
that must be equal to be considered a match.. and control the format of the
display.

Dialog
Pararneter(s) [? for help]:
File 1#1: [. TEXT)
File 1#2: [. TEXT]
Options [? for help]:
Maximum stack depth:
Fixed/Minimum grouping factor:
Maximum displs:y width:

Only the Parameters and Options prompts always appear; t.he other prompts
don't appear if they are not needed or are specified as explicit. parameters:

Parmaeter(s) [1 far help]: filei file2 [ei-e2] [depth] [g] [width] [>listing]
Where:

filel and file2
ci-e2
depth
g
width

)listing

are the input files
is a column range to compare (optional)
is the st.ack depth for resynchronization (optional)
is the grouping factor (optional)
is t.he listing display widt.h when the H option is used
(optional)
specifies an alternat.e list.ing file (optional)

Typing ? in response t.o a prompt displays information about U·le response
needed.

Pressing CLEAR in response to a prompt terminates the program. After t.he
prompts are processed., you can type .-period to terminate.

Description
Compare reads in filel and file2 in sequence,. and compares them line for
line. By default .. entire lines ere compared (up to a maximum of 132
characters), but you can specify that only t.he column range el-e2 be
compared. (If el is omitted, 1 is assumed; if c2 omitted.. 132 is assumed.)
As soon as there is a mismatct1 .. the mismatched lines are stored in two
st.acks, one stack for each file. Lines are then read alternately starting from
the next input line in the second file until a match is found to put the files

11-8

~\Jorkshop User's Guide The Utilities

back in synchronization. The optional depth parameter specifies the
maximum stack depth,. that is,. how far out of synchronization the files should
get before it is no longer worth comparing them. Values allowed are 1 to
1000; the default is 1000.

A mat.ch is defined according to a grouping fact.or,. G. G is the number of
consecutive lines that must be the same to be considered matched. If the
value of G is too small,. the files may be put back into synchronization at
the wrong place. The default value for G is dynamic ... defined by the
formula:

G = Trunc(2.0 * L~o(M) + 2.0)
where M is t.he number of lines saved in each stack so far. This means
more lines must be the same after larger mismatches t.han after small
mismatches before t.he two files resynchronize. Using the above formula ... the
following table shows the dynamic grouping factor as a funct.ion of the
number of mismatched lines:

Number of

1
4

10
32

100
316

1000
3162

M
Mismatched Lines

to 3
to 9
to 31
to 99
to 315
to 999
to 3161
to 9999

G
DYnamic Grouping Factor

2
3
4
5
6
7
8
9

You can optionally set the lower limit on G wit.h the g parameter,. instead of
using the values in this table,. but it must be at least 2 .. because the formula
is always applied. The default value for g is 2.

A second match option allows the grouping factor .. G,. to be fixed as a
const.ant. If this S (statiC) option is used ... the g parameter specifies a fixed
grouping factor. Values allowed are 1 to 1000 ... but if G is too small ... the
files may be put into synchronization at undesirable points; try the dynamic
grouping factOl· first.

There is a limit to how far out of synchronization the two files can get
before it is no longer worth comparing them. For the dynamic G option, the
limit on the number of mismatched lines is preset to 1000 ... but a lower limit
may be chosen. For the static G option,. the limit. is always explicitly
selected (the static value of G is also selected). Typical values for the
stat.ic G are 1 t.o 5 and the number of mismatched lines about. 10 to 50.

After a match h~ been found,. the mismatched lines before the group of G
mat.ching lines are displayed. You can display the lines from the two files
side by side., using the H (horizontal) option,. specifying the width of the

11-9

""'orkshop I."/ser's Guide The Utl1ities

output listing display with the width parameter. By changing width you
change the number of characters displayed in each portion. Values allowed
are from 70 (which shows only 27 characters from ea.ch file; 15 characters
are reserved for line number information) to 132 (which shows 58 characters).

Normally the output is displayed on the console. It may be redirected b\1
entering >listing in the parameters line, where "listing" is a filename.

Any size files may be compared, as long as they don't. get too far out of
synchronization (line numbel's are only displayed to four places, so the file
size should be kept under 10000).

Options
The following options are available. Specify the options by listing them in
response t.o the Options prompt.

B Delete trailing blanl(s and treat runs of blanks as one blank.

C Ignore case differences (convert all lines to lowercase).

o Dynamic grouping; prompt for the depth and the minimum g if they
are not given as parameters. Dynamic grouping is done by default,
you don't need this option unless you want to set the values of depth
and the minimum g and didn't set them in the parameters line. The
default values for depth and minimum g are 1000 and 2, respectively.

H Horizontal form of displa'Y. Only part of the mismatched lines from
each file are displayed, side by side. How much of each line is
displayed is controlled by the width parameter. (If H is not
specified, entire lines are displayed .. up to 132 characters, with the
lines of the first file displayed before the lines of t.he second file
for each group of mismatches.)

K Keep output file even if the input files are the same. The default. is
not to generate an output file when the files are equaL

S Static (fixed) grouping factor. If the depth and g values in the
parameters line are missing or invalid, you will be prompted for
them.

T Delete trailing blanks. (Does not compress runs of blanksi T is a
subset of B.)

• Ring the bell at completion of the ex ecution.

Note: All comparison criteria that affect the individual lines prior to
comparison (the column range, blank compression, trailing blanks, and case
conversion) are applied to those lines before they are stacked. Thus when
the lines are displayed, they are shown in their modified form.

11-10

t¥orkshop User's Guide The I..ltiJitiflS

Output
The following messages appear when mismatches are displayed. Lines are
shown with their line numbers:

Non-tIatching lines
<both stacks are displayed>

Extra lines in 1st before <In> in 2nd
<lines in file l's stack are displayed>

Extra lines in 2nd before <In> in 1st
<lines in file l's stack are displayed>

Extra lines in 1st file
<lines in file l's stack are displayed>

Extra lines in 2nd file
<lines in file l's stack are displayed>

If" during resynchronization .. an end-of-file condition occurs or the maximum
stack depth is reached.. then one of the above set of messages will appear
followed by one of the following:

••• Nothing sealS to I18tch •••

••• Eof on both files •••

••• Eof on file 1 •••

••• Eof on file 2 •••

If both files are in synchronization.. and both reach their end-of -files at the
same time .. then the message ..

••• Eof on both files at the S8II8 tiae •••

will appear if 8nJ.., mismatches occurred previously.

If the files match.. then the following message is displayed:
••• files .etch •••

All of these termination ("... ... • •• 11) messages are shown on the console
even if the output listing has been redirected to some other file.

11-11

1y\lorkshop User~ Guide

11.6 Concat
Synopsis
Concat. copies a list. of files into one file.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: filename L ...] >stdout

Description

The tltilities

Concat copies the list of input files to the output file.. StdOut. The default
for St.dOut is the console. Concat accepts a list of file name parameters
separated by commas or spaces (.TEXT extensions will be added).. and copies
them to the output file in the order they were specified in the list.. If there
is only one input file .. Cone at behaves exactly like Copy.

11-12

11.7 ~
Synopsis
Copy copies all or part of its input to its output.

Dialog
Parameter(s) [? for help]:

T,"'te Utilities

The format for the parameters is: <stdin)stdout [LineRange" ...]

Description
Copy is used to copy its input (Stdln) to its output (StdOut). The defaults for
both StdIn and StdOut are the console. If the input is from the console" use
.-c to indicate the end of file.

Copy's optional p81·ameter" LineRange" specifies what port.ion of the input you want.
copied. LineRange is a list of ranges: separat.ed by commas or spaces. Each
range is a single line numbe.r or pair of line numbers in the form line1-line2.
When specifying more than one line" if line! is omit.ted" t.he first line of the file
is assumed; if line2 is omitt.ed" the end of file is assumed.

11-13

140rkshap l..lser's Guide

11.8 Diff
Synopsis

The Utilities

Diff is a program for comparing .TEXT files .. in the Workshop. Diff is
designed to be used with Pascal or Assembler source files.

Dialog
(Type I?I to change or display options.)

New file name [.TEXT] -
Old file name [.TEXT] -
Listing file [.TEXT] «CR> = -CONSOLE)-

Description
Diff first prompts you for two input file names: the "new" file .. and the "old"
file. Diff appends ".TEXT" to t.hese file names, if it is not present. Diff
then prompts you for a filename for the listing file. Press [RETURN] to send
the listing to the console.

Diff does not know about INCLUDE files. However, Diff does enable the
processing of several pairs of files to be sent. to the same listing file. Thus,
when Diff is finished with one pair of files" it prompts you for another pair
of input files. To terminate Diff, simply press [RETURN] in response to the
prompt for a nelrv file name.

The output produced by Diff consists of blocks of "changed" lines. Each
block of changes is surrounded by a few lines of "context." to aid in finding
the lines in a hard-copy listing of t.he files.

There are three kinds of change blocks:

INSERTION a bloc~< of lines in the "new" file which does not. appear in
the "old" file.

DELETION a bloc~< of lines in the "old" file which does not appear in
the "new" file.

REPLACEMENT a block of lines in the "new" file Iyvhich replaces a
cOlTesponding block of different. lines in the old file.

Large blocks of changes are printed in summar~1 fashion: a few lines at the
beginning of the changes and a few lines at. the end of t.he changes, with an
indication of how man'y lines were skipped.

Diff has three options:

C change t.he number of context lines displayed.

M the number of lines required to constitute a match.

D the number of lines displayed at the beginning of a long block of
differences.

11-14

l-\Jorkshop User's Guide The tltilities

To set one of these numbers .. type the option name and [RETURNl followed
by the new number to the prompt for the first input file name. An entry of
o [RETURN] 100 .. for example .. causes Diff to print out up to 100 lines of a
block of differences before using an ellipsis. The maximum number of
context lines you can get is 8. You can get a display of the current option
settings by pressing II?II in response to the first file prompt.

Diff is not sensitive to upperllower c~e differences. All input. is shifted to
a uniform cese before comparison is done. This is in conformance with the
language processors,. which ignore case differences.

Diff is not sensitive to blanks. All blanks are skipped during comparison.
This is a potential source of undetected changes .. since some blanks are
significant (in string constants .. for instance). However .. Dift" is insensitive to
trivial changes .. such as indentation adjustments,. or insertion and deletion of
spaces around operators.

Diff does not accept a matching context which is too small. The current
threshold for accepting a match is 3 consecutive matches. The M option
allows you to change this number. This has two effects:

1. Areas of the source where almost every other line has been changed
will be reported as a single change block .. rather than being broken
into several small change blocks.

2. Areas of the source which are entirely different. ere not broken into
different change blocks because of trivial similarities (such as blank
lines,. lines with only begin or end.. and so forth)

Diff makes a second pass through the input files, to report the
changes detected.. and to verify that matching hash codes actually
represent matching lines. Any spurious match found during
verification is report.ed as a IIJACKPOTII

• The probability of a
JACKPOT is very low ... since two different lines must hash to the
same code at a location in each file which extends the longest
common subsequence,. and in a matching context which is large
enough t.o exceed the threshold for acceptance.

See Also
8yteDiff

Notes
Diff can handle files with up to ~:ooo

11-15

~\lorkshop User's Guide

11_9 DumpObj
synopsis

The i.itilities

DumpObj is a disassembler for 68OCO code. This option provides a symbolic
and formattecf listing of the contents of object files. It can disassemble
either an ent.ire file~ or specific modules within t.he file.

Dialog
Input file? [.OSJ]
Output file? [-CONSOLE]

Dump A(ll., S(ome., or P(articular modules [S]?
Dump file positions [N]?
Dump selected object code [N]?

Description
DumpObj first asks for the input file which should be an unlinked object file.
The output (listing) file defaults to -CONSOLE. You are asked whether you
want to dump All.. Some., or Particular modules.

If you respond S~ DumpObj asks you for confirmation before dumping each
module. A response of [CLE AR] gets you back to the top level. If you
respond p~ DumpObj asks you for the particular module(s) you want dumped.

The file position is a number of the form [O~OOO] where the first digit is the
block number (decimal) within the file and the second number is the byte
numbe.r (hexadecimal) within the block at l.-,hich t.he module starts. This
information can be used. in conjunct.ion wit.h the DumpPatch program.

If you want the selected object code to be dumped" respond Y to t.he final
prompt. The default for this prompt is N.

See Also
DumpPatch

Notes
DumpObj displays only the low order 24 bit.s of longint fields" which are
interpreted as addresses. This is consistent with the hardware~ but causes
some bytes of the file not to be displayed.

11-16

~\Iorkshop l.lser's Guide

11.10 ~ppatch
synopsis
Dump and/or patch a file

Dialog
DumpPatch - Hexadecimal Dump and Patch

File: - Output: [-CONSOLE]I[.TEXT] -

The Utllities

If you want to select t.he default. of [-CONSOLE]... press [RETURN] and select.
the block number you want to start with; for example .. 2.

If you type a file name .. the following prompt appears:

Would you like to access (input file name) interactively? (Y or N)

If you respond Y .. you will be prompted for t.he block number you want to
st.art. with. If you respond ~, you will be prompted for starting and ending
block numbers. The default. values are 0 fClr the starting block number and
EOF for the ending block number.

Description
DumpPatch provides a textual representation of the contents of any file and
the ability to change its contents in either the ASCII character or
hexadecimal form. The file dump is block oriented with the hexadecimal
representation on the left and the corresponding ASCII representation on t.he
right. If a byte cannot be converted to a printable character, a dot is
substitut.ed. The pat.ch facility uses t.he arrow keys to move around within
the displayed block and change the value of any byte.

When DumpPatch is Run .. you will be asked for the full name of the input
file. No extensions are appended. Pressing [RETURN] 'r't'ill exit DumpPatch. If
the input file can be found .. you will be asked where you want to direct the
output. The default for the output file is [-printer]. If you type an output
file name .. a . TEXT extension will be added if necessary. If you type a
device name; for example .. -printer, no extension will be appended.

If an output file name or a valid device name was entered .. you will be asked
if you would like to access the input file interactively. If you answer No ...
you will get a quick dump of the input file and will be prompted for the
starting block to dump. The default [RETURN] for the last block to be
dumped is the .last block of the input file. If you specify a block that is
beyond the end-of-file .. you will be given the block number of the last block
in the file. Pressing [CLEAR] enables you to exit with no dumping.

Once a file has been completely dumped, DumpPatch asks you for the next
input file. Press [RETURN] to exit the program.

11-17

~\Iorks-hop l)ser's Guide The i../tilities

If ~/OU access the input file interactively, you will be asked for the block to
dump. The output. will be dumped to t.he screen with the option of dumping
it to the output file when you are ready to leave that block. Press the space
bar to look at the next half block. Press [elE AR] to go into patch mode.
Press [RETURN] to quit the present blocl<.

l,I.,lhen you are in patch mode, the cursor will be found in the upper left
cornel' at word 0 of the block. The arrow keys are used to move the cursor
8l'ound in the cUHent block and to previous or successive blocks. Press
[TAB] to toggle tletween the hexadecimal and U',e ASCII portiOns of t.he
display. A change made on one side of the display is automatically updated
on the other side as welL Until you get ready to move out of t.he current
block you may undo any changes by pressing [CLEAR]. When leaving a block
in which you made changes, you will be asked if you want to write the
changed bloc~~ back to t.he input file. This is your last chance to undo any
unwanted changes! If you specified output to something other than the
console .. you will also be asked if you want to dump the cUHent block to the
output file when you try to leave that block. To exit patch mode press
[RETURN].

See Also
DumpObj

11-18

14orkshop User's Guide

1L11 ErrTool
Synopsis
ErrTool is used to create files of numbered messages.

Dialog
Error Input file [.TEXT]
Error Output file [<input file>] [.ERR]
Error listing file [.TEXT]

Description

The l...ltJ1ities

ErrTool lets you create compacted message files in which each message is
associated with a number. The Standard Unit (StdUnit) in SULib provides
calls (SUErrTest and SUGetErrText) for retrieving the message associated
with a given number. In spite 01 its name and the names of the SU calls.,
ErrTool is not limited to use for error messages (although that is how it's
principally used by the Workshop tOOlS). The output of ErrTool is a specially
formatted file with a directory at the start indicating the offsets of the
messages in t.he file.

ErrTool input consists of a text file with lines beginning with an integer
(positive or negative).. followed by a space and the message. ErrTool assumes
that the message is everything between the space following t.he message
number and the end of the line (no multi-line messages are allowed). The
ErrT 001 input need not be orde.red with respect to message number.
Duplicate error numbers will be flagged as a fatal error. The listing file will
contain a sorted list of the messages.

11-19

yalorkshop l..lser~ Guide

11.12 FileDiv and FileJoin
synopsis

The Utilities

FileDiv can be used to break a large file into several smaller pieces.
FileJoin can then be used to rejoin these pieces into one file. These
functions are most useful when saving and rest.oring very large files,. or when
you want t.o break a large text file into smaller ones t.o be viewed in the
Editor.

Dialog
Is this a .TEXT file? (Y or N)
Infile name : [.text]
Outfile name : [.text.]

You might want to keep portions of a file on more than one disk. To give
you an opportunity to do that, FileDiv contains the following additional
prompts:

Another disk? (Y or N)

Have 'You inserted the next. disk? (Y or N)

Description
Do not include the suffix in the file name. If,. for example .. you want to
divide TEMP.TEXT, give TEMP as the input file,. and TEMP (or whatever) as
the out.put. file. FileDiv will create a group of files named TEMP.1.TEXT ..
TEMP.2.TEXT .. and so on .. until TEMP.TEXT is completely divided up.

To rejoin t.he pieces of the file .. Run FileJoin. The dialog is Ute same as for
FileOiv.

11-20

l-~lorkshop l.iser's Guide

11..13 Find
synopsis
Find searches a text file for a pattern.

Dialog
type "?" to display or change options

The UtJ1ities

Enter input file name [.TEXT] (name of the file to be searched)
Enter output file name [-CONSOLE]I[.TEXT] (default is the console)
Enter pattern: (pattern to be matched)

Desaiption
Find searches text files for lines which match a string pattern. Lines found
are printed to the console. The following options are recognized:

+C Matches are case sensitive

+S Matches are space sensitive.

+0 Print dots while scanning lines that do no match.

+L As lines are reported .. print out the relative line numbers.

+ T Report the files that are being scanned.

Typing ? in response to an'~ of the input prompts will display a description of
the options available and read in the optiOns. You can leave Find by typing
[RETURN] or [CLEAR] in response to the input or pattern prompts.

More than one file can be input at a time. Find supports the same wildcard
scheme as the ~""orkshop File Manager. So submitting "-paraport-ch=" will
direct Find to search all of the text files beginning wit.h "ch" on the paraport
directory. Find can also search predefined lists of files;; suppose the file
l'foobar .t.ext II contained:

II hoohatext
grok.text
bruhaha.text"

Then submitting "<foobar.text" will direct Find to search" sequentially"
"hooha.text", "grok.t.ext" .. and then "bruhahatext". If you type "foobar.text"
(without the leading 1 <I) then Find will search "foobar.text" .. not the files
listed therein .. for t.he pattern.

Notes
Find truncates output lines to 256 characters.

11-21

The l./tilities

11.14 G.XRef.
Synopsis
Global Cross Reference.

Dialog
Input file [.08J] ?
Listing file [CONSOLE:]/[.TEXT] -
Desaiption
GXRef lists all the modules which call a given procedure.. and all the
modules wt"lich that procedure calls. It. provides a global cross reference of
subroutines and modules.

GXRef accepts any number of object. files es input. When you have ent.ered
all the object files, press [RETURN] in response to the input file request.

GXRef accepts a max imum of 4095 procedure names.

11-22

~,Iorkshop User's Guide

11_15 IUManager
synopsis

The i.ltilities

The IUManager utility is used to manage the directory of library files. You
can add, delete, or change intrinsic units .. segments, and files in the
directory. To use the IUManager, you should be familiar with the way that
units and segments are handled in Pascal on the Lisa.

Dialog
Input file [INTRINSIC.LIB]:
Output file [<input file>]:

INTRINSIC.LIB is the library directory that the system looks for at boot
time. You can can edit INTRINSIC.LIB, or you can create and use your own
library directories. (But be careful--don't change INTRINSIC.LIB unless you
know what you're doing .. or your system may not boot.)

Description
The IUManager has three modes, which do the following:

UNITS Add, delete .. or change intrinsic units. An intrinsic unit is
a unit of Pascal code that can be accessed by different
proc&-:-:ses. There are two kind of intrinsic units--regular
and shared. A regular intrinsic unit has a private global
data area associated with it; shared intrinsic units share
data as well as code.

SEGMENTS Add, delete .. or change segments. Units can be broken up
into segments .. so that interdependant parts of different
units will be swapped in and out of memory at the same
time. You can segment your code with either the $S
Compiler option or the ChangeSeg utility.

FILES, Add .. delete .. or change library files. Units and segments
are arranged in library files.

When you first enter the IUManager, you're in the FILES mode. To switch
between modes, the following commands are available:

S:egments) Enter the SEGMENTS mode and display the segment table.
Entries in the segment table have the following
information:

SegName The segment name

Segl The segment number

Filel The number of the file that the segment is in

FileLoc The byte location of the segment in the file

11-23

14orkshop User~ Guide

L(nits)

F(iles)

The Utilities

Packedl
UnPacked The number of packed or unpacked bytes in

the segment

FileName The name of the file that the segment is in

Enter the UNITS mode and display the unit table. Entries
in the unit table have the following information:

UnitName The unit name

Unitl The unit number

FileR The number of t.he file t.hat the unit is in

Type The type of unit: Intrinsic or Shared Intrinsic

DataSize The number of bytes of global data (Shared
Intrinsic units only)

Enter the FILES mode and display the file table. Entries
in the file table have the following informat.ion:

File The file number

FileName The file name

Other than the S(egmentsJ., U(nitsJ., and F(iles) commands .. the commands
available in all three modes are the same:

C(hange) Change an entry in the currently selected table. You will
be asked for the file .. unit, or segment number .. and
prompted for changes in each field. If you enter an unused
number, the Change command works just like the Add
command.

P(dd)

O:elete)

Add a new entry in the currently selected table. You will
be asked for the file, unit, or segment number.. and
prompted for each field. If you enter a number already
associated with an entry, the Add command works just like
the Change command. The default entry number is the
first unused number in the table. If you add a unit or
segment and specify a file name that has not been used.. a
ne'r',' file will be created with the next available file
number.

Delete an entry from the currently selected table. You ere
prompted for the file .. unit .. or segment name or number. If
you try to delete a file that. is used by the segment table
or unit table .. you will get a werning, and the file will not
be removed. If you try to delete a segment that. is used
by the system table as a Public Interface segment, the
segment will not be removed.

11-24

L(ist) List the entries in the currently selected table_

Q(uit) Quit the IUManager and rewrite the directory_

? Typing ? from the main command line displays the
alternate command line, with the following commands:

(nstall) Install a library in the directory_ This stores the segment
and unit tables from the linked object file. The Install
command puts you in the FILES mode if you're not already,
displays the file table, and prompts ~/OU for the file name
or number to install.

Y(erify) Verify that the information in the linked object file is
consistent with the directory. You are prompted for the
name of the file to verify.

p(rint) Print all three t.ables. (You can send the tables to a .TEXT
file instead of -Jrinter if you want to look at them in the
Editor.)

? Typing? from the alternate command line returns you to the main command
line.

11-25

~vorkshop User's Guide

11.16 LineCount
Synopsis
LineCount counts the number of lines in its input.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: <stdin >stdout

Description

The Utilities

LineCount counts the number of lines in its input (Stdln), and writes the total
to its output (StdOut). The defaults for both Stdln and StdOut are the
console. If the input is from the console .. use j-C to indicate the end of
file.

11-26

l-\Jorkshop User's Guide

11.17 lWCCount
synopsis

The I..ltilities

L WCCount counts the number of lines.. words.. and characters in its input.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: <stdin)stdout

Desaiption
LWCCount counts the number of lines .. words, and characters in its input
(Stdln), and writes the totals as three lines to its output (StdOut):

1. Number of lines.
2. Number of words.
3. Number of characters.

The defaults for both Stdln and StdOut are the console. If the input is from
the console, use '-C t.o indicate the end of file.

A word is considered any sequence of characters not containing a blank or
any control characters (e.g., RETURN or DLE). The character count includes
RETURNs and DLEs.

11-27

~\Iorkshop Llser~ Guide

11.18 MacCom
synopsis

The l..ltilities

tVlacCom lets you move files back and forth between the Lisa and the
fv1acintosh" using Macint.osh-format. diskettes. You can also perform ot.her
operations on Macintosh diskettes on your Lisa: initialize diskettes, delete
files" set Finder information, and write boot. blocks.

Dialog
The MacCom command line is:

{3.0} t1acCOR: Delete, Eject, Help, lnit, lisa->ttac, l1ac->lisa, NElles, Quit, ?

Typing ? shows you the second half of the line:

BootBlocks, Finderlnfo, ConfiXII, RemoveSlashes

To execute any command .. type the first letter. The commands are described
below. other dialog, such as file name prompts, is self-explanatory.

Description
You can use the MacCom commands in what.ever order you like, then Eject
the diskette when you're finished. Each command is independent of t.he
others; the Macintosh directory gets written at the end of any command that
changes it. The Delete, Lisa->Mac, and Mac->Lisa commands support the ? ..
=, and $ wildcard characters. You can escape from most prompts by
pressing [CLEAR]. To abort the operation when you are being prompted for
Yes/No answers using ?, type '-period followed by Nfor no. To abort when
you're using =, just type '-period. When prompted for a tile name" <
followed by the name of a .TEXT file reads a list of names input from the
file. This can be used recursively.

Note that you can use MacCom to back up Macintosh diskettes: first copy all
the files on the diskette to the Lisa with the Mac-> Lisa command" using the
wildcard sequence I=,templ$'; then initialize the second diskette (if you need
to) using Init; then copy all the tiles from the Lisa onto the second diskette
USing Lisa-> Mac with the wildcard sequence 'tempI=,='.

Delete Deletes files on the Macintosh diskette.

Eject Ejects the diskette--this is safe at any time.

Help

Init

Tells you what each command does.

First checks the diskette and warns you if it already
contains a Macintosh or Lisa OS format volume. Init
formats the disk .. then adds Macintosh boot blocks and
a directory. The file 'Mac.Boot' must be on your
Workshop boot volume or prefix volume to correctly
initialize a diskette.

11-28

~\JoJ.""kshop Ijser's Guide The Utilities

Mac->lisa Copies a file" or files~ from the diskette to any Lisa
volume. The Finder informat.ion for a Macintosh file is
saved on the Workshop in a i-block file using the
tvlacintosh file name with a .MFEN (for Mac Finder
ENtry) extension. A Macintosh resource file is sa:..,ed
with a .RSRC extension. If the Macintosh file has both
a resource fork and a data fork~ two separate files will
be creat.ed on the Lisa volume; t.he data fork will have
the Macintosh file name" and the resource fork will
have the same name with a .RSRC extension. If a file
has the same name as an existing file on the Lisa
volume~ you will be asked if you want t.he existing file
overwritten. The dates on the Macintosh files are
converted to the Lisa's date format.

Lisa->Mac Copies a file" or files~ from any Lisa volume to the
tvlacintosh diskette. If a file you are sending t.o the
Macintosh did not come from a fv1acintosh originally (if
there isn't. a .MFEN file for it),. and you are not.
overlNriting a file already on the Macintosh volume~
default FindeJ· information will be set for that file. The
default values are '????' for Type and Creator .. and the
Bundle bit not set. otherwise .. the Finder information
will be inherited from the .MFEN file or from the
existing file. If you want to enter different Finder
information for a file .. use the Finderlnfo command and
you will be prompted for Finder information. Files with
a .RSRC extension are assumed to be resource files;
the ext.ension is removed as the file is copied to the
MaCintosh,. and the file is set up as a resource in the
Macintosh directory. If a file has the same name as an
existing file on the diskette, the file already on the
diskette will be overwritten. If you want a chance to
prevent sllch a loss of existing files, set Confirm
(below) to True. The dates on the Lisa files are
convelted to the Macintosh's date format.

Names List the names and directory information for all the
files on a Macintosh diskette.

BootBlacks Write the boot blocks on a Macintosh diskette. This
includes writing the boot blocks from your own file.

Finder-Info Set the Finder information for all files that you copy
from a Lisa volume to the Macintosh diskette. You can
set the Type (default '????').. the Creator (default
I????'), and the Bundle bit (default not set).

11-29

~\Iorksholl User's Guide The L.ltilities

Confirm Ask for confirmation before overwriting old versions of
files on the Macintosh diskette. The default is False;
old files are automatically overwritten when you copy a
new file with the same name as an old file.

RemoveSlshes Remove Workshop prefixes (denoted by the I character)
from file names as the files are moved from the
tNorkshop to a Macintosh diskette. The default is
False; prefix es are left on.

Notes
MacCom doesn't set the 12 tag bytes on each block while creating or
accessing Macintosh diskettes. Because of this, LISe the ft.1acintO$h to create
8 master disk for MJl product you are going to ship. The tag bytes will be
used in the future by a Scavenger to rebuild damaged Macintosh disks.

MacCom a..~umes that the diskette is in the internal Lisa diskette drive; no
external drives are supported.

If you have been using a pre-3.0 version of MacCom, note that the default
value for ITypel in the Finder information settings has changed. Previous
versions of MacCom had a default type of 'APPLli the default is now I????I.
You need to change your Examples/Exec command file to set the type to
APPL when moving an application to the Macintosh. T a do this, replace this
line in Examples/Exec:

{set type to APPL}

(which accepted the default type) with the line:

fFPl {set type to 1FPl.}

Previous versions of MacCom automatically prompted you for the Finder
information when copying a new file to a Macintosh volume. Now you are
only prompted if you specify F for Finderlnfo, otherwise the default values
are used.

11-30

11_19 Pasmat
Synopsis

The lltilities

Pasmat reformats Pascal source code into a standard format that 'yOU can
controL

Dialog
Parameter(s) [? for help]:
Input file: [.TEXT]
Output file: [<input file>] [.TEXT]
Correct .lpattern/replacement.l:
Options [? for help]:
Listing file: [-console] [.TEXT]
Ren~oe file: [.TEXT]
Maximum line width: [w]
Indenting (tab) value: [t]

Only t.rle Parameters and Options prompts always appear,; the other prompts
don't appear if they are not needed or are specified as explicit paramet.ers:

Parameter(s) [? for help]: input output [rename] [width] [tab] [>listing]
Parameters can be separated by spaces or commas.

Typing ? in response to a prompt displays information about the response
needed.

Pressing [CLEAR] in response to a prompt terminates the program. After the
prompts are processed" VOU can t.ype .-period to terminate; t.he output file
will not. be generated.

Description
Pasmat. reformats Pascal source code into a standard format suitable for
printouts or for compilation_ Pasmat options let ')lou:

• Convert. a program to uniform case convent.ions.

• Indent a program t.o show its logical struct.ure and adjust. lines to fit
into a specified line length_

• Change the comment delimiters (* *) to { }.

• Remove t.he brea~; charact.er (J from identifiers" rename ident.ifiers" or
change their case.

• Remove all nonprint.ing charact.ers from t.he source (except in strings).

• Format include files named in Pascal include directives.

Pasmat. specifications are macfe t.hrough options or through special format.ter
direc:tives... which resemble Compiler directives,.. and Bl-e inserted into t.he
source file as Pascal comments.

11-31

~v'ol'kshop t.).sel"~ Guide The V~Hities

Pasmat. accepts full programs". external procedures, blocks .. and group:s of
st.atements. A syntactically incorrect. program usually causes it to alJort. If
this happens .. the generated Outpl,.lt I""ill contain the formatted :source up to
the point of the error, unless the output file and input file are the same .. in
which case no output file is generated.

The input. and output. files are required parameters. The out.put. file may
specify patt.ern and replacement :st.rings in ttle form IpattemJreplacementl
(single or double quotes may be used instead of slashes). This form causes
the ~ option to appear when 'yOU are prompt.ed for the options, impl'ying that
you want t.o process include CClmpiler directives and generate a set of
formatted output files wit.r, ttle same include structure as t.he input. See ttle
discussion of t.he ! option (below) for furt.her details.

The rename, list.i n g., width, and t.ab paIameters are all optionaL The rename
parameter is also a filename... but it should be specified only if the M option
is specified (see belo'N). The width and t.ab paramet.ers specify t.he initial
values of the output line width and indenting tab value (Le ... the initial 0 and
T directive values). l...Jnless told ot.herwise,. the default. output width is 80 and
the default indenting tab value is 3.

If you want to see of listing of the output., specify the > listing parameter.
This implies ttle S option (see below). (If you specify the S option but didn't
use the > listing par8.IT,eter,. you are prompted for a listing file.) The listing
filename is preceded by a > crlaract.er, I/'r'hictl indicat.es t.o Pas mat. that its
standard output (IStdOut") is to be redirected.

Formatting Details
ClJiTII11f1I'lts The following rules govern Pasmat's formatting of comments.

• A comment t.hat st.ands alone on a single line is passed to tt-Ie output
unaltered. Its left. end is set t.o t.he cUlTent. indentation level., so that.
it's aligned I,'('ith the st.at.ements before and/or after it. If it's too long
to fit with this alignment,. it is placed on t.he page as far right as it.
will go.

• A comment that begins as the first thing on 8. line and continues on
another· line is passed t.o the OL~tpUt unaltereef., including its
indentation. This t~/pe of comment is assumed to contain text
f or matted by t.he user.

• If a comment covered by one of the above rules doesn't fit within t.he
defined output line length,. the out.put line is extended as necessary to
accommodate it., and 8. message is printed at t.he enc~ of the
format.ting.

• A comment t.hat. is not. t.he first. thing on a line is format.ted in ',..,.ith
the rest of the code. Words within it are maved to the next line to
make it fit. ... so nothing that has a fixed format should be used in such
a. comment. The comment is brok.en only at blanks .. and if there is no

11-32

~\IO.l"kshop User's Guide The Utilities

way to break a comment and still fit the output within the output line
length,. the line is ext.ended as necessarY.I and a message is written at
the end of the formatting. If no code follows a comment in the input
line .. then no code is placed after the comment. in the output line.
The J directive lets you force these comments to start in a specific
column. This feature is useful for commenting declarations (see
below).

• A comment that follows a statement on a line and beains with a
specific character can be forced to start in a specific -column. This
feature is useful if you me making updates to a program and you want
to show who made the updat.e and when.

statement Bunching: Statement bunching refers to the way Pasmat aligns a
statement with respect to some component of another statement that
precedes it. There are three cases:

• A statement following a CASE labeL

• A statement following a Tt-EN or ELSE.

• A statement following FOR" WHILE, or WITH.

Pasmat allows some control over how these statements are aligned.

Note: The following discussions describe how a statement can be aligned
relative t.o its "lead-in" st.at.ement,. whether it's indented after or on the same
line as the lead-in. Therefore,. statement in these cases refers to a simple
statement. Compound statements are usually indent.ed starting on a new line
(except for their BEGIN's as controlled by the C directive).

Bunching with Cf'tSE iBbeis: The default formatting rule for a CASE
statement is to place the selected statements on the same line as the case
label(s). The A directive lets you specify that the statement appear on a
separate line from the case label. The if directive lets you control how far
the statements following the case label are indented.

Bunching of IF statements: The cJefault is to place the controlled statements
on separate lines. The 8 direct.ive tells Pasmat to place the controlled
statements on the same line as the THEN or ELSE.

In the special case of an ELSE IF, the default is to put the IF on the same
line as t.he ELSE. The q directive let.s you specify that. the IF appear on the
next line,. indent.ed after the ELSE.

Bunching witl? FOR. (4HILE,. and {",lITH: The default is to place the controlled
statement on the same line if it fits. Otherwise,. it is indented on the next
line. The H directive lets you specify that the statement always appear on
tt1e next line.

t\lote: the H directive also affects the IF statement.. Wit.h IF-bunching off
(8- direct.ive).. and the H directive off (H-t t.he controlled statement. would
normally appeal· on a sepal·ate line. If there is no ELSE,. then the H directive

11-33

~v'orkshop' User~ Guide 7i?e I..itiiities

applies to the IF statement just like FOR" WHILE" a.nd WITH; that is" the
controlled statement is placed on the same line as t.he IF if it fit.s.

Tables: Many Pascal programs contain long lists of initializat.ion statement.s"
or of constant declarations that are logically a single a.ction or declaration.
You can fit these into as few lines as possible using U·le G (grouping)
directive. If this is used· (G=i formt t.ab stops are set up on the line" and
successive statements or constant. declarat.ions 8re aligned to tr,ese t.ab st.ops
instead of beginning on new lines.

Structured statements" which are normally formatted on more t.han one line.,
are not affected by the G directive. However" assignment and call
statements may be grouped with the end of the structured statement. (e.g .. ,
following an END statement). A special form of grouping directive is
provided specifically for assignment. and call statements.

Assignment 8I1d eBl} statement Grouping: As described belot,A,', the grouping
directive t.o format. tables is G=i, where i is the maximum number of
statements per line. This sets up tab stops t.o align i statements or comtant
declaratiot1S. Howe-ver" for assignment and call statements, it is not always
known how many st.at.ements ',vill fit on a line. Even if it is, these
st.atements aligned on tab stops may insert t.oo much white space and
produce an aestheticall'~1 unpleasing result.. A special form of grouping can be
specified using G+, which affects only assignment and call stat.ements. They
are 'Jrouped so that as many as possible fit. on a line wit.hout. exceeding the
line length. They are never grouped on a line ending a structured statement."
so the problem arising IHith tr,e G=i form of grouping cannot happen.

You probably won't y,lant to group all assignment and call stat.ements
together everywhere in your program. The preset option is G- to format
assignment and call statements one per line. Bracket the sections of your
code t.hat. you want grouped 'Nith G+ and G- directives.

If you are format.ting a program that is a.lreadv partially formatt.ed ancf has
sections of code grouped, you may not want it reformatted using G+ and G-.
The "smart" grouping opt.ion (1'+) lets you specify that if more U",an one
assignment or call statement. are on the same input line.. and they don't
exceed t.he output line width .. t.hey are kept. grouped in t.he output.

Note: if G=i is in effect with i> 1" it has precedence over the effect of G+
and #+. Thus G+ or 1+ may be enabled and G=i st.ill be used (except for
G=l).

DeclsratiOflS: If you want to align declarations sa that the objects of the
identifiers (constants or types) all start at a particular column" or align
comments explaining the identifiers" use the J directive. It allows you to
specify the number of columns t.o reserve for the identifiers and in which
column the explaining comment is to begin.

11-34

The t...ltilities

Directives
Directives are specified by special comment.s included in the Pascal source
code. These comments have the form:

{[directives] optional text}
The direct.ives themselves are eit.her swit.ches., w it. !,", the format

(character>+
or

{character>-
or are numeric directives wit.h the format

(character>={number>
or 8. chsl"acter directive, l,'t'hicl1 specifies a special character, IIC

Il
., wit.h the

format

{character>c
For the J directive only, the numeric directive can also have the format.

{character>={number}c/{number}cc/{number}c

where the c's are characters and either or both of the first two entries can
be omitted (but not the slashes separating them .. e.g., /I <number>c).

f""ultiple directives are separated by commas. Spaces within a directive are
not allowed. For example:

{ [b+, 0=12, t=4, r-] }

sets t.he switch "b" on ... "r" off ... and sets the numeric directives 110" t.o 72 and
''t'' to 4. Case is ignored in direct.ives.

The foHolNing directives are recognized:

A Place a statement following a CASE label on the same line if it fit.s.

Default A+

B Place a statement following TI-EN or ELSE on t.he same line if it. fit.s.

Default B-

C Place BEGIN on same line as its introductory keyword. If C+ is
specified, then K- (the default.) should be used.

Default C-

D Replace t.he comment delimiters (* and *) with { and }.

Default 0+

11-35

The t.itilities

E Capitalize the first (or only) letter of identifiers and the first letter
following a breaJ~ or underscore cheracter (J. Retain the underscore
ci181·acter. E overrides the L and ~lyl directives. See also the P
(portability) option.

Default E-

F Turn formatting on or off. F goes into effect immediately folloYling the
comment in which it is placed. This is useful for saving
hand-formatted portions of a program.

Default F+

G Group statements (i per line). G is specified either as a switch (G+ or
G-) or as a numeric directive (G=i). For G=i, the space from the
current indentation level to the end of the line is divided into i fieldc"
and successive statements put on the boundaries of successive field. A
statement may take more than one field, in which case the next
statement again goes on the boundary of the next field. This is similer
to using tabs on a typewriter. Any stat.ement t.hat requires more than
one line mao! produce strange results on subsequent statements. The
G=i form affects constant declarations and statements. By specifying
the G+ form" only assignment and call statements 8l·e grouped together
if they fit on a line. G+ only has affect if G=l is set.

Default G-" G=l

H Bunch a single statement on the same line as FOR" WHILE" or WITH if
it fit.s. Otherwise indent it on the next line. This also applies to IF
(without an ELSE) if the B directive is off (8-).

Default H+

I Process include ($1 filename} Compiler (not Pasmat) dir~ctives. Pas mat
prO'vides three different wa:ys to process include files. The third wf!Y is
recommended.

• Process all the includes in the input to produce a Single output file.
To do this" use the 1+ Pasmat directive (or option). As each include
Compiler directive is encountered" it is output. on the line before the
output of the included source. However" to avoid reprocessing of this
directive by the Compiler (assuming tl'"le output is to be eventually
compiled).. the III" in the directive is not output.

• Treat. each include file separately. Each file is given individualy to
Pasmat to format. By placing an I=n Pasmat directive at the start of
each source input file" you can specify the initial indenting level for
the file. Indenting for l=n starts at column n*t" that. is" the specified
level times the indenting tab value (see T directive). (To determine
the indenting level for each include file, you can use the Pro~Names
utility,. which displays procedure and function names and their level
informafion.) Note that since individual include files need not

11-36

Workshop User~ Guide The Utilities

represent syntactically complete Pascal constructs (for example.. an
include file can contain a procedure wit.h many nested inner
procedures .. but without the body of the outer procedure).. Pasmat may
report a syntax error. If this happens .. check the output to see if t.he
entire include file was processed.

• Process the entire source as in the first method above,. but instead of
generating a single source wit.h the include direct.ives removed,.
generate as many output files as there are input (include) file.s. The
result is a set of format.t.ed files with t.he ~ame include st.ructure as
the input. All the include directives are output and edited to reflect
the new filenames (which m8'y be the original input and include
filenames .. yielding a facility that effectively reformats in place). This
method of processing includes is indicated by specifying the I option
when Pasmat is invoked. For further details .. refer to the discussion of
! in the OptiOns section.

Default 1-.. 1=0 (include not processed)

J Special alignment of declarations and comments. The general format is
J= < width>:!: I <colI >sdl <coI2>c.

<width>:!: specifies that <width> columns are to be reserved for all
following CONST, TYPE or YAR identifiers (you can also
control the alignment of the colons in YAR declarations within
the width by using the : option). The optional sign following
the <width> indicates whether to apply the <width} to record
field lists (if + is used or the sign is omitted) or to apply it
to just the declared variables themselves (if - is specified).

<coll>sd specifies what column a comment following a statement on
the same line is to start in. Note that <width> is a width
specification,. and (coIl> is a column specification. <coIl>
all 0 IN'S you to align all comments in declarations. All
comments following statements are aligned (when the
comment is the last thing on the same line as tt1e statementt
unless you specify s or d following <coIl>. (Case is ignored,
and the letters m8'y be in either order.) If s is specified,
<coIl> is applied only to statements and not to declarations.
If d is specified, <coIl> is only applied to declarations.
Omitting both sand d is the same as specifying bot.h; <coIl>
is applied to all comments follo'h'ing statements if t.he
comment is the lest thing on the line.

<coI2>c specifies a starting column for comments, as <coIl> does .. but.
only affects comments that have the trigger character c as
the first. comment character.

If <width> is omitted" its previous value remains unchanged; the slash in
front of <coIl> is required. If <coIl> is omit.ted .. the previous value remains

11-37

~\Iorkshop User's Guide The Utilities

unchanged; the slash in front of it is optional unless <co12> is specified .. in
y,'hich case both s:lashes are required.

For constant declarations, the G=i (i>l) directive overrides <width>.
Comment.s should then not be used for these stat.ements. The <width> and
<coIl> values are ignored for a line if they cannot be used because an
identifier or its declarative information are too wide. A value of 0 for
<width> .. <coIl> or <co12> disables the corresponding alignment.

Default J=O/O/O

K Indent. statements between BEGIN/EI'\D pairs. Normally the statements
are indented to the same level as the BEGIN/END pair. The C directive
determines the actual placement. of the BEGIN. Normally t.he BEGIN
appears on a separate line unless C+ is used. K- should be used if C+
is specified.

Default K-

L The case of reserve(~ words and identifiers is to be a literal copy of the
input.. L overrides the W directive and is disabled by t.he P directive.
The R directive overrides L for reserved words.

Default L-

N Group formal procedure p8J·amet.ers. This is similar to the G+ option.,
but only for formal parameters of procedure and funct.ion declarations.
l\Iormally t.hese appear one per line.

Default !'-j-

o This is a numeric directive (Le., O=w) that. specifies the output line
width. The maximum value allowed is 132 characters. If a part.icular
to~<en will not fit in this 'h'idth,. that. line is lengthened to fit it .. and a
message is displayed at the end of formatting.

Default 0=80., or 3rd parameter., or 4th parameter wit.h 1'1 option

p Sets portabi1it.~1 mode format.t.ing" wt1ich removes t.he underscore
character U from ident.ifiers. The first letter of each identifier and the
first letter following each underscore character are capitalized while the
remaining characters are in lower case. This overrides the Land W
directives. The case of reserved words is set with the R directive.

Default P-

Q If an IF follows an ELSE .. do not. treat the IF specially. It is indent.ed
on t.l'"le next line after t.he ELSE.

Default Q-

11-38

{.t,lorkshop User~ Guide The i..ltiJities

R Output all reserved words in upper case, otherwise (R-) output in lower
case.

Default R-

T Specifies the amount of tab for each indentation level. This is a
numeric directive (T=n). St.at.ements that cont.inue on successive lines
are additionally indented by half this amount.

Default T=3, or 4th parameter., or 5th parameter with M option

U Case conventions for each identifer are based on its first occurrence in
the source. The first occurrence of each identifier is left as is; all
subsequent occurrences are made t.o look exact.ly like the first.
occurrence. U overrides the L and W options, but the E and P options
can still be used.

Default u-
V Alian an IF statement so that the THEN is indented on the next line

after the line cont.aining the IF. The ELSE is aligned with the THEN.

Default v-
W Convert identifiers to upper case, otherwise convert to lower case. W

is overridden by the L .. P, and E directives.

Default W-

X Suppress space around the arithmetic operators +, -.' * .. and (and the
relational operators =, <> ... <, <=,. >, and >=. Normally, one space is
placed on each side of these operators. X has no effect on the = used
in CONST and TYPE declarations.

Default X-

V Suppress space around the assignment operator 11:=11.

Default y-

Z Suppress space after commas.

Default Z-

i Controls CASE statement tags (labels). ID is specified either as a switch
(ID+ or ID-), or as a numeric directive (ID=i). In it.s &=i form., i indicates
that the statements associated with the case tag are to start i columns
after the start of the the case tag. (This is similar to the
J=<width>/<col1>/(c()12>c directive where <width> indicates how much
space to reserve for an identife.r being declared.) i indicates how much
space to reserve for the case tag(s). If ID=O (the default)., statements
following a case tag are indented (using the current indenting tab value)
on the line following the the tag. If il= 1, the width of the first tag plus
2 (for the tag's colon and following space) is used to determine the
space to reserve for all following tags in that case statement. This

11-39

l-v'orkshop User's Guide The I...ltilities

means you should put your longest case tag first. For ID=i (i>ll. i
spaces are reserved for the case tags. If the tag is too wide for the
specified width, then the statements that follow are placed on the
following line, indented i spaces.

ID+ and 3)- specify what to do with a Jist of tags that dCln't fit into the
specified width. ID+ indicates that a tag that is part of a list is to be
put on the next line if it would exceed the i width. ID- indicates that
as many tags as possible are to be kept together on the same line. If
the result.ing list is longer than i, the statements are placed on t.he
following line indented by i.

Default aI-.. ID=O

Posit.ioning of colons in aligned VAR declarations. The reserved widtt1
for identifiers in declarations is controlled by the J directive's <width>
parameter. In VAR declarations you have the choice of allowing t.he
colons to immediately follow their identifiers by specifying :- or to
align t.he colons at the right end of the reserved w"idth by specifying :+.

Default :-

I "Smart." grouping option. If 11+ is specified, a.....~ignment and call
st.atements that were grouped together on the same line in the input are
grouped together on the same line in the output. if they don't ex ceed the
output line width.

Default #-

Options
Most of the options change the initial default settings of the directives
described above. Options are specified by listing the letters (without the +
or -) in response to the options prompt, or in a special options file (described
at the end of this section).

A Set A- to disable CASE label bunching.

B Set S+ to enable IF bunching.

C Set C+ for placement of BEGIN on same line as previous word.

D Set 0- to disable the replacement of (* *) with { } comment delimiters.

E Set E+ to capitalize identifiers.

F Set F- to disable formatting.

G Set G+ to group assignment and call statements.

H Set H- to disable FOR, WHILE, and WITH bunching.

I Set 1+ to process Compiler includes.

K Set K+ to indent statements between BEGIN/END pairs.

11-40

""Iarkshop I..,lser~ Guide The Utilities

l Set L+ for literal copy of reserved words and identifiers.

M Rename identifiers. This opt.ion requires that the third Pasmat
paramet.er specify a file cont.aining a list of ident.ifiers and their
corresponding new names. Each line in this file contains two identifiers
of up to 32 characters each. The first is the identifier t.o be renamed
in the input file. The second is the name that. will replace all
occurrences of t.he first identifier in the input. when creating the out.put.
There must be at least. one space between the two identifiers. Leading
and trailing spaces are opt.ional. The case of the first. ident.ifier doesn't
matter, but t.he second identifier must be specified exactly the way it is
to appear in the output. The case of all identifiers not specified in t.he
renaming file are subject. to the other case options (E, L, U, and W).
Reserved words cannot be renamed.
Instead of specifying the rename file as a parameter, if you h~ve a file
named input.RENAtvE. TEXT (where input is whatever the name of the
input file is as specified on the Parameter(s) line), and the M option is
not explicitly specified (along with its associated rename parameter),
then the t\lt option is implied and the implicit file is used.

N Set N+ to group formal parameters.

P Set P+ for portability mode.

Q Set Q+ not to treat ELSE IF sequence specially.

R Set R+ to show reserved words in upper case.

S Generate a display listing of the output. Unless you specified >iisting
(where Ising is a filename) in the parameters line, you are prompt.ed
for t.he listing file. The listing file is ignored if either the output or
the input file is specified as -CONSOLE.

U Rename all identifiers based on their first occurrence. The rename file
has precedence over this option; if an identifier is specified in the
rename file, the identifer's translation is based on the rename file
rather than its first occurrence in the source.

V Set V+ to put THEN on a separate line.

W Set W+ to show identifiers in upper case.

X Set X+ to suppress space around operators.

Y Set Y + to suppress space around :=.

Z Set Z + to suppress space after commas.

Set :+ to align colons in VAR declarations (only if a J Pasmat directive
in the source specifies a <width».

I Set i+ to force multiple CASE tags onto separate lines.

11-41

~\Iorkshop Usel·~ Guide The Utilities

, Set 1+ for "smart" grouping of assignment and call statements (grouped
assignment and call statements on an input line appear grouped on
output).

Process includes and generate a set of output files with the same
include structure as t.he input.. The out.put file na.mes are generat.ed by
edit.ing the input (include) file names according to pattern and
replacement strings. The include Compiler directives are also
appropriately changed.

The pattern and replacement editing strings are specified by entering an
output. file name in the form Ipattern/replacementl (single or double
quotes can be used in place of slashes). The pattern is a sequence of
characters (ignoring case) that is to be looked for in the input pathname
and each include pathname (t.he entire pathname is used). If the pattern
is found .. that sequence of characters is replaced by the replacement
st.ring. The result. is a new pathname t.hat becomes t.he name for an
output file. Applying this editing operation to the input name and all
includes produces a set of output files wit.h the same structure as the
input.

The following are examples editing operations and their associated
effect:

"Prefix!, Prefix each name yt'ith the sequence of characters
"Prefix 1".

IOldFile/NewFilel Replace eact"1 name containing the string OldFile with
the string l\IewFile.

III Prefix each name with t.he null string--t.he output
names are the same as the input names. The result
is effectively an in-place formatting of the input.

If you specified an output file on the parameters line that looks like
Ipattern/replacementl (where the slashes could be • or II characters)..
Pas mat. shows the ! on the optiOns prompt. If you remO've the ! from the
options .• Pasmat interprets the string as an out.put filename. Conversely ..
if you entered an invalid editing operation (e.g ... you didn't use three
slashes) but you intend t.o use the ! function.. enter it on the options line.
You are then prompted to correct the pattern and replacement. This
prompt accepts as the delimiter whatever you use as t.he first character
(e.g., labcldefl specifies abc as a pattern and def as a replacement).

• Ring the bell at completion of the execution.

All options except M.. S .. !, and * ha:"e directive counterparts. If you use the
embedded directives .. you don't. have to specify them as options each time
you call Pasmat (though the Options prompt always appears).

11-42

~v'ork.shop l)seT~ Guide The l../tilities

In a.ddition to ex plicitV specifying options, you can create an opt.ions file
called PASMAT.OPTIONS.TEXT t.hat contains t.he options you want. to use.
Pasmat aJ\.vays looks for this file. Lines in the file contain a sequence of
option characters grouped t.oget.her on t.he same or separate lines. The lines
may be commented using braces ({ }).

The options file may also specify the output line width (O=w), the indent tab
value (T =nt and the CASE tag widt.t"1 (ID=i). A typical opt.ions file might. be:

n {group formal params on same line}
u {auto translation of id1s based on 1st occurrence}
r {uppercase reserved words}
d {leave comment brackets alone}
, {smart grouping}
0=82 {output line widt~
t=4 {indert tab value}

If Pasmat does find an c'pt.ions file, t.hose opt.ions el"e shown on the options
prompt line as if you typed t.hem in. You can press [RETURN] t.o accept
them, OJ" change them by backspacing over t.hem. If you specified the width
and/or t.ab values, t.he specified values appear as the default values '""hen the
output width and tab prompts are given. If you specify the output width and
tab values on tt"le paramet.ers line, those values t.ake precedence and tIle
associat.ed prompts are not given.

Limitations and Errors
There are the following limitat.ions on Pasmat.

• The maximum input line lengt.h is 132 characters.

• The maximum output length is 132 characters.

• Only syntactically correct programs, units., blocks, procedures,. and
statements are formatted. Tt-lis must be talc;en into consideration when
separate include files and conditional Complier directives are to be
formatted.

• The Pascal include directive should be the last thing on the input line
if includes are to be processed. Pasmat does not. act correctly if
anything fo11ol,."s the include comment on the same line. Includes are
processed t.o a maximum nesting dept.h of five. All includes not
processed are summarized at. the end of formatting. This assumes the
I direct.ive or option is in effect. Note t.hat. t.he "I" in the comment
containing the directive is not output to a'v'oid reprocessing when the
output is eventually compiled.

The following errors are detected and noted:

• Any syntax error in the code causes the formatting to abort. An error
message will give the input. line number on which the error is
detected. The output file will contain the output up to the point that

11-43

li'1e Utl1ities

the syntax error was detect.ed. This output. may help you det.ermine
INhat. the error is. The error checking is not perfecti successful
formatt.ing is no IJuarant.ee that the program will compile.

• In general, premature end-of -file conditions in the input are not
report.ed as errors, t.o accommodate formatting of individual include
files that may only be program segments. There are cases .. however,
where the include file is a partial program tt1at Pasmat interprets and
reports as a syntax error. Check the output to see whether it really
was a synt.ax elTor or just t.he premat.ure end of file.

• There is a limit to the number of' indentation levels that Pasmat can
handle" and if this is ex c:eeded" processing will abort. This probably
will be fare.

• If a comment. would require more t.han the maximum output length
(132) t.o meet. tile rules given,. processing will abort.. Ttlis probably will
be rare.

• If a token (identifier or string) is too long for the output line lengt.h"
the length is extended for tha.t line, and a summary is printed at the
end of the formatting giving the places in the output where this
occurred.

• If a comment. line is extended accordingt.o rule 4 in the Comment.s
sect.ion .. a summary is printed at the end of the formatt.ing giving the
places in the output where this occurred.

11-44

11.20 PDrtConf'ig
Synopsis
PortConfig enables you to configure the RS232 ports.

Dialog
First. you must supply information on how to configure the port.

1t-t1hich RS232 port do you want to configure? (A or B)

What parity sett.ing ?
0) No parity
1) Odd parity; no input. parit.y checking
2) Odd parity; input parity errors = 00
3) Even parity; no input parity checking
4) Even parity; input parit'y errors = $80

Enter selection (0 - 4) [0]

1t-t1hat. output handshake protocol ?
0) None
1) OTR handshake
2) XONI XOFF handshaJ<e
3) Delay after CR~LF

Enter selection (0 - 3) [0]

l,,)t-Iat. baud rat.e? [9600]

Receive and buffer input how?
0) Buffer input until full request is satisfied
1) Return whatever is received

Enter selection (0 - 1) [1]

v')hat input handshake protocol ?
0) None
1) OTR handshake
2) XONI XOFF handshal<e

Ent.er selection (0 - 2) [0]

Adjust. type-ahead buffe.r how ?
0) Flush only
1) Flush and re-size
2) Flush.. re-size~ and set thresholds

Enter selection (0 - 2) [0]

It-t'hat. form of disconnect. detection?
0) None
1} BRE AK detected means disconnect

Ent.er selection (0 - 1) [0]

The Utilities

Timeout on out.put after how many seconds (0 = no t.imeout.)? [0]

11-45

I-vorkshop l.,lser~ Guide The Utilities

Automatic linefeed insertion ?
0) Disabled
1) Enabled

Enter selection (0 - 1) [0]

We are now ready to configure the port. Shall we proceed? (Y or N)

PortConfig contains a series of questions. After YOLI answer one, you It'r'ill be
prompted for an answer to the next one. The default values for each
question are shown in brackets.

Description
y.)ith the Port.Config L1tility~ you can configure the RS232 ports, and establish
sLlch things as the parity setting, handsha~<e protocol, baud rate .. disconnect
detection, and so forth. If you are using Pascal and want additional
information on port configuration, see Section 2.10.12 in Operating System
Reterence A18t111& for the Lisa

NOTE

For Serial A and Serial B ports, the baud rate can be set to 50, 75, 110,
150 .. 200, 300 .• 600, 1200, 1800, 2000 .. or 2400. Serial A can also be set
to 48CO or 9600.

For output onl};. Serial B can also be set to 3600 .. 48CO,. 7200 .. 9600, or
19200.

11-46

11.21 ProcNames
Synopsis

The (jtilities

ProcNames list.s all the procedure and function names in a Pascal program.

Dialog
Parameter(s) [? for help]:
Input file: [.TEXT]
Output file: [-console] [.TEXT]
Options [7 for 11elp]:
Intrinsic.Lib to use for this ProcNemes:

The input. and output. prompt.s don't. appear if t.hey ere specified as explicit
parameters:

Parameter(s) [? for help]: input output

Typing ? in response t.o a prompt displays informat.ion about t.he response
needed.

Pressing [CLEAR] in response to a prompt terminates the program. After the
prompt.s are processed; ~/OU can t~/pe .-period to terminate.

Description
ProcNames t.akes a Pascal program as input. and produces a list.ing of all its
procedure and function names.

The input. can be a set of files if you donlt give the input. file as a
paramet.er; but let ProcNames prompt you for it; eacl1 file is processed
separat.ely. ProcNames cont.inues prompting for input files until a null
response is entered. T~le response can also be of the form <filename,. I,\rlhere
filename contains a list of file names. The defaLllt outPLlt file is the
console. The output file can also be given tlY specifying >filename on t.~le
pSl'ameters line.

The names in the ProcNames listing are displayed indented to show their
nesting 1e\le1. The nesting level and line number information is also
displayed.

ProcNames can be used in conjunction with the Pascal "pretty-printer"
utility; Pasmat.,. when Pasmat. is used to format separate include files. In
this case; Pasmat requires that the initial indenting level be specified; this is
the informat.ion provided by ProcNames.

The line number information displayed by Proc:Names matches that produced
by the Pascal cr&--s-reference utility Xref (with or without IJSES being
processed)., so ProcNames can by Llsed in conJunct.ion wit.h the Xref listing to
show just the line numbers of every procedure or function header.

Options
The follot,A,ling opt.ions Sl'e available. You specify options by listing them in
response to the options prompt.

11-47

~\I'orkshop Llser's Guide The l./tl1ities

C Do not process a used unit if the unit's name or its ($U) object
filename (if a compiler $U- is in effect) is specified in the list of files
to be processed. (This option has the same effect on the line numbering
as does the C option in the Xref utility.)

M Macintosh mode. Ignore any $U:!: directives. ($U- is assumed.)

N Suppress all line number and level informat.ion in the output display.
Only the procedure and function names are shown.

P Pasmat. compat.ibility. The default is to list t.he procedure and function
names as a function of their Compiler indenting level. However~ for
indent.ing purposes onl~J~ a special case is made of level 1 procedures in
the Ifv1PLEfv1ENT A nON section of a unit. Pasmat formats these
procedures under trle word IMPLEMENTATION .. so they are indented as if
they were level 2 procedures. If you intend t.o use the level information
for Pasmat., specify the P option.

T Reset total line number count to 1 on each ne ... \-' file. The default is to
number continuously through a list of files (agreeing with the listing
produced by Xref).

U Process USES declarations. You need to process USES declarations if
you want the line number information to agree with an Xref listing tllat
also contains processed USES. The default is not t.o process the USES
declarations,. since they ha:rJe no effect on the procedure name list.ing~
only' the associated line numbers. If you specify the 1\1 option to
suppress line number information .. the U option will be ignored.

$ Use a special intrinsic library directory; you will be prompted for the
file name. The cfefault. is t.o use Int.rinsic.Lib for intrinsic units. This
option only hffi: meaning if the U option is used.

* Ring t.he bell at completion of the execution.

Example
The follo'h'ing SllOl.'r'S the output produced by Procf\James (using source for
ProcNames itself as the input).

Procedure/function names for procnames/procnames.TEXT

17 17 0 ProcNmes [ProcNflDes]
procnames/procnfIDes.TEXT

116 116 1 Stop
131 131 1 NextChar
173 173 1 Readld
202 202 1 Advance
212 212 2 Opts
218 21B 3 GetSegName
251 251 3 Getlnclude
2B8 2BB 3 GetUFnfIDe

11-48

y.1orkshop l..,Iser~ Guide

338 338
396 396
-405 405
451 451
464 464
524 524
562 562
007 007
650 650
661 661
673 673
698 698
719 719
734 734
756 756
863 863
908 908
989 989

1097 1097
1108 1108
1265 1265

2
1
2
1
2
2
2
2
2
3
4
4
4
5
5
4
3
2
1
2
1

Dol ncl ude
Scan

Scanld
ProcDcl

WriteProc
ProcHdr
ScarSody
ScanlNTERFoc:E
ScartJSES

Use
Opel1lbjFile
Processlnterface
FintlJnit

NextByte
Nextlnt

Res(JInterfsce
DupUse

ScartETItDS
lnit

lnitKeywards
ProcesslFile

••• End ProclifIDes: JO Procedures and Functions

The l.ltz1ities

The first two column 1 are line number information; the third column is the
level number. The first column shows the line number of a routine within
the total source. The second column shows the line number within an include
file (includes are always processed). As each include file changes .. the name
of the file from which input is being processed is shown along with the
routine name on the first line after t.he change in source. Segment. names
(from Compiler $S directives) are similarly processed. These are shown
enclosed in square brackets (a blank segment. name is shown ffi U[<blank>]U).

Limitations and Errors
Only syntactically correct programs are accept.ed by ProcNames. Conditional
compilat.ion Compiler direct.ives are not processed.

11-49

~\Iorkshop I../ser's Guide

11_22 RMaker
synopsis

The l..ltillties

R""1a~<er is used to create resource files for t'v1acintosh applications.

Dialog
Input file [sysResDef][. TEXT]

Description
RMa~<er is the resource compiler/ used t.o create resource files for r\1acintosh
applications. It. converts object. files to a fv1acintosh executable form. The
resource file creat.ed by RfVlaker lets the r""Iacintosh Resource Manager know
what resources (such as menus" icons, and fonts) your application uses.

The name of the Rtvlaker out.put. file must be specified on the first.
noncomment line of your RMaker input file.

Information on the format of R~"1aker's input file is currently in InSide'
t--18cintos,? Putting Together a tv1acint.osh Application. TIle Macint.ost1
Resource Manager is described in Inside Jl.1acintosh" The Resource I'-1anager:
A Programmer's Guide.

11-50

11..23 Search
Synopsis

The Utilities

Search copies: all lines containing a specified pattern from its input to its
output.

Dialog
Parameter(s) [? for help]

The format for the parameters is: (stdin)stdout pattern

Description
Search reads its input (StdIn) one line at a time .. and writes to its output
(StdOut.) all lines t.hat mat.ch the specified pat.tern. The defaults for both
Stdln and StdOut are the console. If the input is from the console, use .-C
to indicat.e the end of file.

The pattern is a concat.enation of any of the following:

c Literal character c.

? Any character except. [RETURN].

~ Beginning of line (only has meaning when first character of pattern).

$ End of line (onl~J has meaning when last. character of pattern).

[.--1 Character class (anyone of t.he bracketed characters).

r --] Negat.ed ch81·acter class (all but the bracketed characters).

* Closure (zero or more occurrences of t.he previous patt.ern) (has no
meaning wIlen first character of pattern).

c Literalized charact.er (special symbol c taken as is" including "'''').

n [RETURN].

The special meanings for t.hese symbols are lost when literalized with'" or
inside of brackets [...] (except).

A character class consists of zero or more of the following elements
surrounded by brackets:

c Literal character c (including [).
cl-cZ Range of characters (digits .. uppercase or lowercase letters) (the

dash has no meaning when at the beginning or end of a cl&"":8).
Negated character class (only has meaning when first character in
class).

c Literalized character.

11-51

""/arks-hop- ljser~ GJ..lide 0?e t/t ilities

For example .. to copy all lines ending with a Pascal I<.eyword or identifier:

Parameter(s): {stdin [a-zA-Z][a-zA-20-9]*$ >stdout
To match anything between parentheses (not necessarily balanced):

Parameter(s): {stdin (?*) >stdout

11-52

~\IOTkshop UseT~ Guide

11..24 SegMap
synopsis
Segtv1ap produces a segment map of one or more object files.

Dialog
Files to Map ? [.08J]
Listing File ? [-CONSOLE]

Description

The tltl1ities

SegMap accepts either an object file name or a command file name, which
enables you to include predefined lists of files.

A command file must be preceded with a 11(11. SegMap adds the .TEXT suffix
to the command file name.

For example .. if the file IIApple.text" contains:

"code"
"pascal"
"basic"

Submitting n{ Apple" directs SegMap to accept, sequentially .. lIeode.obi',
"pascal.obj", and "basic.obj".

The map information includes the object file name .. the name of the unit in the file,
the names of t.he' segments used in that unit (if any), and t.he new segment
names.

11-53

11..25 ShowInterface
synopsis

The i-ii;iiities

ShowInterface allows you to view the interface section of any unit.

Dialog
List file: [-console] [.TEXT]
Intrinsic. Lib: [-$#11] [INTRINSIC. LIB]
$U filename:
Unit name:

Typing ? in response to a prompt displays information about the response
needed.

Pressing [CLEAR] in response to a prompt terminates the program. After the
prompts are processed, you can type .-period to terminate.

Description
ShowInterface requires the same information as a Pascal USES statement: the
unit.'s name .. wt1ether t.o process the unit in {$U+} or {$U-} mode, and if {$U-t
the object file (or library) containing the unit. Any number of units may be
processed.

Library units, which are stored in a compressed format by the Linker, are
formatted using a special version of the Pasmat utility. Noncompressed
units are printed as is.

The default listing file is the console. The only way to change the list file
is to rerun ShowInterface.

You can use a special intrinsic library .. instead of the default INTRINSIC.LIB,
for all units accessed by {$U+}. You must rerun Showlnterface to change the
intrinsic library name. The specification of a special intrinsic library here
corresponds to the $W filename Compiler invocation option, which allows you
to use a particuler intrinsic librery for all the used {$U+} units of a
perticuler compilation.

You can process a unit in {$U+} mode or {$U-} mode. The default is {$U+}.
{$U-} is indicated by specifying an explicit librery or object file.
Functionally, this is similer to the following Compiler IJSES statements:

• No response to the II$U filename ll prompt: USES {SU+} unitname, __ i

• Library or object file name response: USES {$U-} {$U filename}
.... itnaine".._i

11-54

The l.ltilities

./

{$U+} indicates that the specified unit is to be searched for in the intrinsic
library and,. if not found,. in the most recently specified $U filename. {$U-}
means that the unit should be searched for only in the $U filename,. never
the intrinsic library. Also,. in {$U-} mode,. the specified filename is accessed
as written. If that file can't be accessed, it is retried with a .08J extension.

The unit you specify is processed in the same manner as in the Compiler;
before processing it, Show Interface shows you the equivalent Compiler USES
statement,. and asks you if it's okay. If not,. you are prompt.ed again for a
$U filename.

ShowInterface continues to prompt for $U filenames and unit. names,. and to process
them, until you press [CLEAR). You must exit and rerun the program to change
the listing file or the intrinsic library used.

1 if· 55

11.26 SXRet
synopsis
Pascal cross reference utility

Dialog
Source File ? [. TEX T]
Output file for List.ing ? [-CrossRef] [.TEXT]
Do you want a numbered listing of the source ? (Y or N)
Flag the declarations and ssignments of each indentifier ? (Y or N)
Declaration Character? [*]
Assignment Character? [=]
Text file of words to Omit? [SXRef.Omit] [.TEXT]

Description
SXRef gives a numbered listing of the source files and an alphabetical listing
of identifiers found. For each identifier .. all references to the identifier are
listed in the order in lNhich the references were encountered. Procedure and
Function names along ""lith all references to them will be found at the end of
the cross reference listing.

Identifiers follow current Lisa Pascal conventions: the first eight characters,
without regard to case sensitivity. Case insensitivity is achieved by shifting
identifiers to lower case.. within the Cross Reference section.

INCLUDE files 8l"e automatically processed. User interfaces are not
processed. Comments and strings are recognized and skipped. There is no
conditional compilation processing or elimination of code controlled by
boolean constants.

SXRef will accept multiple source files. This can be used to get a cross
reference of a set of Main Programs together with the Units which the
programs use. References are given by file number and line number within
the file. A directory of files read is printed at the end of the source listing..
and before the cross reference section.

SXRef attempts to read a file for a list of words to omit from the cross
reference. The default name is SXRef.omit.text, but other names can be
given. If the file cannot be opened .. execution proceeds normally without
omitting any identifiers.

SXRef will optionally flag whe.re all identifiers are declared and assigned
values. The default flag characters are: [*] for declaration and [=] for
assignment.

If SXRef runs short of storage, an error message is given and the program
aborts.

See Also
GXRef, UXRef

11-56

Ir/orkshop Liser's Guide

11.27 Translit
synopsis

The Utl1ities

Trsnslit maps its input character by character and writes the translated
version to its output.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: < st di n [A] src [dest] > st dout

Description
Translit maps all the characters in its input file (StdIn) that match the
characters in src into the corresponding characters in dest in the output file
(StdOut.). All charact.ers not. in src are simply copied from the input to the
output. The defaults for both Stdln and StdOut are the console. If the input
is from t.he console .. use .-C to indicat.e the end of file.

To replace all instances of "x" with 'V':
Parameter(s): (stdin x y)stdout

Both the src and dest. parameters may contain substrings of the form cl-c2,
meaning all characters from cl through c2, where cl and c2 are both letters
of the same case or both digits. To convert a file to all uppercase letters:

Parameter(s): (stdin a-z A-Z >stdout
If dest is omitted, then all characters specified in src are deleted. If dest is
short.er than src .. all characters in src that would map beyond the last
character in dest are mapped to the last character of dest.- and adjacent
instances of such characters in the input are represented by a single instance
of the last character in dest. To convert each string of digits in the input to
the single digit 0:

Parameter(s): <stdin 0-9 0 >stdOut
If src is preceded by a caret (At then all characters except those in src are
used as the source string--t.hey are all delet.ed if dest is omitted,. or they are
collapsed to the last character in dest. To replace all nonalphabetic
characters with asterisks:

Parameter(s): <stdin "a-zA-Z • >stdout
The tilde C) is a literalizing s~/mbol in the src or dest parameters; it pssses
the following character as is. The special case II nil represents a RETURN
character. To replace all RETURN characters with spaces:

Parameter(s): (stdin -n - >stdout

11-57

i-t/OTkshop iiser:s Guide

11.28 UXRef
Synopsis
Show unit dependencies of one or more Pascal source programs

Dialog
Type "?" to see current options
Source File? [.TEXT]
Output file for Listing ? [-Cross Ref] [. TEXT]

The Utilities

Text File of unit names with unexpected pathnames ? [UXRef.UMap]
[.TEXT]

Description
UXRef gives an alphabetical listing of programs and units. Each program or
unit listed includes two parts: 1) alphabetically lists all programs and units
that USE that program or unit.. and 2) alphabetically lists all units that ARE
USED BY that program or unit.

UXRef recognizes conditional compilation and will determine the truth value
of any {$ifc ... J expression. Compile-time variables can be of both boolean
and integer types and a {$setc ... } can change a variable to a new type.
Warnings will be sent to the console if a syntactical or semantic error is
found in an {$ifc ... } expression.

Warnings about units that canlt be found 81"e sent to the console. Even
though a unit cannot be found it will still show up on the Cross Reference
listing.

Options may be turned on or off during file name prompt stage of UXRef.
F our options are included:

+C You will be asked to manually clarify a compile-time
expression or variable that cannot be evaluated correctly. Enter
IT' for true and IFI for false. If this option is off .. the entire
expression will be treated as false.

+F As each file is opened .. a message ""Iill be printed on the
-console specifying the file name and the unit name being read.

+1 "Include Files" will be treated as units and will show up on the
Cross Reference listing. Only those "include files" that are
found between the beginning of the program/unit and the end of
the uses section will be listed.

+W All warnings will be written at the beginning of the Cross
Reference listing as well as on the console.

By entering ? during the file name prompt stage a short description of each
option will appear along with their current values. The default values of the
options are: -C, +F, -1, and -W.

11-58

?\Iorkshop I...iser's Guide The litilities

UXRef provides a facility to map a unit to an unexpected pathname. For
example .. the unit "FOO" might not be compiled yet (e.g .. , "FOO.OBJII does not
exist) and the source is named IIUNIT IFOO.TEXT". UXRef will attempt to
read a file for a list of logically connected units and pathnames and if
FOO,.-UPPER-UNIT IFOO.TEXT is an entry in that file then IIUNIT IFOO.TEXT"
will be located and seerched on the UPPER diskette when the unit FOO is
referenced. The unit name and the pathname must be separated by a comma
with no extra spaces between. In addition this same facility can be used to
shut off unnecessary warnings that occur when an inaccessable unit is
referenced. Normally warnings will be printed when a unit cannot be found ..
but if the unit name follo 'ed by a comma appears on UXRef.Omit.TEXT (or
some other name provided by the user) the warnings for that unit will be
bypassed. Ex ample entries are:

FOO,.-UPPER-UNIT IFOO.TEXT

SYSCALL

See Also
GXRef,. SXRef

11-59

{.!.!orksliop Ltser~ Guide

11..29 WordCount
Synopsis
tA'ordCount counts t.he number of words in its input.

Dialog
Parameter(s) [? for help]:

The format for the parameters is: <stdin >stdout

Description

The Utiiities

WordCount counts the number of words in its input (Stdlnl. and writes the
total to its output (StdOut). n-Ie defaults for both Stdln and StdOut are the
console. If the input is from the console, use j-C to indicate the end of
file_

A wOI·d is considered any sequence of characters not containing a blank or
any control characters (e.g., RETURN or DLE).

11-60

1130 Xref'
synopsis

T,'Ie l./tilities

Xref is a cross-referencing utility that displays all variable references in a
Pascal source program (or programs).

Dialog
Parameter(s) [? for help]:
Input file: [.TEXT]
Output file: [-console] [.TEXT]
Options [? for help]:
Maximum output line width:
Intrinsic.Lib to use for this Xref:

The input, output .. and line-lr\,'idtll prompts don't appear if the'Y aren't needed
or are specified as explicit paramet.ers t.o the first prompt:

Parameter(s) [? for help]: input output width
Typing ? in response to a prompt displays information about the response
needed.

Pressing [CLEAR] in response to a prompt terminates the program. After the
prompts have been processed ... you can type _-period to t.erminate.

Description
Xref lists each variable in the source program in alphabet.ical m·der., followed
by the line numbers on which it appears.

The input can be a set of files if you don't give t.he input file as a
parameter" but let Xref prompt you for it; each file is treated as an include
file in t.he cross- reference displ8.\/. Xref cont.inues prompting for input. files
until a null response is entered. The response can also be of the form
<filename, tNhere filename contains a list of file names.

The width parameter is the max imum output width of the cross-reference
listing (which determines how many line numbers are displayed on each line
of the listing). The width carl be a value from 40 to 132.

Line numbers in the cross-reference listing can refer to the entire source
file .. or can be relative to individual include files and units. Each variable
reference indicates whether the variable is defined, assigned .. or simply
named (e.g ... used in an expression).

Variables in ;l{"J·ef m8!/ be up to 16 characters. You can specify that the
variables remain as t.hey appear in t.he input. .. or they can be converted t.o all
lowercase or all uppercase.

11-61

{4orkshop User~ Guide The Utilities

It-,Ihen include files are proces-sed by XIef~ each line number displayed is
relat.ive t.o the start of the include fHei an additional key number indicat.es
Yihich include file is refen-ed to. A list of each include file processed and
it.s associated key number is displayed prior t.o the cross-reference list.ing.

USES declarations can also be processed b\1 .X.ref (their associat.ed $U
filename, $U+ and $U- Compile.r directives are processed as in the
Compiler). These are treated exactly like include files, except that the line
numbers refer to t.he lines of a unit.'s interface section as t.hey are read from
the librar~1 code file of a USEd unit., and~ as in the Compiler.. onl~1 the
outermost USES declaration is processed (the USES declaration of a USEd
unit. is not. processed). Also, as in the Compiler, a private Intrinsic.Lib may
be used.

As an alt.ernative to processing USES declarations .. XIef accept.s mLllt.iple
source files. You can use this to get a cross reference of a. set of main
programs toget.her with t.he units used by the programs. All t.he sources are
treated like include files for display purposes. Xref checks to see if it has
already processed a file (e.g.,. it. appeared twice on t.he input. list., or one of
the files alread'y USEd or included it.), and if so .. the file is skipped.

Options
Trle folloYling opt.ions are available. Options are specified by list.ing t.hem in
response t.o the options prompt.

A Process all files .. even duplicates of files already processed. The defa.ult.
is to process each file or unit only once.

B Suppress t.he lexical information on t.he source listing. See example for
further det.ails.

C Do not process a USEd unit if the unit's name or its ($U) object
filename (if a Compiler $U- is in effect.) is specified in t.he list. of files
to be processed.

o Delete all underscores in identifiers. The default is to retain t.he
underscores and treat them as si'Jnificant. ident.ifier characters (83 in the
Compiler).

I Do not process include files. The default is to process them.

l Force all letters in ident.ifiers t.o lower case. TI-Ie default. is t.o leave
them as they appear in the input. (If L amf U are both specified .• U is
ignored.)

M fv1acintosh mode. Ignore any $U:!: directives. ($U- is assumed.)

N Do tle4- process USES declarat.ions. The default. is to process t.hem. If
N is specified t.hen t.he C opt.ion is ignored.

11-62

l"'arks-hop User's Guide The Utilities

P Do not print tile input source as it is being processed. The default is
to list the input. ($P Compiler directives generate a form feed to be
generated).

S Suppress include and USES information in all displays. The
cro:::"":S-reference displays (the listing" if tile P opt.ion is not used" and tile
cross-reference itself) will not contain any of the include/USES
information. Tile T option is implied by specifying the S option.

T Cross-reference by total source line number instead of include file line
number. The include information is still displ8\/ed (if S .. I or N are not.
specified). This option is implied if the S option is specified.

U Force all letters in identifiers to uppercase. The default is to leave
them as they appear in the input. (If Land U are both specified" U is
ignored.)

$ Use a special intrinsic library director~/; you will be prompted for the
file name. The default is to use Intrinsic.Lib for intrinsic units;.

Ring the bell at. completion of the execution.

Identlfiers: Normally .. Xref doesn't change the case of lett.ers in identifiers
or remove underscores ... so you can see case differences in the
cross-reference listing. If)/OU use the L or U options ... Xref ignores case (as
the Compiler does). Up to 16 characters of each identifier are retained" so,
unlike the Compiler., identifiers that differ in t.heir spellings after the eighth
ch81·acter appear as different identifiers in the cross-reference listing.

Line numbers: You have the choice of which line numbers are displayed in
the cross-reference li~:t.ing: include file line number or total input line
number. The default is include file line number. If you specify the S or T
options. t.he listing shows t.otal input line numbers. If the T opt.ion is used"
include file information is still st-Iown. The S option suppresses the include
information.

Include/USES information: The I and N options control processing of include
files and USES declarations" respect.ively. Normally,. both of these are
proce::..--sed. You can suppress processing of include files by using the I option
and suppress processing of USES wit.h the N opt.ion.

If YOll don't. specify N" Xref processes a USES declaration exactl~1 like the
Compiler. If you want to cross-reference an entire system,. including all of
tt1e units of tJlat system,. processing the units through t.he USES declaration
will only get YOll the INTERFACE section of each unit. To get both the
INTERFACE and IMPLErv1ENTATION sections,. specif'y a list of files t.o be
proce.:-:sed that includes the sources to the unit.s. In this case., you should
specify the r\J option so none of the USES declarations are processed. If ~/OU
don't have the sources to ell the units (e.g .. , intrinsic: units like SysCall)... and
want. t.o process some on the USES declaration,. while not. processing the units
lh'hose sources are specified in t.he list ... you need to use the C option.

11-63

T,'Ie i...ltilities

(t-tlith t.he C option; if the name of 8. USEd unit is the same 8.S one of t.he
filenames specified on the input list (ignoring any volume name and . TEXT
extension); the unit thlill not be processed on t.he USES declaration ... since its
full source will be (or already has been) processed. If a Compiler $U
directive is in effect, then a {$U filename} Compiler directive specifie~ the
name of the object code file to be used. This filename is also checked
against the list of files. (The second check. is required since a unitls name is
not necessarily the same as its object code file name.)

To summarize; ~/OU have t.he choice of not processing the USES and
specifying a list of all files you want to process (using the N option)., or you
can just. process all t.he INTERFACEs through the USES declarations like the
Compiler (by omitting the N opt.ion}, or you c:an process some of t.he unit.s
through t.he USES and others as full sources (by specifying t.he C option). In
all cases where a list of files is specified, no unit will e'ver be processed
more than once.. unless the A option is specified.

Limitations and Errors
Xref st.ores all its informat.ion on the Pascal heap. It gives a message if it
runs out of space. If the console is not being used for the output listing ..
then Xref displays the amount of available space as it. start.s processing each
file or unit. Three pieces of information are given:

• The total amount of heap space available.

• The maximum number of unique identifie.rs that can still be accept.ed.

• The minimum number of references t.rlat can be cfistributed across the
identifiers.

Ident.ifiers are accessed through a hashed symbol table that can hold a
maximum of 5000 entries. The identifers themselves are not stored in the
table, but are allocated dynamically on the heap. The identifier references
Sl·e also d'ynamically allocat.ed on the heap. Each identifier takes 16 byt.es
and each reference t.akes 8 bytes (10 if t.he T option is used). Bot.h are
competing for the heap space .. so the information displayed shm-vs the
minimum number of references for the maximum number of available
identifiers (Le ... refs = (2*rVlemAvail-16*idls) DIV 8) (or DIV 10). Fewer
ident.ifiers means more reference space.

Xref has a rather simple algorithm for determining whether a reference is
defined, s:::""'Signed, or just used. Although Xref will nel/er miss a reference
to a variable, t.he part of the algorithm t.hat ident.ifies a definition can be
fooled int.o thinking a variable is defined when it actually isrn. One case in
which t.his t1appens is in record st.ructure variants. Trle record variant's case
tag is flagged as a definit.ion (even when there is no tag type).. and the
variant.ls case label constants (if t.hey are identifiers) are sometimes
incorrectly flagged. This only occurs in the declaration parts of the program.

11-64

~\/orkshop User~ GJ.iicle The l../tilities

Example
This example illust.rat.es t.he output produced by Xref. The output at. the end
of this section is a small program listed by ><ref together 'rvith its
cro::.-::s-reference listing. It has one included source.

Each line of source is preceded by five fields of information:

Field 1: The total line count.

Field 2: The include key assigned by Xref for an include (or USES) file
(see below).

Field 3: The line number of each line ~,'ithin the include or main file.

Field 4: This field cClnsists of two indicators (left and right) that
reflect the static block nesting leveL The left indicator is
incremented (mod 10) and displayed whenever a BEGIN/
REPEAT/ or CASE is encountered. On termination of these
st.ructures wit.h an END or UNTIL,. the right indicator is
displayed then decremented. It is t.hus easy t.o match BEGIN,
REPEAT., and CASE stat.ements with their matching
terminations.

Field 5: A letter in the fifth field reflects the static level of
procedures. The character is updated for each procedure nest
level (IIAII for levell, IISII for Ie-vel 2., and so on),. and
displayed on t.he line cont.aining the heading, and on the
BEGIN and END associated with the procedure bOdy. Using
this field you can easily find the procedure body for a
procedure heading when there are nested procedures declared
between the heading and it.s body.

Note that Xref does not process conditional compilation directives. Thus
given the right combination of $IFC's and $ELSEC's, Xref's lexic:al
information can be thrown off. If this t"lapperlS, or if you don't ,,v ant tt1e
lexical information,. specify t.he 8 option.

The I~ l)"s following the line numbers in the cross-reference listing are the
include keys of the associated include files (shown in field 2 of the source
listing). The include file names are shown preceding the listing (Le.,. the "l.
FactoriaLTEXTII). Thus you can see what the line number is in which include
file. The main file has no key and is shown as blank (if a list of files, even
one/ had been specified, the main file would be 1 and the include 2). An
asterisk (*) following a line number indicates a definit.ion of the variable. An
equal sign (=) indicates an assignment. Nothing following a line number
means a reference t.o the identifier.

The last line of the cross-reference listing summarizes the total number of
identifiers and the number of references to those identifiers. The
information in square brackets indicates how much space was still available
at the end of the cross-reference. It shows the total number of bytes

11-65

L

-A-

The Utilities

remaining" hOy,1 many more identifiers could be accepted" and how many more
references could be saved in the remaining bytes (s:ee also Limitat.ions and
Errors" above). This information is also shot,lIn on the console (if it is not the
output device) as each (include) file or unit is processed. In that case it
reflects the state of memory at the time Xref starts proces-sing the file or
unit.

1 1- ~t11 XrefExample;
2 2-
3 3- VIR
4 4- Argument: LongInt;
5 5-
6 6- {Si factorial}
1 1 1-A R.N:TI(Jf fact orial (Arg: LongInt): LongInt;
8 1 2-
9 1 30-A EEliIN {Factorial}

10 1 4- If Arg<=1 11£H
11 1 5- Factorial := 1
12 1 6- ELSE
13 1 7- Factorial : = Arg*Factorial (Arg-1l;
14 1 8-oA EJt>-, {factorial}
15 7-
16 80- EEGIN {XrefExEDPl e}
11 9 1- REPEAT
18 10- WriteLn;
19 11- Write('Enter argument: I);
20 12 - Read(Argument);
21 13 - IF (ICResul t <=0) 1M> (Arguaent >=0) lIEN
22 14 - WriteLnCFactorialC, Arguaent: 1, I) = ,
23 15 - Factorial (Arguaent) : 1);
24 16 -1 lIfT"IL Argument <0;
25 17 -0 EN>. {XrefExample}

factarial_ TEXT

Arg 1*(1) 4 (1) 7 (1) 7 (1)
Argunent 4* 12 13 14 15 16

-f-
factorial 1*(1) 5=(1) 7=(1) 7 (1) 15

-1-
1lResult 13

11-66

~\Iorkshop User's Guide

-L
LongInt

~
Read

-W
Write
WriteLn

-x-

4

12

11
10

XrefEXample 1·

ThjJ Utilities

1 (1) 1 (1)

14

••• End Xref: 9 id's 24 references [423312 bytes/4990 id ' S/42934 refs]

11-67

Appendix A
Error Messages

A_I ~bler Errms __ A-I

A_2 Linker Errors ___ A-3
A_2_I Warnings: ... _ A-3
A_2.2 Errors .. A-3
A.2.3 Fatal Errors ... A-5

A_3 ObjJ()ljb Er.rars __________________ . ___________ . ___________________________ A-6

A.3.l ~J"larnings ... A-6
A.3.2 Errors .. A-6
A.3.3 Fatal Errors ... A-6

AA Operating System Er.rm-s ___ A-7

AA.I Operating System Error Codes A-18

A_5 SlJLib Er.rars __ A-20

A.S.l IOPrimitive ... A-20
A.S.2 ProgComm ' ' A-20

A_6 P5Lib Er.rars __ . __________________ A-20

A_7 Exec File ElTars ___ . ______ A-2I

A.7.1 Syntax Errors .. A-2I
A.7.2 1/0 Errors ... A-22
A.7.3 Other Exec Errors ... A-23

Error fv1essages

A.l Assemblei' Errms
The following errors can be produced by the Assembler.
1 Undefined label
2 Operand out of range
3 Must have procedure name
4 Number of parameters expected
5 Extra garbage on line
6 Input line over 80 characters
7 Not enough .IFs
8 Illegal use of .REF label
9 Identifier previously declared

10 Improper format
11 .EOU expected
12 Must .EOU before use if not to a label
13 Macro identifier expected
14 Word addressed machine
15 Backward .ORG currently not allowed
16 Identifier expected
17 Constant expected
18 Invalid structure
19 Extra special symbol
20 Branch too far
21 Variable not PC relative
22 Unexpected .ENDN
23 Not enough macro parameters
24 Operand not absolute
25 Illegal use of special symbols
26 Ill-formed expression
27 Not enough operands
28 Too many undefined lables in this expression
29 Constant overflow
30 Illegal decimal constant
31 Illegal octal constant
32 Illegal binary constant
33 Invalid key word
34 Macro stack overflow--5 nested limit
35 Include files cannot be nested
36 Unexpected end of input
37 This is a bad place for an .INCLUDE file
38 Only labels and comments may occupy col 1
39 Expected local label

A-l

Workshop l.Aser's Guide

40 Local label stacl< overflow
41 String constant must be on one line
42 String constant exceeds 80 characters
43 Illegal use of macro parameter
44 Illegal use of .DEf label
45 Expected key word
46 String expected
47 Nested macro definitions illegal
48 = or <> expected
49 Cannot .EOU to undefined labels
50 Not even a register
51 Not a data register
52 Not an address register
53 Register expected
54 Right paren expected
55 Right paren or comma expected
56 Unrecognizable operand
57 Odd location counter
58 Comma expected
59 One operand must be a Data Register
60 Dn,Dn or -(An),-(An) expected
61 No longs allowed
62 first operand must be immediate
63 first operand must be On or #E
64 (An+), (An+) expected
65 Second operand must be an An
66 Second operand must be a On
67 #<data>,Dn expected
68 first operand must be a On
69 An,'<displacement> expected
70 An is not allowed with byte
71 Only al terable addressing modes allowed
72 Only data alterable addr modes allowed
73 An is not allowed
74 USP, SR, and OCR not allowed
75 Cannot move from CCR
76 Dx,d(Ay) or d(Ay),Dx expected
77 Only memory alterable addr modes allowed
78 Only control addressing modes allowed
79 Must branch backwards to label
80 Patch out of code buffer boundaries
81 Code buffer overflow
82 Segment neme must be in a string
83 Cannot .DEf macro
84 MACRO defined already
85 Illegal use of MACRO
86 Error while writing symbol table file

A-2

Error f\.1e.s;ssges

Worksttop User's Guide

87 Not enough El'IDCs
88 Must have an <EA> (effective address)
89 Unimplemented Motorola directive
90 Operand size must be a word
91 No undefined or forward label in .BLOCK
92 Only byte-size displacement value allowed
93 Only one .MAIN allowed

A.2 Unker Errcrs

Error f>.1essages

Linker errors are either Warnings,. Errors,. or Fatal Errors. All Linker errors
are listed below,. along with a brief description of their probable cause. The
Linker can also produce errors from ObjIOLib. These errors are listed in
Section A.3.

A.2.1 Warnings
A warning message is an indication of a potential error. However" the link
is allowed to continue normally and may produce a valid output file.
Warnings cannot be ignored! You must make sure that the conditions
indicated by the warning are what was intended. When in doubt" attempt to
remed~l the conditions which caused the warning message to occur.

Also an IU segment:
A segement in the link has the same name as as a library segment.

Conflict with Intrinsic Unit Name:
A regular Unit in t.he link has the same name as a library Intrinsic Unit.

Oupliate entry definitions:
An entry name has been found in a library file which is the same as a name
in the main program. References to the name are interpreted as referring t.o
the main program entry. (This can be an error if a Unit in the link was
trying to reference the library entry.)

No Starting Location:
The file containing the main Pascal p.rogram has probably been omitted.

A.2.2 Errors
A error message is an indication of a condition which prevents the
production of a valid output file. The link is allowed to continue" in order to
detect any other errors. However, the output file will not be produced.

Bad block in Ubrsy file.
The library file being read does not have valid contents.

Bad block, stat f# tile:
Bad block type
The object file does not have valid contents. Most likely a disk error has
caused to object file to be damaged. You should regenerate the object file
or obtain a copy from a backup disk.

A-3

?vorkshop User~ Guide Error ft.1essages

Bad Module type:
This indicates an internal Linker error, or perhaps an undetected memory
error.

Code Size too big:
The code in the segment being linked exceeds the current limitation of 32K.
You will need to resegment the program either using the + M Linker option,
or by recompiling with different $S compiler options.

Data Initialization Segment. Too Big:
The code segment used to copy the data into the initialized data segment is
larger than 32K.

Duplicate definition rI Unit Name
Doubly defined Global Data a-e8:
Two units of the same name have been provided as input to the Linker.

Duplicate entry def'initions.
Two entries of the same name have been found in the Linker input files.

IU Code with main pr.:q8m.
The input contains both unlinked intrinsic units and an unlinked main
program. Link the intrinsic units into a library file. Then link the main
program, using the intrinsic library as input.

Mere than 32K of globals
The globals required by the main program and regular units exceeds the
current limitation of 32K. You will need to recompile the program or the
units .. mOVing some large variables to the heap.

Multiple start locations.
More than one main program file has been provided es input to the Linker.

Relocation Block.
Common Definition Block..
The IULinker does not support these object blocks. Either the object file is
very old, or an error has occured in the object file format.

Segment name not found in Intrinsic.lib:
A name which occurs in an intrinsic library file does not appear in the
directory file. Probably indicates an "architecture" consistency error; that is,
the library file was not linked against the same directory as the current
directory.

Sags 1-16 ... e Reserved:
The directory indicates that a segment name has been associated with one of
the segments reserved for physical addresses.

Undefined Code ~e:
The module name hes been referenced, but not defined. Either an input file
has been omitted or a spelling error was made in a procedure name.

A-4

Workshop User's Guide Error f\.1esssges

Underined data 81'88:
The unit name has been referenced, but not defined. Either an input file has
been omitted or a spelling error was made in a unit name.

Undefined erUy:
The entry name has been referenced, but not defined. Either an input. file
has been omitted or a spelling error was made in a procedure name.

A.2.3 Fatal Errors
A fatal error indicates a condition which prevents the link from continuing.

Bad Unit Block (Old ;.OBJ tile?):
Either this is a very old object file, not supported by this Linker, or a disk
error has occured.

Can't re-open inFUe: xxxxxxx
An 110 error has occured which prevents the opening of file "xxxxxxx" for
phase 2 processing. Examine the file using the File Manager, or regenerate
the file. Then attempt to do the link again.

Inconsistent. IntrinsicJib.
Probably indicates an I/O error, such as bad media, which has corrupted the
directory file .. or the specification of a bad directory.

Linker error -
Indicates an error in internal Linker logic, perhaps caused by an undetected
disk or memory error.

No starting 10000ion, linking Main Program:
The file containing the Pascal main program has been omitted from the input
list, or is damaged.

Not Main or Intrinsic Link:
The Linker has not seen a valid input file to decide what type of link is
desired.

One or rrue IU Segs not. in Intdnsic.lib:
An intrinsic segment name does not appear in the directory file. Probably
indicates an architecture consistency error; that is, the library file was not
linked against the same directory as the current directory.

Regular unit during Irtrinsic Link.
Irtrinsic unit during Regular Link.
MainProg as part of Intrinsic Lb'my Link:
The Linker has detected an unlinked regular unit or main program mixed with
unlinked intrinsic units.

A-5

Workshop User's Guide Error fo,1essllges

Regular ..ut in Intrinsic Seg File:
The Linker has detected an unlinked regular unit in an intrinsic library file.

Too many code segments.
The program has too many small segments. The current limitation is for
segments numbered 17 through 105. Reduce the number of segments by
combining small segments with the +M option in the Linker.

A.3 ObjlOLib Errors
The IULinker uses a number of units from the ObjIOLib intrinsic library file.
These units are also used by t.he Compiler .. Code Generator, and object file
utility programs. These units detect some error conditions and issue
messages.

A.3.1 Warnings
Errms detected: No Output liB file written.
When the error count is nonzero, the directory file is not rewritten.

No Code Block found in input .Lm file.
For the O.S. Loader .. there should be a Code Block in the directory file.
Perhaps this is an old directory file, or a directory for another operating
system.

A.3.2 Errors
Attempt to delete vertex with arcs.
Argument to OppositeVertex is rd. an endpoir*:
These are errors reported by the Graphs unit. If they occur while the Linker
is executing.. there has been an int.ernal logic error, perhaps caused by an
undetected 110 or memory error.

Bad Peek
Bad Peek2:
Indicates an internal error in the ObjIOLib library, perhaps caused by a disk
or memory error. Check your hardware then retry the link.

VO ElYOI', cantt write last buffer:
Either the volume does not have enough space for the file or a hardware
error has occurred.

tJtemMan Error:
An error has occurred in the managing of storage elements. Usually this
error is due t.o insufficient initial space (Allocation error) or due to
exhaustion of available space (Memory Full). The cause of the error is
indicated on the next. output line.

A.3.3 Fatal Errors
Attempt to delete item not on list:
This is an error reported by the Lisats unit. If it occurs while the Linker is
executing, there has been an internal logic error, perhaps caused by an
undetected 110 or memory error.

A-6

ylorkS'hop l..,1ser's Guide

fIrms during Installation:
Indicates errors during the installation of an object file library.

File Buffer less than 2 blocks:
Indicates an internal logic error in FilelO. Perhaps initialization was not
called.
110 error_
An 110 error has occlD"red within FilelO. Usually this is the result of a
volume being almost full or a hardware failure. The previous message line
indicates whether the error occurred during. reading or writing and at what
pOSition within the file the error occlD"fed.

No VersionControl Block..
No Unit Tabla
No Segment Table_
No File Names Table:
Indicates a bad format for the directory file. The indicated block is missing
from the directory~ but is required.

SetObJlnvar: VarSize is not divisible by variant size:
Indicates an internal logic error in ObjlO. Either initialization was not
called, or ObjlO globals have been clobbered.

A..4 Operating system Emn
-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1840 Packet ended in a resumable state (Archive)
-1293 Object is not password protected
-1176 Data in the object have been altered by Scavenger
-1175 File or volume was scavenged
-1174 File was left open or volume was left mounted, and system

crashed
-1173 File was lest closed by the as
-1146 Only a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most

recent boot volume
-1060 Attempt to mount a foreign boot disk following a temporary

unmount. .
-1059 The bad block directory of the diskette is almost full or difficult

to read
-876 File may be damaged due to I/O Error when flushing file buffer
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable, but may be OK
-622 Parameter memory and the disk copy were both invalid

A-7

Workshop i..fser's Guide Error fo.1ess8ges

-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel was sc~enged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly

invalid.
- 320 Could not determine size of data segment
-150 Process was created.. but a library used by program has been

scavenged and altered
-149 Process was created.. but the specified program file has been

scavenged and altered
-125 Sepcified process is already terminating
-120 Specified process is already active
-115 Specified process is already siJspended
100 Specified process does not exist
101 Specified process is a system process
110 Invalid priority specified (must be 1 .. 225)
130 Could not open program file
131 File System error while trying to read program file
132 Invalid program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not setup communication channel for new process
138 Error accessing program file while loading
141 Error accessing a library file while loading program
142 Cannot run protected file on this machine
143 Program uses an intrinsic unit not found in the Intrinsic Library
144 Program uses an intrinsic unit whose name/type does not agree

with the Intrinsic Library
145 Program uses a shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose name does not agree with

the Intrinsic Library
147 No space in syslocal for program file descriptor during process

creation
148 No space· in the shared IU data segment for the program's shared

IU globals
190 No space in sysloc81 for program file description during

List_libFiles operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Invalid program file (incorrect format)
195 Program uses a shared segment not found in the Intrinsic Library
196 Program uses a shared segment whose name does not agree with

the Intrinsic Library
198 Disk 110 error trying to read the intrinsic unit directory

A-8

Workshop i..,lser's Guide Error ft.1essages

199 Specified library file number does not exist in the Intrinsic
Library

201 No such exception name declared
202 No space left in the system data area for Declare_Excep_Hdl or

Signal_Excep
203 Null name specified as ex ception name
302 Invalid LDSN
303 No data segment bound to the LDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Data segment already ex ists
309 Insufficient disk space for data segment
310 An invalid size has been specified
311 Insufficient sYStem resources
312 Unexpected File System error
313 Data segment not found
314 Invalid address pessed to Info_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 Invalid event channel name pessed to Make_Event_Chn
402 No space left in system global data area for Open_Event_Chn
403 No space left in system local data area for Open_Event_Chn
404 Non-block-structured device specified in pathname
405 Catalog is full in Make_Event_Chn or Open_Event_Chn
406 No such event channel ex ists in Kill Event Chn
410 Attempt to open a local event channel to send
411 Attempt to open event channel to receive when event channel has

a receiver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough disk space for event channel in

Open_Event_ Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to wait on a channel that the calling process did not

open
421 Wait_Eve nt_ Chn returns empty because sender process could not

complete
422 Attempt to call Wait_Event_ Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned while reading from event channel not of

expected size
425 Event channel empty after being unblocked, Wait_Event_ Chn
426 Bad request pointer error returned in Wait_Event_Chn
427 Wait_List. has illegal length specified
428 Receiver unblocked because last sender closed
429 Unexpected File System error in Wait_Event_Chn

A-9

l-'lorkshop User's Guide Error "''Iess-ages

430 Attempt to send to a channel which the calling process does not
have open

431 Amount of data transferred while writing to event channel not of
ex pected size

432 Sender unblocked because receiver closed in Send Event Chn
433 Unex pected File System error in Send_Event_ Chn - -
440 Unexpected File System error in Make_Event_Chn
441 Event channel already exists in Make_Event_Chn
445 Unexpected File System error in Kill_Event_Chn
450 Unexpected File System error in Flush_Event_Chn
530 Size of stack expansion request exceeds limit specified for

program
531 Cannot perform explicit stack expansion due to lack of memory
532 Insufficient disk space for explicit stack expansion
600 Attempt to perform 110 operation on non 110 request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot find sector on diskette (disk unformatted)
608 Illegal length or disk address for transfer
609 Call to nonconfigured device driver
610 No more room in sysglobal for 110 request
613 Unpermitted direct access to spare track with sparing enabled on

diskette' drive
614 No disk present in drive
615 It-r'rong call version to diskette drive
616 Unpermitted diskette drive function
617 Checksum error on diskette diskette
618 Cannot format, or write protected, or error unclamping diskette
619 No more room in sysglobal for 110 request
623 Illegal device control parameters to diskette drive
625 Scavenger indicated data are bad
630 The time passed to Delay_Time, Convert_Time, or

Send_Event_Chn has invalid year
631 Illegal timeout request parameter
632 No memory available to initialize clock
634 Illegal timed event id of -1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time passed to Delay_Time or Send_Event_Chn more than 23

days from current time
639 Illegal date passed to Set_Time, or illegal date from system clock

in Get Time
640 RS232 -driver called with wrong version number
641 RS232 read or write initiated with illegal parameter
642 Unimplemented or unsupported RS232 driver function
646 No memory' available to initialize RS232
647 Unexpected RS232 timer interrupt

A-10

Workshop l.lS'er's Guide

648 Unpermitted RS232 initialization, or disconnect detected
649 Illegal device control parameters to RS232
652 N-port driver not initialized prior to ProFile
653 No room in sysglobal to initialize ProFile
654 Hard error status returned from drive
655 tHrong call version to ProFile
656 Unpermitted ProFile function
657 Illegal device control parameter to ProFile
658 Premature end of file when reading from driver
659 Corrupt File System header chain found in driver
660 Cable disconnected

Error f..1esssges

662 Parity error while sending command or writing data to ProFile
663 Checksum error or CRC error or parity error in data read
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must = 1 on input)
672 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
680 tNrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 Unpermitted n-port card driver function
688 "'-'rang call version to n-port card driver
690 Wrong call version to parallel printer
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper
698 Printer offline
699 No response from printer
700 Mismatch between loader version number and Operating System

version number
701 OS exhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot initialize diskette disk driver
707 Cannot initialize the File System volume
708 Hard disk mount table unreadable
709 Cannot. map screen data
710 Too many slot-based devices

A-11

ylorkshDp /...Iser's Guide Error Ml!JS'S'sgeS'

724 The boot tracks do not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.OS is missing
729 SYSTEM.CONFIG is corrupt
730 SYSTEM.OS is corrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on

a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNPACK is missing
737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
750 Position specified is out of range
751 No device exists at the requested position
752 Can't perform requested function while device is busy
753 Specified position is not a terminal node
754 Built-in devices cannot be configured
755 Isolated positions cannot be configured
756 The specified position is already occupied
757 Parallel Port doesn't ex ist on this type of machine
758 No room for more devices
7'¥J Can't get buffer space to load configurable driver
791 Configurable driver code file is not executable
792 Can't get memory space for configurable driver
793 I/O error reading configurable driver file
794 Configurable driver code file not found
795 Configurable driver has more than one segment
796 Could not get temporary space while loading configurable driver
801 IOResult. <> 0 on 110 using the Monitor
802 Asynchronous 1/0 request not completed successfully
803 Bad combination of mode parameters
B06 Page specified is out of range
809 Invalid arguments (page, address" offset, or count)
810 The requested page could not be read in
816 Not. enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized 110 for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Invalid s-file number

A-12

ylorkshop User's Guide

837 Unallocated s-file or lIO error
836 Map overflow: s-file too lerge
839 Attempt to compact file past PEOF
840 The allocation map of this file is truncated
841 Unallocated s-file or 110 error
843 Requested exact fit, but one could not be provided
847 Requested transfer count is (= 0
846 End of file encountered
849 Irwalid page or offset value in parameter list
852 Bad unit number
854 No free slots in s-list directory (too many s-files)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file
861 Relative page is beyond PEOF (bad parameter value)
864 No sysglobal space for volume bitmap
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit number
868 Bad unit number
869 Unit already mounted (mount)/no unit mounted
870 No sysglobal space for DeB or MDDF
871 Parameter not a valid s-file ID
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 Irwalid s-file 10 or s-file control block
879 Attempt to postion past LEOF
861 Attempt to read empty file
862 No space on volume for new data page of file
863 Attempt to read past LEOF
884 Not first auto-allocation.. but file was empty
885 Could not update filesize hints after a write
886 No syslocal space for 110 request list
887 Catalog pointer does not indicate a catalog (bad parameter)
868 Entry not found in catalog
890 Entry by that name already' ex ists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog is damaged
895 Irwalid entry name
896 Safety switch is on--cannot kill entry
897 Invalid bootdev value
899 Attempt to allocate a pipe
900 Invalid page count or FCB pointer argument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Irwalid label size

A-13

~vork$hop User's Guide

926 Pathname invalid or no such device
927 Invalid label size
941 Pathname invalid or no such device
944 Object is not a file
945 File is not in the killed state
946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file already open shared

Error ,..1essages

950 Pipe already in use, requested access not possible or dwrite not
allowed

951 File is already opened in private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specified object
956 Attempt to position FMARK pest LEOF not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 System resources ex hausted
960 Error writing to pipe while an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to pOSition FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathnameinvalid or no such device
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count is not positive
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for specified file
983 Not a block-structured device
985 Bad refnum
986 No space has been allocated for specified file
987 Not a block-structured device
988 Bad refnum
989 Caller is not a reader of the pipe
990 Not a block-structured device
994 Invalid refnum
995 Not a block-structured device
999 Asynchronous read was unblocked before it was satisfied

1000 Unable to bring disk online (Priam)

A-14

l-\Iorkshop User's Guide

1001 Error during disk formatting operation (Priam)
1002 Invalid Device_Control call for device (Priam)
1003 Unable to get sysglobal space for disk operation (Priam)
1005 Invalid request made to device driver (Priam)
1006 Error during disk write operation (Priam)
1007 Error during disk read operation (Priam)
1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname~ check for - in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 No such entry found
1051 No device or' volume by that name
1052 A volume is already mounted on device

Error ""'ess8gBS

1053 Attempt to mount temporarily unmounted boot volume just
unmounted from this Lisa

1054 The bad blocl< directory of the diskette is invalid
1061 No device or volume by that name
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 No such entry found
1101 Invalid device name
1121 Invalid device .. not mounted .. or catalog is damaged
1122 No space for catalog scan buffer (Reset_Catalog)
1124 No space for catalog scan buffer (Get_Next_Entry)
1128 Invalid pathname, device .. or volume not mounted
1130 File is protected; cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file list
1135 Cannot find the open file entry to modify
1136 Boot volume not mounted
1137 Boot volume already unmounted
1138 Caller cannot have higher priority than system processes when

calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when calling

rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which is not the temporarily

unmounted boot volume

A-1S

'AJorkshop l)ser's Guide

1145 No sysglobal space for bit map to do rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested while boot volume was unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Power is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume is mounted on the device
1166 A valid volume is already mounted on the device
1167 Not a block-structured device
1168 Device name is invalid
1169 Could not access device before initialization using default device

parameters
1170 Could not mount volume after initialization
1171 - is not allowed in a volume name
1172 No space available to initialize a bitmap for the volume
1176 Cannot read from a pipe more than half of its allocated p~ical

size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unblocked because l~t pipe

',.,.riter closed it
1180 Cannot "'/lite to a pipe more than half of its allocated physical

size
1181 No system space left for request block for pipe
1182 lNriter process to a pipe got unblocked before the request w~

satisfied
1183 Cannot cancel a write request for a pipe
1184 Process waiting for pipe space got unblocked because the reader

closed the pipe
1186 Cannot allocate space to a pipe while it has data wrapped around
1188 Cannot compact a pipe while it has data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 Something is still open on device--cannot unmount
1197 Volume is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume param.eter
1201 Blank file . parameter
1202 Error writing destination file
1203 Invalid UCSD directory
1204 File not found
1210 Boot track program not executable
1211 Boot track program too big
1212 Error reading boot track program

A-16

Workshop User's Guide

1213 Error writing boot track program
1214 Boot track program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too many code segments
1218 Could not find configuration information entry
1219 Could not get enough working space
1220 Premature EOF in boot track program
1221 Position out of range
1222 No device at that position
1225 Scavenger has detected an internal inconsistency symptomatic of

a software bug
1226 Invalid device name
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFDB segment)
1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1281 Pathname is invalid because device or object is not present
1282 Pathname syntax is invalid
1283 Interior pathname component does not specify a directory object
1284 Directory cannot be deleted because it is not empty
1285 Operation is not allowed on a volume with a flat catalog
1286 Operation is not allowed on a directory object
1287 Cannot allocate SysLocal space for the directory scan stack
1288 Directory tree is inconsistent
1289 Operation not allowed against a volume or device (Quick_Lookup)
1290 The directory that contained the file has been deleted

(Unkill_File)
1294 Object is password protected: no or incorrect password was

supplied
1295 The allocation map of this file is damaged and cannot be read
1296 Bad string argument has been passed
1297 Entry name for the object is invalid (on the volume)
1298 S-list entry for the object is invalid (on the volume)
1807 No disk in diskette drive
1820 Write-protect error on diskette drive
1822 Unable to clamp diskette drive
1824 Diskette drive write error
1840 Unable to initialize disk drive (Priam)
1841 Error \'t'l'iting to disk (Priam) I Error reading from tape (Archive)
1842 Error reading from disk (Priam) I Error writing to tape (Archive)
1843 Error controlling tape (Archive)

A-17

J,-lorkshop User's Guide

1844 Packet ended in a nonresumable state (Archive)
1845 Packet command had an error (Archive)
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid parameter address
1999 Bad refnum

A.4.1 Operating System Error Codes

Error ft.1esssges

The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.

10050 Request block is not chained to a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment

routine (Setup_IUlnfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count } 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code

(Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than 110 while scheduling is

disabled (SimpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep
10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def_Hdl from Enable_Excep
10213 Error in Force_ Term_Excep" no space in EnQ...,Ex_Data
10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory parity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (Take_Free)
10599 Disk 110 error while swapping in an OS code segment
10600 Error attempting to make timer pipe
10601 Error from Kill_Object of an existing timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from Open to open timer pipe
10604 No syslocal space for head of timex list

A-IS

f,'lorkshop User's Guide

·10605 Error during allocate space for timer pipe, or interrupt from
nonconfigured device

10609 Interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from diskette drive 12
10612 Spurious interrupt from diskette drive 11, or no syslocal space for

timer list element
10613 Error from Read_Data of timer pipe
10614 Actual returned from Read_Data is not the same as requested from

timer pipe
10615 Error from open of the receiver's event channel
10616 Error from Write Event to the receiver's event channel
10617 Error from Close:'Event_Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down diskette disk controller while drive is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 Mismatch between loader version number and Operating System version

number
10701 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize diskette disk driver
10707 Cannot initialize the File System volume
10708 Hard disk mount table unreadable
10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracks do not know the right File System version
10725 Either damaged File System or damaged contents
10726 Boot device read failed
10727 The OS will not fit into the available memory
10728 SYSTEM.OS is missing
10729 SYSTEM.CONFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 Wrong driver is found. For instance" storing a diskette loader on a

ProFile
10735 SYSTEM.LLD is miSSing
10736 SYSTEM.UNPACK is missing
10737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
10738 Can't find a required driver for the boot device
10739 Can't load a required driver for the boot device
10740 Boot device won~t initialize

A-19

Workshop User's Guide Error ft.1essages

10741 Canlt boot from a serial device
11176 Found a pending write request for a pipe while in Close_Object when

it is called by the last writer of the pipe
11177 Found a pending read request for a pipe while in Close_Object when it

is called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the

pipe
11180 Found a pending write request for a pipe while in Write_Data to the

pipe
118xx Error xx from diskette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is

bad

A.5 SUlib Errors
A.5.1 10000mitives

32000 Attempt to use a private file control block
32001 File control block is already open
32002 Includes nested too deep
32003 Attempt to use a private buffer
32004 Not enough heap space for private file control block
32005 Not enough heap space for private buffer

A.5.2 ProgConm
32300 CommBufr open for read failed--bad key or not text
32301 CommBufr close failed--bad key
32302 CommBufr write failed--buffer not open or full
32303 CommBufr read failed--buffer not open

A.6 ~b Errors
-6081 End of exec file input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
60)1 Attempt to access unopened file
60)2 Attempt to reopen a file which is not closed USing an open FIB

(file info block)
6(X)3 Operatton incompatible with access mode with which file was

opened
6004 Printer offline
60)5 File record type incompatible with character device (must be byte

sized)
6(X)6 Bad integer (read)
6010 Operation incompatible with file type or access mode
6011 Bad text file 10rmat encountered
6050 Error trying to open -p-inter in QuickPort
60~)1 Error trying to write to -~er in QuickPort
6052 Error trying to close -pl'irar in QuickPort

A-20

14orkshop User's Guide

6081 Premature end of exec file
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Bad real (read)
6151 Attempt to reinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside of heap

A.1 Exec File Error'S

Error ft."esssges

The Exec Processor reports syntax errors, 110 errors, and other process- time
errors; it also reports errors resulting from Operating System calls. The
format in which the Exec Processor reports errors is:

ERROR in (error location)
<anent line>
<error marker)
<error message>

where
<error location) is either 'invocation line' or 'line I<n) of file<file}'.

(anent line> is the text of the exec line in which the error was
detected.

<error marker> is a question mark indicating the place in <current
line> where the error was detected.

(error message> is one of the messages listed below. The error
message begins with an error number.

A.1.1 Syrtax ErnD
The line containing the syntax error does not conform to the rules of the
exec language. Check to see that you have typed the line correctly; refer to
Section 9.1.4, Syntax of Exec Lines and Workshop Lines, and to descriptions
of the individual commands and options for more information.

1 More than 20 parameters on exec procedurelfunction call
2 No closing) found
3 End of Exec file before ENDEXEC
4 No Exec file specified
6 End of Exec file in comment
7 Invalid percent: not It%n" form
8 Garbage at end of command
9 File does not begin with EXEC

10 No argument to SUBMIT
11 ELSE, ELSEIF or ENDIF not in IF
12 ELSE IF after ELSE
13 Nothing following -

A-21

Workshop User~ Guide

14 EXEC command other than at start of file
16 More than 20 variables declared
19 ENDWHILE not in WHILE
20 Duplicate parameter Ivariable name
21 Bad number. Numeric constant expected
22 Number too large
23 ORO requires a string argument of at least one character
24 UNTIL not in REPEAT
25 Bad Number for first argument to numeric comparison

Error f..1essag8S

26 Number too large for first argument to numeric comparison
27 End of Exec file in RUN command input
28 Bad Number. String expression with numeric result expected
-- Invalid command. <token> expected.

<token) is one of the following:
String value
Numeric value
Number
String expression with numeric result
Boolean value
Parameter name
Parameter/variable
String compare operator
(>
Comma (list delimiter)
Command
Terminating string delimiter
Valid command keyword
(
)
"ENDIF"
"ENDWHILE"
"UNTIL"
Catalog specification
File Identifier
Clear command (Screen ... EndScreen EndLine)
Cursor command (Home, Up, Down, Right, Left)
Program name

A.7.2 1/0 Errors
The 110 error reported by the Exec Processor is followed by an additional
line with the text of the corresponding Operating SyStem error message.

201 Unable to open input file "<file)"
202 Unable to open exec run file "<file)"
203 Unable to access file "<file>1I
204 Unable to rerun file u<file)"
205 Unable to reread file "<file)"
211 Unable to reopen input file n<file)"

A-22

Workshop User's Guide Error fo."essages

A.7:3 other Exec E'r.nn
5 Line buffer overflow (> 255 chars)

15 Out of memory. Exec processing aborted
17 No value returned from file called as function
18 RETURN with value in rile not called as function
28 Bad Number. String expression with numeric result expected
29 Number returned by string expression is too large

206 File variable "<id>" already in use
207 File variable n<id>" is undefined
208 File variable n<id>" is not open for input
209 File variable "<id>" is not open for output
210 Bad exec run file name generated: n<file>n

A-23

LIsa ExtendKJ O1aracter Set

Appendix B
The Lisa Extended Character Set

PrIntIng ASCD Ctlan£ters
ASCII Characters in the range hex 20 through hex 7E are supported for screen
display, for printing on a dot matrix printer, and for printing on a dalsy wheel
printer with the following print Wheels:

• Gothic, 15 pitCh

• Prestige Elite, 12 pitCh

• courter, 10 pitCh

• BoldfacelExecutlve, PS.

PrInting ASCII Characters to a dalsy Wheel printer is not supported for the
three print Wheels with Modem type styles.

B-1

Wo.lksfqJ User's GuIde Lisa Extended CI18nJCter set

Lisa Extended Character Set

0 2 3 4 5 6 7 6 9 A B C D E F

IUL OLE SP 0 @ p p A A t 00 ~ttt Itt 0 e ~ - :.:.:.:.:.:.:

A 0 ~~?I~~~
............

SOH DC1 1 A Q it ±
............

1 a q - rr~~~~

r ¢ t!!!~t!
............

STX DC2 II 2 B R b r C; ~
II

2•...•..... . :.:.:.:.:.: . :.:.:.:.:.: .
3 C S E ..

£ J "
. :.:.:.:.:.:

ElX De3 # 2.
............

3 C S I :.:.:.:.:.:.:
~:~:~:~:;:;: :.:.:.:.:.:.

EOT 004 $ 4 0 T d t ~
A § ¥ f

, ::::::::::::: ::::::::::::
4 I

::=:=:=:=:=:•.

0
..•..........

::::::=:::::
5 fIG .. % 5 E U e u i • 1.1 == ,

~rft•. ::::::::::::

6 ACK SYI & 6 F V f v 0 ii ,r a 6 ..!.. :::::=:::=::: ~:~:~:~:~:;: • ::::::::::::: ::::::::::::
I 7 G W

, ,
8 L ¢

.•..........
7 IfL nl 9 w a 0 « :;:~:;:~:~:~: :::::::::::: :.:.:.:.:.: . .. " "."•......

(8 H X h it 6 ® 1T Y
........•....

8 IS CAl X » ::::::::::::: ::::::::::::
:::::::::::::•......

) 9 I Y a 0 @ III! ::::::::::::: ::=:::=:::::
9 NT Eft Y 11" ..•..........

." " ::::::::::::: ::::::::::::

Lf SUB • J Z j z a 0 "1M

I
::::::::::::: ::::::::::::: ::::::::::::

A :::::::;::::: :.:.:.:.:.:.: ",:.:.:.:.:.: . ::::::::::::
VT ESC + . K [k { i 0 I A tI~t Ii@~~~i

::::::::::::
B

I :.:.:.:.:.:.: ::::::::::::
.:::::::::::.

~ItI
............

< L \ I a ,
Q A ~~~tf~ C ff fS u ~trt I

] }
.............

CR IS M U ¢. 0 0 :.:.:.:.:.:.: :::::::::::: D - m Q .:.:.:.:.: .. :.
:::::::::::::•......•......... ..•.......... .•...•...•..

N e A 1£ lttI
::::::::::::.•.......

E SO AS > n u • CE ::::::::::::: ttt .:.:.:.:.:.:.

51 us I ? 0 0 Ofl e U ((J f2J CB ~rtf :.:.:.:.:.:.: :~:~:~:~:~:~ F ::::::::::::: -•• ..•..........

The first 32 characters and DEL are nonprinting control codes.
The shaded area is reserved for future use.

B-2

I
~
(,f'

~
~
i

~~
g' ~
~ V1

~ reaps Lock 1 A A 1 s _10 _ 1 F .1 G 1H 1J 1K 1L 1: 1 ~' IE 1 Return 15.»
~~ .~ ;:;Il> g
~(1) ,....

~ ~. ~
The Usa KeybOard rt ~ ;j

I
I
~

Screen Control Ch8T8cters

Appendix C
Screen Control Characters

To perform standard screen control functions in Pascal, use the ScreenCtr
procedure of PASLIBCALL, as described in Section 5.4. For an alternative
method of screen control, you can use WRITE or WRITElN's with the
corresponding character string from Table C-l below. Some actions take a
single-character string, ot.hers require a two-charact.er string.

In BASIC .. use PRINT wit.h the cl-R$ funct.ion .. supplying t.he argument. that
corresponds to the desired action. For example .. to erase the screen and
pOSition the cursor on the third line, enter the following BASIC st.atements:

10 print chI$(27); chI$(42); chI$(10); chI$(10)
20 end

run

C-l

~\lork5ttop User~ Guide Screen Control Ch8I8cters

Table C-l
Screen Control Character Strings

ASCII
Desired action Char HEX Decimal Coord

position to home lE 30

one position left BS 8 8

one position right FF C 12

position up one line VT B 11

position down one line LF A 10

erase to end of line ESC-T lB-54 27-84

erase to end of saeen ESC-Y lB-59 27-89

erase screen ESC-* lB-2A 27-.42
position cursor at x,y * ESC-= 18-30 27-61 yx

*To position the cursor at. screen coordinates (x,y), use the t.wo-character
sequence [ESC]= followed by the coordinates: first the y-axis, then the
x-axis. For example .. to position the cursor at screen coordinat.es 0,1 in
BASIC, enter either of the following statements:

10 print chr$(27); chI$(61); chr$(33); chr$(32)

or
10 print chr$(27); 8=8. 8.8. 8 8.

I • I I

The permissible ranges are shown in Table C-2 below. If you supply
coordinat.es outside these ranges, a cat.astrophic system error may result.
Refer to Appendix B for a complete chart of character equivalents.

C-2

~\Iorkshop User's Guide Screen Control Ch81"Bcters

Table C-2
Screen COOI'dinate Ranges

Screen Keyboard
Axis Limit Coord Decimal Char

x lower 0 32 [SPACE]
upper 87 119 w

y lower 0 32 [SPACE]
upper 31 63 ?

C-3

Appendix D
Common Problems

0_1 What to Do When You Find Yourself in the Debugger ____________ 0-1

0_2 How to stop Your Program ____________________________ . _______________ 0-2

03 What to Do When a Diskette Wonlt Eject ___________________________ 0-2

0.4 What to Do When Yoo Get 8 Range Error __________ . _______________ 0-2

0_5 What to Do When the System Does Not Respond __________________ 0-2

0_6 What to Do with 8 Runaway Exec File ______________________________ 0-3

See 81so the Release . ..T .. O Notes for this 8Ppendix ..

Common Problems

ThIs section presents the most common problems that programmers seem to
have with the Workshop with suggestions for handling them.

0.1 What to Do When You Find Younelf In the DetJugger
You can tell you have entered the Debugger when you suddenly end up with
cryptic looking numbers and symbols on your screen. You are actually viewing
the alternate screen, and the numbers and symbolS are a disassembly of the
code where you have stopped and the values of the machine registers. To
return to the normal screen to see where you were before you entered the
Debugger, hold down the [(PTICN] key and press the [ENTER] key. Additional
information on the alternate screen is available In Section 3.2.

Often the Debugger display will include suggestions for what to do next, such
as "Press g to continue". Figure 0-1 Is an example of What appears on the
screen when you enter the Debugger.

Level 7 Interru~t
LOCALPRO+001A 1D40 FFFS PC MOVE.B D8,$FFFS(A6)
PC=00240022 SR=0000 0 US=00F7FBEC SS=00CBFEE0 DO=1 p~=eee19
DB=0B1BBB09 D1=0BBBBee8 D2=eeeeeece D3=eee264A7
D4=eeeeeee1 D5=4EFgeeS4 D6=12CC4EF9 D7=eeS4eeee
A0=00F8126E A1=00CCA22A A2=00240060 A3=00CCA22A
A4=00CCA22A AS=BBF7FC44 A6=00F7FBFA A7=eBF7FBEC

Figure 0-1
DetJugger Screen Display

You can enter the Debugger in a number of ways, most commonly by having
an error In your program, preSSing the NMI (nonmaSkable interrupt) key, or
having a memory parity error. The NMI key Is the "_" key on the runerlc
keypad.

More information on handllng the Debugger Is given in Chapter 8. Section 8.2
will help you handle accidental entry into the DebUgger. Section 8.3.2
contains information aboout Pascal run-time errors, particularly range errors.

0-1

Workshop User's GJide Common Problems

0.2 How to Stop Ywr Prognm
If your program has been ruming for longer than you think it needs to, it
might be in an infinite loop. Before you stop the program, you should:

• Check the alternate screen. Maybe your program is waiting for input.

• Try .-perIOd to see If it responds.
If neither of these actions works, press the NMI key, which stops your program
in the DebUgger. see Section 8.2 for information about what you can do from
the Debugger.

0.3 What to Do When a Diskette Won't Eject
The eject request bUttons are only recognIzed after the Workshop system does
a Pascal 110 operation. Thus when you press an eject button, nothing will
happen untll you press a key, or 110 happens for some other reason. (When
you are in the Editor, the Preferences tOOl, or TransferProgram, you do not
need to hit a key after pressing the dIskette button.)

In general, if a diskette will not eject, it means that the fUe system sUll has
some fUe open on i l Use the O1line command to check the open count,
which will tell you if any fUes are still open. Then use the List command
from the File Manager to list the contents of the diskette. If some fUes are
open" there is prObably a resident process that has a file open or a data
segment open that has been mapped to the disk. Use the ManageProcess
Subsystem in the System Manager to kill the process. This will close the fUes
and the disk will eject.

Further Information on the LIst command can be found In SectIons 2.3 and 2.6.
The ManageProcess subsystem Is described In Section 3.4.

0.4 What to Do When You Get a Ra1Q8 Error
A range error drops you Into the DebUgger. Instructions for handling range
errors are In section 8.3.2.

05 What to Do When the System Does Not Respond
Some of the reasons your Wor1<shop mlght not respond are:

1. You might be runnIng a program with an infinite loop.

2. You might have stopped console output by pressIng .-S.

3. You might have the alternate screen Showing.

4. You might have altered the NMI character.

Press the NMI key (the "-"key on the numeric keypad) to drop into the
Debugger. See Section 8.2 for further instructions.

If pressing the NMI key does not work, power off your Lisa and rebOOt the
system.

0-2

WoJ1<stJop User's Guide COmmon Problems

0.6 What to Do with a RlIlaWaY Exec File
If you think that your exec file has gone wild, how do you stop it?

When the exec fUe processor has finished processing your exec fUe (s), it has
created a temporary file with the stream of characters that are to perform
the actions in the exec file. The Workshop then sets the run-time
environment so that standard input comes from the temporary fUe, and begins
executing the commands in the temporary file. While they are executing, the
Workshop ignores the keyboard, although the characters you type will be
remembered.
You can terminate standard WOrkshop programs by pressing tJ-period, althoUgh
termination might not be Immediate If the program being run does not
recognize tJ-period.

t>IJTE

Note that most WOrkShOp tools check for tJ-perlod from the keybOard
even when running under exec files. This means that you can abort
WOrkshop tools In exec files.

Unless user programs are written to recognize the tJ-period key combInation
as an abort mechanism, pressing those keys will not terminate the exec fUe if
a user program is being run. (see PASLIBCALL, Section 5.4, for information
on the function PAbOrtFlag, which tells whether or not those Keys have been
pressed.) If thIs Is the case, you can either:

• walt for the user program to terminate so that tJ-pertOd can be
recognized by something else, or

• press the Nf'11 key, which forces the system into the DebUgger.
If the user program does recognize tJ-pertod, pressIng it wIll termInate the
program but not the exec f11e. To terminate the exec flle, walt until the
WorkShop prompt appears and press tJ-period agaIn.
see section 8.2 for instructions on how to stop a user program early.

0-3

~orkshop User's Guide Index

Index
Please note that the topic references in this index
are by section number.

If
Abnormal Termination 2.3.15
Absolute Addresses 6.4.6
Access Key 9.2.2.5
Active Window 4.2
AddCatalog Command Notes 2-1
Addressing Modes 6.4.6
Appendix Problems D-1
Apple-arrow key Notes 4.1
Apple-period D.2~ D.3
Apple-period key combination 5.4.1
Apple-Q 3.2
Apple-S 3.2, D.5
-ALTCONSOLE 1.4.4
Alternate Screen 1.4.4. 3.2, D.1
Arrow keys move the insertion point Notes 4-1
Arrow Pointer 4.3
ASCII Character 9.2.4.4, B-1
Assemble Command 1.4.2
Assembler Directives 6.5
Assembler Errors A.1
Assemble Instructions 8.4.5
Assembler Language Source Statements 6.2.2
Assembler Options 6.2.1
Assembly Language Program Structure 6.4.1. 6.7.3
Assembly Language Routines 6.6
Attributes 2.3.4. 2.3.14-15
Automatic Setting of Prefixes 1.4.3.3.

B
Backing Up Files 2.7
Backup/Copy/Transfer to Multiple Micro Diskettes

Notes 2-2
Backup (B) Command 2.3.1
Basic Command 1.4.2.
Baud Rate Menu 10.3.2
Baud rate 10.1
BHS 6.3
Blanks Option 9.1.4. 9.3.2
BLO 6.31
Block-Structured Devices 2.4

Index-l

Iforkshop User's Guide

Boolean Constants 9.1.4
Boolean Expressions 9.1.4, 9.2.3.1
Boolean Functions 9.1.4
Booting from Workshop 1.2
Booting the System 1.2.1
Breakpoint 8.2.1.3, 8.3
Breakpoints and Traces 8.4.6
Built-In Pascal Heap Routines 5.4.2
Built-In String Functions 9.2.4
ByteDiff compares two files 11.1

C
Calling Another Exec Program 9.2.6

Index

Calling Assembly Language Routines from Pascal 6.6
Calling an Exec Procedure the SUBMIT Command

9.2.6.1
Calling Pascal I/O Routines 6.1.4
Calling a User Function 9.2.6.3
Canceling a Program 1.5.3.1
Canceling a Prompt 1.5.3.2
Case Sensitive/Search Notes 4-4
Catalog 2.4.1
Chaining 9.3
ChangeSeg changes the segment name 11.2
ChangeSeg Utility 1.9
Changing the Name of a File 2.3.6, 2.10
CHR and ORO Functions 9.2.4.4
CharCount counts characters 11.3
CIFINISH 1.4.3.1
CISTART 1.4.3.1
Clear Attributes Command 2.3.10
CLEAR Command erases the screen 9.2.5.1
Clear Key 1.5.3.2
Clipboard Notes 4-4
Code Generator 5.2.1
CodeSize 11. 4
Combine String Expressions 9.2.4.1
Command Set and DEFAULT Command
Comments 6.4.1, 9.1.2.1, 9.1.4, 11.19
Communication Buffer 9.2.2.6
Compare compares two text files 11.5
Comparing Files 2.3.9
Comparisons 9.2.3.1
Compiler Commands Notes 5-1
Compiling a Pascal Program 9.1.3.2

Index-2

IIor/(shop User's Ouide Index

Concat copies a list of files into one file. 11.6
CONCAT Function 9.2.4.1
Conditional Assembly Directives S.6.3
Conditional Statements 9.2.3, 9.2.3.1
Configuration 10.2
Configuring the System 1. 3
Connector Menu 10.3.1
Connecting a Printer 3.3.3.2
Connecting Device Software 3.3.3
Connector 3.3.3
-Console 1.4.4, 2.3.2, 2.4.3
Console Command 1.4.4, 3.2
Control characters 10.4.2
Control Menu 10.4.1
Conventions and Standards 1.5
Converting to uppercase 9.2.4.2
Copy 11. 7
CopyCC) Command 2.3.2
Copying fileCs) 2.3.7, 2.7
Creating Text Files 4.1
Creation-Date 2.3.4
Copy Command 4.6
Current Program Location 6.4.7
Cut Command 4.6
CYRSIR Command mover the cursor 9.2.5.2

o
Dead Code Analysis 7.1, 1.5.1, 1.8
Debug Command 1.4.2
Debugger 6.6.1, D.l
Debugger Commands 8.4
Debugger Commands Summary 8.5
Debugger Notes 8-1
Debugger Output 3.
Debugger Screen 8.1, 8.4.9.2
Debugger Symbol Table 8.1
Declaring and Setting Variables 9.2.1
Default Extension 1.5.1.2
Default Memory Test 3.3.2
Default Printer 1.3.2.3, 3.2, 3.3.2, 5.4.1
Default Setting 10.3
Default Startup Disk 3.3.2
Default Volume Names 2.3.5
Defaults in File Name Prompts 1.5.1.2
Delete (D) Command 2.3.3

Index-3

#orkshop User's Guide

Deleting a Harker Notes 4-2
Deleting Files 2.8
Device Aliases Notes 2-1
Diff comparing TEXT files 11.8
Directives 6.4.1, 11.19
Directory 2.4.1, 2.6

Index

Disconnecting or Changing Device Software 3.3.3
Disassemble 8.3.1
Disassemble Instructions 8.4.5
Disassembly 8.3.2
Diskette won't eject D.3
Display and Set Memory Locations 8.4.2
$E Compiler Command 5.2
"$" Character 2.5
DOlT Command 9.2.1.3, 9.3.3
Dollar Sign Convention 9.1.2.1, 9.1.4
Double Quotation Harks 9.1.4
Driver 3.3.3
Dump and/or patch a file 11.10
Dumpine Memory to Diskette 8.4.9.5
DumpObj disassembler 11.9
DumpPatch 11.9
Duplex Menu Full duplex Half duplex 10.3.5
Duplicating An Existing Document 4.5

E
Echoing 10.3.5
Edit Command 1.4.2
Edit Functions 4.6
Editing Multiple Files 4.2.4, Notes 4-1
Editor Notes 4-1
Editor Initialization Errors Notes 4-6
Eject Diskette Notes 4-3
Elevator 4.4.1
ELSE command 9.2.3.2
ELSEIF command 9.2.3.2
ENDIF command 9.2.3.2
end-of-file is 9.2.2.2
. ENDH 6.5.2
Entry into Debugger 8.2
Environments Window 1.2.1, 1.4.2
ft.ft Character 2.5
Equal Command 2.3.9
Error Messages 1.5.4
Errors 5.2

Index-4

IIorkshop User's Buide

Errors option 9.3.2
ErrTool error messages 11.11
Escape key 1.5.3.2
EVAL Function Arithmetic 9.2.4.5
Exception Handler 8.2.1.1
EXEC Command 9.2.1.1
ENDEXEC Command 9.2.1.1
Exec Errors A.7.3
Exec Files 9.1
Exec File Chaining 9.4.1
Exec File Errors 9.5, A.7
Exec Invocation Character 9.1.4
Exec Lines 9.1.2, 9.1.2.1
Exec Line Syntax 9.1.4
Exec Processor 9.1.1
Exec RUN and ENDRUN Commands 9.2.7.2
Exec Run File 9.1, 9.1.1
Exec Source File 9.1, 9.1.1
Executable Object File 7.1, 7.5.1
EXISTS and NEWER Boolean Functions 9.2.3.4
Exit Editor 4.5
Exiting 2.3.8
Exiting from the Transfer Program 10.4.1.4
Expanded String Constants 9.1.4
Expansion Cards 3.3.3, 3.3.3.1
Expressions 6.4.5
Extension 9.1.1
External Hard Disks 3.3.3.3
External Reference Directives 6.5.4
Externally Compiled Routines 7.1

F
FileAttributes Command 2.3.10, 2.3.15
FileAttributes Notes 2-3
File Cache and the Input Buffer 9.3.4
File Diagrams 2.4.2
File Directive 6.5.6
FileDiv and FileJoin large files 11.12
File Extensions 2.4.3
File Functions 4.5
File identifier, COMMBUFR 9.2.2.6
FILE-MGR Command 1.4.2, 2.2
File Manager Notes 2-1
File Menu Notes 4-3
File Names 1.5.1.1

Index-5

Inrkx

lIorkshop User's Guide Index

File Names List 2.3.13
Files Not Automatically Installed Notes D-8
File Specifier 2.2, 2.4.2, 2.5
File Specifiers Notes 2-4
File System Conventions 1.5.1
Files and Devices 2.4
Files Not Automatically Installed Notes D-l
FilesPrivate Command 3.2
Find 4.7
Find searches for a pattern 11.13
Finding Patterns in Memory 8.4.3
Floatine Point Operations 5.1
Footers 4.9
Function PAbort Flag 5.4.1

G
Generate Command 1.4.2
Generating a Nonkeyboard Character 9.2.4.4
Generate option 9.3.2
Generic Instructions 6.3
GetGPrefix 5.4.1
GetPrDevice 5.4.1
Getting Help 1.5.2
Global file identifier 9.2.2.1
Global Name 7.7
Go to Line # Notes 4-5
GOTOXY Command moves the cursor 9.2.5.3
GXRef Cross Reference 11.14

H
HALT and ABORT Commands 9.2.7.1
Halting a Screen Display 1.5.3.3
Handshake Menu XON/XOFF DTR 10.3.4
Hardware Configuration 1.3
Hardware Connections 1. 3.1
Hardware Exceptions 8.2.1.1
Heap Routines 5.4.1-2
Hierarchical Catalog Structure Notes 2-1

I
. I 2.4.3
I-code 5.1-2
Identifier Names 6.4.3
Imbed option 9.3.2
IF command 9.2.3.2

Index-6

IIorkshop User's Ou.ide Index

IF Statement 9.2.3.2
Infinite Loop 8.2.1, D.2
Initialize Command 2.3.11, 2.4.1, 2.9
Initialize Command Notes 2-3
Initializing the Prefix 2.3.6
Initial Values of Variables 9.1.3.2
Input File 6.2.2
Iristallation Problems Notes D-l
Installing the 3.0 Workshop Notes D-l
Insertion Point 4.1
Install or Remove Device Software 3.3.3
Installing the Workshop 1.2.2-4
Integers 9.1.4
INTRINSIC. LIB 7.1, 11.16, Notes 2-3
Intrinsic Units 7.5, 8.4.6, Notes 7-1
Intrinsic Units Notes 7-1
Invocation 9.2.6
Invocation Parameter List 9.1.3.2, 9.2.6.1, 9.3.1
I/O Errors 9.6.2, A.7.2
IOPrimitives A.5.1
IORESULT Function error I/O 9.2.2.5
IOSPASLIB.OBJ 5.1, 7.1
IUManager library files 11.15
IULManager Notes 2-3

J

K
Keep option 9.3.2
Keyboard 2.4.3
keyboard input 9.2.1.3
Keywords Notes 4-6
Kill Process Command 3.4
l
Labels 6.4.4
Large exec files 9.3.4
Last-Mod-Date 2.3.4
Last-Mod-Date 9.2.3.4 dsn default 5.4.2
LENGTH COPY of a string and POS location of a

substring 9.2.4.3
LENGTH of a string 9.2.4.3. LIB 9.2.4.3
LINECOUNT COUNTS LINES 11.16
Line Delay option 10.4.1.2
Link Command 1.4.2, 2.6
Linker Errors A.2

Index-7

#orkshop User's (Juide

Linker Listing 1.S
Linker Options 1.3
Linker Options Notes 7-1
Linking a Main Program 1.4
Linking a Pascal Program 9.1.3.2
Linking a Regular Unit 7.5.1
Lisa Extended Character Set B-1
Lisa-Mac 11. 18
List Command List and Names Commands Attribute

Notes 2-2
Listing Existing Files 2.6
Listine File 6.2.4
Literalizing Character 9.1.4
Literal Search Notes 4-4
Local Name 1.1
Logical Console 1.4.4
Logical Devices 2.4, 2.4.2
Logical operators 9.2.3.1
Log off 10.4.1.4
LWCCOUNT COUNTS LINES, WORDS, CHARACTERS 11.11

If
Macintosh Environment 1.2.3
Macintosh diskettes 11.18
Mac- Li sa 11. 15
MACCOM 11.18
Macro Directives 6.5.2
. MACRO 6. 5. 2
.MACROLIST 6.5.2
Macros to Call Pascal Functions 6.1.4
MacWorks, sharing disk with 1.2.3
MAIN Assembler Directive Notes 6-1
Main Command Line 1.4.2
-MAINCONSOLE 1.4.4
Main Screen 1.4.4, 3.2
MakeBackground Command 1.4.2
Manage Process Command 3.2
Mapping 11. 4
Markers Menu Notes 4-2
Match Cases 4.1
Maximum Length of Lines Notes 4-6
Measuring Execution Times 8.4.8
Memory Locations 8.4.2
Memory Management Hardware 8.4.1
Modem 10.2

Index-8

Index

lIorkshop User's Ouide

Modem eliminator 10.2
Mount Command 2.3.12
Mounting of Disks 1.4.3.2
Mouse Double-Click Delay 3.3.1.5
Hoving Debugger Window 8.4.9.2
Moving Display 4.4
Hoving Insertion Point 4.3.1
Moving Text 4.8
Moving Window 4.4.2

N

Index

Named Parameters 9.1.3.1
Named Variables 9.1.3.1
Names Command 2.3.13
nesting 9.2.3.2
NHI (nonmaskable interrupt) key 1.5.3.1, 8.2.1.2,

8.3, 8.4.9.3
.NOHACROLIST 8.5.2
numeric comparison operators 9.2.3.1
Numeric Constants 8.4.2.1
Numeric constants integers 9.1.4
Numeric expressions EVAL function 9.1.4
Numeric operators 9.2.4.5

o
Object Files 8.1, 8.2.3, 7.1
OBJ 2.4.3
ObjIOLib Errors A.3
Off line 2.3.16
Online Command 1.3.1, 2.3.14
Online Command Notes 2-4
Opcodes 6.3
Open a New Document 4.5
Operation Size 6.3
Operating System Errors A.4
Operating System Error Codes A.4.1
Operators 6.4.5
Options 11.19. 11.30
Option and Shift Keys B-3
OSQUIT 8.2.2, 8.4.6
Output Redirect Command 3.2
Override the extension 9.3.1

p
Page Number 4.9

Index-9

rorkshop User's 6uide

Parallel Cable 3.3.3.4
Parameter 9.1.3
Parameter Passing S.S.3
Parity checking 10.4.2
Parity Menu 10.3.3
Parsing 5.1
Pascal Command 1.4.2
Pascal Compiler Commands 5.3
Pascal compile 9.4.1
Pascal Heap 5.4.2
Pascal Run-time Support Routines 5.1
PASLIBCALL Unit 5.4.1
PasLib Errors A.S
Pasmat reformats Pascal source code 11.19
Passing a Pascal String 6.7.2
Password Protection Notes 2-1
Password Protection Notes 2-1
Pathname 1.5.1.1, 2.5
Peripheral Device Connections 3.3.3, 3.3.3
Physical Device 2.4.2, 2.4.3
Physical Device Names Notes 2-1
PLINITHEAP 5.4.1
Pointer 4.3
"PortConfig" 10.3.2

Index

PortConfig configure the RS232 ports RS232 11.20
Powering Ofr 1.2.1
Prefix Notes 2-4
Preferences Notes 2-4
Preferences Tool 3.3
Prefix Command Notes 2-2
Prefix (P) Command 2.3.5, 2.4.3
Pretty Listing S.2.1, S.2.4
-Printer 2.3.2, 2.4.3
-printer logical device 3.2
Printer Configuration 1.3.2
Printing A Document 4.9
Printing ASCII Characters B-1
Printing Commands Notes 8-1
Printing from Debugger 8.4.9.4
Print Menu Notes 4-S
Private Files 3.2
Problems Notes D-1
Procedure information 11.4
Procedure ScreenCtr 5.4.1, C-1
Process Management 3.4

Index-10

IIorkshop User's Suitle Index

Process Status Command 3.4
Process Time 9.1
Processor Options 9.3.2
ProgComm A.5.2
ProgComm unit 9.2.2.6, 9.2.4.6
Program Bugs 8.2.1
Program Communication Buffer 9.2.2.6
Program Errors 8.2.1.1
Project Command 2.3.10
ProcNames lists procedure and function names in a

Pascal program Pasmat 11.21
Proportional Spacing 4.8
Protected Master 2.3.10
Psize 2.3.4

q
"1" Character 2.5
Quit (Q) Command 1.4.2, 2.3.8, 3.2, 3.4
Quotes 6.4.2.2

R
Range Check Error 8.2.1.1
Range Errors 8.3.2, D-4
Read from keyboard from textfile 9.2.2.2
READCH and READLN Commands 9.2.2.2
Real Numbers 5.1
. REF and .DEF Directives 6.7.1
Receive All Text 10.4.1.1
Receive Filtered Text 10.4.1.1
Receive From Remote 10.4.1.1
Receiving Text 10.4.1.1
Recursive Exec Program Pascal compiles 9.4.2
Recursive User Function 9.4.2
Register Conventions 6.6.2
Regular Units 7.5
Relocatable Code 6.5.1
RMaker resource files Macintosh applications 11.22
Remote Computer 1.4.2. 10.1
Rename eR) Command 2.3.6, 2.10
Rename Command Notes 2-3
Repair Damaged Files 2.3.15
Repeating Keys 3.3.1.4
REPEAT and UNTIL commands 9.2.3.3
REQUEST Command 9.2.1.3
Rerun option 9.3.2

Index-ll

lIorkshop User's Buide

RESET, REWRITE,and CLOSE Commands 9.2.2.1
RESETCAT Command and NEXTFILE Function 9.2.2.4
RETSTR Function ProgComm unit 9.2.4.S
RETURN command 9.2.6
RETURN Command user function 9.2.6.2
Revert to Previous Version 4.5
RS232 Devices 2.4.3
Runaway Exec File D.S
Run Command 1.4.2

Index

Running an Exec Program Workshop Run command 9.3
. Run Time 9. 1
Run-Time Stack 6.6.1
Run a utility program 11.0

S
Safety Command 2.3.10
Sample Exec Programs 9.4
Saving An Active Document 4.5
Scavenge Command 2.3.15
Screen Brightness and Contrast 3.3.1.1
Search copies specified pattern 11.23
Search Menu Notes 4-3
SegMap segment map 11.24
Selecting Characters 4.3.2
Selecting the Last Line Notes 4-2
Set a marker Notes 4-2
Sending Text 10.4.1.2
Segment information 11.4
Segment names 11.4
Screen Control Character Strings C-2
Screen Dim 3.3.1.2
Screen Display 9.2.5
Scroll Arrows 4.4.1
Scrolling 4.4
Search Functions 4.7
Search Literally 4.1
Search for Text String 4.1
Search for Tokens 4.1
Search is TokenizedlSearch is Literal Notes 4-4
. SEG S. 5. 4
Segmentation 7.9
Select All of Document 4.6
Select Defaults 3.3.2
Selecting Text 4.3
Selecting Words and Lines 4.3.3

Index-12

lIorkshop User 's Ouide

Sequential Devices 2.4
Serial Cable 3.3.34
Serial Devices 2.4.3
Serial Port 10.3.1
Serial Printer 8.4.9.4
Set Conveniences 3.3.1
Set Tabs 4.6
Set and Display Registers
Setting and Clearing File Attributes 2.3.10
Setting Variable Values 9.1.3.2
SHELL. filename 1.2.1
Shift Left Command 4.6
Shift Right Command 4.6
ShowInterface interface section of unit Pasmat

utili ty 11. 25
Show Current Insertion Point scrolls the window

Notes 4-5
Single Quotation Marks 9.1.4
68000 Opcodes 6.3
Size Control Box 4.4.2
Slot 3.3.3
Space Allocation Directives 6.5.1
Space Information 6.2.1
Spaces 9. 1. 4
Speaker Volume 3.3.1.3
Special Characters 9.1.4
Stack Crawl 8.4.6
Stack Expansion Code 6.6.1
Stack Overflow 8.2.1.1
Standard Screen Control Functions C-l
Starting the Workshop 1.2
Startup and Shutdown Procedures 1.4.3.1
Startup Disk 3.3.2
Statement Bunching 11.19
Stationery 4.2, 4.2.3, Notes 4-1
Step mode 9.3.3
Step option 9.3.2
Stopping Runaway Exec File D.6
Stop Your Program D-2
String comparison operators 9.2.3.1
String Constants 6.4.2.2, 9.1.4
String Expressions 9.1.4
String Functions 9.1.4
SULib Errors A.5
SUBMIT command 9.2.6

Index-13

Index

lIorkshop User's Guide

SUBMIT command a function call 9.3.4
Suppressing Text Display 10.4.1.3
Swapped to Disk 7.9
SXRef Pascal cross reference 11.26
Symbolic References 7.1
Symbols and Base Conversion 8.4.9.1
Syntax 9. 1. 4
Syntax Errors 9.6.1, A.7.1
SYSCALL Unit 5.1, 5.4.1
SYSTEM-MGR Command 1.4.2
SYS_TERMINATE Exception 8.2.1.1
System Does Not Respond D-5
System Malfunctions 8.2.2
System Manager Command Line 3.2

T
TAS 6.3
Tearing Off Stationery 4.6
Terminal Emulator 10.1
Terminal emulation mode 10.4
Terminating an Infinite Loop 8.2.1.2
Terminating Exec Processor 9.1.1
. TEXT 2.4.3
Text files 9.2.2.1
Text Files Notes 4-6
Text pointer 4.3
Throw Away Window Notes 4-3
Tilde 9.1.4
Time Command 3.2
Timing Functions 8.4.8
Toggles 10.4.1
Token Search Notes 4-4
Tokens 4.7
Trace 8.4.6
Trace Display 8.3.2, 8.4.4
Transfer (T) Command 2.3.7
Transfer Operations 2.7
Transferring a File 2. 7
TransferProgram Command 1.4.2
Translit translating characters 11.27
Transmitting Special Characters 10.4.2
TRIMBLANKS Function blanks and tab 9.2.4.7
Type Style 4.8
Type Style Menu Notes 4-5

Index-14

Index

I1orlrshop User's Guide Index

u
UBR 8.4.6
Undo Last Change Command 4.6
Unit Information 11. 4
Unmount Command 2.3.16
UPPERCASE and LOWERCASE Functions 9.2.4.2
Upper and Lower Case 9.1.4
User Break 8.2.1.3
User Code Breakpoint 8.4.6
Using Pascal Data Areas 6.7
Using the Editor 4.2
Using the Step Option 9.3.3
UXRef Pascal cross reference 11.28

V
Validate Command 2.3.2, 3.2
Variable 9. 1. 3
Variable Names 9.1.3.1
Variable Numbers 9.1.3.1
variable-declaration-list 9.2.1.1
Verify Copy Operations 2.3.2
Verifying File Copies 3.2
Video 3. 3. 1. 1
View Buttons 4.4.1

Wild Card Characters 2.5, Notes 2-4
Window 4.1
Windows Menu opens windows Notes 4-2
WordCount counts words 11.29
Working Directory 2.3.5, 2.4.2
Workshop Command Line 1.4.2
Workshop environment 1.4.2
Workshop Lines 9.1.2
Workshop Line Syntax 9.1.4
Workshop Run Command 9.1.1, 11.0
Workshop Shell 1.4, 1.4.3
Workshop. temp 2.3.1
WHILE and ENDWHILE commands 9.2.3.3
WHILE and REPEAT Statements 9.2.3.3
Wraparound/Search Notes 4-5
Write Protection 8.4.7
Write to the screen or textfile 9.2.2.3
WRITE and WRITELN Commands 9.2.2.3

Index-15

IIorkshop User 's Guide Index

.r
Xref a Cross-referencing Pascal 11.30

y
Z

Index-16

WoJ1<sI1op User's Guide Mai/-Back Fonn

Apple publlcaUons would llKe to learn about readers and what you thInk abOUt this
manual in order to make better manuals in the future. Please f1ll out this form, or
wrl te all over It, and send It to us. We promise to read It
!-tow are you using this manual?
[] learning to use the product [] reference [] both reference and learning
[]o~r ____________________________ __

Is It quICK and easy to find the information you need In thIs manual?
[] always [] often [] sometimes [] seldom [] never
commenu __ __

wnat makes thIs manual easy to use? ______________________________ _

What maKes this manual hard to use? _________________________ _

What do you like most abOUt the manual? __________________ _

What do you llke least abOut the manual? _______________________ _

Please comment on, for example, accuracy, level of detail, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the
index, organization, suitability to your particular needs, readabllity.

What languages do you use on your Lisa? (check each)
[] Pascal [] BASIC [] COOCl.. [] other __________________ _

How long have you been programmIng?
[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What Is your jab tltle? _____________________________________ _

Have you completed:
[] high school [] some college [] BNBS [] MNMS [] more
What magazInes 00 you read? ___________________________ _

other comments (please attach more sheets If necessary) ____________ _

~9-0J69-A

, ... , , .. , , , ... Fa.O··· ···· .. ····· .. ····· .. · .. ········ .. ····,·· ·· .. · ·· , .. ,

.' ... , , .. FaO·· .. ·· .. ,· .. ···· .. ·· ·· .. · · .. · .. · .. ·· .. ·· .. ····· ·· .. '

'-
.~ppIc! computar

POS PUblications Department

20525 Mariani Avenue

Cupertlno .. Callfomla 95014

TAPE tR STAPLE

PllIe.
J'TII1.
HEm.

Notes

