LiteOS
V200R001C10

Developer Guide

Issue 01
Date 2018-04-20

HUAWEI TECHNOLOGIES CO., LTD.

2

HUAWEI

Copyright © Huawei Technologies Co., Ltd. 2018. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written
consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the
customer. All or part of the products, services and features described in this document may not be within the
purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information,
and recommendations in this document are provided "AS IS" without warranties, guarantees or
representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: http://www.huawei.com
Email: support@huawei.com
Issue 01 (2018-04-20) Huawei Proprietary and Confidential i

Copyright © Huawei Technologies Co., Ltd.

http://www.huawei.com
mailto:support@huawei.com

LiteOS
Developer Guide Contents

Contents

T PLEface...uuccuicicicininininentesunssississisissesssssssssssassstosssstossossossosssssssssssssssssssssossessossossesssssesssssssnsossossons 1
2 OVETVICW..uuieueririrsuiereneresssnsssnssesssssssssssssssssssssesssesssssssssssssssssssssssssssssssssssas 3
2.1 Back@round INtrOQUCTION.corviiieiiiiieciieieete ettt ettt ettt ettt et e e esae e s e s beessessaesbeeseessensaesseessenseassesseensesseensessees 3
2.2 SUPPOTLEA COTES...veviieiuietisterte sttt ettt ettt eet ettt bt a et ettt et et et e st eb s eatebeeb e e bt ehe et e b e sae st et et et estesteneebeebeebeeueebenbenee 6
2.3 COMSEIAINES. ...ttt ettt ettt ettt ettt et e s e et e e s eeebeemee e bt eaee e et em b e eb e em b e es e em bt es e emteem e e bt emeeebeemeesaeemteeheemseebeenseeneenbeeneentene 6
3 Basic KerNeL....uuiiiiiininiiiiniiininnininisisensssssssissississiesssons 7
TN B OO 7
B LT OVETVIBW ...ttt etttk b e ettt ettt a e st eh e eh e eh e eh e e bt bt e bt e bt h e bt e e et et e e et en b ententen e en e eaeebeebe e bbb e b e 7
3.1.2 Development GUIAEIINES.couirtiririitiieteieit ettt ettt ettt et ettt et eb e bt bt sttt a e et et et enteaeebeeueeaes 10
T R I o (et 13 o) o F OSSOSO P PSRRI 16
3.1.4 Programming EXAMPIC........c.ccceiviiiiiiiiiiiieiieieeeete ettt ettt e ste st e s teestesseesaesteessesseesseessesseeseesseesseseessesseensesseensenses 16
B2 MIBIMOTY ..ttt ettt ettt ettt et a et s h et e h e e h et a et a et e ae bt e e eaeesaeeaeenaesaeenesae e neeanens 19
I B 0)< o ()2 OO SRRPURRPR 19
3.2.2 DYNAMIC MEIMIOTYc.vieuiiiieeteitietesitesteetesteeetesteessesseesseeseessesseessesssessesssesseassaseessenssesseassesseessenseassesseessesssensesseensensaens 21
3.2.2.1 Development GUIAEIINES.cc.eruiriirtiiiieieit ettt et ettt eb e bt sttt bttt et eateaeebeeaeeaes 21
3.2.2.2 PLOCAULIONS. .. tteutetientiettett ettt et ett et et e e e es e e bees e e bt es e e bt ea e et e em e e es e em e e ee e em e e eheem st eseenaeeeee bt em e e bt ente bt ente bt enteeseenteeneenees 24
3.2.2.3 Programming EXAMPIC.........cccveviiiiiiiiieiieieeieie ettt ete et e stesseesteeseesaeesaesseessessaessaessesseessesseassesesssesseessesssessesses 24
3.2.3 StATIC MRIMIOTY ...ttt ettt ettt ettt eb ettt e a e bbbttt ettt et et ea e e bt e bt eb e eh e bt s bt se bttt et et et et eateaeeneeueeaes 25
3.2.3.1 Development GUIACIINES.co.iiiiiieie ettt et ettt et h et e s bt et e e b et ebe et e e st e bt enee bt eneesaeenees 25
3.2.3.2 PrOCAULIONS. ¢ttt ettt ettt ettt sttt s e st e st ea e eb e bt e bt eh e bt h e ek e b4 et et em e em e es b es e e st eh e eb e e bt ehe bt b e b et e et et et enee 26
3.2.3.3 Programming EXAMPIE........cc.couiiiiiiiiiiiiiietene sttt ettt sttt et et b et st b et e 27
T I §3 1<) w130 AT ST 28
3.3 1 OVETVIBW ...ttt ettt ettt bt sttt ettt et e st e st eh e e bt eh e bt eb e e bt e bt bt eh e b e b et et en b en e entea b en e ent e bt bt bt eae et et 28
3.3.2 Development GUIAEIINES.couirtiriiriiteiet ettt ettt et ettt et eb e bt s b e st b ettt et st eateaeebeebeeaes 30
T TR B0 o (et 15 o) o OSSOSO U PRSPPSO 31
3.3.4 Programming EXAMPIC.........cccviviiiiiiiiiiiiiiiieieetete ettt ettt ste et e s te et e steesaesteessesseesseessenseessesseesseseeseesseensesneensesses 32
B4 QUEBUE. ..ttt ettt et sh et h et h et e b e h e e b e eh bt e bt e eh et e bt e ht e e bt e ehe e e ab e e ehb e e bt e eht e e bt e eat e e bt e eabeebeeshbe e bt ennteen 33
R B 0)< o ()2 OO UTSRRPURRPR 33
3.4.2 Development GUIACIINES.cc.iiieriieierie ettt sttt ettt ettt ebeeseesseeseesseeseesseessesseessesssessesssessenssanseessesseensesseaneas 35
T B o Tt 15 o) T USSR 40
3.4.4 Programming EXAMPLE.coouiiiiiiiieiiie ettt ettt bbbttt e a et e n ettt e bt et naeeaeanean 40
BS EVOIME it h e h e h et h et e h e h e e h e bt st bt ea b bt et eh ettt ettt e neeeee 42
Issue 01 (2018-04-20) Huawei Proprietary and Confidential ii

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
3.5 T OVETVIBW ...ttt ettt h b sttt et ettt et e st e et eh e eh e eh e bt e bt eh e bt b e eb b e bt e e en e m e et en s ehtebtebeeb e e bt eae bt 42
3.5.2 Development GUIAEIINES.couiiiiiiiieie ettt ettt ettt s b et e s b e e e e bt et e ebeenbees e e bt enee bt eneesaeenees 44
3.5.3 PIOCAULIONS. 1.ttt sttt ettt ea et eb e bt eb e bt s bbb bttt e e eh b eh e bt bt e bt bt bbbt sttt et et eneene 47
3.5.4 Programming EXAMPIC.........ccieviiiiiiiiiiieiiitieieett ettt ettt ettt et e s te et e steessesteessestsessaessesseessesseessesseessesseensesaeessesneas 47
B0 IMIULEX ettt sttt bttt h e bt h et bt ea bt e bt e eh bt e bt e e bt e e bt e ehe e e bt eh bt e bt e eh et e bt e ehb e e bt e eab e e bt sab e e bt enane s 49
3101 OVETVIBW ...ttt ettt et b ettt b e sttt et et et et et e st e st es e e bt eh e bt e bt eh e e bt bt eb ek e b e e et en b em s et enseneentebeebeebeabeebeanes 49
3.6.2 Development GUIAEIINES.couiiiiiiieie ettt ettt ettt ettt et e s bt e e e bt et e e bt et e ebeen b e eseenteenee st eneesaeenees 50
310.3 PIOCAULIONS. 1.ttt sttt ettt ea bbbt e h bt e bt bbbt e et et et eh b eb b ebeeheeb e e bt eb e e bbbt ettt ene 53
3.6.4 Programming EXAMPIC.........ccciiviiiiiiiiiiieieitieiecte ettt ettt ettt et s e et e sae e b e steessesseesseessesbeessesseessesseesaesseensesaeessesseas 53
3.7 SEIMAPROTE.cniiiitiieiieieeite ettt ettt ettt e h et b e ettt bttt ee bbbt bt bt e he bt b e b sttt be e e et ennene 56
371 OVETVIBW ...ttt ettt ettt ekt b e sttt 4t e et et e st e et es e eh e eh e eb e e bt eh e e bt bt eh et e b e s et en b e e et en s ententeneebeeneeaeeteenes 56
3.7.2 Development GUIACIINES.ccuiiiiiiiieie ettt ettt ettt ettt e e et e e e bt eneees e e beese et e eseenteeneenaeeneesneeneas 58
3.7.3 PIOCAULIONS. «.. ettt ettt bttt ettt s et e h bt ebe e bbbt s bbbt et e et et e e es b eb b ebeebeeb e e bt eb e eb e bbbttt et ene 60
3.7.4 Programming EXAMPIE.cc.oiuiiiiiieieeiei ettt ettt ettt ettt e be st et et e et en e e st e st en e e bt eaeebeebeeaeeeenan 60
3.8 TIME MANAZEIMCNL. ... eeuiiieieteeiieiteeie it eie et e e eteete et eeseeeseenseeseeseeseasseemeesseanseaseenseaseanseeseanseessenseeneenseeneenseensenseensenseennens 63
381 OVETVIBW ...ttt ettt ettt ettt b e sttt et et e e et e st e et es e e st eh e eb e e bt eh e e bt bt ee e b e b e s et en b eneeneenteneententeb e eneeaeeneanes 63
3.8.2 Development GUIAEIINES.ccuiiiiiiiieie ettt ettt et e st ettt et e e et eate s bt ente e s e enteeseenteeneanteeneeeaeeneesneenees 64
3183 PrOCAULIONS. ¢.. ettt ettt sttt ettt e a bt eb e bt bbb ek b e bt e et et en b eh e e bt eh e eh e bt e bbbt ettt enee 65
3.8.4 Programming EXAMPLE.coouiiiiiiiiiiiei ettt ettt h ettt a et ea et e aeesbe et sae e e nnean 65
3.9 SOTIWATE TIIMIET. ...ttt ettt sttt ettt et eb e ae bt e bt e bt e bt bt et b e et et et et estestenteneebeebeeaeeneas 66
3.0, 1 OVETVIBW ...ttt ettt et ettt ettt b e st b et e et e et et em e et es e es e eh e e bt e et eh e e bt bt ee e ke b e es e s en s emteneeneeneenteneeneeneeneeteanes 67
3.9.2 Development GUIACIINES.ccuiiieiieieie ettt ettt et ettt et e e et et e s et emae s s e ensees e e seeseenteeneenseeneeeneeneesneenees 68
3103 PrOCAULIONS. 1. .ttt ettt ettt sttt s e st ea e eb e eh e bt eh bt s bt et e b4 e b em e n s et en e eb e eseeh e eb e e bt e bt bbbt et e bt e enee 71
3.9.4 Programming EXAMPLE.cooiiiiiiiiiiieie ettt ettt h et h et h et e a et e n e bt e st e bt et e nneeaeanean 71
310 ErrOr HANALINE ..ottt ettt ettt ettt et e et e st e e st enseesee s e eneesseensesseenseeseensesseensenseenseensanneenes 73
BL0.T OVRIVICW. ..ttt ettt ettt ettt ettt ht et e st e s bt e st e s bt ea e s bt e mae e bt e et e eh et e eh et e e bt e bt ea e e sbeeneesbeemtesbeentesbeenbenneens 73
3.10.2 Development GUIACIINES.covieieiieierie ettt ettt ettt et s ettt eeae et e saeeneeeseenseeseenseeseenteeneenseeneeaneensesneennes 74
3.10.3 PrECAULIONS. ...ttt ettt ettt ettt b ettt e s et eh e eb e eb e e bt eh bt e bt et e b e b et ea b en e et en b eb e eseeh e eb e e bt e bt eh e b b et e bt et enee 74
3.10.4 Programming EXAMIPLE.......cc.ooiiiiiiiiieiei ettt ettt h ettt a et ettt eae e bt et sae e e enean 75
3.11 DOUDLY LANKEA LISt ...cueiotieiiiiieiiciesieeies ettt ettt et s et sbe et e s b e e s e eseesteeseenseeseanseessesseensesseensesseensessnensennsensenns 75
BLLT OVOTVIBW ..ttt ettt ettt e e bt e h et e st h e et e bt em et eb e et e et et e e st et e eh e e bt e et e bt ea b e bt en b e ebeen bt ebe e et eneeaeeneen 75
3.11.2 Development GUIACIINES.ccuertiiiiiiiieieiieeeitetee ettt ettt ettt bttt be et ettt ettt eat et ebeebe b e 76
BT 1.3 PrOCAULIONS. ¢ ettt ettt ettt sttt ettt et e e st ea e es e e st eh e e bt e bt e bt e bt e bt sh et et e e et en b em s et en e en e en e ebeeb e e bt sbeebeebenbeetennen 76
3.11.4 Programming EXAMPLE.couiiiiiiiiiie ettt ettt ettt ettt e et et ebe e e sa e et e bt et e b e et e st et eneenes 77
4 Extended Kernel..........iiiiinnneinininiesisninsinsissssssssnsssssssesssssssssssssssssssssssssssossosssssosssssssssssssnsanes 79
4.1 DYNAMIC LOAAING.eotiitiiiiiiiteieeteter ettt ettt ettt ettt e b bttt b e bbbt sa e st et ettt et eneeneen 79
AT T OVEIVIEW. ..ttt ettt ettt ettt ettt e st eh e a e eh e et e e bt e bt et e e b e s e e e et em s et em e es e e et ea e eh e eb e eh e eheeb e ebe et e b et e e entenseneenteneeneeneeneanes 79
4.1.2 Development GUIACIINES.c..eoiuiiieiieiieteeee ettt sttt ettt et e et e et e e st et e e st e naeeseenaeemeesaeeneeeseenseeseenseeneenes 80
413 PLOCAULIONS. ...euteutenteiiettett ettt ettt ettt b ettt et e s et et esteb e eb e e bt e bt e bt bt et e b b et e b e st et e st eh s eh e ebeeb e e bt eb e e bt e b e bt nb et et et et et entene 87
4.1.4 Programming EXAMPLE..........couiiiiiiiiiiiieieie ettt ettt ettt st e bt e et s st e bt es e e bt e st e bt en b e neen bt ene et enee 87
N T 11 1<) e Y- 14 14 L= SRS SRSRPR 88
421 OVEIVIEW. ..ueuieuietietiettett ettt etttk ettt e et et e st es e et es e et e eb e e h e et e et et e e e e s em s emeemeem e es e es e eh e eb e ebeeheebeebeesea b et e s ensenseneeneeneeneeneeneanes 88
Issue 01 (2018-04-20) Huawei Proprietary and Confidential il

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
4.2.2 Development GUIACINES.oouiiieriieieiieieete ettt ete et este st tesae st eesaesteessesseesseeseesseessesesssessesssesseensessesnsensaensenseenns 90
I g (< or U510 413U RRPPRRT 93
424 FA QS ettt ettt a et a et eh e eh ekt R e ek et et et et ea e e a e e a e eR e eh e Rt eR e eR e eR e eh e ekt ke b e b et et et enteneeneeneeneeneene 93
4.3 EXCEPLION IMANAZEIMICNL.ueeieivieieeiteteeiteteestesteeetesteestesseessesseessesseessesssessesssesseessenseessaseassesssessesssensesssessesssessesssensens 94
T O X3 74 U2 SRS 94
4.3.2 Development GUIACINES.oiviiiiiieiiitieieete ettt ettt ettt e teeta e teesbeeteesseeaeesseeseesseesaesseessesaeessesssessesssessenssenns 96
4.3.3 PLOCAULIONS. ... euteutenieiietiett ettt ettt ettt sttt et e s e s e st st ebeeb e e bt eb e e bt bt et e b e b et e m b ea et e st ehteb e eaeeb e ebeeb e eh e e b e e bt nb et et et et et entene 96
4.3.4 Programming EXAMPLE.ccuieiiiiieieiieie ittt ettt et e sttt e e st eee st eeees e e aeene e st ens e beens e bt enteeneenteeneenneenes 96
4.4 CPU UtIlIZAtION PEICEMIAZE.cueeueiuieiietiettett ettt ettt et e et e et eatestest et e ebesae et e et e ebees e s e beee s ensenseneeneeseeseeseeseeneaneenennes 97
A4 T OVEIVIEW. ..cniiiietteteett ettt ettt sttt ettt ea et e bt eb e eh bt e bt eb e e b et e e 4ot en s et ea e es s eh e eh e eh e bt eb e eh e eb e s bt st et et et entensenteneebeebeabeebeenes 97
4.4.2 Development GUIAEIINES.co.couirirtiieieieieiet ettt ettt ea ettt ettt sttt be sttt et st e e eneebeebeeaeeae 98
443 PIECAULIONS. ¢..ceuttttenteeitertt ettt et ste et e et es et e bt et e e sbeeate et e e s eesheemaeeh e em bt eb e emt e es e en bt es e e bt emteebeemeeeheen bt ebt e bt es e e bt en s e bt ente bt ente et 99
4.4.4 Programming EXAMPIC.........cccuiiiiriiiieriieieiieierteete st ete st testeestesteesbeeseesseesaesseeseesseaseenseaseessesssesseensesseensensennsenseens 100
I 1> QN F:1 15 o) TSR RSPST 101
4.5, T COMPIETION. ..ettietieeieetie ettt ettt e ettt e ebeesteesebeessaeesseestaeansaesseenbeenssesasaessseasseensseanseesseanseenseesnseessseenseessseenseenseas 101
A5 1T OVEIVIBW. ..utuiiieiietteit ettt sttt ettt et et a st e heeh e eb e s bt et e eh b st et et et en e ee s es e e st eb e eb e ebe e bt eb e e bt se e b et et et e st ententeneebeebeeneas 101
4.5.1.2 Development GUIACIINES.cc.eiieiiieieiieeiee ettt sttt ettt e e e e st et e ese e et eneeeseeneesneensesneensesseeneeseennens 102
4.5.1.3 PIOCAULIONS. 1.t teente ittt ettt ettt ettt ettt ettt et et et eh e et e e st e et ea e e bt e st et e ee e e bt ee e e bt ea b e eb e en et eaeenteeae et e ente bt enee bt entenaeas 103
4.5.1.4 Programming EXAMPIC..........cccveriiiieriiiieiieierie ettt sttt et e e e b e esaessesseesseessesseaseesseesaesseensesseessesseensenseens 103
4.5.2 WOTKQUEUE. ...ttt ettt ettt ettt a e bbbt e bt ea e b bt sttt et et et et et e st eneenteaeebeebeeueeee 104
4.5.2.1 OVRIVICW. ...tteutitiete ettt ettt ettt ettt ettt et st e e e bt et e bt ea bt eh e em bt eh e m et eh e m bt eh e e bt e et e ebeeatesbeemte s bt embesbeemtesbeenbeebeenbeeneenes 105
4.5.2.2 Development GUIACIINES.cc.eiieiieieiieietieiete ettt ete ettt eae s e e b e staebeesa e beessesseessesseessesssensesseensesssensenssensens 105
4.5.2.3 PIOCAULIONS. 1. e teeuteeuieteeiie et eite it et et e eete et e eat e e st et e ee e e et eseenseemeeeeemee st esee st emee s e enseeseenseeseenseeneenseemeenseemeenseennenneennennean 106
4.5.2.4 Programming EXAMPLE.......c.oouiiiiiiiiiiiiei ettt et ettt ettt ettt nreens 107
T B8 111157 4 4D o A OO OO RO TSP STUURRPSRRPRRNt 108
T B B @ 1) 74 T SRR 108
4.5.3.2 Development GUIAEIINES.cc.eiiiiiiieiie ettt ettt ettt st et e et e e s seeesbeestaeesseeseessseenseesnseessseenseessaeenseenseas 108
4.5.3.3 PLOCAULIONS ...euteuteieeiieiieit ettt ettt ettt et es st eh e eb e heeh e eb e bt ee e e bt b st e b e b et et e st e st eateh e e bt e bt e bt e bt beshe bbb e et enee 109
4.5.3.4 Programming EXAMPLE.c.ccieiiiiiieiieiiee ettt ettt ettt ettt ettt et e bt et e neentesneeteeneens 109
4.5.4 High ReSOIUION TIMET....c..itiiiieiieieiet ettt et et s et ae st et e et e esese et e e be e e e s e s e s et anseneeneeneeneeneene 110
4S54T OVEIVIBW. ..cuuieiieiieiieit ettt ettt ettt sttt ettt et et es e a e st eh e bt e bt o4t ekt e bt s bt o4 e b et et em s em e et enteateseeheeb e ebeebeebeebesbe st enbebenaens 110
4.5.4.2 Development GUIACIINES.cc.eiiiiieiieti ettt ettt sttt et ettt e st e bt eneeeseenseeseensesmeeseeneenseenaenneennenseans 110
4.5.4.3 PIOCAULIONS. 1.t teeuteietente ettt ettt ettt ettt at et e et ete et e eh e e et es e e bt ea e e bt e st et e em e e bt ee e e bt en b e eb e en bt ebeenteehe et e ente bt eneenbeentenaeas 111
4.5.4.4 Programming EXAMPIC........c.cccveiuiiieiiieieiieiert ettt sttt sttt s e e b e essessesteesseeseesseaseesseeseesseessesseensenseensenseans 112
T T 9 04N o SRS 113
4.5.5.1 LiNUX AdQPLION APIS.....couiiiiitieiiiieiiete ettt et ettt e st et teesbeete e b e eteebeeseesbeeraeeteenbeeaeesseateenseeteenbeeneenns 113
4.5.5.2 LINUX APIS NOt SUPPOITEU. .. .eerieiieriieiicieeie sttt ettt et ettt e a e s e essessaessessseseessesseesseseessesseensesseensennes 126
40 Gt SUPPOTT. ettt ettt ettt e b e a e e bttt e bt e s et e et e e sa bt e bt e e he e e bt e sab e et e e sat e e bt e sh bt e b e e ehb e e bt e eabe e bt e shb e e bt e naee s 136
4601 OVEIVIEW.eeueeuietieueete ettt ettt ettt et e et et e et e st es e es e eae et e es e ee e ee e et e e sees e s et e e emeen s emeemees e ee e eaeee e ek e ebese e bese s ensenseneeneeneeneaneaneas 136
4.6.2 Development GUIACIINES.ocuiiieiiiieieeieteeie ettt steeaesteeaesteesbesssesseessesseessesseasseeseessesseensesssensesssensesssensens 136
O g < or U0 41 PP 138
4.6.4 Programming EXAMIPLE......c..couiiiiiiiiieiiiiee ettt ettt ettt e a et h et e e bt et e bt et st ete b ens 138
Issue 01 (2018-04-20) Huawei Proprietary and Confidential iv

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
4.7 MU ettt h e h ettt bttt h e h e bt ekt h bt h b bttt a st eh e eh e bt eb e bbbt et nee 138
B W O X3 U 2RO 138
4.7.2 Development GUIACIINES.oiuiiieiieiieeeeiete ettt ete sttt te st este st ebeeseesseeseenseessasseensesseensesseensesseensesseensesseensens 139
4.7.3 PLOCAULIONS.cueuteuteuieiieie ettt ettt ettt ekttt et et et et e e s et ea e es e es e es e et eb e eh e ee e eh e b e ea et e b e s emsemsemtemeeseebeebeeseeb e bt ebe et e beebe s ennenee 141
4.7.4 Programming EXAMPIE.........oeouiiiiiiiiiiieiieieit ettt ettt ettt e st et et e e e st e teene e et e st e seeeneeeae et e eneentenneenteereens 141
4.8 ALOIMIC OPCIATION.uvitieerietietietietiettesteettesteestesseestesseesseaseesseessesseessasseasseseessesseessesssensesssesseessessenssenseessenseensesseensenses 143
R B O X3 7 U 2SSOSR 143
4.8.2 Development GUIACIINES.c.eeiuiiieiieiieieeiete ettt ete sttt e ete st eaesaeesseeseenseeseenseasaasseessasseessesseensesseensesssensessaensens 144
4.8.3 PIOCAULIONS. c..cuttttentt ettt ettt ettt ettt ettt ettt et e bt et e bt et e e et e et ea e e bt e ot e bt es e e bt ee e bt ea st eh e en bt e bt ent e eh e et e ehte bt ebtenbe et enneas 145
4.8.4 Programming EXAMPIE.........ceouiiiiiiiiieiieiee ettt sttt ettt ettt et e e s e et e ne e et eneenteeneeere et e eneenteeneentenreens 145
T AL B 107 3 OO SRRSPUP SRR 146
L B O X3 7 2RSSR 146
4.9.2 Development GUIACIINES.ecuiiieiieiieieeieie ettt ettt eae st etesteessesseesseeseenseesaesseesseeseessesaeensesseensesssensesssensens 147
4.9.3 PIECAULIONS. c..cuttttentt ettt ettt ettt ettt ettt ea ettt e st e te et e eb e e et ee e e et ea e et e e et et e em e e bt ee e b e en et eb e en bt eheenbeebe e bt eate bt eneenbeenteneas 152
4.9.4 LOS Makelmage Parameter COnfigUIAtions.coivuirtereriiniirienieieiet ettt ettt ettt ettt eaeeaes 152
5 FIle SYSteIM.uuuiiiiiiriiriinririnnisininsiinsisissisiissiissisissssssessissssssesssssssssssssssssasssssssssssssssssssssasssssssssens 153
5.1 FUNCHONS OVETVIEW.c..cutiuieiieiieiieiieit ettt ettt sttt ettt et ee st eh e eb e bt s he e bt e bt s b et et et et e st es s eateb e et e ebeebe et e e bt st e st e benteaententens 153
R0 A TSR E TSSOSO 154
5. 2.1 OVETVIBW ...ttt ettt ettt ettt et et ettt h e e bttt b ettt et e e e st ea b ebteh e e bt ebeeb e e bt bene et et et et et ententeneebe bt e 155
5.2.2 Development GUIAEIINES.cc.ieieiiiieii ettt ettt ste et e tee s e eseesseeseesesssesessaesseessesseessesseesseeseessesseensens 156
TN I o (Tot2 115 o) SRS 157
5.2.4 Programming EXAMPIC.........cocverieiieriiiieiiiieiieteste ettt ettt et stae e s e e be st e beessesseessesseesseaseessesssessesnsesseensensennsenseans 158
RS 0 2 TS T ST 158
5.3 1 OVETVIBW ...ttt ettt ettt et et h e bbbt o4t b e a4ttt e et ehteh e e bt e bt eb e e bt bt et et ettt et ea bt ebe et ebe e 158
5.3.2 DevelopmeEnt GUIAEIINES.ccviiiiiieieie ettt ettt ettt e teesseeteesseeseesseesaesseesaesseessesssessesseessesseessenseessenns 159
RO TRC TRC I8 o (ot o) SRS PRS 161
5.3.4 Programming EXAMPIC.........cccveiiiiieriiiieitieiieieeteete et ettt ettt e be e e beete e beessesseessesseessesseessesssesseessesseensesseessenseens 161
S T S ettt a et e R e eh ekttt ea ek et e s et e At enten e e Rt Rt eReeR e eR e eRe Rt ekt teeseasens et et entententeneeneeneenea 161
ST OVETVIBW ...ttt ettt ettt ettt s et a bt e h e bt e a4 bt b ettt e e e st es b eateb e eb e e bt eb e bt be s bt sttt e e et enteneebe e bt ebe e 162
5.4.2 Development GUIAEIINES.cc.iiiiiiiieie ettt ettt ettt e et eeteess e e st esaeeseeseesseseessesseessesseessesseessesseessesseensenns 162
RO B o (Tt 115 e} USRS 164
5.4.4 Programming EXAMPIC.......c.cocveriiiiiiiiiieiieiieie ettt ettt ettt ettt esaesta e be et ebeesseeseessesseessesseessesssessesssesseessesseessenseans 165
R 272N LSOO SURUSSRE 165
5.5 T OVETVIBW ...ttt ettt sttt et h e bbbt bbbt 4ttt e st e et eateh e e bt e bt eb e e bbbt et et et e e et eatentebeebe bt e 165
5.5.2 DevelopmMeENnt GUIACIINES.cccuieiieeieeieeiie ettt eee et e st e et e st e ebeesteessbeesseeesseessseesseesssesnseeseesnsaensaesnseenssesnseens 165
TR TR I o (ot 115 o) SRS 167
5.5.4 Programming EXAMPIC.......c.cccveriiiieiiiiieiieiieieeteete ettt ettt ettt ebeste e be e e ebeessesseesseeseesseaseessesssesseessesseessesseessenseans 168
S0 YATFFS2. .ttt ettt et ettt ettt a b a Rt en e st Rt R ekt R e Rt st te s et et et et ententententesteseeneeneeneeneeteenesenes 168
5101 OVETVIBW....entiuteiieiteitei ettt ettt ettt sttt s e e a bt e bbbt bbbt et e et et e st eh b e st eh e eb e e bt eb e e bt bt sb e et et et e e et enteneeneebeebeene 168
5.6.2 Development GUIAEIINES.ccuiitiiiiiiieie ettt ettt et et e et st e bt et e bt e st e bt esee st e enteebeentesbeeneene 168
506.3 PIECAULIONS. ¢.. ettt ettt sttt ettt et eat bbbt bt b e e a e s b bt st et et et st ebteatebeeb e ebe e bt eb e e bt na ettt ene s 170
5.6.4 Programming EXAMPIC.........cccveviiiiiiiiiieiieieeie ettt ettt ettt ettt e be e e e sbeessesbeesseeseessesseesseesaeseessesseessesseessenseens 171
Issue 01 (2018-04-20) Huawei Proprietary and Confidential v

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
ST RAMES . ettt h bt bt eh e bbbt bt bttt a ekt e bt bt bbbt bbb sttt ten 171
5.7 1 OVETVIBW ...ttt ettt ettt ettt e a bt bttt b et ettt et e st e et eateh e eb e e bt eb e bt bese e et et et e e et st eneeneebeebeene 171
5.7.2 Development GUIAEIINES.ccuiiieiiieeeie ettt ettt ettt et e st e e e see et e eseeeeeseesesseeseeseenseeneenseeneenes 171
5.7.3 PIECAULIONS. ...ttt ettt ettt ettt ettt ettt et h et e e a et e eaeeebeem e ea e e m bt s bt em bt ee e et e eae e bt en e e bt eneeebeenteeeee bt eneenbeeneenneas 172
5.7.4 Programming EXAMPIC.........cccveviiiiiiiiiieiieieieeieete ettt ettt ettt ae et e be et ebeessesseesseeseessesseessesssesseessesseessesseessenseans 172
S PROIC ...ttt h e a et bbbttt h e h e bt h e bbb bbb bbbt et et nt et bt bt eae e 172
IR T B O)< 5 (52U 173
5.8.2 Development GUIAEIINES.cuiiuieiiiieie ettt ettt ettt e et e et esee e eeeeeaesseebeeseeseeseenseeneenseeneenes 173
5.8.3 PIOCAULIONS. ...ttt ettt et ettt e a et e h et e heesb e em et e et em bt e b e e bt eh e et e ea e et e en e e bt en e e eb e et e ehe e bt enee bt eneennean 175
5.8.4 Programming EXAMPIC.........cccveviiiiiiiiieiieiicieeieete ettt ettt te st be st ebeeteebeessesteessesseessesseessessseseessesseessesseessenseans 175
6 Driver Development..........ucuiuicuiiininrinninninnenneinnnnininisisisesssssssssssssssissssssssssssssssssssssssseons 176
LT 0 1<) s 1<) SRS 176
6.2 DeveloPmMENt GUIACIINES.ccuieiiieiieiieeit ettt ettt et e st e ebeestaeebe e teeesseesseessseessseesseessseenseeseesnseenseesnseenssennseens 176
0.3 PIOCAULIONS. ¢ttt ettt ettt sttt ettt e et es e es e es e st eh e eh e e bt e bt e bt b e b e s e e s em b e e e st es e emeen e eb e eb e e bt eb e b e bt eh et e betenean 179
6.4 Programming EXAMPIC.........cceoiiiiiiieiiiieiecteie ettt ettt ettt e be et ebeessesteesseeseesseeseenseeseeseensenseensenseensenraens 179
7 Maintenance and TeSting........cccucveeireernerinisenriisnnininsisisnsesissisissssessssissssssssssssssssssssssssssssaees 180
/8 S U< 1<, SO OO OSSOSO PR PRSP 180
T 1.1 OVETVIBW ...ttt ettt ettt sttt s et a e st e bt e bt e bt ekt b e bt e 4 e et et em e ee e e a e es e eb e ebeeb e e bt bt sb et et et et ententeneeneeneenene 180
7.1.2 Development GUIACIINES.cc.ieieiieieie et ete sttt ettt e ste et et esseeseesseeseesesseesessaesseessessenssesseensenseensenseansenns 181
8 R I o (o215) USRS 181
7.1.4 Programming EXAMPIE.oouiiiiiiiiiieee ettt ettt et b et b st e ettt eh e e teene e bt e st e nae et e nteententeens 182
A 1 1<) | EO OSSP SU SO U RSP 182
7. 2.1 OVETVIBW....eenteueiieieeitei ettt ettt ettt sttt s et e st e st eh e bt e bt e b bt e 4t et e et et ea e es e ea e eh e eh e ebeeb e e bt bt se et et et et ententeneeneeneenene 182
7.2.2 Development GUIACIINES.ccvieieiieierie ettt ettt et et e et et et e estesaeeseesesseesessaesseessesseessenseensenseensenseensenns 183
B T o (o215 o) USRS 184
7.2.4 Programming EXAMPLE.oouiiiiiiiiiieeee ettt ettt a ettt et e a et e ne e bt et e aeenteebeententeens 185
7.2.5 ComMMANA RETEIEIICE.eeuiiuiiiitiitestite ettt ettt sttt sttt e st e st e st e st et e et e sbeseeebeabess e senseneeneeneeneeneeneas 186
7.2.5.1 SYStemM COMMANGS.......c.eervieiieiiiieitieteiteeteeteeteeteeteeteesseeseesseestesseessesseessesssessesseessesssenseassessesssesesssensesssesssessessens 186
T 2.5 1T BASK ittt h e h e bt bbbt b bbb bbbt et n et ebe bbbt 186
7. 2.5, 1.2 SCIMIutieuieuieiiete et ettt te et e e st e st es e st e st et e e st e Rt st ke s e s e s eab e s et enten b e Rt en s eA s eR e eR e eR e eRe R e st eb e beese s enbensensentensenteneeseene e 189
B T B TS 3o | OSSP 190
T N 1 EO OO SO OO ORI 192
B T B T o101 OO OO PRURRPRRTR 193
7.2.5. 1.6 MEIMCRECKetiitiitittet ettt bt h bbbt b e bttt b et ettt e e st et ebeebeebeebesbe b b 194
B T T A 4 L) < SO SRS 195
B T R BB (< T | (<SOSR 196
72,5 1.9 £ ettt ettt h ettt h Rt Rt a e bt e Rt ekttt he R e b et et et e st ent e st entebeeneeteeneabenaen 197
T.2.5. 110 UNAIMC. ..ottt ettt ettt et ettt et a et sa et s bttt eh et e ettt e ettt e at e eb et ebe et ebeenbeeane b s 198
B T 0) 3 1S5 0110 o J USRS 199
2 T R B TS TSP SU SRS 200
A T 1 OO ST USSP 200
A 1 U OSSOSO OO P PSPPI 201
Issue 01 (2018-04-20) Huawei Proprietary and Confidential vi

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
7. 2.5.2.2 Ol b b h bbb e 4ot a e a e bbbt bt ekt be bbbt ettt en e ene i bt 202
725,23 PW ettt a e a e a e h et e R e Rttt e Rtttk et et e s ea b et et en e ea e eateneeheeReeaeeheeteeaeesebensenennan 203
72,52 P ettt h bt h e h bt e a et a e a e bttt h e bbb h ettt ettt eae bt ebe e 203
T 2.5.2.5 Gl ettt a e bt et h et bttt h bt e h e bt et bt e a e bt et bt et eb e e bt et e nneas 205
7.2.5. 2.6 TOUCK. ...ttt ettt sttt et et s e st e st et et e eR e st ek e b e s e ket e s et en b eatenten s eatententeReeRe st eseeteeseesebensensenean 205
7. 2.5. 2.7 TTMhu ittt h etk bt btk h e bttt a e R e Rt h e e h b bt ekt h bt bbb b ettt e e e st enteneebe st ene e 206
T 2.5.2.8 SYIIC. ettt ettt ettt h et eh et e h e e bt e Rt a bt e Rt et e ee e et e en e ekt en e et e en et eh e e teeheenteeheeteeneeteeneen 208
7. 2.5.2.9 SEALES....eeititeie ettt a et h e h e bt bbbt b et b bttt et es st ese bbbt 208
7. 2.5.2. 10 FOTTMAL. ...ttt ettt ettt ettt ettt e s e s e st eb e eb e e bt e aeeb e b e e be et e b et e e en b e s e eneen e en e eb e st ebeebe bt eheabennenennan 209
T.2.5. 2,11 TIMOUINE. ...ttt ettt ettt et s at e ettt sat e bt e ea e e b e e e a bt e bt e ab e e bt e eab e e bt e eab e e bt e e bt e nheeebeenaeenane 210
T.2.5. 2. 12 UIMOUNE. ..ottt et h et s b et bbbt b e e et e bt e bt e bt eat e e bt e st eb e et ebeenaeestenaeeatenbeennenbeens 211
T R I v 1 UL PSR SRUSUSR 212
7.2.5. 2. 14 INKAIT ettt et b bt b e h e bbb b bttt s e e h e bt h e bt bbbt bbb sttt ntene 213
T.2.5.2. 15 PATTIEION . ..eeuviieiieiieeteeete et e sttt et e ettt eteeeteeeabeeeebeesaeessbeenseeasseessaeasseenseeessaenseeseseeseeenseensseesseensseanseenseesnsaensseenseens 214
7. 2.5.2. 16 WITEEPTOC ... ettt ettt ettt ettt et be st b bt ettt ettt es e eb e ehe e bt eb e bt e bt s ettt b e et et et et enteateneeneebeebeeneebeenes 215
T.2.5. 2,17 PATLINTO....eiceiitieiiictecie ettt ettt ettt et e e et e e st e b e st e e beeseeeaeesbeete e beeta et e etb e b e e s b e eaeenseeaeenseeraeaeenaenseensenreas 216
B T T[] o) USRS 216
T T U 4 OO OO OO OO OO SOU PP TPPSPSPRP 216
7. 2.5.3.2 TECONTIZ. ..ttt ettt e a ettt s h e et s bt et b e bt e et ekt e a e h e eat e eb e et e ehe e bt eneenbeeneenaean 218
72533 PAIIZ. ettt ettt et b s bttt h bRt b Rt b Rk n b a b e bt R et s et n et n e be sttt be e ne 221
T B ' SO OO OO OSSOSO PRSPPSOt 223
B T BB 4 L3 1 USSR 225
7. 2.5.300 QIS bkt h e h ek b bbbttt n e a e bt bt bt ehe ekt e bt s bt et e b st et e bentene 225
B T I A 1 1<)] | SO OSSPSR 226
72,538 TRIMEE. ..ttt bbb b bttt bttt h bt h e bt bbbt eh e b bt ettt enees 228
7. 2.5.3.9 L0DAUIMIP. ...ttt ettt ettt ettt et et e e teesbeeteesseeteesseese e beessesbeess e beesbeebeesb e teenseereesbeeatebeereeeteenbesaeensenaeas 229
7.2.5.4 DYNAMIC LOAING.eiitiiiiiiieie ettt ettt et et e et e bt e st e bt ene e et e enee st eneeeseeneeeneeseeneenseeneenneeneennens 231
B T 5 11107 o 1<) WO OO OU PR RPN 231
B T 1 T 1 74 s s SO TPSRTRRSRTR 231
72543 Calliniiiiie et bttt h e a e bbbt bbb bt b ettt et ese bttt ebe e 232
72544 MNCLOSE. ...ttt ettt et a etttk e et e b et ettt e a e e Rt ea e e Rt Rtk £ eR e Rt ekt ke eR e ket et et en s ententeneeneeneeneeneenes 233
72,545 TAATOP. ...ttt ettt et ettt ettt e bt et e e b e es e s e b e s et e st esses s e st e st e st e Rt eR e eRe R e s e b e seehe s e bentententensenteneessene e 234
8 Debug GUIdelines.......ucuiuiinuiinriiiiriiniinniisiiniiiiisississsssissssssssssisssssssssssssssssases 235
8.1 Methods for Locating Illegal MemOTy WIILC.........ccviieriirieiieieiieieeteeie ettt et ae st e sae e sseeaesseessesseessessaenseeseenseens 235
8.1.1 Locating the Exception Based on the Exception Information............coeeieiiiiiiiiiiniiinec e 235
8.1.2 MemOTy INtEIItY CRECK.coiiuiiiiiiiiiiirie ettt ettt ettt ettt e be e 236
8.1.3 Check of Usable memset and memcepy Length.........c.cooveviiiiiiiiieiiiieiietee ettt es 237
8.1.4 GLobal Variable CRECK.cc.iiiiiiieiieei ettt ettt ettt e e e bt e e e seeeneeeseentesaeeseeneensesneenaeeneans 238
8.1.5 TASK StAtUS CRECK.iuteuieiieiieiieie et b et b b ettt ettt e bt b e e bt e bttt be bt e b e 239
8.2 Solutions t0 I11€Zal MEIMOTY ACCESS....ccuuiiuieiiiiieteeiiete ettt ettt ettt ettt et b e te s et e ae e st e bt e see b e ese et e eseeebeeneeeseeneesneenees 240
8.2.1 Illegal Memory Access Caused by the Audio Library...........cccoeieiiieieiiiierie et 240
8.2.2 Unreadable AUdio TaSK NAIME.c.eiiiiiiiiiieieeiee ettt sttt ettt e st e st e st es e et e abesbeebeabesbeneenenee 241
Issue 01 (2018-04-20) Huawei Proprietary and Confidential vii

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide Contents
8.2.3 Illegal Memory Access Caused by a Global Variable...........c.cciiieriiiiniiiieiieieseeeeeee e 242
8.3 Method for Locating @ DeadloCK.c.uoiiiriiiieiiiee ettt ettt sttt aeeneens 243
9 Standard LiDraries.......ccinininnenininininniinininiesinienisiisisissmsssssss 245
9.1 POSIX APIS. ..ottt ettt b et h et bt b e st et s et et bea e bbbt h et b et b et s et ne et st n st e 245
9.1.1 POSTX AdaPLion APIS.....coouieeieeiieeiteite sttt ettt s e et e st e e be e st e e beesaaeeabeessseeaseessseenseesssesnsaenseesaseenssesnseensns 245
9.1.2 POSIX APIS INOt SUPPOITEA.etiiiieiieiieiieieeieeie ettt ettt et ste et e stestesbeesaesseessessaessesseenseeseessessseseessesseansesseensessens 263
9.2 LIDC/LADIM APIS. ...ttt ettt bbbt b et s bbb e 272
0.2.1 LIDC AdAPION APIS. .. uiiiiieiiiieiieeie ettt ettt ettt e et e st eeabe e ateesae e baeenbeenseessbaenseessbeeseeesseenbaeenteentaeensaeseens 272
0.2.2 LIDC OPEN SOUICE APIS......iiiieiiiiieiiecii ettt ettt ettt et e et e e st e s e e seessesst e sesssesseesseseassesssessenseensenseensennes 276
9.2.3 Libm OPen SOUICE APIS. ..ottt ettt et e st e et e s st eae s st eaeeseeneeeseenseeseenseeneeseensesseeneesneennas 290
9.2.4 Libc/Libm APIS NOt SUPPOITEQ.icuiitieiiiiiieiiitieieeteeie sttt ettt et e teeste et e eteesseereesseeseesseessesseessesseessesseessesseensens 303
9.3 CH+ Compatibility SPeCIfICAtIONS.eccvietieieiiieie ettt ettt ettt ettt ete e eaesteesessaeseessesseessenseessenseesseeseensesseensas 305
10 Configuration Reference...... i 308
10.1 Configuration TOOL INSTIUCHIONS.eeuieriierieiieterte ettt te et te st et e ete et e etaesseeseesseeseesseassesseessesseensesseensessesssenseens 308
10.2 Time Management Configuration Parameters............ccuieieruieieriieieie ettt ae e aeeneas 316
10.3 Memory Management Configuration Parameters.coceeriiieriiieniiieceieie ettt 317
10.4 Memory Maintenance & Testing Configuration Parameters...........ccecuveierieiiinieniieieie et 317
10.5 Task Configuration ParamELers...........ueeuieiiriieieriieie sttt sttt ettt et et e et e st e eneesseeneesseensesneensesseenseeneens 318
10.6 Software Timer Configuration Parameters..........c..eiieiiiiiriiiii ittt sttt 319
10.7 Semaphore Configuration PArQmELErS.............ccueruieieriiiiieriiiieiteetesteete e etesteese e e essesseeaesseessessaessesssessesssessesssensenns 320
10.8 Mutex Configuration ParamELers...........cueiuieieiiieieiieeie ettt ettt ettt et et eseeeeesee e e e sseeneesseensesseenseeseenseeneenseens 320
10.9 Hardware Interrupt Configuration Parameters.co.eiieiirieiiiiiiieiesicee ettt s 320
10.10 Queue Configuration PArQmMELETS.cuecuieierieieetieieeeeteeeesteseetesetestessaesteessesseessesseessesseessesseessesssensesssessesssesens 321
10.11 Module Compaction Configuration Parameters...........cceeeeruieierieieneeieeteeie sttt ste e seeeneesneenees 321
N o0 TS5 T T 324
L1.1 OS MEMOTY USAZE.......eouiiiiiiiiiiiiieiti ettt ettt ettt et et e s bt et s b et e s bt ese e eae e e e e et e et eaeenaeeanesaeeanesaeeanens 324
11.2 Kernel Boot Process INtrOQUCTION.couiitiriieiiiiieiieiieettee sttt ettt sb et st e bt et e et et esbeenaenbeans 326
Issue 01 (2018-04-20) Huawei Proprietary and Confidential viil

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 1 Preface

Preface

Purpose

This guide describes the structure of Huawei LiteOS Kernel. It also explains how to develop
and debug the Kernel.

Intended Audience

This guide is primarily intended for Huawei LiteOS Kernel developers, and is also
recommended for:

® Internet of Things (IoT) device software engineers
® [oT architects

Symbol Conventions

The symbols that may be found in this guide are defined as follows:

Symbol Description

Indicates a emergency hazardous situation
that, if not avoided, could result in death or
serious injury.

DANGER

Indicates a potentially hazardous situation
that, if not avoided, could result in death or

WA R N I N G serious injury.

Indicates a potentially hazardous situation
that, if not avoided, could result in minor or
moderate injury.

CAUTION

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 1
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 1 Preface
Symbol Description
Indicates a device or environmental safety
alert that, if not avoided, could result in
equipment damage, data loss, performance
N OTI C E deterioration, or unanticipated
consequences.

"Notice" cannot result in injury.

"Note" is not a safety alert, cannot result in
_LINOTE personal, device or environmental injury.

Change History

Document changes are cumulative. The latest document issue contains all the changes made
in earlier issues.

Date Version Description
2015-10-28 1.0 Initial draft
2016-03-26 2.0 Manual optimization
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 2

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 2 Overview

2 Overview

About This Chapter

2.1 Background Introduction
2.2 Supported Cores

2.3 Constraints

2.1 Background Introduction

Huawei LiteOS Kernel is intended for lightweight real-time operating systems designed for
IoT OS Kernel of Huawei.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 3
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 2 Overview

Figure 2-1 Huawei LiteOS Kernel framework

Huawei LiteOS Kernel

LWIP
Light TCP/IP protocol

«» m—

kernel

Scatter Dynamic Exception

loading loading mgmt IS

Basic kernel
Dynamic memory
Memory

Time

mgmt
management Static memory

System time

Hardware related

Hardware interrrupt Task syn

Task .
Hardware timer mgmt Task scheduling

Device driver layer

Hardware (Cortex-M/A, DSP Cores)

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 4
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

2 Overview

Huawei LiteOS Basic kernel of Huawei LiteOS is the most tidy code of operating system. It
contains operating system components based task management, time management,
communication mechanism, interrupt management, queue management, event management,
timer, exception management, etc. It can run independently.

Highlights of Huawei LiteOS Kernel

® Highlight real-time and stable

® Ultra-small kernel, basic kernel size of less than 10 KB

® [ow power consumption

® (Capable of dynamic and scatter loading

® Capable of Static function compaction

Modules

Task

Creates, deletes, delays, suspends, and resumes tasks, and can lock or unlock task scheduling.

High priority tasks preempt resources from low priority ones. Tasks of the same priority share

resources in a round robin setup using time slicing.

Task Synchronization

® Semaphore: creates, deletes, pends on, and releases semaphores.

® Mutex: creates, deletes, pends on, and releases mutexes.

Hardware Related Functions

Provides the following functions:

® Interrupt: Creates, deletes, enables, and disables interrupts; clears interrupt request flags.

® Timer: Creates, deletes, starts, and stops timers.

Inter-Process Communication (IPC)

Provides the following functions:

® Event: Reads and writes events

® Message queue: Creates, deletes, reads from, and writes into message queues

Time Management

® System time: generated when an output pulse of a timer/counter triggers an interrupt.

® Tick time: the basic time unit used in OS scheduling. The tick length is user
configurable. Typically, it is determined by the system clock speed and represented in the
form of ticks per second.

® Software timer: The timer length is measured in ticks. The Timer Callback function (a
function used to process timer expiry) is called when a soft tick interrupt is generated.

Memory Management

® Provide two algorithms of dynamic memory and static memory. Allocates or frees
memory statically using the Membox algorithm or dynamically using the DLINK
algorithm.

® Provides memory statistics, cross-border detection memory.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 5

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 2 Overview

Exception Handling

Exception handling means that when the operating system encounters an exception, in order
to save the current OS state or print the information stored in the call stack of the erroneous
function, it switches to the hook function responsible for exception handling.

The printed register information of Huawei LiteOS exception handling includes the erroneous
task ID, stack size, and LR/PC pointer.

Dynamic Loading

Dynamic loading a software loading technology that loads and links only the required module
files at runtime of an executable instead of loading all modules files of the executable.

Two file formats are supported: OBJ and SO.
Scatter Loading

Scatter loading preferentially loads key services by loading images of key services into
memory. This accelerates system boot.

2.2 Supported Cores

Table 2-1 Cores supported by Huawei LiteOS

Core Chip

Cortex-A7 Hi3516A

Cortex-M3 K3V3, K3V3+
Cortex-M4 STMF411, STMF429
Cortex-M7 K3Vs

ARM9 Hi3911, Hi3518EV200

2.3 Constraints

® Both Huawei LiteOS interfaces and POSIX interfaces are supported, but hybrid use of
them may lead to unpredictable results. (For example, a POSIX interface is used for
requesting semaphores while a Huawei LiteOS interface is used for releasing
semaphores.)

® Use only Huawei LiteOS interfaces for driver development. POSIX interfaces are
recommended for app development.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 6
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel
Basic Kernel
About This Chapter
3.1 Task
3.2 Memory

3.1 Task

3.3 Interrupt

3.4 Queue

3.5 Event

3.6 Mutex

3.7 Semaphore

3.8 Time Management
3.9 Software Timer

3.10 Error Handling
3.11 Doubly Linked List

3.1.1 Overview

Basic Concept

Task is the minimum running unit of competitive system resources from a system perspective.
It can use or wait for CPU, use memory space, and can run independently of other tasks.

Task modules of Huawei LiteOS provide a lot of tasks to help users manage business process
procedures. It makes switches and communications between tasks come true. Through this,
users can devote more energies to the achievement of business function.

Huawei LiteOS is an operating system supported multi-task. In Huawei LiteOS, a task is same

as a thread.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Task in Huawei LiteOS is preemptive scheduling mechanism, while supporting round-robin
scheduling.

High-priority task can interrupt low-priority task, low-priority task can only be scheduled
when the high-priority task blocked or completed.

A total of 32 priorities are defined, with priority 0 being the highest and 31 being the lowest.

Related Concepts

Task States

A task in Huawei LiteOS switches between different states. After the operating system is
initialized, a created task is allowed to contend for system resources according to the
scheduling procedure regulated by Huawei LiteOS Kernel.

There are usually four task states:

® Ready: The task is waiting for execution by a CPU.
® Running: The task is being executed.

® Blocked: The task is not on the list of ready tasks. For example, the task may be
suspended, delayed, waiting for a semaphore, waiting to read from or write into a queue,
or reading from or writing into a queue.

® Dead: The task execution is complete, and resources are waiting to be reclaimed.

Figure 3-1 Task state schematic diagram

The state transition process is as follows:
® Ready — Running

A task enters Ready state once created. When a task switch occurs, the task with the highest
priority is selected from ready tasks and enters Running state to be executed. Although the
task is in Running state, it remains on the list of ready tasks.

® Running — Blocked

When a running task is blocked (for example, it is suspended, delayed, or waiting to read a
semaphore), it will be deleted from the list of ready tasks and enters Blocked state. The state
transition triggers a task switch where the task with the highest priority is selected from ready
tasks.

® Blocked — Ready (Blocked — Running)

After a blocked task is recovered (for example, if the task is resumed, the task successfully
reads a semaphore, or if the delay period or semaphore read period expires), the task will be

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 8

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

added to the list of ready tasks and enters ready state. If the recovered task takes precedence
over the running task, a task switch will occur to send the resumed task into running state.

® Ready — Blocked

If a ready task is blocked (suspended), it will be deleted from the list of ready tasks no longer
participated in task scheduling and enter blocked state.

® Running — Ready

When a task is created or resumed with a higher priority than the running task, the created or
resumed task enters running state and task scheduling will be occurred. Meanwhile, the
original running task enters ready state but it remains on the list of ready tasks.

® Running — Stopped

When a task running is stopped, the status of it will change from running to stopped. Stopped
status includes normal exit after the task is stopped and impossible status. For example, while
separation property(LOS_TASK STATUS DETACHED) is not set, the task will present
impossible status, which is stopped.

® Blocked — Stopped

If calling the delete API when the task is in blocked status, the task status will change from
blocked to stopped.

Task ID

You will receive a task ID after successfully creating a task. You may suspend, resume, or
query a task using its ID.

Task Priority

Tasks are executed based on their priority. In the event of a task switch, the task with the
highest priority will be selected from ready tasks.

Task Entrypoint Function

Each task has a task entrypoint function, which is defined by the task creation structure at the
time of task creation and is executed after the task is scheduled. You can design task
entrypoint functions.

Task Control Block

Each task has a task control block (TCB). A TCB contains task information such as context
stack pointer (SP), state, priority, ID, name, and stack size. TCB can reflect running
conditions of each task.

Task Stack

Each task has a separate task stack. The task stack stores information such as local variables,
registers, function parameters, and function return addresses. When a task switch occurs, the
context information of the task that is replaced is saved to its task stack. When the task is
resumed, its context information will be quickly retrieved from the task stack to help resume
the task from where it was paused.

Task Context

Resources (such as registers) used by a running task are collectively known as task context,
just like registers. After a task is suspended, other running tasks might modify the context of

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 9

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

the suspended task. If the original context of the suspended task is not saved, the suspended
task uses the modified context once resumed, incurring unpredictable errors.

Therefore, Huawei LiteOS will save the task context information of this task in its own task
stack. This function is to resume context information after the task is resumed. There by
continuing to execute the interrupted code when the task is suspended.

Task Switch

A task switch process involves a few activities, including selecting the ready task with the
highest priority, saving the context of the task that will be replaced, and restoring the context
of the task that is newly selected to be executed.

Operation Mechanism

Task management module of Huawei LiteOS provides functions such as task creating,
delaying, suspending, resuming, locking and unlocking task scheduling, querying task ID
according to TCB, querying TCB information according to ID.

Before fulfilling a task creation request, the operating system allocates memory space needed
by the TCB of the task. If insufficient memory space is available, the task fails to be
initialized. After the task is successfully initialized, the operating system initializes the TCB
of the task.

While creating a task, the operating system initializes the task stack and resets the context.
The operating system also places the task entrypoint function in the correct position so that
the function will be executed after the task is booted for the first time.

3.1.2 Development Guidelines

Usage Scenarios

After a task is created, Huawei LiteOS Kernel can perform operations such as unlocking task
scheduling, scheduling/suspending/resuming/delaying a task, or assigning/acquiring a task
priority. If the task state is Detached (LOS_TASK STATUS_DETACHED) when the task
ends, the task will be detached.

Functions
The task management module provides the following functions:
Function Category API Description
Task creation and deletion LOS_TaskCreateOnly Creates a task and suspends
the task without scheduling
it
LOS_TaskCreate Creates a task. The task
enters Ready state and is
scheduled
LOS_TaskDelete Deletes a particular task
Task state control LOS_TaskResume Resumes the suspended task
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 10

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel
Function Category API Description
LOS_TaskSuspend Suspends a particular task
LOS_TaskDelay Delays the task
LOS_TaskYield Explicits decentralization,

and adjusts the scheduling
order of tasks with a
particular priority

Task scheduling control LOS_TaskLock Locks task scheduling
LOS_TaskUnlock Unlocks task scheduling
Task priority control LOS_CurTaskPriSet Assigns a priority to the
current task
LOS_TaskPriSet Set the priority of a
particular task
LOS_TaskPriGet Gets the priority of a
particular task
Task information acquisition | LOS_CurTaskIDGet Gets the ID of the current
task
LOS TaskInfoGet Gets the information of the

current task

Development Process

Task creation is used as an example to explain the development process.

1. Configure the task management module in the los_config.h file.

LOSCFG_BASE CORE_TSK_LIMIT: the maximum number of tasks allowed. You can
config according to requirement.

LOSCFG_BASE CORE TSK IDLE STACK SIZE IDLE: task stack size. Retain the
default value unless otherwise required. You can config according to requirement.

LOSCFG_BASE CORE _TSK DEFAULT STACK SIZE: default task stack size.
Specify the parameter value according to actual needs when users create tasks.

LOSCFG_BASE CORE_TIMESLICE: a switch to enable or disable the Time Slice. Set
itto YES.

LOSCFG_BASE CORE_TIMESLICE TIMEOUT: time slice. You can config
according to actual situations.

LOSCFG_BASE _CORE_TSK MONITOR: a switch to enable or disable the task
monitoring module.

2. Callthe LOS TaskLock API to lock task scheduling. Prohibits high-priority task
scheduling.
Call the LOS_TaskCreate API to create a task.

Call the LOS TaskUnlock API to unlock task scheduling. Schedules tasks in order of
priority.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 11
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

3 Basic Kernel

Task State

Schedules tasks in order of priority. Delays the task.
Call the LOS_TaskSuspend API to suspend the task. Suspends the task.

Call the LOS_TaskResume API to resume the suspended task. Resumes the suspended

task.

In Huawei LiteOS, most task states are defined by the kernel. Only Detached state can be

defined by users. Users need to define Detached state during task creation.

No.

Definition

Value

Description

1

LOS TASK STATUS DET
ACHED

0x0080

The task is detached.

When creating a task by calling the LOS TaskCreate API, set the uwResved field of the
TSK _INIT PARAM_S parameter of the task to LOS_TASK STATUS DETACHED.
Then the task will be detached after its execution is complete.

MnoTe

When creating a task by calling the LOS TaskCreate API, the task state is set to

LOS_TASK_STATUS_DETACHED. by default.

Task Error Codes

An error code is returned when attempting to create, delete, suspend, resume, or delay a task
fails. The error code gives some insights into the possible cause of the failure.

SN Error Code Error ID Description Recommende
Number d Solution

1 LOS _ERRNO | 0x02000200 Insufficient Allocate a
TSK NO ME memory larger memory
MORY area

2 LOS _ERRNO | 0x02000201 Null task Check task
TSK PTR NU parameter parameters
LL

3 LOS_ERRNO_ | 0x02000202 Task stack size | Align the task
TSK _STKSZ not aligned stack size on
NOT_ALIGN the boundary

4 LOS _ERRNO | 0x02000203 Incorrect task Check the task
TSK PRIOR _E priority priority
RROR

5 LOS_ERRNO_ | 0x02000204 Null task Define a task
TSK_ENTRY entrypoint entrypoint
NULL function function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

12

LiteOS
Developer Guide

3 Basic Kernel

SN Error Code Error ID Description Recommende
Number d Solution
6 LOS_ERRNO_ | 0x02000205 Task name Specify the task
TSK NAME E unspecified name
MPTY
7 LOS_ERRNO_ | 0x02000206 Too small task | Expand the task
TSK STKSZ stack stack
TOO_SMALL
8 LOS_ERRNO_ | 0x02000207 Invalid task ID | Check task IDs
TSK ID INVA
LID
9 LOS_ERRNO_ | 0x02000208 Task already Suspend the
TSK _ALREAD suspended task after it is
Y SUSPENDE resumed
D
10 LOS_ERRNO_ | 0x02000209 Task not Suspend the
TSK NOT _SU suspended task
SPENDED
11 LOS _ERRNO_ | 0x0200020a Task not Create the task
TSK NOT_CR created
EATED
12 LOS_ERRNO_ | 0x0200020b Attempt to Delete the task
TSK DELETE delay the task after task
_LOCKED while task scheduling is
scheduling is unlocked
locked
13 LOS_ERRNO_ | 0x0200020c Task Do not use the
TSK MSG NO information not | error code
NZERO Zero
14 LOS_ERRNO_ | 0x0300020d Attempt to Delay the task
TSK DELAY I delay the task after the
N_INT while an interrupt is
interrupt is finished
underway
15 LOS_ERRNO_ | 0x0200020e Attempt to Delay the task
TSK DELAY I delay the task after task
N _LOCK while task scheduling is
scheduling is unlocked
locked
16 LOS_ERRNO_ | 0x0200020f Invalid task to Check the task
TSK _YIELD I be scheduled
NVALID_TAS
K

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

13

LiteOS
Developer Guide

3 Basic Kernel

SN Error Code Error ID Description Recommende
Number d Solution
17 LOS_ERRNO_ | 0x02000210 No task or only | Add more tasks
TSK YIELD one task
NOT_ENOUG available for
H TASK scheduling
18 LOS ERRNO | 0x02000211 No idle TCB Add more
TSK_TCB_UN TCBs
AVAILABLE
19 LOS_ERRNO | 0x02000212 Task hook Do not use the
TSK HOOK N function error code
OT_MATCH mismatch
20 LOS_ERRNO | 0x02000213 Maximum Do not use the
TSK _HOOK I number of task | error code
S FULL hook functions
is reached
21 LOS_ERRNO_ | 0x02000214 Idle task Check the task
TSK_OPERAT ID and do not
E IDLE attempt to
operate the task
with the ID
22 LOS_ERRNO_ | 0x03000215 Attempt to Suspend the
TSK SUSPEN suspend the task after task
D LOCKED task while task | scheduling is
scheduling is unlocked
locked
23 LOS_ERRNO | 0x02000217 Failed to free Do not use the
TSK FREE ST task stack error code
ACK_FAILED
24 LOS_ERRNO | 0x02000218 Small task stack | Do not use the
TSK STKARE area error code
A TOO SMA
LL
25 LOS _ERRNO_ | 0x02000219 Failed to trigger | Create an idle
TSK_ACTIVE the task task and trigger
_FAILED a task switch
26 LOS _ERRNO_ | 0x0200021a Too many task | Do not use the
TSK_CONFIG configuration error code
~TOO_MANY options
27 LOS_ERRNO_ | 0x0200021b None Do not use the
TSK CP_SAV error code
E AREA NOT
_ALIGN

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

14

LiteOS
Developer Guide

3 Basic Kernel

SN Error Code Error ID Description Recommende
Number d Solution

28 LOS_ERRNO_ | 0x0200021d None Do not use the
TSK MSG Q error code
TOO_MANY

29 LOS ERRNO | 0x0200021e None Do not use the
TSK _CP_SAV error code
E AREA NUL
L

30 LOS _ERRNO_ | 0x0200021f None Do not use the
TSK SELF D error code
ELETE ERR

31 LOS_ERRNO | 0x02000220 Large task stack | Reduce the task
TSK STKSZ stack size
TOO_LARGE

32 LOS_ERRNO_ | 0x02000221 Suspension of a | Check the task
TSK _SUSPEN software timer | ID. Do not
D SWTMR N task not attempt to
OT_ALLOWE allowed suspend a
D software timer

task.

Error Code Definition
An error code is 32 bits in length, where:

Bits 31 - 24: error severity

Bits 23 - 16: error flag

Bits 15 - 8: module that encounters the error

® Bits 7 - 0: error ID number

#define LOS_ERRNO OS NORMAL (MID, ERRNO) \

(LOS_ERRTYPE NORMAL | LOS ERRNO OS ID | ((UINT32) (MID) << 8) | (ERRNO))
LOS ERRTYPE NORMAL : Define the error level as critical
LOS_ERRNO_OS_ID : OS error code flag.

MID: OS_MOUDLE ID

ERRNO: error ID number

For example:

LOS_ERRNO TSK_NO MEMORY LOS_ERRNO_ OS_FATAL (OS_MOD TSK, 0x00)
MnoTe

0x03000215 and 0x0300021c error codes are not defined and therefore cannot be used.

Platform Differences

None.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 15
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

3.1.3 Precautions

While a new task is being created, the task control blocks (TCBs) and task stacks of
previously deleted tasks are reclaimed.

A task name is a pointer and not allocated memory space. Do not set a task name to the
address of a local variable when you set task name.

If the task size is set to 0, the setting does not take effect. Instead, the default task size
defined by the #LOSCFG_BASE CORE TSK DEFAULT STACK SIZE parameter is
applied.

Task stack size is aligned with the base address on the boundary of 8 bytes. Follow the
"nothing more and nothing less" principle while determining the task stack size.

A running task cannot be suspended while current task scheduling is locked.
Idle and software timer tasks must not be suspended or deleted.

In the interrupt handler function or in the case of the lock task, the operation that calls
the LOS TaskDelay API will fails.

Locking task scheduling does not disable interrupts. Tasks can still be interrupted while
task scheduling is locked.

Locked task scheduling and unlocked task scheduling must be used in coordination.
Task scheduling may occur while a task priority is being set.

The maximum number of tasks (excluding idle tasks) able to be set by operating system
is not equal to the total number of tasks available to users. For example, when a task is
created for software timers, the number of available tasks is decreased by 1.

Do not change the priority of a software timer task by calling the LOS CurTaskPriSet
API or the LOS_TaskPriSet API. Otherwise, system problems may occur.

The LOS_CurTaskPriSet or LOS_TaskPriSet API must not be used when interrupts are
being processed.

If the corresponding task ID that LOS_TaskPriGet interface into the task is not created or
exceed the maximum number of tasks, unified return Oxffff.

Resources such as a mutex or a semaphore allocated to a task must have been released
when the task is being deleted.

3.1.4 Programming Example

Example Description

Two tasks will be created: TaskHi and TaskLo. TaskHi has a higher priority than TaskLo.

There are some examples giving some basic insight into priority-based task scheduling and
use cases of APIs, including create, delay, lock, unlock, suspend, resume, and query (task ID
and information by task ID) a task.

1.
2.
3.

Example Code

Two tasks will be created: TaskHi and TaskLo.
TaskHi has a higher priority

TaskLo has a lower priority.

UINT 32 g _uwTskLoID;
UINT 32 g uwTskHiID;

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 16
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel

#define TSK_PRIOR HI 4
#define TSK_PRIOR LO 5

UINT32 Example TaskHi ()

{
UINT32 uwRet;
UINT32 uwCurrentID;
TSK_INFO_S stTaskInfo;

printf ("Enter TaskHi Handler.\r\n");

/*Delay TaskHi for 2 ticks. The delayed TaskHi will be suspended. Meanwhile,
TaskLo will rise to the highest priority task among the remaining tasks and be
selected for execution(g_uwTskLoID task) .*/

uwRet = LOS TaskDelay (2) ;

if (uwRet != LOS_OK)

{

printf ("Delay Task Failed.\r\n");
return LOS_NOK;

/*Resume the task when 2 ticks elapse.*/
printf ("TaskHi LOS TaskDelay Done.\r\n");

/*Suspend the task.*/

uwRet = LOS_ TaskSuspend (g _uwTskHiID) ;

if (uwRet != LOS_OK)

{
printf ("Suspend TaskHi Failed.\r\n");
return LOS_NOK;

}

printf ("TaskHi LOS_ TaskResume Success.\r\n") ;

/*Task entrypoint function for the TaskLo*/
UINT32 Example TaskLo ()
{

UINT32 uwRet;

UINT32 uwCurrentID;

TSK_INFO_S stTaskInfo;

printf ("Enter TaskLo Handler.\r\n");

/*Delay TaskLo for 2 ticks. The delayed TaskLo will be suspended. Meanwhile,
the background task will rise to the highest priority task among the remaining
tasks and be selected for execution.*/

uwRet = LOS TaskDelay (2) ;

if (uwRet != LOS_OK)

{
printf ("Delay TaskLo Failed.\r\n");
return LOS_NOK;

printf ("TaskHi LOS TaskSuspend Success.\r\n") ;

/*Resume the suspended task g uwTskHiID.*/
uwRet = LOS_TaskResume (g _uwTskHiID) ;
if (uwRet != LOS_OK)
{
printf ("Resume TaskHi Failed.\r\n");
return LOS_NOK;

printf ("TaskHi LOS TaskDelete Success.\r\n");

/*Task test entrypoint function. Two tasks with different priorities will be
created.*/
UINT32 Example TskCaseEntry (VOID)

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

17

LiteOS
Developer Guide 3 Basic Kernel

UINT32 uwRet;
TSK_INIT_PARAM_S stInitParam;

/*Lock task scheduling.*/
LOS_TaskLock () ;

printf ("LOS TaskLock() Success!\r\n");

stInitParam.pfnTaskEntry = (TSK_ENTRY FUNC)Example TaskHi;

stInitParam.usTaskPrio = TSK_PRIOR_HI;

stInitParam.pcName "HIGH NAME";

stInitParam.uwStackSize = 0x400;

stInitParam.uwResved = LOS_TASK STATUS_ DETACHED;

/*Create a task with a high priority. The task will not be executed
immediately after being created, because task scheduling is locked.*/

uwRet = LOS TaskCreate (&g _uwTskHiID, &stInitParam);

if (uwRet != LOS_OK)

{

LOS_TaskUnlock () ;

printf ("Example TaskHi create Failed!\r\n");
return LOS_NOK;

printf ("Example TaskHi create Success!\r\n");

stInitParam.pfnTaskEntry = (TSK_ENTRY FUNC)Example TaskLo;

stInitParam.usTaskPrio = TSK PRIOR LO;

stInitParam.pcName "LOW_NAME";

stInitParam.uwStackSize = 0x400;

stInitParam.uwResved = LOS_TASK STATUS_ DETACHED;

/*Create a task with a low priority. The task will not be executed
immediately after being created, because task scheduling is locked.*/

uwRet = LOS_ TaskCreate (&g _uwTskLoID, &stInitParam);

if (uwRet != LOS_OK)

{

LOS_TaskUnlock () ;

printf ("Example TaskLo create Failed!\r\n");
return LOS_NOK;

printf ("Example TaskLo create Success!\r\n") ;

/*Unlock task scheduling. Task scheduling will occur, selecting the task with
the highest priority from the list of ready tasks to be executed.*/
LOS_TaskUnlock () ;

while (1) {};

return LOS_OK;

Verification
The verification result is as follows:

-—— Test start-—-
LO5_TaskLock() Success!
Example_TaskHi create Success!
Example Taslklo create Success!
Enter TaskHi Handler.

Enter TaszkLo Handler.

TaskHi I05_TaskDelay Done
TazlkHi 105 TaskSuspend Success
TaskHi I05_TaskResume Succeszs
TazlkHi 105 Taskllelete Success

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 18
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Complete Code

sample_task.c

3.2 Memory

3.2.1 Overview

Basic Concept

The memory management module is one of the core modules of an operating system. Memory
management primarily involves initializing, allocating, and freeing up memory.

While the operating system is running, the memory management module manages memory
usage of users and the operating system by allocating and freeing up memory. This helps
reduce memory fragments as much as possible.

Memory management is classified into static and dynamic memory management.

® Dynamic memory: a memory block of user-defined size
- Advantage: on-demand memory allocation
- Disadvantage: risk of memory fragments

® Static memory: a memory block whose size is predefined at the time of initialization
- Advantages: no memory fragments; efficient memory allocation and freeing

- Disadvantage: memory cannot be allocated on demand

Dynamic Memory Operation Mechanism

Dynamic memory management means taking a memory block of the required size out of the
large pool of continuous memory whenever a user needs it, and reclaiming the memory block
when the user no longer needs it.

Comparing with static memory, the advantage is to allocated a memory block of the required
size, and the disadvantage is that memory pool prone to fragmentation.

If a user's request for memory is fulfilled, the user will be allocated a memory block of the
requested size. The control header indicates the start address of the allocated memory block.

All control headers are recorded in a linked list and categorized by memory size. From the
linked list, the operating system can quickly find which memory block has the required size.

Figure 3-2shows the dynamic memory management structure in Huawei LiteOS:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 19

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Figure 3-2

StartA . Pre Pre Pre
Size
addr MNext | Next | Next

\\\\\\\\

LOS_DLNK_POOL_INF

0 LOS_MULTIPLE_DLNK_HEAD LOS_DLNK_NODE

One : Free memory node

Twao : Pointer to the previous memory node
Three : Size and flag of the current node Two Data
One+two+three is a control head of nodes. For details, see
the LOS DLNK_MNODE structure. Three

Part one indicates the start address and size of the heap memory (memory pool).

Part two is an array of which each element is a doubly linked list. Control headers of all free
nodes are categorized and mounted to the doubly linked lists in this array.

If the smallest node allowed by the memory is 2™" bytes, the first doubly linked list in the
array stores free nodes of the size that is bigger than 2™" and smaller than 2™"*1 The second
doubly linked list in the array stores free nodes of the size that is bigger than 2M"*1 and
smaller than 2™"*2, The nth doubly linked list in the array stores free nodes of the size that is

bigger than 2™l and smaller than 2™ When memory is allocated, a free node of
appropriate size (the size of the node being created) is located and memory is allocated to the
free node. When memory is freed up, the freed memory is stored to the array as free nodes for
later use.

Part three uses most space in the memory pool and is the actual area that stores nodes. The
LOS MEM_DYN_NODE node structure is described as follows:

typedef struct tagLOS MEM_DYN_NODE

{

LOS DL LIST stFreeNodelnfo;

struct tagLOS_ MEM_DYN_NODE *pstPreNode;
UINT32 uwSizeAndFlag;
+LOS_MEM_DYN_NODE;

Figure 3-3

Mounted to the linked lists in part two when sening as a
stFreeModelnfo | ————m free node
Set to a magic word when serving as a used node

pstPreMode p Concatenating all used nodes

Indicating whether the current nade is a used node or

uwSizeAndFlag ™ free node and recording data size

data

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 20

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

3 Basic Kernel

Static Memory Operation Mechanism

Static memory is in essence a static array. The size of a static memory block is defined at the
time of initialization and cannot be changed since then.

A static memory pool consists of a control block and several memory blocks of same size.
The control block is placed at the head of the static memory pool to manage memory blocks.
The allocate and free up of memory block according to the size of the blocks.

Figure 3-4 Static memory

Total size of static memory

-

Memaory block of
fixed size

3.2.2 Dynamic Memory

3.2.2.1 Development Guidelines

Usage Scenarios

The main task of memory management is to dynamically partition and manage user allocated
memory intervals.

Dynamic memory management is used when users have different demands on memory
blocks.

When a user allocates a memory block of specified size, the operating system calls the
LOS_AllocMem API to allocate the requested amount of memory. When the user no longer
needs the memory block, the operating system calls the LOS FreeMem API to free up the
memory block.

Functions
The memory management module in Huawei LiteOS System provides the following
functions. For details about the APIs, see the API reference.
Function API Description
Category
Memory LOS Memlnit Initializes a specific dynamic
initialization memory pool
Dynamic memory | LOS MemAlloc Allocates a specific dynamic
allocation memory pool block of specified
size
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 21

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Function
Category

API

Description

Dynamic memory
free up

LOS MemkFree

Frees up the allocated dynamic
memory block

Memory LOS_MemRealloc Reallocates memory block
reallocation according to the size, and retains
data in the previously allocated
memory area.
Aligned memory | LOS MemAllocAlign Takes the memory block of
allocation requested specific size out of the
specific dynamic memory pool
and aligns the head or tail of the
memory address with a base
address on the predefined
boundary.
Checking LOS_MemPoolSizeGet Gets the size of a specific
memory size dynamic memory pool.
Checking LOS MemTotalUsedGet Gets the usage of a specific
memory usage dynamic memory pool.
Checking the LOS_MemFreeBlksGet Gets the number of free blocks
number of in a specific dynamic memory

memory blocks

pool.

Checking the
number of
memory blocks

LOS_MemUsedBlksGet

Gets the number of used blocks
in a specific dynamic memory
pool.

Checking a task LOS MemTaskldGet Gets the ID of the task to which
ID specific memory is allocated.
Obtaining node LOS_MemLastUesdGet Obtains the end address of the
address last used node in the memory
pool.
Checking LOS_MemlInfoGet Gets the memory structure
memory structure information of a specific
information memory pool.
Integrity check LOS_MemlintegrityCheck Checks the integrity of a
specific memory pool.
Checking mode LOS MemNodeSizeCheck Checks the total size of a node
size and the size of part of node that

can be operated.

Setting memory
check level

LOS_MemCheckLevelSet

Sets the memory check level.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

22

LiteOS
Developer Guide

3 Basic Kernel

Function API Description
Category
Checking LOS_MemCheckLevelGet Gets the memory check level.

memory check
level

Development Process

1.

Configuration:

OS_SYS_MEM _ADDR: start address of the dynamic memory pool. In most cases,
retain the default value.

OS_SYS MEM_SIZE: size (in bytes) of the dynamic memory pool. By default, the
dynamic memory pool is the memory space that is left unused after DDR is allocated.

LOSCFG_BASE MEM NODE INTEGRITY CHECK: a switch to enable or disable
memory overwriting check. Default value: disabled. If enabled, the operating system
carries out the memory overwriting check when a dynamic memory block is allocated or
a static memory block is freed.

LOS_Memlnit initialization

The result of initializing a dynamic memory pool is shown as the figure bellow,
generating a EndNode, and all the memory left signed to be FreeNode. Notice: EndNode
as the last node in memory pool with size 0.

FreeNode EndNode

LOS_MemAlloc for allocating a dynamic memory block of any sizes

Determines whether the required amount of memory is available. If available, it takes a
dynamic memory block of requested size out of the large continuous memory and returns
the pointer of the dynamic memory block to the user. If unavailable, it returns NULL to
the user.

Call the LOS MemAlloc API three times to create three nodes. Assumes that there
names are UsedA, UsedB, and UsedC. There sizes are sizeA, sizeB, and sizfeC. Because
there is only one large FreeNode in the memory pool when the pool is just initialized,
these memory blocks cut from the FreeNode.

UsedA UsedB UsedC FreeNode EndNode

If malloc occurred when there are many FreeNodes in the memory pool, memory block
will be created with the FreNode that malloced with the most benefited size to reduce
memory fragmentation. If the size of the new one is not equal to the used one, the
redundant memory block will be signed as a new FreeNode after creating a new memory
block.

LOS MemFree for free up dynamic memory
Reclaims the dynamic memory block for using next time.

Suppose that calling the LOS MemFree to free up memory block UsedB, the memory
block UsedB will be reclaimed and signed as FreeNode.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 23
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

UsedA FreeNode UsedC FreeNode EndNode

Platform Differences

None.

3.2.2.2 Precautions

Dynamic memory management consumes the memory of the management control block
structure. Therefore, the memory space available to users is smaller than the
OS_SYS_MEM SIZE defined in the los_config.h file.

Calls to the LOS_MemAllocAlign API may consume a certain amount of memory and
result in memory fragments. When the memory used for alignment is freed up, the
resulting memory fragments will be reclaimed.

During memory reallocation to a user by using the LOS MemRealloc API, the operating
system determines whether sufficient continuous memory is adjacent to the memory area
that has been allocated to the user. If adjacent memory is insufficient, the operating
system frees up the previously allocated memory area and finds a new memory area for
the user. If the reallocation fails, the previously allocated memory remains unchanged,
and NULL will be returned. The use of pPtr = LOS_MemRealloc(pool, pPtr, uwSize) is
not allowed, indicating that using the original pPtr to receive the returned value is
forbidden.

If the same memory block is repeatedly freed using the LOS MemFree API, the first
free-up operation receives an operation succeed message. However, subsequent free-up
attempts lead to invalid operations on the pointer of the memory block and ultimately
unpredictable results.

The dynamic memory controller (DMC) structure uses the UINT32 data type, with the
most significant two bits as flags. Therefore, the size of the initial memory pool cannot
exceed 1 GB. Otherwise, unexpected results may occur.

3.2.2.3 Programming Example

Example Description

Memory is a scarce resource. If memory is frequently used while the operating system is
running, program the memory management module to allocate and free up memory
efficiently.

In the programming example, the following steps will be performed:

A S

Example Code

Initialize a dynamic memory pool.

Take a memory block out of the initialized memory pool and allocate it to a user.
Store data in the memory block.

Print the data in the memory block.

Free up the memory block.

VOID los_memory test() {

UINT32 *p num = NULL;

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 24
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel
UINT32 uwRet;
uwRet = LOS MemInit (m_aucSysMemO, 32);
if (LOS_OK == uwRet) {
dprintf ("Memory pool initialized successfully!\n");
}
else {
dprintf ("Failed to initialized the memory pool!\n");
return;
}
/*Allocate a memory block.*/
p_num = (int*)LOS MemAlloc (m_aucSysMemO, 4);
if (NULL == p_num) {
dprintf ("Failed to allocate the memory block!\n");
return;
}
dprintf ("Memory block allocated successfully!\n");
/*Use the memory block.*/
*p _num = 828;
dprintf ("*p num = %d\n", *p num);
/*Free up the memory block.*/
uwRet = LOS MemFree (m_aucSysMemO, p_num);
if (LOS_OK == uwRet) {
dprintf ("Memory block freed successfully!\n");
}
else {
dprintf ("Failed to free up the memory block!\n");
}
return;
}
Verification
The verification result is as follows:
—-—----Test start-----
using new mem argorithm
*p _num = 828
Complete Code

sample_mem.c

3.2.3 Static Memory

3.2.3.1 Development Guidelines

Usage Scenarios

Static memory management is used when users demand memory of fixed size. When a user
requests memory, the operating system calls the LOS_AllocBox API to allocate a static
memory block. When the user no longer needs the memory, the operating system calls the
LOS_FreeBox API to free up the memory block.

Functions

Static memory management of Huawei LiteOS provides the following functions:

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

25

LiteOS
Developer Guide

3 Basic Kernel

Function Category API Description

Static memory initialization | LOS_MemboxInit Initializes a static memory

pool; defines the start
address and total size of the
static memory pool, as well
as the size of each memory
block.

Static memory clearing LOS_MemboxClr Clears data in a memory

block of fixed size.

Static memory allocation LOS_MemboxAlloc Allocates a static memory

block.

Memory free-up LOS_ MemboxFree Frees up a static memory

block.

Development Process

This section introduces the development process of static memory in typical scenarios:

1.
2.

Allocate continuous memory as a static memory pool.
Call the LOS_MemboxInit API

Initializes the static memory pool; divides the memory pool that matches the input
parameters into N memory blocks, where N depends on the total size of static memory
pool and the size of each static memory block); adds all static memory blocks into a
linked list of idle memory blocks; places a control header at the beginning of static
memory pool.

Call the LOS_MemboxAlloc API

Takes an idle memory block out of the linked list and returns the user space address of
the memory block.

Call the LOS_MemboxFree API
Adds the static memory block that has been freed up to the linked list.
Call the LOS_MemboxClr API

Clears data in the static memory block that matches the input parameters.

Platform Differences

None.

3.2.3.2 Precautions

The range of static memory pool can be acquired by using either a global variable array
or the LOS_AllocMem API. In the latter case, to avoid memory leaks, free up a static
memory block when the block is no longer in use.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 26
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

3.2.3.3 Programming Example

Example Description

Memory is a scarce resource. If memory is frequently used while the operating system is
running, program the memory management module to allocate and free up memory
efficiently.

In the programming example, the following steps will be performed:

1. Initialize a static memory pool.
2. Take a static memory block out of the static memory pool.
3. Store data in the memory block.
4. Print the data in the memory block.
5. Clear the data in the memory block.
6. Free up the memory block.
Example Code

VOID los membox test (void) {

UINT32 *p num = NULL;

UINT32 uwBlkSize = 10, uwBoxSize = 100;

UINT32 uwRet;

UINT32 pBoxMem[1000];

uwRet = LOS MemboxInit (&pBoxMem[0], uwBoxSize, uwBlkSize);

if (uwRet != LOS OK)

{
dprintf ("Failed to initialized the memory pool!\n");
return;

}

else {
dprintf ("Memory pool initialized successfully!\n");

}

/*Allocate a memory block.*/

p_num = (int*)LOS MemboxAlloc (pBoxMem) ;

if (NULL == p_num) {
dprintf ("Failed to allocate the memory block!\n");
return;

}
dprintf ("Memory block allocated successfully!\n");
/*Use the memory block.*/
*p _num = 828;
dprintf ("*p num = %d\n", *p num);
/*Clear data in the memory block.*/
LOS_LOS MemboxClr (pBoxMem, p_num) ;
dprintf ("Data in the memory block cleared successfully\n p num = %d\n",
*p_num) ;
/*Free up the memory block.*/
uwRet = LOS MemboxFree (pBoxMem, p_num) ;
if (LOS_OK == uwRet) {
dprintf ("Memory block freed successfully!\n");
}
else {
dprintf ("Failed to free up the memory block!\n");

return;

Verification

The verification result is as follows:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 27
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

dist:1

—-—-Test start---

*p num = 828

p_num = 0

-—-Test End---
Complete Code

sample_membox.c

3.3 Interrupt

3.3.1 Overview

Basic Concept

When a condition that needs immediate attention occurs, the CPU suspends current activities
and switches to deal with the condition.

The CPU runs faster than external peripherals. When external peripherals are able to fulfill an
activity alone, the CPU takes care of other activities.

When the CPU must be involved in fulfilling an activity, the interrupt mechanism enables an
external peripheral to emit an interrupt signal to alert the CPU of the high-priority condition
requiring the interruption of current activities. The CPU does not need to keep waiting for
peripheral states, thereby improving CPU efficiency and accelerating system response.

The interrupt mechanism supports:
Initialize

Create

Lock or unlock

Restore

Enable

Disable

The interrupt mechanism of Huawei LiteOS is based on interrupt.
Introduce of Interrupt
The following three types of hardware are involved in the interrupt mechanism:

® Device: the interrupt source. When a device requests the help of the CPU, it emits an
interrupt signal to the interrupt controller.

® Interrupt controller: a type of peripheral that sends an interrupt request to the CPU after
receiving an interrupt signal from the interrupt pins of other peripherals. On the interrupt
controller, you can prioritize, enable, or disable interrupt sources, as well as specify an
interrupt trigger mode on each interrupt source. Common interrupt controllers include
the Vector Interrupt Controller (VIC) and General Interrupt Controller (GIC, typically
used in ARM Cortex-A7).

® (CPU: executes an interrupt handler at the request of an interrupt source.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 28
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Terminology Associated With Interrupt

Interrupt ID: a unique identifier contained in all interrupt requests from a particular interrupt
source.

Interrupt request (IRQ): an electrical pulse signal sent to alert the CPU of an urgent condition.
The CPU suspends current activities and deals with the condition that needs immediate
attention.

Interrupt priority: the priority of an interrupt source. Interrupt priority is determined based on
importance and urgency. Priority of all interrupt sources are the same in Huawei LiteOS.
Interrupt nesting or preemption is not supported.

Interrupt handler: When an external peripheral generates an interrupt request, the CPU
executes an interrupt handler to switch from current activities to the event that needs
immediate attention.

Interrupt trigger: set to 1 when an interrupt source emits an interrupt signal.

Interrupt trigger type: the way in which an interrupt signal is sent to the interrupt controller.
Typically, an interrupt signal is either level-triggered or edge-triggered.

Interrupt vector: starting address of interrupt service routine.
Interrupt vector table: a table where interrupt vectors are stored based on interrupt ID.

Interrupt sharing: If only a few external peripherals are present, each external peripheral is
allocated a unique interrupt ID. However, if there are many external peripherals, consider
sharing an interrupt ID among external peripherals. The interrupt handlers of the interrupts
that share the same interrupt ID form a linked list. When an external peripheral generates an
interrupt request, Huawei LiteOS Kernel traverses the linked list to find the interrupt handler
of the interrupt request.

Interrupt top half and bottom half: If an interrupt is long, other interrupts that are more
important may be blocked out. To balance the performance and workload of an interrupt
handler, an interrupt handler is logically divided into two parts. The top half takes care of the
urgent and critical part of the interrupt, and the bottom half deals with work, the longer yet
less important part of the interrupt.

The top half of an interrupt typically reads the interrupt state from a register, clears the
interrupt flag, and places the work in the workqueue.

Operation Mechanism

Interrupt mechanism of Huawei LiteOS supports interrupt sharing:

The implementation of interrupt sharing depends on the linked list. Each interrupt id create a
linked list, the linked list node contains the interrupt handler function and the function input.
When create interrupt for many times to one same interrupt id, the interrupt handler function
and the function input will be added to linked list. So when the hardware is interrupted,
through the interrupt number to find its corresponding structure of the list, the implementation
of the list of the interrupt handler.

Interrupt mechanism of Huawei LiteOS supports Interrupt bottom half:

The implementation of interrupt bottom half depends on workqueue, job is divided into
interrupt top half and bottom half in interrupt handler. Handler int bottom half is associated
with work, and mounted to legal workqueue. System executes bottom half program of work in
workqueque while free.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 29

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

3.3.2 Development Guidelines

Usage Scenarios

When an interrupt request is generated, the CPU responds by suspending current activities
and calling the user-defined interrupt handler to deal with the condition that needs immediate
attention.

Functions

The interrupt module provides the following functions:

API

Description

LOS HwiCreate

Creates a hardware interrupt to register the
corresponding interrupt handler

LOS_IntUnLock

Unlocks an interrupt

LOS_IntRestore

Restores an interrupt

LOS IntLock

Locks an interrupt

hal_interrupt_mask

Disables an interrupt (A register is
configured to prevent the CPU from
responding to this interrupt.)

hal interrupt unmask

Enables an interrupt (A register is
configured to prevent the CPU from
responding to this interrupt.)

HWI Error Codes

Error codes are returned if errors occur during interrupt creation to facilitate fault locating.

No. | Definition Error Description Solution
Code
1 OS_ERRNO HWI N [0x0200090 | The interrupt ID is | Provide a valid
UM_INVALID 0 invalid. interrupt ID.
2 OS_ERRNO HWI P [0x0200090 | The pointer to Pass in a non-null
ROC FUNC NULL |1 interrupt handler is | pointer to the
null. interrupt handler.
3 OS_ERRNO HWI C | 0x0200090 | Interrupts are Increase the number
B UNAVAILABLE 2 unavailable. of available
interrupts.
4 OS _ERRNO HWI N | 0x0200090 | The memory is Enlarge the memory
O MEMORY 3 insufficient. sapce.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

30

LiteOS

Developer Guide 3 Basic Kernel
No. | Definition Error Description Solution
Code
5 OS_ERRNO HWI_A | 0x0200090 | The interrupt Check whether the
LREADY CREATED | 4 handler has already | interrupt handler
been created. corresponding to the
passed-in interrupt
ID has been created.
6 OS_ERRNO HWI P | 0x0200090 | The interrupt Pass in valid
RIO INVALID 5 priority is invalid. interrupt priority,
which should fall in
[0,31].
7 OS_ERRNO _HWI M | 0x0200090 | The interrupt mode | Pass in a valid
ODE_INVALID 6 is invalid. interrupt mode,
which should fall in
[0,1].
8 OS_ERRNO HWI _F | 0x0200090 | The fast mode Check whether the
ASTMODE ALREA |7 interrupt has interrupt handler
DY _CREATED already been corresponding to the
created. passed-in interrupt
ID has been created.
9 OS_ERRNO HWI I [0x0200090 | The APIis called Do not call this API
NTERR 8 when an interrupt is | when an interrupt is
underway. underway.

Development Process

1.

2
3.
4.
5

Configure the following parameters:
LOSCFG_PLATFORM_HWTI: a switch to enable or disable the hardware interrupt

module. Set to YES.

LOSCFG_PLATFORM_HWI_LIMIT: the maximum allowed number of hardware

interrupts.

Call the LosHwilnit API to initialize the interrupt mechanism.
Call the LOS HwiCreate API to create an interrupt.

Call the hal_interrupt unmask API to enable an interrupt.

Call the hal_interrupt_mask API to disable an interrupt.

3.3.3 Precautions

The register address of the LosHwilnit operation and the maximum allowed number of
interrupts vary depending on hardware specifications.

Interrupt sharing indicates that one interrupt handler can be mounted repeatedly. An
interrupt request is accepted only when a unique dev parameter is passed in. For
example, if you request an interrupt with a specified interrupt ID for twice, and at the
second time you pass in the same interrupt handler and dev as you those you pass in at
the first time, the interrupt request is rejected. If you pass in the same interrupt handler
and a new dev, the interrupt request is accepted.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

31

LiteOS
Developer Guide 3 Basic Kernel

® Avoid long-running interrupt handlers because they have negative impact on CPU's
response to interrupts.

® The function lead to schedule cannot be performed after breading off.

® The input parameter of the LOS IntRestore() API must be the CPSR that is saved by the
LOS_IntLock() API before locking the interrupt.

® In Cortex-A7, interrupts 0 - 31 are for internal use and it is not advisable to request or
create them.

® The LOS_ HwiCreate() API is not usually used to create an interrupt. Call the Linux
adaption API request_irq to create an interrupt.

3.3.4 Programming Example

Example Description

The programming example will cover the following functions:

Disabling an interrupt

Creating an interrupt

1
2
3. Enabling an interrupt
4. Restoring an interrupt
5

Disabling an interrupt

Example Code
Prerequisite

® The LOSCFG_PLATFORM HWI parameter in the los_config.h file is set to YES.

® The LOSCFG PLATFORM HWI LIMIT parameter in the los_config.h file is set to the
maximum number of hardware interrupts the operating system allows.

The code is as follows:

#include "los_hwi.h"
#include "los typedef.h"
#define HWI NUM INT50 50
void uart irghandle (int irqg,void *dev)
{
printf ("\n int the func uart irghandle \n");
}
void hwi test ()
{
int a = 1;
UINTPTR uvIntSave;
uvIntSave = LOS_IntLock();
LOS_HwiCreate (HWI_NUM INT50, 0,0,uart irghandle,NULL);//Create an interrupt
hal interrupt unmask (HWI_NUM INT50);
LOS_IntRestore (uvIntSave) ;
hal interrupt mask (HWI_NUM INT50);

Complete Code

sample hwi.c

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 32
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

3.4 Queue

3.4.1 Overview

Basic Concept

A queue, also known as message queue, stores messages (also known as data) to be
communicated between tasks. The length of message received by a queue is user defined. A
queue receives messages of user-defined length from tasks or interrupts and determines
whether to store a transferred message based on the interface through which the message is
sent. A task reads messages from a queue. If the queue is empty, the task is suspended. When
a new message is stored in the queue, the suspended task is woken up and processes the

message.

A queue allows for asynchronous processing of messages, through which a message can be
placed in a queue but left not processed immediately, and messages can be buffered.

The following features characterize queues:

® Messages in a queue are processed in the first in first out order. A message can be read

and written asynchronously.

® Reading data from a queue and writing data into a queue support the timeout mechanism.

® The sender and the receiver agree on the type of message to be exchanged. The message
length is variable, but cannot exceed the maximum message unit length.

® A task can choose any queue to send or receive messages.

® Multiple tasks can choose the same queue to send or receive messages.

® [fa queue is allocated a dynamic memory block, the memory block can be reclaimed
using the LOS_FreeMem API when the queue is no longer in use.

Operation Mechanism

Queue Control Block

/‘k‘k

* @ingroup los queue

* Queue information block structure

*/
typedef struct tagQueueCB
{

UINTS8 *pucQueue; /**< pointer to the queue */
UINT16 usQueueState; /**< queue state */
UINT16 usQueuelen; /**< number of messages in the queue */
UINT16 usQueueSize; /**< message node size */
UINT16 usQueueHead; /**< message head node position (array
subscript) */
UINT16 usQueueTail; /**< message tail node position (array
superscript) */
UINT16 usWritableCnt; /**< number of writable messages in the queue*/
UINT16 usReadableCnt; /**< number of readable messages in the queue*/
UINT16 usReserved; /**< reserved*/
LOS_DL LIST stWriteList; /**< waiting linked list of data writing tasks*/
LOS_DL LIST stReadList; /**< waiting linked list of data reading tasks*/
LOS DL LIST stMemList; /**< MailBox module usage */
} QUEUE CB_S;
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 33

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Each queue control block contains the element of queue state that indicates the usage of this
queue:

® OS QUEUE _UNUSED: The queue is not in use.
® OS QUEUE INUSED: The queue is in use.

Working Principles

During queue creation, memory is allocated to the queue based on the queue length and
message node size and the queue ID is returned.

A message head node position (Head) and a message tail node position (Tail) are used in a
queue control block to indicate the message storage in a queue. Head indicates the start
position of an occupied message, and Tail indicates the start position of a vacant message.
When a queue is first created, both Head and Tail point to the start position of the queue.

Data is written into the vacant message unit after the occupied message unit tail. If Tail points
to the queue tail, the data is written into the start of the queue. The usWritableCnt parameter
specifies whether the queue is fully occupied. Data cannot be written to a fully occupied
queue (the usWritableCnt parameter value is 0).

Data is read from the head of the occupied message units. If Head points to the queue tail, the
data that is first written into the start of the queue is read. The usReadableCnt parameter
specifies whether data is available for reading. A task of reading data from a vacant queue
(the usReadableCnt parameter value is 0) will be suspended.

During queue deletion, locate the queue that has a specified ID, set the queue state to be not in

use, free up the memory allocated to the queue, and initialize the queue control head.

Figure 3-5 Read/write from/into a queue

Queue length (the number of message units}

3--

Data reads start Data writes start
Message . from the head from the tail
length_) A .

— -

’[

Vacant message Occupied message
unit Linit

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 34

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

3.4.2 Development Guidelines

Functions

The message processing module of Huawei LiteOS provides the following functions:

Function Category API

Description

Queue creation LOS_QueueCreate

Creates a queue.

Queue reading LOS QueueRead

Reads data from a queue;
data copy is not supported.

The buff stores addresses of
message units.

Queue writing LOS_QueueWrite

Writes data into a queue;
data copy is not supported.

The data written into a
message unit is the buff
address.

Queue reading LOS_QueueReadCopy

Reads data from a particular
queue; data copy is
supported.

The buff stores data
retrieved from message
units.

Queue writing LOS_QueueWriteCopy

Writes data into a particular
queue; data copy is
supported.

The data written into a
message unit is the buff
address.

Queue writing LOS QueueWriteHead

Write data into the head of a
particular queue.

Queue deletion LOS_QueueDelete

Deletes a queue.

Queue information LOS_QueuelnfoGet
acquisition

Gets information about a
queue.

Development Process

The typical process of using the queue module is as follows:

1.

Call the LOS_QueueCreate API to create a queue.
Creates a queue and returns a queue ID.

Call the LOS_QueueWrite API to write data into a queue.
Call the LOS_QueueRead API to read data from a queue.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

35

LiteOS
Developer Guide

3 Basic Kernel

Queue Error Code

4.
5.

Call the LOS_QueuelnfoGet API to get information about the queue.
Call the LOS_QueueDelete to delete a queue.

Error codes are returned if errors occur during queue operations, such as queue creation and

queue deletion, to facilitate fault locating.

No. | Definition Error Code | Description | Solution

1 LOS_ERRNO_Q | 0x02000600 | The Set the maximum number of
UEUE_MAXNU maximum queue resources to be greater
M_ZERO number of than 0. If the queue module is

queue not used, disable the
resources is configuration of the maximum
set to 0. number of queue resources.

2 LOS_ERRNO_Q | 0x02000601 | The memory | Allocate more memory to the
UEUE NO_ME allocated to queue block. Alternatively,
MORY queue block decrease the maximum number

fails to be of queue resources.
initialized.

3 LOS_ERRNO_Q | 0x02000602 | Memory fails | Allocate more memory to the
UEUE_CREATE to be queue. Alternatively, decrease
_NO_MEMORY allocated to the length of the queue or the

the queue to number of nodes in the queue
be created. to be created.

4 LOS_ERRNO_Q [0x02000603 | The size of Change the size of the largest
UEUE SIZE T the largest message to a size not
00 _BIG message in exceeding the upper limit.

the queue to
be created

exceeds the
upper limit.

5 LOS ERRNO Q | 0x02000604 | The number Increase the number of queue
UEUE CB_UN of created configuration resources.
AVAILABLE queues has

exceeded the
upper limit.

6 LOS_ERRNO_Q [0x02000605 | The queueis | Ensure the queue ID is valid.
UEUE NOT _FO invalid.

UND

7 LOS _ERRNO_Q | 0x02000606 | The task must | Unlock the task before the
UEUE_PEND I not be queue is used.

N_LOCK blocked on
the queue
when it is
locked.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

36

LiteOS
Developer Guide

3 Basic Kernel

No. | Definition Error Code | Description | Solution

8 LOS ERRNO _Q | 0x02000607 | The wait time | Set an appropriate expiry time.
UEUE_TIMEO for processing
UT a queue

expires.

9 LOS_ERRNO_Q [0x02000608 | The queue on | Enable the task to acquire
UEUE_IN_TSK which a task resources rather than make the
USE is blocked task blocked on the queue.

must not be
deleted.

10 LOS_ERRNO_Q [0x02000609 | Writing data Set the mode of writing data
UEUE_WRITE into a queue is | into a queue to non-blocking
IN_INTERRUP not allowed mode.

T when an
interrupt is
being
processed.

11 LOS_ERRNO_Q | 0x0200060a | The queueis | Pass in a valid handle.
UEUE NOT C not created.

REATE

12 LOS_ERRNO_Q | 0x0200060b | Queue Synchronize queue reading
UEUE_IN_TSK reading and and writing.

WRITE writing are
not
synchronous.

13 LOS_ERRNO_Q | 0x0200060c | A null pointer | Pass in a non-null pointer.
UEUE CREAT is passed in
PTR_NULL during queue

creation.

14 LOS_ERRNO_Q [0x0200060d | The queue Pass in correct queue length
UEUE PARA 1 length or and message node size.
SZERO message node

size passed in
during queue
creation is 0.

15 LOS _ERRNO_Q | 0x0200060e | An invalid Pass in a valid handle.
UEUE READ 1 queue handle
NVALID is passed in

during queue
reading.
16 LOS_ERRNO _Q | 0x0200060f | A null pointer | Pass in a non-null pointer.

UEUE_READ P
TR _NULL

is passed in
during queue
reading.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

37

LiteOS
Developer Guide

3 Basic Kernel

No. | Definition Error Code | Description | Solution
17 LOS ERRNO Q | 0x02000610 | The buffer Pass in a correct buffer size.
UEUE_READSI size passed in
ZE ISZERO during queue
reading is 0.
18 LOS_ERRNO_Q [0x02000611 | An invalid Pass in a valid handle.
UEUE_WRITE queue handle
INVALID passed in
during queue
writing.
19 LOS_ERRNO_Q [0x02000612 | A null pointer | Pass in a non-null pointer.
UEUE_WRITE _ passed in
PTR_NULL during queue
writing.
20 LOS_ERRNO_Q | 0x02000613 | The buffer Pass in a correct buffer size.
UEUE_WRITES size passed in
IZE ISZERO when data is
being written
into the queue
is 0.
21 LOS_ERRNO_Q | 0x02000614 | The queue Pass in a valid queue ID.
UEUE_WRITE into which
NOT_CREATE data is written
is not created.
22 LOS _ERRNO_Q [0x02000615 | The buffer Decrease the buffer size.
UEUE_WRITE _ size passed in | Alternatively, increase the
SIZE TOO BIG during writing | node size.
data into the
queue is
bigger than
the queue
size.
23 LOS _ERRNO_Q | 0x02000616 | Free nodes Ensure free nodes are available
UEUE_ISFULL are before writing data into the
unavailable queue.
during queue
writing.
24 LOS_ERRNO_Q [0x02000617 | A null pointer | Pass in a non-null pointer.

UEUE_PTR_NU
LL

is passed in
when queue
information is
being
acquired.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

38

LiteOS
Developer Guide

3 Basic Kernel

No. | Definition Error Code | Description | Solution
25 LOS_ERRNO_Q [0x02000618 | Reading data | Set the mode of reading data
UEUE _READ 1 from a queue | from a queue to non-blocking
N_INTERRUPT is not allowed | mode.
when an
interrupt is
being
processed..
26 LOS_ERRNO_Q | 0x02000619 | An invalid Pass in a valid handle.
UEUE _MAIL H queue handle
ANDLE INVAL is passed in
ID during
releasing the
memory
allocated to
the queue.
27 LOS_ERRNO_Q [0x0200061a | The passed-in | Pass in a non-null pointer.
UEUE MAIL P pointer to the
TR _INVALID message
memory pool
is null.
28 LOS_ERRNO_Q | 0x0200061b | Membox fails | Pass in a non-null pointer to
UEUE MAIL F to be released. | membox.
REE_ERROR
29 LOS_ERRNO_Q | 0x0200061c¢ | The queue to | Pass in a valid queue ID.
UEUE READ be read is not
NOT_CREATE created.
30 LOS_ERRNO_Q | 0x0200061d | The queue is | Ensure the queue contains
UEUE_ISEMPT empty. messages when it is being
Y read.
31 LOS ERRNO_Q | 0x0200061f | The buffer Increase the buffer size.

UEUE_READ S
IZE_TOO_SMA
LL

size passed in
during queue
reading is
much smaller
than the
queue size.

Alternatively, decrease the
node size.

Platform Differences

On a 3516A platform, the data that is written into a queue does not need to be aligned on the
boundary of 4 bytes. However, on a 3518e platform, the alignment is needed.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

39

LiteOS
Developer Guide 3 Basic Kernel

3.4.3 Precautions

® The maximum number of queues is not equal to the total number of queues available to
users. When a queue is allocated to accommodate software timers, the number of
available queues is decreased by 1.

® The queue name that is passed into the LOS QueueCreate API is reserved for future use.

The input parameter uwTimeOut of queue APIs must be set to relative time.

® The LOS QueueReadCopy API must be used together with the LOS QueueWriteCopy
API, and the LOS_QueueRead and LOS_QueueWrite APIs must be used together.

® The LOS QueueWrite and LOS_QueueRead APIs are called to operate data addresses.
Ensure that the memory that is pointed to by the pointer obtained by calling the
LOS_QueueRead API is not modified or released during the queue reading. Otherwise,
unexpected results may be caused.

3.4.4 Programming Example

Example Description

Two tasks are created in the programming example. Task 1 calls the send Entry API to send
messages. Task 2 calls the recv_Entry API to receive messages.

1. Call the LOS_ TaskCreate API to create tasks 1 and 2.

2. Call the LOS_QueueCreate API to create a queue.

3. Call the send_Entry API to enable task 1 to send a message.

4. Call the rev_Entry API to enable task 2 to send a message.

5. Call the LOS_QueueDelete API to delete the queue.
Example Code

#include "los_task.h"

#include "los_queue.h"

static UINT32 g uwQueue;

CHAR abuf[] = "test is message x";

/*Task 1 sends a message.*/
void *send Entry(void *arg)
{
UINT32 i = 0,uwRet = 0;
UINT32 uwlen = sizeof (abuf) ;

while (i <5)

{
abuf [uwlen -2] = '0' + i;
ERi

/*Task 1 writes data from abuf into the queue.*/
uwRet = LOS QueueWrite (g uwQueue, abuf, uwlen, 0);
if (uwRet != LOS_OK)

{

dprintf ("send message failure,error:%x\n",uwRet);
}
LOS_TaskDelay (5) ;

}

/*Task 2 receives a message.*/
void *recv Entry(void *arg)

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 40
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

UINT32 uwReadbuf;
UINT32 uwRet = 0;

while (1)
{

/*Task 2 reads data from the queue and stores it in uwReadbuf.*/
uwRet = LOS_ QueueRead (g _uwQueue, &uwReadbuf, 50, 0);
if (uwRet != LOS_OK)
{
dprintf ("recv message failure,error:%$x\n",uwRet);
break;

dprintf ("recv message:%s\n", (char *)uwReadbuf) ;
LOS_TaskDelay (5) ;

}

/*Delete the queue.*/

while (LOS_OK != LOS QueueDelete (g_uwQueue))

{
LOS_TaskDelay (1) ;

dprintf ("queue successfully deleted!\n");

int Example creat task(void)

UINT32 uwRet = 0;
UINT32 uwTaskl, uwTask2;
TSK_INIT_PARAM_S stInitParaml;

/*Create task 1.*/
stInitParaml.pfnTaskEntry = send Entry;

stInitParaml.usTaskPrio = 9;
stInitParaml.uwStackSize = 0x400;
stInitParaml.pcName = "sendQueue";

stInitParaml.uwResved = LOS_TASK STATUS_DETACHED;
LOS_TaskLock () ;//Lock task scheduling so that the newly created task will
not be executed even if it has a higher priority than the running task.
uwRet = LOS TaskCreate (&uwTaskl, &stInitParaml);
if (uwRet != LOS_OK)
{
dprintf ("create taskl failed!,error:%$x\n",uwRet);
return uwRet;

/*Create task 2.%*/

stInitParaml.pfnTaskEntry = recv_Entry;

uwRet = LOS TaskCreate (&uwTask2, &stInitParaml);

if (uwRet != LOS_OK)

{
dprintf ("create task2 failed!,error:%$x\n",uwRet);
return uwRet;

/*Create the queue.*/

uwRet = LOS_ QueueCreate ("queue", 5, &g _uwQueue, 0, 50);
if (uwRet != LOS_OK)

{

dprintf ("create queue failure!,error:%$x\n",uwRet) ;

dprintf ("create the queue success!\n");
LOS TaskUnlock();//Unlock task scheduling so that task scheduling will
happen after the queue is created.

}

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 41
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Verification

== Test start-—-

create the gqueus success!
recy message.test 1z meszage
recv message.test 1z messzage
recy message.test 1z meszage
recv message.test 1z messzage
recy message.test 1z meszage
recy message fallwre, error; 2000614
deleate the gquens success!

SR N e w

Complete Code

3.5 Event

sample queue.c

3.5.1 Overview

Basic Concept

Events are used for synchronization between tasks. A task or interrupt service routine can
trigger an event (a synchronization signal) to another task through an event control block. One
task is able to wait for several events to occur: whether while one event occurring or after
several events occurred, both of these is sure to wake task up to do event handling.

In a multi-task environment, tasks must be synchronized. In the one-to-many synchronization
model, a task waits for multiple events. In the many-to-many synchronization model, multiple
tasks wait for multiple events.

Tasks trigger or wait for events through event control blocks. Events in Huawei LiteOS are
used only for task synchronization, and not for data transport.

Characteristics of events in Huawei LiteOS are as follows:

® Events are not associated with tasks and are independent from each other. A 32-bit
variable is used to indicate the type of the event in which a task is interested. Each bit
indicates one event type with 0 indicating that the event does not occur and 1 indicating
that the event occurs. There are 31 bits that indicate event types (bit 25 is reserved).

® Events are used only for task synchronization, and not for data transport.

® Sending the same event type to a task for multiple times is equivalent to sending for only
once.

® Multiple tasks are allowed to read or write the same event.

® Huawei LiteOS supports event reading and writing timeout.

Event control block

/**

* @ingroup los event

* Event control structure
=/

typedef struct tagEvent

{

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 42

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

UINT32 uwEventID; /**bit that indicates an event type*/
LOS_ DL LIST stEventList; /**linked list of event reading tasks*/
} EVENT CB S, *PEVENT CB S;

uwEventID indicates the type of the event in which a task is interested. Each bit indicates one
event type with 0 indicating that the event does not occur and 1 indicating that the event
occurs. There are 31 bits that indicate event types (bit 25 is reserved).

Event reading mode

An event reading mode can be configured during event reading. Event reading modes are as
follows:

LOS_WAITMODE_AND indicates that event of all event types specified by a mask need to
be read. Event reading succeeds only when all events that are read occur.

LOS_WAITMODE_OR indicates that an event of an event type specified by a mask needs
to be read. Event reading succeeds when the event that is read occurs.

LOS_WAITMODE_CLR indicates that after successful event reading, the event types or
event type that is read is automatically cleared.

Operation Mechanism

During event reading, one type or multiple types specified by uwEventMask are read. After
event reading succeeds, the event type that is read is explicitly cleared if
LOS_WAITMODE_CLR is configured in the event reading mode. The event type that is not
cleared if LOS_WAITMODE_CLR is not configured. You can configure the event reading
mode by passing in LOS_WAITMODE_AND to read all events of the event types specified
by the event mask or by passing in LOS_ WAITMODE_OR to read an event of an event type
specified by the event mask.

During event writing, a specified event type is written into an event. Multiple event types can
be written concurrently. Event writing may trigger task scheduling.

During event clearance, the bit that specifies the event type to be cleared is set to 0.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 43
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Figure 3-6 Tasks woken up by events

Interested in

event 2 or 3

Event .

control o800 0
block Task A is waiting

for an event

\Y/
A\V4
Event
control oo WP
block Task A is
woken up
Event 2 occurs :&

control [RTI T

block

Task A remains
awake

Event 5 occurs

3.5.2 Development Guidelines

Usage Scenarios

Interested in

events 2 and 5

Task B is waiting
for an event

Only event 2

is triggered

Task B continues to
wait for event 5

Both events
2 and 5 are
triggered

Task B is
woken up

Events are applicable in a variety of task synchronization scenarios and are partially similar to

semaphore in purpose.

Functions

The event module provides the following functions:

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

44

LiteOS
Developer Guide

3 Basic Kernel

Function API Description

Category

Event LOS_EventlInit Initializes an event control block
initialization

Event LOS EventRead | Reads an event within N ticks
reading

Event writing

LOS_EventWrite

Writes an event

Event LOS _EventClear | Clears an event

clearance

Event mask LOS_EventPoll Determines whether an event meets the expectations

verification based on the passed-in event value, event mask, and
verification mode

Event LOS EventDestr | Destroys a specified event control block

destroying oy

Development Process

The typical process of using the event module is as follows:

1
2
3.
4

Event Error Code

Call the LOS_EventlInit to write an event.
Call the LOS_EventRead API to read an event.
Call the LOS_EventClear API to clear an event.

Call the LOS_Eventlnit API to initialize an event control block.

Error codes are returned if errors occur during event operations, such as event initialization,
event destroying, event reading, event writing, and event clearance, to facilitate fault locating.

No. Definition Error Code Description Solution
1 LOS_ERRNO_ | 0x02001c00 Bit 25 of the Set bit 25 of the
EVENT SETB event ID must event ID to 0.
IT INVALID not be set to 1
because it is
reserved as an
error code.
2 LOS_ERRNO | 0x02001c01 Event reading Increase the
EVENT READ times out. permitted wait
_TIMEOUT time.
Alternatively,
re-read the
event.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

45

LiteOS
Developer Guide

3 Basic Kernel

No. Definition Error Code Description Solution
3 LOS_ERRNO_ | 0x02001c02 The passed-in Pass in a valid
EVENT_EVEN event ID is event ID.
TMASK INVA invalid.
LID
4 LOS_ERRNO_ | 0x02001c03 The event is Let a new task
EVENT READ being read read the event.
_IN_INTERRU when an
PT interrupt is
being
processed.
5 LOS_ERRNO_ | 0x02001c04 The mode of Pass in a valid
EVENT FLAG event reading is | mode.
S INVALID invalid.
6 LOS_ERRNO_ | 0x02001c05 The task is Unlock the task,
EVENT READ locked and fails | and then let the
IN LOCK to read the task read the
event. event.
7 LOS_ERRNO_ | 0x02001c06 The passed-in Pass in a non-
EVENT PTR_ pointer is null. | null pointer.
NULL

An error code is a 32-bit storage unit. Bit 24 to bit 31 indicate an error level; bit 16 to bit 23
indicate an error code flag; bit 8 to bit 15 indicate the ID of the module that reports the error
code; bit 0 to bit 7 indicate an error code. The following is the example of an error code:

#define LOS_ERRNO_OS_ERROR(MID, ERRNO) \

(LOS_ERRTYPE ERROR | LOS ERRNO OS ID | (UINT32)(MID) << 8) | (ERRNO))

LOS_ERRTYPE ERROR: Define critical OS errors
LOS_ERRNO_OS _ID: OS error code flag

MID: OS_ MOUDLE ID

LOS_MOD_EVENT: Event module ID

ERRNO: error ID number

For example:

#define LOS_ERRNO_EVENT READ IN_LOCK
LOS_ERRNO_OS_ERROR(LOS_MOD_EVENT, 0x05)

Platform Differences

None.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

46

LiteOS
Developer Guide

3 Basic Kernel

3.5.3 Precautions

® Do not make calls to the LOS_EventRead and LOS_EventWrite APIs prior to the
operating system being initialized. Otherwise, the operating system exhibits unexpected
behavior.

® While an interrupt is underway, events can be written into an event control block but
event reads are not allowed.

® Task blocking and event reading are not allowed while task scheduling is locked.
® The input parameter of LOS_EventClear is ~uwEvents (reverse code of event type).

® Bit 25 of the event mask is merely used to distinguish whether the LOS EventRead API
returns an event or error code.

3.5.4 Programming Example

Example Description

In the programming example, the Example TaskEntry task is executed to create the
Example Event task. The Example Event task is blocked from reading events. The
Example TaskEntry task writes an event in which the Example Event task shows interest.

1. The Example TaskEntry task is executed to create the Example Event task. The
Example Event task takes a higher priority than the Example TaskEntry task.

2. The Example Event task is blocked from reading the event 0x00000001. After the
Example Event task is blocked, a task switch occurs to execute the task with a lower
priority, namely, the Example TaskEntry task.

3. The Example TaskEntry task writes the event 0x00000001 toward the Example Event
task. The Example Event task is interested in the event 0x00000001 and is therefore
woken up to process the event.

4. The Example Event task is executed.

The Example TaskEntry task is executed.

Example Code

The order in which print-out is generated provides some clues into task switches that occur
during event operations.

The code is as follows:

#include "los event.h"
#include "los task.h"

/*Task PID*/
UINT32 g TestTaskIDO1;

/*Event control structure*/
EVENT CB S example event;

/*Event that the Example Event task is waiting for*/
#define event wait 0x00000001

/*Task entrypoint function*/
VOID Example Event ()
{

UINT32 uwRet;

UINT32 uwEvent;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 47

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

/*Wait for a completion in timeout mode, and the timeout interval is 100

ticks.

If the event is not read within 100 ticks, the read operation expires and the

task is woken up.*/

printf ("Example Event wait event 0x%x \n",event wait);

uwEvent = LOS_EventRead (&example event, event wait, LOS WAITMODE AND, 100);
if (uwEvent == event wait)
{
printf ("Example Event,read event :0x%x\n",uwEvent) ;
}
else
printf ("Example Event,read event timeout\n");
return;

UINT32 Example TaskEntry ()

UINT32 uwRet;
TSK_INIT PARAM S stTaskl;

/*Initialize the event.*/

uwRet = LOS EventInit (&example event) ;
if (uwRet != LOS_OK)
{
printf ("init event failed .\n");
return -1;

/*Create the task.*/
memset (&stTaskl, 0, sizeof (TSK_INIT PARAM S));

stTaskl.pfnTaskEntry = (TSK_ENTRY FUNC)Example Event;
stTaskl.pcName = "EventTskl";
stTaskl.uwStackSize = OS_TSK_DEFAULT STACK SIZE;
stTaskl.usTaskPrio = 5;
uwRet = LOS_ TaskCreate (&g TestTaskID01l, &stTaskl);

if (uwRet != LOS_OK)

{
printf ("Task creation failed .\n");
return LOS_NOK;

/*Write the event type for which the task is waiting for.*/
printf ("Example TaskEntry write event .\n");

uwRet = LOS EventWrite (&example event, event wait);
if (uwRet != LOS_OK)
{

printf ("Event write failed .\n");

return LOS_NOK;

/*Clear the flag.*/

printf ("EventMask:%d\n",example event.uwEventID);
LOS_EventClear (&example event, ~example event.uwEventID);
printf ("EventMask:%d\n",example event.uwEventID);

/*Delete the task.*/
uwRet = LOS TaskDelete (g TestTaskIDO1) ;
if (uwRet != LOS_OK)
{
printf ("Task deletion failed .\n");
return LOS_NOK;

return LOS_OK;

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 48
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel
Verification
The verification result is as follows:
Example Event wait event O0xl
Example TaskEntry write event .
Example Event,read event :0x1
EventMask:1
EventMask:0
Complete Code

3.6 Mutex

sample _event.c

3.6.1 Overview

Basic Concept

A mutual exclusion (mutex) is a special binary semaphore designed to grant a task exclusive
use of common resources.

At a given point in time, a mutex is either locked or unlocked. When a task acquires a mutex,
the mutex is locked and the task has exclusive ownership of the mutex. When the task releases
the mutex, the mutex is unlocked and the task loses exclusive ownership of the mutex. While
a task has exclusive ownership of a mutex, other tasks are unable to acquire or release the
mutex.

In a multi-task environment, it is common to see tasks competing for the same common
resource. A mutex can avoid the task conflict problem without the trouble of priority
inversion experienced with semaphores.

Mutex of Huawei LiteOS has characters as below:

® Solve the problem of priority inversion by using inheritance algorithm.

Operation Mechanism

Mutex Operation Principle

In a multi-task environment, multiple tasks may battle for the same common resource. If the
common resource is not shareable, it must be used exclusively by a particular task.

When a task accesses a non-shareable common resource, the mutex is locked. Other tasks are
blocked from accessing the resource until the task releases the mutex. In this way, only one
task accesses the non-shareable common resource at a given point in time, which ensures the
integrity of the non-shareable common resources.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 49

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Figure 3-7 Working principle of a mutex

0
S Xl

Thread Threa
2 1

Common

resource

@ o @
O

Thread™\ %€ Thread hread
2 2 1
| |“. a':ummon | |“» rhcummu"
resource® resource
Thread 1 accesses the
common resource and the

mutex is locked. Thread 2 is now able to access
the common resource.

Thread 1 releases the mutex.

Thread 2 is blocked from
accessing the common
resource,

3.6.2 Development Guidelines

Usage Scenarios

A mutex is a good choice for preventing tasks from accessing the same shared resource at the

same time.

Functions

The mutex module provides the following functions:

Function Category API Description

Mutex creation and deletion | LOS_MuxCreate Creates a mutex
LOS_ MuxDelete Deletes a mutex

Mutex request and release LOS_ MuxPend Pends on a mutex
LOS_MuxPost Releases a mutex

Development Process

The typical mutex development process is as follows:

1. Call the LOS MuxCreate API to create a mutex.
2. Call the LOS MuxPend API to pend on a mutex.

Takes actions depending on the mutex pend mode.

- Non-blocking mode: If no task has acquired the mutex or the task that has acquired
the mutex is the same as the requesting task, the operating system grants the mutex
to the requesting task.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 50
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

- Permanent blocking mode: the requesting task waits endlessly for a mutex and
enters Blocked state in the meantime. If the mutex has not been acquired by any
task, the operating system grants the mutex to the requesting task. Otherwise, the
operating system blocks the requesting task until the mutex is released. While the
requesting task is blocked, the operating system selects the task with the highest

priority among ready tasks to be executed.

- Temporary blocking mode: the requesting task waits for a specified period of time
for a mutex and enters Blocked state in the meantime. If the mutex has not been
acquired by any task, the operating system grants the mutex to the requesting task.
Otherwise, the operating system blocks the requesting task until the mutex is
released or the timeout period elapses. It then selects the ready task with the highest

priority to be executed.

3. Call the LOS MuxPost to release a mutex.

- If there are tasks blocked from acquiring the mutex, the operating system wakes up
the first blocked task. The woken-up task then enters Ready state and is scheduled.

- If'there are no tasks blocked from acquiring the mutex, the operating system

releases the mutex.

4. Call the LOS MuxDelete API to delete a mutex.

Mutex Error Code

Error codes are returned if errors occur during mutex operations, such as mutex creation,
mutex deletion, mutex pending, and mutex posting, to facilitate fault locating.

No. Definition Error Code Description Solution
1 LOS_ERRNO_ | 0x02001d00 The request for | Lower the
MUX NO ME memory is upper limit on
MORY rejected. the number of
mutexes.
2 LOS_ERRNO | 0x02001d01 The mutex is Pass in a valid
MUX INVALI not usable. mutex ID.
D
3 LOS_ERRNO_ | 0x02001d02 The input Pass in a non-
MUX PTR N parameter is null parameter.
ULL null.
4 LOS_ERRNO | 0x02001d03 No mutexes are | Raise the upper
MUX ALL B available. limit on the
UsSy number of
mutexes.
5 LOS_ERRNO_ | 0x02001d04 The mutex fails | Wait for another
MUX_ UNAVAI to be locked thread to
LABLE because it is release the
locked by mutex.
another thread. | Alternatively,
set a timeout
period.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

51

LiteOS
Developer Guide

3 Basic Kernel

No. Definition Error Code Description Solution
6 LOS _ERRNO_ | 0x02001d05 Mutex pend Do not call this
MUX PEND I occurs when an | API when an
NTERR interrupt is interrupt is
being being
processed. processed.
7 LOS_ERRNO_ | 0x02001d06 Task scheduling | Set the mutex

MUX PEND I is not enabled, | pend mode to

N _LOCK and the thread the non-

is waiting for blocking mode.
another thread | Alternatively,
to release the enable task
mutex. scheduling.

8 LOS_ERRNO_ | 0x02001d07 Mutex pend Increase the

MUX_ TIMEO times out. wait time.

UT Alternatively,
set the mutex
pend mode to
the permanent
blocking mode.

9 LOS_ERRNO_ | 0x02001d08 The error code | N/A

MUX OVERF is not in use.

LOW

10 LOS_ERRNO_ | 0x02001d09 The mutex Delete the
MUX PENDE being deleted is | mutex after it is
D locked. released.

11 LOS _ERRNO_ | 0x02001d0a The error code | N/A
MUX GET C is not in use.
OUNT_ERR

12 LOS_ERRNO_ | 0x02001d0b The error code | N/A
MUX REG E is not in use.
RROR

An error code is a 32-bit storage unit. Bit 24 to bit 31 indicate an error level; bit 16 to bit 23
indicate an error code flag; bit 8 to bit 15 indicate the ID of the module that reports the error
code; bit 0 to bit 7 indicate an error code. The following is the example of an error code:

#define LOS_ERRNO_0OS_ERROR(MID, ERRNO) \

(LOS_ERRTYPE_ERROR | LOS_ERRNO_OS_ID | (UINT32)(MID) << 8) | (ERRNO))

LOS_ERRTYPE ERROR: Define critical OS errors

LOS_ERRNO_OS _ID: OS error code flag

LOS_MOD MUX: Mutex module ID

MID: OS_MOUDLE_ID

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

52

LiteOS
Developer Guide

3 Basic Kernel

ERRNO: error ID number

For example:

LOS ERRNO MUX TIMEOUT LOS_ERRNO OS ERROR(LOS_MOD MUX, 0x07)

Platform Differences

None.

3.6.3 Precautions

Tasks are unable to lock the same mutex. If a task attempts to lock a mutex that has been
locked by another task, the task will be blocked from locking the mutex until the mutex
is unlocked.

Do not use any mutex for interrupt service routines.

Release a mutex immediately when the mutex is no longer in use. Otherwise, tasks will
be blocked for a long time, slowing down task scheduling.

Do not change the priority of a task by calling APIs such as LOS_TaskPriSet while the
task has full ownership of a mutex.

3.6.4 Programming Example

Example Description

In the programming example, the following activities will happen:

1.

Example Code

The Example TaskEntry task is executed to create a mutex. Task scheduling is locked.
Two tasks Example MutexTask] and Example MutexTask2 are created, where
Example MutexTask?2 takes a higher priority than Example MutexTask1. Then, task
scheduling is unlocked.

Example MutexTask?2 is scheduled, granted a mutex, and then sent to sleep mode for
100 ticks. While Example MutexTask? is suspended, Example MutexTask1 is woken
up.

Example MutexTask1 pends on the mutex and is willing to wait the mutex for 10 ticks
to become free. At the time when Example MutexTask]1 requests the mutex, the mutex
is held by Example MutexTask2 and consequently Example MutexTask]1 is suspended.
After the 10-tick wait period elapses, the mutex is still out of the reach of

Example MutexTask1, and Example MutexTask1 is woken up, attempting to wait
permanently for the mutex. The wait for the mutex switches Example MutexTask]1 to
suspended state.

After 100 ticks, Example MutexTask2 is woken up and releases the mutex.
Example MutexTask]1 is scheduled, granted the mutex, and finally releases it.

300 ticks after Example MutexTask]1 is finished, Example TaskEntry is executed to
delete the mutex.

Prerequisites

The LOSCFG_BASE IPC_MUX parameter in the los_config.h file is set to YES.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 53
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

® The LOSCFG BASE IPC MUX LIMIT parameter in the los_config.h file is set to the
maximum number of mutexes that the operating system allows.

The code is as follows:

#include "los mux.h"
#include "los task.h"

/*Mutex handler ID*/

MUX HANDLE T g Testmux01;
/*Task ID*/

UINT32 g TestTaskIDO1;
UINT32 g TestTaskIDO02;

VOID Example MutexTaskl ()

{
UINT32 uwRet;

printf ("taskl try to get mutex, wait 10 Tick.\n");
/*The task pends on a mutex.*/
uwRet=LOS_ MuxPend (g_Testmux01, 10);

if (uwRet == LOS_OK)
{
printf ("taskl get mutex g Testmux0l.\n");
/*The task releases the mutex.*/
LOS_MuxPost (g_Testmux01) ;
return;
}
else if (uwRet == LOS_ERRNO MUX_ TIMEOUT)
{
printf ("taskl timeout and try to get mutex, wait forever.\n");
/*The task pends on the mutex.*/
uwRet = LOS MuxPend (g Testmux01l, LOS WAIT FOREVER);
if (uwRet == LOS_OK)
{
printf ("taskl wait forever,get mutex g Testmux0l.\n");
/*The task releases the mutex.*/
LOS_MuxPost (g_Testmux01) ;
return;

return;

VOID Example MutexTask2 ()

{
UINT32 uwRet;

printf ("task2 try to get mutex, wait forever.\n");
/*The task pends on the mutex.*/
uwRet=LOS MuxPend (g _Testmux01l, LOS WAIT FOREVER) ;

printf ("task2 get mutex g Testmux0l and suspend 100 Tick.\n");

/*Send the task to sleep mode for 100 ticks.*/
LOS TaskDelay (100) ;

printf ("task2 resumed and post the g Testmux01l\n");
/*The task releases the mutex.*/
LOS_MuxPost (g _Testmux01) ;

return;

UINT32 Example TaskEntry ()
{
UINT32 uwRet;
TSK_INIT PARAM S stTaskl;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 54
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Verification

TSK _INIT PARAM S stTask2;

/*Create the mutex.*/
LOS MuxCreate (&g_Testmux01) ;

/*Lock task scheduling.*/
LOS_TaskLock () ;

/*Create task 1.%*/

memset (&stTaskl, 0, sizeof (TSK_INIT PARAM S));
stTaskl.pfnTaskEntry = (TSK_ENTRY_ FUNC)Example MutexTaskl;
stTaskl.pcName = "MutexTskl";

stTaskl.uwStackSize = OS_TSK_DEFAULT STACK SIZE;
stTaskl.usTaskPrio = 5

uwRet = LOS TaskCreate
if (uwRet != LOS_OK)

{

(&g_TestTaskID01l, &stTaskl);

printf ("taskl create failed .\n");
return LOS_NOK;

/*Create task 2.*/

memset (&stTask2, 0, sizeof (TSK_INIT PARAM S));
stTask2.pfnTaskEntry = (TSK _ENTRY FUNC)Example MutexTask2;
stTask2.pcName = "MutexTsk2";

stTask2.uwStackSize = OS_TSK DEFAULT STACK SIZE;
stTask2.usTaskPrio = 4

uwRet = LOS TaskCreate
if (uwRet != LOS_OK)

{

(&g_TestTaskID02, &stTask2);

printf ("task2 create failed .\n");
return LOS_NOK;

/*Unlock task scheduling.*/

LOS_TaskUnlock () ;

/*Send the task to sleep mode for 300 ticks.*/
LOS_TaskDelay (300) ;

/*Delete the mutex.*/
LOS MuxDelete (g_Testmux01) ;

/*Delete task 1.*/
uwRet = LOS TaskDelete (g TestTaskIDO1) ;
if (uwRet != LOS_OK)
{
printf ("taskl delete failed .\n");
return LOS_NOK;
}
/*Delete task 2.*/
uwRet = LOS TaskDelete (g TestTaskIDO02) ;
if (uwRet != LOS_OK)
{
printf ("task2 delete failed .\n");
return LOS_NOK;

return LOS_OK;

The verification result is as follows:

task2 try to get mutex, wait forever.

task2 get mutex g Testmux0l and suspend 100 ticks.
taskl try to get mutex, wait 10 ticks.

taskl timeout and try to get mutex, wait forever.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

55

LiteOS
Developer Guide 3 Basic Kernel

task2 resumed and post the g TestmuxO01l
taskl wait forever,get mutex g TestmuxOl.

Complete Code

sample mutex.c

3.7 Semaphore

3.7.1 Overview

Basic Concept

A semaphore is a mechanism used for communication within a kernel, to achieve
synchronization or mutual exclusion of critical resources between tasks.

In a multi-task system, it is necessary to synchronize one task with another or prevent tasks
battling for critical resources. Semaphores are a good choice to serve that purpose.

Typically, a numerical value of a signal is used to correspond to the number of available
resources. It means mutually exclusive resources remained that could be occupied. The
meaning of its value is divided into two kinds of situations:

® (0, it means the post operation that is not accumulated, and it is possible to block tasks on
this signal.

® Positive number, it means there is one or several release operations which are posted.

The differences to use between semaphore for the purpose of synchronization and semaphore
for the purpose of mutex are:

® [fasemaphore is used as a mutex, it is created with a full internal counter. Each time a
task waits on critical resources, it is assigned the semaphore and the counter value is
decreased by 1. When the counter value drops to 0, subsequent tasks are blocked from
getting the semaphore.

® [fasemaphore is used for task synchronization, it is created with an empty counter.
When task 1 attempts to get the semaphore, it is blocked because the counter has reached
the maximum value. Task 1 will enter Ready or Running state after task 2 releases the
semaphore, thereby achieving task synchronization.

Operation Mechanism

Semaphore Control Block

/**

* @ingroup los_ sem

* Semaphore control structure.
*/

typedef struct

{

UINTS8 usSemStat; /**whether to use flag bit*/
UINT16 uwSemCount ; /**semaphore count*/
UINT32 usSemID; /**semaphore quantity index*/
LOS DL LIST stSemList; /**suspend the task blocked on the
semaphore*/
}SEM CB_S;
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 56

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

Semaphore Operation Principle

During semaphore initialization, memory is allocated to N semaphores. N is configurable by
users and limited by memory. For details, see section 10 "Configuration Reference." All
semaphores are initialized and added to the linked list of semaphores that are not in use.

During semaphore creation, a semaphore is obtained from the linked list of semaphores that
are not in use and the initial value of the semaphore is set.

If the internal counter of a semaphore is more than 0 when the semaphore is pended, the
counter value is decreased by 1 and the pending succeeds. If the counter value is 0, tasks are
blocked from getting the semaphore and wait for other tasks to post the semaphore. The
timeout interval of waiting on the semaphore can be configured. If a task is blocked from
getting the semaphore, suspend the task to the tail of the queue of tasks waiting on the
semaphore.

If no tasks are waiting on a semaphore, the counter value is increased by 1 and the semaphore
is posted. Otherwise, wake up the first task in the queue of tasks waiting on the semaphore.

During semaphore deletion, the semaphore that is in use is set to be not in use and is added to
the linked list of semaphores that are not in use.

A semaphore allows multiple tasks to access the same resource at the same time but sets a
limit on the number of the tasks. Tasks are not allowed to access the resource if the maximum
number of the tasks that can access the resource is reached and need to wait for one task to
release the semaphore.

Figure 3-8 Working principle of semaphore

O ® » ©
O O (] O

Thread n Thread n Thread n Thread n
™ ™ o ™

» ™ [™
» ™ ® ™
O O O O
Thread 2 Thread 4 Thread & Thread &

O O O O ©
o O o (] O

Thread 1 Thread 3 Thread 5 3% Thread 5 Thread 1
a "
1 [-

Common Common Common Common
resources resources resources resources

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 57

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

3.7.2 Development Guidelines

Usage Scenarios

Semaphores find their use in locking resources, counting resources, and maintaining
synchronization between threads or between threads and interrupts.

Functions

The semaphore module provides the following functions:

Function Category API Description
Semaphore creation and LOS_SemCreate Creates a semaphore
deletion
LOS_SemDelete Deletes a semaphore
Semaphore pend and post LOS_SemPend Pends on a semaphore
LOS_SemPost Posts a semaphore

Development Process

The typical semaphore development process is as follows:

1. Call the LOS SemCreate API to create a semaphore.
2. Call the LOS_SemPend to pend on a semaphore.
Huawei LiteOS takes actions depending on the semaphore pend mode.

- Non-blocking mode: If the maximum number of tasks allowed by the semaphore is
not reached, the request for the semaphore is fulfilled. Otherwise, the request for the
semaphore is rejected.

- Permanent blocking mode: The requesting task waits endlessly for a semaphore and
the task enters Blocked state in the meantime. If the maximum number of tasks
allowed by the semaphore is not reached, the request for the semaphore is fulfilled.
Otherwise, the operating system blocks the requesting task until a task releases the
semaphore. It then selects the ready task with the highest priority to be executed.

If a task enters the Blocked state, this task will be re-executed when either of the
following conditions is met:

m Other tasks release semaphores before the specified period expires.
m The specified period expires.

- Temporary blocking mode: the requesting task waits for a specified period of time
for a semaphore and enters Blocked state in the meantime. If the maximum number
of tasks allowed by the semaphore is not reached, the request for the semaphore is
fulfilled. Otherwise, the operating system blocks the requesting task until a task
releases the semaphore or the timeout period elapses. It then selects the ready task
with the highest priority to be executed.

3. Call the LOS_SemPost API to post a semaphore.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 58
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

4.

If there are tasks blocked from acquiring the semaphore, the operating system
wakes up the first blocked task. The woken-up task then enters Ready state and is

scheduled.

If there are no tasks blocked from acquiring the semaphore, the operating system

posts the semaphore.
Call the LOS _SemDelete API to delete a semaphore.

Semaphore Error Codes

Error codes are returned if errors occur during semaphore operations, such as creating,

pending, posting, and deleting semaphores, to facilitate fault locating.

No. | Definition Error Description Solution
Code
1 LOS ERRNO SEM | 0x0200070 | The memory space | Allocate a larger
NO_MEMORY 0 is insufficient. memory space to the
semaphore.
2 LOS ERRNO SEM_ | 0x0200070 | The passed-in Modify the
INVALID 1 parameter is parameter to a valid
invalid. one.
3 LOS ERRNO SEM | 0x0200070 | The passed-in Pass in a non-null
PTR_NULL 2 pointer is null. pointer.
4 LOS _ERRNO_SEM | 0x0200070 | The semaphore Post semaphore
ALL BUSY 3 control block is resources.
unavailable.
5 LOS_ERRNO_SEM_ | 0x0200070 [The scheduled time | Modify the
UNAVAILABLE 4 is invalid. scheduled time to a
correct one.
6 LOS _ERRNO_SEM | 0x0200070 | When the CPU is Do not call the
PEND INTERR 5 processing LOS_SemPend API
interrupts, the when the CPU is
LOS _SemPend API | processing interrupts.
is called.
7 LOS_ERRNO_SEM | 0x0200070 | The task is locked Do not call the
PEND IN LOCK 6 and fails to obtain LOS_SemPend API
the semaphore. when the task is
locked.
8 LOS_ERRNO_SEM | 0x0200070 | The time for Set the time to a
TIMEOUT 7 obtaining proper range.
semaphores
expires.
9 LOS_ERRNO_SEM | 0x0200070 | The number of Pass in a valid value.
OVERFLOW 8 allowed semaphore
pendings exceeds
the maximum
value.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

59

LiteOS

Developer Guide 3 Basic Kernel
No. | Definition Error Description Solution
Code
10 LOS _ERRNO_SEM | 0x0200070 | The task queue Wake up all tasks
PENDED 9 waiting for the that are waiting for
semaphore is not the semaphore, and
empty. then delete the
semaphore.

An error code is a 32-bit storage unit. Bit 24 to bit 31 indicate an error level; bit 16 to bit 23
indicate an error code flag; bit § to bit 15 indicate the ID of the module that reports the error
code; bit 0 to bit 7 indicate an error code. The following is the example of an error code:

#define LOS ERRNO OS NORMAL (MID, ERRNO) \

(LOS_ERRTYPE NORMAL | LOS ERRNO OS ID | ((UINT32) (MID) << 8) | (ERRNO))
LOS_ERRTYPE NORMAL: Define the error level as critical

LOS ERRNO OS ID: OS error code flag.

MID: OS MOUDLE ID

ERRNO: error ID number

For example:
LOS ERRNO SEM NO MEMORY LOS_ERRNO OS ERROR (LOS MOD SEM, 0x00))

MnoTe

Error code IDs 0x16 and Ox1c are not defined and unavailable for use.

Platform Differences

None.

3.7.3 Precautions

® As interrupts cannot be blocked, permanent blocking and temporary blocking are not
allowed for interrupts during the request for a semaphore.

3.7.4 Programming Example

Example Description

In the programming example, the following activities will happen:

1. The Example TaskEntry task is executed to create a semaphore. Task scheduling is
locked. Two tasks Example SemTask1 and Example SemTask?2 are created, where
Example SemTask?2 takes a higher priority than Example SemTask1. Then, task
scheduling is unlocked. Example TaskEntry releases the semaphore.

2. Example SemTask?2 is granted the semaphore, scheduled, and sent to sleep mode for 20
ticks. While Example SemTask? is delayed, Example SemTask1 is woken up.

3. Example SemTask]1 pends on the semaphore and is willing to wait the semaphore for 10
ticks to become free. At the time when Example SemTask1 requests the semaphore, the
semaphore is held by Example SemTask2 and consequently Example SemTaskl1 is
suspended. After the 10-tick wait period elapses, the semaphore is still out of the reach
of Example SemTask1, and Example SemTask1 is woken up, attempting to wait

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 60
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

permanently for the semaphore. The wait for semaphore switches Example SemTaskl1 to
suspended state.

4. After 20 ticks, Example SemTask2 is woken up and releases the semaphore.
Example SemTask]1 is scheduled, granted the semaphore, and finally releases it.

5. 40 ticks after Example SemTaskl1 is finished, Example TaskEntry is woken up, deletes
the semaphore and then the two tasks.

Example Code
Prerequisites

® The LOSCFG_BASE_IPC_SEM parameter in the los_config.h file is set to YES.

® The LOSCFG_BASE_IPC_SEM_LIMIT parameter in the los_config.h file is set to

the maximum number (for example, 1024) of semaphores that the operating system
allows.

The code is as follows:
#include "los sem.h"

/*Task PID*/

static UINT32 g TestTaskID0l,g TestTaskIDO02;
/*Task priority*/

#define TASK PRIO_TEST 5

/*Semaphore structure ID*/

static SEM HANDLE T g usSemID;

VOID Example SemTaskl (void)
{
UINT32 uwRet;

printf ("Example SemTaskl try get sem g usSemID ,timeout 10 ticks.\n");

/*The task pends on the semaphore in timed blocking mode, with the wait
period being 10 ticks*/

uwRet = LOS SemPend (g _usSemID, 10);

/*The task is granted the semaphore.*/
if (LOS_OK == uwRet)
{
LOS_SemPost (g_usSemID) ;
return;
}
/*The task does not get the semaphore within 10 ticks.*/
if (LOS_ERRNO_SEM TIMEOUT == uwRet)
{
printf ("Example SemTaskl timeout and try get sem g usSemID wait forever.
\n") ;
/*The task pends on the semaphore in permanent blocking mode.*/
uwRet = LOS SemPend (g usSemID, LOS WAIT FOREVER) ;
printf ("Example SemTaskl wait forever and get sem g usSemID .\n");
if (LOS_OK == uwRet)
{
LOS_SemPost (g_usSemID) ;
return;

return;

}
VOID Example SemTask2 (void)
{

UINT32 uwRet;

printf ("Example SemTask2 try get sem g usSemID wait forever.\n");

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 61
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

/*The task pends on the semaphore in permanent blocking mode.*/
uwRet = LOS_SemPend(g_usSemID, LOS WAIT FOREVER) ;

if (LOS_OK == uwRet)
printf ("Example SemTask2 get sem g usSemID and then delay 20ticks .\n");

/*Send the task to sleep mode for 20 ticks.*/
LOS_TaskDelay (20) ;

printf ("Example SemTask2 post sem g usSemID .\n");
/*The task releases the semaphore.*/

LOS_SemPost (g_usSemID) ;

return;

UINT32 Example TaskEntry ()

UINT32 uwRet;
TSK_INIT PARAM S stTaskl;
TSK_INIT PARAM S stTask2;

/*Create the semaphore.*/

LOS_SemCreate (0, &g _usSemlID) ;

/*Lock task scheduling.*/
LOS_TaskLock () ;

/*Create task 1.*/

memset (&stTaskl, 0, sizeof (TSK_INIT PARAM S));
stTaskl.pfnTaskEntry (TSK_ENTRY_ FUNC)Example SemTaskl;
stTaskl.pcName = "MutexTskl";

stTaskl.uwStackSize = OS_TSK_DEFAULT STACK SIZE;
stTaskl.usTaskPrio = TASK PRIO TEST;

uwRet = LOS_ TaskCreate (&g TestTaskID01l, &stTaskl);

if (uwRet != LOS_OK)

{

printf ("taskl create failed .\n");
return LOS_NOK;

/*Create task 2.*/
memset (&stTask2, 0, sizeof (TSK_INIT PARAM S));

stTask2.pfnTaskEntry = (TSK_ENTRY FUNC)Example SemTask2;
stTask2.pcName = "MutexTsk2";

stTask2.uwStackSize = OS_TSK DEFAULT STACK SIZE;
stTask2.usTaskPrio = (TASK PRIO TEST - 1);

uwRet = LOS_ TaskCreate (&g TestTaskID02, &stTask2);

if (uwRet != LOS_OK)

{
printf ("task2 create failed .\n");
return LOS_NOK;

/*Unlock task scheduling.*/
LOS_TaskUnlock () ;

uwRet = LOS_SemPost (g_usSemID) ;

/*Send the task to sleep mode for 40 ticks.*/
LOS_TaskDelay (40) ;

/*Delete the semaphore.*/
LOS_SemDelete (g_usSemID) ;

/*Delete task 1.*/

uwRet = LOS TaskDelete (g TestTaskIDO1) ;
if (uwRet != LOS_OK)

{

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 62
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

printf ("taskl delete failed .\n");
return LOS_NOK;

}

/*Delete task 2.*/

uwRet = LOS_ TaskDelete (g TestTaskIDO02) ;

if (uwRet != LOS_OK)

{
printf ("task2 delete failed .\n");
return LOS_NOK;

}

return LOS_OK;

Verification
The verification result is as follows:
Example SemTask2 try get sem g usSemID wait forever.
Example SemTaskl try get sem g usSemID,timeout 10 ticks.
Example SemTask2 get sem g _usSemID and then delay 20ticks .
Example SemTaskl timeout and try get sem g usSemID wait forever.
Example SemTask2 post sem g _usSemID.
Example SemTaskl wait forever and get sem g usSemID.
Complete Code

sample _sem.c

3.8 Time Management

3.8.1 Overview

Basic Concept

Time management provides time services to applications and uses system time as the
reference time.

System time is generated when an output pulse of a timer/counter triggers an interrupt, it is an
integral number or long integral number of ticks. The interval between consecutive output
pulses is a tick. The tick length is statically configured.

User time is measured in seconds or milliseconds, whereas CPU time is measured in ticks.
When a user initiates an operation to the operating system, such as suspending or delaying a
task, the time management module converts user time between seconds/milliseconds and
ticks.

The rule for conversion between ticks and seconds is user configurable.
The time management module of Huawei LiteOS provides time conversion, measurement,

and deferral to satisfy what users need.

Related Concepts
® (Cycle

Cycle is the minimal time unit of the operating system. The system clock speed is represented
in the form of cycles per second.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 63
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

® Tick

A tick is the basic time unit used in OS. The tick length is user configurable. Typically, it is
determined by the system clock speed and represented in the form of ticks per second.

3.8.2 Development Guidelines

Usage Scenarios

Read the topic when you want to learn more about system time and conversion between ticks

and seconds/milliseconds.

Functions

The time management module of Huawei LiteOS provides the following functions:

® Time conversion: converts the CPU runtime from ticks to milliseconds or microseconds

® Time measurement: measures the system runtime in ticks

Function Category

API

Description

Time conversion

LOS_MS2Tick

Converts milliseconds into
ticks

LOS_Tick2MS

Converts ticks into
milliseconds

Time measurement

LOS_CyclePerTickGet

Counts the number of cycles
per tick

LOS_TickCountGet

Measures the runtime in
ticks

Time Management Error Codes

Error codes are returned if errors occur during time conversion to facilitate fault locating.

No. | Definition Error Description Solution
Code

1 LOS_ERRNO_SYS | 0x0200001 | The passed-in Pass in a valid
PTR_NULL 0 pointer is null. pointer.

2 LOS_ERRNO _SYS | 0x02000011 | The system clock Configure valid
CLOCK _INVALID configuration is clock settings in the

invalid. los_config.h file.

3 LOS ERRNO SYS [0x0200001 | The error code is N/A
MAXNUMOFCORE | 2 not in-use.
S IS INVALID

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 64

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 3 Basic Kernel
No. | Definition Error Description Solution
Code
4 LOS _ERRNO_SYS | 0x0200001 | The error code is N/A
PERIERRCOREID I |3 not in-use.
S INVALID

5 LOS _ERRNO_SYS | 0x0200001 | The error code is N/A
HOOK IS FULL 4 not in-use.

Development Process

The typical time management development process is as follows:
1. Setthe LOSCFG BASE CORE TICK HW_TIME parameter in the los config.h file to
YES.

- Setthe LOSCFG BASE CORE TICK PER SECOND parameter in the
los_config.h file to a valid number of ticks per second.

2. Call the clock conversion APIL.
3. Gets the system runtime that is measured in ticks
- Calls the LOS_TickCountGet API to get the global g ullTickCount.

3.8.3 Precautions
® The system runtime (measured in ticks) can be acquired only after the system clock is
enabled.

® The time management module works only after the OS_SYS CLOCK in los_config.h is
enabled and the LOSCFG_BASE CORE TICK PER_SECOND of the Tick module is
specified.

® When measured in ticks, system runtime is not accurate, because it is not measured while
interrupts are disabled.

3.8.4 Programming Example

Example Description
The programming example will cover the following functions:

1. Time conversion: from milliseconds to ticks, or conversely

2. Time measurement and deferral: measures the number of cycles per second, the number
of ticks for which the system is running, and the number of ticks for which the deferral
lasts

Example Code

Prerequisites

® The LOSCFG BASE CORE TICK PER SECOND in the los config.h file is setto a
valid number of ticks per second.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 65
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

® The OS SYS CLOCK (unit: Hz) is set.

T

ime conversion:

VOID Example TransformTime (VOID)

{
UINT32 uwMs;
UINT32 uwTick;

uwTick = LOS_MS2Tick(10000);//Convert 10000 ms into ticks

printf ("uwTick = %d \n",uwTick);

uwMs= LOS_Tick2MS (100);//Convert 100 ticks into ms
printf ("uwMs = %d \n",uwMs) ;

Time measurement and deferral:

Verification

VOID Example GetTime (VOID)
{
UINT32 uwcyclePerTick;
UINT64 uwTickCount;
uwcyclePerTick = LOS CyclePerTickGet ();//Number of cycles per tick
if (0 != uwcyclePerTick)
{
dprintf ("LOS_CyclePerTickGet = %d \n", uwcyclePerTick);
}
uwTickCount = LOS TickCountGet ();//Get the count of ticks
if(0 !'= uwTickCount)
{
dprintf ("LOS TickCountGet = %d \n", (UINT32)uwTickCount) ;
}
LOS_TaskDelay (200);//200-tick deferral
uwTickCount = LOS TickCountGet ()
if(0 !'= uwTickCount)
{
dprintf ("LOS TickCountGet after delay = %d \n", (UINT32)uwTickCount) ;

The verification result is as follows:

Time conversion:

tick = 1000
uwMs = 1000

Time measurement and deferral:

LOS CyclePerTickGet = 495000

LOS_TickCountGet = 1
LOS TickCountGet after delay = 201

Complete Code

S

ample time.c

3.9 Software Timer

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 66
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

3.9.1 Overview

Basic Concept

A software timer is a timer simulated by software, and works based on system tick interrupts.
When a predefined number of ticks elapse, a software timer triggers a user-defined callback
function. The timer length is an integral number of ticks.

Only a limited number of hardware timers can be used due to hardware constraints. Software
timers can fulfill the demand for more timers, allowing you to create more timing services.

The software timer module supports the following functions:

Statically disable a software timer by macro
Create a software timer

Start a software timer

Stop a software timer

Delete a software timer

Measure the number of ticks that must elapse prior to expiry of a software timer

Operation Mechanism

Software timers are system resources and are allocated continuous memory at the
initialization of the timer module. The maximum number of software timers supported by the
operating system is defined by LOSCFG_BASE CORE SWTMR LIMIT in the los_config.h
file.

Software timers are placed in a queue and a triggered in the first in first out order. The
software timers with a short life cycle are placed at the beginning of queue so that they will be
triggered earlier than those with a longer life cycle.

The software timer length is measured in ticks. When a software timer is actuated, Huawei
LiteOS determines the timer expiry time based on the current system time (in ticks) and timer
length (in ticks) and adds the timer control structure to the global timing list.

When a tick interrupt occurs, the tick interrupt handler scans the global timing list for expired
timers. If such a timer is found, the timer is recorded.

After the tick interrupt handler finishes processing, the software timer task (a task exclusively
used for software timers) is assigned the highest priority and then woken up to call the

Timer_ Callback function (callback function that handles software timer expiry) of the expired
timer.

Software Timer States
® OS SWTMR STATUS UNUSED

While the timer module is being initialized, the operating system initializes all timer resources
in the system to OS_ SWTMR_STATUS UNUSED state.

® 0S SWTMR STATUS CREATED

If the LOS_SwtmrCreate API is called in OS_ SWTMR _STATUS UNUSED state or if the
LOS_SwtmrStop API is called after timer start-up, the timer switches to
OS_SWTMR_STATUS CREATED state.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 67

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

® OS SWTMR STATUS TICKING

If the LOS SwtmrStart API is called after the timer is created, the timer switches to
OS_SWTMR_STATUS TICKING state.

Software Timer Modes
Depending on timer mode, software timers are classified into three types:
® One-shot timer: The timer triggers the timer event only once after it is started. Then, the

timer is automatically deleted.

® Periodic timer: The timer triggers the timer event periodically until the timer is manually
stopped.

® One-shot timer: The timer differs from the other type of one-shot timer. It will not be
automatically deleted after it expires. Call the LOS _SwtmrDelete API to delete this type
of one-shot timer.

3.9.2 Development Guidelines

Usage Scenarios

® [fyou want to trigger a timer event only once, create a one-shot timer and define a
Timer_ Callback function for the timer. When the timer expires, the Timer_Callback
function will be executed.

® [fyou want to trigger a timer event periodically, create a periodic timer and define a
Timer_Callback function for the timer. When the timer expires, the Timer_Callback
function will be executed.

Functions

The software timer module provides the following functions. For details about the APIs, see
the API reference.

Function Category API Description

Timer creation and deletion | LOS_SwtmrCreate Creates a software timer
LOS_SwtmrDelete Deletes a software timer

Timer start and stop LOS_ SwtmrStart Starts a software timer
LOS_SwtmrStop Stops a software timer

Measurement of remaining | LOS_SwtmrTimeGet Measures the number of

ticks prior to timer expiry ticks that must elapse prior

to expiry of a software timer

Development Process

The typical software timer development process is as follows:

1. Set software timer.

- Set LOSCFG BASE CORE SWTMR and LOSCFG BASE IPC QUEUE to
YES.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 68
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

S v kW

Set LOSCFG_BASE CORE _SWTMR_LIMIT to the maximum number of
software timers supported by the operating system.

Set OS_ SWTMR _HANDLE QUEUE SIZE to the maximum size of the software

timer queue.

Call the LOS_SwtmrCreate API to create a software timer.

Creates a software timer that has a user-defined timer length, Timer Callback
function, and trigger mode; returns the software timer handler after successful

creation.

Returns the function execution result (successful or failed).

Call the LOS_SwtmrStart API to start a software timer.

Call the LOS_SwtmrTimeGet API to get left number of Ticks of software timer.

Call the LOS_SwtmrStop API to stop a software timer.
Call the LOS_SwtmrDelete API to delete a software timer.

Software Timer Error Codes

Error codes are returned if errors occur during software timer operations, such as creating,
deleting, suspending, or restarting a software timer, to facilitate fault locating.

No. | Definition Error Description Solution
Code
1 LOS ERRNO SWT | 0x0200030 | The callback Define the callback
MR _PTR _NULL 0 function of the function of the
software timer is software timer.
null.
2 LOS _ERRNO_SWT | 0x0200030 [The timer length of | Redefine the timer
MR _INTERVAL NO |1 the software timer length.
T SUITED is 0.
3 LOS _ERRNO _SWT | 0x0200030 | The mode of the Modify the mode of
MR MODE INVALI |2 software timer is the software timer.
D incorrect. Range: [0, 2].
4 LOS_ERRNO _SWT | 0x0200030 | The passed-in Pass in a non-null
MR RET PTR NUL |3 pointer to the pointer.
L software timer ID is
null.
5 LOS_ERRNO_SWT | 0x0200030 | The number of Redefine the
MR_MAXSIZE 4 software timers maximum number of
exceeds the software timers, or
maximum value. wait until a software
timer releases
resources.
6 LOS ERRNO SWT [0x0200030 | The passed-in Pass in a correct
MR ID INVALID 5 software timer ID is | software timer ID.
incorrect.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

69

LiteOS

Developer Guide 3 Basic Kernel

No. | Definition Error Description Solution

Code

7 LOS _ERRNO_SWT | 0x0200030 | No software timer Create a software
MR NOT CREATE |6 is created. timer.

D

8 LOS _ERRNO_SWT | 0x0200030 [The memory space | Apply for a larger
MR NO MEMORY |7 is insufficient for memory space for the

creating the linked | software timer.
list of a software
timer.

9 LOS _ERRNO _SWT | 0x0200030 | The maximum Redefine the
MR MAXSIZE INV |8 number of software | maximum number of
ALID timers is incorrect. | software timers.

10 LOS_ERRNO SWT | 0x0200030 | A timer is used Modify the source
MR HWI ACTIVE 9 when the CPU is code to ensure that

processing no timer is used
interrupts. when the CPU is
processing interrupts.

11 LOS_ERRNO _SWT | 0x0200030a | The memory space | Expand the memory
MR _HANDLER PO allocated to the space.

OL NO MEM membox is
insufficient.

12 LOS ERRNO_SWT | 0x0200030 [The software timer | Check whether the
MR _QUEUE CREA | b queue fails to be memory space is
TE FAILED created. sufficient for creating

the queue.

13 LOS ERRNO SWT [0x0200030c | The software timer | Allocate sufficient
MR _TASK CREATE task fails to be memory space for
_FAILED created. creating the software

timer task.

14 LOS_ERRNO_SWT | 0x0200030 | The software timer | Start the software
MR NOT STARTED | d is not started. timer.

15 LOS ERRNO SWT | 0x0200030¢ | The software timer | Check the software
MR _STATUS INVA status is incorrect. timer status.

LID

16 LOS ERRNO SWT | Null The error code is N/A
MR _SORTLIST NU not in use.

LL

17 LOS _ERRNO_SWT | 0x0200031 | The passed-in Pass in a non-null
MR _TICK PTR NU |0 pointer used for pointer.

LL obtaining the
number of software
timer timeout ticks
is null.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

70

LiteOS
Developer Guide 3 Basic Kernel

An error code is a 32-bit storage unit. Bit 24 to bit 31 indicate an error level; bit 16 to bit 23
indicate an error code flag; bit 8 to bit 15 indicate the ID of the module that reports the error
code; bit 0 to bit 7 indicate an error code. The following is the example of an error code:

#define LOS ERRNO_OS NORMAL (MID, ERRNO) \

(LOS_ERRTYPE NORMAL | LOS ERRNO OS ID | ((UINT32) (MID) << 8) | (ERRNO))
LOS_ERRTYPE NORMAL: Define the error level as critical

LOS_ERRNO OS ID: OS error code flag.

MID: OS_MOUDLE ID

ERRNO: error ID number

For example:

#define LOS ERRNO SWTMR PTR NULL \
LOS_ERRNO_OS_ERROR (LOS_MOD_SWTMR, 0x00)

3.9.3 Precautions

® Limit the number of operations contained in the callback function of a software timer.
Do not use the API or perform any operation that may suspend or block tasks.

® Software timers are placed in a queue. A task is used exclusively to convey software
timer information. The priority of a task in a software timer is set to 0, which is not
allowed to be modified.

® The maximum number of software timer resources is not equal to the total number of
software timer resources available to users. When a software timer occupies a software
timer resource, the number of available software timer resources is decreased by 1.

® After the callback function of a one-shot software timer is executed, the software timer is
automatically deleted and the resources allocated to the timer are reclaimed.

® A one-shot software timer that will not be automatically deleted after expiration needs to
be deleted by calling the LOS SwtmrDelete API. Resources allocated to the timer are
reclaimed to avoid resource leaks.

3.9.4 Programming Example

Example Description

In the programming example, the following steps will be performed:

1. Create, delete, start, stop or restart a software timer.

2. Use a one-shot software timer and a periodical software timer.

Example Code

Prerequisites

® The LOSCFG BASE CORE SWTMR parameter in the los_config.h file is set to YES.

® The LOSCFG_BASE CORE SWTMR _LIMIT parameter in the los_config.h file is set
to the maximum number of software timers supported by the operating system.

® The OS SWTMR HANDLE QUEUE SIZE parameter in the los_config.h file is set to
the maximum size of the software timer queue.

The code is as follows:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 71
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

void Timerl Callback(uint32 t arg); // Callback function
void Timer2 Callback(uint32_t arg);

UINT32 g_timercountl = 0;
UINT32 g_timercount2 0;

void Timerl Callback(uint32 t arg)//Callback function 1
{
unsigned long tick lastl;
g_timercountl++;
tick lastl=(UINT32)LOS_ TickCountGet ();//Acquire the current number of ticks
dprintf ("g timercountl=%d\n",g timercountl);
dprintf ("tick lastl=%d\n",tick lastl);

void Timer2 Callback(uint32 t arg)//Callback function 2
{

unsigned long tick last2;

tick last2=(UINT32)LOS_TickCountGet () ;

g_timercount2 ++;

dprintf ("g timercount2=%d\n",g timercount2);

dprintf ("tick last2=%d\n",tick last2);

void Timer example (void)
{

UINT16 idl;

UINT16 id2;// timer id

UINT32 uwTick;

/*Create a one-shot software timer that will execute callback function 1 when
the 1000-tick life cycle expires.*/

LOS_SwtmrCreate (1000, LOS_SWTMR MODE ONCE,Timerl Callback, &idl,1);

/*Create a periodic software timer that will execute callback function 2 at a
regular interval of 100 ticks.*/

LOS_SwtmrCreate (100, LOS_SWTMR_MODE_PERIOD, TimerZ_Callback, &id2,1);

dprintf ("create Timerl success\n");

LOS_SwtmrStart (idl); //Start the one-shot software timer.
dprintf ("start Timerl sucess\n");

LOS_TaskDelay(200);//200-tick delay

LOS_SwtmrTimeGet (idl, &uwTick);//Get the number of ticks that must elapse
before expiry of the one-shot software timer.

dprintf ("uwTick =%d\n",uwTick) ;

LOS_SwtmrStop (idl);//Stop the software timer.
dprintf ("stop Timerl sucess\n");

LOS_SwtmrStart (idl);

LOS_TaskDelay (1000) ;

LOS_SwtmrDelete (idl);//Delete the software timer.
dprintf ("delete Timerl sucess\n");

LOS_SwtmrStart (id2);//Start the periodic software timer.
dprintf ("start Timer2\n");

LOS_TaskDelay (1000) ;
LOS_SwtmrStop (id2) ;
LOS_SwtmrDelete (id2) ;

Verification

The verification result is as follows:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 72
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

werzion Huawei LitelSTDVIOORODICOOBDZS
build data @ Jul 27 2015 17:00:5%9

K O AR R SR R SRR R ok
dist:]

=== Test siart=--
create Timerl suceess
start Timerl sucess
uwTick =500
ztop Timerl sucess
g_timercount]=]
tiek lastl=1201
delete Timerl sucess
start Timer2
g timercountZ=1
tiele 1axt2=1301
g_timercountZ=2
tick lastZ=1401
g_timercount2=3
tick lazt2=1501
g timercountZ=4
tiek lastZ2=1601
g_timercounti=5
tick_last2=1T01
g_timercountZ=6
tielk last2=1801
2_timereountZ=T
tick last2=1901
g_timercountZ=§
tiele last2=2001
Eg_timercount?=9
tielk last2=2101
z_timercountZ=10
ticlk_lastE=2201

=== Tezt End ===

Complete Code

sample Timer.c

3.10 Error Handling

3.10.1 Overview

Basic Concept

In the event of code errors, the operating system calls APIs of the error handling module to
report error information and calls user-defined hook functions to handle the errors.

Internal OS error codes cannot be conveyed via APIs. A solution to address this problem is
reporting the error codes to the error handling module and processing them with the aid of
user-defined hook functions. If the OS reports a fatal error, it initiates exception management

to keep a record of what happened at the time of the fatal error.

Through error handling, invalid user input can be reported and controlled to avoid possible

program crashes.

Operation Mechanism

Error handling is a mechanism to control invalid inputs into programs. By error handling, we
can control and prompt illegal input from users to prevent the program from crashing. When a

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

73

LiteOS
Developer Guide 3 Basic Kernel

program runs into a problem, an error code, is displayed and the error handler (if any) is
executed to prevent the program from crashing.

Figure 3-9 Error handling

ey
< VL. L
il %%@
| Fid e
Error code \
ErrNo
Err handle

OK

F 1
Display the error code
and error handling result

A

Execute the error
handler

Program error

3.10.2 Development Guidelines

Functions

The error handling module provides the following functions:

Function API Description

Category

Error handling LOS_ErrHandle Handles the error according to an error
handler

3.10.3 Precautions

None.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 74
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

3.10.4 Programming Example

Example Description

The programming example will cover the following functions:

1. Executing an error handler

Example Code

The code is as follows:

extern USER_ERR FUNC_S g_stUserEkrrkFunc;
void *err handler (CHAR *pcFileName, UINT32 uwLineNo,
UINT32 uwErrorNo,UINT32 uwParalen,VOID *pPara)
{
printf ("err handel ok\n");
}
UINT32 Example ErrCaseEntry(VOID)
{
/*Execute an error handler.*/
LOS ErrHandle (NULL, 0,0,0, NULL);
return LOS_OK;

Verification
The verification result is as follows:

= Test start—
seterrno success

errno address:0xS3045T6S
err handel ol

-—= Te=st End ——-

Complete Code

sample_err.c

3.11 Doubly Linked List

3.11.1 Overview

Basic Concept

A doubly linked list is a linked data structure that consists of a set of sequentially linked
records called nodes. Each node in a doubly linked list contains two pointers that reference to
the previous and to the next node in the sequence of nodes. The head of the doubly linked list
is deterministic and immediately accessible.

Any node of a doubly linked list, once obtained, can be used to begin a new traversal of the
list in either direction (towards the beginning or end) from the given node. This allows a lot of
data to be quickly traversed. Because of the symmetric nature of a doubly linked list, nodes
can easily be inserted into or removed from the list.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 75
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

3.11.2 Development Guidelines

Functions

The doubly linked list module provides the following functions:

Function API Description

Category

List LOS InitList Initializes a doubly linked list
initialization

Node LOS ListAdd Inserts a node to a doubly linked list
insertion

LOS_ListTaillnsert Inserts a node to the tail of a doubly linked list

Node LOS ListHeadInsert | Inserts a node to the head of a doubly linked list
insertion

Node LOS_ListDelete Deletes a node from a doubly linked list
deletion

List status LOS_ListEmpty Determines whether a doubly linked list is empty
determinatio

n

Node LOS_ListDellnit Deletes a node from a doubly linked list
?eletlon and Uses the node to initialize a doubly linked list
ist

initialization

Development Process

The doubly linked list development process is as follows:

Call the LOS_InitList API to initialize a doubly linked list.

Call the LOS_ListAdd API to insert a node into the list.

Call the LOS_ListTaillnsert API to insert a node into the tail of the list.

Call the LOS_ListDelete API to delete a node from the list.

Call the LOS_ListEmpty API to determine whether the doubly linked list is empty.

Call the LOS_ListDellnit API to delete a node and use the node to initialize the doubly
linked list.

A o e

3.11.3 Precautions

® While inserting or deleting a node from a doubly linked list, ensure that the direction of
pointers of adjacent nodes is correct.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 76
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 3 Basic Kernel

3.11.4 Programming Example

Example Description

Before using a doubly linked list, ensure that sufficient memory space is available to store the
list. After deleting a node from the list, do not forget to free up the memory occupied by the
node.

In the programming example, the following steps will be performed:

1. Initialize a doubly linked list.
2. Insert a node into the list.

3. Delete a node from the list.
4

Check whether the insertion and deletion was successful.

Example Code

The code is as follows:

#include "stdio.h"
#include "los list.h"

#ifdef _ cplusplus

#if cplusplus

extern "C" {

#endif /* cpluscplus */
#endif /* cpluscplus */

static UINT32 DLlist sample (VOID)

{
LOS DL LIST DLlist = {NULL,NULL};
LOS DL LIST DL1istNode0Ol = {NULL,NULL};
LOS DL LIST DL1istNode02 = {NULL,NULL};
LOS DL LIST DL1istNode03 = {NULL,NULL};

PRINTK ("Initial head\n");
LOS ListInit (&DL1list);

LOS ListAdd (&DLlist, &DL1istNode01l) ;
if (DLlistNodeOl.pstNext == &DLlist && DLlistNodeOl.pstPrev == &DLlist)
{
PRINTK ("Add DLlistNodeOl success \n");
}

LOS ListTailInsert (&DL1list, &DL1istNode02) ;
if (DLlistNode02.pstNext == &DLlist && DLlistNode0O2.pstPrev == &DL1listNodeOl)
{
PRINTK ("Tail insert DLlistNode02 success \n");
}

LOS ListHeadInsert (&DL1istNode02, &DL1istNode03) ;
if (DLlistNodeO03.pstNext == &DLlist && DLl1istNodeO3.pstPrev == &DL1listNode02)
{
PRINTK ("Head insert DLlistNode0O3 success \n");
}

LOS ListDelInit (&DL1istNode03) ;
LOS ListDelete (&DL1listNode01) ;
LOS ListDelete (&DL1listNode02) ;

if (LOS_ListEmpty (&DLlist))
{
PRINTK ("Delete success \n");

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 77
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

3 Basic Kernel

}

return LOS_OK;
}

#ifdef _ cplusplus

#if cplusplus

}

#endif /* cpluscplus */
#endif /* cpluscplus */

Verification

The verification result is as follows:

Initial head

Add DLlistNodeOl success

Tail insert DL1listNode0O2 success
Head insert DLlistNodeO3 success
Delete success

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

78

LiteOS
Developer Guide 4 Extended Kernel

Extended Kernel

About This Chapter

4.1 Dynamic Loading

4.2 Scatter Loading

4.3 Exception Management

4.4 CPU Utilization Percentage
4.5 Linux Adaption

4.6 C++ Support

4.7 MMU

4.8 Atomic Operation

4.9 Run-Stop

4.1 Dynamic Loading

4.1.1 Overview

Basic Concept
Dynamic loading is a program loading technology.

Static linking is to link all module files of a program into an executable file, so that these files
can be loaded into the memory as a whole. Dynamic loading enables developers to compile
each module of a program into an independent file for dynamic loading into the memory,
instead of linking all modules.

Static linking links all module files of a program together and loads them into memory at one
time, featuring fast code loading. However, when a large program is involved and the modules
in it need to be frequently changed and upgraded, static linking might waste the memory and
disk space and make module upgrade difficult.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 79
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

Dynamic loading is better than static linking in this scenario. An external module can be
dynamically loaded or unloaded as required, helping share public code and smoothly upgrade
modules.

In Huawei LiteOS, two file formats are supported: OBJ and SO.

File systems: FAT, JFF52, and
YAFFS2

Execute functions

— Dynamic linker defined in shared objects.

SO files (or OBJ files) and the bin system image file required for dynamic loading are used
together.

Related Concept
Symbol Tables

Symbol tables are arrays that record symbol names and the address information of the
symbols in the memory. Symbol tables are loaded to the symbol management structure of the
dynamic loading module when the dynamic linker is initialized. When a symbol needs to be
relocated during module loading, the dynamic linker obtains the symbol address by searching
the symbol management structure.

4.1.2 Development Guidelines

Functions
API Description
LOS_LdDestroy Destroys a dynamic loading module.
LOS_SolLoad Dynamically loads an so module.
LOS_ObjLoad Dynamically loads an obj module.
LOS_FindSymByName Searches for a symbol address in a module

or symbol table.

LOS_ModuleUnload Unloads a module.
LOS_PathAdd Adds a module search path.
LOS DynParamReg Sets dynamic loading parameters.

Development Process

The implementation of dynamic loading involves the following steps:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 80
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

1. Preparing the Compilation Environment

2. Preparing the .0 and .so Files and Compiling the System Image
3. Applying Dynamic Loading
4

Preparing the System Environment

Preparing the Compilation Environment

Step 1

Step 2

Add compilation options of the .0 module and the .so module.

® Add -mlong-calls -nostdlib -fno-PIC to the compilation options of .0 modules.

® Add mlong-calls -nostdlib -fPIC -shared to the compilation options of .so modules.
(Lnote

Determine whether to use the following compilation option based on your needs.
-z max-page-size=value

This compilation option is used to set loadable program segments to be aligned to value. This
compilation option helps reduce the blank areas required for the alignment of the virtual addresses of
adjacent loadable segments.

If this compilation option is not used, the default alignment is 0x10000.
(Onote

To implement the dynamic loading in an IP camera (IPC), the start addresses of all nodal regions of the
LD _SHT PROGBITS and LD_SHT_NOBITS types in the module files must be on the boundary of
four bytes. Otherwise, the modules will not be loaded.

The following is an example of adding compilation options of .0 and .so modules:

RM = -rm -rf

CC = arm-hisiv500-linux-gcc

SRCS = $(wildcard *.c)

OBJS = $(patsubst %$.c,%.0,$(SRCS))
SOS = $(patsubst %$.c,%.s0,$(SRCS))
all: $(S0Os)

$(OBJS): %.0 : %.cC

@$(CC) -mlong-calls -nostdlib -c $< -o $@
$(S0S): %$.s0 : %.cC

@$(CC) -mlong-calls -nostdlib $< -fPIC -shared -o $@
clean:

@S (RM) $(S0S) $(OBJS)
.PHONY: all clean

Compile the system image.

The makefile used to compile the bin system image file must include the config.mk file under
the root directory. The LITEOS CFLAGS or the LITEOS CXXFLAGS compilation option
in the makefile should be used. The code is similar to the following:

LITEOSTOPDIR ?= ../..
SAMPLE OUT = .

include $(LITEOSTOPDIR)/config.mk
RM = -rm -rf

LITEOS_LIBDEPS := --start-group $(LITEOS LIBDEP) --end-group

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 81

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

SRCS = $(wildcard sample.c)
OBJS = $ (patsubst %.c,$(SAMPLE OUT)/%.0,$ (SRCS))
all: $(OBJS)

clean:
@$(RM) *.o sample *.bin *.map *.asm

$(OBJS) : $(SAMPLE OUT)/%.0 : %.cC
$(CC) $(LITEOS_CFLAGS) -c $< -0 S$@
$(LD) $(LITEOS LDFLAGS) -uinit jffspar param --gc-sections -Map=$ (SAMPLE OUT) /
sample.map -o $(SAMPLE_OUT)/sample ./$@ $(LITEOS_LIBDEPS) $(LITEOS_TABLES_LDFLAGS)
$ (OBJCOPY) -0 binary $(SAMPLE OUT)/sample $(SAMPLE OUT)/sample.bin
$ (OBJDUMP) -d $(SAMPLE_OUT)/Sample >$(SAMPLE_OUT)/sample.asm

—End

Preparing the .0 and .so Files and Compiling the System Image

Step 1

Step 2

Step 3

Perform the following steps to compile the system image:

Compile .0 modules and .so modules and copy the .0 and .so files required for system running
to a directory, such as the following directory:

/home/wmin/customer/out/so
[(LnoTe

® Ifa.so needs to call functions in b.so, or a.so uses data in b.so, a.so depends on b.so.

® a.so depends on b.so, and b.sob.so needs to be automatically loaded when a.so is being loaded, b.so
should be a compilation parameter during the compilation of a.so. If b.so is not a compilation
parameter during the loading of a.so, load b.so before loading a.so.

Access the Huawei_LiteOS/tools/scripts/dynload_tools directory and run the sym.sh script
as follows:

$./sym.sh /home/wmin/customer/out/so
[(noTe

® Pass in the absolute path to the directory that stores the .0 and .so files required for system running
to the sym.sh script.

® fthe required .0 and .so files are updated, run the sym.sh script again. This script extracts all system
symbols of the .0 and .so files to be loaded. The compiler will calculate the addresses of those
symbols when compiling the system image.

® Run this command under the Huawei_LiteOS/tools/scripts/dynload_tools directory.

Compile the .bin system image file. For example, if the .bin file is saved in the /home/wmin/
customer/out/bin/ directory, the sample image file and the sample.bin file to be burnt into
the Flash memory are generated in this directory after compilation.

(MnoTe

If the .0 and .so files to be loaded contain undefined external symbols, which are neither defined in the .o
and .so files nor valid external symbols, an error message will be prompted during the compilation of
the .bin system image file. Troubleshoot the error to ensure the correct compilation.

—End

Applying Dynamic Loading

Step 1

Specify the loading policy for SO files.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 82

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

® [fyou are loading OBJ files, ignore this step.

® In various application scenarios, SO files may be stored in storage media in ZIP or
NOZIP format. Operations of reading and writing into ZIP files differ from those for
NOZIP files. Therefore, the loading policy of SO files needs to be specified before the
initialization of the dynamic loading module.

DYNLOAD PARAM S stDynloadParam = {ZIP}; //Specify the ZIP or NOZIP loading policy.

LOS_DynParamReg (&stDynloadParam) ;

The LOS_DynParamReg() function only specifies the loading policy. The specified loading
policy will be adopted during subsequent loading of SO files.

The ZIP loading policy must be adopted for so files in the ZIP format. Common SO files can
be successfully loaded when either one policy is adopted, and the NOZIP policy is
recommended. If no policy is specified, the NOZIP policy is adopted by default.

MnoTe

NOZIP policy: Common so files can be read through multiple calls to Iseek() and read(). To read a so
file, the size of the loadable segment is first calculated based on the SegmentHeader of the file. Then
memory of the same size is allocated to the segment, and the segment is loaded into memory. In this
way, a small segment of the file is read each time without wasting memory.

ZIP policy: A ZIP file must be loaded into memory (mem1) as a whole. However, the size of the
loadable segment of the file is unknown during the first reading, indicating that memory (mem?2) needs
to be then reallocated to the loadable segment. mem?2 also contains all information required for dynamic
loading as mem1 does, and mem1 will not be used for dynamic loading. Therefore, the coexistence of
mem! and mem?2 will cause memory waste and overhigh peak memory usage. To solve these problems,
the ZIP policy is adopted, and the ZIP file are read for twice. At the first time, the size of the memory
required for the loadable segment is calculated, after which the memory allocated to the calculation is
immediately released. At the second time, the loadable segment is loaded into memory. In this way, the
ZIP policy is used to avoid overhigh peak memory usage at the cost of using one more instruction.

Step 2 Load a module.

® The dynamic loading module of an IP camera (IPC) supports the dynamic loading of .o
modules and .so modules. Call the LOS_ObjLoad API to dynamically load .obj files.

if ((handle = LOS ObjLoad("/yaffs/bin/dynload/foo.o")) == NULL) {
printf ("load module ERROR!!!!!!\n")
return 1;

}
® (Call the LOS_SoLoad API to dynamically load .so files.

if ((handle = LOS_SoLoad("/yaffs/bin/dynload/foo.so")) == NULL) {
printf ("load module ERROR!!!!!!\n");
return 1;

}

When module A of an .so file depends on module B, and the dependency is specified
with B.so being a compilation parameter during the compilation of A.so, module B will
be automatically loaded during the loading of module A. If the dependency is not
specifed, ensure that module B has been successfully loaded during the loading of
module A.

Step 3 Obtain the address of a symbol.

® Search for a symbol in a specified module.

When searching for a symbol in a specified module, call the LOS_FindSymByName API
and set the first argument value to the handle of the module in which the symbol is
searched for.

if ((ptr_magic = LOS FindSymByName (handle, "os symbol table")) == NULL) {

printf ("symbol not found\n");
return 1;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 83

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

® Search for a symbol in the global symbol table.

When searching for a symbol in the global symbol table (OS modules including your
modules and other user modules), call the LOS FindSymByName API and set the first
argument value to NULL.

if ((pFunTestCase0 = LOS FindSymByName (NULL, "printf")) == NULL) ({
printf ("symbol not found\n");
return 1;

Step 4 Use the obtained symbol address: LOS_FindSymByName returns a symbol address (VOID
*pointer). You can change the type of the symbol that is located at this address for different
use. The following examples describe the use of two types of symbols:

® Integer symbol (data symbol)
test.c needs to be loaded, and the global variable g uwTest = 0 is available.

Run the following code to obtain the address of g uwTest:

const char *g pscOsOSSymtblFilePath = "/yaffs/bin/dynload/test.so";
UINT32 * g uwTestPtr = NULL;

INT8 *pPtr = (INT8 *)NULL;

if ((pOSSymtblHandler = LOS_SoLoad(g_pscOsOSSymtblFilePath)) == NULL) {
return LOS_NOK;

}

if ((pPtr = LOS_FindSymByName (pOSSymtblHandler, g uwTest)) == NULL) {
printf ("os_symtbl not found\n");
return LOS_NOK;

}

g uwTest = (UINT32 *)pPtr;/* Forcibly change the pointer type to a real

pointer type */

® Function symbol

The test 0 function expecting no arguments and the test 2 function expecting two
arguments are defined in foo.c. foo.0 can be generated by compiling foo.c. The following
code shows how to obtain and call the functions in the foo.o module in demo.c.

foo.c:
int test 0(void) { return 0; }
int test 2(int i, int j) { return 0; }
demo.c
typedef unsigned int (* TST CASE FUNC) ();/* Declaration of the type of the
pointer to a function that expects no parameters */
typedef unsigned int (* TST CASE FUNC1) (UINT32); /* Declaration of the type
of the pointer to a function that expects one parameter */
typedef unsigned int (* TST CASE FUNC2) (UINT32, UINT32); /* Declaration of
the type of the pointer to a function that expects two parameters */
TST CASE FUNC pFunTestCase0 = NULL;/* Definition of a pointer to a function
*/
TST CASE FUNC2 pFunTestCase2 = NULL;
handle = LOS ObjLoad("/yaffs/bin/dynload/foo.o");
pFunTestCase0 = NULL;
pFunTestCase0 = LOS FindSymByName (handle, "test 0");
if (pFunTestCase0 == NULL) {
printf ("can not find the function name\n");
return 1;
}
uwRet = pFunTestCaseO();
pFunTestCase2 = NULL;
pFunTestCase2 = LOS FindSymByName (NULL, "test 2");
if (pFunTestCase2 == NULL) {
printf ("can not find the function name\n");
return 1;
}
uwRet = pFunTestCase2 (42, 57);

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 84
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Step 5

Step 6

Step 7

Unload the module.

Call the LOS_ModuleUnload API to unload a module and use the handle of the module to be
unloaded as the input parameter. Call the LOS_ModuleUnload API to unload an .obj file
handle or an .so file handle that has been loaded.
uwRet = LOS ModuleUnload (handle) ;
if (uwRet != LOS OK) {
printf ("unload module failed");

return 1;

}
Destroy the dynamic loading module.

Call the LOS_LdDestroy API to destroy the dynamic loading module when it is no longer in
need.

MnoTe

All modules that have been loaded will be automatically unloaded when the dynamic loading module is
destroyed.

LOS_LdDestroy () ;
(LnoTe

The dynamic loading module should be destroyed when services no longer need it.
Use relative paths.

If you want to use relative paths, specifically, if you use mechanisms similar to environment
variables, call the LOS_PathAdd API to add the relative paths.

uwRet = LOS PathAdd("/yaffs/bin/dynload");

if (uwRet != LOS OK) {
printf ("add relative path failed");
return 1;

}

After the relative paths are added, pass in file names instead of absolute paths when you call
the LOS_SoLoad and LOS_ObjLoad APIs. Then the modules with the passed-in file names
will be automatically located in the added relative paths.

If the passed-in multiple paths contain modules with the same file name, the module in the
first passed-in path will be loaded.

MnoTe

® A relative path can be used only after it is added by calling the LOS PathAdd API.
® You can add multiple relative paths by calling the LOS PathAdd API for multiple times.

—End

Preparing the System Environment

Step 1

SO files (or OBIJ files) and the .bin system image file are used together.
The SO files (or OBJ files) must be stored in file systems such as JFFS2, YAFFS, and FAT.
Perform the following steps:

Burn the .bin system image file to the Flash. This image does not enable the dynamic loading
function.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 85

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

Step 2 If the SO files (or OBJ files) are stored on a hot-swappable SD card, update the SO files (or
OBJ files) to a specified path on the SD card.

Step 3 If the SO files (or OBJ files) are stored in JFFS2 or YAFFS, update the SO files (or OBJ files)
in the following ways:
® Burn the file system image.

® After Huawei LiteOS is started, run the tftp command similar to the following to

download the SO files (or OBJ files) and the elf_symbol.so file:
tftp -g -1 /yaffsO/foo.so -r foo.so 10.67.211.235

Step 4 Enable dynamic loading.

——End

Shell Debugging

Some commands related to dynamic loading are encapsulated in Shell for debugging.
For details on Shell commands, see Command Reference.
® Loading a Module

Shell command: mopen

Huawei LiteOS# mopen /yaffs/bin/dynload/foo.o
module handle: 0x80391928
Huawei LiteOS#

MnoTe

The path to the module to be loaded must be an absolute path.
® Searching for a Symbol

Shell command: findsym

Huaweil LiteOS# findsym 0 printf

symbol address:0x8004500c

Huawei LiteOS#
Huawei LiteOS# findsym 0x80391928 test 0
symbol address:0x8030f241

Huawei LiteOS#

® (Calling a Symbol

Shell command: call

Huawei LiteOS# call 0x8030f241
test 0
Huawei LiteOS#

® Unloading a Module
Shell command: mclose

Huaweil LiteOS# mclose 0x80391928
Huawei LiteOS#

® Destroying a Dynamic Loading Module
Shell command: 1ddrop

Huawei LiteOS# lddrop
Huawei LiteOS#

MnoTe

If no errors are returned, the dynamic linker is successfully destroyed.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 86
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

4.1.3 Precautions

® The -mlong-calls -nostdlib -fho-PIC option needs to be added to the compilation options
of .o modules.

® The -mlong-calls -nostdlib -fPIC -shared option needs to be added to the compilation
options of .so modules.

® Before the compilation of the system image, the required .o and .so files must be
available to ensure that the external symbols used by the files have been integrated into
the system image when the image file is being compiled.

® Huawei LiteOS dynamic loading requires that the start addresses of
LD SHT PROGBITS and LD _SHT NOBITS nodal regions in the module file must be
aligned by four bytes. Otherwise, the module will not be loaded.

® While loading a library file, once Huawei LiteOS detects that the external symbols
referenced by this file are repeatly defined in multiple modules that have no dependency
relationships with this file, the relocation of the symbol references will be rejected. Then
the library file fails to be loaded. Ensure that no symbols (variables or functions) that are
repeatly defined exist in the library file to be loaded.

® Ensure that the sources of the files to be loaded are reliable and secure.

® Problematic loaded files will result in problems including but not limited to device
damage, data leakage, and data tampering, for which Huawei assumes no responsibility.

® Do not load files from high-risk media such as SD cards or USB flash drives. If such file
loading is necessary, ensure that the files are reliable. Huawei is not liable for any loss or
problems caused thereby.

4.1.4 Programming Example

Example Description

The test 0 function expecting no parameters and the test 2 function expecting two parameters
are defined in foo.c. foo.0 can be generated by compiling foo.c. The following code shows
how to obtain and call the functions in the foo.o module in demo.c.

Example Code
The code is as follows:
foo.c:
int test 0(void) { printf("test 0\n"); return 0; }
int test 2(int i, int j) { printf("test 2: %d %d\n", i, j); return 0; }
demo.c:
typedef int (* TST CASE FUNC) (); /* Declaration of the type of the pointer to a

function that expects no parameters */
typedef int (* TST CASE FUNC1) (UINT32); /* Declaration of the type of the
pointer to a function that expects one parameter */
typedef int (* TST CASE FUNC2) (UINT32, UINT32); /* Declaration of the type of
the pointer to a function that expects two parameters */
unsigned int uwRet;
TST CASE_FUNC pFunTestCase0 = NULL;/* Definition of a pointer to a function */
TST_CASE_FUNC2 pFunTestCase2 = NULL;
handle = LOS ObjLoad("/yaffs/bin/dynload/foo.0");
pFunTestCase0 = NULL;
pFunTestCase0 = LOS_FindSymByName (handle, "test 0");
if (pFunTestCase(O == NULL) {
printf ("can not find the function name\n");
return 1;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 87
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
}
uwRet = pFunTestCaseO(); /* Call the pointer to this function */
pFunTestCase2 = NULL;
pFunTestCase2 = LOS_FindSymByName (NULL, "test 2");
if (pFunTestCase2 == NULL) {
printf ("can not find the function name\n");
return 1;
}
uwRet = pFunTestCase2 (42, 57); /* Call the pointer to this function */
uwRet = LOS_ModuleUnload (handle) ;
if (uwRet != LOS OK) {
printf ("unload module failed");
return 1;
}
uwRet = LOS_LD Destroy();
if (uwRet != LOS OK) {
printf ("destroy dynamic loader failed");
return 1;
}
Verification
The verification result is as follows:
Huawei LiteOS#
R R R R R
R R R R I
test 0
test 2:42 57
R R R
R R R R
Complete Code

4.2 Scatter

sample foo.c

sample Dynamic_loading.c

Loading

4.2.1 Overview

Basic Concept

Scatter loading is a technology that achieves fast boot of specified code. It shortens the time
between the boot of an OS and the execution of specified code by preferentially loading
specified code into memory. In this way, scatter loading can be used to fast boot key services.

An embedded OS loads image files on the flash memory into memory through uboot. Image
files are probably large and the speed of flash reading is limited. Therefore, the requirements
on the boot speed of time-sensitive services probably cannot be met if all images are executed
after they are loaded.

Scatter loading enables the fast boot of key services by preferentially loading and executing
some images containing time-sensitive services.

Scatter Loading in Huawei LiteOS

The scatter loading in Huawei LiteOS consists of two phases. Images of key services are
loaded into memory through uboot and executed in the first phase, and the remaining images

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 88

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

are loaded into memory and executed in the second phase. By properly organizing image
loading, loading part of the images containing key services in the first phase is faster than
loading all images, which shortens the time between the boot of an OS and the running of key
services.

On Huawei LiteOS implemented on an IP camera (IPC), it takes 1s from powering on camera
to starting preview, far shorter than the time (3s to 4.5s) taken on Linux because the scatter
loading technology is applied.

Operation Mechanism

Scatter loading is used to preferentially load and execute the time-sensitive services by putting
the data and code segments related to these services at the front-end of image files and
loading the images at the front-end in the first phase of scatter loading, which enables time-
sensitive services to run within the shortest time.

After these services are executed, the scatter loading API is called in the code used in the first
phase to load the rest images and run the services specified by the rest images.

Figure 4-1 Scatter loading process

uboot starts.

Load the key services from the flash memory]

First loading phase into memory.

Run the key
services.

Load the non-key services from the flash]

Second loading phase memory into memory.

Run the non-key
services.

The internal conceptual diagram of scatter loading is shown in figure 2.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 89

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

Figure 4-2 Internal conceptual diagram of scatter loading

Start address of
memary

Key services

Key services |Non-key services

S

v
Image files
o First loading phase o Second lpading phase

Scatter loading enables the key services to be loaded and executed first, after which the non-
key services are loaded.

4.2.2 Development Guidelines

Usage Scenarios

The scatter loading is applied in the scenario where fast boot of time-sensitive services is
needed.

On an embedded OS, some services require short boot time. For example, in Huawei LiteOS
on an IPC, the time required from powering on the camera and starting preview needs to be
short, and the scatter loading technique can be adopted to enable fast boot of the recording
service.

Functions

The scatter loading module of Huawei LiteOS provides the following function:

Type API Description
Scatter LOS ScatterLoad | This API is called in the last phase of scatter loading
loading API to load the rest non-urgent services from images.

Development Process

The following figure shows the operation process of scatter loading:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 90
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Write service code

Configure the
SCATTER_SRC variable

Compile images of
urgent services

Compile all images

Burn all images into
the Flash

Load urgent services

Restart Huawei LiteOS
automatically

Step1 Call the LOS_ScatterLoad API and write service code.

The code entry is the app_init function contained in the os_adapt.c file. Following the code
for loading urgent services, write the code used to call the LOS_ScatterLoad API for scatter
loading. Enable the MAKE SCATTER IMAGE macro to control the compilation of the code

for non-urgent services. The example code is as follows:

void app_init () {
proc_fs init();
hi uartdev init();

system console init ("/dev/uartdev-0");

LOS_CppSystemInit ((unsigned long)&_ init array start ,
long) & init_array end , BEFORE_SCATTER) ;

LOS ScatterLoad (0x100000,

flash read, NAND READ ALIGN SIZE);

(unsigned

#ifndef MAKE SCATTER IMAGE /* The following are non-urgent services. */

LOS_CppSystemInit ((unsigned long)&_ init array start ,
long)& init array end , AFTER SCATTER) ;

extern unsigned int osShellInit (void);

osShellInit () ;
rdk fs init();
SDK_init();

hi product driver init();
char *apszArgv[3]={"vs_server","./higv.bin","-i"};
vs_server (3, apszArgv);

#endif /* MAKE_SCATTER IMAGE */

}

(unsigned

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

91

LiteOS
Developer Guide 4 Extended Kernel

MnoTe

The os_adapt.c file can be found in the platform/bsp/hi3516a/os_adapt directory in the Huawei
LiteOS code package.

Step 2 Configure the SCATTER_SRC variable.

Run the following command to set the SCATTER_SRC variable in Makefile under the root
directory to the source file of the services that call the scatter loading function.
LITEOSTOPDIR represents the root directory of Huawei LiteOS code.

SCATTER SRC := $(LITEOSTOPDIR)/platform/bsp/$ (LITEOS PLATFORM)/os adapt/os_adapt.c
Step 3 Run the make scatter command to compile the images of urgent services.

Run the following command under the root directory, and the service code following "#ifndef
MAKE SCATTER IMAGE" will not be compiled. Then the compilation system
automatically calls the tool chain to extract the symbol table of the smallest image and the .a
library list of the smallest image.

Huawei LiteOS$ make scatter

Step 4 Run the make command to compile all images.

® Run the following command under the root directory to compile all service code.
Huawei LiteOS$ make

After compilation, information about the size of urgent service images will be returned,
which is similar to the following:

fHHEREE S S S S S
###a###Calculate the size of scatter####iss

the size is Ox4E0000
HH S ON QR I

® View the image segment allocation. If there are scatter loading segments in the images,
the scatter loading is successfully started. In the directory where system images are
generated, for example, out/hi3516a of the hi3516a platform, run the readelf -S
vs_server command to open the system image file vs_server. Information similar to the
following will be displayed, including segment name, start address, and offset. In the
following figure, .fast rodata, .fast text, and .fast data indicate the read-only segment,
code segment, and data segment of scatter loading respectively.

[15] .fast _rodata PROGBITS 80159000 083868 Dabadc
[16] .fast text PROGBITS 80200000 12868 27eced
[17] .fast_data PROGBITS 80477000 3aeB68 067b78
[18] .got PROGBITS 804e6b78 4163e0 000504
[19] .text PROGBITS 8048000 417868 1b1b90
[20] .rodata PROGBITS 8069a000 5c9868 09f14d3
[21] .data PROGBITS 8073a000 669868 blcd/c
22] .bss NOBITS 80757000 6865e4 6d74e0

View the .text segment in the link script of scatter loading. scatter.o(*.text*) is added, as
shown in the following figure, indicating that symbols related to the fast booted code of
scatter loading are placed in the same area.

.fast text ALIGN (0x1000): { _ fast text start = ABSOLUTE(.); . = .;

scatter.O(*.text*);
}

. = (ABSOLUTE (.) + (0x1000 - 1)) & ~ (0x1000 - 1):
_ fast text end = ABSOLUTE (.);

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 92
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Step 5

Step 6

Step 7

LnoTe

The path to the link script of the scatter loading is Huawei_LiteOS/tools/scripts/ld/scatter.ld.

Run the tftp 0x82000000 vs_server.bin;nand erase Ox100000 0x700000;nand write
0x82000000 0x100000 0x700000; command to burn all images into the Flash.

In the serial port tool interface, enter the following command to burn all images into the Flash
at the address of 0x100000.

tftp 0x82000000 vs server.bin;nand erase 0x100000 0x700000;nand write 0x82000000
0x100000 0x700000;

vs_server.bin in the command is the name of system image file. Burn this file into memory at
the address of 0x82000000. Then burn it into the Flash starting at the the address of
0x100000. The size of file to be burnt is 0x700000, indicating that the size of the burnt image
file must not exceed 7 MB, adjust to actual size.

Run the nand read 0x80008000 0x100000 0x4E0000; go 0x80008000; command to read the
urgent service images of 0x4E0000 from the address of 0x100000 in the Flash and load urgent
services to the address of 0x80008000.

nand read 0x80008000 0x100000 0x4E0000; go 0x80008000;

Restart Huawei LiteOS, and urgent services will be loaded first, and then non-urgent services
will be automatically loaded. Huawei LiteOS automatically restarts and loads the urgent
service images at the address of 0x80008000.

—End

4.2.3 Precautions

4.2.4 FAQs

® The OS will be abnormal if the data copied in the first phase is not sufficient or the offset
addresses are not aligned based on different storage media. Therefore, the size of images
to be loaded by uboot needs to be the size returned when the compilation ends.

® The library file list to be extracted needs to be the superset that supports the running of
the key services. Otherwise, the code used in the first phase of scatter loading will access
the code or data that will be loaded into memory in the second phase, and the OS will be
abnormal.

® During scatter loading, a variable value might be changed after the variable is run in the
first phase, but after the variable is loaded and run in the second phase the value is
changed into an uninitialized value. This problem occurs when the variable is used in the
first phase but it is not put into the fast-booted segment together with other variables
used in the first phase. The solution is to put this variable into the fast-booted segment
and ensure that all data used in the first phase is in the fast-booted segment.

This section describes problems encountered during using scatter loading and solutions.

® Lacking the .o file.

arm-hisiv300-1linux-1d: cannot find libscatter.O
make: *** [vs server] Error 1
This problem occurs because the .o file is not generated after the link script is modified.
The solution is to generate the .o file and save it in the object directory.
® Some symbols are not defined.

/usrl/xxxxx/gerrit code/modify-debug/liteos ipc/out/lib/
1libar6003.a(ar6000 drv.o): In function "ar6000 avail ev':

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 93

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

/usrl/xxxxx/gerrit code/modify-debug/liteos ipc/vendor/ar6k3 wifi/AR6003/
host/qgca/source/ar6000 drv.c:1553: undefined reference to
‘wireless _init event'

/usrl/xxxxx/gerrit code/modify-debug/liteos ipc/out/lib/
libar6003.a(drv_config.o): In function "ar6000_tkip micerr event':

/usrl/xxxxx/gerrit code/modify-debug/liteos ipc/vendor/ar6k3 wifi/AR6003/
host/qgca/source/drv_config.c:1856: undefined reference to
‘wireless_send event'

make: *** [vs server] Error 1
This problem occurs because some useful .a files are removed when the link script is
modified. Run the grep command to search for undefined variables under the out/lib
directory. Add the .a files that contain these variables and are not in the link script to the

link script.
Instruction exception.

If the PC position is beyond the range of files that are loaded in the first phase of scatter
loading when the exception occurs, this problem occurs when the library file list used in
the first phase does not cover all files to be loaded, and some symbols are not put into the
code and data segments that are loaded in the first phase. Use the image disassembly file
to locate the name of the function where the abnormal PC is located, find the library
where this function belongs, and add the library to the library file list.

4.3 Exception Management

4.3.1 Overview

Basic Concept

Exception management is a set of actions taken to handle an exception. For example, when
the operating system encounters an exception, it prints information about the CPU condition,
task stacks, and function call stacks.

Exception management is a useful debugging approach. It provides the exception information
required for fault diagnosis. The information includes the exception type and system state at
the time of exception.

When an exception occurs, Huawei LiteOS displays the CPU condition and the task
information including task name, task ID, and stack size.

Operation Mechanism

Stacks Analysis

R11 is used as a general register or as a frame pointer (FP) register with backtrace stacks
if specified compilation options are enabled.

By default, R11 is used by the GNU Compiler Collection (GCC) as a general register
with store variables and cannot backtrace stacks. To use R11 as an FP register with
analyze call stacks, enable the -fno-omit-frame-pointer compilation option.

An FP register can trace the sequence of functions called by a program.

An FP register points to the stack backtracing structure of the current function. The
returned value is the pointer to the stack backtracing structure established by the parent
function that has called the current function. Others may be deduced by analogy. The
calling relationships among functions can be traced using an FP register.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 94
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

If an exception occurs during the runtime, the operating system prints the contents of an
FP register, helping you to diagnose the exception by backtracing the sequence of
function calls.

The following figure describes the stack analysis process.

Figure 4-3 Stack analysis process

Low address

Abnormal function

.*_________

Backirack stacks to find the parent
function of the abnormal function

Backtrack stacks

Parent function of the
abnormal function
K11
Sp
LR
R11 -
PC
High address

Registers in different colors represent different functions. The FP register backtraces the
parent function of the erroneous function to cast light on the sequence of function calls.

Relationships between Call Stacks

The preceding figure illustrates the working process of stack frame register. The function call
sequence can be deduced by analyzing the stacks step by step. The procedure is as follows:

Obtain the value of the current FP register.

2. Subtract the current FP register by 4 bytes to get the current PC value. Check the
execution condition of instructions in the system image by searching the system file
(ELF file) or the image disassembly file (ASM file) based on the PC value.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 95
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

3. Subtract the FP register by 24 bytes to get the start address of the call stack frame of the
previous function. Subtract the FP register by 16 bytes to get the end SP address of the
previous function. The stack between FP and SP is the call stack frame of the function.

4. The sequence of function calls can be obtained from the PC pointer of the stack frame at
each layer.

4.3.2 Development Guidelines

Exception Types

Exception management provides following exception types:

Exception Name Description Value
OS _EXCEPT UNDEF INSTR Undefined instruction exception | 1
OS _EXCEPT SWI Software interrupt exception 2
OS _EXCEPT PREFETCH_ABORT Instruction pre-fetch exception 3
OS _EXCEPT DATA_ ABORT Data abort exception 4
OS _EXCEPT FIQ FIQ exception 5

Development Process

In general, exception management fault location process is as follows:

1. Open the .asm file that is generated after compilation.
2. Search the .asm file for the location of PC pointer.

3. Search for a called function by the value of LR.
4

Repeat step 3 to find the abnormal task function.

For details about the fault location process, see Programming Example.

4.3.3 Precautions

® Before querying information about call stacks, add the compilation option -fno-omit-
frame-pointer. If the option is not added, stack frames are not supported and the FP
register is disabled by default.

4.3.4 Programming Example

Example Description

The panic command triggers a software interrupt exception and the abnormal function is
LOS_Panic. The test_panic code is used to trigger exceptions, and the Huawei LiteOS# panic
code is used to print information about the abnormal call stack.

uwExcType 2 is the software interrupt exception.

The fault location process is as follows:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 96
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

1
2
3.
4

Open the .asm file that is generated by the compiler. Default is vs_server.asm
Search the .asm file for the location of PC pointer 80121234.
Search for a called function by the value of LR.

Determine that g RunningTask is the task function at the time of exception.

UINT32 test panic(UINT32 argc, CHAR **args)

{

}

LOS Panic ("*****Trigger an exception\n");
return;

Huawei LiteOS# panic
***xx*Trigger an exception
uwExcType = 2
puwExcBuffAddr pc = 0x80121234
puwExcBuffAddr 1lr = 0x80121234
puwExcBuffAddr sp = 0x80e63400
puwExcBuffAddr fp = 0x80e6340c
*******backtrace begin*******

traceback 0 -- 1lr = 0x80138d04
traceback 0 -- fp = 0x80e635d4
traceback 1 -- 1lr = 0x80138d88
traceback 1 -- fp = 0x80e635e4
traceback 2 -- 1lr = 0x801247d4
traceback 2 -- fp = 0x80e635f4
traceback 3 -- 1lr = 0x801217c4
traceback 3 -- fp = 0x11111111
RO = 0Oxlc

R1 = 0x800dba3a

R2 = 0x1b

R3 = Oxfe

R4 = 0x80e634a0

R5 = 0x0

R6 = 0x800cc7£8

R7 = 0x7070707

R8 = 0x8080808

R9 = 0x9090909

R10 = 0x10101010

R11 = 0x80e6340c

R12 = 0x1lb

SP = 0x80e63400

LR = 0x80121234

PC = 0x80121234

CPSR = 0x60000013

g_pRunningTask->pcTaskName = shellTask

g_pRunningTask->uwTaskPID = 6
g_pRunningTask->uwStackSize =

12288

4.4 CPU Utilization Percentage

4.4.1 Overview

Basic Concept

CPU usage is classified into system CPU usage and task CPU usage.

System CPU usage refers to the percentage of CPU resources occupied by the operating
system during the measurement period. It is an important way to quantify the workload of the
operating system. System CPU usage ranges from 0% to 100%. The precision is represented
as a percentage and can be adjusted. System CPU usage of 100% indicates the operating
system is fully loaded.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 97
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Task CPU usage refers to the ratio of CPU resources occupied by a particular task during the
measurement period. From task CPU usage, you can determine whether the task is busy or
idle. Task CPU usage ranges from 0% to 100%. Task CPU usage of 100% indicates the
operating system keeps the task running throughout the measurement period. Ratios can be
expressed out of various bases, like out of 1,100,1000, etc.

System CPU usage is an important metric to determine whether the operating system is on the
verge of overload.

Query the CPU usage of tasks to determine if they meet the CPU usage requirements you
have laid out during the design phase.

Operation Mechanism

System CPU usage (CPU Percent, CPUP) is broken down into task CPU usage. Each task
switch will generate a record of when the task was started and when it was exited. When the
task is exited, the operating system measures the total runtime of the task.

You can configure the CPU usage control function in the kernel module of menuconfig.
Huawei LiteOS enables you to query the following CPU usage information:

® System CPU usage
® Task CPU usage

CPU usage measurement formula:

System CPU usage = runtime of tasks except idle task in the operating system/system total
runtime

Task CPU usage = runtime of a particular task/system total runtime

4.4.2 Development Guidelines

Usage Scenarios

Query system CPU usage regularly to check whether the operating system is on the verge of
overload.

Query thread CPU usage to learn each thread meets the CPU usage requirements you have
laid out during the design phase.

Functions
The CPU usage module of Huawei LiteOS provides the following functions:
Function Category API Description
System CPU usage query LOS_SysCpuUsage Acquires current system
CPU usage
LOS_HistorySysCpuUsage | Acquires historical system
CPU usage
Task CPU usage query LOS TaskCpuUsage Acquires current CPU usage
of a particular task
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 98

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

Function Category API Description

LOS_HistoryTaskCpuUsage | Acquires historical CPU
usage of a particular task

LOS_AllTaskCpuUsage Acquires CPU usage of all
tasks
CPU usage reset LOS_CpupReset Reset data of CPU usage

Development Process

The typical CPU usage development process is as follows:

1. Call the LOS_SysCpuUsage API to get CPU usage now.
2. Call the LOS HistorySysCpuUsage API to get system historical CPU usage.

- Disables interrupts, acquires the task end time, measures the historical CPU usage
of the current task, and restores interrupts.

3. Call the LOS TaskCpuUsage API to get particular task CPU usage.

- Ifaparticular task is ready, the operating system disables interrupts, acquires the
task end time, and measures the CPU usage of the task.

- If the task has not been created or is not ready, the operating system returns an error
code.

4. Call the LOS_ HistoryTaskCpuUsage API to get historical CPU usage of the particular
task.

- If a particular task is ready, the operating system disables interrupts, acquires the
task end time, and measures the historical CPU usage of the task.

- If the task has not been created or is not ready, the operating system returns an error
code.

5. Call the LOS_AllTaskCpuUsage API to get historical CPU usage of all tasks.

- If CPUP is initialized, interrupt will be breaking off. Acquired information
according to different modules, and then interrupt recovery.

- If CPUP is not initialized or it has illegal parameters insert, returning error code.

Platform Differences

None.

4.4.3 Precautions

® Only product designers need to learn CPU usage of each task. To prevent measurement
of thread CPU usage from adversely impacting system performance, set
LOSCFG_KERNEL CPUP to NO before releasing your product.

® The value returned by the interface above is permillage. This value can be divided by
LOS_CPUP_PRECISION_ MULT to obtain the corresponding percentage.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 99
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

4.4.4 Programming Example

Example Description

In the programming example, the following steps will be performed:

1. Create a CPUP test task.

2. Acquire current system CPUP.

3. Acquire historical CPUP of the operating system.

4. Acquire the CPUP of the CPUP test task.

5. Acquire the CPUP of the CPUP test task in different modes.
Example Code

Prerequisite

® The OS INCLUDE CPUP parameter in the los_config.h is set to YES.

The code is as follows:

#include "los task.h"
#include "los cpup.h"

#define MODE 4

UINT32 cpupUse;
OS_CPUP_TASK_S pstCpup;
UINT16 pusMaxNum = 0;
UINT32 g CpuTestTaskID;

VOID Example cpup ()
{

printf ("entry cpup test example\n");
while (1) {
usleep (100) ;

}

UINT32 it cpup_ test()
{
UINT32 uwRet;
TSK_INIT PARAM S CpupTestTask;

/*Create a CPUP test task.*/
memset (&CpupTestTask, 0, sizeof (TSK INIT PARAM S));

CpupTestTask.pfnTaskEntry = (TSK _ENTRY FUNC)Example cpup;
CpupTestTask.pcName = "TestCpupTsk"; /*Test task name*/
CpupTestTask.uwStackSize = OS_TSK DEFAULT STACK SIZE;

CpupTestTask.usTaskPrio = 5;
CpupTestTask.uwResved = LOS_ TASK STATUS DETACHED;
uwRet = LOS TaskCreate (&g CpuTestTaskID, &CpupTestTask);
if (uwRet != LOS_OK)
{
printf ("CpupTestTask create failed .\n");
return LOS_NOK;

usleep (100) ;
/*Acquire current system CPU usage*/

cpupUse = LOS_ SysCpuUsage () ;
printf ("the current system cpu usage is: %d\n",cpupUse) ;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 100
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

/*Acquire historical CPU usage of the operating system within the l-second
measurement period. There are three types of measurement period: 10s, 1ls, and
less than 1s.*/

//cpupUse = LOS HistorySysCpuUsage (MODE1L) ;

//printf ("the history system cpu usage in 10s: %d\n",cpupUse);

//cpupUse = LOS HistorySysCpuUsage (MODE2) ;
//printf ("the history system cpu usage in 1ls: %d\n",cpupUse);

cpupUse = LOS_ HistorySysCpuUsage (MODE) ;
printf ("the history system cpu usage in <ls: %d\n",cpupUse) ;

/*Acquire CPU usage of a particular task (CPUP test task in the programming
example) .*/

cpupUse = LOS_TaskCpuUsage (g _CpuTestTaskID) ;

printf ("cpu usage of the CpupTestTask:\n TaskID: %d\n usage:
\n",g CpuTestTaskID, cpupUse) ;

o
Q.

/*Acquire historical CPU usage of a particular task (CPUP test task in the
programming example) within the measurement period of less than 1 second.*/
cpupUse = LOS HistoryTaskCpuUsage (g_CpuTestTaskID, MODE) ;
printf ("cpu usage of the CpupTestTask in <ls:\n TaskID: %d\n usage:%d
\n",g CpuTestTaskID, cpupUse) ;
return LOS_OK;
}

Verification
The verification result is as follows:
—-—-- Test start---
entry cpup test example
Huaweil LiteOS# the current system cpu usage is : 49
the history system cpu usage in <ls: 50
cpu usage of the CpupTestTask:
TaskID:4
usage:17
cpu usage of the CpupTestTask in <ls:
TaskID:4
usage:12
—-—-Test End -—-—
Complete Code

sample cpup.c
4.5 Linux Adaption

4.5.1 Completion

4.5.1.1 Overview

Basic Concept

Completion is a supplement to semaphore. It is a lightweight mechanism for task
synchronization. In Linux, up() and down() functions can be executed concurrently in the
same semaphore and in the multi-CPU environment, up() may mistakenly access a semaphore

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 101
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel

data structure that does not exist. Completion is designed to prevent up() from accessing a
non-existent semaphore data structure.

In the scenario in which task A can be executed only after task B has completed a particular
operation, the completion enables task B to wake up task A at completion of the particular
operation, thereby achieving task synchronization.

In the multi-task environment, tasks need to be synchronized with each other. The completion
mechanism can well serve the purpose.

The realization of the completion mechanism of Huawei LiteOS is similar to the signal
mechanism in system. By calling the kernel function to achieve the function of the completion
mechanism. The completion mechanism of Huawei LiteOS has characters similar to signal
mechanism.

4.5.1.2 Development Guidelines

Usage Scenarios

Use the completion mechanism in the multi-task environment to synchronize one task with
another.

At the core of the completion mechanism is the wait for a completion and task wakeup.

Functions

Function Category API Description

Initialize a completion init_completion Initializes a completion

Waits for a completion until
the completion occurs

Wait for a completion wait_for completion

Wait for a completion in
timeout mode

wait_for completion_timeo
ut

Waits for a completion for a
specified number of ticks

Wake a completion

complete

Wakes up the first task
waiting for a completion

Wake a completion

complete all

Wakes up all tasks waiting
for a completion

Development Process

The typical development process of the completion mechanism is as follows:

1. Call the init_completion API to initialize a completion structure.

- Create a completion

w N

4. Call the complite/complite_all API to wake a completion.

- complete: Wakes up a task waiting for the completion

Call the wait_for completion_timeout API to wait for a completion in timeout mode.

Call the wait_for completion API to wait for a completion until the completion occurs.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

102

LiteOS
Developer Guide

4 Extended Kernel

- complete all: Wakes up all tasks waiting for the completion

4.5.1.3 Precautions

® The completion mechanism is similar to the semaphore mechanism. Permanent blocking

and timed blocking are not allowed while an interrupt is underway, since interrupts
cannot be blocked.

® The input parameter to the completion APIs must be a valid completion pointer. For

example, a task is not allowed to wait for a completion while an interrupt is underway.

4.5.1.4 Programming Example

Example Description

In the programming example, the Example TaskEntry task is executed to create the
Example Completion task. The Example Completion task is blocked while waiting for a
completion. Then, the Example TaskEntry task wakes up the completion. Based on the
information printed on the screen, you can learn the task switching that occurs along with the
completion operation.

1.

Example Code

The Example TaskEntry task is executed to create the Example Completion task. The
Example Completion task takes a higher priority than the Example TaskEntry task.

The Example Completion task is blocked while waiting for the completion. After the
Example Completion task is blocked, a task switch occurs and the task with a lower
priority, namely, the Example TaskEntry task will be executed.

The Example TaskEntry task wakes up the completion. Then, a task switch occurs and
the Example Completion task will be executed.

The Example Completion task is executed.

The Example TaskEntry task is executed.

The code is as follows:

#

t

#include "linux/completion.h"
#include "los task.h"
//#include "osTest.h"

/*Task PID*/
UINT32 g TestTaskIDO1;

/*Completion*/
struct completion example completion;

/*Example task entrypoint function*/
VOID Example Completion ()

{
UINT32 uwRet;

/*Wait for a completion in timeout mode, and the timeout interval is 100
icks*/

printf ("Example Completion wait completion\n");

uwRet = wait for completion timeout (&example completion,100);

if (uwRet == 0)
{

printf ("Example Completion,wait completion timeout\n");

}

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 103
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
else
printf ("Example Completion,wait completion success\n");
return;
}
UINT32 Example TaskEntry ()
{
UINT32 uwRet;
TSK_INIT PARAM S stTaskl;
/*Initialize completion*/
init completion (&example completion) ;
/*Create a task*/
memset (&stTaskl, 0, sizeof (TSK_INIT PARAM S));
stTaskl.pfnTaskEntry = (TSK _ENTRY FUNC)Example Completion;
stTaskl.pcName = "EventTskl";
stTaskl.uwStackSize = OS_TSK_DEFAULT STACK SIZE;
stTaskl.usTaskPrio = 8;
uwRet = LOS TaskCreate (&g TestTaskID01l, &stTaskl);
if (uwRet != LOS_OK)
{
printf ("task create failed \n");
return LOS_NOK;
}
/*Wake up completion*/
printf ("Example TaskEntry complete\n");
complete (éexample completion);
printf ("Delete Task.\n");
/*Delete a task*/
uwRet = LOS TaskDelete (g TestTaskIDO1) ;
if (uwRet != LOS_OK)
{
printf ("task delete failed \n");
return LOS_NOK;
}
return LOS_OK;
}
Verification
The verification result is as follows:
Example Completion wait completion
Example TaskEntry complete
Example Completion,wait completion success
Delete Task.
Complete Code
sample completion.c
4.5.2 Workqueue
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 104

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

4 Extended Kernel

4.5.2.1 Overview

Basic Concept

Any system modules can place works into a workqueue. Works are processed by the
workqueue (a type of tasks) in the first in first out (FIFO) order. The workqueue processing
task can be re-scheduled or sent to sleep mode.

Works in a workqueue can be processed by a single task, freeing you from the cumbersome
burden of repeatedly creating a task for each work. Moreover, the workqueue processing task
can be re-scheduled or sent to sleep mode instead of being kept running, which reduces the
demand for system resources significantly.

The workqueue mechanism can process works using a single task and provides abundant
external APIs for managing a workqueue. When a work is added to a workqueue, the
workqueue processing task is woken up to process the work. After all works in the workqueue
are processed, the workqueue processing task is sent to sleep mode.

4.5.2.2 Development Guidelines

Usage Scenarios

Functions

A workqueue is applicable only in delay-tolerant scenarios because works in the workqueue
can be processed only after the workqueue processing task is executed. Many factors are
considered while determining whether the workqueue processing task can be woken up or
scheduled. For example, the workqueue processing task may be blocked because another task
with a higher priority is waiting to be executed or because an interrupt is underway.

Function Category

API

Description

Creating a workqueue

create_workqueue

Creates a workqueue

Destroying a workqueue

destroy workqueue

Destroys a workqueue

Initiating a work

INIT WORK

Binds a work to the
processing function

Initiating a delayed work

INIT DELAYED WORK

Binds a delayed work to the
processing function

Placing a work in a
workqueue

queue_work

Places a work in a specified
workqueue

Placing a delayed work in a
workqueue

queue delayed work

Places a delayed work in a
specified workqueue

Placing a work in a
workqueue

schedule work

Places a work in the default
workqueue

Placing a delayed work in a
workqueue

schedule_delayed work

Places a delayed work in the
default workqueue

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

105

LiteOS

Developer Guide 4 Extended Kernel

Function Category API Description

Querying work status work busy Queries the current state of a
work

Processing a delayed work flush_delayed work Takes the work out of delay
and processes it
immediately

Cancelling a delayed work cancel_delayed work Cancels a delayed work that

is not executed

Processing a work flush work Executes a work
immediately
Cancelling a work cancel work sync Cancels a work after the

work is executed

Development Process

The typical workqueue development process is as follows:

1. Call the create_workqueue API to create the workqueue processing task.

- Huawei LiteOS initializes a semaphore used for waking up the workqueue
processing task or sending it to sleep mode; initializes important structures; builds a
workqueue linked list.

2. Call the queue_work/queue delayed work API to place a work (either normal or
delayed work) in a specified workqueue.

- A normal work can be added to the workqueue immediately, whereas a delayed
work has to wait for a period of time specified by a delay parameter before being
added to the workqueue.

3. Call the cancel delayed work/cancel work sync API to cancel the normal or delayed
work from the workqueue without processing it.

4. Call the flush_work/flush_delayed work API to process the work in the workqueue
immediately.

5. Call the destroy _workqueue API to delete the workqueue.

- Huawei LiteOS locks resources, deletes the workqueue processing task, releases the
semaphore and memory, and unlocks resources.

4.5.2.3 Precautions

® Do not use a workqueue in delay-sensitive scenarios because there is much uncertainty
in the time when a task can be scheduled to process a work in a workqueue.

® Workqueues are identified by their names. Therefore, each workqueue must have a
unique name.

® The schedule work or schedule delayed work API can be used to place a work in the
default workqueue without first creating a workqueue.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 106
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

4.5.2.4 Programming Example

Example Description

The programming example will cover the following functions:

A A

Example Code

Creating a workqueue named wq_test
Allocating and initializing the work memory
Placing a work in the work queue
Processing a work immediately

Destroy the workqueue

The code is as follows:

#include "los_config.h"
#include "linux/workqueue.h"

static void work_ func(struct work_ struct *work)

{

int i;
for (i = 0; i < 2; i++)
{

printk ("workqueue function is been called!..%d..%d..\n",1i,work-

>work status) ;

}

}

UINT32 It _workqueue 1008 ()

{

Verification

struct workqueue_struct *wg;
struct work struct *work;
UINT32 uwRet = LOS OK;

wq = create workqueue ("test1008");
dprintf ("create the workqueue successfully!\n\n");

work =(struct work struct *)malloc(sizeof (struct work struct));
if (!'work)
{
uwRet = LOS_FAIL;
}
dprintf ("create work ok!\n\n");

INIT WORK (work, work func);
dprintf ("init the work ok!\n\n");

uwRet = queue work(wq, work);
dprintf ("mount the work into workqueue successfully!\n\n");

uwRet = flush work (work) ;
dprintf ("flush the work ok!\n\n");

destroy workqueue (wq) ;
dprintf ("destroy the work ok!\n\n");

return uwRet;

The verification result is as follows:

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 107
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
-—= Test start—-
create the workqueue successfully!
create work oll
init the work okl
mount the work into workquene szuccessfully!
worlequene function is been ealled!. . 0..3. .
worlquene function iz been ecalled!. . 1. 3. .
fluzh the work okl
destroy the work oll
[Fassed] It_workqueus 1008
-== Test End ——
Complete Code

sample workqueue.c

4.5.3 Interrupt

4.5.3.1 Overview

Basic Concept

Linux kernel has APIs specially used for interrupts. The interrupt mechanism of Huawei
LiteOS adapts to the interrupt-related Linux APIs, making Huawei LiteOS more user-friendly.

Huawei LiteOS has the following interrupt-related functions:

Requesting an interrupt
Deleting an interrupt
Enabling an interrupt
Masking an interrupt

Interrupt bottom half (based on workqueues)

4.5.3.2 Development Guidelines

Functions

The following table lists Linux APIs to which the interrupt module in Huawei LiteOS adapts.

API Description
request_irq Requests an interrupt
free irq Frees an interrupt
enable_irq Enables an interrupt
disable _irq Disables an interrupt
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 108

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
API Description
irq_bottom_half Places the work of interrupt bottom half in
the workqueue

Development Process

1.

Call the request_irq API to request an interrupt.

Registers the interrupt handler into the linked list of the interrupt ID based on the input
parameter. Each interrupt ID is allowed to register multiple interrupt handlers.

Call the irq_bottom_half to place the interrupt bottom half in the workqueue.

Associates the interrupt bottom half with the time-consuming yet less important work
and places the work of interrupt bottom half in the workqueue. The operating system
executes the interrupt bottom half when idle.

Call the enable_irq API to enable an interrupt.
Call the disable irq API to disable an interrupt.

Call the free irq to free an interrupt.

4.5.3.3 Precautions

While calling the request_irq() API, ensure that the input parameter of the interrupt
handler is in the (int, void*) format. While calling the LOS_HwiCreate() API, note that
the input parameter of the interrupt handler can be NULL.

An interrupt handler is not allowed to call the request_irq() and free irq() APIs.

If an interrupt ID is shared among external peripherals, interrupts with the interrupt ID
cannot be created using the LOS_HwiCreate() API and the input parameter dev pointer
of the request_irq() API must match the interrupt handler instead of being NULL.
Interrupts created using the LOS_HwiCreate() API cannot be deleted using the free irq()
APL

The work_queue pointer input by the irq_bottom_half() function cannot be an invalid
pointer.

The input parameter of the interrupt bottom half is a work pointer. The work is
dynamically requested during the call to the irq_bottom_half() and must be freed while
the interrupt bottom half is being executed. Otherwise, a memory leak occurs.

4.5.3.4 Programming Example

Example Description

The programming example will cover the following functions:

1. Requesting an interrupt

2. Freeing an interrupt
Example Code

Prerequisite

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 109
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

® The OS INCLUDE HWTI parameter in the los config.h file is set to YES.

® The OS HWI MAX USED NUM parameter in the los_config.h file is set to the
maximum number of hardware interrupts the operating system allows.

The code is as follows:

#include "los hwi.h"
#define HWI NUM INT50 50

void uart irghandle 1 (int irg,void *dev)
{

printf ("\nuartO:the functionl \n");
}

void hwi test()
{

int a = 1;

void *dev = &a;

unsigned long flags = 0;

const char * name = "hwiTest";

request irq(HWI_NUM INT50,uart irghandle 1, flags,name,dev);//Create an
interrupt

free irg(HWI_NUM INT50,dev);//Delete the interrupt

Complete Code

sample_irq.c

4.5.4 High Resolution Timer

4.5.4.1 Overview

Basic Concept

Using hardware timer resources and algorithms, high resolution timers satisfy the requirement
for precise time.

A high resolution timer in Huawei LiteOS is designed with a software architecture and
provides microsecond timing resolution, satisfying applications and kernel drivers' urgent
need for precise time.

4.5.4.2 Development Guidelines

Usage Scenarios

The kernel's software timers provide millisecond timing resolution, which is not high and not
able to meet the high resolution time requirements in some scenarios. High resolution timers
provide timing APIs of microsecond resolution to satisfy preceding-mentioned scenarios.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 110
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
Functions
Function Category API Description
High resolution timer hrtimer_init Initializes the resources for a
initialization high resolution timer. This

function has been
implemented during kernel
initialization. This API is
only an adapted Linux API
and is not implemented in

Huawei LiteOS.
High resolution timer hrtimer_create Sets the timing period and
creation creates the callback
function.
High resolution timer start hrtimer_start Starts a high resolution
timer.
High resolution timer hrtimer_cancel Cancels the high resolution
cancellation timers that have not expired.
Timing period change hrtimer _forward Changes the timing periods

of a high resolution timer
that has not expired.

High resolution timer query | hrtimer is_queued Checks whether a high
resolution timer is created.

true: The specified high
resolution timer is created.

false: The high resolution
timer is not created.

Development Process

The typical process of using a high resolution timer is as follows:

Declare a hrtimer variable and a ktime variable

2. Set the values of the sec and usec fields for the ktime variable according to the timing
period.

3. Call the hrtimer_create API to set the timing period and create the callback function.
4. Call the hrtimer_start API to start the high resolution timer.

The hrtimer_cancel and hrtimer forward APIs are provided as extended functions. Use
them as required.

6. The hrtimer_is_queued API helps you find out whether a high resolution timer is created
or expires.

4.5.4.3 Precautions

® The hrtimer variable required by high resolution timer APIs should be provided by users.
The APIs do not request any resources for the variable.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 111
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

® The hrtimer init API is not implemented and is only an adapted Linux API. Therefore,
this API does not need to be called when using high resolution timers.

® Currently, high resolution timers in Huawei LiteOS support one-off timing mode rather
than periodic timing mode. The periodic timing mode can be achieved by recreating a
high resolution timer.

4.5.4.4 Programming Example

Example Description
The programming example will cover the following functions:

1. Users need to request the pstSwitmr(and time(variables.

The hrtimer _create API is called to set the timing period and create the callback
function.

The hrtimer_start API is called to start a high resolution timer.
The hrtimer forward API is called to change the timing period from 80 ms to 40 ms.
The LOS_TaskDelay API is called to delay a task for 50 ms.

The hrtimer _cancel is called to cancel a timer. Then the timer is found to have expired
and no longer exists.

S » kW

Example Code

The code is as follows:
#include "hrtimer.h"

static enum hrtimer restart hrtimer func(struct hrtimer *arg)
{
dprintf ("The hrtimer is timeout!!!\n");

}

static UINT32 testcase (VOID)

{
struct hrtimer pstSwtmrO;
struct ktime timeO;
struct ktime interval = {0};
interval.tv.sec = 0;
interval.tv.usec = 40000;
int ret;

cprlmii (Vom=== >test start<----- \n") ;

time0.tv.sec =0;
time0.tv.usec = 80000;
ret = hrtimer create (&pstSwtmr0O, timeO, hrtimer func);
if (ret == 0)
dprintf ("Hrtimer ctreate successfully!\n");

ret = hrtimer start (&pstSwtmr0,time0,MODE_ ONCE) ;
if (ret == 0)

dprintf ("Hrtimer start successfully!\n");
ret = hrtimer forward(&pstSwtmr0, interval);
LOS_TaskDelay (5) ;
ret = hrtimer cancel (&pstSwtmr0) ;

if (ret == 0)
dprintf ("Hrtimer already timeout!\n");

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 112
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

dprintf ("----- >test end<----—- \m™) g

return LOS_OK;

Verification

The verification result is as follows:

Hrtimer ctreate successfully!
Hrtimer start successfully!
The hrtimer is timeout!!!
Hrtimer already timeout!

Complete Code

sample hrtimer.c

4.5.5 Linux APIs

4.5.5.1 Linux Adaption APIs

Huawei LiteOS adapts to the following Linux APIs:

MnoTe

"Compatible" indicates that the functions of the API are inherited from Linux, but the error code
returned by the API depends on Huawei's actual code. "Partially compatible" indicates that some
functions of the API are inherited from Linux.

Header File API

Function

Compatibility

Timer.h add_timer

Add a timer.

Compatible

atomic.h atomic_add

Add an integer
to an atomic
variable.

Compatible

atomic_add retur
n

atomic.h

Add an integer
to an atomic
variable and
return the new
variable value.

Compatible

atomic.h atomic_dec

Decrement an
atomic variable
by one.

Compatible

atomic.h atomic_dec_and

test

Decrement an
atomic variable
by one and test
whether the
result is zero.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

113

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

atomic.h

atomic_dec_retur
n

Decrement an
atomic variable
by one and
return the new
variable value.

Compatible

atomic.h

atomic_inc

Increment an
atomic variable
by one.

Compatible

atomic.h

atomic_inc_retur
n

Increment an
atomic variable
by one and
return the new
variable value.

Compatible

atomic.h

atomic_read

Read the value
of an atomic
variable.

Compatible

atomic.h

atomic_sub

Subtract an
integer from an
atomic variable.

Compatible

string.h

bzero

Set the first n
bytes of a string
to zero,
including \0.

Compatible

Workqueue.h

cancel delayed
work

Cancel a
pending delayed
work.

Compatible

Workqueue.h

cancel delayed
work sync

Cancel a
pending delayed
work and wait
for its execution
to finish.

Compatible

Workqueue.h

cancel work syn
c

Cancel a work
and wait for its
execution to
finish.

Compatible

Completion.h

complete

Wake up a
thread waiting
ona
completion.

Compeatible

Completion.h

complete_all

Wake up all
threads waiting
ona
completion.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

114

LiteOS

Developer Guide 4 Extended Kernel
Header File API Function Compatibility
Crc32.h cre32 Calculate crc. Compatible
Crc32.h crc32_accumulat | Calculate crc. Compatible

e
Workqueue.h create_singlethre | Create a Compatible
ad_workqueue workqueue.
Workqueue.h create_workqueu | Create a Compatible
e workqueue.
Timer.h del_timer Delete a timer. Compatible
Timer.h del_timer_sync Delete a timer. Compatible
Workqueue.h destroy workque | Destroy a Compatible
ue workqueue.
Interrupt.h disable_irq Disable an Compatible
interrupt.
Kernel.h div_s64 Do a division. Compatible
Kernel.h div_s64 rem Do a division. Compatible
dlfen.h diclose Close a dynamic | Compatible
linking library
that has a
specified
handle.
dlfen.h dlopen Open a dynamic | Compatible
linking library
and return a
handle for the
dynamic
loading library.
difen.h dlsym Take the handle | Compatible
and symbol for
the dynamic
linking library
and return the
address of the
symbol.
Kernel.h do_div_imp Do a division. Compatible
Kernel.h do _div_s64 imp | Do a division. Compatible
Rwsem.h down_read Hold a Compatible
semaphore for
reading.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 115

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
Header File API Function Compatibility
Rwsem.h down_read trylo | Hold a Compatible

ck semaphore for
reading.
Rwsem.h down_write Hold a Compatible
semaphore for
writing.
Rwsem.h down_write_tryl | Hold a Compatible
ock semaphore for
writing.
Interrupt.h enable _irq Enable an Compatible
interrupt.
Kernel.h ERR _PTR Return an error | Compatible
code.
Fs.h fb_alloc_cmap Allocate Compatible
memory for a
color map.
Fs.h fb_cmap_to user | Copy a Compatible
colormap.
Fs.h fb_copy_cmap Copy a Compatible
colormap.
Fs.h fb_dealloc_cmap | Deallocate a Compatible
color map that
was previously
allocated.
Fs.h fb_default cmap | Set the default Compatible
colormap.
Fs.h fb_pan_display Refresh the Compatible
operation
screen.
Fs.h fb_set cmap Set a colormap. | Compatible
Fs.h fb_set user cma | Set a colormap. | Compatible
p
Fs.h fb_set var Set the display Compatible
mode of fbinfo
and the variadic
arguments.
Workqueue.h flush delayed w | Wait for a Compatible
ork delayed work to
finish executing.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 116

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Header File API Function Compatibility
Workqueue.h flush_work Wait for a work | Compatible
to finish
executing.
Fs.h framebuffer allo | Apply to the Compatible
c kernel for space.
Fs.h framebuffer rele | Release space to | Compatible
ase the kernel.
Interrupt.h free irq Free an Compatible
interrupt.
Kernel.h hi_sched clock Return time. Compatible
Completion.h init_completion | Initialize a Compatible
completion.
Workqueue.h INIT DELAYE | Initialize a Compatible
D WORK delayed work.
List.h INIT LIST HE | Initialize a Compatible
AD linked list.
Timer.h init_timer Initialize a Compatible
timer.
Wait.h init_waitqueue h | Initialize an Compatible
ead existing wait
queue head.
Workqueue.h INIT WORK Initialize a Compatible
work.
Interrupt.h irq_bottom_half | Interrupt bottom | This API is available in Huawei
half API. LiteOS but is unavailable in
Linux.
Kernel.h IS ERR Test whether a Compatible
returned pointer
is an error code.
Rtc.h is_leap year Determine Compatible
whether a
specified year is
a leap year.
Jiffies.h jiffies to msecs | Convert the Compatible
number of ticks
that have

occurred since
kernel boot to
milliseconds.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

117

LiteOS

Developer Guide 4 Extended Kernel
Header File API Function Compatibility
Kernel.h jiffies to tick Convert jiffies Compatible

to ticks.
Slab.h kfree Free memory. Compatible
Slab.h kmalloc Allocate Compatible
memory.
Slab.h kzalloc Allocate Compatible
memory and
initialize the
memory.
List.h list_add Add a linked Compatible
list.
List.h list_add tail Add a linked Compatible
list.
List.h list_del Deleting a Compatible
linked list.
List.h list_entry Return a pointer | Compatible
to a structure.
List.h list first entry Acquire the first | Compatible
element from a
linked list.
List.h list for each Traverse a Compatible
linked list.
List.h list for each ent | Traverse a Compatible
ry linked list.
List.h list for each ent | Traverse a Compatible
ry_reverse linked list.
List.h list for each ent | Traverse a Compatible
ry safe linked list.
List.h list for each saf | Traverse a Compatible
e linked list.
List.h LIST HEAD Initialize a Compatible
linked list.
List.h LIST HEAD IN | Initialize a Compatible
IT linked list.
List.h list_is_last Test whether an | Compatible
element is the
last element in a
linked list.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 118

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

List.h

list move

Move an
element from a
linked list to
another linked
list.

Compatible

string.h

memchr

Search a
memory area for
a character.

Compatible

string.h

mememp

Compare the
first n bytes of
two memory
areas.

Compatible

string.h

memcpy

Copy content
from a memory
area to a
destination
memory area.
The memory
areas must not
overlap.

Compatible

string.h

memmove

Copy content
from a memory
areatoa
destination
memory area.
The memory
areas may
overlap.

Compatible

string.h

memset

Set the n bytes
of a memory
areato a
specific value.

Compatible

Timer.h

mod_timer

Add a timer.

Compatible

mount.h

mount

Mount a
specified system
partition to a
folder.

Partially compatible

delay.h

msleep

Cause a
program sleep
for some
milliseconds.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

119

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

pretlh

pretl

Specify
operations on a
process. In
Linux, this API
supports
multiple
parameters,
whereas in
Huawei LiteOS,
only

PR _SET NAM
E can be set to
the thread name.
When creating a
thread by using
the POSIX
interface, you
are advised to
set the thread
name while
entering the
thread.

Partially compatible

Kernel.h

PTR_ERR

Return an error
code.

Compatible

Workqueue.h

queue_delayed
work

Add a delayed
work to a
specified
workqueue.

Compatible

Workqueue.h

queue_work

Add a work to a
specified
workqueue.

Compatible

Rbtree.h

rb_erase

Remove a node.

Compatible

Rbtree.h

rb_first

Return the first
node.

Compatible

Rbtree.h

rb_insert_color

Color the
inserted node.

Compatible

Rbtree.h

rb_next

Return the next
node.

Compatible

Rbtree.h

rb_prev

Return the
previous node.

Compatible

Rbtree.h

rb_replace node

Replace a node.

Compatible

10.h

readb

Read one byte
from I/O.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

120

LiteOS

Developer Guide 4 Extended Kernel
Header File API Function Compatibility
io.h readl Read four bytes | Compatible

from 1/0.
uio.h readv Read the input Compatible
data into buffers
following the
input order.
io.h readw Read two bytes | Compatible
from 1/O.
Fs.h register framebu | Register fbinfo | Compatible
ffer into the kernel.
Interrupt.h request_irq Allocate an Compatible
interrupt.
Rtc.h rtc_time to_tm Convert Compatible
absolute time to
year, month,
day, hour,
minute, and
second.
Rtc.h rtc_tm to time Convert year, Compatible
month, day,
hour, minute,
and second to
absolute time.
Workqueue.h schedule delaye | Add a delayed Compatible
d_work work to the
default
workqueue.
Kernel.h schedule timeout | Schedule a task. | Compatible
Kernel.h schedule timeout | Schedule a task. | Compatible
_interruptible
Kernel.h schedule timeout | Schedule a task. | Compatible
_uninterruptible
Workqueue.h schedule work Add a work to Compatible
the default
workqueue.
Seq_file.h seq_lseek Deviate the Compatible
pointer to a
sequential file.
Seq_file.h seq_open Open a Compatible
sequential file.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 121

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

Seq_file.h

seq_printf

Write formatted
information to a
sequential file.

Compatible

Seq_file.h

seq_read

Read a
sequential file.

Compatible

Seq_file.h

seq_release

Free the
dynamic
memory
allocated by
sequential files.

Compatible

Scatterlist.h

sg_init_one

Initialize a
scatter list.

Compatible

Scatterlist.h

sg_init table

Initialize a
scatter list.

Compatible

Scatterlist.h

sg_mark end

Mark the end of
a scatterlist.

Compatible

Scatterlist.h

sg_set_buf

Set a scatter list.

Compatible

Seq_file.h

single open

Opens a
sequential file.

Compatible

Seq_file.h

single release

Free the
dynamic
memory
allocated by
sequential files.

Compatible

string.h

strcasecmp

Compare two
strings, ignoring
the case of the
characters.

Compatible

string.h

strcasestr

Locate the first
occurrence of a
substring in a
string, ignoring
the case of the
strings.

Compatible

string.h

strcat

Append string A
to string B.

Compatible

string.h

strchr

Locate the first
occurrence of a
character in a
string.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

122

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

string.h

strcmp

Compare two
strings.

Compatible

string.h

strcoll

Compare two
strings in a
specific locale.

Compatible

string.h

strepy

Copy a string.

Compatible

string.h

strespn

Return the
number of bytes
in the initial
segment of a
string, which
does not consist
of a specified
character.

Compatible

string.h

strdup

Copy a string to
a new location.

Compatible

string.h

strerror

Return
information
about system
errors or user
program errors.

Compatible

string.h

strlcpy

Copy a string of
specified length.

Compatible

String.h

strlcpy

Copy a string.

Compatible

string.h

strlen

Calculate the
length of a
string.

Compatible

string.h

strncasecmp

Compare the
first n bytes of
two strings,
ignoring the
case of the
characters.

Compatible

string.h

strncat

Append n bytes
from string A to
string B.

Compatible

string.h

strncmp

Compare the
first n bytes of
two strings.

Compatible

string.h

strncpy

Copy a string
containing
specified bytes.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

123

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

string.h

strpbrk

Locate the first
occurrence in a
string of any of
the bytes in
another string.

Compatible

string.h

strrchr

Locate the last
occurrence of a
character in a
string.

Compatible

string.h

strsep

Separate a string
into a set of
strings.

Compatible

string.h

strspn

Return the
subscript of the
first character in
a string that is
not contained in
a specified
string.

Compatible

string.h

strstr

Locate the first
occurrence of a
substring in a
string.

Compatible

string.h

strtok

Parse a string.

Compatible

string.h

strtok r

Parse a string.

Compatible

string.h

strtoul

Convert a string
to an unsigned
long integer.

Compatible

string.h

strxfrm

String
transformation.

Compatible

mount.h

umount

Unmount a file
system.

Compatible

Fs.h

unregister _frame
buffer

Release fbinfo.

Compatible

Rwsem.h

up_read

Release a
semaphore held
for reading.

Compatible

Rwsem.h

up_write

Release a
semaphore held
for writing.

Compatible

Slab.h

viree

Free memory.

Compatible

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

124

LiteOS

Developer Guide 4 Extended Kernel
Header File API Function Compatibility
Slab.h vmalloc Allocate Compatible

memory.
Wait.h wait_event Wait for an Compatible
event.
Wait.h wait_event interr | Wait for an Compatible
uptible event.
Wait.h wait_event_interr | Wait for an Compatible
uptible timeout | event for a
limited period
of time.
Completion.h wait_for comple | Wait for Compatible
tion completion.
Completion.h wait_for comple | Wait for Compatible
tion_timeout completion for a
specified period
of time. If the
time expires, the
waiting ends.
Wait.h waitqueue_active | Test whether a Compatible
wait queue is
empty.
Wait.h wake up Wake up a task. | Compatible
Wait.h wake up interru | Wake up atask | Compatible
ptible that has been
put to
interruptible
sleep.
Workqueue.h work busy Test the status Compeatible
of a work.
io.h writeb Write one byte Compatible
to I/O.
i0.h writel Write four bytes | Compatible
to I/O.
uio.h writev Store data in Compatible
multiple non-
contiguous
buffers and
writes out the
data.
i0.h writew Write two bytes | Compatible
to I/0.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 125

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Header File

API

Function

Compatibility

Zlib.h

zlib_deflate

Compress data.

Compatible

Zlib.h

zlib_deflateEnd

Free the
dynamic data
structure
allocated to the
current stream.

Compatible

Zlib.h

zlib_deflatelnit

Initialize the
zlib status.

Compatible

Zlib.h

zlib_inflate

Decompress
data.

Compatible

Zlib.h

zlib_inflateEnd

Free the
dynamic data
structure
allocated to the
current stream.

Compatible

Zlib.h

zlib_inflatelnit

Initialize the
internal stream
status for

decompression.

Compatible

Zlib.h

zlib_inflatelnit2

Decompress
data.

Compatible

4.5.5.2 Linux APIs Not Supported

Some Linux APIs are not supported in Huawei LiteOS. The following table lists the detailed

specifications:
File API Description Supported/Not
Supported

adp.c __assert Assertion. This API | Not supported
is used to determine
whether program
execution is correct.

adp.c __cxa_atexit The process exits. Not supported

adp.c __tls_get addr Get the address of a | Not supported
thread-local
variable.

wait.h add_wait_queue Add a process to the | Not supported
tail of a queue.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 126

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

File

API

Description

Supported/Not
Supported

adp.c

alarm

Arrange for a
SIGALRM signal to
be delivered to the
calling process in
seconds seconds. If
seconds is zero, the
previously set alarm
is canceled. This
API returns the
number of seconds
remaining until any
previously
scheduled alarm was
due to be delivered.

Not supported

atomic.h

atomic_set

Set the value of an
atomic variable.

Not supported

bug.h

BUG

Provide assertions
and dumps
information.

Not supported

adp.c

chroot

Change the root
directory to the
directory specified
by path. Only a
superuser is allowed
to change the root
directory. All
children of the
calling process will
inherit the new root
directory.

Not supported

adp.c

closelog

Close the opened
connection to a
system logger.

Not supported

sched.h

cond_resched

Schedule a new
process for running.

Not supported

kernel.h

copy_from user

Copy data from user
space to kernel
space.

Not supported

kernel.h

copy_to_user

Copy data from
kernel space to user
space.

Not supported

adp.c

daemon

Create a daemon.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

127

LiteOS

Developer Guide 4 Extended Kernel
File API Description Supported/Not
Supported
wait.h DECLARE_WAITQ | Define and initialize | Not supported
UEUE a wait queue.
semaphore.h down Attempt to acquire a | Not supported

semaphore. If the
semaphore is not
available, the
process waits on the
semaphore and
cannot be woken up.

semaphore.h

down_interruptible

Attempt to acquire a
semaphore. If the
semaphore is not
available, the
process waits on the
semaphore. When
the semaphore is
freed up, the process
is woken up.

Not supported

semaphore.h

down_trylock

Attempt to acquire a
semaphore. If the
semaphore is not
available,
down_trylock
immediately returns
with a nonzero
return value, and the
caller will not wait
on the semaphore.

Not supported

adp.c

€xXecve

Execute a file
specified by
filename. The
second parameter is
an array of character
pointers. The final
parameter is an array
of character pointers
to the new
environment.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

128

LiteOS
Developer Guide

4 Extended Kernel

File

API

Description

Supported/Not
Supported

adp.c

fchown

Change the owner
and group of the file
specified by fd to
owner and group
respectively. If
owner or group is
specified as - 1, the
owner or group is
changed. The
parameter fd is an
open file descriptor.
When root calls
fchown() to change
the owner or group
of a file, the
S_ISUID or

S _ISGID permission
bits are cleared.

Not supported

adp.c

fork

Create a process that
is almost the same
as the calling
process.

Not supported

adp.c

fs_fssync

File
synchronization.

Not supported

adp.c

getdtablesize

Return the
maximum number
of open files a
process can have.

Not supported

adp.c

gethostname

Get the hostname.

Not supported

adp.c

getpwnam

Search for account
names specified by
name and return the
data of each account
as a passwd
structure. For details
on the passwd
structure, see the
description of

getpwent().

Not supported

adp.c

getrlimit

Get the upper limit
on resources.

Not supported

semaphore.h

init MUTEX

Initialize a
semaphore and set
the semaphore's
value to one.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

129

Developer Guide

4 Extended Kernel

File API Description Supported/Not
Supported
semaphore.h init MUTEX LOC | Initialize a Not supported

KED

semaphore and set
the semaphore's
value to zero.

adp.c

initgroups

Read group data
from the group
database /etc/group.
If user is a member
of the group data,
the group parameter
is added to the group
data.

Not supported

kernel.h

ioremap_cached

Map physical
memory to kernel
virtual address
space.

Not supported

kernel.h

ioremap nocached

Map physical
memory to kernel
virtual address
space.

Not supported

kernel.h

iounmap

Cancel the mapping
made by ioremap.

Not supported

compiler.h

likely

Conditional
statement that
indicates the value is
likely to be true.

Not supported

adp.c

linux_module_init

Load a module.

Not supported

list.h

list_empty

Test whether a
linked list is empty.

Not supported

kernel.h

misc_deregister

Unregister a
miscellaneous
device.

Not supported

kernel.h

misc_register

Register a
miscellaneous
device.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

130

LiteOS

Developer Guide 4 Extended Kernel
File API Description Supported/Not
Supported
adp.c mmap Map files or other Not supported

objects into memory.

Accessing the
memory area means
reading and writing
a file. The

start parameter
specifies the start
address of the
memory area where
files or other objects
are mapped, and is
normally set to
NULL, indicating
that the address is
automatically
determined by the
OS. Upon successful
completion, this
address is returned.
The length
parameter specifies
the length of file to
be mapped into
memory.

module.h module put Decrease the Not supported
number of times a
module is referenced
by one.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 131
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

File

API

Description

Supported/Not
Supported

adp.c

munmap

Delete the mappings
of files or other
objects in the
memory.

The length
parameter specifies
the size of the
memory to be
deleted. If the
process ends, or
other programs are
executed by using
exec functions, the
mapped memory
will be
automatically
deleted. However,
the mapping will not
be deleted when the
corresponding file
descriptor is closed.

Not supported

adp.c

nice

Change the
execution priority of
a process. A greater
inc value means a
lower priority. Only
a superuser is
allowed to set a
negative inc value,
in which case a
greater value means
a higher priority.

Not supported

adp.c

pipe

Create a pipe and
place two file
descriptors, one each
into filedes[0] and
filedes[1]. filedes[0]
refers to the read
end of the pipe, and
filedes[1] the write
end.

Not supported

kernel.h

printtime

Print the system
time.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

132

LiteOS

Developer Guide 4 Extended Kernel
File API Description Supported/Not
Supported
adp.c readlink Place the contents of | Not supported
the symbolic link
path in the buffer

buf. The returned
content is not
NULL-terminated
but the number of
bytes placed in the
buffer. If the buffer
size bufsiz is
smaller than the size
of the contents of
the symbolic path,
the contents will be
truncated.

adp.c recvimsg Receive a message Not supported
from a socket
specified by a
remote host. The

s parameter
specifies a
connected socket. If
the user datagram
protocol (UDP) is
used, the socket
does not need to be
connected. The msg
parameter points to
the message
structure to be
connected. The flags
parameter is
normally set to 0.
For details about
flags, see the
description of
send(). For the
definition of the
msghdr structure,
see the description
of sendmsg().

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 133
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

File

API

Description

Supported/Not
Supported

wait.h

remove wait_queue

Remove a wait
queue from the wait
queue linked list
pointed to by the
wait queue head
associated with the
wait queue to be
removed.

Not supported

adp.c

setgroups

Set the
supplementary
group IDs in the
array specified by
list for the calling
process. The

size parameter
specifies the number
of gid_t in list. The
maximum size value
is NGROUP(32).

Not supported

sched.h

signal pending

Test whether the
current process is
processes by a
signal.

Not supported

adp.c

sigset

Change the
disposition of the
signal specified by
sig to the disposition
specified by disp.

Not supported

string.h

simple_strtol

Convert a string to
an unsigned long
data.

Not supported

adp.c

syscall

Invoke a system
call.

Not supported

timer.h

timer_pending

Test whether a timer
has been activated.

Not supported

module.h

try_module get

Increase the number
of modules in use.

Not supported

rwsem.h

try_module get

Downgrade writers
to readers.

Not supported

mount.h

umount2

Unmount a file
system.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

134

LiteOS
Developer Guide

4 Extended Kernel

File

API

Description

Supported/Not
Supported

compiler.h

unlikely

Conditional
statement that
indicates the value is
likely to be false.

Not supported

semaphore.h

up

Release a
semaphore, wake up
the first process in
the queue of
processes waiting on
the semaphore.

Not supported

adp.c

waitpid

Suspend execution
of the calling
process until the
delivery of a signal,
or until a child
process terminates.
If a child process
has terminated at the
time wait() is called,
wait() will
immediately return
the termination
status value of the
child process. The
termination status
value stored in the
status parameter
and the child process
ID are returned. If
the termination
status value is
unnecessary, status
can be set to NULL.

Not supported

wakelock.h

wake lock

Activate a lock.

Not supported

wakelock.h

wake lock active

Test whether a lock
is active.

Not supported

wakelock.h

wake lock init

Initialize a lock.

Not supported

wakelock.h

wake unlock

Unlock and
deactivates a lock.

Not supported

watchdog.h

watchdog_init

Initialize a watch
dog.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

135

LiteOS
Developer Guide 4 Extended Kernel

4.6 C++ Support

4.6.1 Overview

Basic Concept

C++ is one of the most widely used programming languages. It is an object-oriented
programming language with features including classes, encapsulation, and reloading.

Operation Mechanism

STL is a collection of some "containers", as well as a collection of algorithms and other
components. The objective is to develop a standardized component that can be used without
developing again, directly using an off the shelf component.

4.6.2 Development Guidelines

Function

Function Category API Description

Initialize C++ constructors LOS_CppSystemlInit Initializes C++ constructors

Initializing C++

C++ initialization functions vary depending on whether scatter loading is enabled or disabled.
This is because the use of scatter loading affects program code and the data segment loading
time.

Scatter loading is disabled
Before calling C++ code, call the LOS_CppSystemInit API with the NO SCATTER

parameter.
LOS CppSystemInit ((unsigned long)é& init array start , (unsigned
long) & init array end , NO_SCATTER);

Table 4-1 Description

Parameter Description
__init_array start Start array
__init_array_end End array
NO_SCATTER Scatter loading is disabled

Scatter loading is enabled

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 136
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

® [f C++ code needs to be called at the fast startup phase of scatter loading, first call the
LOS_CppSystemlInit API with the BEFORE_SCATTER parameter.

LOS CppSystemInit ((unsigned long)é& init array start , (unsigned
long)& init array end , BEFORE SCATTER);

Table 4-2 Description

Parameter Description

__init_array start Start array

__init_array end End array

BEFORE_SCATTER LOS_CppSystemlnit is called at the fast
startup phase of scatter loading

Then, at the non-fast startup phase of scatter loading, call the LOS_ CppSystemInit API with
the AFTER SCATTER parameter.

LOS CppSystemInit ((unsigned long)& init array start , (unsigned
long)& init array end , AFTER SCATTER);

Table 4-3 Description

Parameter Description

__init_array start Start array

__init_array end End array

AFTER_SCATTER LOS_CppSystemlnit is called at the non-
fast startup phase of scatter loading

® [f C++ code does not need to be called at the fast startup phase of scatter loading, you

can try any of the approaches: (1) call the LOS_CppSystemlInit API twice, first at the fast
startup phase of scatter loading and then at the non-fast startup phase; (2) call the
LOS_CppSystemlInit API twice at the non-fast startup phase of scatter loading, first with
the BEFORE_SCATTER parameter and then with the AFTER _SCATTER parameter.

LOS CppSystemInit ((unsigned long)é& init array start , (unsigned
long) & init array end , BEFORE SCATTER) ;

LOS CppSystemInit ((unsigned long)é& init array start , (unsigned
long) & init array end , AFTER SCATTER);

Or, alternatively, call the LOS_CppSystemInit API once with the NO_SCATTER
parameter.

LOS CppSystemInit ((unsigned long)é& init array start , (unsigned
long) & init array end , NO_SCATTER);

Call C Language Functions

To call a C language function in C++ language, add the following statement to the function

declaration:

extern "C".

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 137
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

4.6.3 Precautions

® (C++ does not support operations related to I/O character streams or I/O file streams in
the current Huawei LiteOS.

4.6.4 Programming Example

Example Description

C++ constructors are initialized during code initialization to make C++ features usable. In this
example, scatter loading is to be used, so the LOS_CppSystemlInit API needs to be called
twice.

Example Code

void app_init(void)

/* C++ constructor initialization during the fast boot phase */

LOS_CppSystemInit((UINT32)& init_array start , (UINT32)& init array end
BEFORE_SCATTER);

/* scatter loading */
LOS_ScatterLoad(0x100000, flash read, NAND READ ALIGN_SIZE);
/* C++ constructor initialization during the non-fast boot phase */

LOS_CppSystemInit((UINT32)& init_array start , (UINT32)& init array end
AFTER _SCATTER);

4.7 MMU

4.7.1 Overview

Basic Concept

MMU is short for memory management unit.

Operation Mechanism

The table of page table descriptors is created, and the physical address is translated into a
virtual address. The physical memory then can be accessed through the virtual address.

A user creates, modifies, and manages a table of page table descriptors with the format of the
master chip used by the user. A table of page table descriptors is a reference for memory

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 138
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

mapping and permission control. The creation of and modification to it take effect after it is
written to the CP15 coprocessor that executes memory management.

Operations on an MMU are performed by modifying a page table descriptor and controlling

the CP15 coprocessor. The operation process is as illustrated in Figure 1 .

Figure 4-4

e

Create a page
table descriptor

Initialize the
M ML

Maodify and
synchronize the
page table
descriptor

Use the newest
page table
descriptor

Run Huawei
LiteOS

An MMU in Huawei LiteOS has the following functions:

® Providing an API to control the cache/nocache attribute of hardware

® Providing an API to control the memory access permission of hardware

4.7.2 Development Guidelines

Usage Scenarios

Functions

Some memory does not hope to be modified. Unpredictable results will be caused if the
memory is modified. To protect the memory from being modified, an MMU is used to modify
the access permission on the memory. The permission of any access to the memory is
checked. If the permission is not correct, an exception will be triggered.

Cache and buffer status can be controlled through cache+buffer. For example, you can disable
cache, write through, and write back.

The MMU module of Huawei LiteOS provides the following function:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 139

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
Table 4-4
Function API Description
Category
Control the access | LOS MMUParamSet Changes the status of cache, buffer, and
permission read/write permission of the memory at
the specified address.

Parameters:

typedef struct
{

UINT32 startAddr; // Start memory address
UINT32 endAddr; // End memory address
UINT32 uwFlag; // Memory attributes

// BUFFER ENABLE/BUFFER DISABLE

// CACHE ENABLE/CACHE DISABLE

// ACCESS_PERM RW RW/ACCESS PERM RO RO

SENCOND_PAGE *stPage; // The 2nd-level page table to be operated
}MMU_PARAM;

Example:

void code protect (void)
{
MMU PARAM mPara;

mPara.startAddr = (unsigned long) & text start;
mPara.endAddr = (unsigned long)é& rodatal end;

mPara.uwFlag = BUFFER ENABLE|CACHE ENABLE |ACCESS PERM RO RO;
mPara.stPage = (SENCOND PAGE *)&stOsPage; // Mark A

LOS MMUParamSet (&mPara) ;
}

Description:

This API is used to set the memory starting from the address specified by __ text start and
ending at the address specified by _rodatal_end to read-only and enable the cache and
buffer of this memory segment. Multiple 2nd-level page tables may be available. Mark A is
used to specify the 2nd-level page table to be operated by the APIL.

Development Process

typedef struct

{

UINT32 page_ addr; // Start address of the memory described by a 2nd-level
page table, which must be aligned on the boundary of 1 MB.

UINT32 page length; // Length of the memory, which must be aligned on the
boundary of 1 MB.

UINT32 page descriptor addr; // Storage address of the 2nd-level page table
entries, which must be aligned on the boundary of 1 KB.

UINT32 page type; // 2nd-level page table type, including small page table (4
KB) and big page table (64 KB).

} SENCOND_PAGE;

Refer to the preceding structure and perform the following steps to complete the development:

Step 1 Define a 2nd-level page table structure variable, which should be a global variable.
SENCOND_ PAGE stOsPage = {0};

Step 2 Configure the 2nd-level page table.

stOsPage.page addr = test page addr;
stOsPage.page length = test length;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 140
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
stOsPage.page_descriptor addr = test addr;
stOsPage.page_type = MMU_ SECOND LEVEL SMALL PAGE TABLE_ID;
Step 3 Enable the 2nd-level page table.
LOS_SecPageEnable (&stOsPage, BUFFER ENABLE|CACHE ENABLE |
ACCESS_PERM RW_RW) ;
Step 4 Modify the attributes of the 2nd-level page table.

void test func(void)

{
MMU_ PARAM mPara;

mPara.startAddr = (unsigned long)é& text start;
mPara.endAddr = (unsigned long)& rodatal end;
mPara.uwFlag = CACHE ENABLE|ACCESS PERM RO RO;
mPara.stPage = (SENCOND PAGE *)&stOsPage;

LOS_MMUParamSet (&mPara) ;
}

—--End

4.7.3 Precautions

® Compared with the Ist-level page table, the efficiency of memory translation configured
for the 2nd-level page table is lower, and the 2nd-level page table uses more translation
lookaside buffer (TLB) resources. Therefore, you are advised to use the Ist-level page
table to process memory that is frequently accessed.

4.7.4 Programming Example

Example Description

You can call the LOS MMUParamSet API and perform the following steps to check how the
API functions:

Step 1 Set the access permission on a specified memory segment to read-only.
Step 2 Write data into the memory segment.
An exception occurs, indicating that the access permission setting succeeds.
Step 3 Delete the write operation in step 2 and call the LOS_ MMUAPSet API to set the access
permission to read/write.
No exception occurs, indicating that the access permission setting succeeds.
----End
Example Code
UINT32 MMU_Sample ()
{
UINT32 *pAlignaddr;
extern SENCOND PAGE stOsPage;
MMU_ PARAM mPara;
mPara.startAddr = (unsigned long)é& text start;
mPara.endAddr = (unsigned long)é& text end;
mPara.uwFlag = BUFFER ENABLE|CACHE ENABLE|ACCESS PERM RO RO;
mPara.stPage = (SENCOND PAGE *)&stOsPage;
PRINTK ("---— TEST START ----\n");
pAlignaddr = (UINT32 *) (& text start);
PRINTK (">>1\n") ;
LOS_MMUParamSet (&mPara) ;
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 141

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
*pAlignaddr = Oxa; //if done, be exc
PRINTK (">>2\n") ;
mPara.uwFlag = BUFFER_ENABLE |CACHE_ ENABLE |ACCESS PERM RW_RW;
LOS_MMUParamSet (&mPara) ;
*pAlignaddr = 0xb;
PRINTK (">>3\n") ;
PRINTK ("---- TEST END ----\n");
return LOS_OK;
}
Execution Result
The "*pAlignaddr = 0xa" code is not commented out.
o TEST START: ===
3|
wwExcType = Oxd
puwExcBuffiddr pe = 0x8000adcd
puwExcBuffiddr 1r = 0xS000aaTs
puwExcBuffhddr =p = 0x80093=30
puwExcEBuffiddr fp = 0xS0093=44
dkkkkdkhacktrace begimdokkkbkk
traceback 0 —— 1r = 0x3000ble=4
traceback 0 —— fp = 0x30093=54
traceback 1 —— 1r = 0x3000bZc4
traceback 1 —— fp = 0x300939c
traceback 2 —— 1r = 0x3000aedc
traceback 2 —— fp = 0x30093eac
traceback 3 —— 1lr = 0x3000acdc
traceback 3 —— fp = 0x30093ehbe
traceback 4 —— 1r = 0x300104fc
traceback 4 —— fp = 0x30093ecc
traceback 5 —— 1lr = 0x30026elc
traceback 5 —— fp = Ox11111111
Hame TID Priority Status
Swt_Task D=0] HuenePend
IdleCore000 Ol i) | Ready
IT_TST_IHWI 0x2 25 Bunning
RO = DOxG00040e0
Rl = DxB00040 25
Rz = 050004024
B3 = 0x=0
k4 = DOxE0002000
ES = 0x=0
s = DOxG002a000
BT = DxB00302e4
it = Ox50051414
R9 = DxB002 020
Ri0 = Ox50051 414
Rl1 = DxB0093e44
R1Z = OxZa
5P = DxB0093e30
LR = OxG000aaTs
PC = DxB000adcd
CFSE = Oxz00£0013
pelasklame = IT_TST_THT
TaskID = 2
Task StaclSize = 86016
system mem addr:O0xS00561c0
ztack name zstack addr total =ire uzed size
undef stack addr Ox3002 =520 Ox20 Ox0
abt_stack addr 05002 =540 020 Oxhb
irq staclk addr 3002 =550 Oz40 Ox10
fig stack addr 05002 28 0 0z:40 0=0
sve_stacl addr Ox300Z2 450 Q1000 Oxl4f
startup staclk addr 0xB800563a0 0200 0x=133
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 142

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

The "*pAlignaddr = 0xa" code is commented out.

-=-= TEST START --—-
531

2

53

---- TEST EHD -——-

Complete Example Code

sample MMU.c
4.8 Atomic Operation

4.8.1 Overview

Basic Concept

In a multi-tasking operating system (OS), data reading, modification, and writing are three
essential procedures of modifying the data in a specified memory. However, the data may be
concurrently accessed by multiple tasks. If the data modification is interrupted by other tasks,
unexpected modification result will occur.

Multiple tasks can be successfully executed by enabling and disabling interrupts, but this
method affects OS performance.

The ARMv6 architecture introduces LDREX and STREX command to support non-blocking

synchronization of shared memory, which allows a data modification not to be interrupted and
achieves an atomic operation.

Operation Mechanism

Huawei LiteOS provides atomic operation APIs by encapsulating LDREX and STREX in the
ARMUv6 architecture.

® LDREX Ry, [Ry]

The following is the method to read data in the memory and mark the exclusive access to
the memory:

- Read the 4-byte memory data pointed to by the Ry register and store the read
memory data to the Rx register.

- Add a exclusive access flag to the memory segment pointed by Ry.
® STREX Rf, Rx, [Ry]

Whether memory data will be updated and how STREX functions is described as
follows:

- Ifthe memory has an exclusive access flag, the memory data will be updated.

i. Update the memory data pointed to the Ry register to the value in the Rx
register.

ii. Set the Rf flag register to 0.

- If the memory does not have an exclusive access flag, the memory data should be
updated.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 143
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

i. The memory data pointed to by Ry will not be updated.

ii. Set the Rf flag register to 1.
® Flag register

- Ifthe flag register is 0, the atomic operation ends.

- If'the flag register is 1, the atomic operation cycle proceeds and the atomic

operation starts again.

4.8.2 Development Guidelines

Usage Scenarios

When multiple tasks are performing increasing, decreasing, and exchanging operations on the
same memory data, the use of atomic operations will ensure that operation results are

predictable.

Functions

The atomic operation module of Huawei LiteOS provides the following functions:

Table 4-5 Functions

Function Category API

Description

Increasing LOS_ AtomicAdd Adds a random number to or
subtracts a random number
from memory data

LOS_Atomiclnc Adds one to memory data
LOS_AtomiclncRet Adds one to memory data and
return

Decreasing LOS_AtomicDec Subtracts one from memory
data

LOS_AtomicDecRet Subtracts one from memory
data and return

Exchanging LOS_AtomicXchgByte Exchanges 8-bit memory data

LOS_AtomicXchgl6bits

Exchanges 16-bit memory
data

LOS_AtomicXchg32bits

Exchanges 32-bit memory
data

Exchanging after LOS_AtomicCmpXchgByte

comparison

Compares and exchanges 8-
bit memory data

LOS_AtomicCmpXchgl6bits

Compares and exchanges 16-
bit memory data

LOS_AtomicCmpXchg32bits

Compares and exchanges 32-
bit memory data

Issue 01 (2018-04-20) Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

144

LiteOS
Developer Guide 4 Extended Kernel

(MnoTe

The bits of the input data and the result data cannot exceed the maximum bit allowed by the function.

Platform Differences

IDREX and STREX are used in Cortex-A7 and Cortex-A17 to ensure atomic operations.
Enabling and disabling interrupts are used to ensure that operations are atomic in ARM926
because ARM926 does not support IDREX and STREX.

4.8.3 Precautions

® Currently, atomic operation APIs can only be used for operations on integer data.

4.8.4 Programming Example

Example Description
Perform the following two steps and view the result:

Step 1 Create two tasks

1. Call the LOS_ Atomiclnc API to increase the global variable by one for 100 times.
2. Call the LOS_AtomicDec API to decrease the global variable by one for 100 times.

Step 2 After the subtasks are finished, print the global variable value in the major task.

——End

Example Code

#include "los_atomic.h"
UINT32 g TestTaskIDO1;
UINT32 g TestTaskIDO02;
UINT32 g_sum;
UINT32 g count;
UINT32 It atomic 001 £O01 ()
{
int
for (
{

i=20;
i=0; 1 < 100; ++i)

LOS AtomicInc (&g_sum) ;
}

++g count;
return LOS_OK;
}
UINT32 It atomic 001 £02()
{
int
for (
{

i=20;
i=0; 1 < 100; ++i)

LOS_AtomicDec (&g_sum) ;
}

++g_count;
return LOS_OK;
}
UINT32 it atomic_ test()
{
UINT32 uwRet, uwCpupUse;
INTPTR uvIntSave;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 145
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

TSK _INIT PARAM S stTaskl={0};

stTaskl.pfnTaskEntry = (TSK_ENTRY FUNC)It atomic 001 f01;
stTaskl.pcName = "TestAtomicTskl";

stTaskl.uwStackSize = LOSCFG BASE CORE_TSK DEFAULT STACK SIZE;
stTaskl.usTaskPrio = 4;

stTaskl.uwResved = LOS_TASK_STATUS DETACHED;

TSK _INIT PARAM S stTask2={0};

stTask2.pfnTaskEntry = (TSK_ENTRY FUNC)It atomic 001 f02;
stTask2.pcName = "TestAtomicTsk2";

stTask2.uwStackSize = LOSCFG BASE CORE_TSK DEFAULT STACK SIZE;
stTask2.usTaskPrio = 4;

stTask2.uwResved = LOS_TASK_STATUS_ DETACHED;

LOS_TaskLock () ;
LOS_TaskCreate (&g _TestTaskIDO1l, &stTaskl);
LOS_TaskCreate (&g _TestTaskID02, &stTask2);
LOS_TaskUnlock () ;

while(g_count != 2);
PRINTK ("g_sum = %d\n", g_sum);

return LOS_OK;

Verification

g_sum = 0

Complete Example Code

sample_atomic.c

4.9 Run-Stop

4.9.1 Overview

Basic Concept

Run-Stop is used to store the image of Huawei LiteOS encountering an exception and restore
the OS running.

The Run-Stop interface is called to store the CPU threads and memory status snapshot of the
running OS to the Flash. After the OS restarts, the OS running status can be restored from the
snapshot in the Flash.

Run-Stop can be used to wake up the OS after power-off in WiFi service. When the WiFi
service is stable after being initialized, the Run-Stop interface is called to store the snapshot of
OS including the CPU threads and memory in Flash. When the OS is idle, the master core is
powered off to enter the power-saving mode. When there are services for the WiFi service, the
micro control unit (MCU) sends a packet to power on the master core. After the hardware
status is restored, the stored snapshot is restored to ensure the continued running of the WiFi
service.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 146
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

4.9.2 Development Guidelines

Usage Scenarios

You can use the Run-Stop mechanism when you intend to store the snapshot of Huawei
LiteOS on a medium after the OS runs for a period of time, run the OS from the snapshot at
another point of time, and hope that the OS state at the moment you run the OS the second
time is the same as the snapshot.

In an IP camera (IPC) that runs Huawei LiteOS, Run-Stop is used to restore the OS state
when a WiFi service will run. The snapshot of Huawei LiteOS at the moment when a WiFi
service runs stably is stored. When the OS is idle, the master core is powered off to enter the
power-saving mode. When the OS receives a WiFi packet, the memory management unit
(MMU) powers on the master core, and the stored snapshot is restored to ensure the running
of the WiFi service. In this way, the OS state can be quickly restored to ensure stable WiFi
connection in the power-saving mode.

Function
The Run-Stop module of Huawei LiteOS provides the following function:
Table 4-6 Function
API Description
LOS_Makelmage Stores the snapshot of Huawei LiteOS on a
specified medium.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 147

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 4 Extended Kernel

Development Process

Figure 4-5 Operation process of Run-Stop

Write the Run-5top
service code

Configure the
WOW SRC variable

Compile the snapshot
image

Compile all images

Burn all images into
the Flash

Load the service

Restart Huawei LiteOS

Start Huawei LiteOS
from the snapshot

Step1 Call the LOS_Makelmage API and write the code of the snapshot service.

The entry of the service code is the app_init function contained in the os_adapt.c file.
(Cnote

The os_adapt.c file can be found in the platform/bsp/hi3516a/os_adapt directory in the Huawei
LiteOS cede package.

Following the snapshot service code, call the LOS Makelmage API to store the OS snapshot
on a specified medium. Surround the non-snapshot services following the LOS Makelmage
API with "#ifndef MAKE WOW _IMAGE" and "#endif". The example code is as follows:

void wakeup callback (void)

{

hal interrupt unmask(83);

if (!nand init())

{

PRINT ERR("nand init failed\n");
}

}

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 148
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
#define NAND ERASE ALIGN SIZE (128 * 1024)
#define NAND READ ALIGN SIZE(2 * 1024)
#define NAND WRITE ALIGN SIZE(2 * 1024)
int flash read(void *memaddr, unsigned long start, unsigned long size)
{
extern int hinand read(void *memaddr, unsigned long start, unsigned long size);
return hinand read(memaddr, start, size);
}
int flash write(void *memaddr, unsigned long start, unsigned long size)
{
extern int hinand erase(unsigned long start, unsigned long size);
extern int hinand write(void *memaddr, unsigned long start, unsigned long size);
(void)hinand erase(start, size);
return hinand write (memaddr, start, size);
}
void app_init (void)
{
RUNSTOP_PARAM_S stRunstopParam;
proc_fs init();
if (hi_uartdev_init () != 0)
{
PRINT ERR("hi uartdev_init failed");
}
if (system console init (TTY DEVICE) != 0)
{
PRINT ERR("system console init failed\n");
}
if (nand_init () != 0)
{
PRINT ERR("nand init falied\n");
}
memset (&stRunstopParam, 0, sizeof (RUNSTOP PARAM S));
/* Parameter configuration */
stRunstopParam.pfFlashReadFunc = flash read;
stRunstopParam.pfFlashWriteFunc = flash write;
stRunstopParam.pfImageDoneCallback = NULL;
stRunstopParam.pfIdleWakeupCallback = NULL;
stRunstopParam.pfWakeupCallback = wakeup_ callback;
stRunstopParam.uwFlashEraseAlignSize = NAND ERASE ALIGN SIZE;
stRunstopParam.uwFlashWriteAlignSize = NAND WRITE ALIGN SIZE;
stRunstopParam.uwFlashReadAlignSize = NAND READ ALIGN SIZE;
stRunstopParam.uwImageFlashAddr = 0x100000;
stRunstopParam.uwWowFlashAddr = 0x3000000;
LOS_MakeImage (&stRunstopParam) ;
#ifndef MAKE WOW_IMAGE
extern UINT32 g uwWowImgSize;
PRINTK ("Image length 0x%x\n", g uwWowImgSize);
extern unsigned int osShellInit (const char *);
if (osShellInit(TTY_DEVICE) = 0)
{
PRINT ERR("osShellInit\n");
}
rdk _fs init();
SDK_init ();
vs_server (3, apszArgv);
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 149

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Step 2

Step 3

Step 4

#endif /* MAKE WOW IMAGE */
}

Configure the WOW_SRC variable.

Run the following command to set the SCATTER SRC variable in Makefile under the root
directory to the source file of the services that call the LOS Makelmage API.
LITEOSTOPDIR represents the root directory of Huawei LiteOS code.

WOW_SRC := $(LITEOSTOPDIR)/platform/bsp/$ (LITEOS PLATFORM) /os_adapt.c

Run the make wow command to compile the snapshot image.

Run the following command under the root directory, and the service code following "#ifndef
MAKE WOW_IMAGE" will not be compiled. Then the compilation system automatically
calls the tool chain to extract the symbol table of the snapshot image and the .a library list of
the snapshot image.

Huawei LiteOSS$ make wow

Run the make command to compile all images.

1. Run the following command under the root directory to compile all service code.
Huawei LiteOS$ make

2. Check whether the snapshot image is successfully generated by viewing the image
segment allocation. Access the directory where the vs_server image file is generated.
The directory name is out/platform name. For example, the image of hi3516a is
generated in the out/hi3516a directory. Run the readelf -S vs_server command to open
the vs_server file. Information similar to the following will be displayed:

Figure 4-6 vs_server.bin image file

PROGBITS
PROGBITS
PROGBITS
NOBITS

80008020 0000d8 00b550 00
80013570 00b628 04bbd4 00
8005f0b4 05716c 0@1c3c 00
80060cf@ 058da8 008elc 00

.wow_rodata
.wow_text
.wow_data
bss

WOW

Information about the segments related to Run-Stop is displayed, including segment
name, start address, and offset. In the preceding figure, .wow_rodata

and .wow_constdata are read-only data segments. .wow_text, .wow_data, and .wow_bss
indicate the code segment, data segment, and bss segment respectively.

3. View the .text segment in the link script of Run-Stop. wow.o(*.text*) is added, as shown

in the following figure, indicating that symbols related to the snapshot code are placed in
the same area.

Figure 4-7 .text segment in the link script

.wow_text ALIGN (@x4): {
wow .0(. text*);

}

-wow_data ALTGN (@x4): {
. = ALIGN (4); KEEP(wow.O(SORT (.liteo
}

table.*.wow.*))) ; . = ALIGN (4); wow.0(.data*);

__wow_bss_start = ABSOLUTE (.);

MnoTe

The path to the link script of Run-Stop is Huawei_LiteOS/tools/scripts/ld/wow.ld.

Step 5 Run the following command to burn all images into the Flash.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 150

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 4 Extended Kernel
tftp 0x82000000 vs_server.bin;nand erase 0x100000 0x700000;nand write 0x82000000
0x100000 0x700000;

In the serial port tool interface, enter the following command to burn all images into the Flash
at the address of 0x100000.
tftp 0x82000000 vs server.bin;nand erase 0x100000 0x700000;nand write 0x82000000
0x100000 0x700000;
vs_server.bin in the command is the name of system image file. Burn this file into memory at
the address of 0x82000000. Then burn it into the Flash starting at the the address of
0x100000. The size of file to be burnt is 0x700000, indicating that the size of the burnt image
file must not exceed 7 MB. Adjust to size of the to-be-burnt file according to the actual image
file size.
Step 6 Run the following command to load all images.
nand read 0x80008000 0x100000 0x700000; go 0x80008000;
Run the following command to start Huawei LiteOS.
nand read 0x80008000 0x100000 0x700000; go 0x80008000;
Step 7 Run Huawei LiteOS from the snapshot.
The snapshot image size can be printed, as shown in the following figure:
Figure 4-8 Printed information
TFIP from server 192.168.1.2; ouwr IP address is 192.168.1.10
Download Filename ' ws_serwer. bin'.
Download to address: 0x30008000
Dowrdoading: *:
done
Bytes transferred = 825104 (c9710 hex)
Starting application at 0x80008000 ...
apkerekkhello Huawel Lite0S Cortex—ATHbkkiikk
version : Huawei Lite0S V100R002CO0B302
open-version : Huawei Lite0S 1.1.4T6
build data : Aug 11 2016 16:37:58
osAppInit
Mount procfs finished.
Nand ID:0x01 OxDA 0x30 0x85 Ox44 0x01 DxDA 0x80
Nand: “NAND 2S6MiB 3,3V 8-bit"
Size:256MB Block:128KB Page:2KB Oob:64B Ecc:8bit/1K
Image length Oxc0000
In the sample shown in the foregoing figure, the snapshot size is 0xc0000, and the snapshot is
written to the address of 0x3000000 on the medium.
Run the nand read 0x80008000 0x3000000 0xc0000; go 0x80008000; command in uboot to
start Huawei LiteOS from the snapshot. Information similar to that shown in the following
figure will be displayed:
Figure 4-9 Printed information
hisilicon # nand read Ox80008000 0x3000000 Oxc0000; go 0x30003000;
NAND read: device 0 offset Ox3000000, size Oxc0000
T86432 bytes read: OK
Starting application at OxB80003000 ...
Nand ID:0x01 OxDA 0x90 0x9S 0x44 0x01 OxDA 0xS0
Nand: “NAND 256MiB 3,3V 8-bit"
Size:256MB Block:128KB Page:2KB Oob:64B Ecc:8bit/1K
register nand err —-17
nand_init (673): Error:nand node register fail!
Image length Oxc0000
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 151

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

4 Extended Kernel

Huawei LiteOS is successfully started from the snapshot.

—End

4.9.3 Precautions

When writing Run-Stop services, ensure that all code and data of the snapshot are
specified preceding "#ifndef MAKE WOW _IMAGE". Otherwise, not all Run-Stop
services will be contained after the OS snapshot is restored.

The toolchain of Huawei LiteOS Run-Stop depends on Python 2.7. Therefore, ensure
that Python 2.7 is used in the current development environment.

4.9.4 LOS_Makelmage Parameter Configurations

RUNSTOP PARAM S stRunstopParam; // Define a variable for the LOS Makelmage API:

Specify the medium read function:
stRunstopParam.pfFlashReadFunc = flash read;
Specify the medium write function:
stRunstopParam.pfFlashWriteFunc = flash_write;

Specify the callback function to be executed after the specified snapshot image is
generated:

stRunstopParam.pflmageDoneCallback = NULL;

Specify the callback function to be executed in the idle task after the specified snapshot
is restored:

stRunstopParam.pfldleWakeupCallback = NULL;

Specify the callback function to be executed after the specified snapshot is restored:
stRunstopParam.pfWakeupCallback = wakeup_callback;

Erase alignment parameter of the medium

stRunstopParam.uwFlashEraseAlignSize = NAND ERASE ALIGN SIZE;

Write alignment parameter of the medium
stRunstopParam.uwFlashWriteAlignSize = NAND WRITE ALIGN_SIZE;

Read alignment parameter of the medium

stRunstopParam.uwFlashReadAlignSize = NAND READ ALIGN SIZE;

Address of all images on the medium (address where all images are burnt on the medium
stRunstopParam.uwlmageFlashAddr = 0x100000;

Start address of the medium that stores the snapshot
stRunstopParam.uwWowFlashAddr = 0x3000000;

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 152
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

File System

About This Chapter

5.1 Functions Overview
5.2 VFS

5.3 NFS

5.4 JFFS2

5.5 FAT

5.6 YAFFS2

5.7 RAMFS

5.8 PROC

5.1 Functions Overview

Huawei LiteOS supports the following file systems: virtual file system (VFS), network file
system (NFS), journal flash file system version 2 (JFFS2), file allocation table (FAT), yet
another flash file system version 2 (YAFFS2), RAM file system (RAMFS), and PROC.

Summary of File Systems

Table 5-1 File system functions

File System Function

VES VEFS allows reading and writing data into
file systems on different physical media by
standard Unix system calls, indicating that
operations are performed on different file
systems in a uniform way.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 153
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

5 File System

File System

Function

NFS

NFS enables various devices and operating
systems to share files with each other
through networks.

JFFS2

JFFS2 manages journaled file systems,
particularly files in NOR flash, on devices.
In Huawei LiteOS, JFFS2 supports multiple
partitions.

FAT

FAT is classified into three types: FAT12,
FAT16, and FAT32. FAT is typically used on
removable media storage devices, including
USB flash drives, secure digital memory
cards (SD cards), and removable hard disks,
to maintain good compatibility between
devices and desktop systems such as
Windows and Linux.

YAFFS2

YAFFS2 is an open-source embedded file
system designed for NAND flash. It is used
for large-capacity storage devices and keeps
NAND flash efficient and robust.

Wear leveling and power failure protection
ensures that data will not be corrupted when
a power outage occurs amid file system
modification.

In Huawei LiteOS, YAFFS2 supports
multiple partitions.

RAMFS

RAMES is a file system that exports a
storage medium as a dynamically re-sizable
RAM-based file system.

RAMES places all files in a RAM. Files are
read and written from and to the RAM,
accelerating the read/write speed and
avoiding frequent access to storage.
RAMEFS is a RAM-based cache mechanism
of dynamic file systems.

PROC

PROC is a kind of pseudo file system that
exists only in memory and does not use
external storage. It provides an interface for
accessing the data in Huawei LiteOS
Kernel.

5.2 VFS

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 154
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

5.2.1 Overview

Basic Concept

VFS is a an abstraction layer between lower-layer file systems and upper-layer applications. It
provides a uniform Unix file operation interface.

Multiple types of file systems that require different accessing interfaces need to be accessed in
different modes and through different non-standard interfaces. The VFS layer provides a
uniform file system accessing interface and masks the differences between the lower-layer file
systems, enabling applications to access the file systems regardless of the types of lower-layer
storage media and file systems and improving the developing efficiency.

In Huawei LiteOS, the VFS framework is realized through the tree structure in memory. Each
node of the tree is an inode structure. A node is generated in the tree according to the
directory where a device is registered and mounted. VFS has the following two functions:

1. Searching for nodes

2. Unified invoking (standard)

Operation Mechanism

VFS enables access to different file systems on different media by calling standard Unix file
operation functions (such as open, read, and write).

Types of inode tree nodes in VFS are as follows:
® Virtual node: A virtual node serves as a virtual file of the VFS framework, which keeps

the continuity of the tree. For example, /bin or /bin/vs is a virtual node.

® Device node: A device node is under the /dev directory and corresponds to a device. For
example, /dev/mmc0 is a device node.

® Mounting node: A mounting node, for example, /bin/vs/sd, /ramfs, and /yaffs, is
generated after the mount function is called.

The key elements of an inode are the u field that indicates the pointer to the function structure
and the i_private field that indicates the pointer to data.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 155
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

Figure 5-1 VFS frame structure

| ‘ fyafls

5.2.2 Development Guidelines

Development Process

It is recommended that driver developers use the VFS framework to register and uninstall
device and use open() and read() operation devices (character devices) to make device files
invoke the driver on the application layer.

1. After Huawei LiteOS calls the los_vfs_init() VFS initialization API, /dev will serve as
the root_inode.

2. The register_driver() and register_blockdriver() APIs are called to generate device
nodes, and the mount() API is called to generate mounting nodes where devices are
mounted.

3. Structure information is added during node generation. Nodes are then added to
appropriate places in the tree according to their names.

4. A device node or mounting node to which the path is specified is searched for in the tree.

Corresponding functions can be called by using the pointer to the node that is found.

File Descriptor

In this design, file descriptors are managed by using global arrays.
There are the following two types of file descriptors:

® File descriptor: A File descriptor is a normal file descriptor, in which 0, 1, and 2 are
reserved to serve as system stdin (standard input), stdout (standard output), and stderr
(standard error) respectively. File descriptors that can be allocated are from 3 to
CONFIG_NFILE DESCRIPTORS - 1.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 156
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

5 File System

Socket descriptor: Socket descriptors that can be allocated are from
CONFIG_NFILE DESCRIPTORS.

The two types of file descriptors correspond to two global arrays respectively and the memory
allocated to them are not contiguous.

File Attributes

The following API is only used in FAT to change the attribute of a file:

int chattr(const char *path, mode t mode)

path specifies the file of which the attribute is to be changed.

mode specifies the attribute after the attribute change. There are four types of attributes
(F_RDO: read-only; F_HID: hidden; F_SYS: system file; F_ARC: archive file).

MnoTe

® Currently, the API is only used to change the file attribute in FAT. The file attribute in other file
system are configured in other ways.

In Huawei LiteOS, The file attribute can be changed to any one of the four types of attributes.
In Huawei LiteOS, read-only files and directories must not be deleted.
In Huawei LiteOS, read-only files and directories can be renamed.

Read-only files must not be opened in the O CREAT and O_ TRUNC modes or with read
permissions.

® In Huawei LiteOS, hidden files are visible. However, hidden files are invisible in Windows when
hidden files are set not to be displayed.

® [f system files are configured with the hidden property in Huawei LiteOS, it can only be found in
Windows by running commands. These files are invisible regardless of whether hidden files are set
to be displayed or not.

5.2.3 Precautions

VES is a framework of file systems and allows developers of the application layer to call
file systems in a uniform way.

The name length of a directory or a file to be created in a VFS-mounted file system is
allowed to be 255 bytes at most. A directory or a file that has a name length exceeding
255 bytes will fail to be created.

The configuration of file access permission is not enabled for underlying file systems
(O_WRONLY|O_CREAT). The file access permission is set to 0666 by default.

Calling the inode_find() function increases the number of inode connections by 1. Then
the inode_release() function needs to be called to decrease the number of inode
connections by 1. Therefore, the inode_find() function is used together with the

inode release() function

Devices are classified into character devices and block devices. Considering the security
of file system data on block devices, VFS temporarily does not support raw read and
write operations on block devices. File system data should be manipulated using file
system interfaces after the file systems are mounted.

The los_vfs_init() API can be only called once. File systems will be abnormal if this API
is called for multiple times.

A mount point must be an empty directory and cannot be used for repeated mounting or
mounted to another mount point.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 157
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

® Only hyphens and underscores are allowed to exist in names of files and directories in all
file systems in Huawei LiteOS. Results of containing other special characters in file and
directory names are unpredictable, and it is recommended that not contain those
characters.

® Multilevel directories can be created recursively in VFS.

® Huawei LiteOS does not allow the operation of directly obtaining directory data by
calling open() on a directory. Instead, call the opendir API or specify that a directory is to
be opened using open(path, flags | O DIRECTORY).

® Please mount the file system in strict accordance with the manual, a mount may damage
the equipment and system.

® The working directory in the Shell is separated from the system directory. Operations
will be performed on the working directory in the Shell by running commands such as ed
and pwd through the Shell. And the system directory will be operated by running
commands such as chdir and getcwd. The two directories are irrelevant to each other.
Exercise caution when the input parameter of a file system operation command is a
relative path.

® Do not mount a file system that does not exist during wakeup or the scatter loading
phase.

® In VFS, the length of a full path must be no more than 259 bytes. A file or a directory
whose length is more than 259 bytes cannot be created.

® Parameters O_RDWR, O WRONLY, and O_RDONLY are mutually exclusive. Only
one of them can be used to open a file. Do not use more than one of them to open a file.
Otherwise, an unexpected error may occur.

® All directories and files must be closed before a file system in Huawei LiteOS is
unmounted. Forcible unmount operations will cause problems including but not limited
to damages to file systems and devices, for which Huawei assumes no responsibility.

® All directories and files must be closed before an SD card is removed. Focibly removing
an SD card will cause problems including but not limited to loss of data on the SD card
and SD card damage, for which Huawei assume no responsibility.

5.2.4 Programming Example

None.

5.3 NFS

5.3.1 Overview

Basic Concept

Network file system (NFS) enables various devices and operating systems to share files with
each other through networks. For this reason, it is sometimes regarded as a file system service
similar to a shared folder in Windows.

An NFS client can mount the directories shared by a remote NFS host to a local device and
run programs and shared files without using resources of the local device, as if directories of
the remote host are disks of the NFS client.

NEFS reduces the demand of local workstations for disk space because storage devices
including floppy drives, CD-ROM, and Zip® (A kind of disc driver and disk with high

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 158
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

memory density) can be used by other networked devices. This in turn reduces the number of
removable media devices.

Operation Mechanism

Figure 1 depicts typical NFS networking.

Figure 5-2 NFS networking

I MNFS —
server

File system

NFS maps the NFS directory (\home\Huawei LiteOS\nfs) on an NFS host to the /nfs directory
on an NFS client, and synchronize one directory with another.

5.3.2 Development Guidelines

Development Process
To use NFS functions, perform the following steps: (Every step resolved for detail)

1. Setting Up the NFS Server
2. Setting a Board as an NFS Client
3. Using NFS to Share Files

Setting Up the NFS Server
(LInote

The procedure of setting up an NFS server will be described with Ubuntu OS as an example.
Step 1 Install NFS server software.

Specify the Ubuntu download source and run the following command when network
connectivity is good:

sudo apt-get install nfs-kernel-server

Step 2 Set and start the NFS server.

Add the following line to the /etc/exports NFS configuration file:

/home/yourusername * (rw,no_root squash,async)o.
/home/yourusername is the root directory for NFS sharing.

Run the following command to start the NFS server:

sudo /etc/init.d/nfs-kernel-server start

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 159
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

5 File System

Run the following command to restart the NFS server:

sudo /etc/init.d/nfs-kernel-server restart

—End

Setting a Board as an NFS Client

The NFS client in this guide refers to a device that runs Huawei LiteOS. Typically, such a
device is an IPC board.

Step1 Configure hardware connectivity.
Connect the NFS client to the network serving the NFS server. Allocate an IP addresses to the
NFS client and NFS server. Be sure that the two IP addresses fall within the same address
range. If the first three octets in an IP address is the same as those in another IP address, the
two [P addresses are considered to fall within the same address range. For example,
10.67.212.178 and 10.67.212.3 are within the same address range.
To query the IP address of the IPC board running Huawei LiteOS, run the ifconfig command.
Step 2 Activate the network to establish good network connectivity between the NFS client and the
NEFS server.
Activate the Ethernet or another type of network, and run the ping command to check whether
the server is pingable.
Huawel LiteOS # ping 10.67.212.178
ping 4 packets start.
[0]Reply from 10.67.212.178: time=1lms TTL=63
[1]Reply from 10.67.212.178: time=0ms TTL=63
[2]Reply from 10.67.212.178: time=1lms TTL=63
[3]Reply from 10.67.212.178: time=1lms TTL=63
Step 3 Initialize the NFS client.
Run the following command:
Huawei LiteOS# mount 10.67.212.178:/home/sgbin/nfs /nfs nfs 1011 1000
If information similar to the following is displayed, the NFS client is successfully initialized.
Huawei LiteOS# mount 10.67.212.178:/home/sgbin/nfs /nfs nfs 1011 1000
Mount nfs on 10.67.212.178:/home/sgbin/nfs
Mount nfs finished.
The mount command mounts the /home/sqbin/nfs directory on the server with the IP address
10.67.212.178 to the /nfs directory on the NFS client.
Syntax of the mount command:
mount [SERVER IP:SERVER PATH] [CLIENT PATH] nfs <uid gid>
SERVER PATH indicates the path to the NFS shared directory on the NFS server.
SERVER 1P indicates the IP address of the NFS server. CLIENT PATH indicates the NFS
path on the NFS client and can be set only to /nfs.
uid indicates the Linux user ID, and gid indicates the Linux group user ID. uid and gid are
used to obtain the permission to access the directory on the NFS server. To query uid and gid,
run the id Linux command. If NFS access control is not required, set the permission on the
NFS root directory to 777.
chmod -R 777 /home/sgbin/nfs
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 160

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

The setting of the NFS client is completed, and the NFS is successfully mounted to the NFS
client.

—End

Using NFS to Share Files

Create a dir directory and save it on the NFS server. Run the Is command in Huawei LiteOS.

Huawei LiteOS# 1ls /nfs

Information similar to the following is displayed:

Huawei LiteOS#
Huawei LiteOS# 1ls /nfs
Directory /nfs:
5 <DIR>
dir <DIR>

The command output indicates that the dir directory on the NFS server has been synchronized
to the /nfs directory on the client (Huawei LiteOS).

Likewise, files and directories on the NFS client can be accessed from the NFS server.

Platform Differences

Currently, NFS clients only meet parts of NFS v3 specifications and therefore cannot be fully
compatible with NFS servers that also meet parts of NFS v3 specifications. During
development and tests, you are advised to use the NFS servers for Linux that meet all
specifications of NFS v3.

5.3.3 Precautions

® NFS files do not support permission control. When creating NFS directories and files,
please set the directory and file permission to 777.

No tasks can be blocked from reading or writing NFS files.
NFS files do not support signal functions.
NFS files do not support fentl, ioctl, utime and chattr operations.

Currently, NFS support UDP and TCP based socket communications. Defaults to TCP.

The content of a file can be cleared only when you pass in the O_TRUNC parameter
during the call to the open API and have the write permission on the file.

NFS is a test function, the default configuration is closed, the official product is
prohibited to use the function.

® Disclaimer: Huawei is not responsible for any risks brought by using the Telnet function
in official Huawei LiteOS.

5.3.4 Programming Example

None.

5.4 JFFS2

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 161
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

5.4.1 Overview

Basic Concept

Journal flash file system version 2 (JFFS2) manages journaled file systems on devices. JFFS2
is mainly used for NOR flash. It is readable and writable and supports data compression. In
addition, it offers protection against panic and power failures, and is capable of write
balancing.

Flash memory differs greatly from disks. Running a disk file system on flash memory might
compromise system performance and security. With JFFS2, this problem will no longer be
seen.

JFFS2 in Huawei LiteOS mainly manages files in NOR flash and supports multiple partitions.

5.4.2 Development Guidelines

Development Process

To use the functions of JFFS2, perform the following operations: (Every step resolve for
detail)

1. Adding JFFS2 Partitions
2. Mounting JFFS2

3. Unmounting JFFS2

4. Deleting JFFS2 Partitions

Adding JFFS2 Partitions

Call the add mtd_partition function to add JFFS2 partitions. This function automatically
names device nodes. The naming rule for JFFS2 is /dev/spinorblk + partition number.

The add_mtd _partition function expects four parameters. The first parameter indicates the
medium type (nand or spinor). nand is used for YAFFS2, and spinor is used for JFFS2
partitions.

The second parameter indicates the start address of a partition. The third parameter indicates
the partition size. Both parameters are in hexadecimal format.

The fourth parameter indicates the partition number (0 - 19).

After the partitions are successfully added, you can run the partition jffs command in Shell to
query information of the jffs block.

if (uwRet = add mtd partition("spinor", 0x100000, 0x800000, 0) != 0)
dprintf ("add jffs partition failed, return %d\n", uwRet);
else
{
dprintf ("Mount jffs2 on nand.\n");
uwRet = mount ("/dev/spinorblk0", "/jffs0", "jffs", 0, NULL);
if (uwRet)
dprintf ("mount jffs err %d\n",uwRet);
dprintf ("Mount jffs2 on nor finished.\n");
}
if (uwRet = add mtd partition("spinor", 0x900000, 0x200000, 1) != 0)
dprintf ("add jffs partition failed, return %d\n", uwRet);
Huawei LiteOS# partition jffs
jffs partition num:0, dev name:/dev/spinorblk0, mountpt:/jffs0, startaddr:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 162
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 5 File System
0x0100000, 1ength:0x0800000
jffs partition num:1, dev name:/dev/spinorblkl, mountpt: (null), startaddr:
0x0900000, length:0x0200000
Mounting JFFS2
Call the mount() function to mount a device node to the mount point.
This function expects five parameters. The first parameter indicates the device node and the
second parameter indicates the mount point. Both parameters must be the same as the
parameters used in the add mtd_partition() function.
The third parameter indicates the file type.
The fourth parameter indicates the mount flag (default: 0), and the fifth parameter indicates
the mount data (default: NULL). Alternatively, JFFS2 can be mounted by running the mount
command in Shell, and you do not need to pass in the last two parameters.
Command for calling the mount() function:
Huawei LiteOS# mount /dev/spinorblkl /jffsl jffs
If information similar to the following is displayed, JFFS2 is successfully mounted:
Huawei LiteOS# 1s
Directory /:
bin <DIR>
dev <DIR>
JEEs0 <DIR>
ramfs <DIR>
yaffs0 <DIR>
Huawei LiteOS# mount /dev/spinorblkl /jffsl jffs
Huawei LiteOS# 1s
Directory /:
bin <DIR>
dev <DIR>
JEEs0 <DIR>
jffsl <DIR>
ramfs <DIR>
yaffs0 <DIR>
Now you can read from and write to NOR flash.
Unmounting JFFS2
Call the umount() function to unmount JFFS2 partitions. Only the input parameter mount
point needs to be specified.
Command for calling the umount() function:
Huawei LiteOS# umount /jffsl
If information similar to the following is displayed, JFFS2 is successfully unmounted:
Huawei LiteOS# 1s
Directory /:
bin <DIR>
dev <DIR>
jEfs0 <DIR>
jffsl <DIR>
ramfs <DIR>
yaffs0 <DIR>
Huawei LiteOS# umount /jffsl
umount ok
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 163

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

Deleting JFFS2 Partitions

Call the delete_mtd_partition function to delete the unmounted JFFS2 partitions.

This function expects two parameters. The first parameter indicates the partition number, and
the second parameter indicates the medium type. Both parameters must be the same as the
parameters used in the add mtd_partition() function.
uwRet =delete mtd partition(l,"spinor");
if (uwRet != 0)
printf ("delte jffs error\n");
else
printf ("delete jffs ok\n");
Huawei LiteOS# partition jffs

jffs partition num:0, dev name:/dev/spinorblkO, mountpt:/jffs0, startaddr:
0x0100000, 1ength:0x0800000

Creating a JFFS2 Image

Use mkfs.jffs2 to create a JFFS2 image. The following is the default command for creating a
JFFS2 image:

J/mkfs.jffs2 -s 0x1000 -e 0x10000 -p 0x100000 -d rootfs/ -o rootfs 64k.jffs2

(The command is added to a script and will be automatically executed during image creation.)

Table 5-2 Command description

Command Description

-s Page size

-e eraseblock size

-p Image size

-d Source directory of the file system image to
be created

-0 Name of the image to be created

The parameters in the default command are merely illustrative. You can change the
parameters when necessary.

5.4.3 Precautions

® JFFS2 manages files in NOR flash and calls the NOR flash drive interface. Before using
JFFS2, ensure that NOR flash is present on hardware and the drive is successfully
initialized (the value returned by spinor_init() is 0).

® The start address and the partition size are automatically aligned n the boundary
according to the size of block. The valid partition number ranges from 0 to 19.

® JFFS2 images can be created by using mkfs.jffs2 commands in the fsimage/
MakeVersion.sh file. Change parameter values in the commands when necessary. To
query other commands, run the mkfs.jffs2 command.

® When you open a file by calling the open API and pass in the O_TRUNC parameter, the
content of the file will be cleared.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 164
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

® Currently, JFFS2 does not support the ioctl, sync, dup, dup2, utime, and chattr functions.

5.4.4 Programming Example

None.

5.5 FAT

5.5.1 Overview

Basic Concept

File allocation table (FAT) is classified into four types: FAT12, FAT16, FAT32 and exFAT.
FAT divides a disk into five sectors: master boot record (MBR), dos boot record (DBR), FAT,
DIR, and DATA.

FAT can be implemented on diverse media, especially on removable media storage devices
including USB flash drives, secure digital memory cards (SD cards), and removable hard
disks. It maintains good compatibility between embedded devices and desktop systems such
as Windows and Linux, which is convenient for developers to manage operation files.

FAT in Huawei LiteOS has small amount of code and use less resources. It is tailorable and
supports multiple types of physical media. In addition, it is compatible with operating systems
including Windows and Linux and supports multiple devices and the identification of multiple
partitions.

FAT in Huawei LiteOS supports disk partitioning. File operations can be performed on the
primary partition and logical partitions. Huawei LiteOS is able to identify other types of file
systems (such as NTFS) on the hard disk. Currently, only the master boot record (MBR)
partition style is supported.

5.5.2 Development Guidelines

Development Process
To use the functions of FAT, perform the following operations: (Every step resolve for detail)
1. Identifying Devices
2. Mounting FAT
3. Mounting FAT

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 165
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

5 File System

Identifying Devices

Huawel Litels # 1=
Directory /dev:

acodec
adec

aenc

al

ao
console
fhi
hi_zpie
hi mipi
hi rtc

hi tde
12c-0
12c-1
i2c-2
izp_dew
led
logmpp
MEM
mmchlko
mmchlkOpo
mmechlkopl
mmechllkl
mmechllklnd

oD oo oo oD oo oD o

® Configure MULTI_PARTITION to 1 in the ffconf.h file to enable the identification of
multiple partitions.

® Configure VOLUMES to a value greater than 2 to enable the identification of multiple

devices.

Now the OS is able to automatically identify the inserted SD cards. The automatically
registered device nodes are listed in the figure above. mmcblk0 and mmcblk1 specify card 0
and card 1 respectively, which are independent master devices. mmcblkOp0O, mmcblkOp1
specify two partitions of card 0 and serve as partition devices. When partition devices are
available, the first partition device will be automatically invoked when the master device is

used.

The information about the identified partitions can be queried by running the partinfo

command.

Huawei LiteOS
part info :
disk id

partinfo /dev/sdap0

3 3
part_id in system: 0
part no in disk 0

part no in mbr

1

part filesystem : OC

part dev name

part sec start
part sec count

Mounting FAT

: sdap0
: 2048
: 167794688

Run the following command:

Huawei LiteOS# mount /dev/mmcblk0 /bin/vs/sd vfat

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

166

LiteOS

Developer Guide 5 File System
If information similar to the following is displayed, FAT is successfully mounted:
Huawei LiteOS# mount /dev/mmcblk0 /bin/vs/sd vfat
mount ok
Huawei LiteOS# 1ls
Directory /:
bin <DIR>
dev <DIR>
ramfs <DIR>
yaffs0 <DIR>
Unmounting FAT

Run the following command:

Huawei LiteOS# umount /bin/vs/sd

If information similar to the following is displayed, FAT is successfully unmounted:

Huawei LiteOS# umount /bin/vs/sd
umount ok

5.5.3 Precautions

The default configurations can be used directly, and you can tailor the configurations
based on your needs.

The configuration items of FAT are in the ffconf.h file.

If FS READONLY is set to 0, the read/write permission on FAT is read/write. If
_FS READONLY is set to 1, the read/write permission on FAT is read-only.

If USE MKFSissettol and FS READONLY is set to 1, the formatting function is
enabled.

If FS NORTC is set to 1, no real-time clocks exist, and the file creation time will be a
fixed time point.

_FS_LOCK specifies the number of files (folders) that can be opened concurrently.

If a file is opened in read/write mode, it will fail to be opened if it is not closed and
opened again in read/write mode. It can only be opened again in read-only mode. If a file
is opened for a long time and is not closed, data of the file will be lost. The data can be
saved only when the file is closed.

The size of a file cannot be greater than 4 GB except exFAT.
The total length of file names and path names must not exceed 252 bytes.

If two SD card slots are available, the SD card that is inserted first is card 0; the one
inserted later is card 1.

When the double-card and multi-partitioning function is enabled and multiple partitions
exist, the /dev/mmcblk(0 master device node registered by card 0 and the /dev/
mmcblkOpO0 slave device node registered by card 0 control the same device. Operations
are forbidden to be performed on the master device node.

When the double-card and multi-partitioning functions are enabled, and multiple
partitions do not exist, the /dev/mmcblk0 and /dev/mmcblkOp0 device nodes control the
same device, and only one of the device nodes can be mounted.

FAT does not support opening a directory using open() + O_DIRECTORY. Use opendir()
to open a directory.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 167
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

® The read pointer and write pointer are not separated. Therefore, after a file is opened in
O_APPEND mode, the read pointer is positioned at the end of the file. Manually put the
read pointer to the start of the file before reading a file.

® (Calling the stat or Istat functions on FAT will return the modification time of a file.
Currently, the file creation time and last access time are not returned. The Microsoft FAT
protocol supports only time after A.D. 1980.

® When you open a file by calling the open API and pass in the O_TRUNC parameter, the
content of the file will be cleared.

® FAT does not support the ioctl(), dup() and dup2() functions.

® To avoid memory leaks, FAT automatically closes opened files and directories during
card removing, and then FAT is unmounted. The memory allocated by calling opendir()
must be freed up by calling closedir().

5.5.4 Programming Example

None.

5.6 YAFFS2

5.6.1 Overview

Basic Concept

Yet another flash file system version 2 (YAFFS2) is an open-source embedded file system
designed for NAND flash. In YAFFS, the minimum storage unit is page.

Two versions of YAFFS are available in current YAFFS file system: YAFFS and YAFFS2.
The major difference between them is that YAFFS2 supports NAND flash chips with 2 KB
pages, far larger than the chips with 512-byte pages supported by YAFFS. Another difference
lies in the fact that YAFFS2 has a 64-byte spare area to store bad block information and carry
out error checking and correction (ECC).

® YAFFS?2 is suitable for large-capacity storage devices. It is specially designed for NAND
flash to keep the latter efficient and robust.

® YAFFS2 supports chips with 2 KB pages. Moreover, it uses less memory, and allows
faster read/write and junk data reclamation.

® Wear leveling and power failure protection ensures that data will not be corrupted when
a power outage occurs amid file system modification.

YAFFS2 in Huawei LiteOS supports multiple partitions.

5.6.2 Development Guidelines

Development Process

In Huawei LiteOS, ulti-partitioning of YAFFS?2 is realized using a doubly linked list. To use
the functions of YAFFS2, perform the following steps: (Every step resolve for detail)

1. Calling add_mtd_partition to Create Partitions

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 168
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

2. Calling mount to Mount Partitions
3. Calling umount to Unmount Partitions

4. Calling delete_mtd_partition to Delete Partitions

Specific examples can be see in part programming examples.

Calling add_mtd_partition to Create Partitions

The add_mtd_partition function automatically names device nodes. The naming rule for
YAFFS2 is /dev/nandblk + partition number.

The add_mtd_partition function expects four parameters. The first parameter indicates the
media (nand or spinor). nand is used for YAFFS2 partitions, and spinor is used for JFFS2.

The second parameter indicates the start address of a partition. The third parameter indicates
the partition size. Both parameters are in hexadecimal format.

The fourth parameter indicates the partition number (0 - 19).

After the partitions are successfully created, you can run the yaffspar command in Shell to
query information of the partitions.

Command for creating partitions:

if (uwRet = add mtd partition ("nand", 0x900000, 0x200000, 0) < 0)
dprintf ("add yaffs partition failed, return %d\n", uwRet);
}

if (uwRet = add mtd partition("nand", 0xb00000, 0x200000, 1) < 0)
dprintf ("add yaffs partition failed, return %d\n", uwRet);

Calling mount to Mount Partitions

Call the mount() function to mount a device node to the mount point.

This function expects five parameters. The first parameter indicates the device node and the
second parameter indicates the mount point. Both parameters must be the same as the
parameters used in the add mtd_partition() function.

The third parameter indicates the file type (yaffs or jffs).

The fourth parameter indicates the mount flag (default: 0), and the fifth parameter indicates
the private data (default: NULL).

Alternatively, partitions can be mounted by running the mount command in Shell, and you do
not need to pass in the last two parameters.

Command for calling the mount() function:

Huawei LiteOS# mount /dev/nandblkl /yaffsl yaffs

If information similar to the following is displayed, partitions are successfully mounted:
Huawei LiteOS# mount /dev/nandblkl /yaffsl yaffs

start-blk:24, end-blk:39

Huawei LiteOS# partition yaffs

yaffs partition num:0, dev name:/dev/nandblk0, mountpt:/yaffs0, startaddr:
0x0900000, 1ength:0x0200000

yaffs partition num:1, dev name:/dev/nandblkl, mountpt:/yaffsl, startaddr:
0x0b00000, 1ength:0x0200000

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 169
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

Calling umount to Unmount Partitions

Call the umount() function to unmount YAFFS2 partitions. Only the input parameter mount
point needs to be specified. Alternatively, partitions can be unmounted by running the umount
command in Shell.

Command for calling the umount() function:

Huawei LiteOS# umount /yaffsl

If information similar to the following is displayed, partitions are successfully unmounted:

Huawei LiteOS# umount /yaffsl
umount ok

Huawei LiteOS# umount /yaffsO
umount ok

Huawei LiteOS# partition yaffs

yaffs partition num:0, dev name:/dev/nandblk0, mountpt: (null), startaddr:
0x0900000, 1length:0x0200000

yaffs partition num:1, dev name:/dev/nandblkl, mountpt: (null), startaddr:
0x0b00000, 1length:0x0200000

Calling delete_mtd_partition to Delete Partitions

Partitions must be unmounted before they are deleted.

The delete_mtd_partition function expects two parameters. The first parameter indicates the
partition number, and the second parameter indicates the medium type. Both parameters must
be the same as the parameters used in the add _mtd_partition() function.
uwRet = umount ("/yaffsl");
if (uwRet != 0)
printf ("umount error:%d\n", uwRet);
else
printf ("umount ok\n");
uwRet =delete mtd partition(1l, "nand");
if (uwRet != 0)
printf ("delte yaffs error\n");
else
printf ("delete yaffs ok\n");

If information similar to the following is displayed, partitions are successfully deleted:

Mount yaffs2 on nand
start-blk:24,end-blk:39
umount ok
delete yaffs ok

5.6.3 Precautions

® YAFFS2 in Huawei LiteOS supports multiple partitions. You can allocate the flash
memory according to actual needs. The start address of partitions can be flexibly
configured, which means that partitions can be created anywhere in the flash memory
provided that you know where the start address is. A mechanism is in place to check for
partition overlapping. However, it is beyond the scope of Huawei LiteOS to check for
address overlapping due to the concurrent use of multi-partitioning and other features.

® The minimum partition for adding is one size of block, but the minimum partition for
mounting is 9 block size (decided by characters of YAFFS2). Divide these two concepts.

® YAFFS2 in Huawei LiteOS automatically aligns addresses and partitions on the
boundary according to the size of block. The valid partition number ranges from 0 to 19.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 170
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

® Before using a partition, you are advised to erase data in the partition.

YAFFS2 in Huawei LiteOS only allows you to continuously open 20 directories.

® The content of a file can be cleared only when you pass in the O_ TRUNC parameter
during the call to the open API and have the write permission on the file.

® YAFFS2 does not support the ioctl(), utime() and chattr() functions.

5.6.4 Programming Example

None.

5.7 RAMFS

5.7.1 Overview

Basic Concept

RAM file system (RAMFS) is a file system as a dynamically re-sizable RAM-based file
system. RAMFS does not have backup storage resources. When files are written into
RAMEFS, directory entries and page caches will be allocated, but data is not written to any
other storage media. Data will be lost when the power is off.

RAMES places all files in a RAM. Files are read from and written into the RAM. RAMFS
can be used to store temporary data or data that needs to be frequently modified, for example,
the /tmp and the /var directories, to accelerate the read/write speed and avoid frequent access
to storage.

RAMEFS in Huawei LiteOS is a simple file system. It functions as a RAM-based cache
mechanism of dynamic file systems.

RAMFS in Huawei LiteOS is based on VFS, can not be formatted.

5.7.2 Development Guidelines

Procedure
To use the functions of RAMEFS, perform the following operations:
1. Initializing RAMFS
2. Mounting RAMFS
3. Unmounting RAMFS

Initializing RAMFS

void ram fs init (void)
{

int swRet=0;

swRet = mount (NULL, RAMFS DIR, "ramfs", 0, NULL);

if (swRet) {
dprintf ("mount ramfs err %d\n", swRet);
return;

}

dprintf ("Mount ramfs finished.\n");

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 171
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

Call the initial function. If information similar to the following is displayed while Huawei
LiteOS is being started, RAMFS is successfully initialized:

Mount ramfs finished

Mounting RAMFS

Run the following command:

Huawei LiteOS# mount 0 /ramfs ramfs

If information similar to the following is displayed, RAMFS is successfully mounted:

Huawei LiteOS# mount 0 /ramfs ramfs

Unmounting RAMFS

Run the following command:

Huawei LiteOS# umount /ramfs

If information similar to the following is displayed, RAMFS is successfully unmounted:

Huawei LiteOS# umount /ramfs
umount ok

5.7.3 Precautions

® Read and write pointers are not separated in RAMES file system, so while opening the
file by using O APPEND(read added) method, the read pointer is also at the end of the
file. Users need to set position manually before reading files.

® Because of the fixed memory space used in RAMFS, RAMEFS is able to be mounted only
one time for avoid stepping on memory. After successfully mounting one time, followers
can not continue being mounted on other directories.

® In RAMFS, filename length and directory name length must not exceed the length
specified by RAMFS NAME MAX.

® When you open a file by calling the open API and pass in the O_TRUNC parameter, the
content of the file will be cleared.

® RAMEFS is a test function, the default configuration is closed, the official product is
prohibited to use the function.

® Disclaimer: Huawei is not responsible for any risks brought by using the Telnet function
in official Huawei LiteOS.

5.7.4 Programming Example

None.

5.8 PROC

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 172
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

5.8.1 Overview

Basic Concept

PROC is a pseudo file system that exists only in memory and does not use external storage. It
provides an interface for accessing the data in Huawei LiteOS Kernel.

PROC in Huawei LiteOS is a virtual file system and does not support multi-threaded
operations.

5.8.2 Development Guidelines

Development Process

To use the functions of PROC, perform the following operations:
1. Initializing PROC

2. Querying and Modifying PROC Node Information

Initializing PROC

void proc fs init (void)
{
int swRet=0;
swRet = mount (NULL, PROCFS DIR, "procfs", 0, NULL);
if (swRet) {
dprintf ("mount procfs err %d\n", swRet);
return;

}
dprintf ("Mount procfs finished.\n");

}

Call the initial API. If information similar to the following is displayed while Huawei LiteOS
is being started, PROC is successfully initialized:

Mount procfs finished

Creating a PROC Node

Call the create_proc_entry function to create a file node. The first parameter specifies the
name of the node to be created. The second parameter specifies the file mode, including the
file type and permission. The third parameter specifies the parent node of the node to be
created. If NULL is passed in as the value of the third parameter, the parent node is /proc by
default. This function will return the created PROC file node.

struct proc dir entry *pHandle;

pHandle = create proc entry("mounts", 0, NULL);

if (pHandle == NULL) {
dprintf ("creat mounts error!\n");
return;

}
Call an operation function to perform a specific operation on the created node.
pHandle->proc_fops = &mounts_proc_ fops;

Call the default operation function proc_file default operations if other operation functions
are unavailable.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 173
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

Call the proc_mkdir function to create a directory node. The first parameter specifies the
name of the node to be created. The second parameter specifies the parent node of the node to
be created. If NULL is passed in as the value of the second parameter, the parent node is /proc
by default. This function will return the created PROC directory node.

struct proc dir entry *pHandle;

pHandle = proc mkdir ("test", NULL);

if (pHandle == NULL) {
dprintf ("creat test error!\n");
return;

Querying and Modifying PROC Node Information
Run the cat command to query information of a PROC node. For example:
Huawei LiteOS # cat /proc/umap/logmpp

If information similar to the following is displayed, the query is successful:

Huawei LiteOS # cat /proc/umap/logmpp

Huawei LiteOS # ----- LOG BUFFER STATE--———————=———————————————————————
MaxLen ReadPos WritePos ButtPos
64 (KB) 0 113 65536

vb : 3
sys : 3
region : 3
chnl : 3
vpss : 3
venc : 3
vda : 3
h264e : 3
jpege : 3
vou : 3
viu : 3
rc : 3

ao : 3

aenc : 3
adec : 3
isp :
ive :
tde :
vgs
h265e : 3

w w w w

Run the writeproc command to modify information of a PROC node. For example:
Huawei LiteOS # writeproc 'sys=2' >> /proc/umap/logmpp

After the sys level is changed, information similar to following is displayed:

sys=2 >> /proc/umap/logmpp

Run the cat command again to query node information. From the displayed node information,
you will see that the sys level has been changed.

Huawei LiteOS # cat /proc/umap/logmpp

Huawei LiteOS # ----- LOG BUFFER STATE-————————————————————————————————
MaxLen ReadPos WritePos ButtPos
64 (KB) 0 0 65536

vb : 3

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 174
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 5 File System

sys : 2
region : 3
chnl : 3
vpss : 3
venc : 3
vda : 3
h264e : 3
jpege : 3
vou : 3
viu : 3
rc : 3

ao : 3

aenc : 3
adec : 3
isp :
ive :
tde :
vgs
h265e : 3

3
3
3
3

5.8.3 Precautions

® In the open command that is used to open files in PROC, only read and write properties
take effect.

® [In the fseek function, SEEK END does not take effect, indicating that the offset started
from the end of a file is not supported.

® [fthe Is command is run to query files in PROC after PROC is initialized, the size of
each file is displayed as zero. The file size can be correctly displayed only after the cat
command is run to retrieve real-time kernel information.

® PROC in Huawei LiteOS cannot be unmounted and does not support creating and
deleting files or directories.

® [n PROC, a file name or a directory name contains a maximum of 32 characters.

® PROC in Huawei LiteOS does not support the ioctl, sync, dup, dup2, utime, chattr, and
rename functions.

® PROC, as a debugging function, is disabled by default, and do not use it in commercial
products.

® Disclaimer: Huawei does not take the liability for the risks caused by using PROC in
commercial products.

5.8.4 Programming Example

None.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 175
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 6 Driver Development

6 Driver Development

About This Chapter

6.1 Overview
6.2 Development Guidelines
6.3 Precautions

6.4 Programming Example

6.1 Overview

Basic Concept

Driver development means implementing and abstracting functions of hardware based on OS
specifications and then provides them to application developers to call.

While transplanting system on a new chip, driver development must be carried out based on
peripheral equipment supported by this chip specifications.

The driver initialization function for Huawei LiteOS is mainly used to create a driver structure
of devices and generate the control node that registers drivers for the upper platform.

6.2 Development Guidelines

Development Process

Driver development is related to following two steps:

1. Driver Initialization

2. Driver Node and Using

Driver Initialization

The first step of driver development is to compile a driver initialization function. In Huawei
LiteOS, the driver initialization function is used to initialize a driver structure of devices and
generate the driver control node.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 176
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 6 Driver Development

After the driver initialization function is compiled, you need to boot the device initialization
function in a right place.

The codes in sample hi3516a.c file under the /sample directory is used as a simple boot. You
can call the compiled device initialization function in the app_init function to boot device
initialization.
The driver initialization function must be used together with the device driver registration
function that is used to register and generate a driver node.
register driver (FAR const char *path, FAR const struct file operations vfs
*fops,mode_t mode, FAR void *priv)

register blockdriver (FAR const char *path,FAR const struct block operations

*bops,mode_t mode, FAR void *priv)

Table 1 describes the parameters expected by the device driver registration function.

Table 6-1 Parameter description

Parameter Description

*path Path of the driver node. Application
programs will access driver node through
this path, and then access operation API
supported by device driver.

*fops/*bops Driver operation structure that provides
application programs with an operation
function set. fops indicates a character
device, and bops indicates a block device.

mode Application's permission configuration to
read from or write into the driver node. This
parameter is not supported now.

*priv Parameter to be passed in during driver
node registration.

After the driver is compiled, it must be initialized when the initialization function of Huawei
LiteOS to generate a driver node accessible to applications.

After the driver is initialized, a device driver node will be generated in a specified path, and
application programs can use the control operation API of the driver through this node.

Driver Node and Using

The device driver node generated after driver initialization provides an interface for
applications to access and operate devices. The call relationship between application
programs and driver operation functions are described with the i2c device driver as an
example.

1. Operation Function Set

The driver operation function set is essential to the call relationship between application
programs and driver operation functions. During driver compilation, the operation
function set needs to implement various mechanisms of a hardware device and register

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 177
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

6 Driver Development

the mechanisms during device registration. The operation function set meets all
requirements on application functions.

Table 6-2 Operation function set for the i2¢ device driver

Operation Function Set Application Layer Interface
i2cdev_open open

i2cdev_release close

i2cdev_read read

i2¢_write write

i2¢ ioctl ioctl

open Operation

When an application program opens a node file, Huawei LiteOS will call the open
function in the driver operation function set used when the driver node is initialized.

The open function instantiates and initializes the driver structure.
read/write Operation

After an application program opens a node file, the file descriptor of the driver node will
be got. The program can then access the driver that has the file descriptor.

The read/write operation is a common way for applications to access the driver. The
functions of the read/write operation vary depending on the type of devices and drivers.
For an i2¢ device, the read/write operation is used to read from or write into i2¢c
peripherals.

i2cdev_read(struct file * filep, char _ user *buf, size t count)

i2cdev_write(struct file * filep , const char _ user *buf, size t count)

Table 3 describes the parameters expected by the read/write function.

Table 6-3 Parameter description

Parameter Description

*filep Pointer to the file description structure.
*buf Buffer that stores the read or written data.
count Length of the read or written data.

ioctl Operation

An ioctl operation provides driver configuration management functions, particularly,
defines or accesses device attributes in the device driver by running specific commands.

For an i2¢ device, the I2C_16BIT _REG command is used to define the bit width of a
transmission register, the [I2C_16BIT DATA command is used to define the bit width of
transmitted data, and the I2C_TIMEOUT command is used to define the command
expiry time.

i2cdev_ioctl(struct file * filep, int cmd, unsigned long arg)

Table 4 describes the parameters expected by the ioctl function.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 178
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

6 Driver Development

Table 6-4 Parameter description

Parameter Description

*filep Pointer to the file description structure.
cmd Command for an operation

arg Additional parameter

5. close Operation

The close operation uses the release function in the operation function set to release

resources of a driver.

6.3 Precautions

None.

6.4 Programming Example

None.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

179

LiteOS
Developer Guide 7 Maintenance and Testing

7 Maintenance and Testing

About This Chapter

7.1 Telnet
7.2 Shell

7.1 Telnet

7.1.1 Overview

Basic Concept

Telnet, as part of TCP/IP protocol, is the standard protocol and major method for remote
Internet login. Telnet enables you to operate a remote server on a local computer. Telnet
program connects the local computer to the server. Telnet enables you to input commands just
like direct input by using the server console.

Huawei LiteOS Telnet

Telnet uses commands to debug a development board. To achieve network connection by
using Telnet, users must configure the IP address and gateway (which must be in the same
network segment as the development board) for the local computer and run cmd.exe in
Windows to execute Telnet IP (IP address of the development board). In other words, Telnet is
another debugging mode by using serial ports.

Huawei LiteOS Telnet adopts a simple Telnet protocol, which connects the computers to the
development board without authentication on the user name and password. Huawei LiteOS
Telnet is used to:

® Read the input characters and transmit them to the development board through TCP.

® Send back the processed data to terminals.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 180
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

7.1.2 Development Guidelines

Development Process

1.

Run telnet on to start telnet server in Huawei LiteOS Shell.

on

Huawei LiteOS # init telnet.

In a Windows-based OS that has Telnet client installed, run cmd.exe and enter telnet + IP
address of the development board to connect the computer to the board, as shown in the
following figure.

C:xlUzers~Adninistrator>telnet 122 _168.1.1

Press Enter. If Huawei LiteOS# (the prompt of Huawei LiteOS Shell) is displayed, it
indicates that the computer is connected to the board successfully and you can run the
shell commands. For example, you can run the task command to view the status of all
tasks.

Huawei LiteOS # task

Priority Status StackSize WaterLine StackPoint

QueuePend Bx85121038

B i8 Pend o BxB5126£88

Bx2 x Ready o BxB51274a4

R Bx3 1A Ready A Bx8522ed2c
FavePara2Flash Bx4 i8 Ready o BxB529fc?4
RecMngMsgRcu Bx5 1A Ready A Bx852ha%24
RecHMngRecTimer Bxb 1A Ready A Bx852cB8ec
R ax? i8 Ready o BxB52e3d48
spRun Bx8 1A Ready Bxi51ic BAx853081424
ProcessEncStreamThread Bx9 2 PendIimeQut Bx6808 Bxbac Bx8533%cfc
benc_get Bxa 18 Pend Bx6Ba8 Bx3ad Bx8539d128
FendAFrameToAencThread Bxb 18 Ready Bx6808 Bx4130 Bx853a30e8

Run telnet off to stop telnet server in Huawei LiteOS Shell.

Huawel Lite0S # telnet off
telnetd_accept_loop[412] Software caused connection abort
close telnet.

Huawel Lite0Ss # []

7.1.3 Precautions

If telnet is not recognized as an internal or external command is returned after the
input of telnet + IP in a Windows-based OS, the Telnet is not enabled. Choose Control
Panel > Programs > Programs and Features > Turn Windows features on or off and
select the Telnet Server and Telnet Client.

Ensure that the Ethernet driver of the board is initialized and opened before starting
Telnet.

Ensure that Iwip started normally before starting Telnet. Register safety function and
initialize tcpip are needed while using lwip.

Currently, only one client can be connected to a development board using telnet and an
IP address at one time.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 181
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

® Telnet only support commands supported by Shell.

® Telnet is a debug function and is disabled by default. It is must not be included in formal
Huawei LiteOS.

® Disclaimer: Huawei is not responsible for any risks brought by using the Telnet function
in official Huawei LiteOS.

7.1.4 Programming Example

None.

7.2 Shell

7.2.1 Overview

Basic Concept

Shell is the software (command parser) that provides user APIs. It is similar to the command
in DOS and the cmd.exe. Shell receives commands and invokes the corresponding programs.

Shell is also a programming language. As a command language, shell interactively interprets
and executes commands or automatically interprets and executes the series of commands
preset by users. As a programming language, shell defines variables and parameters and
provides the control structure, such as the loop and branch, that is available only in high-level
languages.

Shell manages the interaction between you and the operating system (OS): waiting for your
input, interpreting the input to the OS, and processing diverse outputs of OSs.

Shell builds a bridge for communication between users and OSs. The communication is
interactive (you enter through the keyboard and receive instant response) or non-interactive
(by shell script). A shell script contains a string of shell commands and OS commands, which
can be reused. Essentially, a shell script is a file combining commands.

Shell of Huawei LiteOS helps debug common commands and query system information.
Huawei LiteOS Shell

Shell of Huawei LiteOS provides the basic function used for debugging, including commands
for Huawei LiteOS, filesystem, network and scatter loading. In addition, shell of Huawei
LiteOS allows command customization.

® Commands for Huawei LiteOS are used for checking system tasks, kernel semaphore,
CPU usage, and current interrupts.

® Commands for files include Is, ed, and sync. The sync command synchronizes the cache
data (data in the file system) to an SD card or flash memory.

® Commands for network are used to view the IP address of the local computer and other
devices that connect to the development board, test the network connection, and set the
AP and station mode of development board.

® Commands for dynamic loading are used to obtain the .obj file from a specified path and
call related functions by searching for the addresses of functions that have loaded
the .obj file. A user can unload the .obj file that has been loaded to a specific path.

For details of adding commands, see Guidelines and Programming Example.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 182
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.2 Development Guidelines

Usage Scenarios

Shell commands can be input through serial ports or Telnet. Customized commands can be
executed only after their links are recompiled.

Functions
Shell of Huawei LiteOS contains the following commands:

® Commands for Huawei LiteOS, such as task, sem, swtmr, hwi, and cpup.

® Commands for PROC file system, such as writeproc.

® Commands for files, such as Is, cd, uname, cat, touch, rm, and rmdir.

® Commands for network, such as arp, ifconfig, ping, starthapd, and stophapd.

For details of commands, see 7.2.5 Command Reference. For details of adding commands,
see 7.2.4 Programming Example.

Development Process

1. Adding Commands to Shell
#include "shell.h"
#include "shcmd.h"

2. Registering the Is command.

The command can be registered statically and dynamically when the OS is running.

a. Static registration

SHELLCMD ENTRY(Is_shellemd, CMD TYPE EX, "Is", XARGS,
(CMD_CBK FUNC)osShellCmdLs);

b. Dynamic registration
osCmdReg(CMD_TYPE EX, "Is", XARGS, (CMD_CBK FUNC)osShellCmdLs)
- Is_shellemd: structure variable name that needs to be passed in during static
registration. The command to be registered is a field contained in the structure.
- Command types

s CMD_TYPE EX: CMD_TYPE_EX indicates that the input of standard
command parameters is not allowed. When the command type is set to
CMD_TYPE_EX, command keywords entered by users will be masked. For
example, when Is /ramfs is entered, only /ramfs is passed into the registry
function.

s CMD_TYPE_STD: CMD_TYPE_STD indicates that the input of standard
command parameters is allowed. All entered characters will be passed into the
registry function after being parsed by the command.

- "Is": command keyword that is accessed by the registry function in Shell.
- XARGS: the number of input parameters of the execution function that is called.
- (CMD_CBK _FUNC)osShellCmdLs: execution function.

This macro encapsulates and registers a command that can be called in Shell.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 183
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

LnoTe

® Normally, static registration is applicable to common system commands, and dynamic
registration is applicable user commands.

® During static registration, -uls_shellemd should be added to LITEOS_TABLES_LDFLAGS
in build/mk/liteos_tables_ldflags.mk.

® The command key word must be unique, indicating that multiple commands must not share the
same command keyword. Otherwise, only the first command listed in the commands displayed
by running the help command will be executed.

Prototype of added built-in command function.
- UINT32 cmdHook(UINT32 argec, CHAR **argv)

Parameters of this function are similar to those of the main prototype of parameter
main in C programming language.

MnoTe

® argc: number of parameters in the shell commands.

® argv: pointer array. Each element points to a string. You can select the command type to
determine whether to transfer the keyword to register function or not.

Entering a Shell Command
A Shell command can be entered in the following two ways:
- Entering the Shell command in the serial port tool

- Entering the Shell command in the telnet tool

7.2.3 Precautions

English input is allowed in the default mode. If you enter Chinese characters in the UTF8
format, you can delete them only by pressing the backspace key for three times.

The working directory in the Shell is separated from the system directory. Operations
will be performed on the working directory in the Shell by running commands such as ed
and pwd through the Shell. And the system directory will be operated by running
commands such as chdir and getcwd. The two directories are irrelevant to each other.
Exercise caution when the input parameter of a file system operation command is a
relative path.

Shell commands take effect after tcpip_init is initialized. Huawei LiteOS does not
initialize tcpip_init by default.

Before shell commands related to dynamic loading are executed, a dynamic loading
module must be initialized. For details on the initialization of a dynamic loading module,
see 4.1 Dynamic Loading.

Manipulating device files under the /dev directory using Shell commands is not
recommended because it may cause unpredictable results.

Shell is a test function, the default configuration is closed, the official product is
prohibited including the function.

Disclaimer: Huawei is not responsible for any risks brought by using the Telnet function
in official Huawei LiteOS.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 184
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.4 Programming Example

Example Description

The following examples are used to describe how to statically and dynamically register the
test command.

Static Registration

1. Define the executive function cmd_test that will be used to add the new command.
2. Call the SHELLCMD ENTRY function to add the new command.

3. Add the parameter of the new command to the link option liteos_tables_ldflags.mk.
4.

Recompile code and run Huawei LiteOS.

Example Code

Define the cmd_test function.
#include "shell.h"
#include "shcmd.h"
int cmd test (void)
{
printf ("hello everybody!\n");
return 0O;
}
Add the new command.
SHELLCMD ENTRY (test shellemd, CMD TYPE STD, "test", 0, (CMD_CBK_FUNC)cmd test);

Add the command parameter to the linker options.

Add -utest_shellemd to LITEOS_TABLES_ LDFLAGS in build/mk/
liteos_tables ldflags.mk.

Recompile the commands.

make clean;make

Dynamic Registration

1. Call the osCmdReg function to add the new command.

2. Recompile code and run Huawei LiteOS.

Example Code

Call the osCmdReg function in the app_init function to dynamically register the command.

#include "shell.h"
#include "shcmd.h"

int cmd test (void)

{
printf ("hello everybody!\n");
return 0;

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 185
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

void app_init (void)
{
c'>é('jr;1dReg (CMD_TYPE EX, "test", 0, (CMD_CBK FUNC)cmd test);
}
Recompile the code.
make clean;make
Run the help command to view all registered commands.

If the test command is displayed, as shown in the following figure, the test command is
successfully registered.

shell command:

call cat cp cpup s findsym
free help 12c_read 12c_write ifconfi lddrop

mclose memcheck 1 mopen mount s ntpdate
partition ping \ readreg m i sem
swimr Sync teminfo task telnet S tftp
umount uname writeproc writereg

Huawei Lite0S # [|

7.2.5 Command Reference

7.2.5.1 System Commands
7.2.5.1.1 task

Function

The task command is used to query the information about tasks in Huawei LiteOS.

Format

task [ID]
Parameter Description

Table 7-1 Parameter description

Parameter Description Value Range

ID Task ID [0, OXFFFFFFFF]

User Guide
® [fthe parameter is left unspecified, all task information will be printed by default.
® An ID is added after task, the task name, task PID, and the call stacks will be displayed.
A maximum of 16 call stacks are supported.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 186

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Example

For example: enter task 6

Output

Figure 7-1 Information of the task with ID 6

Huawei Lite0S # task B
Taskfame = emdParesTask
TaskID = OxB

wkkkkkbackirace begi wekkbiook

traceback 0 —— 1r = 0x3005T030

traceback 0 —— fp = 0xB0536£2
traceback 1 —— lr = OxB005346

c
[

traceback 1 —— fp = 0x50536£44
traceback 2 — 1r = Dx8006eedd

tracehack 2 —— fp = 0x505365

o

traceback 3 — 1r = 0xG006e294

traceback 3 —— fp = OxB0536£84
traceback 4 —— 1r = 0xB006f5ed
traceback 4 — fp = DxB0536£04
traceback 5 —— 1r = 0xB005a224
traceback 5 — fp = Dx@0536£94
traceback & —= Lr = OxB006fa24

traceback B —— fp = Ox1111111

Hame
St _Task
[413Cor 2000
tepip_thread
eth_irq Task
shellTazk
emdParasTask

1
TIn

)
Ozl
O3
Oxd
05
OxB

EventMask SenID CFUUSE

Figure 7-2 Information of all tasks

MHnawei Lite0S #
Huawei Lite0S # task

Siwt_Task
TdleCer 000
system_wg
shellTask
cndFaresTask

Huawei Lite0S #

CFUUSEiDs CPUNISELs

MEMUSE

OxfEEf
Oxffff
OufEff
O fEFE
OxfEff
O fEFf

EventMask SemID CPULUSE

Priority Status StackSize WaterLine StackPoint TopDfStack

0 QuenePend 0xE000 Oxlec OxG01396£8 Ox801338a0 Ox0
31 Ready 0:400 0x164 0x80139b5c 0x301393c0 0x0
5 PendTimelut 0xE000 0x2E4 DxBULTA608 0xB016e836 Dxf
3 Pend 0x20000 0230 0x80532290 0x80512c30 Ox£f
3 Rurming 0x3000 0x4bd 080535354 0xB0532E06 OxEEE
3 Pend 0x1000 0x273 0x80536db0 0x30S35€95 Oxl
Priority Status StackSize WaterLine StackPoint TopOfStack

0 QueuePend 0x5000 0230 0:B010T#ME 0x60101eel Ox0

31 Ready 0400 0x220 0:301081ac 0xG010TE0G OxD

1 Fend 06000 02225 03010240 0x80108345 Oxl

9 Running 03000 0xT54 030010474 0xB0119218 Oxf£E
3 Fend 01000 0x270 030114040 0x80112b0 Oxl

Description of initial system tasks in Huawei LiteOS

a.

Oxffff
Oxffff
OxzffEf
OxzffEf
Oxffff

0.0
93.9
0.0

oo
oo

CPUUSEIODs CPUUSEls

kL

cooil
coow

)

0.0
o

cooh

El
a
a
i}

MEMUSE
a
a

a
1872
352

Task

Description

Swt_Task

Software timer task, which is used to process the timeout
callback function for software timers

1dleCore000

Task that is executed when Huawei LiteOS is idle

system_wq

Default workqueue processing task

cmdParesTask

Reads user input from the lower-layer buf and preliminarily
parses a command, such as arrow keys and command
completion by pressing Tab

shellTask

Further parses the command sent by cmdParesTask and calls
the registration function that matches the command

Description of task status

Parameter

Description

Ready

Tasks in ready status

Pend

Tasks in pending status

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

187

LiteOS

Developer Guide 7 Maintenance and Testing
Parameter Description
PendTimeOut Tasks in timeout pending status
QueuePend Tasks in queue pending status
Running Tasks running in operating system (OS)
Delay Tasks in delay waiting status
(Onote

If the task status in the task command is impossible, ensure that one of the following operations has
been performed when the pthread_create function is creating functions. If none of the following
operations is not performed, the resources cannot be correctly recycled.

® Ifyou want to choose the block mode, call the pthread_join() function.
® Ifyou want to choose the detach mode, call the pthread detach() function.

® If you do not want to call either of the preceding functions, set the status of pthread attr t to
PTHREAD_ STATE DETACHED and transfer the attr parameter to the pthread create function.
The result of this operation is the same as that of calling the pthread detach() function, that is, the
detach mode is chosen.

® The PID parameter value can be represented either in decimal format or in hexadecimal format.

® When the PID parameter value falls in the range [0,64], the status of the task specified by the ID is
returned. (A prompt will be displayed if the task specified by the ID is not created.) A prompt
indicating a parameter error will be displayed if the parameter value is outside the range [0,64].

Parameter description:

Parameter Description

Name Task name

PID Task ID

Priority Priority of a task

Status Status of current task

StackSize Size of a task stack

WaterLine Peak usage of a task stack

StackPoint Start address of a stack

TopOfStack Address of stack top

EventMask Event mask of current task, default even
mask of task that is not used is 0. (If there
are many events used in task, the recently
used one will be displayed)

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 188
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Parameter Description

Semld Semaphore ID that current task owned,
default semaphore ID that is not used is
OxFFFF. (If there are many semaphores
used in task, the recently used one will be

displayed)
CPUUSE CPU usage since startup
CPUUSEI10s CPU usage in previous 10 second
CPUUSEIls CPU usage in previous 1 second
MEMUSE Size of memory that is allocated till now,
with unit byte.

MnoTe

The value of MEMUSE can be positive or negative.

If memory is allocated to tasks, the MEMUSE value increases. If tasks release memory, the MEMUSE
value decreases.

If no memory is allocated to tasks, or the allocated memory equals the released memory, the MEMUSE
value is 0.

If the MEMUSE value is positive, some memory is not released by the task.
If the MEMUSE value is negative, the released memory is larger than the allocated memory.

The conuting of MEMUSE refers to system memory pool. The memory used by operations that take
place during an interrupt and any memory processed before task scheduling starts will not be counted.

7.2.5.1.2 sem

Function
The sem command is used to query the information about semaphores of Huawei LiteOS
Kernel.

Format
sem [ID]

Parameter Description

Table 7-2 Parameter description

Parameter Description Value Range
ID Semaphore ID [0, OXFFFFFFFF]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 189

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
User Guide
® Parameter displays the usage number and total number of semaphore.
® [fan ID is added, the usage number of the specified semaphore will be displayed.
Example
Examples: sem 12
Output
Figure 7-3 Information of the semaphore
Huawei Lite0S # sem 12
SemIDl Count
12 13}
Ho task iz pended on thisz semphore!
Table 7-3 Parameter description
Parameter Description
SemID Semaphore ID
Count Semaphore usage count
(Onote
® The SemID parameter value can be represented either in decimal format or in hexadecimal format.
® When the SemID parameter value falls in the range [0,1023], the status of the semaphore specified
by the ID is returned. (A prompt will be displayed if the semaphore specified by the ID is not in
use.) A prompt indicating a parameter error will be displayed if the parameter value is outside the
range [0,1023].
7.2.5.1.3 swtmr
Function
The swtmr command is used to query the information about system software timers.
Format

swtmr [/D]

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 190

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

7 Maintenance and Testing

Parameter Description

User Guide

Example

Output

Table 7-4 Parameter description

Parameter Description

Value Range

1D ID of a software timer

[0, OxFFFFFFF]

® [fthe parameter is left unspecified, information about all software timers will be

displayed.

® [fan ID is added after the swtmr command, the information about the specified software

timer will be displayed.

For example: enter swtmr and swtmr 5

Figure 7-4 Information of software timers

SwTmrID State Mode Interwal Count hrg pinHandl er Addr
] Ticking FPeried 100 28 0=0 0x800£3aTc
1 Ticking TPeried 10 T 0=0 0x30264270
2 Ticking (Once 300 0 0z30b4Tc£0 0x30354620
3 Ticking (Once 1 0 O0z30b4Tcf0 0x303544E5
4 Ticking (Once 300 0 0x30b45008 0x30354620
= Ticking (Once 1 0 0x30b45008 0x503544b5
& Ticking (Once 300 0 0z30b45320 0x80354620
T Ticking (Once 1 0 0x30b45320 0x503544b8
[Ticking (Once 300 133 0z30b473453 0x30354620
d Ticking (Once 1 1 0z30b479d53 0x503544E5

Figure 7-5 Information of the software timer with specified ID

SwImrID State Mode Interwal Count Arg pirHandl erfddr
‘5 Ticking Once 1] 0x800453005 OxS05544b3
Table 7-5 Parameter description
Parameter Description
SwTmrID ID of a software timer
State State of a software timer
Mode Mode of a software timer
Interval Number of ticks used by a software timer
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 191

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter

Description

Count

Number of remaining ticks

Arg

Number of input parameters

pfnHandlerAddr

Address of a callback function

MnoTe

® The SWTmrID parameter value can be represented either in decimal format or in hexadecimal

format.

® When the SWT'mrID parameter value falls in the range [0,current number of software timers —1], the

status of the software timer specified by the ID is returned. A prompt indicating a parameter error

will be displayed if the parameter value is outside the range [0,current number of software timers —

1].
7.2.5.1.4 hwi

Function

The hwi command is used to query the information about current interrupts.

Format

hwi
Parameter Description

Table 7-6 Parameter description

Parameter

Description

Value Range

N/A

N/A

N/A

User Guide
® This command does not need parameter.
® Enter hwi to display the number and count of the current interrupts.
Example
For example: enter hwi
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 192

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Output

Figure 7-6 Information of interrupts

[Fuawei Lite0S# hwi

InterruptHa Count
35 ITTI46
40: 152
B5: 3BBS
BT: ZZ2BTEG
Bi5: ZZ2BTES
B9 126137
Ta: 1
Ti: 1558968
T5: 125

7.2.5.1.5 cpup

Function

The cpup command is used to query the CPU usage of Huawei LiteOS.

Format

cpup [mode] [taskID]

Parameter Description

Table 7-7 Parameter description

Parameter Description Value Range

mode ® Default: display the CPU | [0,0xFFFF]
usage in previous 10 or OXFFFFEFFF
seconds.

® 0: display the CPU usage
in previous 10 second.

® 1: display the CPU usage
in previous 1 second.

® Other value: display the
CPU usage in previous
time (less than 1 second).

taskID Task ID [0,0xFFFF]
or OXFFFFFFFF

User Guide
® [f parameter is default, the CPU usage percent of system 10s ago will be displayed.
® [f parameter is only one, and the parameter is mode, the CPU usage percent of system
corresponding time ago will be displayed.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 193

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

® [f two parameters are passed in, and the first one is mode, the second one is taskID. The
CPU usage percent of system with the specific taskID corresponding time ago will be

displayed.
Example
For example: cpup 1 1
Output
Figure 7-7 Information of CPU usage
Huawei Lite0S # cpup 1 1
TazkId 1 Cpullzage in 1s: S8T7.3
Huawei Lite05 #
7.2.5.1.6 memcheck
Function
The memcheck command is used to check whether the dynamically applied memory is
complete and whether memory leak occurs causing node destroyed.
Format

memcheck
Parameter Description

Table 7-8 Parameter description

Parameter Description Value Range

N/A N/A N/A

User Guide
® [f memory leak does not occur, the output of memcheck is "memcheck over, all passed! "
® [fnodes are not completed memory pool, the output is the information about the memory
of the node that destroyed.
Example
For example: enter memcheck
Output
Figure 7-8 Memory leak does not occur
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 194

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Figure 7-9 Memory leak occurs

WaterLine ackPoint To) Ma: 5| Cl MEMUSE

7.2.5.1.7 writereg

Function

The writeReg command is used to write data to a specified address.

Format

writereg [address] [value]

Parameter Description

Table 7-9 Parameter description

Parameter Description Value Range
address The address to which data [0,0xFFFFFFFF]
will be written.
value The data to be written. [0,0xFFFFFFFF]
(Onote

The values of the address and value parameters must fall in the valid value range. Otherwise, system
exceptions will result.

User Guide
® The writeReg command is used to write data to a specified address.
® [f data is written successfully, the address and data will be printed on the screen.
® The address is aligned to the largest multiple of 4 that is smaller than the original
address. Note that address is hexadecimal.
(Onote
Arbitrary write will cause system crashes.
Example
For example:
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 195

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
Enter writereg 0x86412351 0x32.
Output
Figure 7-10 When data is written to an address, the address is aligned at 0x86412350
Huawei Lite0S # writereg Ox36412351 0x32
The align—address;0x86412350, write walue:0x00000032
Huawei Litel0S # readreg 0x86412350
GE412350
The align—address;0xS6412350 walueOx00000032
7.2.5.1.8 readreg
Function
The readreg command is used to search for data stored in registers.
Format

readreg [address] [length]

Parameter Description

Table 7-10 Parameter description

Parameter Description Value Range
address Start register address to be (0x0, OXFFFFFFFF)
checked.
length Length to be checked. The address must be within
the permitted range.

MnoTe

The values of the address and length parameters must fall in the valid value range.Otherwise, system
exceptions will result.

User Guide
® The readreg command is used to search for data stored in registers.
® The register address is displayed in hexadecimal format. The address is aligned to 4
bytes that is smaller than the original address. Huawei LiteOS searches for the aligned
value. The value to be searched is included in the aligned address. The length will be
aligned with the 4 bytes that is larger than the original length and printed in hexadecimal
format.
(Onote
Arbitrary address query will cause system crashes.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 196

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Example

Output

7.2.5.1.9 free

Function

Format

For example:

Enter readreg 0x86412351 0x32.

Figure 7-11 When data is read from an address that is not aligned, the address is aligned at
0x86412350

Huawei LitelS # readreg OxG56412351 0x32
BE412351

The address begin 0x8B412350, length: 0x34

0x86412350 :0xdSTET282 OxfSbbEYcf DxEfTIBEbLL OxlTTeQfcd
0x86412360 :0xSebdfiac Oxflfdbb2T Ox9bI£EBI1E 0x0Be2T 456
0x864123T0 0x2bATERES Ox3f3a3f9: DxfT2TTEdb OxdfeTe01b
0x586412380 0xbfb3f5fa

The addreszz end 0x36412384

The free command displays the usage of memory in Huawei LiteOS and the sizes of the text
segment, data segment, rodata segment, and bss segment.

free [-k | -m]

Parameter Description

User Guide

Table 7-11 Parameter description

Parameter Description Value Range
No parameters In the unit of byte N/A
-k In the unit of KB N/A
-m In the unit of MB N/A

® Enter free to display the total amount of the dynamic memory pool of Huawei LiteOS.
used indicates the total amount of used memory, text indicates the size of code segment,
data indicates the size of data segment, rodata indicates the size of read-only data
segment, and bss indicates the size of the memory used by the uninitialized global
variables.

® The free command can be used to display the memory usage in three units: byte, KB,
and MB.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 197

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Example

For example: enter free, free -k, and free -m.

Output
Figure 7-12 Display the memory usage in three units
Huawei Lite0S# frees
total used fres
Mem: 117TR31T44 31326864 85304330
text data rodata b==
Mem: 4116430 423656 1204224 BES9316
Huawei Lite0S5# free -k
total used fres
Mem: 114874 31080 23793
text data rodata b==
Mem: 4020 413 1176 G503
Huawei Lite05# free —m
total used fres
Mem: 112 a0 a1
text data rodata b==
Mem: 3 0 1 5]
7.2.5.1.10 uname
Function
The uname command is used to display the current OS name, time of data creation, name,
and version of Huawei LiteOS.
Format

uname[-a | -s | -t |-v | --help]

Parameter Description

Parameter Description
-a Display all information.
-t Creation time of data.
-s OS name
-v Version
--help Prompt of uname command format
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 198

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
User Guide
® The uname command displays the name of current OS. uname -a / -t/ -s/ -v indicates that
the uname command is writing the current OS name into standard output. The
parameters cannot be used together.
Example
For example: enter uname -a
Output

Figure 7-13 View system information of Huawei LiteOS

Huawei LitelS # uname -a

Huawei LitelS KernelW10ORO0ZCO0EL11 1.1.3 May 12 2016 16:34:5T

7.2.5.1.11 systeminfo

Function

Format

The systeminfo command is used to view the usage of resources including tasks, semaphores,
mutexes, queues, and timers in Huawei LiteOS.

systeminfo

Parameter Description

Parameter Description Value Range

N/A N/A N/A

User Guide
® The systeminfo command is used to view resource usage in Huawei LiteOS.
Example
For example, enter systeminfo.
Output
Figure 7-14 Resource usage in Huawei LiteOS
Huawei Lite0S # swysteminfo
Madule =ed Tatal Enabled
Tacl 36 B5 TE=
Sem 227 1024 TEZ
Mt e = 1024 TE=
Huene 1 1024 TEZ
SwTmr g 1024 TE=
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 199

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
Parameter description
Parameter Description
Module Module name
Used Number of used resources
Total Maximum number of usable resources
Enabled Whether to enable a module
7.2.5.1.12 help
Function
The help command is used to view all commands in Huawei LiteOS.
Format

help

Parameter Description

Parameter

Description

N/A

N/A

User Guide
® The help command is used to view all commands in Huawei LiteOS.
Example
For example, enter help.
Output
Figure 7-15 All commands in Huawei LiteOS
Huawei Lite0S # help
call cat cd cp cpup dns findsym
free help hwi ifconfig lddrop ldinit 1s
memcheck mkdir mopen mount netstat ntpdate partition
pwd readreg rm rmdir sem statfs swtmr
systeminfo task telnet tftp touch umount uname
writereg
7.2.5.2 File
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 200

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

7.25.2.11s

Function

The Is command is used to display the contents of the current directory.

Format

Is [path]
Parameter Description

Table 7-12 Parameter description

Parameter Description Value Range
path If the path parameter is null, | 1. Null
the current contents willbe | 5 ya1id directory
displayed.
If the value of the path

parameter is a invalid file
name, no content will be
displayed. "No such
directory" will be prompted.

If the value of the path
parameter is a valid
directory, content under the
directory will be displayed.

User Guide

The Is command displays the contents of the current directory.

The Is command displays the size of files.

The Is command can not count the size of files in proc, displaying 0.

Example

For example: enter Is

Output

Figure 7-16 Check the contents under the current directory. The displayed content is as
follows:

Huawei LiteQS# ls
Tirvectory [

.flash 153
bin <IIR>
font <IIR>
ete <IIR>
losttfound <IITR>

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 201
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.2.2 cd

Function

The e¢d command is used to change the current directory.

Format

cd [path]
Parameter Description

Table 7-13 Parameter description

Parameter Description Value Range
path File path You must have the execution
(search) permission of the
specified directory.

User Guide

® [fthe directory parameter is not configured, the ed command will jump to the root

directory.

® [fa complete file path is configured, it will jump to the file path.

® A complete file path starts with a slash (/), which indicates the root directory.

® One point (.) indicates the current directory.

® Two points (..) indicates the parent directory.
Example

For example: cd..
Output

Figure 7-17 Displayed information

Huawei LitedS# cd ..

Huawei Liteds# 1=

Directory [

<IIR>

bin <DIIR>

dew <IIR>

ramfs <DIR>

vaff=l <DIIR>
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 202

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

7.2.5.2.3 pwd

Function

The pwd command is used to display the current path.

Format

pwd
Parameter Description

Table 7-14 Parameter description

Parameter Description

Value Range

N/A N/A

N/A

User Guide
® The pwd command writes the full path name (from root directory) of the current
directory to the standard output. All directories are separated by slash (/). The first slash
indicates the root directory and the last indicates the current directory.
Example
For example: enter pwd
Output
Figure 7-18 View current path
Huawei Lite0SH# pwd
Fhindvs
7.25.24 cp
Function
The ¢p command is used to copy files.
Format
cp [source path] [dest path]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 203

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

User Guide

Example

Output

Table 7-15 Parameter description

Parameter Description Value Range
source path Path to the source file File name
dest path Path to the destination file File name or directory
name
® The name of the source file cannot be the same as that of the destination file in the same

path.

® The source file must exist. Currently, directories cannot be copied.

® [fthe destination path is a directory, the directory must exist, and the name of the
destination file is the same as that of the source file.

® [fthe destination path is a file, the directory that contains the file must exist, and the
name of the destination file is different from that of the source file.

® Currently, multiple files (more than two files) cannot be copied concurrently. If there are
more than two source path parameters, files specified by the first two parameters are
copied.

® [fthe destination file does not exist, a destination file will be created. If the destination
file already exist, it will be overwritten after the copy operation.

(Lnote

Copying important system resources will cause unknown serious problems such as crashes. For
example, copying the /dev/uartdev-0 file by running the cp command will casue system crashes.

For example, cp 100HSCAM/FILE0087.MP4.

Figure 7-19 Command output

Huawei LiteOS# 1=
Directory fbinfws/=d deim:
100HSCAM <IIR>

Huawei LiteOS# cp 100HSCAM/FILEOOST. MP4 .

Huawei LiteQS# 1=

Directory fbinfws/=d deim:
100OHSCAM <IIR>
FILEOOST. MF4 11332370

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 204
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

7.2.5.2.5 cat

Function

The cat command is used to display content of text files.

Format

cat [pathname]

Parameter Description

Table 7-16 Parameter description

Parameter

Description

Value Range

path name

File path

Existed files

® The cat command displays content of text files.

Figure 7-20 View information about the w file

® The touch command is used to create a nonexistent file in the current directory.

® [f the touch command is used to create an existing file, no file will be created and the

User Guide
Example

For example: cat w //w is a file name.
Output

Houawei LitelS# cat w

w open return UxS3Bbeife

w =ize 1s [
7.2.5.2.6 touch
Function

timestamp will not be updated.

Format

touch [filename]

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

205

LiteOS

Developer Guide

7 Maintenance and Testing

Parameter Description

Table 7-17 Parameter description

Parameter Description Value Range
filename Name of the file to be N/A
created.

User Guide
® The touch command creates a readable and writable empty file.
® The touch command creates only one file each time.
[LnoTe
Creating a file by running the touch command in an important system resource path will cause unknown
problems such as crashes. For example, running the touch uartdev-0 command in the /dev path will
casue system crashes.
Example
For example: enter touch file.c.
Output
Figure 7-21 Create a file named file.c
Huawei LitedS# touch file. c
Huawei LitedS# 1=
Directory fbingdws:
file. ¢ 0
=d <IIR>
Huawei Lited5#
7.2.5.2.7 rm
Function
The rm command is used to delete a file.
Format
rm [-7] [dirname/filename]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 206

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

Table 7-18 Parameter description

Parameter

Description

Value Range

-r

The parameter is optional.
The parameter is necessary
to delete directories.

N/A

dirname/filename Name of the file to be

deleted, which can be a path
name.

N/A

® The rm command deletes only one file each time.

® The rm -r command deletes a non-empty directory.

Deleting important system resources such as /dev by running the rm command will cause unknown

User Guide

(LnoTe

problems such as crashes.

Example

For example:

1. Enterrm l.c

2. Enter rm -r dir
Output

Figure 7-22 The rm command deletes the 1.c file.

Huawei LitedS# 1=
Directory Sframfs:

l.e

Huawei LiteOS# rm 1. ¢

Huawsi LiteOS# 1=
Directory Sframfs:

Figure 7-23 Delete the dir directory by using the rm -r command

Huawei Lited5# 1=
Directory framfs:

dir

<IIR>

Huawei LiteQ3# rm —r dir

Huawei Lited5# 1=
Directory framfs:

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

207

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.2.8 sync

Function

The sync command is used to synchronize the cache data (data in the file system) to an sd
card or nandflash.

Format

sync
Parameter Description

Table 7-19 Parameter description

Parameter Description Value Range

N/A N/A N/A

User Guide
® The sync command refreshes the new cache. When there is no SD card, no operation
will be done.
® When there is an SD card, cache data will be synchronized to the SD card or NAND
flash memory and no information will be printed.
Example
For example: after sync is input, the synchronization will succeed if there is an SD card and
no operation will be done if there is not.
Output
None.
7.2.5.2.9 statfs
Function
The statfs command is used to print the information about a file system, such as type, total
size, and available size.
Format
statfs [directory]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 208

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

Parameter

Description

Value Range

directory

Type of the file system. The existing file system that

supports the statfs command

The printed information differs with different systems.

Example of printing the information about the YAFFS file system:

Output of the statfs yaffs0 command

The format command is used to format disks.

User Guide
Example
statfs yaffs0
Output
statfs got:
f type = 1497497427
cluster size = 2048
total clusters = 704
free_clusters = 640
avail clusters = 640
f namelen =255
7.2.5.2.10 format
Function
Format

format [dev_inodename] [sectors][label]

Parameter Description

Parameter

Description

dev_inodename

Name of a device

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 209
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
Parameter Description
sectors Size of the allocated unit memory or sector.
If the value of this parameter is set to 0, the
parameter is null. (The value must be a
power of 0 or 2. The maximum value is 128.
When this parameter is set to 0, the size of
the allocated unit memory or sector, which
varies with the partition size, is
automatically specified. An incorrect size
will lead to a formatting failure.)
label (Optional) Volume label name. The value of
this parameter is a string. When the value is
set to null, the volume label name set earlier
is cleared.
User Guide
® The format command formats disks. The device name can be searched for under the dev
directory. A storage card must be installed before formatting.
® The format command can only be used to format SD cards and MMC cards and is not
valid to the NAND flash or NOR flash memory.
® The sectors parameter value must be valid. Otherwise, errors may occur.
Example
For example: enter format/dev/mmcblk0 0
Output
Figure 7-24 Displayed contents
Huawei Lite0S # format mcblk® @
format /dev/mmcblk@ Suc
7.2.5.2.11 mount
Function
The mount command is used to mount a device to a specified directory.
Format
mount [device] [path] [name]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 210

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Parameter Description

Table 7-20 Parameter description

Parameter Description Value Range

device The device to be mounted Devices of Huawei LiteOS.
(the format is the path of the
device).

path Specified directory. N/A

You must have the execution
(search) permission of the
specified directory.

name Type of the file system. vfat, yaffs, jffs, ramfs, nfs

User Guide
® Add device information, the specified directory, and type of the file system to mount the
file system to a specified directory.
Example
For example: mount /dev/mmc0 /bin/vs/sd vfat.
Output
Figure 7-25 Mount /dev/mmc0 to the /bin/vs/sd directory
Huawei Lite0S# mount fdevi/mmel fbinfwsf=d wiat
Huawei Litel #
7.2.5.2.12 umount
Function
The umount command is used to uninstall a specified file system.
Format
umount [dir]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 211

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Parameter Description

Table 7-21 Parameter description

Parameter Description Value Range
dir Directory of the file system | Directory of the mounted
need to be uninstalled. file system

User Guide
® Add the directory to be uninstalled (of the specified directory) to the end of the umount
command.
Example
For example: umount /bin/vs/sd.
Output
Figure 7-26 Uninstall the file system that is mounted to /bin/vs/sd
Huawei Lite0S# umount fbinfvsf=d
7.2.5.2.13 rmdir
Function
The rmdir command is used to delete a directory.
Format

rmdir[dir]
Parameter Description

Table 7-22 Parameter description

Parameter Description Value Range

dir Name of the directory to be | N/A
deleted. The directory must
be empty and the name can
be a file path.

User Guide

® The rmdir command only deletes a directory.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 212
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
® The rmdir command deletes only one directory each time.
® The rmdir command deletes only empty directory.

Example
For example: enter rmdir dir

Output
Figure 7-27 Delete the dir directory
Huawei LiteOS# 1=
Directory /binfvs:
dir <DIIR>
=d <DIR>
Huawei Litel5# rmdir dir
Huawei Litel5# 1=
Directory fbinfws:
=d <ITER>

7.2.5.2.14 mkdir

Function
The mkdir command is used to create a directory.

Format

mkdir [directory]

Parameter Description

Table 7-23 Parameter description

Parameter

Description

Value Range

directory

Directory to be created

N/A

User Guide

® Add a directory name to the end of the mkdir command to create a directory.

® Add a path name and a directory name to the end of the mkdir command to create a
directory under the specified directory.

Example

For example: mkdir share

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

213

LiteOS
Developer Guide

7 Maintenance and Testing

Output

Figure 7-28 Create the share directory

Huawei LiteQS# mlidir share

Huawei LiteQS# 1=
Directory fbindws:
share <IIR>
=d <IIR>

7.2.5.2.15 partition

Function

Format

The partition command is used to query the information about partitions.

partition [jffs | yaffs]

Parameter Description

User Guide

Example

Output

Table 7-24 Parameter description

Parameter Description Value Range

jffs Display partition N/A
information of jffs file
system

yaffs Display partition N/A
information of yaffs file
system

® Enter the partition command to display the information about partitions.

® The command only supports yaffs and jffs file systems.

For example: enter partition yaffs

Figure 7-29 Information of partition

Huaweil LitelS # partition yaffs

waffs partition rom:0, dev name:fdev/nandblk],
mountpt: fyaff=l, startadds:0:0000000,

Length: 000200000

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 214

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
7.2.5.2.16 writeproc
Function
The writeproc command is used to write data to a specified proc file system.
Format

writeproc [peval] [operational mark] [pcPath]

Parameter Description

Table 7-25 Parameter description

Parameter

Description

Value Range

pcval

Data to be written to the file.

A string.

operational mark

If the operational mark is
>>_data is written to an
existing file.

Only >> is valid.

pcPath

Path of the file to which data
will be written.

Absolute path.

User Guide

® The writeproc command writes data to a file.

® [fthe operational mark is >> and the file to which the data is written exists, the data is

written to the file.

® As for several files non user created in file system, writeproc is able to make functions

such as modifying system information recorded come true.

Example

Enter writeproc 'sys=2' >> /proc/umap/logmpp

Output

Figure 7-30 Modify the level of sys in logmpp

Huawei Lite0S # writeproc 'sys=2' >> /proc/umap/logmpp

sys=2 >> /proc/umap/logmpp
Huawei Lite0S # cat /proc/umap/logmpp

Huawei Lite0S # LOG BUFFER STATE
MaxLen ReadPos WritePos ButtPos

64(KB) <]

CURRENT LOG LEVEL

3
2
3
3
3
3
3
3
3
3
3

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

215

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.2.17 partinfo

Function

The information about the identified partitions of hard disk and SD card can be queried by
running the partinfo command.

Format

partinfo <dev_inodename>
Parameter Description

Table 7-26 Parameter description

Parameter Description Value Range
dev_inodename The name of the partition to check. Legal partition name.
User Guide
None.
Example
partinfo /dev/sdapO
Output
Huawei LiteOS # partinfo /dev/sdapO
part info :
disk id : 3
part_id in system: 0
part no in disk 0
part no in mbr : 1
part filesystem : 0OC
part dev name : sdap0
part sec start : 2048
part sec count : 167794688
7.2.5.3 Network
7.2.5.3.1 arp
Function
In Ethernet, hosts communicate with each other by using a MAC address. If a host that uses
the IP protocol wants to communicate in LAN (Ethernet), the IP address of the host needs to
be transformed into a MAC address. Therefore, the ARP cache, a mapping of IP addresses
and MAC addresses, is stored in a host. A host obtains the MAC address from the ARP cache
table to send IP packets to a destination IP address in LAN. The ARP cache is maintained by
TCP/IP protocol stack. You can view or modify the ARP table by using ARP commands.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 216

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Format

arp
arp [-i [F] -s IPADDR HWADDR

arp [-i IF] -d IPADDR
Parameter Description

Table 7-27 Parameter description

Parameter Description Value Range
None. Print the contents of the N/A
whole ARP cache.
-11F Specify a network API N/A
(optional).
-s IPADDR HWADDR Add an ARP entry. The N/A

parameters next to the
command are the IP address
and MAC address of another
host in LAN.

-d [IPADDR Delete an ARP entry. N/A

User Guide

® The arp command queries and modifies the ARP cache table of TCP/IP protocol stack.
It is meaningless to add the ARP entry in non-LAN networks, and protocol stack will
return fail.

® Use the command after TCP/IP protocol takes effect.

Example
For example:

1. Enter arp
2. Enter arp -s 192.168.1.1 00:11:22:33:44:55

Output

Figure 7-31 Print the whole ARP cache table

Huawei Lite0S5 # arp
Address HWaddress

192.168.1.2 00:E0:4C:97:85:DB

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 217
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing
Table 7-28 Parameter description
Parameter Description
Address The IP address of the network device that
connects to the board.
HWaddress The MAC address of the network device
that connects to the board.
Iface Name of the API used by ARP entry.
7.2.5.3.2 ifconfig
Function
The ifconfig command is used to query and configure the parameters such as IP address,
network mask, gateway, and the MAC address. The command also enables or disables the
data processing function of the NIC.
Format

ifconfig
[-a]

<interface> <address> [netmask <address>] [gateway <address>]

[hw ether <address>]

[up|down]

Parameter Description

Table 7-29 Parameter description

Parameter

Description

Value Range

No parameter

Print the information about
all NICs, such as IP address,
network mask, gateway,
MAC address, MTU, and
running status.

N/A

Print the sending and
receiving statistics of
protocol stack data.

N/A

interface

Name of specified NIC, for
example, en0.

N/A

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

218

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter

Description

Value Range

address

Configure the IP address,
for example 192.168.1.10.
Name of specified NIC card
needs to be specified.

N/A

netmask

Configure the mask of
subnet. Next to the
command is the mask
parameter, for example,
255.255.255.0.

N/A

gateway

Configure the gateway. Next
to the command is the
gateway parameter, for
example, 192.168.1.1.

N/A

hw ether

Configure the MAC address.
Next to the command is the
MAC address, for example,
00:11:22:33:44:55. Only
support ether hard type
currently.

N/A

mtu

Configure the size of mtu.
Next to the command is the
mtu size, for example, 1000.

[68,1500]

up

Enable the data processing
function of NIC. The NIC
name needs to be specified.

N/A

down

Disable the data processing
function of NIC. The NIC
name is needed.

N/A

User Guide

® The ifconfig command queries and configures the parameters such as network mode
(Wi-Fi or Ethernet), IP address, network mask, gateway, and MAC address.

® Use the command after TCP/IP protocol takes effect.

® Because the IP address collision detection requires response time, IP address

configuration by using the ifconfig command each time has a delay of about 2 seconds.

Example

1. Enter ifconfig eth0 192.168.100.31 netmask 255.255.255.0 gateway 192.168.100.1 hw

ether 00:49:¢cb:6¢c:al:31

Set the IP address of the development board to 192.168.100.31, the mask to
255.255.255.0, the gateway to 192.168.100.1, and the MAC address to 00:49:cb:

6¢c:al:31.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

219

LiteOS
Developer Guide

7 Maintenance and Testing

Output

Run the ifconfig -a command to obtain protocol stack statistics.

Set network parameters.
Huawei LiteOS # ifconfig

eth0 1ip:192.168.1.2 netmask:255.255.255.0 gateway:192.168.1.1
HWaddr d2:ba:£f4:0d:fb:89 MTU:1500 Runing Default Link UP
lo ip:127.0.0.1 netmask:255.0.0.0 gateway:127.0.0.1

HWaddr 00 MTU:0 Runing Link Down

Huawei LiteOS # ifconfig eth0 192.168.100.31 netmask 255.255.255.0 gateway
192.168.100.1 hw ether 00:49:cb:6c:al:31

Huawei LiteOS # ifconfig

eth0 1p:192.168.100.31 netmask:255.255.255.0 gateway:192.168.100.1
HWaddr 00:49:cb:6c:al:31 MTU:1500 Runing Default Link UP
lo ip:127.0.0.1 netmask:255.0.0.0 gateway:127.0.0.1

HWaddr 00 MTU:0 Runing Link Down

The following table lists the output parameters.

Table 7-30 Parameter description

Parameter Description

ip IP address of the board

netmask Network mask

gateway Gateway

HWaddr MAC address of the board

MTU Maximum transmission units of network
Running/Stop Whether NIC is running

Default Explain connecting to the default gateway
Link UP/Down Connect status to NIC

Obtain protocol stack statistics.
Huawei LiteOS # ifconfig -a
RX packets:23128 error:0 dropped:0 overrun:0 bytes:10390(10.1KB)
TX packets:40921 error:0 dropped:0 overrun:0 bytes:64008(62.5KB)

The following table lists the output parameters.

Table 7-31 Parameter description

Parameter Description

RX packets The number of normal packets that the IP layer has
received.

RX error The number of packets with errors that the IP layer has

received. The error types include length error, verification
error, IP option error, and error of the protocol field in an IP
header.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 220
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Parameter Description

RX dropped The number of packets that the IP layer has dropped. The
packets are dropped because the packets have errors, the
packets cannot be forwarded, or the local NIC that receives
the packets is disabled.

RX overrun The number of packets that the MAC layer fails to deliver
to the upper-layer protocol stack. The main failure cause is
that the protocol stack resources are insufficient.

RX bytes The total number of bytes in all normal packets that the IP
layer has received, excluding the bytes in the fragments that
have not been completely reassembled.

TX packets The number of packets that the IP layer has successfully
sent or forwarded.

TX error The number of packets that the IP layer fails to send. The
packets fail to be sent because the packets cannot be routed,
or the packets fail to be processed in the protocol stack.

TX dropped The number of packets that the MAC layer drops due to
failure to send the packets. The packets fail to be sent
because the network adapter driver fails to process the

packets.
TX overrun Not in use.
TX bytes The total number of bytes in the packets that the IP layer

has successfully sent or forwarded.

7.2.5.3.3 ping
Function
The ping command is used to check the network connectivity.
Format
ping [-n cnt] [-w interval] [-] data_len] </P>
ping [-t] [-w interval] </P>
ping -k
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 221

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

Table 7-32 Parameter description

Parameter Description Value Range
1P IP address of the network to
be tested.
-n cnt Times of execution. The 1~65535
default value is 4.
-w interval Interval between sending
each ping packet. (Unit: ms)
-1 data_len Data length of each ping 0~65500
packet (ICMP ECHO
request packet) excluding
the ICMP packet header.
-t Pings the target until the
ping thread is killed using
ping -k.
-k Kills the ping thread.
User Guide
® The ping command tests the connectivity of the target IP network. The parameter is the
destination IP address.
® [fdisplaying sends an error, it explains the destination IP route is not reachable.
® Use the command after TCP/IP protocol takes effect.
Example
For example: enter ping 192.168.0.2
Output

Figure 7-32 Semaphore information about Huawei LiteOS

Huawei LiteOS

JReply from
JReply from
JReply from
JReply from
---192.168.1.

[0
[1
[2
[3

4 packets transmitted,

ping 192.168.1.3

192
192
192
192

.168.
.168.
.168.
.168.

[

w w w w

TTL=128
TTL=128
TTL=128
TTL=128

time=2ms
time=1ms
time<lms
time=1ms

3 ping statistics ---

4 received,

0 loss

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

222

LiteOS

Developer Guide 7 Maintenance and Testing
7.2.5.3.4 tftp
Function
Trivial File Transfer Protocol (TFTP), one protocol of TCP/IP, provides simple file
transmission service between the client and server. The port number is 69.
Format

tftp <-g/~-p> -l [FullPathLocalFile] -r [RemoteFile] [Host]

Parameter Description

Table 7-33 Parameter description

Parameter Description Value Range
-g Obtain files from the server | Choose one from -g and -p
- Upload files to the server Choose one from -g and -p
-1 Name of a local file (full

path should be opened in

Huawei LiteOS)
-1 Name of a file on the server
Host Server IP

User Guide

1. Setup NFS TFTP server. Firstly, you need to ensure that the server has been installed
TFTP client, and then configure it according to following figures.

@ Thpd32 by Ph. Jounin

=)

Current Directory |4410.67.212.178sqbirtHuawei_Lite(|

Semver interface | 1921631

2 |

Titp Server] Thp Client | DHCP server | Syslog server | Log viewer |

Shoow Bir

Browsze

peet | file

| stattime | progress:

Help

Issue 01 (2018-04-20) Huawei Proprietary and Confidential

Copyright © Hua

wei Technologies Co., Ltd.

223

LiteOS

Developer Guide 7 Maintenance and Testing
Click Setting to set the TFTP server.
i ==
% Thpd32: Settings &J
i~ Base Directon—
]'\'\'I 0672121 ?E'xsqbin'\i-—l uawei_LiteO5_ipc_1 21§ Browze
.- Global Settings Syslog server
¥ TFTP Server [DHCP Server | |~ Fonward msg to pipe
[TFTPClent [DNS Server || _ ST”F'EBEE;PS'C'E'
SRt saries [Save syslog messages
¥ Syslog Server Tafile
i DHCF Ophionz
¥ Ping address before assignation W Persiztant leases
| I” Bind DHCP to this address [1921687 2 _J
i~ TETF Security i~ TETF configuration:
" Mone Timeout [zeconds) 3
(* Standard M ax Retransmit £
" High Thp port B9
" Read Only _ lozal ports pool
Advanced TFTP Ophions
W Option negotiation [T Hide 'Window at-startup
[T PXE Compatibility [Create "dirtst" files
¥ Show Progress bar I Create rid5 files
¥ Translate Unix file names. [~ Beep forlong transfer
[Bind TFTP tothis address | gz eed 2 J
[fllow ™ &z virual root
. [T Usge anticipation window of |0 Bytes
Diefault ‘ Help ‘ Cancel ‘
Set Base Directory to the TFTP directory and then click OK to exit.
Huawei LiteOS board uses the tftp command to upload or download files.
The size of a file that is transmitted must not be greater than 32 MB.
tftp is a test function, the default configuration is closed, the official product is prohibited
to use the function.
Disclaimer: Huawei is not responsible for any risks brought by using the Telnet function
in official Huawei LiteOS.
Example
For example: download the vs_server.bin file from the server
Output

Huawei LiteOS # tftp -g -1 /nfs/vs_server.bin -r vs_server.bin 192.168.1.2
TFTP transfer finish

If the transfer succeeds, the message TFTP transfer finish will be displayed. If the transfer
fails, other printed information will be displayed to help locate the problem.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

224

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.3.5 ntpdate

Function

The ntpdate command is used to synchronize the system time from the server.

Format

Obtain the system time from NTP server.

ntpdate [SERVER_IP1] [SERVER_IP2]...
Parameter Description

Table 7-34 Parameter description

Parameter Description Value Range

SERVER 1P IP of NTP server

User Guide
Run ntpdate [SERVER _IP1] [SERVER IP2]...
The time of the first valid server IP will be obtained and displayed by running the ntpdate
command.
Example
For example:
Use the ntpdate command to update the time of system.
Output
Use the ntpdate command to update the time of system.
Huaweil LiteOS # ntpdate 192.168.1.3
time server 192.168.1.3: Mon Jun 13 09:24:25 2016
The displayed time in the board may be different from the server time in several hours due to
different time zones.
7.2.5.3.6 dns
Function
The dns command is used to configure the DNS server address of the board.
Format
dns <1-2> <[P>
dns -a
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 225

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

User Guide

Example

Output

7.2.5.3.7 netstat

Function

Format

Table 7-35 Parameter description

Parameter Description Value Range
<1-2> Choose to configure the first | 1~2
or second DNS server.
<[pP> IP address of the server.
-a Display the current
configuration state.

Enter the netstat command

For example:

1. View the configuration information about the current DNS.
2. Configure the IP of the second DNS.

3. Check whether the configuration of DNS is successful.

1. View the configuration information about the current DNS.

Huawei LiteOS # dns -a
dnsl: 208.67.222.222
dns2: 0.0.0.0

2. Configure the IP of the second DNS.
Huawei LiteOS # dns 2 192.168.1.2

3. Check whether the configuration of DNS is successful.

Huawei LiteOS # dns -a
dnsl: 208.67.222.222
dns2: 192.168.1.2

The netstat, a console command, is used to view the actual network connectivity and the state
of each network API device for TCP/IP network monitoring. The netstat command displays
the statistics of TCP and UDP protocols to check the connectivity of all APIs of the board.

netstat

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

226

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

Table 7-36 Parameter description

Parameter Description

Value Range

N/A N/A

N/A

User Guide

Enter the netstat command
Example

For example: enter netstat
Output

Figure 7-33 Information printed using netstat

Huawei Lite0S # netstat

Local Addr

a.
2 1.2:11111

2:11118

Send-Q Local Addr
2] e.
2]

Send-Q
2]
2]

v-Q Send-Q Protocol

e &)
pkt-raw

Table 7-37 Parameter description

Foreign Add State
B. LISTEN
LISTEN
LISTEN

Foreign Add
16
B

Protocol

Foreign Address
0.0.0.0 17 8
B. P i} 1

HDRINCL

netif
None
etho

Parameter Description

Proto Protocol type

Recv-Q Amount of data that is not read by the user.

Send-Q When TCP is used, the parameter specifies
the amount of data that is sent and not
acknowledged.
When UDP is used, the parameter specifies
the amount of data that is cached because IP
address parsing is not complete.

Local Address Local address and port

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

227

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 7 Maintenance and Testing

Parameter Description

Foreign Address Remote address and port

State Connectivity of TCP (the parameter is
meaningless to UDP)

Type Raw socket type
raw indicates the AF_INET type of raw
socket.
pkt-raw indicates the PF_ PACKET type of
raw socket.

Protocol For an AF_INET raw socket, protocol

indicates the type of the protocol in the IP
header. For a PF_ PACKET raw socket,
protocol indicates the type of the protocol
in the Ethernet header.

HDRINCL Whether the user has enabled the
IP_ HDRINCL socket option on the
AF_INET raw socket.

1 indicates that the user has enabled this
option. 0 indicates that the user has not
enabled this option.

netif NIC that is bound to the PF_ PACKET raw
socket

None indicates that no NIC is bound to the
raw socket.

"'========== total sockets 32 ====== unused sockets 22 =========="

The preceding printed information indicates that there are 32 sockets in total, and 22 out of them are not

in use.
7.2.5.3.8 telnet
Function
telnet is used to access servers through networks from computers of terminal users.
Format
telnet [on | off]
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 228

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

Parameter Description

Table 7-38 Parameter description

Parameter Description Value Range
on Turning on a server N/A
off Turning off a server N/A

User Guide
® telnet is used to access servers through networks from computers of terminal users.
® To enable telnet, ethernet drivers must be initialized, and ethernet drivers of boards must
be started.
® Currently, only one client can be connected to a development board using telnet and an
IP address at one time.
Example
For example, enter telnet on.
Output
Figure 7-34 Entering telnet on
Huawei LiteOS # telnet on
Huawei LiteOS # init telnet.
7.2.5.3.9 tcpdump
Function
The tepdump command is used to capture network packets. It does not support protocol
analysis on the device. Captured network packets are used to generate a PCAP file which is
analyzed using Wireshark.
Format
tepdump -i ifthame -w "path" [-c "package-count"] ["filter expression"]
tcpdump stop
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 229

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

User Guide

Example

Output

Table 7-39 Parameter description

Parameter Description Value Range
ifname NIC name This parameter can be
set to a NIC name
only.
path Absolute path of a PCAP file This parameter must
be set to a valid path.
package-count Number of network packets to be captured Range: 0 to
(This parameter is optional. If it is unspecified 4294967295
or set to 0, the number of network packets to
be captured is unlimited.)
filter expression | Packet filtering expression See the PCAP

filtering rule.

® This command can be used only after the network and file system are initialized.

Only a single NIC can be used to capture packets.

® The direction of the data packets cannot be configured. Currently, the direction is

bidirectional.

Enter tcpdump -i eth0 -w /ramfs/cap.pcap -c 15 "arp or ip" to start capturing ARP and IP

packets. The number of packets to be captured is 15.

Enter tecpdump -i eth0 -w /ramfs/cap.pcap to start capturing packets. The number and type

of packets are not limited.

Enter tcpdump stop to stop capturing packets.

Figure 7-35 Output of tcpdump -i eth0 -w /ramfs/cap.pcap -c 15 "arp or ip"

Huawei LiteOS # interface: ethO
filename: /ramfs/cap.pcap
count: 15

filter: arp or ip

Huaweil LiteOS # tcpdump file saved.

Figure 7-36 Output of tcpdump stop

Huawei LiteOS # tcpdump stop
Huawei LiteOS # tcpdump stoped.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

230

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.4 Dynamic Loading
7.2.5.4.1 mopen

Function

The mopen command is used to load a user module.

Format

mopen module path
Parameter Description

Table 7-40 Parameter description

Parameter Description

module path Path of the user module

User Guide
® module_path can be set to a .o file or a .so file.
Example
For example: load /yaffs/bin/dynload/foo.o
Output
Huawei LiteOS# mopen /yaffs/bin/dynload/foo.o
module handle: 0x80391928
Huawei LiteOS#
Module handle will be returned if the loading succeeds. The returned module handle in this
example is 0x80391928.
7.2.5.4.2 findsym
Function
The findsym command is used to query the symbol address.
Format
findsym handle symbol_name
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 231

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

7 Maintenance and Testing

Parameter Description

Table 7-41 Parameter description

Parameter

Description

handle

Module handle

symbol name

Name of the symbol to be searched.

® [fthe handle is 0, the command searches the symbol address in the global symbol table.
(The global symbol table contains the kernel symbol and other symbols provided by user

® [fthe handle is not 0 and is valid, the command searches the symbol in the module

For example: search global symbol table for printf symbol and search user module (handle:

User Guide
module).
specified by the handle.
Example
0x80391928) opened in mopen for the address of test 0 symbol.
Output
Huawel LiteOS# findsym 0 printf
symbol address:0x8004500c
Huawei LiteOS#
Huawei LiteOS# findsym 0x80391928 test 0
symbli address:0x8030f£241
Huawei LiteOS#
7.2.5.4.3 call
Function
The call command is used to call a function with no parameters.
Format

call func_address
Parameter Description

Table 7-42 Parameter description

Parameter

Description

func_address

Memory address of the function

Issue 01 (2018-04-20) Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

232

LiteOS

Developer Guide 7 Maintenance and Testing
User Guide
® (Call the function after the memory address of a function symbol has been searched in
findsym.
(Lnote

Arbitrary memory operations by running the call command will cause system crashes.

Example

For example: call test_0 function (address: 0x8030f241) that is searched in findsym.
Output

Huawei LiteOS# call 0x8030f241

test 0

Huawei LiteOS#
7.2.5.4.4 mclose
Function

The mclose command is used to uninstall a module.
Format

mclose module _handle
Parameter Description

Table 7-43 Parameter description

Parameter Description

module handle The handle value returned by the module
that is opened in mopen.

User Guide

® [fa module with specified handle is uninstalled, it cannot be searched for symbols.
Example

For example: uninstall the user module whose handle is 0x80391928.
Output

Huawei LiteOS# mclose 0x80391928

Huawei LiteOS#

If no error information is displayed, the uninstallation is successful.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 233

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 7 Maintenance and Testing

7.2.5.4.5 lddrop

Function

The lddrop command is used to uninstall the dynamic loading module.

Format

lddrop
Parameter Description

Table 7-44 Parameter description

Parameter Description Value Range

N/A N/A N/A

User Guide
® The dynamic loading function is not available if the dynamic loading module is
uninstalled. To use this function, reinitialize the dynamic loading module.
Example
For example: uninstall the dynamic loading module.
Output
Huawei LiteOS# lddrop
Huawei LiteOS#
If no error information is displayed, the uninstallation is successful.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 234

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

8 Debug Guidelines

8 Debug Guidelines

8.1 Methods for Locating Illegal Memory Write
8.2 Solutions to Illegal Memory Access
8.3 Method for Locating a Deadlock

8.1 Methods for Locating Illegal Memory Write

8.1.1 Locating the Exception Based on the Exception Information

Information about some key registers can be viewed in the serial port after the exception of
illegal memory write occurs.

Figure 8-1

uwExcType = 0Ox4

puwExcBuffaddr peo
puwExcBuffAddr 1r
puwExcBuffiddr =p
puwExcBuffaddr fp

R0 = 0Oxl

Rl = 0Ox80146366
E2 = 0Oxld

E3 = 0Ox=é

R4 = 0xS0146349
RS = 0x8014633f
R6 = 0x80146345
R7 = Ox4

0x80041a50

Ox8

OxE80146328
0x8014835c

rrxEE*chacktrace begin#*#*#*#

To locate the exception, debugging personnel need to view the vs_serve file under the
Huawei_LiteOS\out\<platform> directory and find the current operation that is specified by
the pc pointer. The operation causes the exception.

Figure 8-2

80041a44: e3a0201d
80041a48: e3a03006
8004la4c: e0841002
80041a50: 7868007

mowv
mowv
add
str

rZ,
r3,
rl,

rs,

29

#6

r4, r2
[ra, ©7]

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

235

LiteOS
Developer Guide 8 Debug Guidelines

The information about the 0x80041a50 pc pointer shows that the (str r8,[r6,r7] instruction is
being executed when the exception occurs. The reason why the exception occurs can be
concluded by analyzing this instruction.

8.1.2 Memory Integrity Check

The causes of illegal memory access sometimes cannot be determined by referring to the
exception information as described in the previous topic. In addition, register information are
often incorrect, which causes locating failure. If you suspect that memory overwriting causes
the exception, whether memory overwriting causes the exception can be checked by calling
the osShellCmdMemcheck memory integrity check function.

After the osShellCmdMemcheck function is called, all nodes in the dynamic memory pool are
checked. When all nodes are normal, a log containing "memcheck over, all passed!" is
printed. If not all nodes are normal, error information is printed.

A memory integrity check example is described as follows:

VOID sampleFunc (VOID *p)

{

memset (p, 0, 0x110);//memset that involves length excess; setting the scenario of
illegal memory write

}

#include "los_dlinkmem.h"
UINT32 test (UINT32 argc, CHAR **args)

{
void *pl,*p2;

pl = LOS MemAlloc ((void*)O0S SYS MEM ADDR, 0x100);
p2 = LOS MemAlloc((void*)O0S SYS MEM ADDR, 0x100);
dprintf ("pl = %$p, p2 = %$p \n", pl, p2);

osShellCmdMemcheck (0,NULL) ; //memory integrity check
sampleFunc (pl); // assuming that the memory is illegally written here
osShellCmdMemcheck (0,NULL) ; //memory integrity check

LOS MemFree (OS_SYS MEM ADDR, (void *)pl);
LOS MemFree (OS_SYS MEM ADDR, (void *)p2);

return 0;

}

Check procedure:
Step1 Run the task command to print the task status.
Step 2 Run the test command and execute the preceding example program.
----End
Information contained in the log that is printed after the check is described as follows:

® [nformation of "memcheck over, all passed!" is printed after the the first time when
osShellCmdMemcheck function is called, indicating that no memory is illegally
accessed.

® After the second time when osShellCmdMemcheck function is called, error information
is printed, indicating that operations performed between two function calling cause
illegal data write. Figure 1 shows the log information. "ur node: 0x81{f0078" highlighted
by mark 3 indicates that memory of the current node is illegally written. As shown in
figure 1, "p2= 0x81ff0188". After subtracting 0x10 which is the size of control head.
That is "p2-0x10=cur node". (The prerequisite is that p1 and p2 must be connected,

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 236
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 8 Debug Guidelines

which is able to verify by comparing with the address printed by p1 and p2. p2-
p1=0x110. The 0x110 express size of it, 0x10 is the size of the control head.)

® [nformation of "pre node was allocated by task:shellTask" highlighted by mark 4
indicates that illegal memory write occurs in shellTask.

Figure 8-3

Hawwai Lite0S 2 taxk

Yasa FID Brierity Stabes StackSize Taterlioa StackFoint TepliSuack
Swt_Task e 0 Cuenafend DwbDDD e OubloafBi) OxS0caBeuld
Tdl«Cor«000 Ml £} Eendy {4 O3 Oxblcafeed Oxlcafwid
s¥Etem_wq ' e 1 Fand hEn) G40 OxBOcbSd40 CxElowfefl
spp Tazk X 0x3___ 10 Del sy 500 B3 OxBlchbesd CulchSENE
Bhallfask 0w 9 Foosusr w000 Cohed Owiliceddd
cndfaraxTazk 05 9 Fand 1000 [DxBlcct2dd Cxflocddbl
yaffz_bg go 0x6 10 Delay D=5000 0238 0xB0cch3Z8 CuiDecS4d)
Eewhadla gpatch 0=T 10 Ready O 8000 Q2RO OxB0daSdEs QxB0d36e T
SavafuraZflazh 1) 10 Ready D00 =23 O=B0dabaT] OxS0d:E0LE
FracaifncSiremaThrend 03 10 Ready 0= 1100080K0 Oize OxB0dbad® Oxf0dasfdd
HedataTineladThrasd Oea 10 Eendy b0 e OxBldeddedl Oed0dbeT0R
Tapliun Ok 10 Eeady el Crel ke OxBldadS10 Oxd0deT o
nabe_gat Oxe 10 Fend ke 120060 Ol DxBladeasd OxddeiBdS)
SandiFrwneTohenoThread Oud 10 Feudy DwbD00 O DwB0S2058 Opdled &298
WORESTATE_CHECK Due 1o Eeady (heb0 s OxBleBefdd OudlcFAlED
STORACE_Listien_Thresd sdd O f 10 Feady] OS5l OxBlowfds) CullowaldTd
himci_Tazk 0x10 10 Feady Tt 4G OxBloalad® Cuiloaldtd
TIMER_CHECE Ozl 10 Feady Thefdin) Cal4g OxBloafiall OxSlcalbdd
STORAGE_Frocers_Thresd_sd) Ox12 10 Fand LEsi] D544 DxBlcbScEE QxS chO0RS
Ieddex_Adjuzt_Thresd 013 10 Fand 000 O OxBlcbeclTl OzBlchBw0
prhlg Ox1d 10 Fazd D00 =270 OxBlcciTdd Q=Blcketl
pLklS 015 10 Ready OcB000 =238 OxBlccBE20 Q=BlcclBeld
B _Timar Ox16 10 Ready 5000 Q20 O=BleceBl8 DzBleclFel
rac_tik_proc 0x17 10 Famd Dxh000 O=270 OxBl 8020 Q8L eA0200
ras_tak_praproc 018 10 Fend DaetaD00) a3 OB edelr®) OuBledBZ20
Fas_Lal_pEas fxi8 10 Fend L] 0270 0wl ca305E OxSleddadd
ras_Lal_pEapros fwla 10 Fexd rsefalna]y o) OwBloabBld OudlcelaSd
hi_Timar iz 10 Fand Defaale) D2 TE OwBlefSEed Oxdlesfad)
PAL_patiser fmid 10 Feady Iihfalala) D2 el OwEB00 TR0 OwEd00aSed

Franwai Lite]l @ 1e3t

Bl = T5H FE = OBl 60163

neachack over, sll pasped!

(13-4 [l'.l]ﬁ_ln]'nu-p-uyf.hl:k]_ 837, memory check arrer!

etFraaliadaInge, priFrav Ol 12 aut of lagel mem rlm;l-[D:Bﬂ-:BT!ﬁ_ BT 00000]
wEL_BA S b
gpra oode: DAl 80023
pre node was allocatsd by task:. aballlazk™ *

8.1.3 Check of Usable memset and memcpy Length

To accelerate the exception locating, a check of memset and memcpy length is added because
memset and memcpy are most likely to cause memory overwriting. If the length to be
operated exceeds the length that can be used by the operated node, a log will be printed to
prompt the length excess, and the memset and memcpy operations will be canceled (a
complete log cannot be viewed if the operations are not canceled). The following describes an
example of a memory integrity check in which a memset and memcpy length check is
enabled:

VOID sampleFunc (VOID *p)

{

memset (p, 0, 0x110);//memset that involves length excess; set the scenario of
illegal memory write

}

#include "los_dlinkmem.h"

UINT32 test (UINT32 argc, CHAR **args)
{

void *pl, *p2;

pl = LOS MemAlloc ((void*)0S SYS MEM ADDR, 0x100);
p2 = LOS MemAlloc ((void*)0S SYS MEM ADDR, 0x100);
dprintf ("pl = %p, p2 = %$p \n", pl, p2);

LOS_MemCheckLevelSet (LOS_MEM CHECK LEVEL HIGH); //enabling the memset and memcpy
length check

osShellCmdMemcheck (0,NULL) ; //memory integrity check
sampleFunc (pl); // assuming that the memory is illegally written here
osShellCmdMemcheck (0,NULL) ; //memory integrity check

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 237
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

8 Debug Guidelines

LOS_MemCheckLevelSet (LOS_MEM CHECK LEVEL DISABLE);//disabling the memset and

memcpy length check

LOS_MemFree (OS_SYS MEM ADDR,
LOS_MemFree (OS_SYS MEM ADDR,

return 0;

}

(void *)pl);
(void *)p2);

Figure 1 shows the result of running the preceding code. The complete log is printed because
the memset and memcpy length check is enabled and illegal memset operations can be
canceled. Mark 1 indicates that memset and memcpy length excess occurs. Mark 2 indicates
that the illegal operation occurs in shellTask. Mark 3 highlights Ir and fp information. You can
open the vs_server file under the Huawei_LiteOS\out\<platform> directory and check the
recursive function calling by referring to Ir values.

Figure 8-4

Huawes Lite0S # test
pl = OxB1£eff33, p2 = OuBlEE004E

LOS MenCheckLevelSet: LOS MEM CHECK_LEVEL MIGH

nencheck over, all passed!
[ERR] m—r:

[ERR] menset. dst imode uwAwairlSize 15 nol enough wwAwailSize = Oxl00 uxlengih = DxllEl‘.

osBackTrace fp = Ox@leecdlel

E silosTask. pilEETilF st!l‘lmﬂt = shelll uih—— 2

g_siLosTask pstBunTask awTaskIl = 4

ackivars hegin

traceback 0 == lr = OxE00B1bGE
traceback 0 == fp = DwBlecdlOD
traceback 1 == 1r =

iraceback 1 == fp = DuBlecdlfe
traceback 2 == 1r = OwBDDfBeec
traceback 2 == fp = DuBlceddfe
ek 3 == 1r = OwBODEEFSY
k 3 -- fp = DwB0ceddDd
ck 4 —— 1r = (wS004bl£8
ck 4 — fp = OxBlccddlc
tracebuck 5 —— 1r = OhBO03LEdL
traceback 5 — fp = Dl1111111

]

Hama FID Friovity Status StackSize Faterline StackPoint Toplfitack
Swi_Task 00 0 Gueuef end 0E000 0x38¢ 0xG0cafB60 DxBloaluZB
LdleCor«000 0zl EH Feady Dx400 0=230 Ouilzafeed OxBlcafadd
systen_wq Ox2 i Fend OxE000 0=240 OxE0ebSd0 OxBleafafl
app_Tazk 03 i Ready CB000 Ox34ad OxBlcbbeel DuBlebS S
shellTask Oeed 9 Bunning Q3000 0=T30 0xBE0ee3dD0 OxBlecl4Z0
eadlaresTask 05 9 Fend 01000 =263 DuB0ecS248 DxBlecddbl
yaffx_bg_ge [iF:] 1] Ready DxB000 0=238 OxB0ech3ZE DxBlec5440
RevhndDa spatch 0T 1o Ready CaB000 Ox260 0B0da5dP8 OxBOA9fefB
SaveParaZFlash 08 i Ready 08000 0x233 0xB0dabdT0 0xBOdaSEIR
FrocessEncStresnThe end 08 1o Ready Q10000 OxecBd Dx80dbed 30 DxB0deebdl
UpdateTimeldsdThr ead Dxa 1 Beady OxE000 O0x868 DeBldeddel OxBOdbeTOB
Isphun Oxb 1o Ready CaB000 O0x1B65¢ 06c30dedT00 OxBO0deTall
wene_get Oxe 10 Fend a1 2000 Ox400 DeBlledoesl CuBlelb258
SendhFrameTokencThread Oxd (1] Rendy CheB000 Ox5uf4 D352 F80 QuBled 4270
FORESTATE_CHECE Oxe 10 Ready CB000 0x238 DBl cBefell OxBEcH9188
STORAGE Listen Thread zd0 Oxf 1 Rendy CB000 O0x5a8 DheBlcafdBE CuBloaalB0
himel_Tazk Oet 10 Ready CeB00 Ox243 Dol caZaliB CuBloaZ3ed
TINER_CHECK Oxil 10 Ready OxE000 Ox248 OxBlceBalf OxBloalbel
STORAGE_Process_Thread_sdd Oxi2 10 Pend 08000 0x544 0x81cbSc90 0Bl cb00ad
Indax_Adjust_Thread 013 10 Pand OxE000 x934 DBl cbelSE 0x81cbEYSE
pthld Oxld 10 Fand CheB000 0x270 On3lecETdd Cublebodbl
pthis OxlS 10 Ready 0000 Ox233 On8locBBE Oubleoci9d)
hi_Timer OclE 10 Ready DB000 0x298 OBl ccef20 0xBlccBIE0
rec_isk _proc OxlT 00 Fend QxB000 0=Z70 03] cdB028 Chefiled020G
rec_isk _preproc Dl 10 Fand 05000 0280 Ox561ede038 0xBledbZZB
rec_tsk proc 0z19 10 Fend 0xE000 0=270 Ox8lce3BB0 OxBleddadl
rec_tsk_preproc Oxla 1D Fand DxB000 Ox280 D51 ceSET0 DxBlce3ab0
hi_Timer Oele 10 Fend D000 O=278 D] e f56B0 OwBleefadd
fu.i atimer Dzid 10 Beady 0:E000 Ox2e8 0xE200:398 OxBE00E5E0
ERR] ===

nencheck over, all pazzed!

L0S_MenCheckLevelSet: LOS_MEM_CHECK_LEVEL _IISABLE

8.1.4 Global Variable Check

If the memory of a global variable is illegally accessed, you can find the address of the global
variable in the vs_server file under the Huawei_LiteOS\build\<platform> directory and pay
attention to the nearest variable before the address because it is possible that memory
overwriting occurs when this variable is being used and memory allocated to the global
variable is illegally accessed. An example of global variable check is described as follows:

Two global variables are defined in the erase file and are initialized.

/*

*/

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

238

LiteOS
Developer Guide

8 Debug Guidelines

UINT32 g _uwEraseMap[16] = {0};
UINT32 g_uwEraseCount = 0;

/* */

Figure 8-5

.bss.g_uwEraseCount
0x800cel2c
wow
Bx800cel2c

.bss.g luwEraseMap|
0x800cel30
wow.0
Bx800cel30 g_luwEraseMap

Ox4 fusrl/wangyun/liuxuwei2/temp test/Huaweilite 0S/out/hi3516a/lib/obj/

g_uwEraseCount

0x40 Jusrl/wangyun/liuxuwei2/temp test/Huaweilite 0S/out/hi3516a/lib/obj/

Then find the locations of the two global variables in the bss segment in the vs_server file. If
memory allocated to g uwEraseMap is illegally accessed, analyze the usage of
g uwEraseCount to check whether memory overwriting occurs.

8.1.5 Task Status Check

After Huawei LiteOS runs normally, run the task command to view status of all tasks. Values
of stackSize, WaterLine, StackPoint, and TopOfStack can be used to determine whether a
task stack causes illegal memory access.

Figure 8-6

Kusneilite 03 # task

Fame PID Priority Status StackSize WaterLine StackPoint TopOfStack || EventMask SemID CPUWUSE CPUUSEIOs CPUUSEls MEMUSE
Swt_Task [QuenePend || DxB000 0380 OxB0cfbadd 0x80e£5eT0 || 0x0 OxEEEE 1 1 1 -120080
TdleCoreD00 Ol 3L Ready x40 h22e OxfillefbfZe Oxdlefbedd || 0x0 OxEEEE T T T8 -TSEASAH4
systen_wq 0210 Fend 0x6000 0x23¢ 0x80401 €30 0x80c£2133 || 0x0 0x2 0 0 a0

pp Tagk i 10 Jela 06000 3450 i 0 OxEEEE D 0 0 101
hellTack [T Ronniz 023000 02510 060410054 000404768_| DxfEE OyfEEE 0]] 421%
naf areslasl 5 an xZGe % ¥ x g T T T it
pthil o6 10 Delay 06000 iz 0x60d176c8 0x80411668 || 0x0 OxEEEE O o o -0
RevhndDispatch o710 Ready 06000 25 0x804£8418 0x804£2ee0 || 0x0 OxEEEE O o o 2704
SaveFarsZFlash 0E 10 Ready 0x6000 0:234 0x80dfeeB 0x304£3000 || 0x0 OxEEEE O a 0 =30
ProcessEncStreanThread o 10 Ready 010000 Oxcedl OxBillel 1440 OxA0e016bE || Oxl OEEEE 3 4 4 8533536
UpdateTinelsdThread oxa 10 Delay 06000 BE0 0xE0e1T4ds Oxd0e11660 || 0x0 OxfEFE O 0] 005
Tsphum o 10 Ready 06000 Dx1604 0x80:208d8 0x80s1a9£0 || Ox1 OxEEEE 11 g 10 485352
aenc_get e 10 Tend 012000 354 Oxfilledfedd OxfleBez3d || Oxl OEEEE O o 0
SendAFrameTohencThread Oxd 10 Ready 0x6000 Dx5a3c 0x80es5£T0 0x80a0250 || 0x0 OxEEEE 4 4 4 -3450%6
WORESTATE_CKECK Oxe 10 Ready 06000 0234 0x81c£23b0 OxB1cecss0 || 0x0 OxEEEE O 0 0 -3136
himei_Task oxf 10 Ready 0800 et dd Oxfilcf4266 Oxfilefic2d || Oxl OxEEEE O o 0 B53TE
himei_Task 0x10 10 Ready 0x300 0480 0x81cf52d3 0x31c£5490 || 0x0 OxEEEE O i o -
TIMER_CHECK ox1l 10 Delay 25000 Dilcs 0iBlefbafd OralofSabn | Oxl OxEEEE O 0 0 -1080

The status of a task is described as follows by taking the task name shellTask as an example:
StackSize = 0x3000 (size of the stack allocated to the task when the task is created)
WaterLine = 0x2810 (size of the used memory of the stack)

StackPoint = 0x80d 10084 (stack pointer that points to the address of the task)

TopOfStack = 0x80d0d768 (top of the stack)

MaxStackPoint = TopOfStack + StackSize = 0x80d10768 (maximum range of accessible
stack)

Compare the WaterLine value with the StackSize value. If the WaterLine value is greater
than the StackSize value, the task causes illegal memory access.

Check the StackPoint value, which should range from the TopOfStack value to the
MaxStackPoint value. If the StackPoint value is not in this range, the task stack causes
illegal memory access.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 239

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 8 Debug Guidelines

8.2 Solutions to Illegal Memory Access

8.2.1 Illegal Memory Access Caused by the Audio Library

Basic Information

Table 8-1
Applicable Scope Description
Operating system Huawei LiteOS

Symptom
In the version of Huawei LiteOS that BVT provided for Hangzhou Xiongmai Technology

Co.,Ltd, Huawei LiteOS sometimes breaks down.

Cause Analysis

Processing of the AEC algorithm needs a buffer that is aligned on the boundary of 8 bytes.
However, the alignment of the buffer is incorrectly processed ((state->pAEC_buffer) &
OxFFFFFFF8)) when Huawei LiteOS was encapsulated by HiSilicon. If the buffer that is
allocated is not aligned on the boundary of 8 bytes, the buffer address will be rolled back by 8
bytes after the processing of the AEC algorithm, resulting in memory overwriting. This
problem was not found in Linux because the memory allocated by the malloc function is
aligned, or because the overwritten memory is not used.

Solution and Summary
Call the malloc function to allocate a buffer that is aligned on the boundary of 8 bytes.
state->pAEC_buffer = malloc(s32AecSize + 8);
if(HI_ NULL == state->pAEC_buffer)
{

h
/*pAEC_buffer should be 8 byte alignment*/

if((state->pAEC_buffer - (HI_VOID*)HI NULL) & 0x7)

{
s32AlignNum = 8 - ((state->pAEC _buffer - (HI_VOID*)HI NULL) & 0x7);
H
else
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 240

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

8 Debug Guidelines

{
s32AlignNum = 0;

}

(void *)((HI_U8 *)(state->pAEC_buffer) + s32AlignNum)

Suggestion and Summary

Be careful to avoid memory overwriting in operations on memory, especially on pointers.

8.2.2 Unreadable Audio Task Name

Basic Information

Symptom

Table 8-2
Applicable Scope Description
Operating system Huawei LiteOS

An unreadable audio task name appears after the task command is typed in the shell of
Huawei LiteOS.

Cause Analysis

The possible causes are as follows:

1. Memory overwriting

2. Use of a wild pointer

If memory is overwritten, and the task name overflows, it is likely that large-scale memory
overwriting causes the task name being unreadable. However, after the task command is run,
the printed information apart from the task name is normal, and the task name is passed in by
a pointer, indicating that the use of a wild pointer is more likely to cause the problem. In
addition, the memory check performed by typing the memcheck command in shell is passed
whether the task name is readable or not. Therefore, memory overwriting does not cause the
problem.

ALD TN AW = PARUSUSTTTTT AUl

HI CHAR aszThreadName|[1¢] = "adec sendao”;
MDD rHEHM S etMeanThace

The task name stored in the task control block is a character string pointer, indicating that the
pointer only stores the address of the character string that contains the task name. A local
variable of a function can be found in the startup thread of the task. After the function is
executed, the local variable exits, and the function stack is released, which means the memory
of the released stack can be accessed and used by other operations. If the memory of the

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 241

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 8 Debug Guidelines

released stack is accessed and used, the address of the character string containing the task
name may be overwritten when the task status is checked by running the task command (if the
address happens to be not overwritten, the displayed task name is normal, but the released
function stack is still operated, which is illegal).

Solution

Pass in the character string that contains the task name rather than passing in a pointer that
points to the character string.

Suggestion and Summary

None.

8.2.3 Illegal Memory Access Caused by a Global Variable

Basic Information

Table 8-3
Applicable Scope Description
Operating system Huawei LiteOS

Symptom

During the debug of Huawei LiteOS, a global variable should be set to 0. However, the value
changes into a nonzero value when the global variable is used.

Cause Analysis

That the global variable is illegally accessed is likely to be the cause. Memory overwriting
occurs when the memcpy and memset operations are performed on the variable before the
global variable, and the global variable is illegally written.

Solution

View the map file and check whether the variable before the global variable is incorrectly
operated, which causes illegal memory write.

Suggestion and Summary

This solution can effectively locate the variable that causes the illegal memory write.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 242
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

8 Debug Guidelines

8.3 Method for Locating a Deadlock

Basic Information

Table 8-4

Applicable Scope

Description

Operating system

Huawei LiteOS

Symptom

Two tasks are deadlocked but the shell function is available.

Cause Analysis

A deadlock occurs when both the following conditions are met:

® Task A holds mutex X and waits forever for mutex Y.

® Task B holds mutex Y and waits forever for mutex X.

In this case, task A and task B are deadlocked.

Solution

Step 1 Enter task in the shell CLI of LiteOS.

The system displays the status and information of all running tasks.

Figure 8-7 Status and information of running tasks in the system

Huawei Lite0S # task

StackPoint ToplfStack EventMask GSenID CPUUSE CPUUSELODs CEVUSEls MEMUSE

Hame TID Priority Status Stackfize #aterLine

Swt_Task 0x0 a Queuefend 06000 Ox180 08020830 Dx80206720 OxD
TdleCore000 Ol 31 Ready 0300 OxBd 0::801 04774 0:801c3£d5 Oae
devfreq wq O 1 Fend xB000 O 140 02802 47658 0xB0ZceT3E Ol
s¥stem_wg O0x3 1 Pend 06000 Ox140 0:802d36b8 DxB02d276E Oxl
TslOOla Oxd 24 Pend 0600 Oxl20 0:802d5cf0 0xE02d3750 Ox0
zhellTack 0xS a Running 03000 Oz454 0801 cbafd OxS01c5£45 Oxfff
emdFaresTask Oxfh a Pend 01000 0258 0801 eSO Dx301chfSE Oxl
T=lI01E O T 24 Fend DxB00 O 120 080249300 080245490 D0

OxfEEE 0.0 0.0 0.0 1)
OxfEEF 990 a8 7 9.9 o
DxffEf 0.0 0.0 0.0 o
OuxfEEE 0.0 0.0 0.0 o
OxfEEE 0.0 0.0 0.0 35068
OxfEEE 0.9 1.2 0.0 5512
D fEEF 0.0 0.0 0.0 a0
Dxffff 0.0 0.0 0.0 o

Step 2 Filter the task that may be deadlocked, record its task ID, and enter task plus the task ID in
the shell CLI to view the call stack information of the task.

Figure 8-8 Call stack information of a specified task

Huawei LitellS # fack 4

TaskHame = TskOO1d
TazkID = Oxd
pokrtkbacktr ace begiti

traceback 0 -= 1r = 0x80070bSe fp = [xB02d84R4
traceback 1 —— lr = Ox80076£00 fp = OxBO2dEdTc
traceback 2 —= 1r = 0x801128ac fp = Oxllllitil

StackFoint TopOfStack EwentMask SemID CFUUSE CPIUSEIO0s CEUUSEls MEMUSE

Hame TID Priority Statns StackBize HaterLine

Swt_Task 0:0 o HueuePend 06000 Ox180 D0:802ceB30 0xB02eBT20 0:0
IdleCore000 Dxl 31 Ready 0500 OxBd 0801 cdTT4 0x801c3£48 0:x0
dewfreq wq 0x2 1 Pend 06000 Oz140 0:x802d2688 OxB02ccT38 Oxl
system_wq 0:3 1 Pend 08000 Ox140 080245608 0xB0242TBE Ol
T=HI01A DOxd 24 Fend 0xB00 Ox120 Dx80ZdGef0 0xB02d8TE0 O
shelllask 1) 9 Running 03000 Osdec DxB0lcbale OxB01cB£48 Oxfff
cmdParesTask x5 9 Pend 01000 Ox268 0801 ceeS0 0xB01cbiSE Oxl
T=HI0LE 0:T 24 Pend 0600 Ox120 0:80249300 0xB0243490 00

OxfEEE 0.0 0.0 0.0 o
Oxf£ff 99.2 99.5 93.9 1)
OxfEEE 0.0 0.0 0.0 1)

O fFEF on on 0.0 1]
Oxffff oo oo 0.0 35868
OxfEEE [0.1 0.0 5532
OxE£EEE 0.0 0.0 0.0 118
Oz fEEF oo oo 0.0 o

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

243

LiteOS
Developer Guide 8 Debug Guidelines

Step 3 Record the Ir value (for example, 0x80070b3c) of traceback 0. Locate the Ir value in the
vs_server.asm disassembly file, as shown in the following figure. Locate the pending location
(for example, task_f01) and called API of the mutex.

Figure 8-9 Pending location in the disassembly file

Step 4 Locate the call locations of traceback 1 and traceback 2, and check whether a deadlock occurs
based on the context.

—End

Suggestion and Summary

None.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 244
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Standard Libraries

About This Chapter

9.1 POSIX APIs

9.1.1 POSIX Adaption APIs

Huawei LiteOS provides a set of POSIX adaption APIs. The following table lists
specifications of POSIX adaption APIs.

9.1 POSIX APIs
9.2 Libc/Libm APIs

9.3 C++ Compatibility Specifications

Header File

API

Type

Description

Remark

sys/socket.h

accept

Function

Accepta
connection on a
socket.

For details on
this API, see the
Iwip_accept API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

245

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
sys/socket.h bind Function Locate a For details on
socket. this API, see the
Iwip_bind API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.
time.h clock Function Return the time
that the
processor
spends on
calling a
process or a
function.
time.h clock getres Function Get the
resolution of a
specified clock.
time.h clock gettime Function Retrieve the
time of a
specified clock.
time.h clock settime Function Set the time of
a specified
clock.
sys/socket.h connect Function Make a For details on
connection on a | this API, see the
socket. lwip_connect
API in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.
time.h difftime Function Calculate the
time elapsed
between two
times.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 246

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 9 Standard Libraries
Header File API Type Description Remark
dlfen.h diclose Macro Unload an The
opened implementation
dynamic link of this API is the
library. same as that of
the
LOS ModuleUn
load APL
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 247

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark

difen.h dlopen Macro Open a Standard: The
dynamic link second
library fileina | parameter of

specified mode.

dlopen specifies
the symbol
resolution mode.
RTLD_LAZY:
Undefined
symbols in the
dynamic link
library are not
resolved before
dlopen returns.
RTLD_NOW:
All undefined
symbols in the
dynamic link
library should be
resolved before
dlopen returns.
If they are not
resolved, dlopen
will return
NULL. Huawei
LiteOS: The
symbol
resolution mode
parameter is not
supported when
the dynamic link
library is
opened. The
symbol
resolution
behavior is the
same as that of
in standard
RTLD_NOW
mode.

The
implementation
of this API is the
same as that of
the
LOS_SoLoad
APL.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

248

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

difcn.h

dlsym

Macro

Take a handle
of a dynamic
link library and
a symbol name,
and return an
address of a
function or a
variable.

The
implementation
of this API is the
same as that of
the
LOS_FindSymB
yName API.

sys/socket.h

getpeername

Function

Get the peer
address of a
socket

For details on
this API, see the
lwip_getpeerna
me API in
Huawei LiteOS
LwIP API
Reference. The
implementation
of these two
APIs is the
same.

unistd.h

getpid

Function

Get the ID of a
process.

The return type
differs from that
in Huawei
LiteOS.

sys/socket.h

getsockname

Function

Get the name of
a socket.

For details on
this API, see the
lwip_getsockna
me API in
Huawei LiteOS
LwIP API
Reference. The
implementation
of these two
APIs is the
same.

sys/socket.h

getsockopt

Function

Get the socket
options.

For details on
this API, see the
lwip_getsockopt
API in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

sys/time.h

gettimeofday

Function

Get the current
time.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

249

LiteOS

Developer Guide 9 Standard Libraries

Header File API Type Description Remark

in.h htonl Function Convert an The
unsigned long implementation
integer from of this API is the
host byte order | same as that of
to network byte | the Iwip htonl
order. APL

in.h htons Function Convert an The
unsigned short | implementation
integer from of this API is the
host byte order | same as that of
to network byte | the Iwip_htons
order. APL

arpa/inet.h inet aton Function Convert a string | For details on
in the Internet this API, see the
standard dot inet_aton APl in
notation to a Huawei LiteOS
network LwiIP API
address. Reference.

arpa/inet.h inet_addr Function Convert an For details on
address this API, see the
expressed in the | in_addr API in
standard Huawei LiteOS
dotted-decimal | LwIP API
notation to Reference.
in_addr.

mqueue.h mq_open Function Open a
message queue.

mqueue.h mq_receive Function Receive a
message from a
message queue.

mqueue.h mq_send Function Send a message
to a message
queue.

mqueue.h mq_setattr Function Set the attribute
of a message
queue.

mqueue.h mq_timedrecei | Function Receive

ve messages at a
scheduled time.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 250

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

mqueue.h

mq_timedsend

Function

Send messages
at a scheduled
time.

Standard: A
deadline for the
send time must
be specified.
You are allowed
to enter a
deadline ecarlier
than the current
time, but the
operating system
considers the
deadline invalid.

Huawei LiteOS:
The time
interval between
consecutive
receipts must be
specified. It is
not allowed to
enter a negative
value while
specifying the
length of time
interval.

mqueue.h

mq_unlink

Function

Remove a
message queue.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

251

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
time.h nanosleep Function High-resolution | Standard:
(nanosecond nanosleep
precision) achieves sleep
sleep. for nanoseconds.
If the call is
interrupted by a
signal, the
remaining sleep
time is written
into the second
parameter.
Huawei LiteOS:
Currently,
nanosleep
achieves sleep
for the time
interval of tick
(10 ms)
precision, and
the second
parameter is not
supported.
The passed-in
number of
seconds must
not be greater
than 4292
seconds.
in.h ntohl Function Convert an The
unsigned long implementation
integer from of this API is the
network byte same as that of
order to host the Iwip_ntohl
byte order. APL
in.h ntohs Function Convert an The
unsigned short | implementation
integer from of this API is the
network byte same as that of
order to host the lwip_ntohs
byte order. APL
pthread.h pthread _attr ge | Function Get the
tinheritsched scheduling
mode of a task.
pthread.h pthread attr ge | Function Get task
tschedparam scheduling
priority.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

252

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
pthread.h pthread attr ge | Function Get the task Standard: The
tschedpolicy scheduling scheduling
policy attribute. | policy can be
SCHED OTHE
R,
SCHED FIFO,
or SCHED RR.
Huawei LiteOS:
The scheduling
policy must be
SCHED RR.
pthread.h pthread attr ge | Function Get the task Standard: The
tscope scope attribute. | task scope can
be either
PTHREAD_ SC
OPE_SYSTEM
or
PTHREAD_ SC
OPE_PROCESS
Huawei LiteOS:
The task scope
must be
PTHREAD SC
OPE_SYSTEM.
pthread.h pthread attr ge | Function Get the size of
tstacksize task attribute
stack.
pthread.h pthread _attr ini | Function Initialize task
t attributes.
pthread.h pthread attr set | Function Set the detach
detachstate state of task
attributes.
pthread.h pthread_attr_set | Function Set the
inheritsched scheduling
mode of a task.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 253

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

pthread.h

pthread_attr_set
schedparam

Function

Set task
scheduling
priority.

Standard: A
larger value
indicates a
higher priority.

Huawei LiteOS:
A larger value
indicates a lower
priority.

Note: The
inheritsched
field of the
pthread_attr_t
task attribute
needs to be set
to
PTHREAD_EX
PLICIT_SCHE
D, otherwise the
task scheduling
priority
configuration
will not take
effect. The
default value is
PTHREAD_IN
HERIT_SCHE
D.

pthread.h

pthread_attr_set
schedpolicy

Function

Set the task
scheduling
policy attribute.

Standard: The
scheduling
policy can be
SCHED OTHE
R,

SCHED FIFO,
or SCHED RR.

Huawei LiteOS:
The scheduling
policy must be
SCHED RR.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

254

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
pthread.h pthread attr set | Function Set the task Standard: The
scope scope. task scope can
be either
PTHREAD_ SC
OPE_SYSTEM
or
PTHREAD_SC
OPE_PROCESS
Huawei LiteOS:
The task scope
must be
PTHREAD_ SC
OPE SYSTEM.
pthread.h pthread_attr_set | Function Set the size of
stacksize task attribute
stack.
pthread.h pthread cancel | Function Cancel a task. A task can be
canceled at a
blocking point.
Huawei LiteOS:
The
PTHREAD CA
NCEL_ASNCH
RONOUS status
must be set
before calling
pthread cancel
to cancel a task.
pthread.h pthread cond b | Function Unblock all
roadcast threads blocked
on a condition
variable.
pthread cond.h | pthread cond d | Function Destroy a
estroy condition
variable.
pthread.h pthread cond i | Function Initialize a
nit condition
variable.
pthread.h pthread cond s | Function Unblock
ignal threads blocked
on a condition
variable.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

255

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

pthread.h

pthread cond t
imedwait

Function

Wait on a
condition
variable within
a timeout
interval.

Standard: A
deadline for the
wait period must
be specified.
You are allowed
to enter a
deadline ecarlier
than the current
time, but the
operating system
considers the
deadline invalid.

Huawei LiteOS:
The time
interval between
consecutive
receipts must be
specified. It is
not allowed to
enter a negative
value while
specifying the
length of time
interval.

pthread.h

pthread _cond
wait

Function

Wait on a
condition
variable.

pthread.h

pthread condatt
r_getpshared

Function

Get the
attributes of a
condition
variable.

Standard: The
attribute can be
either
PTHREAD PR
OCESS_PRIVA
TE or
PTHREAD PR
OCESS_SHAR
ED.

Huawei LiteOS:
The attribute
must be
PTHREAD PR
OCESS_PRIVA
TE.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

256

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
pthread.h pthread condatt | Function Set the Standard: The
r_setpshared attributes of a attribute can be
condition either
variable. PTHREAD_ PR
OCESS_PRIVA
TE or
PTHREAD PR
OCESS_SHAR
ED.
Huawei LiteOS:
The attribute
must be
PTHREAD_ PR
OCESS_PRIVA
TE.
pthread.h pthread create | Function Create a task.
pthread.h pthread detach | Function Detach a task.
pthread.h pthread equal Function Determine
whether the
threads are the
same.
pthread.h pthread exit Function Terminate a
task.
pthread.h pthread getsch | Function Get the task Standard: The
edparam priority and scheduling
task scheduling | policy can be
policy. SCHED OTHE
R,
SCHED FIFO,
or SCHED RR.
Huawei LiteOS:
The scheduling
policy must be
SCHED_RR.
pthread.h pthread_join Function Block a task.
pthread.h pthread mutex | Function Destroy a
_destroy mutex.
pthread.h pthread mutex | Function Get the upper
_getprioceiling limit of the
mutex priority.
pthread.h pthread mutex | Function Initialize a

_init

mutex.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

257

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
pthread.h pthread mutex | Function Lock a mutex.
_lock
pthread.h pthread mutex | Function Set the upper
_setprioceiling limit of the
mutex priority.
pthread.h pthread mutex | Function Attempt to lock
_trylock a mutex.
pthread.h pthread mutex | Function Unlock a
_unlock mutex.
pthread.h pthread mutexa | Function Destroy the
ttr_destroy mutex
attributes.
pthread.h pthread mutexa | Function Get the priority
ttr_getprioceilin ceiling attribute
g of a mutex.
pthread.h pthread_mutexa | Function Get the
ttr_getprotocol protocol in the
mutex attribute.
pthread.h pthread mutexa | Function Get the type in
ttr_gettype the mutex
attribute.
pthread.h pthread _mutexa | Function Initialize the
ttr_init mutex
attributes.
pthread.h pthread _mutexa | Function Set the priority
ttr_setprioceilin ceiling attribute
g of a mutex.
pthread.h pthread mutexa | Function Set the protocol
ttr_setprotocol in the mutex
attribute.
pthread.h pthread mutexa | Function Set the type in
ttr_settype the mutex
attribute.
pthread.h pthread once Function Operate the
task once.
pthread.h pthread_self Function Get the task ID.
pthread.h pthread setcanc | Function Set the
elstate cancelability
state.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

258

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
pthread.h pthread_setcanc | Function Set the
eltype cancelability
type.
pthread.h pthread_setsche | Function Set the priority | Standard: The
dparam and the scheduling
scheduling policy can be
policy of a task. | SCHED OTHE
R,
SCHED FIFO,
or SCHED RR.
Huawei LiteOS:
The scheduling
policy must be
SCHED RR.
pthread.h pthread testcan | Function Cancel a task.
cel
sys/socket.h recv Function Receive data For details on
from a socket. this API, see the
Iwip_recv API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.
sys/socket.h recvirom Function Receive data For details on
from a socket. this API, see the
lwip_recvfrom
API in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.
sched.h sched get prior | Function Get the
ity _max supported
maximum
priority value.
sched.h sched get prior | Function Get the
ity min supported
minimum
priority value.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 259

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
sched.h sched yield Function Cause the
running thread
to relinquish
the processor.
semaphore.h sem_destroy Function Destroy an
unnamed
semaphore.
semaphore.h sem_getvalue Function Get the value of
a specified
semaphore.
semaphore.h sem_init Function Initialize an
unnamed
semaphore.
semaphore.h sem_post Function Release a
specified
unnamed
semaphore.
semaphore.h sem_timedwait | Function Wait for an Standard: The
unnamed timeout time is
semaphore absolute time
within a and the previous
timeout timeout
interval. semaphores can
be processed.
Huawei LiteOS:
The time
interval between
consecutive
receipts must be
specified. It is
not allowed to
enter a negative
value while
specifying the
length of time
interval.
semaphore.h sem_trywait Function Attempt to wait
for an unnamed
semaphore.
semaphore.h sem_wait Function Wait for an
unnamed
semaphore.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 260

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

sys/socket.h

send

Function

Send data
through a
socket.

For details on
this API, see the
Iwip_send API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

sys/socket.h

sendto

Function

Send data
through a
socket.

For details on
this API, see the
lwip_sendto API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

sys/socket.h

setsockopt

Function

Set the status of
a socket.

For details on
this API, see the
lwip_setscokopt
API in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

sys/socket.h

socket

Function

Create socket
communication

For details on
this API, see the
lwip_socket API
in Huawei
LiteOS LwIP
API Reference.
The
implementation
of these two
APIs is the
same.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

261

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Remark
time.h timer create Function Create a timer
and specify the
timer expiry
notification
mechanism.
time.h timer delete Function Delete a timer. | Standard: A one-
off software
timer will not be
automatically
deleted after it is
run. Huawei
LiteOS: A one-
off software
timer will be
automatically
deleted after it is
run. This API
can be used to
create a periodic
timer.
time.h timer getoverru | Function Get the number | Standard: This
n of lost timer API can be used
notifications. to get the timer
expiration
overrun count.
Huawei LiteOS:
The return value
shall be the
number of
execution
periods of a
periodic timer.
time.h timer gettime Function Get the time
remaining on a
POSIX.1b
interval timer.
time.h timer_settime Function Start or stop a
timer.
sys/utsname.h uname Function Get the name In Huawei
and other LiteOS, the
information of | header file is
the current utsname.h.
kernel.
stdarg.h va_arg Macro Return variadic

arguments.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

262

LiteOS
Developer Guide

9 Standard Libraries

Header File

API

Type

Description

Remark

stdarg.h

va_copy

Macro

Copy the
initialized
va_list to the
target argument
list.

stdarg.h

va_end

Macro

Put the
acquisition of
variadic
arguments to an
end.

stdarg.h

va_start

Macro

Initialize the
variable
arg_ptr.

9.1.2 POSIX APIs Not Supported

Some POSIX APIs are not supported in Huawei LiteOS.
specifications:

The following table lists the detailed

File

API

Type

Description

Supported/No
t Supported

dirent.h

fdopendir

Function

Convert a file
descriptor to a
pointer to the
directory
structure.

Not supported

mqueue.h

mq_notify

Function

Notify the
calling process
that a message
is available in a
message queue.

Not supported

mqueue.h

mq_unlink

Function

Remove a
message
queue.s

Not supported

pthread.h

pthread attr de
stroy

Function

Destroy a
thread attributes
object.

Not supported

pthread.h

pthread condatt
r_destroy

Function

Destroy a
condition
variable
attributes
object.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

263

LiteOS

Developer Guide 9 Standard Libraries
File API Type Description Supported/No
t Supported
pthread.h pthread condatt | Function Initialize a Not supported
r_init condition
variable
attributes
object.
pthread.h pthread getspec | Function Return the Not supported
ific value currently
bound to the
specified key
on behalf of the
calling thread.
pthread.h pthread key cr | Function Create a thread- | Not supported
eate specific data
key.
pthread.h pthread key de | Function Delete a thread- | Not supported
lete specific data
key.
pthread.h pthread_mutex_ | Function Lock a mutex Not supported
timedlock before a
specified
timeout expires.
pthread.h pthread setspec | Function Associate a Not supported
ific thread-specific
value with a
key.
semaphore.h sem_close Function Close anamed | Not supported
semaphore.
semaphore.h sem_open Function Open anamed | Not supported
semaphore.
semaphore.h sem_unlink Function Remove a Not supported
named
semaphore.
signal.h kill Function Send a signal to | Not supported
a process.
signal.h pthread kill Function Send a signal to | Not supported
a thread.
signal.h pthread sigmas | Function Mask a thread's | Not supported
k responses to
some signals.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 264

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

signal.h

raise

Function

Send a signal to
the calling
process.

Not supported

signal.h

sigaction

Function

Examine or
specify the
action to be
associated with
a specific
signal.

Not supported

signal.h

sigaddset

Function

Add a signal to
a signal set.

Not supported

signal.h

sigdelset

Function

Delete a signal
from a signal
set.

Not supported

signal.h

sigemptyset

Function

Initialize a
signal set.

Not supported

signal.h

sigfillset

Function

Add all signals
to a signal set.

Not supported

signal.h

sigismember

Function

Test whether a
signal is a
member of a
signal set.

Not supported

signal.h

signal

Function

Set the
disposition of a
signal.

Not supported

signal.h

sigpending

Function

Query pending
signals.

Not supported

signal.h

sigprocmask

Function

Query or set the
signal mask of
the calling
thread.

Not supported

signal.h

sigqueue

Function

Queue a signal
to a process.

Not supported

signal.h

sigsuspend

Function

Suspend a
process until it

catches a signal.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

265

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

signal.h

sigtimedwait

Function

Suspend the
execution of the
calling thread
until a signal in
a signal set is
delivered before
a specified
timeout expires.

Not supported

signal.h

sigwait

Function

Suspend the
execution of the
calling thread
until a signal in
a signal set is
delivered.

Not supported

signal.h

sigwaitinfo

Function

Suspend the
execution of the
calling thread
until a signal in
a signal set is
delivered.

Not supported

stdio.h

getdelim

Function

Set the position
where file
reading ends.

Not supported

stdio.h

getline

Function

Read a line
from a stream.

Not supported

stdio.h

tempnam

Function

Return a unique
filename that
contains a
directory name.

Not supported

stdio.h

tmpfile

Function

Create a
temporary
binary file.

Not supported

stdio.h

vsscanf

Function

Format string
input.

Not supported

stdlib.h

abort

Function

Abort the
current process.

Not supported

stdlib.h

atexit

Function

Register a
function to be
called at normal
process
termination.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

266

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

stdlib.h

div

Function

Return the
quotient and
remainder of an
integer division.

Not supported

stdlib.h

exit

Function

Cause normal
process
termination.

Not supported

stdlib.h

getenv

Function

Get the value of
an environment
variable.

Not supported

stdlib.h

ldiv

Function

Return the
quotient and
remainder of an
integer division.

Not supported

stdlib.h

mblen

Function

Return the size
of a multibyte
character.

Not supported

stdlib.h

mbstowcs

Function

Convert a
multibyte
sequence to a
wide character.

Not supported

stdlib.h

mbtowc

Function

Convert a
multibyte
sequence to a
wide character.

Not supported

stdlib.h

system

Function

Execute a shell
command.

Not supported

stdlib.h

wctomb

Function

Check the
coding of a
multibyte
character.

Not supported

sys/wait.h

waitpid

Function

Wait for a child
process to stop
or terminate.

Not supported

syslog.h

closelog

Function

Close the
descriptor being
used to write to
the system
logger.

Not supported

syslog.h

setlogmask

Function

Set the syslog
log priority
mask.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

267

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

syslog.h

syslog

Function

Send log
messages to the
system logger
syslogd.

Not supported

unistd.h

alarm

Function

Set a signal
transmission
alarm.

Not supported

unistd.h

_exit

Function

Terminate the
calling process.

Not supported

unistd.h

€Xecve

Function

Execute a file.

Not supported

unistd.h

fchown

Function

Change the
owner of a file

Not supported

unistd.h

fork

Function

Create a child
process.

Not supported

unistd.h

gethostname

Function

Get the
hostname.

Not supported

unistd.h

isatty

Function

Test whether a
specified file
descriptor is a

tty.

Not supported

unistd.h

nice

Function

Change the
priority of a
process.

Not supported

unistd.h

pipe

Function

Create a pipe.

Not supported

unistd.h

readlink

Function

Read the file
pointed to by a
symbolic link.

Not supported

wchar.h

fgetws

Function

Read a wide-
character string
from a stream.

Not supported

wchar.h

fputws

Function

Write a wide-
character string
to a stream.

Not supported

wchar.h

fwide

Function

Set a stream to
be byte-/wide
character-
oriented.

Not supported

wchar.h

fwprintf

Function

Format wide-
character output
to a file.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

268

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

wchar.h

fwscanf

Function

Format wide-
character string
input.

Not supported

wchar.h

getwchar

Function

Read a wide
character from
the standard
input.

Not supported

wchar.h

mbrlen

Function

Return the size
of a multibyte
character.

Not supported

wchar.h

mbsrtowcs

Function

Convert a
multibyte
sequence to a
wide character.

Not supported

wchar.h

putwchar

Function

Write a
specified wide
character to the
standard output.

Not supported

wchar.h

swprintf

Function

Copy a
formatted wide-
character string.

Not supported

wchar.h

swscanf

Function

Format wide-
character string
input.

Not supported

wchar.h

viwprintf

Function

Format wide-
character output
to a file.

Not supported

wchar.h

viwscanf

Function

Format wide-
character string
input.

Not supported

wchar.h

vswprintf

Function

Copy a
formatted wide-
character string.

Not supported

wchar.h

vswscanf

Function

Format wide-
character string
input.

Not supported

wchar.h

vwprintf

Function

Format wide-
character
output.

Not supported

wchar.h

vwscanf

Function

Format wide-
character input.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

269

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

wchar.h

wcscat

Function

Concatenate
two wide-
character
strings.

Not supported

wchar.h

weschr

Function

Locate the first
occurrence of a
specified wide
character in a
wide-character
string.

Not supported

wchar.h

wesepy

Function

Copy a wide-
character string.

Not supported

wchar.h

wcescespn

Function

Return the
number of
continuous
wide characters
in a wide-
character string
that do not
contain the
specified wide-
character string.

Not supported

wchar.h

wcsncat

Function

Concatenate
two wide-
character
strings.

Not supported

wchar.h

wcesnemp

Function

Compare two
wide-character
strings.

Not supported

wchar.h

wcesnepy

Function

Copy characters
from a wide-
character string.

Not supported

wchar.h

wcspbrk

Function

Return the
position the
first wide
characters that
two wide-
character
strings have in
common.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

270

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

wchar.h

wesrchr

Function

Locate the last
occurrence of a
specified wide
character in a
wide-character
string.

Not supported

wchar.h

wcsrtombs

Function

Convert a wide-
character string
to a multibyte
string.

Not supported

wchar.h

wesspn

Function

Return the
number of
continuous
wide characters
in a wide-
character string
that do not
contain the
specified wide-
character string.

Not supported

wchar.h

wcesstr

Function

Locate a
substring in a
wide-character
string.

Not supported

wchar.h

westod

Function

Convert a wide-
character string
to a double-
precision
floating
number.

Not supported

wchar.h

westof

Function

Convert a wide-
character string
to a single-
precision
floating
number.

Not supported

wchar.h

wcstok

Function

Split a wide-
character string.

Not supported

wchar.h

wcstol

Function

Convert a wide-
character string
to a long
integer.

Not supported

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

271

LiteOS
Developer Guide

9 Standard Libraries

9.2 Lib¢/Libm APIs

File

API

Type

Description

Supported/No
t Supported

wchar.h

wcstoul

Function

Convert a wide-
character string
to an unsigned
long integer.

Not supported

wchar.h

wprintf

Function

Format wide-
character
output.

Not supported

wchar.h

wscanf

Function

Format wide-
character string
input.

Not supported

wctype.h

towctrans

Function

Wide character
conversion.

Not supported

wctype.h

wctrans

Function

Wide-character
translation

mapping.

Not supported

9.2.1 Libc Adaption APIs

Huawei LiteOS provides Libcadaption APIs. The following table lists detailed specifications.

Header File API Type Description
stdlib.h arc4random_unifor | Random number Generate a random
m function number in the range
of 0 to (x—1).
time.h asctime r Time function Display time and

date in the format of
string. You need to
check whether the
passed-in tm
structure is correct.
The week value
must be in the range
of [0,6]. The month
value must be in the
range of [0,11].

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

272

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description
assert.h assert Assertion macro Terminate the
program if an
expression is false.
This API is used for
debugging.
stdlib.h calloc Memory configuring | Allocate memory.
function
checksum.h csum_fold Data check function | Convert a 32-bit
cumulative sum to a
16-bit checksum.
time.h ctime Time function Display time and
date in the format of
string.
time.h ctime r Time function Display time and
date in the format of
string.
stdio.h fgets Standard I/O Read a string from a
function file.
stdio.h fopen64 Standard 1/O Open a file.
function
stdlib.h free Memory configuring | Free the previously
function allocated memory.
stdio.h freopen Standard 1/0 Redirect a stream.
function The fd parameter in
the returned value of
this API may be
different from that
of the standard,
because part of file
systems (RAMEFS)
do not support the
dup2() function
called by this APL
stdio.h fseeko64 Standard 1/0O Move the read and
function write position of a
stream.
stdio.h ftello64 Standard I/O Get the file position
function indicator for a
stream.
stdio.h getc_unlocked Standard 1/O Non-locking stdio
function getc operation

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

273

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description
stdio.h getchar Standard I/O Read a character
function from the standard
input.
stdio.h getchar_unlocked Standard I/O Non-locking stdio
function getchar operation
stdio.h gets Standard I/O Read a character
function from the standard
input. You are
advised to use
fgets().
time.h localtime Time function Get the current local
time and date.
stdlib.h malloc Memory configuring | Allocate memory.
function
stdlib.h memalign Memory processing | Allocate memory.
function The passed-in
alignment must be a
positive integer
power of two.
libcmini.h memchr Memory processing | Scan a memory area
function for a character.
libcmini.h memcpy Memory processing | Copy memory
function content.
libcmini.h memmove Memory processing | Copy count bytes
function from memory area
src to memory area
dest.
libcmini.h memset Memory processing | Fill n bytes of a
function memory block with
a given value.
stdio.h perror Error processing Print error
function information.
stdlib.h posix_memalign Memory allocation | Apply for a byte-
function aligned memory
stdlib.h realloc Memory configuring | Reallocate memory.
function
locale.h setLocalelnit Locale function Initialize the set
locale.
string.h strcat String processing Concatenate two
function strings.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

274

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description
string.h strcoll String processing Compare two
function strings, both
interpreted as
appropriate to the
LC COLLATE
category of the
current locale.
string.h strerror Error processing Return a string that
function describes the error
code.
string.h strncat String processing Concatenate two
function strings.
string.h strxfrm String processing Transform a string.
function
ctype.h tolower Data conversion Convert an
function uppercase letter to
its lowercase
equivalent.
ctype.h toupper Data conversion Convert a lowercase
function letter to its
uppercase
equivalent.
time.h tzset Time function Initialize time
conversion
information.
stdlib.h zalloc Memory processing | Allocate memory.
function
inet.h inet ntop Data conversion Convert the dotted
function decimal notation to
binary integer.
inet.h inet_pton Data conversion Convert the binary
function integer to dotted
deciaml notation
if.h if _indextoname Data conversion Convert the network
function card number to
name
ifh if nametoindex Data conversion Convert the netword
function name to number

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

275

LiteOS
Developer Guide

9 Standard Libraries

9.2.2 Libc Open Source APIs

Huawei LiteOS provides a set of Libc open source APIs. The following table lists the detailed

specifications.
Header API Type Description Source
File
libemini.h _ fpclassify | Floating point Classify floating bionic 5.0
d number point values.
calculation
function
local.h __viprintf File operation Format the output | bionic 5.0
function data to a file.
floatio.h __hdtoa Floating point Convert an IEEE | bionic 5.0
number double precision
calculation value to a
function hexadecimal
string.
floatio.h _hldtoa Floating point Convert an IEEE | bionic 5.0
number floating point
calculation value to a
function hexadecimal
string.
libemini.h __isnan Floating point Determine bionic 5.0
number whether a floating
calculation point number is
function Not a Number
(NaN).
floatio.h __ldtoa Floating point A wrapper for bionic 5.0
number gdtoa() that makes
calculation its function
function similar with
dtoa().
stdlib.h abs Mathematical Return the nuttx 7.8
calculation absolute value of
function an integer.
stdlib.h arc4random | Random number | Generate a bionic 5.0
function random number.
time.h asctime Time function Display time and | bionic 5.0
date in the format
of string.
stdlib.h atoi Data conversion | Convert a string to | bionic 5.0
function an integer.
stdlib.h atol Data conversion | Convert a string to | bionic 5.0

function

a long integer.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

276

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdlib.h atoll Data conversion | Convert a string to | bionic 5.0
function a long long
integer.
stdlib.h bsearch Data structure Binary search bionic 5.0
function
wchar.h btowc Wide character Convert a single bionic 5.0
processing byte to a wide
function character.
string.h bzero String processing | Set the first n bionic 5.0
function bytes of a memory
area to zero.
stdio.h clearerr Standard I/O Delete the error bionic 5.0
function flag of a stream.
fentl.h creat File operation Create a file. bionic 5.0
function
stdio.h fclose Standard /O Close a file. bionic 5.0
function
stdio.h fdopen Standard I/O Associate a bionic 5.0
function standard I/O
stream with an
existing file
descriptor.
stdio.h feof Standard I/O Check whether a bionic 5.0
function stream has read
the file tail.
stdio.h ferror Error processing | Check whether bionic 5.0
function any error occurs in
a stream.
stdio.h fflush Standard I/O Update a buffer. bionic 5.0
function
stdio.h fgetc Standard 1/0 Read a character bionic 5.0
function from a file.
stdio.h fgetpos Standard I/O Get the file bionic 5.0
function position indicator
for a stream.
wchar.h fgetwce Wide character Convert a single bionic 5.0

processing
function

byte to a wide
character.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

277

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdio.h fileno Standard 1/0O Return the file bionic 5.0
function descriptor of the
stream specified
by stream.
libemini.h finite Floating point Determine bionic 5.0
number whether a floating
calculation point number is
function finite.
stdio.h flockfile Standard /O Lock a file. bionic 5.0
function
stdio.h fopen Standard I/O Open a file. bionic 5.0
function
stdio.h fprintf Format input/ Format the output | bionic 5.0
output function data to a file.
stdio.h fputc Standard I/O Write a specified | bionic 5.0
function character to a
stream.
stdio.h fputs Standard 1/0 Write a specified | bionic 5.0
function string to a stream.
wchar.h fputwe Wide character Write a wide bionic 5.0
processing character to a
function stream.
stdio.h fread Standard I/O Read data froma | bionic 5.0
function stream.
stdio.h fscanf Format input/ Read formatted bionic 5.0
output function input.
stdio.h fseek Standard I/O Move the file bionic 5.0
function position indicator
for a stream.
stdio.h fseeko Standard I/O Move the read and | bionic 5.0
function write position of a
stream.
stdio.h fsetpos Standard I/O Move the file bionic 5.0
function position indicator
for a stream.
stdio.h ftell Standard I/O Get the file bionic 5.0
function position indicator

for a stream.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

278

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdio.h ftello Standard 1/0O Get the file bionic 5.0
function position indicator
for a stream.
stdio.h ftrylockfile | Standard I/O Lock a file for bionic 5.0
function stdio.
stdio.h funlockfile Standard I/O Unlock a file for bionic 5.0
function stdio.
stdio.h fwrite Standard 1/0 Write data to a bionic 5.0
function stream.
stdio.h getc Standard 1/0 Read a character bionic 5.0
function from a file.
wchar.h getwe Wide character Read a wide bionic 5.0
processing character from a
function file.
time.h gmtime Time function Get the current nuttx 7.8
time and date.
time.h gmtime r Time function Get the current nuttx 7.8
time and date.
ctype.h isalnum Character type Check whether a bionic 5.0
check function character is
alphanumeric.
ctype.h isalpha Character type Check whether a bionic 5.0
check function character is
alphabetic.
ctype.h isascii Character type Check whether a bionic 5.0
check macro character is an
ASCII code.
ctype.h isblank Character type Check whether a bionic 5.0
check function character is a
blank character;
that is, a space or
a tab.
ctype.h iscntrl Character type Check whether a bionic 5.0
check function character is a
control character.
ctype.h isdigit Character type Check whethera | bionic 5.0
check function character is a
decimal digit.
ctype.h Ise Character type Check whethera | bionic 5.0

check macro

character is e.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

279

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
ctype.h isgraph Character type Check whether a bionic 5.0
check function character has a
graphical
representation.
ctype.h islower Character type Check whethera | bionic 5.0
check function character is a
lowercase letter.
libemini.h isnan Floating point Determine bionic 5.0
number whether a floating
calculation point number is
function Not a Number
(NaN).
ctype.h isprint Character type Check whether a bionic 5.0
check function character is
printable.
ctype.h ispunct Character type Check whether a bionic 5.0
check function character is a
punctuation
character.
ctype.h Issign Character type Check whether or | bionic 5.0
check macro not a character is a
plus sign or a
minus sign.
ctype.h isspace Character type Check whether a bionic 5.0
check function character is a
white-space
character.
ctype.h isupper Character type Check whether a bionic 5.0
check function character is an
uppercase letter.
wctype.h iswalnum Wide character Check whether a bionic 5.0
processing wide character is
function alphanumeric.
wctype.h iswalpha Wide character Check whether a bionic 5.0
processing wide character is
function alphabetic.
wctype.h iswblank Wide character Check whether a bionic 5.0

processing
function

wide character is a
blank character;
that is, a space or
a tab.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

280

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
wctype.h iswentrl Wide character Check whether a bionic 5.0
processing wide character is a
function control character.
wctype.h iswctype Wide character Check whether a bionic 5.0
processing wide character
function belongs to a
specified character
class.
wctype.h iswdigit Wide character Check whether a bionic 5.0
processing wide character is a
function decimal digit (0
through 9).
wctype.h iswgraph Wide character Check whethera | bionic 5.0
processing wide character is a
function printable character
except a space.
wctype.h iswlower Wide character Check whether a bionic 5.0
processing wide character is a
function lowercase letter.
wctype.h iswprint Wide character Check whether a bionic 5.0
processing wide character is
function printable.
wctype.h iswpunct Wide character Check whether a bionic 5.0
processing wide character is a
function punctuation
character or a
special character.
wctype.h iswspace Wide character Check whether a bionic 5.0
processing wide character is a
function white-space
character.
wctype.h iswupper Wide character Check whether a bionic 5.0
processing wide character is
function an uppercase
letter.
wctype.h iswxdigit Wide character Check whether a bionic 5.0
processing wide character is a
function hexadecimal digit.
ctype.h isxdigit Character type Check whether a bionic 5.0

check function

character is a
hexadecimal digit.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

281

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdlib.h labs Mathematical Return the nuttx 7.8
calculation absolute value of a
function long integer.
stdlib.h llabs Mathematical Return the nuttx 7.8
calculation absolute value of a
function long integer.
time.h localtime r | Time function Get the current nuttex 7.8
local time and
date.
wchar.h mbrtowc Wide character Convert a bionic 5.0
processing multibyte
function sequence to a
wide character.
wchar.h mbsinit Wide character Test for initial bionic 5.0
processing shift state.
function
bionic_mbst | mbstate byt | Other function Return bytes bionic 5.0
ate.h es_so_far whose stream
status is nonzero.
bionic_ mbst | mbstate get | Other function Return the stream | bionic 5.0
ate.h _byte status.
bionic mbst | mbstate set | Other function Set the stream bionic 5.0
ate.h _byte status.
string.h memchr String processing | Scan a memory nuttx 7.8
function area for a
character.
string.h mememp String processing | Compare memory | bionic 5.0
function areas.
string.h memcpy String processing [Copy memory bionic 5.0
function content.
string.h memmove String processing | Copy memory bionic 5.0
function content.
string.h memset String processing | Fill memory with | bionic 5.0
function a value.
stdlib.h mkstemp Memory Create a unique bionic 5.0
processing temporary file.
function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

282

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
time.h mktime Time function Convert the time nuttx 7.8
structure data into
the number of
elapsed seconds.
reentrant.h mutex lock | Mutex operation | Lock a mutex. bionic 5.0
function
reentrant.h mutex_unlo | Mutex operation | Unlock a mutex. bionic 5.0
ck function
stddef.h offsetof Obtaining offset | Return the offset nuttx 7.8
of a structure
member from the
start of the
structure.
stdio.h printf Format input/ Format output bionic 5.0
output function data.
stdio.h putc Standard I/O Write a specified | bionic 5.0
function character to a file.
stdio.h putc_unlock | Standard I/O Non-locking stdio | bionic 5.0
ed function putc operation
stdio.h putchar Standard I/O Write a specified | bionic 5.0
function character to the
standard output.
stdio.h putchar unl | Standard I/O Non-locking stdio | bionic 5.0
ocked function putchar operation
stdio.h puts Standard 1/0 Write a specified | bionic 5.0
function string to the
standard output.
wchar.h putwce Wide character Write a specified | bionic 5.0
processing wide character to
function a file.
stdlib.h gsort Data structure Sort an array by bionic 5.0
function using a quick
sorting method.
stdlib.h rand Random number | Generate a bionic 5.0
function random number.
stdio.h remove File and directory | Delete a file. bionic 5.0
function
bionic_mbst | reset and re | Other function Initialize the bionic 5.0

ate.h

turn

stream status.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

283

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
bionic_mbst | reset and re | Other function Initialize the bionic 5.0
ate.h turn_illegal stream status and
return - 1.
stdio.h rewind Standard /O Set the file bionic 5.0
function position indicator
for a stream to the
beginning of the
file.
stdio.h scanf Format input/ Format string bionic 5.0
output function input.
stdio.h setbuf Standard I/O Set the buffer ofa | bionic 5.0
function stream.
locale.h setlocale Locale function Set or retrieve bionic 5.0
locale
information.
stdio.h setvbuf Standard /O Set the buffer of a | bionic 5.0
function stream.
stdio.h snprintf Format input/ Copy a formatted | bionic 5.0
output function string.
string.h snprintf Format input/ Copy a formatted | bionic 5.0
output function string.
stdio.h sprintf Format input/ Copy a formatted | bionic 5.0
output function string.
stdlib.h srand Random number | Set a random bionic 5.0
function seed.
stdlib.h srandom Random number | Generate a bionic 5.0
function random seed.
stdio.h sscanf Format input/ Read formatted bionic 5.0
output function input from a
string.
string.h strcasecmp | String processing | Compare two bionic 5.0
function strings.
string.h strcasestr String processing | Determine bionic 5.0
function whether string
str2 is the

substring of string
strl, and ignore
the case of both
strings.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

284

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
string.h strchr String processing | Locate the first nuttx7.8
function occurrence of a
specified character
in a string.
string.h stremp String processing [Compare two bionic 5.0
function strings.
string.h strcpy String processing | Copy a string. bionic 5.0
function
string.h strcspn String processing | Return the number | bionic 5.0
function of continuous
characters that do
not contain the
specified string.
string.h strdup String processing | Duplicate a string. | bionic 5.0
function
stdio.h strerror_r Format input/ Return a string bionic 5.0
output function that describes the
error code.
time.h strftime Time function Format date and nuttx7.8
time.
string.h strlcpy String processing | Copy characters bionic 5.0
function from a string.
string.h strlen String processing | Return the length | bionic 5.0
function of a string.
libcmini.h strlen String processing | Calculate the bionic 5.0
function length of a string.
string.h strncasecmp | String processing | Compare two bionic 5.0
function strings.
string.h strncmp String processing | Compare two bionic 5.0
function strings.
string.h strncpy String processing | Copy characters bionic 5.0
function from a string.
libcmini.h strncpy String processing | Copy characters bionic 5.0
function from a string.
string.h strpbrk String processing | Locate the first bionic 5.0

function

occurrence of a
specified character
in a string.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

285

LiteOS

Developer Guide 9 Standard Libraries
Header API Type Description Source
File
string.h strrchr String processing | Locate the last nuttx7.8

function occurrence of a
specified character
in a string.
string.h strsep String processing | Break a string into | bionic 5.0
function a set of strings.
string.h strspn String processing | Return the number | bionic 5.0
function of continuous
characters that do
not contain the
specified string.
string.h strstr String processing | Locate a substring | bionic 5.0
function in a string.
stdlib.h strtod Data conversion | Convert a string to | bionic 5.0
function a floating point
number.
string.h strtok String processing | Split a string. nuttx7.8
function
string.h strtok r String processing | Split a string. nuttx7.8
function
stdlib.h strtol Data conversion | Convert a string to | bionic 5.0
function a long integer.
stdlib.h strtoul Data conversion | Convert a string to | bionic 5.0
function an unsigned long
integer.
time.h time Time function Get the current nuttx7.8
time.
time.h timer_create | Time function Create a timer. nuttx7.8
time.h timer_delete | Time function Delete a timer. nuttx7.8
time.h timer_gettim | Time function Return the amount | nuttx7.8
e of time until a
timer expires.
time.h timer_settim | Time function Initialize or nuttx7.8
e disarm a timer.
time.h times Time function Fill the tms nuttx7.8
structure pointed
to by buffer with
time-accounting
information.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

286

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdio.h tmpfile Standard 1/0 Create a bionic 5.0
function temporary binary
file.
stdio.h tmpnam Standard 1/0 Return a pointer to | bionic 5.0
function a unique filename.
ctype.h toascii Character type Convert a bionic 5.0
check macro character to its
corresponding
ASCII code.
wctype.h towlower Wide character Convert a wide bionic 5.0
processing character to
function lowercase.
wctype.h towupper Wide character Convert a wide bionic 5.0
processing character to upper
function case.
stdio.h ungetc Standard I/0O Put a character bionic 5.0
function back to a stream.
wchar.h ungetwc Wide character Put a wide bionic 5.0
processing character back to a
function stream.
stdarg.h va_arg Argument Retrieve the next | bionic 5.0
retrieving macro | argument in an
argument list.
stdarg.h va_copy Argument Copying macro. bionic 5.0
retrieving macro
stdarg.h va_end Argument Retrieve the return | bionic 5.0
retrieving macro | of va_start.
stdarg.h va_start Argument Initialize a bionic 5.0
retrieving macro | variable.
ctype.h Val Character type Return a character. | bionic 5.0
check macro
stdio.h viprintf Format input/ Format the output | bionic 5.0
output function data to a file.
stdio.h viscanf Format input/ Read a string from | bionic 5.0

output function

a stream, convert
the string format
to that specified
by format, and
format the data.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

287

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
stdio.h vprintf Format input/ Format output. bionic 5.0
output function
stdio.h vscanf Format input/ Format string bionic 5.0
output function input.
stdio.h vsnprintf Format input/ Copy a formatted | bionic 5.0
output function string.
stdio.h vsprintf Format input/ Copy a formatted | bionic 5.0
output function string.
wchar.h wcertomb Wide character Check the coding | bionic 5.0
processing of a multibyte
function character.
wchar.h wesemp Wide character Compare two bionic 5.0
processing wide-character
function strings.
wchar.h wescoll Wide character Compare two bionic 5.0
processing wide-character
function strings, both
interpreted as
appropriate to the
LC COLLATE
category of the
current locale.
wchar.h wesftime Wide character Format time. bionic 5.0
processing
function
wchar.h weslepy Wide character Copy characters bionic 5.0
processing from a wide-
function character string.
wchar.h wcslen Wide character Return the length | bionic 5.0
processing of a wide-
function character string.
wctype.h wcslen Wide character Return the length | bionic 5.0
processing of a wide-
function character string.
stdlib.h wcestombs Conversion Convert a wide- bionic 5.0
function character string to
a multibyte string.
wctype.h wcestombs Wide character Convert a wide- bionic 5.0

processing
function

character string to

a multibyte string.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

288

LiteOS
Developer Guide

9 Standard Libraries

Header API Type Description Source
File
wchar.h wesxfrm Wide character Convert the first n | bionic 5.0
processing characters
function according to the
LC COLLATE
category of the
current locale.
wchar.h wctob Wide character Convert a wide bionic 5.0
processing character to a
function single-byte
character.
wctype.h wctype Wide character Check whether a bionic 5.0
processing wide character
function belongs to a
specified character
class.
wchar.h wmemchr Wide character Search a wide- bionic 5.0
processing character array for
function a wide character.
wctype.h wmemchr Wide character Search a wide- bionic 5.0
processing character array for
function a wide character.
wchar.h wmemcmp | Wide character Compare two bionic 5.0
processing wide-character
function arrays.
wctype.h wmemcmp | Wide character Compare two bionic 5.0
processing wide-character
function arrays.
wchar.h wmemcpy Wide character Copy wide bionic 5.0
processing characters from a
function wide-character
array.
wctype.h wmemcpy Wide character Copy wide bionic 5.0
processing characters from a
function wide-character
array.
wchar.h wmemmove | Wide character Copy wide bionic 5.0

processing
function

characters from a
wide-character
array.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

289

LiteOS

Developer Guide 9 Standard Libraries
Header API Type Description Source
File
wctype.h wmemmove | Wide character Copy wide bionic 5.0

processing characters from a
function wide-character
array.
wchar.h wmemset Wide character Fill a wide- bionic 5.0
processing character array.
function
wctype.h wmemset Wide character Fill a wide- bionic 5.0
processing character array.
function

9.2.3 Libm Open Source APIs

Huawei LiteOS provides a set of Libm open source APIs. The following table lists the
detailed specifications.

(Onote
Returned error code cannot be configured for Libm APIs.

Header File API Type Description Source

float.h __ieee754 exp | Floating point Exponential bionic 5.0
number calculation
calculation (double
function precision)

float.h __ieee754 expf | Floating point Exponential bionic 5.0
number calculation
calculation (floating type)
function

float.h __ieee754 log | Floating point Logarithm bionic 5.0
number calculation
calculation (double
function precision)

float.h __ieee754 logf | Floating point Logarithm bionic 5.0
number calculation
calculation (floating type)
function

float.h __ieee754 rem | Floating point Return the bionic 5.0

_pio2 number remainder of x

calculation rem pi/2 in
function y[0]+y[1]

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

290

LiteOS

Developer Guide 9 Standard Libraries
Header File API Type Description Source
float.h __ieee754 rem | Floating point Return the bionic 5.0

_pio2f number remainder of x
calculation rem pi/2 in
function y[0]+y[1]
float.h __ieee754 sqrt | Floating point Square root bionic 5.0
number calculation
calculation (double
function precision)
float.h __ieee754 sqrtf | Floating point Square root bionic 5.0
number calculation
calculation (floating type)
function
float.h __kernel cos Floating point Cosine bionic 5.0
number calculation
calculation
function
float.h __kernel rem | Floating point __kernel rem | bionic 5.0
pio2 number pio2 return the
calculation last three digits
function of N with y =x
- N*pi/2
float.h __kernel sin Floating point Sine calculation | bionic 5.0
number
calculation
function
float.h __kernel tan Floating point Tangent bionic 5.0
number calculation
calculation
function
float.h __kernel tandf | Floating point Tangent bionic 5.0
number calculation
calculation (floating type)
function
math.h acos Mathematical Arc cosine bionic 5.0
calculation function
function
math.h acosf Mathematical Arc cosine bionic 5.0
calculation function
function
math.h acosh Mathematical Inverse bionic 5.0
calculation hyperbolic
function cosine function
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 291

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h acoshf Mathematical Inverse bionic 5.0
calculation hyperbolic
function cosine function
math.h acoshl Mathematical Inverse nuttx7.8
calculation hyperbolic
function cosine function
math.h acosl Mathematical Arc cosine nuttx7.8
calculation function
function
math.h asin Mathematical Arc sine bionic 5.0
calculation function
function
math.h asinf Mathematical Arc sine bionic 5.0
calculation function
function
math.h asinh Mathematical Inverse bionic 5.0
calculation hyperbolic sine
function function
math.h asinhf Mathematical Inverse bionic 5.0
calculation hyperbolic sine
function function
math.h asinhl Mathematical Inverse bionic 5.0
calculation hyperbolic sine
function function
math.h asinl Mathematical Arc sine bionic 5.0
calculation function
function
math.h atan Mathematical Arc tangent bionic 5.0
calculation function
function
math.h atan2 Mathematical Arc tangent bionic 5.0
calculation function
function
math.h atan2f Mathematical Arc tangent bionic 5.0
calculation function (The
function value of the arc
tangent is
returned in
radians.)

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

292

LiteOS

Developer Guide 9 Standard Libraries
Header File API Type Description Source
math.h atan2l Mathematical Arc tangent bionic 5.0

calculation function (The
function value of the arc
tangent is
returned in
radians.)
math.h atanf Mathematical Arc tangent bionic 5.0
calculation function
function
math.h atanh Mathematical Inverse bionic 5.0
calculation hyperbolic
function tangent function
math.h atanhf Mathematical Inverse bionic 5.0
calculation hyperbolic
function tangent function
math.h atanhl Mathematical Inverse bionic 5.0
calculation hyperbolic
function tangent function
math.h atanl Mathematical Arc tangent bionic 5.0
calculation function
function
math.h cbrt Mathematical Cube root bionic 5.0
calculation function
function
math.h cbrtf Mathematical Cube root bionic 5.0
calculation function
function
math.h cbrtl Mathematical Cube root bionic 5.0
calculation function
function
math.h ceil Mathematical Return the bionic 5.0
calculation smallest
function integral value
that is not less
than x.
math.h ceilf Mathematical Return the bionic 5.0
calculation smallest
function integral value
that is not less
than x.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 293

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h ceill Mathematical Return the bionic 5.0
calculation smallest
function integral value
that is not less
than x.
math.h copysign Mathematical Return a value | bionic 5.0
calculation whose absolute
function value matches
that of x, but
whose sign bit
matches that of
y.
math.h copysignl Mathematical Return a value | bionic 5.0
calculation whose absolute
function value matches
that of x, but
whose sign bit
matches that of
y.
math.h cos Mathematical Cosine function | bionic 5.0
calculation
function
math.h cosf Mathematical Cosine function | bionic 5.0
calculation
function
math.h cosh Mathematical Hyperbolic nuttx7.8
calculation cosine function
function
math.h coshf Mathematical Hyperbolic nuttx7.8
calculation cosine function
function
math.h coshl Mathematical Hyperbolic nuttx7.8
calculation cosine function
function
math.h cosl Mathematical Cosine function | nuttx7.8
calculation
function
math.h erf Mathematical Error function bionic 5.0
calculation
function
math.h erfc Mathematical Complementary | bionic 5.0
calculation error function
function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

294

Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h erfef Mathematical Complementary | bionic 5.0
calculation error function
function
math.h erfcl Mathematical Complementary | bionic 5.0
calculation error function
function
math.h erff Mathematical Error function bionic 5.0
calculation
function
math.h erfl Mathematical Error function bionic 5.0
calculation
function
math.h exp Mathematical Return the bionic 5.0
calculation value of e
function raised to the
power of x.
math.h exp2 Mathematical Return the bionic 5.0
calculation value of 2
function raised to the
power of x.
math.h expf Mathematical Return the bionic 5.0
calculation value of e
function raised to the
power of x.
math.h expl Mathematical Return the nuttx7.8
calculation value of e
function raised to the
power of x.
math.h expmlf Mathematical exp(x) - 1 bionic 5.0
calculation
function
math.h fabs Mathematical Return the bionic 5.0
calculation absolute value
function of a floating
point number.
math.h fabsf Mathematical Return the nuttx7.8
calculation absolute value
function of a floating
point number.
math.h fabsl Mathematical Return the nuttx7.8
calculation absolute value
function of a floating
point number.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

295

LiteOS

Developer Guide 9 Standard Libraries
Header File API Type Description Source
math.h finite Mathematical Return a bionic 5.0

calculation nonzero value.
function
math.h floor Mathematical Return the bionic 5.0
calculation largest integral
function value that is not
greater than x.
math.h floorf Mathematical Return the bionic 5.0
calculation largest integral
function value that is not
greater than x.
math.h floorl Mathematical Return the bionic 5.0
calculation largest integral
function value that is not
greater than x.
float.h FLT DIG Floating point Number of bionic 5.0
DBL DIG constant decimal digits
LDBL_DIG that can be
rounded into a
floating-point
and back
without change
in the number
of decimal
digits.
float.h FLT EPSILON | Floating point Difference bionic 5.0
DBL_EPSILO | constant between 1 and
N the least value
LDBL_EPSILO greater than 1
N that is
representable in
the given
floating-point
type.
float.h FLT MANT D | Floating point Number of bionic 5.0
IG constant base-
DBL MANT _ FLT RADIX
DIG digits in the
LDBL MANT floating-point
_DIG significand.
float.h FLT MAX 1E | Floating point Maximum bionic 5.0
DBL MAX 1E | constant representable
LDBL MAX finite floating-
1E point number.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

296

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
float.h FLT MAX 10 | Floating point Maximum bionic 5.0
EXP constant integer value
DBL MAX 10 for the
_EXP exponent of a
LDBL MAX 1 floating point
0 EXP value expressed
in base 10.
float.h FLT MAX EX | Floating point Maximum bionic 5.0
P constant integer value
DBL MAX E for the
XP exponent of a
LDBL MAX floating point
EXP value expressed
in base
FLT RADIX.
float.h FLT MIN Floating point Minimum bionic 5.0
DBL MIN constant representable
LDBL MIN floating-point
number.
float.h FLT MIN 10 | Floating point Minimum bionic 5.0
EXP constant negative integer
DBL MIN 10 value for the
EXP exponent of a
LDBL MIN 1 floating point
0 EXP value expressed
in base 10.
float.h FLT MIN_EXP | Floating point Minimum bionic 5.0
DBL MIN EX | constant negative integer
P value for the
LDBL _MIN _E exponent of a
XP floating point
value expressed
in base
FLT RADIX.
float.h FLT RADIX Floating point Base used for bionic 5.0
constant representing the
exponent.
math.h fmod Mathematical Floating-point bionic 5.0
calculation remainder
function function
math.h fmodf Mathematical Floating-point bionic 5.0
calculation remainder
function function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

297

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h fmodl Mathematical Floating-point bionic 5.0
calculation remainder
function function
math.h fpclassify Mathematical Return the type | bionic 5.0
calculation of a parameter
macro (floating-point
expression).
math.h frexp Mathematical Split a floating | bionic 5.0
calculation point number
function into a
normalized
fraction and an
exponent.
math.h frexpf Mathematical Split a floating | bionic 5.0
calculation point number
function into a
normalized
fraction and an
exponent.
math.h frexpl Mathematical Split a floating | bionic 5.0
calculation point number
function into a
normalized
fraction and an
exponent.
math.h HUGE VAL Variable The result is too | bionic 5.0
large in
magnitude to be
representable.
math.h hypot Mathematical Return the bionic 5.0
calculation length of the
function hypotenuse of a
right-angled
triangle.
math.h isfinite Mathematical Return a bionic 5.0
calculation nonzero value if
macro (fpclassify(x)!
=FP_NAN&&Sf
pclassify(x)!
=FP_INFINITE
).
math.h isinf Mathematical Determine bionic 5.0
calculation whether a
macro parameter value
is an infinite.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

298

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h isnan Mathematical Determine bionic 6.0
calculation whether a
function parameter is
Not a Number
(NaN).
math.h isnormal Mathematical Return a bionic 5.0
calculation nonzero value if
macro (fpclassify(x)==
FP_NORMAL).
math.h Idexpf Mathematical Return the nuttx7.8
calculation result of
function multiplying x
by 2 raised to
the power exp.
math.h Idexpl Mathematical Return the nuttx7.8
calculation result of
function multiplying x
by 2 raised to
the power exp.
math.h llrint Mathematical Return the bionic 5.0
calculation rounded integer
function value.
math.h log Mathematical Return the base | bionic 5.0
calculation e logarithm of
function X.
math.h log10 Mathematical Return the base | bionic 5.0
calculation 10 logarithm of
function X.
math.h log10f Mathematical Return the base | bionic 5.0
calculation 10 logarithm of
function X.
math.h log101 Mathematical Return the base | bionic 5.0
calculation 10 logarithm of
function X.
float.h loglp Floating point Natural bionic 5.0
number logarithm
calculation calculation
function (double
precision)
math.h loglp Mathematical log(1+x) bionic 5.0
calculation
function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

299

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
float.h loglpf Floating point Natural bionic 5.0
number logarithm
calculation calculation
function (floating type)
math.h loglpf Mathematical log(1+x) bionic 5.0
calculation
function
math.h log2 Mathematical Return the base | bionic 5.0
calculation 2 logarithm of
function X.
math.h log2f Mathematical Return the base | bionic 5.0
calculation 2 logarithm of
function X.
math.h log21 Mathematical Return the base | bionic 5.0
calculation 2 logarithm of
function X.
math.h logf Mathematical Return the base | bionic 5.0
calculation e logarithm of
function X.
math.h logl Mathematical Return the base | bionic 5.0
calculation e logarithm of
function X.
math.h modf Mathematical Breaks a bionic 5.0
calculation floating point
function number into an
integral part
and a fractional
part, and return
the fractional
part.
math.h modff Mathematical Breaks a bionic 5.0
calculation floating point
function number into an
integral part
and a fractional
part.
math.h modfl Mathematical Breaks a bionic 5.0
calculation floating point
function number into an
integral part
and a fractional
part.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

300

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h pow Mathematical Return the bionic 5.0
calculation value of x
function raised to the
power of y.
math.h powf Mathematical Return the bionic 5.0
calculation value of x
function raised to the
power of y.
math.h powl Mathematical Return the bionic 5.0
calculation value of x
function raised to the
power of y.
math.h rint Mathematical Round a bionic 5.0
calculation floating point
function number to the
nearest integer.
math.h rintf Mathematical Round a bionic 5.0
calculation floating point
function number to the
nearest integer.
math.h rintl Mathematical Round a nuttx7.8
calculation floating point
function number to the
nearest integer.
math.h round Mathematical Round x to the nuttx7.8
calculation nearest integer.
function
math.h roundf Mathematical Round x to the nuttx7.8
calculation nearest integer.
function
math.h roundl Mathematical Round x to the nuttx7.8
calculation nearest integer.
function
math.h scalbn Mathematical Return the bionic 5.0
calculation result of
function multiplying x
by
FLT_RADIX
raised to the
power n.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

301

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
float.h scalbnf Floating point Return the bionic 5.0
number result of
calculation multiplying x
function by
FLT RADIX
raised to the
power n.
math.h scalbnf Mathematical Return the bionic 5.0
calculation result of
function multiplying x
by
FLT RADIX
raised to the
power n.
math.h sin Mathematical Sine function bionic 5.0
calculation
function
math.h sincos Mathematical Sine cosine bionic 6.0
calculation
function
math.h sincosf Mathematical Sine cosine bionic 6.0
calculation
function
math.h sincosl Mathematical Sine cosine bionic 6.0
calculation
function
math.h sinhf Mathematical Hyperbolic sine | nuttx7.8
calculation function
function
math.h sinhl Mathematical Hyperbolic sine | nuttx7.8
calculation function
function
math.h sinl Mathematical Sine function nuttx7.8
calculation
function
math.h sqrt Mathematical Square root bionic 5.0
calculation function
function
math.h sqrtf Mathematical Square root bionic 5.0
calculation function
function

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

302

LiteOS
Developer Guide

9 Standard Libraries

Header File API Type Description Source
math.h sqrtl Mathematical Square root bionic 5.0
calculation function
function
math.h tan Mathematical Tangent bionic 5.0
calculation function
function
math.h tanf Mathematical Tangent bionic 5.0
calculation function
function
math.h tanh Mathematical Hyperbolic bionic 5.0
calculation tangent function
function
math.h tanhf Mathematical Hyperbolic bionic 5.0
calculation tangent function
function
math.h tanhl Mathematical Hyperbolic bionic 5.0
calculation tangent function
function
math.h tanl Mathematical Tangent bionic 5.0
calculation function
function
math.h trunc Mathematical Truncate a data | bionic 5.0
calculation or number, and
function return the
truncated value.
math.h truncf Mathematical Truncate a data | bionic 5.0
calculation or number, and
function return the
truncated value.
math.h truncl Mathematical Truncate a data | bionic 5.0
calculation or number, and
function return the
truncated value.

9.2.4 Libc/Libm APIs Not Supported

Some Libc/Libm APIs are not supported in Huawei LiteOS. The following table lists the
detailed specifications:

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co., Ltd.

303

LiteOS
Developer Guide

9 Standard Libraries

File

API

Type

Description

Supported/No
t Supported

locale.h

localeconv

Locale function

Set or retrieve
locale
information.

Not supported

bionic_time.h

localtime tz

Time function

Get the current
local time and
date.

Not supported

bionic_time.h

mktime tz

Time function

Convert the
time structure
data into the
number of
elapsed
seconds.

Not supported

bionic_time.h

strftime tz

Time function

Format time.

Not supported

checksum.h

csum_partial

Data check
function

Calculate the
sum of checks.

Not supported

statfs.h

fstatfs

File operation
function

Return
information
about a
mounted file
system.

Not supported

statfs.h

statfs64

File operation
function

Return
information
about a file
system.

Not supported

time.h

posix2time

Time function

Convert posix
time_t to local
time t.

Not supported

time.h

time2posix

Time function

Convert local
time_t to posix
time t.

Not supported

time.h

timegm

Time function

Convert the
struct tm
structure to the
time t
structure.

Not supported

time.h

timelocal

Time function

Get the current
time and date,
and convert
them to the
local time.

Not supported

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 304

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 9 Standard Libraries
File API Type Description Supported/No
t Supported
unistd.h isatty File operation Test whether a | Not supported
function specified file
descriptor is a
tty.

9.3 C++ Compatibility Specifications

The following tables list the compatibility specifications of the C++ standard library and

standard template library (STL).

MnoTe

The C++ standard library does not support exception processing features. Other features are supported
by the compiler. The following tables describe the features supported by the STL. Other features are
currently not supported.

® [Language support

Header File

Description

<limits>

Provides definitions related to basic data
types. For example, defines the maximum
and minimum values and the number of
binary digits for each numeric data type in
this file.

<new>

Supports dynamic memory allocation.

® Tool functions

Header File

Description

<utility>

Defines the overloaded rational operator,
which simplifies the write of the rational
operator; defines the pair type, which is a
template type and can be used to store value
pairs.

<functional>

Defines the types of function objects and
supports the utilities of function objects.
Function objects are any objects that
support the function call operator.

<memory>

Defines the standard memory allocator for
container functions, memory management
functions, and the auto_ptr template class.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 305
Copyright © Huawei Technologies Co., Ltd.

Developer Guide

9 Standard Libraries

® String processing

Header File

Description

<string>

Provides supports and definitions for
character string types, including single-
character strings (consisting of char types)
and multi-character strings (consisting of
wchar_t types).

® Templates for container classes

Header File

Description

<vector>

Defines the vector sequence template,
which is resizable array type and is safer
and more flexible than plain arrays.

<list>

Defines the list sequence template, which is
a linked list for sequences that often have
elements inserted or deleted from arbitrary
positions.

<deque>

Defines the deque sequence template, which
supports efficient insertion and deletion at
each beginning and end.

<queue>

Defines sequence adapters "queue" and
"priority _queue" for queue (first in, first
out) data structures.

<stack>

Define sequence adapter "stack" for stack
(last in, first out) data structures.

<map>

An associative container type that allows
values to be searched by a key value. The
key values are unique and are stored in
ascending order.

<set>

An associative container type that stores
unique values in ascending order.

<bitset>

Defines the bitset template for fixed-length
bit sequences. A bitset template can be
considered as a fixed-length packed bool
array.

® [terators

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 306

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 9 Standard Libraries
Header File Description
<iterator> Provides definitions and support for
iterators.
® Algorithms
Header File Description
<algorithm> Provides a set of algorithm-based functions,
including substitution, sequencing, merge,
and search functions.
® Numerical operations
Header File Description
<complex> Support complex numerical definitions and
operations.
<valarray> Supports numerical vector operations.
<numeric> Defines a group of common mathematics
operations, such as "accumulate" and
"inner_product" for a numerical sequence.
(Onote
The memory and uninitialized_fill functions provided by Huawei LiteOS possibly cause memory leaks.
Therefore, exercise caution when using them.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 307

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide

10 Configuration Reference

Configuration Reference

About This Chapter

10.1 Configuration Tool Instructions

10.2 Time Management Configuration Parameters

10.3 Memory Management Configuration Parameters

10.4 Memory Maintenance & Testing Configuration Parameters
10.5 Task Configuration Parameters

10.6 Software Timer Configuration Parameters

10.7 Semaphore Configuration Parameters

10.8 Mutex Configuration Parameters

10.9 Hardware Interrupt Configuration Parameters

10.10 Queue Configuration Parameters

10.11 Module Compaction Configuration Parameters

10.1 Configuration Tool Instructions

Tool Introduction

Menuconfig provides configurations based on menus. Kconfig that is used by Menuconfig is a
menu configuration language. Config.in and Kconfig are compiled by using this language.

Use Steps
Execute make menuconfig under the Huawei_LiteOS directory.
Instruction
Methods of using menuconfig are as follows:
Up and down arrow keys: to select different rows (options)
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 308

Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 10 Configuration Reference
Space bar: to select an option and exclude an option
1. After an option (which in the row) is selected: an asterisk appears in the square brackets
next to the option.
2. After the option is excluded: the asterisk disappears from the square brackets next to the
option.
Left and right arrow keys: to switch between Select/Exit/Help
Enter: to perform the Select/Exit/Help operations.
1. Select: to enter the submenu of an option followed by three hyphens and a greater than
bracket (--->).
2. Exit: to exit the current configuration
When you change some configurations without saving the changes, you are asked whether to
save the changed configurations and then exit.
3. Help: to view help information of an option
Figure 1 shows the menuconfig page.
Figure 10-1
Huawei LiteOS Configuration
s submenus --->. Highlighted letters are hotkeys. Pressing <Y> select
nd: [*] feature is selected [] feature is excluded
Compiler ---=
Product --->
Kernel --->
Lib --->
Compat --->
FileSystem --->
Net --->
Debug --->
L(-}e-zd an Alternate Configuration File
Save Configuration to an Alternate File
< Exit » < Help »
Precautions

1. Ensure that cross compilation toolchains, arm-huaweiliteos-linux-uclibcgnueabi-, arm-
liteos-linux-uclibcgnueabi-, arm-hisiv500-linux-uclibcgnueabi-, arm-hisiv300-linux-
uclibcgnueabi-, or arm-hisiv600-linux-gnueabi- series, are installed before using
menuconfig.

2. Ifyou copy a piece of Huawei LiteOS source code and run make menuconfig, and the
menu fails to be displayed, delete all binary files in the tools/menuconfig/extra/config
directory and run make menuconfig in the top directory.

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 309
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Configuration Instructions

1. Run make menuconfig to enter the Huawei LiteOS Configuration page that currently
contains the Compiler, Product, Kernel, Lib, Compat, FileSystem, Net, Debug, and
Driver options.

Figure 10-2

Huawei LiteOS Configuration

s submenus --->. Highlighted letters are hotkeys. Pressing <Y> select
nd: [*] feature is selected [] feature is excluded

Compiler --->

Product --->

Kernel --->

Lib --->

Compat --->

FileSystem --->

Net --->

Debug --->

Load an Alternate Configuration File
Save Configuration to an Alternate File

< Exit > < Help >

2. Select the Compiler option that indicates the types of cross compilation toolchains. Enter
the submenu of the Compiler option and configure the LiteOS_Compiler Type. Five
types of cross compilers are available. arm-hisiv500-linux-uclibcgnueabi is selected by
default.

Figure 10-3

Compiler
r= selects submenus ---=. Highlighted letters are hotkeys. Pressing =Y.
to exit, <?> for Help. Legend: [*] feature is selected [] feature is

Lite0S Compiler Type (arm-hisiv500-linux-uclibcgnueabi)
Lite0S_Compiler_ Type 1
Use the arrow keys to navigate this window or press the hotkey of
the item you wish to select followed by the =SPACE BAR=. Press
<?> for additional information about this option.

{) arm-huaweiliteos-linux-uclibcgnueabi
() arm-liteos-linux-uclibcgnueabi

arm-hisiv500-1linux-uclibcgnueabi
{) arm-hisiv300-linux-uclibcgnueabi
{) arm-hisiv688-linux-gnueabi

< Help >

3. Select the Product option that indicates product types. Enter the submenu of the Product
option and configure the LiteOS Product Type. IPCAMERA is selected by default.
Currently, TV series is supported.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 310
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Figure 10-4

Product
bmenus --->. Highlighted letters are hotkeys. Pressing <Y> selectes a -
[#¥] feature is selected [] feature is excluded

Lite0S_Product_Type 4
Use the arrow keys to navigate this window or press the hotkey of
the item you wish to select followed by the <SPACE BAR>. Press
<?> for additional information about this option.

() ISP

() M2mM

() MBB

() SensorHub
()

TVS3

- After IPCAMERA is selected, you need to select the chip. hi3516a, hi3518ev200,
hi3519, hi3519v101, hi3559, hi3911 and him5v100 are available. hi3516a is
selected by default.

MnoTe

More options, including him5v100, can be displayed by selecting v(+) as shown in Figure
10-5.

Figure 10-5

Product
lects submenus ---»>. Highlighted letters are hotkeys. Pressing <Y> selec
or Help. Legend: [*] feature is selected [] feature is excluded
Lite0S Product _Type (IPCAMERA) --->

IPCAMERA Chip (hi3516a) --->|

IPCAMERA Chip !
Use the arrow keys to navigate this window or press the hotkey of
the item you wish to select followed by the <SPACE BAR>. Press
<?> for additional information about this option.

[(X)]

() hi3518ev200
() hi3519

() hi3519viel
() hi3559

() hi3911l

< Exit > < Help >

4. Select the Kernel option and enter its submenu. In the submenu, Lite Kernel is the basic
kernel and must be selected. The extended kernel includes features of C++ support, CPU
usage, dynamic loading, run-stop (wifi wakeup) and scatter loading, which can be
enabled based on your needs.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 311
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Figure 10-6

Kernel
lighted letters are hotkeys. Pressing
[1 feature is excluded

[']1 Enable Lite Kernel
*] Enable Extend Kernel

[

[*] C++ Support

[*1] Enable Cpup

[*] Enable Dynamic lLoad Feature
[*] Enable Run stop Feature

[*] Enable Scatter Feature

5. Select the Lib option and enter its submenu. In the submenu, Libc, Libm, and Zlib are
available. Generally, Lib must be enabled.

Figure 10-7

Lib
hlighted letters are hotkeys. Pressing <Y>
[1 feature is excluded

Enable Libc (Enable Full Libc) --->

[*] Enable Libm
[*] Enable Zlib

Enable Full Libc when compiling all code, and enable Mini Libc when compiling the
Kernel.

Figure 10-8

Enable Libc
navigate this window c
ielect followed by the
‘ormation about this o

(X)JEnable Full Libc

() Enable Mini Libc

6. Select the Compat option and enter its submenu. In the submenu, Cmsis, Posix, and
Linux are available. Posix must be enabled.

Figure 10-9

Compat
lighted letters are hotkeys. Pr
ected [] feature is excluded

[*] Enable Posix
[*] Enable Linux

7. Select the FileSystem option and enter its submenu. In the submenu, FAT, RAMFS, NFS,
PROC, YAFFS2, and JFFS2 are available. Under the FAT option, FAT cache and

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 312
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

10 Configuration Reference

Chinese supported can be enabled. VFS must be enabled. RAMFS and NFS are usable
only usable after a Debug version is enabled.

Figure 10-10

FileSystem
Highlighted letters are hotl
k] feature is selected [] fet

[1 Enable VFS

[*] Enable FAT

[*] Enable FAT Cache
[*] Enable Chinese
[*] Enable RAMFS

[*] Enable YAFFS2

[*] Enable NFS

[*] Enable PROC

[*] Enable JFFS2

Select the Net option and enter its submenu. In the submenu, network-related LWIP and
WiFi security—related WPA are available. WPA is useable only after a Debug version is
enabled.

Figure 10-11

Net
ighted letters are hotkeys. Pret
cted [] feature is excluded

[-'1 Enable Lwipsack

[*] Enable Wpa

Select the Debug option and enter its submenu. In the submenu, you can configure
whether to:

- enable the -g option

- adapt customer code (by configuring the OS_adapt and Appinit options)
- connect to a customer library (by configuring the Vendor option)

- test code (by using a test suite)

- enable the Thumb instruction set

- enable Dvfs and Uart. (If only Lite Kernel is enabled, enable Simple Uart; if all
options are enabled, enable General Uart.) The last option is used to select whether
to compile a release version or a debug version. If you select a debug version, you
need to configure whether to enable the Shell function.

- enable the Telnet function

= use the tftp tool

- use the Iperf tool

- enable memory check (0: enable; 1: disable)

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential 313
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Figure 10-12

Debug
->. Highlighted letters are hotkeys. Pressing <Y> selectes i
selected [] feature is excluded
[1 Enable GCC -g Option
[*] Enable Os adapt
[1 Enable Vendor
[1 Enable Thumb
[1 Enable Dvfs
Enable TestSuit or AppInit (Enable Appinit) ---=
Enable Uart (General Uart) ---=

[1 Enable a Debug Version

Figure 10-13

il
[*] Enable Shell (NEW)

- =y

[*] Enable Tftp (NEW)

[*] Enable Telnet (NEW)

[*] Enable Iperf-2.0.5 (NEW)

[#] Enable Memory Check (NEW)

(0) Enable integrity check or not (0,1) (NEW)
(1) Enable size check or not (©.1) (NEW)

10. Select the Driver option and enter its submenu. In the submenu, many types of hardware
drivers are available. Two nand flash chips can be selected. For WiFi chips, QRD or
BCM can be selected based on your needs. Other available drivers that are closely
related to chips are automatically selected by menuconfig. WiFi drivers of Qualcomm
depend on WPA.

WiFi drivers of Qualcomm are usable after a debug version is enabled. WiFi drivers of
Broadcom are usable in a release version.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 314
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Figure 10-14

Driver
submenus --->. Highlighted letters are hotkeys. Pressing <Y> selectes
1: [*] feature is selected [] feature is excluded

] Enable Cellwise
| Enable GPIO
| Enable HIDMAC
| Enable Net Device
MAC (Enable higmac for hi3516a and hi3519) --->
[*] Enable I2C
[*] Enable LCD and LCD_PWM
[*] Enable MEM
[*] Enable MMC

MMC Chips (Enable himmcv108) --->

[*] Enable MTD

[*] Enable MTD nandflash

NandFlash Chips (Enable hinfc628 for parallel nand) --->
[*] Enable MTD spi_nor flash

SpiNorFlash Chips (Enable hisfc358) --->
[*] Enable random

[*] Enable RTC
[*] Enable SPI
[*] Enable USB

< Exit > < Help =

Figure 10-15

[*1] Enable USB
[*] Enable Video
[*] Enable WIFI
WIFI Chips (Enable Qualcomm WIFI) --->
[1 Enable Watch Dog

< Exit > < Help >

11. Select the Stack Smashing Protector (SSP) Compiler Feature option and enter its
submenu. This option is configured to enable or disable the stack protection function.

- -fno-stack-protector: to disable stack protection. -fno-stack-protector is selected
by default.

- -fstack-protector: to enable stack protection. Protection code can be only inserted
in a C function in which the local variables contain character arrays. Each character
array must be greater than or equal to 4 bytes.

- -fstack-protector-all: to insert protection code in all C functions. Compared with
selecting -fstack-protector, seclecting -fstack-protector-all will greatly increase
performance costs.

You are advised to select -fstack-protector to ensure performance and improve security.

compiler -—-—->
Product --->
Kernel ---=

Lib —-——>

Compat --->
FileSystem --->
Nel X =—==>

Debug =--->
Driver --->

Stack Smashing Protector (55F) Compiler Feature --—-

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 315
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Enable stack buffer overflow detection (-fno-stack-protector) ---

Enable stack buffer overflow detection
Use the arrow keys to navigate this window or press the hotkey of
the item you wish to select followed by the <SPACE BAR>. Press
<?> for additional information about this option.

| (X) §-fno-stack-protecto:

() =-fstack-protector
() -fstack-protector-all

< Help >

10.2 Time Management Configuration Parameters

Configuration Item Description

The time management module works only after the OS_SYS CLOCK of the sys module is
enabled and the LOSCFG_BASE _CORE_TICK PER SECOND of the Tick module is
specified. The default values of the following configuration items depend on the
configurations of hi3516a chips.

Configurati | Descripti | Value Default Dependenc | Whether

on Item on Range Value y Can Be
Dynamical
ly Updated

OS SYS CL | System (0, n) 50000000 None No

OCK clock speed

LOSCFG_BA | Number of | (0, n) 100 None No

SE_CORE _TI | ticks per

CK _PER SE | second

COND

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 316

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

10 Configuration Reference

10.3 Memory Management Configuration Parameters

Configuration Item Description

Configurati | Descriptio | Value Default Dependenc | Whether
on Item n Range Value y Can Be
Dynamical
ly Updated
OS_SYS_ME | Start [0, n) &m_aucSys | None No
M_ADDR address of MemO[0]
the
dynamic
memory
OS SYS ME | Size ofthe | [0, n) From the None Yes
M_SIZE dynamic end of the
memory bss segment
(the default to the end of
DDR DDR

allocated to
the
dynamic
memory is
automatical
ly
configured)

10.4 Memory Maintenance & Testing Configuration
Parameters

Configuration Item Description

Copyright © Huawei Technologies Co., Ltd.

Configurati | Descriptio | Value Default Dependenc | Whether

on Item n Range Value y Can Be
Dynamical
ly Updated

LOSCFG_B | Whetherto | YES/NO NO None No

ASE MEM_ | enable the

NODE_INTE | memory

GRITY_CHE | node

CK integrity

detection.
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 317

LiteOS
Developer Guide

10 Configuration Reference

Configurati | Descriptio | Value Default Dependenc | Whether
on Item n Range Value y Can Be
Dynamical
ly Updated
LOSCFG B | Whetherto | YES/NO YES None No
ASE_MEM_ | open
NODE_SIZE | system
_CHECK memory
node size
detection.

10.5 Task Configuration Parameters

Configuration Item Description

You can configure these two items using menuconfig without modifying header files.

Configuration | Description Value Range | Default Value | Dependency
Item
LOSCFG _BAS | Maximum [0, n) 64 None
E CORE_TSK | number of tasks
_LIMIT
LOSCFG_BAS | Idle task stack [0, n) 0x400 None
E CORE _TSK | size
_IDLE _STACK
_SIZE
LOSCFG_BAS | Default task [0, n) 0x6000 None
E CORE TSK | stack size
_DEFAULT S
TACK_SIZE
LOSCFG _BAS | Whether to YES/NO YES None
E CORE_TIM | enable time
ESLICE slice
LOSCFG_BAS | Maximum [1,n) 2 None
E CORE TIM | number of ticks
ESLICE TIME | for which tasks
OuT with the same
priority can be
executed
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 318

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

10 Configuration Reference

Configuration | Description Value Range | Default Value | Dependency
Item
LOSCFG_BAS | Whether to YES/NO YES None
E CORE TSK | enable the task
_MONITOR stack overflow
check and stack
pointer
exception check
LOSCFG_BAS | Whether to YES/NO None
E CORE _CPU | enable CPU
P usage
measurement
10.6 Software Timer Configuration Parameters
Configuration Item Description
Configurati | Descriptio | Value Default Dependenc | Whether
on Item n Range Value y Can Be
Dynamical
ly Updated
LOSCFG_ B | Whetherto | YES/NO YES LOSCFG B | No
ASE CORE | enable the ASE IPC Q
SWTMR software UEUE
timer
module
LOSCFG_B | Maximum | [0, n) 1024 LOSCFG_B | No
ASE _CORE | number of ASE IPC Q
SWTMR LI | supported UEUE
MIT software
timers
OS_SWTMR | Size of a [0, n) 1024 LOSCFG_B | No
_HANDLE | software ASE CORE
QUEUE _ SIZ | timer queue _SWTMR _
E LIMIT
Issue 01 (2018-04-20) Huawei Proprietary and Confidential 319

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

10 Configuration Reference

10.7 Semaphore Configuration Parameters

Configuration Item Description

Configuration
Item

Description

Value Range

Default Value

Dependency

LOSCFG_BAS
E_IPC_SEM

Whether to
enable the
semaphore
module

YES/NO

YES

None

LOSCFG_BAS
E_IPC_SEM L
IMIT

Maximum
number of
semaphores

[0, n)

1024

None

10.8 Mutex Configuration Parameters

Configuration Item Description

Configuration Item

Description

Value

Range Value

Default

Depend
ency

LOSCFG_BASE_IPC

MUX

Whether to enable the
mutex module

YES/NO | YES

None

LOSCFG BASE IPC

MUX LIMIT

Maximum number of
mutexes

[0, n) 1024

None

10.9 Hardware Interrupt Configuration Parameters

Configuration Item Description

Configurati
on Item

Description

Value
Range

Default
Value

Dependen
cy

Whether
Can Be
Dynamicall
y Updated

LOSCFG_PL
ATFORM_H
WI

Whether to
enable the
hardware
interrupt
module

YES/NO YES

None

No

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

320

LiteOS
Developer Guide

10 Configuration Reference

Configuration Item Description

Configurati | Description | Value Default Dependen | Whether
on Item Range Value cy Can Be
Dynamicall
y Updated
LOSCFG_PL | Maximum Configured | Configured | None No
ATFORM_H | number of according according
WI_LIMIT hardware to the chip | to the chip
interrupts manual manual
10.10 Queue Configuration Parameters
Configurati | Descriptio | Value Default Dependenc | Whether
on Item n Range Value y Can Be
Dynamical
ly Updated
LOSCFG B | Whetherto | YES/NO YES None No
ASE IPC Q | enable the
UEUE queue
module
LOSCFG B | Maximum | [0, n) 1024 None No
ASE IPC _Q | number of
UEUE_LIMI | supported
T queues
(including
the queue
occupied
by the
Huawei
LiteOS
software
timer
module)

10.11 Module Compaction Configuration Parameters

You can enable or disable modules according to your needs.

Dynamic Loading

Switch to enable or disable dynamic loading:

LOSCFG_KERNEL DYNLOAD

Issue 01 (2018-04-20)

Huawei Proprietary and Confidential

Copyright © Huawei Technologies Co., Ltd.

321

LiteOS

Developer Guide 10 Configuration Reference
Procedure:
In the .config file in the root directory, set the value of LOSCFG_KERNEL DYNLOAD to n.
Alternatively, use make menuconfig to disable dynamic loading in the submenu of the Kernel
option.
Dependency: none.
Precautions: none.

Scatter Loading

File Systems

Switch to enable or disable scatter loading:
LOSCFG_KERNEL SCATTER
Procedure:

In the .config file in the root directory, set the value of LOSCFG_KERNEL SCATTER to n.
Alternatively, use make menuconfig to disable scatter loading in the submenu of the Kernel
option.

Dependency: none.

Precaution: Turning off the LOSCFG_KERNEL SCATTER will affect the startup
performance

JFFS2

Switch to enable or disable file systems:
LOSCFG_FS JFFS

Procedure:

In the .config file in the root directory, set the value of LOSCFG_FS _JFFS to n. Alternatively,
use make menuconfig to disable JFFS in the submenu of the FileSystem option.

Dependency: none.

Precautions: none.

FAT

Switch to enable or disable JFFS2:
LOSCFG_FS_FAT

Procedure:

In the .config file in the root directory, set the value of LOSCFG_FS_FAT to n. Alternatively,
use make menuconfig to disable FAT in the submenu of the FileSystem option.

Dependency: none.

Precaution: none.

YAFFS2

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 322

Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 10 Configuration Reference

Switch to enable or disable YAFFS2:
LOSCFG_FS YAFFS
Procedure:

In the .config file in the root directory, set the value of LOSCFG_FS_YAFFS to n.
Alternatively, use make menuconfig to disable YAFFS in the submenu of the FileSystem
option.

Dependency: none.

Precaution: none.

RAMFS

Switch to enable or disable RAMFS:
LOSCFG_FS _RAMFS

Procedure:

In the .config file in the root directory, set the value of LOSCFG_FS RAMEFS to n.
Alternatively, use make menuconfig to disable RAMEFS in the submenu of the FileSystem
option.

Dependency: none.

Precautions: none.

PROCFS

Switch to enable or disable PROCFS:
LOSCFG_FS PROC

Procedure:

In the .config file in the root directory, set the value of LOSCFG_FS PROC to n.
Alternatively, use make menuconfig to disable PROC in the submenu of the FileSystem
option.

Dependency: none.

Precautions: none.

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 323
Copyright © Huawei Technologies Co., Ltd.

LiteOS

Developer Guide 11 Appendix

1 1 Appendix

About This Chapter

11.1 OS Memory Usage

11.2 Kernel Boot Process Introduction

11.1 OS Memory Usage

A tool is embedded into Huawei LiteOS to measure CPU usage of the OS in real time.

To use this tool, perform the following steps:

Step1 On the menuconfig page, select the platform to be compiled. Then select the chip.

Product
lects submenus --->. Highlighted letters are hotkeys. Pressing <Y> selec
or Help. Legend: [*] feature is selected [| feature is excluded
Lite0S Product_Type (IPCAMERA) --->

IPCAMERA Chip (hi3516a) --->

IPCAMERA Chip -
Use the arrow keys to navigate this window or press the hotkey of
the item you wish to select followed by the <SPACE BAR=>. Press
<?> for additional information about this option.

CoJrizs16a
()

hi3518ev200

) hi3519
) hi3519v1e1
) hi3559
) hi39l1

—— e —

GOEEE < Help >

< Exit > < Help =

Step 2 Run the following command to compile the platform:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 324
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 11 Appendix

make

Step 3 Run the following script:

./tools/scripts/mem statistic/mem statistic.py hi3516a

hi3516a must be the platform that has been chosen and compiled in step 1.

./tools/scripts/mem_statistic/mem_statistic.py hi3516a

.rodata:

.rodata:

.rodata:

.rodata:

1034.2k .rodata:

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 325
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide 11 Appendix

11.2 Kernel Boot Process Introduction

Huawei LiteOS Kernel Boot Process

Issue 01 (2018-04-20) Huawei Proprietary and Confidential 326
Copyright © Huawei Technologies Co., Ltd.

LiteOS
Developer Guide

11 Appendix

Initialize the OS

Register modules

Set the system
clock frequency

Register the tick
module;
Set the number of
ticks per second;

Register the
semaphore
module

Register the
mutex module

Initialize modules

Memory
management
module

Hardware
interrupt module

Tick module
Uart module

Task
management
module

Cpup module
emaphore
module
Mutex module
Queue module
Software timer
module

Time slices

Issue 01 (2018-04-20)

Los config.h
configuration file

User service scheduling

End of initialization

Idle task initialization

Hardware initialization

Huawei Proprietary and Confidentiall

Copyright © Huawei Technologies Co., Ltd.

327

	Contents
	1 Preface
	2 Overview
	2.1 Background Introduction
	2.2 Supported Cores
	2.3 Constraints

	3 Basic Kernel
	3.1 Task
	3.1.1 Overview
	3.1.2 Development Guidelines
	3.1.3 Precautions
	3.1.4 Programming Example

	3.2 Memory
	3.2.1 Overview
	3.2.2 Dynamic Memory
	3.2.2.1 Development Guidelines
	3.2.2.2 Precautions
	3.2.2.3 Programming Example

	3.2.3 Static Memory
	3.2.3.1 Development Guidelines
	3.2.3.2 Precautions
	3.2.3.3 Programming Example

	3.3 Interrupt
	3.3.1 Overview
	3.3.2 Development Guidelines
	3.3.3 Precautions
	3.3.4 Programming Example

	3.4 Queue
	3.4.1 Overview
	3.4.2 Development Guidelines
	3.4.3 Precautions
	3.4.4 Programming Example

	3.5 Event
	3.5.1 Overview
	3.5.2 Development Guidelines
	3.5.3 Precautions
	3.5.4 Programming Example

	3.6 Mutex
	3.6.1 Overview
	3.6.2 Development Guidelines
	3.6.3 Precautions
	3.6.4 Programming Example

	3.7 Semaphore
	3.7.1 Overview
	3.7.2 Development Guidelines
	3.7.3 Precautions
	3.7.4 Programming Example

	3.8 Time Management
	3.8.1 Overview
	3.8.2 Development Guidelines
	3.8.3 Precautions
	3.8.4 Programming Example

	3.9 Software Timer
	3.9.1 Overview
	3.9.2 Development Guidelines
	3.9.3 Precautions
	3.9.4 Programming Example

	3.10 Error Handling
	3.10.1 Overview
	3.10.2 Development Guidelines
	3.10.3 Precautions
	3.10.4 Programming Example

	3.11 Doubly Linked List
	3.11.1 Overview
	3.11.2 Development Guidelines
	3.11.3 Precautions
	3.11.4 Programming Example

	4 Extended Kernel
	4.1 Dynamic Loading
	4.1.1 Overview
	4.1.2 Development Guidelines
	4.1.3 Precautions
	4.1.4 Programming Example

	4.2 Scatter Loading
	4.2.1 Overview
	4.2.2 Development Guidelines
	4.2.3 Precautions
	4.2.4 FAQs

	4.3 Exception Management
	4.3.1 Overview
	4.3.2 Development Guidelines
	4.3.3 Precautions
	4.3.4 Programming Example

	4.4 CPU Utilization Percentage
	4.4.1 Overview
	4.4.2 Development Guidelines
	4.4.3 Precautions
	4.4.4 Programming Example

	4.5 Linux Adaption
	4.5.1 Completion
	4.5.1.1 Overview
	4.5.1.2 Development Guidelines
	4.5.1.3 Precautions
	4.5.1.4 Programming Example

	4.5.2 Workqueue
	4.5.2.1 Overview
	4.5.2.2 Development Guidelines
	4.5.2.3 Precautions
	4.5.2.4 Programming Example

	4.5.3 Interrupt
	4.5.3.1 Overview
	4.5.3.2 Development Guidelines
	4.5.3.3 Precautions
	4.5.3.4 Programming Example

	4.5.4 High Resolution Timer
	4.5.4.1 Overview
	4.5.4.2 Development Guidelines
	4.5.4.3 Precautions
	4.5.4.4 Programming Example

	4.5.5 Linux APIs
	4.5.5.1 Linux Adaption APIs
	4.5.5.2 Linux APIs Not Supported

	4.6 C++ Support
	4.6.1 Overview
	4.6.2 Development Guidelines
	4.6.3 Precautions
	4.6.4 Programming Example

	4.7 MMU
	4.7.1 Overview
	4.7.2 Development Guidelines
	4.7.3 Precautions
	4.7.4 Programming Example

	4.8 Atomic Operation
	4.8.1 Overview
	4.8.2 Development Guidelines
	4.8.3 Precautions
	4.8.4 Programming Example

	4.9 Run-Stop
	4.9.1 Overview
	4.9.2 Development Guidelines
	4.9.3 Precautions
	4.9.4 LOS_MakeImage Parameter Configurations

	5 File System
	5.1 Functions Overview
	5.2 VFS
	5.2.1 Overview
	5.2.2 Development Guidelines
	5.2.3 Precautions
	5.2.4 Programming Example

	5.3 NFS
	5.3.1 Overview
	5.3.2 Development Guidelines
	5.3.3 Precautions
	5.3.4 Programming Example

	5.4 JFFS2
	5.4.1 Overview
	5.4.2 Development Guidelines
	5.4.3 Precautions
	5.4.4 Programming Example

	5.5 FAT
	5.5.1 Overview
	5.5.2 Development Guidelines
	5.5.3 Precautions
	5.5.4 Programming Example

	5.6 YAFFS2
	5.6.1 Overview
	5.6.2 Development Guidelines
	5.6.3 Precautions
	5.6.4 Programming Example

	5.7 RAMFS
	5.7.1 Overview
	5.7.2 Development Guidelines
	5.7.3 Precautions
	5.7.4 Programming Example

	5.8 PROC
	5.8.1 Overview
	5.8.2 Development Guidelines
	5.8.3 Precautions
	5.8.4 Programming Example

	6 Driver Development
	6.1 Overview
	6.2 Development Guidelines
	6.3 Precautions
	6.4 Programming Example

	7 Maintenance and Testing
	7.1 Telnet
	7.1.1 Overview
	7.1.2 Development Guidelines
	7.1.3 Precautions
	7.1.4 Programming Example

	7.2 Shell
	7.2.1 Overview
	7.2.2 Development Guidelines
	7.2.3 Precautions
	7.2.4 Programming Example
	7.2.5 Command Reference
	7.2.5.1 System Commands
	7.2.5.1.1 task
	7.2.5.1.2 sem
	7.2.5.1.3 swtmr
	7.2.5.1.4 hwi
	7.2.5.1.5 cpup
	7.2.5.1.6 memcheck
	7.2.5.1.7 writereg
	7.2.5.1.8 readreg
	7.2.5.1.9 free
	7.2.5.1.10 uname
	7.2.5.1.11 systeminfo
	7.2.5.1.12 help

	7.2.5.2 File
	7.2.5.2.1 ls
	7.2.5.2.2 cd
	7.2.5.2.3 pwd
	7.2.5.2.4 cp
	7.2.5.2.5 cat
	7.2.5.2.6 touch
	7.2.5.2.7 rm
	7.2.5.2.8 sync
	7.2.5.2.9 statfs
	7.2.5.2.10 format
	7.2.5.2.11 mount
	7.2.5.2.12 umount
	7.2.5.2.13 rmdir
	7.2.5.2.14 mkdir
	7.2.5.2.15 partition
	7.2.5.2.16 writeproc
	7.2.5.2.17 partinfo

	7.2.5.3 Network
	7.2.5.3.1 arp
	7.2.5.3.2 ifconfig
	7.2.5.3.3 ping
	7.2.5.3.4 tftp
	7.2.5.3.5 ntpdate
	7.2.5.3.6 dns
	7.2.5.3.7 netstat
	7.2.5.3.8 telnet
	7.2.5.3.9 tcpdump

	7.2.5.4 Dynamic Loading
	7.2.5.4.1 mopen
	7.2.5.4.2 findsym
	7.2.5.4.3 call
	7.2.5.4.4 mclose
	7.2.5.4.5 lddrop

	8 Debug Guidelines
	8.1 Methods for Locating Illegal Memory Write
	8.1.1 Locating the Exception Based on the Exception Information
	8.1.2 Memory Integrity Check
	8.1.3 Check of Usable memset and memcpy Length
	8.1.4 Global Variable Check
	8.1.5 Task Status Check

	8.2 Solutions to Illegal Memory Access
	8.2.1 Illegal Memory Access Caused by the Audio Library
	8.2.2 Unreadable Audio Task Name
	8.2.3 Illegal Memory Access Caused by a Global Variable

	8.3 Method for Locating a Deadlock

	9 Standard Libraries
	9.1 POSIX APIs
	9.1.1 POSIX Adaption APIs
	9.1.2 POSIX APIs Not Supported

	9.2 Libc/Libm APIs
	9.2.1 Libc Adaption APIs
	9.2.2 Libc Open Source APIs
	9.2.3 Libm Open Source APIs
	9.2.4 Libc/Libm APIs Not Supported

	9.3 C++ Compatibility Specifications

	10 Configuration Reference
	10.1 Configuration Tool Instructions
	10.2 Time Management Configuration Parameters
	10.3 Memory Management Configuration Parameters
	10.4 Memory Maintenance & Testing Configuration Parameters
	10.5 Task Configuration Parameters
	10.6 Software Timer Configuration Parameters
	10.7 Semaphore Configuration Parameters
	10.8 Mutex Configuration Parameters
	10.9 Hardware Interrupt Configuration Parameters
	10.10 Queue Configuration Parameters
	10.11 Module Compaction Configuration Parameters

	11 Appendix
	11.1 OS Memory Usage
	11.2 Kernel Boot Process Introduction

