
Logical Instructions in MIPS
In MIPS (like in C) à 1 = true, 0 = false

e.g.

and $t0, $t1, $t2 # bitwise and

or and xor are similar:

and or xor
0 1 0 1 0 1

0 0 0 0 1 0 1
1 0 1 1 1 1 0

Just like arithmetic instructions andi, ori, xori are the same except the third operand is an

immediate instead of a register.

Shift

sll $t2, $t1, 1 # Shifts left logical

When we shift left logically we add zeros to the right and the leftmost bit drops off the edge.

sllv (shift left logical variable) is the same except the last operand is a register (shift amount)

instead of an immediate.

Shift Amount is the 5 least significant bits of the register as an unsigned integer.

srl and srlv (shift right logical) is the same concept.

sra (shift right arithmetic) is like srl except the left is filled with the sign extension instead of

zero. There also exists a srav.

Note: To multiply by 2n simply shift n bits to the left. To divide shift n bits to the right.

Practice: Write a method that receives a bit pattern in $a0 and:

1. Returns in $v0 0 and 1 depending on the most significant bit of $a0:

Solution: srl $v0, $a0, 31

2. Returns in $v0 0 and 1 depending on the least significant bit of $a0:

Solution: andi $v0, $a0, 1 # ‘1’ functions as a “mask”

3. Returns in $v0 0 and 1 depending on bit $a1 of $a0:

Solution: srlv $v0, $a0, $a1

andi $v0, $v0, 1

4. Set bit # 10:

Solution: ori $v0, $a0, 1024 # 1024 = 2^10

5. Flip (Replace 0’s and 1’s):

Solution: xor $v0, $a0, -1

6. Clear bit # 10:

Solution: addi $v0, $0, 1024 # 2^10 = 1024

xor $v0, $v0, -1 # flip 1024

and $v0, $a0, $v0

