LOGITECH
MODULA-

¥ E R DRI

TURBO PASCAL
TO LOGITECH
MODULA-2
TRANSLATOR

LOGITECH

SOFTWARE ENGINEERING LIBRARY

PASCAL TO MODULA-2 TRANSLATOR
USER’S MANUAL

First Edition May 1986

Copyright (C) 1984, 1985, 1986, 1987 LOGITECH, Inc.

All Rights Reserved. No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of LOGITECH, Inc.

LOGITECH, MODULA-2/86,and MODULA-2/VX86 are trademarks of LOGITECH, Inc.

Microsoft is a registered trademark of Microsoft Corporation. MS-DOS is a trademark of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Turbo Pascal is a registered trademark of Borland International, Inc.

LOGITECH, Inc. makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability and fitness for a particular purpose. The information in this document is
subject to change without notice. LOGITECH, Inc. assumes no responsibility for any errors that may
appear in this document.

From time to time changes may occur in the filenames and in the files actually included on the distribution
disks. LOGITECH, Inc. makes no warranties that such files or facilities as mentioned in this documentation
exist on the distribution disks or as part of the materials distributed.

LU-GU110-1

Initial issue: May 1986

Reprinted: September 1987

This edition applies to Release 1.00 or later of the software.

ii

TRANSLATOR Preface

LOGITECH’S POLICIES AND SERVICES

Congratulations on the purchase of your LOGITECH Pascal To Modula-2 Translator. Please refer to the
following information for details about LOGITECH’s policies and services.

We feel that effective communication with our customers is the key to quality service. Therefore we have
designed a bulletin board, the LOGITECH MODULA-2 Information Service, so you can contact us
directly and conveniently. You can contact the LOGITECH MIS simply by dialing

(415) 795-0408

using a 1200 or 300 baud modem. You log in by typing modulaZ2. The menu with available options is self
explanatory and allows you to:

* order a MODULA-2 product

= report a bug

» access MODULA-2 source files for downloading

« read about recent LOGITECH developments and other interesting information

If you are an Independent Software Vendor, we encourage you to join the impressive list of developers
who have used LOGITECH MODULA-2 products to design their own applications. For all LOGITECH
MODULA-2 users, including ISVs, we have formed a LOGITECH MODULA-2 User Group. LOGIMUG
publishes a newsletter and provides a forum through which LOGITECH MODULA-2 users can exchange
ideas and information.

LOGITECH is committed to customer support. Whether you are an individual or part of a large
organization, we offer a support plan designed to meet your needs.

iii

Preface TRANSLATOR

The Modula-2 User Association is another important source of information about the Modula-2
language, as well as a forum for Modula-2 users to exchange ideas and to share pertinent technical
tips. LOGITECH is an active corporate member of this association. We encourage you to contact
MODUS at:
MODUS
P.O BOX 51778
PALO ALTO, CALIFORNIA 94303
(415) 322-0547

For those of you who would like to keep-up with current MODULA-2/86 developments and
communicate electronically with us, LOGITECH sponsors a conference on the BYTE Information
Exchange (BIX). BIX is an electronic conferencing system that allows you to communicate with
other MODULA-2/86 users about technical problems, language issues, third-party software
developments, and any other topics that interest you. In addition to the LOGITECH conference,
BIX offers conferences on a vast range of other subjects including computers, operating systems,
applications, chips, Al, and up-to-date information from industry leaders on new technolgy.
To join BIX contact:
BYTE INFORMATION EXCHANGE
ONE PHOENIX MILL LANE
PETERBOROUGH, NH 03458
(603) 924-9281

We look forward to hearing from you on BIX!

iv

TRANSLATOR Preface

The following syntactic conventions are used in this manual:

= Input a user must type on the keyboard looks like this:
A>m2 pas2mod <CR>

Output the program displays on the screen looks like this:
Pascal in>

Program source code looks like this:
VAR
a : INTEGER;
str : ARRAY [0..10] OF CHAR;
BEGIN

Special keys such as ’escape’ and ’carriage return’ are abbreviated and enclosed in brackets,
for example:
<ESC>, <CR>.

Control characters, characters entered while the key marked ’ctrl’ is depressed, are
preceeded by ’Ctrl’ and enclosed in brackets, for example:
<Ctrl-C>, <Ctrl-Break>.

Errata

LOGITECH Modula-2. Version 3.0 supercedes all previous versions of Modula-2 from
LOGITECH, Inc., including LOGITECH Modula-2/86.

Since LOGITECH Modula-2 now provides .OBJ files at compilation time, all references
ot the file extension .LNK should be replaced with .OBJ. And since .EXE and .OVL
files are produced directly through a standard DOS linker, or through the LOGITECH
Linker, all references to .LOD should be replaced with either .EXE or .OVL. At the
same time it is no longer necessary to load the M2 prefix to run the translator; you simply
type PAS2MOD .

Also, other files mentioned in conjunction with the M2 prefix, can now be executed per
instructions in the LOGITECH Modula-2 User’s Manual, Version 3.00.

References to the MOD Editor, chiefly in Section 1.4, need to be replaced by POINT
Editor commands.

Page 24 MOD first.pas PT first.pas
Page 26 [AltF9] I 1 | pas2mod must be run in a DOS shell from POINT
Page 26 [F3] | First use open in POINT on FIRST.MOD
Page 29 1) Syntax check [M2] Use M2ASSIST

2) Compile [F5] Use M2ASSIST

3) Link [F6] Use M2ASSIST

4) Run First. MOD [Alt F9 I r | first] Use M2ASSIST

Refer to LOGITECH Modula-2 Version 3.00 documentation for current LOGITECH
Modula-2 commands.

Large Sets are now allowed in Version 3.00

All references to module System should be re-referenced to module RTSMain, which is
described in the LOGITECH Modula-2 User’s Manual.

The NIL pointer has the value 0:FFFF.

TABLE OF CONTENTS

INTRODUCTION

1 THE TRANSLATOR

1.1 How to Translate a Pascal Program

1.2 Using the Translator

1.2.1 Installation

LIRS BN N =)

1.2.2 Running The Translator
1.2.3 Translation Options

10

1.3 Translation Rules

1.3.1 General Translation Rules

13

1.3.2 Standard Identifiers an Libraries.

1.3.3 When the Manual Adaptation is Required

16
17

1.3.4 Flags and Error Handling

19

1.3.5 Translator’s Capacities

23

1.4 Now Let’s Try to Translate

2 LANGUAGE FEATURES THAT REQUIRE MANUAL ADAPTATION

2.1 Label and Goto Statements

24

30

30

2.2 Constants and Initialized Variables

2.2.1 Simple Untyped Constants

30
30

2.2.2 Variable Constants

32

2.3 Sets

2.3.1 Large Sets

42
42

2.3.2 Set of Char

45

2.3.3 Use of Variables in Set Construction

2.4 Strings

47
55

2.4.1 Differences Between Pascal and Modula-2

55

2.4.2 How Strings are Translated From Pascal to Modula-2

58

2.4.3 String Operator ‘+’

61

2.4.4 String Expression in Modula-2

63

2.4.5 Control Characters Used as String Constants

65

2.4.6 Turbo Pascal and Modula-2 Standard String Functions

66

2.4.7 Functions Returning a String

67

2.4.8 Open Arrays

67

2.5 User Defined Functions Returning a String

69

2.6 Copy, Concat ParamStr Functions and the Flag 7UNDEF

72

vii

2.7 Other Data Types 76
2.7.1 Integers, Cardinals and Subranges 77
2.7.2 Reals 80
2.7.3 Bytes 82

2.8 WITH and CASE 83
2.8.1 WITH 83
2.8.2 CASE 86

2.9 Absolute Statements and Untyped Variables 86

2.10 Inline Machine Code 89

2.11 Turbo Pascal Predefined Variables 90
2.11.1 User I/O Drivers 91
2.11.2 ErrorPtr 93
2.11.3 Mem, MemW, Port, PortW 100
2.11.4 HeapTop, Mark and Release 101

2.12 1/O Operations, 101

2.13 Bit Manipulation Operators ‘AND’, ‘OR’, ‘NOT’, *XOR’, ‘SHR’, ‘SHL’ 105

2.14 Functions and Procedures 106
2.14.1 Result of Functions 106
2.14.2 Exit 107
2.14.3 Halt 107
2.14.4 Forward Declarations 107

2.15 Overlay, Chain and Execute 107
2.15.1 Overlay 107
2.15.2 Chain and Execute 108

3 ADVANCED SOFTWARE ENGINEERING USING MODULA-2 109

3.1 Creating Library Modules 109
3.1.1 From a Turbo Pascal Program to a Single MODULA-2/86 Module 109
3.1.2 How to Create a Modula-2 Library Module 118

3.2 Data Abstraction Using Opaque Types. 131
3.2.1 How to Hide Internal Representations of Data Types 131
3.2.2 Space Allocation for Opaque Types 134

3.3 Summary 135

4 CALLING TURBO PASCAL’S EXTERNAL PROCEDURES FROM MODULA-2......ccccoevueee 137

4.1 The Turbo Pascal Approach 137

4.2 The Modula-2 Approach 141

4.3 Summary 147

viii

APPENDIX A
APPENDIX B.

APPENDIX C
APPENDIX D

INDEX

153
176
179
183

194

TRANSLATOR Introduction

INTRODUCTION

Congratulations on your purchase of the LOGITECH Pascal to Modula-2 Translator!

The valuable time you have invested programming in Turbo Pascal will not go to waste. Awaiting
you is an exciting world of modern software engineering brought by the Modula-2 language.

Turbo Pascal is an excellent product that made an important contribution to the world of
microcomputer programming. It broke the myth that BASIC was the language of the masses. In
addition to the advantages of structured programming of Pascal over BASIC, Turbo Pascal added
speed and language extensions which made a versatile Pascal implementation available to
numerous programmers. The world of structured programming enjoyed popular recognition in an
unprecedented fashion.

Why Cross Over to LOGITECH MODULA-2/86 ?

There are several reasons why you should make the valuable transition from Turbo Pascal to
MODULA-2/86:

= The most significant reason to translate your Turbo Pascal programs to LOGITECH
MODULA-2/86 is that Modula-2 implements modern software engineering techniques
that are not found in Pascal. These include separately compiled modules split into
Definition and Implementation parts, data abstraction, open array parameters,
concurrency, opaque types, procedures passed as parameters, and a standard set of low
level facilities.

= LOGITECH MODULA-2/86 allows the programmer to develop programs larger than
64K, a limitation of Turbo Pascal version 3.0.

» In Pascal, your whole program must be recompiled after every change you make. In
Modula-2, separate compilation enables you to recompile only what you have changed.

Introduction TRANSLATOR

» In Modula-2 you can build your own reusable library modules or use the library created
by someone else. You do not have to reinvent the same algorithm or rewrite the same
procedures defined in the module library. This saves development time and avoids bugs!

= Because Modula-2 is standard, your code is portable to any machine.

= LOGITECH MODULA-2/86 offers a complete line of sophisticated tools to enhance
development. Among these are two powerful debugging tools -- the run-time debugger
and the post-mortem debugger. The first allows you to monitor the execution of a
program in steps, like in slow motion, to find and correct software errors. The second
enables you to efficiently and quickly investigate the cause of a run-time crash. No such
tools exist for Turbo Pascal.

The Power of the LOGITECH Translator

The LOGITECH Translator functions as a bridge between Turbo Pascal and LOGITECH
MODULA-2/86 programs. It is designed to aid the programmer in converting a Pascal program
to an equivalent Modula-2 program module. The Modula-2 program is pretty printed correctly
indented and aligned. The translator makes one pass over the Pascal program being translated
and produces the equivalent Modula-2 code.

The Translator assumes that the Pascal program has been compiled and is error free from the
viewpoint of the Pascal compiler. If you input an illegal Pascal program, the Translator may
produce unpredictable results.

The Translator comes as an executable Modula-2 program, ‘pas2mod’ and a set of library
modules that implement all the functions and procedures provided by Turbo Pascal 3.0. The
Translator is capable of directly translating Turbo Pascal syntax into Modula-2 syntax, and Turbo
Pascal functions and routine calls into a new set of calls to LOGITECH MODULA-2/86
procedures. All the Turbo Pascal 3.0 (PC-DOS/MS-DOS Version) functions are supported, with
few exceptions. The following is a list of supported routines:

Files (text, file of records, untyped files, predefined files).
Device and screen I/0.

Arithmetic functions.

Scalar functions.

Transfer functions.

String manipulation routines.

TRANSLATOR Introduction

Heap control routines.

Screen management routines.

Basic, advanced and Turtle graphics routines.
Random routines.

Delay routines.

Floating routines.

Memory Operation routines.

DOS and Intr routines.

Reals operations and routines.
Parameter handling routines.
Execute routine.

Number conversion routines.
Miscellaneous Turbo Pascal routines.

LOGITECH MODULA-2/86 supports Real Arithmetic. Reals libraries are provided in
emulation mode, 8087/80287 coprocessor mode, and mixed emulation/coprocessor mode. The
LOGITECH MODULA-2/86 compiler has options to generate calls both to the emulator and to
the 8087/80287 math coprocessor.

The Translator does not support the Turbo-BCD version and generates no equivalent for the
‘Form’ function. In MODULA-2/86, the Decimal module performs similar functions as the BCD
version. If you want to translate a Turbo-BCD version, study the Decimal module first and
modify your program accordingly.

The LOGITECH Translator attempts to completely translate your Pascal programs. However,
some Pascal programs after translation require manual adaptation to be correct Modula-2
programs. Please refer to the Chapter Two in this manual for more information on how to modify
your program.

Structure of this Manual

This manual is designed for users with varying levels of technical expertise. Everyone should read
the Chapter One before using the Translator. After experimenting with the Translator a little, all
users should read Chapter Two. Chapters Three and Four are for those users who want to take
advantage of more sophisticated features of the Modula-2 language. The appendices should be
used for reference.

Introduction TRANSLATOR

s Chapter One The Translator

Gives you a complete description on how to translate a Pascal program and how to use
the Translator.

s Chapter Two Language Features that Require Manual Adatation
Describes the post translation techniques you can use to complete your translation.

» Chapter Three Advanced Software Engineering Using Modula-2
Explains how to produce library modules and how to use advanced data structures such
as ‘Opaque Types’.

= Chapter Four Calling Turbo Pascal’s External Procedures from Modula-2
Explains how to modify calls to Turbo Pascal External Procedures.

= Appendix A Mapping of Turbo Pascal Procedures to Modula-2
Lists how Turbo Pascal variables, functions and procedures are mapped into their
equivalent in MODULA-2/86.

= Appendix B Mapping of Turbo Pascal Compiler Directives to Modula-2
Lists how Turbo Pascal compiler directives are translated.

= Appendix C Compatibility Between Turbo Pascal and Modula-2 Data Files
Describes the differences in file formats between Turbo Pascal and MODULA-2/86.

s Appendix D Index Library of Modules
Lists all Library Modules and Procedures.

Throughout the manual we use ‘Modula-2’ when we refer a to a generic Modula-2 language
feature and ‘MODULA-2/86’ when we refer to specific features of LOGITECH’s implementation
of the language, such as, system dependent data types and functions and library modules.

TRANSLATOR Introduction

Where to Get More Information about Modula-2

This manual is not intended to teach Modula-2 to Turbo Pascal programmers. The LOGITECH
MODULA-2/86 User’s Guide includes a Modula-2 tutorial for Pascal programmers as well as a
complete bibliography of Modula-2 reference books. In this manual we will concentrate on
crossing the bridge from Pascal to MODULA-2/86 using the LOGITECH Translator. Two useful
books to be used during the translation are:

Programming in Modula-2, Niklaus Wirth, Springer Verlag, 1982.

Modula-2 for Pascal Programmers, Richard Gleaves, Springer Verlag, 1984.

The Translator TRANSLATOR

1 THE TRANSLATOR

1.1 How to Translate a Pascal Program

You need the following tools to use the Translator:

= PCDOS 2.X, 3.X or MS DOS 2.X, 3.X. (The Translator will run on IBM PC/XT/AT and
compatibles)

» A full screen editor such as MOD, the LOGITECH MODULA-2/86 Editor.
= The LOGITECH MODULA-2/86 Base Language System.

The scenario for the use of the Pascal to Modula-2 Translator is as follows:
1 Compile the Pascal program ‘X.pas’ until all errors have been removed.

2 Translate ‘X.pas’ into ‘X.mod’ by calling ‘pas2mod’.
The translator will attempt to complete a 100% automatic translation, however in some
particular cases the user is required to modify the generated Modula-2 code in order to
conform with the Modula-2 syntax and LOGITECH libraries.

3 Modify all unresolved items in the ‘X.mod’ file.
The translator will mark with the flag ‘?number’ all the places with problems to be solved
manually by the user. With your editor look for all ‘?’ in “X.mod’. If there are such
problems the translator will produce at the end of “X.mod’ a summary and explanation of
all ‘I7number’ generated (see section on Translation Rules).

4 Compile ‘X.mod’ and fix all the possible errors detected by the compiler.
Some errors may not be indicated by the Translator (they are discussed in the next

chapters). The Modula-2 compiler will flag any errors which the Translator has not been
able to detect.

Note: Ifyou run the compiler without any options the code generated contains
additional code for Stack tests, Range and Overflow tests, Index and NIL pointer tests.
This could make your Modula-2 program run differently from the Turbo Pascal version.

To remove this test code see the LOGITECH MODULA-2/86 User’s Guide ‘Compilier
Options’.

5 Test the Modula-2 program until it is debugged.

TRANSLATOR The Translator

Depending on the type of program, you may experience some run-time errors. We
strongly recommend to use both the LOGITECH MODULA-2/86 Run Time Symbolic
Debugger (RTD) and the LOGITECH MODULA-2/86 Post Mortem Symbolic
Debugger (PMD) for fast trouble-shooting. With these two debugging tools your
development time will be reduced up to 50% !!!

6 Consider rewriting the resultant “X.mod’ program to use a more sophisticated Modula-2
feature.

Before you start to actually translate your Pascal programs we recommend that you spend some
time studying the definition modules (DEF) of the library distributed with the Translator. In this
way you can find out all the powerful procedures available to you.

1.2 Using the Translator

1.2.1 Installation

The Translator runs on the IBM PC/XT/AT, or any compatible machine. Storage requirements
are 256K memory double-sided disk drive, or hard disk. The MS-DOS or PC-DOS version 2x
operating system or higher is required.

The installation of the Translator follows the general guidelines used to install a LOGITECH
MODULA-2/86 program (see LOGITECH MODUILA-2/86 User’s Guide). Remember to make
backup copies of all distribution diskettes before starting the installation. The executable
‘PAS2MOD.LOD’ should go in the subdirectory where all .LOD files are kept (usually \m2lod),
while the library modules should go where all the Base Language System library modules are kept,
grouped by extension (usually \m2lib\def, \m2lib\sym, \m2lib\Ink, \m2lib\ref). We have included all
the sources of sample programs used in this manual. You should load these files in your working
directory. Read the file READ.ME for last minute information about the Translator.

NOTE: If you want to generate the .EXE version from PAS2MOD.LOD (it is faster to load), use
the LOD2EXE Ugtility from the Base Language System.

The Translator TRANSLATOR

If you have the 8087/80287 Math Coprocessor

In the library distribution diskette you will find the following set of .LNK and .REF files with
names starting with ‘C87”:

Module Real Emulation Real 8087/80287
Random RANDOM.yyy C87RANDO.yyy
TReallO TREALIO.yyy C87TRIO.yyy
TBinarylO TBINARYLyyy C87TBINA.yyy
TRealNumberConversion TREALNUM.yyy C87TRNUM.yyy
FloatingUtilities FLOATING.yyy C87FLOAT.yyy

These files C87xxx.I.LNK are the versions of the file xxx. LNK compiled with the option to generate
code for the Math Coprocessor 8087/80287.
If the machine where you will run your application has a math coprocessor, you can link your
application with this version of the .LNK module for enhanced performance of your application at
run-time.
In this case, we suggest that you rename the versions xxx.LNK that use the emulator to
E87xxx.LLNK, and that you rename the version C87xxx.LNK using the Coprocessor to xxx.LNK.
From DOS type:

A>REN RANDOM.LNK E87RAMDO.LNK

A>REM RANDOM.REF E87RAMDO.REF

A>REN C87RAMDO.LNK RANDOM.LNK

A>REN C87RAMDO.REF RANDOM.REF

For more details see the chapter on Real Arithmetic in the LOGITECH MODUILA-2/86 User’s
Guide.

TRANSLATOR The Translator

1.2.2 Running the Translator

The LOGITECH Translator is very easy to operate.
To invoke the Translator from DOS type ‘m2 pas2mod’. The Translator displays a version
number and copyright message, followed by a prompt.

LOGITECH MODULA-2/86 Pascal to Modula-2 Translator,

Type Escape to exit.
Pascal in >

Now, you can enter the filename of the Turbo Pascal program you want to translate, ending with
<CR>. The Translator accepts any DOS filename with optional drive id and directory paths. If
you do not complete the filename with an extension, the Translator will use the default .PAS for
Pascal filenames and .MOD for Modula-2 filenames.

After the Pascal filename you will be prompted for the name of the output Modula-2 file. You
can assign any valid DOS file name. If you enter <CR>, the Modula-2 program will take the same
name as the Pascal program with the extension MOD. If the name you type refers to an already
existing file, the Translator asks whether you want to overwrite the previous file:

Pascal in > <name of Turbo Pascal source program><CR>

Modula-2 out > <name of output MODULA-2/86 source file><CR> or <CR> only

overwrite ? (y/n) > Y to overwrite
N to re-enter the filename.

Once the translation is complete, the main prompt reappears. At this point you can translate
another program. To terminate and exit, type <ESC> twice.

The Translator TRANSLATOR

If you prefer, you can call the Translator giving all the parameters on the command line. For
example to translate mypasl.pas and mypas2.pas.into mymodl.mod and mymod2.mod type:
C> m2 pas2mod mypasl mymodl mypas2 mymod?2 ... <CR>

remember to put Y’ if you want to overwrite existing files:

C> m2 pas2mod mypasl mymodl y mypas2 mymod2 y... <CR>

The Translator will prompt a ‘ * ’ on the screen for each ten lines of Modula-2 code produced.

If, for some reason, you need to stop the Translator while it is running, type Ctrl-Break.

If you have generated the .EXE version of the Translator, you can invoke it from DOS by typing:
C> pas2mod<CR>

To invoke the Translator from the MOD Editor, type <Alt F9>, then type r for run, and finally

type pas2mod<CR> to run it.

1.2.3 Translation Options

The Translator allows you to set some translation options. Rather than respond to the prompt
for a Turbo Pascal source program, you can press <ESC>. A menu appears with three entries.
Make your selection by typing the character that is capitalized.

Pascal in > <ESC>

Options, Directories or Exit >

10

TRANSLATOR The Translator

® Options
If you choose options by typing either an upper or lower case ‘O’ a submenu appears with
five options. Make you selection by typing the character that is capitalized.

Options, Directories or Exit >0

include Paths, Indent, mark Undefined, mark Strings,
show Options or Exit > ;

B include Paths
Assigns directory path names used by the Translator to search the include files.
You can enter one or more path names terminated by ‘ \’ and separated by ;’
(default current path). If you have your include file in the directories ‘ \ work ’
and ‘\old\ 01’ enter:

directories for include files>\work\\old\01\ <CR>

The Translator will search for an include file, first in the current directory, and
after, in ‘\work’ and finally in *\old\01".

H Indent
Assigns the indentation factor used by the Translator to produce a well aligned
Modula-2 program (default = 2).

m mark Undefined
Enables or disables the Translator to mark all undefined identifiers (default
YES). This is useful when you want to know all the identifiers used, but not
declared, so that you can fix them before running the compiler.

m mark String
Enables or disables the Translator to mark, each time you use a string (default
NO). This is useful when you want to know all the places where strings are used,
because you need to modify the algorithms (see section on String).

M show Options
Shows the current option values.

11

The Translator TRANSLATOR

12

m Exit
EXxits to the upper level prompt.

B Directories

If you choose directories by typing either an upper or lower case ‘D’, a directory prompt is
displayed..

Options, Directory or Exit > D
Dir >

The Translator accepts any DOS filename with optional drive names, directory paths and
wildcards. If you press the <CR> key, you exit to the main prompt. Otherwise, if you type
*.mod you will get the list of all the Modula-2 source files.

Dir > *mod

A listing appears showing all the Modula-2 source files in the selected directory.

Exit

To exit, you can choose either an upper or lower case ‘E’ or press <ESC>.

Exits the Translator back to DOS.

Options, Directory or Exit > E

c>

TRANSLATOR The Translator

1.3 Translation Rules

The general approach to the translation is to accurately translate the Pascal program into an
equivalent Modula-2 program module, to flag the questionable or untranslatable constructs, and
to help reduce the editing task of converting the flagged forms into the Modula-2 program. The
Translator makes a simple one pass sweep over the source input and therefore sometimes does
not know the most appropriate translation until after it has parsed a construct. This can generate
additional empty lines or place your comments before the original place where they were posted.

1.3.1 General Translation Rules

The Pascal to Modula-2 Translator follows these rules.

= The Pascal program name becomes the Modula-2 module name. If no program name is
given in the Pascal program, the Pascal filename is used as module name. To ease your
development using LOGITECH MODULA-2/86 tools we suggest that you rename the
Modula-2 file using the first 8 characters of the module name. In this way, all tools
(linker, debuggers, make, ...) will be able to automatically retrieve your files starting from
the module name. (for example, module Memory Operation is in files
MEMORYOP.XXX)

s Include files are included and translated. A comment is posted in the Modula-2 program
before and after each inclusion. The file ‘graph.p’ is not actually included, instead the
relative IMPORT statement is generated so you can use the graphic routines provided by
LLOGITECH. You can specify one or more subdirectories where the Translator will
search for include files (See the section on Translator Options).

» The Translator preserves comments even if nested, but they may not always appear in the
precise position in which they occurred in the Pascal text.

» Compiler directives are translated into LOGITECH MODULA-2/86 compiler directives,
and when no corresponding directive is available, into procedure calls (see Appendix B).

= When you use types, variables or procedures from another module, the Translator will
automatically generate the required IMPORT list. Because of the automatic nature of
the translation, ALL the exported identifiers of that module are imported, regardless of
how few are used. This could result in a very long import list. This will not influence the
performance of your program, although it will make the translated version less readable.
In fact, it does not allow you to know the minimal list of identifiers that need to be
imported for use in your module.

13

The Translator TRANSLATOR

14

All reserved words and standard identifiers are capitalized. All references to identifiers
agree in spelling with their declaration. This is necessary because Modula-2 is sensitive to
the use of upper and lower case letters while Pascal is not. Special provisions are made
for the use of underscores in Pascal identifiers because many Pascal compilers support
them. The underscore is removed and the character following it is forced to be
uppercase. This is the Modula-2 style of spelling identifiers.

Loops, conditional statements and structured statements are correctly generated. FOR
statements that use DOWNTO are transformed to BY-1. WITH statements containing a
'with’ list are transformed into nested WITH. CASE statements are always generated
with the ELSE clause, even if not used in Turbo Pascal. The ELSIF statement is
generated when appropriate.

If a real number is found without a decimal point, then the decimal point is inserted

unless it is a constant definition. The exponent indicator is always emitted as an upper
case ‘E’.

The Translator uses primes (°) to enclose strings unless the prime character is found
within the string, then the quote (") character is used to enclose the string and the extra
prime is deleted. If both quote and prime are found within the string, the pair of primes
are changed to the grave accent (). The Modula-2 language does not allow both (°) and
(") to occur in a string, and therefore this compromise is adopted.

Set brackets are changed to braces and the type name is prefixed to the set expression. If
the elements of the set expression are both constant elements and expressions, the
translation will not be acceptable to the Modula-2 compiler and it will complain.

Function definition in Modula-2 is slightly different from Pascal. For each Pascal
function, the Translator generates a local Result variable of the same type as the function
with the name equal to the function name, plus the word ‘Result’. The Translator takes
care to generate correct ‘RETURN functNameResult’ statements when needed, in
particular the final return at the end of the function, to ensure the proper return of values
as required by Modula-2.

TRANSLATOR The Translator

LOGITECH MODULA-2/86 does not allow return structured data types from a
function. Turbo Pascal allows functions to return Strings, for example the Turbo Pascal
functions Copy, Concat and ParamStr return strings. For this reason the implementation
of these three functions have been changed in Modula-2 to three procedures with an
additional VAR parameter that holds the string to be returned (see the section on Copy,
Concat and ParamStr). If your programs define and use other functions that return
strings, you will have to change these functions in procedures with the additional
parameters, and modify all the function calls into procedure calls.

The Turbo Pascal procedure Execute is implemented by the Modula-2 procedure Execute
(module TExec). The Modula-2 procedure is more powerful than the Turbo Pascal
version because it allows you to execute any executable DOS program (.COM or .EXE).
For more information on the overlay/subprogram system of Modula-2 and on calling
procedures, refer to the LOGITECH MODUILA-2/86 User’s Guide, and in particular to
the module Program and to the chapter on Memory Organization.

The Translator surrounds the subrange specification 1 .. 10 with brackets {1 .. 10}, as
required by Modula-2.

If not already present, empty parentheses are added to parameterless function calls.
These are also appended to the heading of function declarations if necessary.

Forward declarations are correctly handled, moving the headings to the site of the body
of the function or procedure.

The SUCC and PRED built-in functions of Pascal are translated into Modula-2 in a
variety of ways. X := SUCC(X), where X is a simple variable naming a scalar, is translated
as INC(X). However, X := SUCC(Y) is translated as, X := VAL(<typeName>,
ORD(Y)+1). However, if Y is a nonsimple name designator, the type of the expression to
the left of the SUCC(Y) is used. If SUCC(X) appears first in an expression, its type is
not known and VAL(<typeName>, ORD(Y)+1) is used. This may not always be correct
but the Modula-2 compiler will be of help.

Expressions of the form SetName := SetName + SetElement and SetName := SetName -
SetElement, are translated to INCL and EXCL, respectively.

INC, DEC are also produced for appropriate assignment statements, otherwise, the ORD
forms are produced. For example: a:=a+1; is translated into INC(a,1);.

15

The Translator TRANSLATOR

= The constants ‘pi’ and ‘maxint’ are generated only if used.

» The Translator handles all Turbo Pascal file types (text, file of records, untyped files,
predefined files, devices, ...). All files are mapped into the type File (module TKernelIO)
while global variables are provided to support predefined files and user written /O
drivers. All Turbo Pascal I/O operations are translated into one or more Modula-2
procedure calls (see Appendix A for the different mapping).

= Reals are supported both in emulation or generating 8087 code (see chapter in the

MODULA-2/86 User’s Guide on Real Arithmetic).

= I/O and Run Time error messages are supported using the same Turbo Pascal codes.
Remember that with LOGITECH MODULA-2/86 you can use two powerful debuggers
to trouble-shoot your program. The Run-Time Debugger (RTD) to follow the flow of
your program at run-time in a symbolic source level way, and the Post-Mortem Debugger
(PMD) to find out in a symbolic source level manner when and why your program

crashed.

1.3.2 Standard Identifiers and Libraries

Standard identifiers are names known to the compiler that are not reserved words. Because they
are known to the compiler they do not have to be declared. They have, in effect, been predefined.
The Pascal language and the Modula-2 language have their own sets of standard identifiers. Some
of these are duplicated in both languages and some only occur in one or the other language.

16

TRANSLATOR The Translator

The standard identifiers of the Pascal language are read by the Translator. The Translator will
find that the standard identifiers have not been declared and the problem of how to translate
them arises. There are several possible solutions as outlined below:
= They could be flagged with ‘?1’ as undeclared (a).
= They could be recognized and translated into Modula-2
standard identifiers where a correspondence exists (b). |
= They could be mapped into services provided by
Modula-2 library modules (c).

All three alternatives are used. Alternatives (a) and (b) are straightforward while alternative (c) is
implemented by calling the equivalent Modula-2 procedures supplied with the Translator.

To smooth the transition from Pascal to Modula-2, LOGITECH has developed a new set of
library modules that implement all the Turbo Pascal functions as defined in the Turbo Pascal 3.0
(PC-DOS / MS-DOS version) manual.

You can find a complete description of the modules and procedures in Appendix D and by
looking at the definition modules (.DEF) included in the Translator diskette. Furthermore, in
Appendix A of this manual, there is a complete description of the mapping schematic used to
translate Turbo procedures into Modula-2 procedures.

Later on, when you have acquired more familiarity with the LOGITECH MODULA-2/86 system,
you can switch to modules from the Base Language System library which implement functions
similar to the Turbo Pascal functions. For example, for simple I/O you can use module InOut
instead of TFiles, TKernellO, or module Directories instead of TDiskDirectory. Thus, you take
advantage of some of the features of these modules and of others available such as RS232,
Decimals, Debug, Devices, Dos 3.0 and 3.1, Mouse, NumberConversions, Processes, System and
SYSTEM.

1.3.3 When the Manual Adaptation is Required

The following is a list of Turbo Pascal features that require your particular attention. If you use
one of these features in your Pascal program, edit the Modula-2 program after the translation.
With the help of the mapping described in Appendix A, study how the translation has been
performed on these cases and apply all the needed modifications as explained in Chapter 2.
Depending on the different cases, you will be required to manually translate some of the Pascal
code, to add parameters to some routines, or to change some algorithms because of the
differences between Pascal and Modula-2. The Translator tries to minimize your manual
intervention after the translation, but in these cases it cannot automatically translate and requires
your cooperation. Some of these cases are detected by the Translator itself, some by the compiler,
and finally some will generate a Run-Time error if not properly fixed.

Some of the Pascal features to be adapted are as follows:

17

The Translator TRANSLATOR

Strings operations, handling and usage
Initialized variables

Absolute statements

Large Sets (> 16 elements)

Set of Chars

Goto and Label statements

Shr, Shi, Xor (bitwise operators)

And, Or, Not (bitwise operators)

Execute, Chain, Overlay and OvrPath functions
Concat, Copy and ParamStr functions
Reference to variables in Inline code

Function returning structured data types string

In the following cases the Modula-2 implementation uses routines instead of variables:
w User written I/O drivers
s ErrorPtr and Error handling routines
= Mem, MemW, Port, PortW arrays

18

TRANSLATOR The Translator

Partially Supported Turbo Pascal Features

All Turbo Pascal functions, procedures and system variables are supported in accordance with the
rules described in the following chapters and in the appendices, except:

» OQverlays:
There is no need for overlays with LOGITECH MODULA-2/86 because the limit for
the size of the code and data is one Megabyte. However, overlays are available with
LOGITECH MODULA-2/86, but differently than with Turbo Pascal. The Turbo Pascal
statement ‘OVERLAY” is transformed in comment by the Translator. See the
LOGITECH MODUILA-2/86 User’s Guide for more details.

= External Subprogram:
External subprograms are supported in a different way than in Turbo Pascal. The
Translator marks the external reference. Please refer to the chapter on external calls for
a complete example of how to change your program to interface external subprograms.
The external subprogram ‘graphic’, used by ‘graph.p’, is implemented by different
Modula-2 library modules and the translation of the graphic routines is automatically
done by the Translator without any additional work required from the user.

= Turbo-BCD:
The Translator does not support the Turbo-BCD version and consequently the ‘Form’
function has no equivalent generated by the Translator. In LOGITECH MODULA-
2/86, the module Decimal performs functions similar to the Turbo-BCD. If you want to
translate a Turbo-BCD version, please study the Decimal module first and modify your
program accordingly.

1.3.4 Flags and Error Handling

The features of Pascal that do not have an equivalent in Modula-2 or that require manual
adaptation from the user appear in the Modula-2 translated code preceded by a problem flag
string ‘?number’. These will have to be modified manually according to the suggestions given in
Chapter 2.

19

The Translator

The following is a list of possible flags:

70 = system problems

71 =unknown identifier, undefined symbol or null operator

72 =invalid Modula-2 constant string

73 =warning - using string make sure to follow the Modula-2 rules
74 =Pascal statement not supported by Modula-2

75 = function or procedure parameter

76 = absolute variable declaration

77 = external procedure or subprogram declaration

78 = special in-line code statement not supported

79 =to be changed in a function call

710 = element expression in set can only be a constant expression
711 = to be changed in a procedure call

TRANSLATOR

When the Translator encounters a statement that does not correspond to the syntax of a correct
Pascal statement, it will issue an ‘*** ERROR ***’ message followed by an explanation on what
was found and what was expected. It will try to continue the translation and eventually it will skip
some statements without translating them until it reaches a point where it can resynchronize itself
with a correct Pascal statement. In this case, please modify your source and make sure that it
compiles correctly with Turbo Pascal 3.0. Then, retranslate the program.

The total number of ‘?’ flags emitted is found at the end of the ‘X.mod’ file.

The definitions of flag messages are as follows:

20

?0 = system problems

If 20 refers to a constant string too long, please split that string in two or more.

If you have reached the limits of the internal tables of the Translator as specified by the
message posted with 70, please modify your source code to avoid the problem. See the

section on Translator’s Capacities.

TRANSLATOR

The Translator

» 71 =unknown identifier, undefined symbol or null operator
The identifier following ‘?1’ is not known, that is, it has not been declared so far in the
Pascal program. If you find ?1UNDEF it means that the Translator needs, at that point,
a nonexisting identifier not needed in the Pascal program (see section on Copy, Concat

and ParamStr). You will have to modify the Modula-2 program, declare a variable with

the new identifier, according with the statement where the ‘?21UNDEF’ occurs, and
substitute 21UNDEF with the new identifier.

= 22 =invalid Modula-2 constant string

Pascal strings are very different from Modula-2 strings (see the section on Strings). This
message occurs when you use a special feature of Turbo Pascal that has no automatic

equivalent in Modula-2, that is, you are using a special control character representation
to be embedded in string like:

“This is another line of text”"M"J
#27'Hello’

#13#10°U°G

» ?3 =warning - using string make sure to follow the Modula-2 rules
This flag will be posted when you select the Translator option ‘mark String = YES’. In all
places where you use a string, the ‘?3’ will precede the string identifier. This allows you to

easily detect all the places where you are using strings to modify the algorithm. Pascal
strings are very different from Modula-2 strings (see the section on Strings).

m 74 =Pascal statement not supported by Modula-2

These statements (Label definition, Goto, Label use) cannot be translated into Modula-2

because such statements do not exist. You must modify your program to use other
Modula-2 statements like LOOP, WHILE, REPEAT.

= 75 = function or procedure parameter

This error will not occur with Turbo Pascal because it does not support procedures or
functions passed as a parameter. Modula-2 allows you to pass procedures as parameter,

and using this features allows you to implement sofisticated software engineering
techniques.

= 76 = absolute variable declaration

Modula-2 does support absolute variable declaration in a format slightly different from
Turbo Pascal (see the section on Absolute Variable).

21

The Translator TRANSLATOR

22

» 77 =external procedure or subprogram declaration

This Turbo Pascal statement cannot be automatically translated into Modula-2. This
feature is supported in Modula-2 in a different way and requires you to do some work to
change your program. The Translator will only mark the external references. Please refer
to the others for a complete example on how to change your program to interface
external subprograms. The external subprogram ‘graphic’ used by ‘graph.p’ is
implemented by different Modula-2 library modules and the translation of the graphic
routines is automatically done by the Translator without any additional work required
from the user.

78 = special in-line code statement not supported
Reference to variables using a symbolic name is not allowed in Modula-2 CODE
statements (see the section on Inline code).

79 =to be changed in a function call

Some of the Turbo Pascal operators (SHL, SHR, XOR, ...) are not available in Modula-2.
To solve the problem, you can use a set of functions that implements the same features.
These functions are in module MemoryOperation with names And, Or, Xor, Shl, Shr.
(see the section on Expressions using And, Or, ...)

210 = element expression in set can only be a constant expression
The sets handling in Modula-2 is different than in Pascal (see the section on Sets).

711 = to be changed in a procedure call

LOGITECH MODULA-2/86 does not allow you to return structured data types from a
function. Turbo Pascal allows functions to return Strings, for example, the Turbo Pascal
functions Copy, Concat and ParamStr return strings. For this reason, the implementation
of these three functions have been changed in Modula-2 in three procedures with an
additional VAR parameter that holds the string to be returned (see the section on Copy,
Concat and ParamStr). If your programs define and use other functions that return
strings, you will have to change these functions in procedures with the additional
parameter, and modify all the function calls into procedure calls.

TRANSLATOR The Translator

1.3.5 Translator’s Capacities

The principal capacities of the Translator are as follows:
= The maximum number of characters in all unique identifiers in a Pascal source program is
10,000. Identifiers are constant enumerated values, types, variables, fields, formal
parameters, functions and procedures. All of the characters are retained.

m The maximum number of unique identifiers in a Pascal source program is 1,000. You can
have 1000 identifiers with an average length of 10 characters before exceeding the
Translator’s capabilties, or up to 500 identifiers with an average length of 20 characters.

= The maximum number of nested levels is 30.
For example:

program ABC;
procedure A; (* nested level 2 *)
procedure B; (* nested level 3 *)

procedure C; (* nested level 4 *)

begin ... end (* C *);
begin ... end (* B *);
begin ... end (* A *);

begin ... end; (* program body - nested level 1 *)

= The overall capacity for data storage is based on the memory size of your PC available
when you run the Translator.

23

The Translator TRANSLATOR

If you exceed these capacities the Pascal program being translated must be divided into smaller
files before the translation. The Modula-2 programs that result should be rejoined. This cannot
be done by simply cutting the Pascal program indiscriminately because the global identifier
references must have their declarations visible to the Translator, otherwise, you will have many
“?1’ warnings. Also, each Pascal program translated must be a legal Turbo Pascal program or the
Translator will give unpredictable results. If you use include files, one alternative is to rename
some of the include files, so that the Translator will not find them, and translate separately the
main file and the include file with the Translation option ‘mark Undefined = NO’ to avoid a lot of
‘21’ warnings.

1.4 Now Let’s Try to Translate

Now that you have a general idea about the capabilities of the Translator, let’s try to translate a
simple program. In your diskette you will find a Turbo Pascal program, called FIRST.PAS. For
your convinence we suggest you to work from the MOD editor, but you can apply the same
commands from DOS. (In square brackets find the MOD commands separated by ‘I’)

Edit FIRST.PAS:
[mod first.pas]

program first;

(* Program to demonstrate simple constant translation *)

const
Version = 1;
Sub_version = 0;
Product = 'Turbo Translator';
Bell = #307; (* Bell hex code *)

24

TRANSLATOR The Translator

procedure Siren;

var
Frequency: integer;
begin
for Frequency := 500 to 2000 do
begin
Delay(1);
Sound(Frequency);
end;
for Frequency := 2000 downto 500 do
begin
Delay(1);
Sound(Frequency);
end;
NoSound;
end;
begin
writeln; writeln;
write('Welcome to ',Product,' version !);
writeln(Version,'.!,Sub_version);
writeln(Bell, bell, BELL, bELL);
writeln('The Programmers'! time saver');
SIREN;
END.

25

The Translator

Translate this proTram by calling pas2mod:

[ALT F9 | r | pas2mod<CR>]

TRANSLATOR

LOGITECH MODULA-2/86 Pascal to Modula-2 Translator,...

Type <Esc> to exit.
Pascal in >first<CR>
Modula-~2 out ><CR>
Pascal in ><Esc><Esc>

FIR'IST.PAS is translated into FIRST.MOD without translation errors. Now edit FIRST.MOD:
[F3 | first]

MODULE first;

(

26

FROM Sounds IMPORT Sound, NoSound;

FROM Delay IMPORT Delay;

FROM TTextlIO
IMPORT ReadInt, ReadCard, ReadChar, ReadString, ReadlLn, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, WritelLn,
Eoln, SeekEof, SeekEoln;

FROM TKernellO
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conInPtr, auxInPtr, usrInPtr, conOutPtr, [stOutPtr,
auxOutPtr, usrOutPtr, IOresult, KeyPressed, 10Buffer, 10Check,
DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

* Program to demonstrate simple constant translation *)

TRANSLATOR The Translator

CONST
Version = 1;
SubVersion = 0;
Product = 'Turbo Translator!;
Bell = 7C; (* Bell hex code *)

PROCEDURE Siren;
VAR

Frequency: INTEGER;
BEGIN
FOR Frequency := 500 TO 2000 DO

Delay(1);
Sound(Frequency);
END;
FOR Frequency := 2000 TO 500 BY -1 DO

Delay(1);
Sound(Frequency);
END;
NoSound;
END Siren;

BEGIN
WriteLn(stdinout);
WriteLn(stdinout);
WriteString(stdinout, 'Welcome to ', 0);
WriteString(stdinout, Product, 0);
WriteString(stdinout, ' version !, 0);
WriteInt(stdinout, Version, 0);
WriteChar(stdinout, '.', 0);
WriteInt(stdinout, SubVersion, 0);
WriteLn(stdinout);
WriteString(stdinout, Bell, 0);
WriteString(stdinout, Bell, 0);
WriteString(stdinout, Bell, 0);

27

The Translator TRANSLATOR

WriteString(stdinout, Bell, 0);

Writeln(stdinout);

WriteString(stdinout, "The Programmers' time saver", 0);
WriteLn(stdinout);

Siren;

END first.

Note the following differences in the Modula-2 listing that reflect some new language features:

28

» Modula-2 programs start with the MODULE reserved word. The module name is

inserted after the last END statement.

Modula-2 does not support the underscore character as part of an identifier name. The
Pascal ‘Sub_version’ constant is translated into ‘SubVersion’.

Modula-2 is case sensitive while Pascal is not (for example, in Modula-2 Bell is different
from BELL). The Translator takes care to generate the correct name when a different
capitalization is used. In our example, the constant Bell referred to in the program body
in different modes (Bell, bell, BELL, bELL) is always translated as the declaration (Bell).

The numeric hexadecimal constants assigned to ‘Bell’ are converted into an octal
notation. In Modula-2 octal numbers representing characters are terminated with the
letter ‘C’ if they are used as CHAR, or by the letter ‘B’ if they are used as Scalar
(INTEGER or CARDINAL).

Modula-2 uses more procedures for output than Pascal, since it outputs each item by a
typed 1/O procedure.

The string constant "The Programmer’s time saver” is now enclosed in double quotes,
since it contains a single quote.

Modula-2 requires that you explicitly declare the function, procedure, types or variables
you are using from other modules. The Translator takes care to automatically import the
identifiers it generates. Because of the automatic nature of the translation, it actually
imports ALL the exported identifiers of the module, regardless of how few are used.

Note how the FOR STATEMENT is changed from Pascal to Modula-2. All Pascal
statements and Turbo Pascal functions are automatically translated.

TRANSLATOR

Now you can:
1 syntax check [F2],
2 compile [F5],
3 link [F6] and
4 run FIRST.MOD [ALT F9 | r | first]

and it will work like FIRST.PAS.

The Translator

29

Manual Adaptation TRANSLATOR

2 LANGUAGE FEATURES THAT REQUIRE MANUAL ADAPTATION

Due to some differences between the Pascal and Modula-2 languages in general, and Turbo Pascal
3.0 and LOGITECH MODULA-2/86 in particular, the Translator will not be able to automatically
translate some statements or will translate them into Modula-2 statements that are not correct or
optimal.

First, read the sections of this chapter that refer to Turbo Pascal features used on your program.
Run the Translator on your program, but before compiling, we suggest that you pay attention to the
following cases, study the translated program and eventually change some algorithms to make them
more oriented to the Modula-2 style of programming. For the non trivial statements that are not
fully translated, the user must intervene with manual editing, modifying the translated code using the
suggestions given in this chapter.

2.1 Label and Goto Statements

While Pascal discourages GOTO statements, they are still offered by the language. Modula-2 does
not support GOTOs or labels. Thus, Turbo Pascal programs that use GOTOs or labels must be
rewritten using Pascal FOR, WHILE and REPEAT statements, and the new versions must then be
translated. Or, first they can be translated into Modula-2 and later modified using Modula-2 FOR,
WHILE, REPEAT and LOOP statements.

2.2 Constants and Initialized Variables

There are three categories of constants for the Translator:

= Simple untyped constants.
= Typed constants with scalar types.
s Typed constants with array, record and set types.

Turbo Pascal has two predefined integer constants -- ‘Pi’ and ‘MaxInt’. They are inserted in a
constant declaration by the Translator whenever they occur in the Turbo Pascal source program.

2.2.1 Simple Untyped Constants

Simple untyped constants are generally translated in a straightforward manner, except for string
constants with control characters and hex constants.

30

TRANSLATOR Manual Adaptation

Consider the following Turbo Pascal program:

(* Pascal *)
const Version = 1;
Sub_version = 0;
Product = 'Turbo Translator!;
Bell = #$07; (* Bell hex code *)
begin

writeln('The Programmers'' time saver');
It translates into the following Modula-2 program:

(* Modula-2 *)
CONST
Version = 1;
SubVersion = 0;
Product = 'Turbo Translator!;
Bell = 7C; (* Bell hex code *)
BEGIN

WriteString(stdinout, "The Programmers' time saver®, 0);
Modula-2 does not support the underscore character as part of an identifier name. The Pascal
‘Sub__version’ constant is translated into ‘SubVersion’.

The numeric hexadecimal constants assigned to ‘Bell’ are converted into octal notation. In Modula-
2, octal numbers representing CHARSs are terminated with the letter ‘C’.

The string constant "The Programmers’ time saver” is now enclosed in double quotes, since it
contains a single quote.

31

Manual Adaptation TRANSLATOR

2.2.2 Variable Constants

Turbo Pascal permits explicitly typed constants. They are actually initialized variables since they can
be assigned initial values. Thus, the Translator converts them into actual variables and places their
declaration in the VAR section, while the initialization part goes at the beginning of the body
(procedure or main). In the case of scalar types, the Translator is able to translate the initialization
code correctly. Again string constants containing control characters and hexadecimal numbers must
be edited by the user. For array, record and set variable constants the initialization parts are copied
by the Translator at the beginning of the body but need editing from the user to conform to the
Modula-2 syntax.

The following Turbo Pascal program demonstrates the limitations that require the user to edit the
output Modula-2 program. It contains:

» astring constant with control characters, represented by the constant ‘Greetings’.

» avariable constant declared as an array, represented by ‘Programming_ Skill’. The array
range is enumerated.

This program is similar to ‘FIRST.PAS’. It is more conversant with the user, asking you about your
programming skill and commenting on it.

in file SECOND.PAS:

PROGRAM second;
(* Program to demonstrate variable *)
(* constants translation. *)

TYPE Skill = (Novice, Moderate, Expert);

CONST (* String constant with control characters *)
Greeting = 'Hello there!”~G"G;
My_Name : STRING[20] = *'Turbo Translator’;
Version : INTEGER = 1;
Sub_Version : INTEGER = 0;
Programming_Skill : ARRAY[Skilll OF STRING[30] =
(*New to Modula-2','Familiar','Real Pro');

32

TRANSLATOR Manual Adaptation

VAR Answer, 1 : INTEGER;
Your_Name : STRING([30];
Skill_Index : Skill;

BEGIN
WRITELN(Greeting,® I am the ',My Name); WRITELN;
WRITELN('This is version ',Version,'.',Sub_Version);
WRITELN; WRITE('What is your name? ');
READLN(Your_Name); WRITELN;
WRITELN('Hello *',Your_Name,', are you ');
WRITELN;
1:=1;
FOR Skill_Index := Novice TO Expert DO BEGIN
WRITELN(I,')',Programming_Skill[Skill_Indexl);
I :=1+1;
END;
REPEAT
WRITELN;
WRITE('Select by number ');
READLN(Answer);
UNTIL (Answer > 0) AND (Answer < 4);
WRITELN; WRITELN;
WRITE('Very good ',Your_Name,'.');
IF Answer < 3 THEN WRITELN(' I hope you become a real pro!')
ELSE WRITELN(' It is so nice to meet a prol');
WRITELN; WRITELN;
END.

The Translator produces the listing shown below, appended by a list of warning messages. The
Translator inserts question marks followed by a number that corresponds to the intended warning.
Reading the Modula-2 program we find a ‘?2’ after the declaration of the string constant ‘Greetings’.
Looking at the warning table we find,

?2 = invalid Modula-2 constant string

indicating that ‘Greetings’ has control characters and/or hexadecimal constants involved.

NOTE: A single control character or hex number is translated correctly, as was demonstrated in the
first program.

33

Manual Adaptation TRANSLATOR

Before we discuss the solution to the above problem, let us look at a second problem which is caused
by the initialized array-typed constant. The Translator inserts comments reminding the user of the
presence of constant arrays. As shown, it is copied ‘AS IS’ into the output Modula-2 program. The
user must break down the one Turbo Pascal assignment statement into a series of assignments, one
for each initialized array member.

in file SECOND.MOD:
MODULE second;

FROM TTextlIO
IMPORT ReadInt, ReadCard, ReadChar, ReadString, ReadlLn, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, Writeln,
Eoln, SeekEof, SeekEoln;

FROM TKernellO
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conlnPtr, auxInPtr, usrlnPtr, conOutPtr, lstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, IOresult, KeyPressed, IOBuffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

(* Program to demonstrate variable *)
(* constants translation. *)

TYPE
Skill = (Novice, Moderate, Expert);

(* String constant with control characters *)
CONST
Greeting = 'Hello there'~G"G ?2;
VAR
MyName: ARRAY [0..20-11 OF CHAR;
Version: INTEGER;
SubVersion: INTEGER;
ProgrammingSkill: ARRAY Skill OF ARRAY [0..30-11 OF CHAR;

34

TRANSLATOR

BE
(*
*
*
*

VAR

Answer, I: INTEGER;
YourName: ARRAY [0..30-1]1 OF CHAR;
Skilllndex: Skill;

GIN

These variable were defined in Turbo Pascal as 'typed constants' ¥)

and were initialized in the program declaration part *)
In Modula-2 !'typed constants' become variables and are initialized *)
in the module or procedure body part *)

ProgrammingSkill := ('New to Modula-2','Familiar','Real Pro');
SubvVersion := 0;

Version := 1;

MyName := 'Turbo Translator';
WriteString(stdinout, Greeting, 0);
WriteString(stdinout, ' I am the *, 0);
WriteString(stdinout, MyName, 0);
Writeln(stdinout);

WriteLn(stdinout);

WriteString(stdinout, 'This is version ', 0);
Writelnt(stdinout, Version, 0);
WriteChar(stdinout, '.', 0);
Writelnt(stdinout, SubVersion, 0);
WriteLn(stdinout);

WriteLn(stdinout);

WriteString(stdinout, 'What is your name? ', 0);
ReadBuffer(on);

ReadString(stdinout, YourName);
ReadLn(stdinout);

ReadBuffer(off);

WriteLn(stdinout);

WriteString(stdinout, 'Hello ', 0);
WriteString(stdinout, YourName, 0);
WriteString(stdinout, ', are you ', 0);
Writeln(stdinout);

WriteLn(stdinout);

I :=

1;

FOR SkillIndex := Novice TO Expert DO

Manual Adaptation

35

Manual Adaptation TRANSLATOR

Writelnt(stdinout, 1, 0);
WriteChar(stdinout, ')!, 0);
WriteString(stdinout, ProgrammingSkill[Skilllndexl, 0);
WritelLn(stdinout);
INCCI, 1);
END;
REPEAT

WritelLn(stdinout);
WriteString(stdinout, 'Select by number ', 0);
ReadBuffer(on);
ReadInt(stdinout, Answer);
ReadLn(stdinout);
ReadBuffer(off);
UNTIL (Answer > 0) AND (Answer < 4);
WriteLn(stdinout);
WriteLn(stdinout);
WriteString(stdinout, 'Very good ', 0);
WriteString(stdinout, YourName, 0);
WriteChar(stdinout, '.', 0);
IF Answer < 3 THEN
WriteString(stdinout, ' I hope you become a real pro!', 0);
WriteLn(stdinout)
ELSE
WriteString(stdinout, ' It is so nice to meet a pro!', 0);
WriteLn(stdinout)
END;
WriteLn(stdinout);
WriteLn(stdinout);
END second.

sk ok ok 3k ok sk sk sk Sk sk ok ohe sl ok sk sk sk ohe ok oke ke sk e ok sk sk sk ok skokok sk e sk ke sk sk ke e sk skl sk sk ke ke s ke sk sk sk ke ke ke sk sk s sk ok sk sk sk sk sk sk skeske ke sk sk sk sk sk ke ok

36

TRANSLATOR Manual Adaptation

NUMBER OF ? = 1

Please refer to the translator manual for detailed explanation and solutions
?0 = system problems

2?1 = unknown identifier, undefined symbol or nultl operator

?2 = invalid Modula-2 constant string

7?3 = warning - using string make sure to follow the Modula-2 rules
2?4 = Pascal statement not supported by Modula-2

?5 = function or procedure parameter

?6 = absolute variable declaration

2?7 = external procedure or subprogram dectaration

78 = special in-line code statement not supported

?9 = to be changed in a function call

210 = element expression in set can only be a constant expression
211 = to be changed in a procedure call

The remedy for the first problem is to remove the control character from the string constant and
create new constants. In our example, we have two Control-G characters. Thus, declaring a single
‘Bell’ constant is the first step. Next, we insert two “WriteChar(stdinout, Bell, 0)’ statements after the
one that outputs ‘Greetings’. As an alternative solution one could avoid declaring constants for
‘Greetings’ and ‘Bell’, and instead declare a variable ‘GreetingsBell’ to hold the string constant
‘Greetings’ and two extra characters for ‘Bell’.

Later in the procedure body, assign the variable the constant string and the two bell extra characters,
and finally write the variable.

VAR
GreetingsBell : ARRAY [0..15] OF CHAR; (* bigger than we need *)

BEGIN
GreetingsBell := “Greetings";
GreetingsBell[91 := 7C; (* 1st bell *)
GreetingsBell[10] := 7C; (* 2nd bell *)
GreetingsBell[11] := OC; (* string terminator *)

WriteString(stdinout, GreetingBell, 0);

e

END;

37

Manual Adaptation ' TRANSLATOR

The original array constant assignment is broken down into three assignments. This removes the
error causing condition. Other changes are marked by the comment (* MODIFICATION *). The
edited Modula-2 program is shown below:

in file SECOND.MO1:
MODULE second;

FROM TTextIO
IMPORT ReadInt, ReadCard, ReadChar, ReadString, ReadLn, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, WriteLn,
Eoln, SeekEof, SeekEoln;

FROM TKernellO
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conInPtr, auxInPtr, usrlnPtr, conOutPtr, lstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, IOresuilt, KeyPressed, 10Buffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

(* Program to demonstrate variable *)
(* constants translation. *)

TYPE
Skill = (Novice, Moderate, Expert);

(* String constant with control characters *)
CONST
Greeting = 'Hello there!';

(* This constant has been added *) (* 111 MODIFICATION 11t *)
Bell = 07C;
VAR

MyName: ARRAY [0..20-1] OF CHAR;

Version: INTEGER;

SubVersion: INTEGER;

ProgrammingSkill: ARRAY Skill OF ARRAY [0..30-1] OF CHAR;

VAR

38

TRANSLATOR Manual Adaptation

Answer, I: INTEGER;
YourName: ARRAY [0..30-11 OF CHAR;
SkillIndex: Skill;

BEGIN

(* The three statements below were edited by the user *)

ProgrammingSkill [Novicel := 'New to Modula-2'; (* !!! MODIFICATION !!1! %)
ProgrammingSkill [Moderate] := ‘Familiar'; (* 11) MODIFICATION 111 *)
ProgrammingSkill [Expert]l := 'Real Pro'; (* 111 MODIFICATION 111 %)

SubVersion := 0;

Version := 1;

MyName := 'Turbo Translator';
WriteString(stdinout, Greeting, 0);

(* The two statements below are inserted by the user *)
WriteChar(stdinout, Bell,0); (* 111 MODIFICATION 111 *)
WriteChar(stdinout, Bell,0); (* 111 MODIFICATION 111 *)

WriteString(stdinout, ' I am the ', 0);
WriteString(stdinout, MyName, 0);
Writeln(stdinout);

Writeln(stdinout);

WriteString(stdinout, 'This is version ', 0);
WriteInt(stdinout, Version, 0);
WriteChar(stdinout, '.', 0);
Writelnt(stdinout, SubVersion, 0);
WriteLn(stdinout);

WriteLn(stdinout);

WriteString(stdinout, 'What is your name? ', 0);
ReadBuffer(on);

ReadString(stdinout, YourName);
ReadLn(stdinout);

ReadBuffer(off);

WriteLn({stdinout);

WriteString(stdinout, 'Hello ', 0);
WriteString(stdinout, YourName, 0);
WriteString(stdinout, !, are you !, 0);

39

Manual Adaptation

WriteLn(stdinout);

WriteLn(stdinout);

1 :=1;

FOR Skilllndex := Novice TO Expert DO

WriteInt(stdinout, I, 0);
WriteChar(stdinout, ')!', 0);
WriteString(stdinout, ProgrammingSkill[SkillIndex], 0);
WriteLn(stdinout);
INCCI, 1);
END;
REPEAT

Writeln(stdinout);
WriteString(stdinout, 'Select by number ', 0);
ReadBuffer(on);
ReadInt(stdinout, Answer);
ReadLn(stdinout);
ReadBuffer(off);
UNTIL (Answer > 0) AND (Ansuwer < 4);
WriteLn(stdinout);
Writeln(stdinout);
WriteString(stdinout, 'Very good *, 0);
WriteString(stdinout, YourName, 0);
WriteChar(stdinout, *'.', 0);
IF Answer < 3 THEN
WriteString(stdinout, ' I hope you become a real prol', 0);
Writeln(stdinout)
ELSE
WriteString(stdinout, ' It is so nice to meet a pro!!, 0);
WriteLn(stdinout)
END;
WriteLn(stdinout);
Writeln(stdinout);
END second.

40

TRANSLATOR

TRANSLATOR Manual Adaptation

Let us consider another example. The next Turbo Pascal sample defines ‘Home__Info’, a record type
with three integer fields. The constant declaration section defines ‘My_ Home’ as an initialized
record constant.

TYPE
Home_Info = RECORD
Bedrooms,
Bath_Rooms,
Doors : INTEGER;
END;

CONST My_Home : Home_Info =
(Bedrooms : 3; Bath_Rooms : 2; Doors : 1);

The Translator outputs the next Modula-2 listing. It contains comments that remind the user to
resolve the Turbo Pascal structured constant assignment problem. The ‘MyHome’ identifier is now
declared in the VAR section.

TYPE
HomeInfo = RECORD
Bedrooms, BathRooms, Doors: INTEGER;
END;

VAR
MyHome: Homelnfo;

BEGIN

(* 11! These variable were defined in Turbo Pascal as 'typed constants' *)
* and were initialized in the program declaration part *)
(* 111 In Modula-2 'typed constants' become variables and are initialized *)
(* in the module or procedure body part *)

MyHome := (Bedrooms:3;BathRooms:2;Doors:1);

41

Manual Adaptation TRANSLATOR

To resolve the problem, we rewrite the original Turbo Pascal assignment into three field assignments
enclosed in a WITH block. The correct Modula-2 program is:

BEGIN
(* Next three line have been edited from the original output *)
WITH MyHome DO
Bedrooms := 3;
BathRooms := 2;
Doors := 1
END;

2.3 Sets
Modula-2 supports the Set data type and operations the same as Turbo Pascal.

2.3.1 Large Sets

The LOGITECH MODULA-2/86 Rel 2.xx has a (temporary) implementation restriction on Sets. A
Set is limited to only 16 elements, therefore it is impossible to use it to implement large sets, such as
set of characters.

To overcome this limitation, LOGITECH supplies the library module LongSet that implements all
the set operations as procedures or functions and allows the user to have large sets in his/her
program. Using this module the user can define a set of any size as an ARRAY [0.x] OF BITSET
and operate on it in a fashion similar to the Modula-2 set operators. The library exports the type
‘SetOfChar’ representing the full character set (all 256 members).

42

TRANSLATOR Manual Adaptation

The relation among Set Operators in Turbo Pascal, Modula-2 and the LongSet Module is:

Set Operator Turbo Pascal | Modula-2 | LongSet MODULE

|

l
include elem. in set | set + element | INCL(s,e) | Include
exclude elem. in set | set - element | EXCL(s,e) | Exclude
union] + | + | SetUnion
difference | - | - | SsetDifference
intersection | * | * | Setlntersection
symmetric set differ. | not available | / | SymmetricSetDiff.
test on elem.membership | IN | IN | InSet
test on set equality | = | = | EqualSet
test on set inequality | <> | # | NOT EqualSet
test on set inclusion | s1 <= s2 | <= | Setlncluded(s1, s2)
test on set inclusion | s1 => s2 | = | SsetlIncluded(s2, s1)

The following examples suggest how to use the module LongSet; we suggest that first you study the
definition module (file LONGSET.DEF)

(* Pascal *)
type Color = (blue, .. , yellow, .. , green, .. , red);
{ element # 0) 26 31>

var
colorSet = Set of Color;
begin
colorSet := [];

colorSet := [blue, yellow, green, red 1;

43

Manual Adaptation TRANSLATOR

44

(* two different translations can be used *)

(* Modula-2 version A *)

TYPE color = (blue, .. , yellow, .. , green, .. , red);

VAR
colorSet : ARRAY [0..1 1 OF BITSET;
BEGIN
MakeEmptySet (colorSet);
colorSet[0]
colorSet[11

colorSet [0] + (0, 6);
colorSet [11 +{ (26-16), (31 -16) 3;

(* Modula-2 version B *)

TYPE color = (blue, .., yellow, .. , green, .. , red);

VAR
colorSet,
tempColorSet : ARRAY [0..1 1 OF BITSET; (* temporary variable *)
BEGIN
MakeEmptySet (colorSet);
Include(colorSet, ORD(blue));
Include(colorSet, ORD(yellow));
Include(colorSet, ORD(green));
Include(colorSet, ORD(red));

TRANSLATOR Manual Adaptation

2.3.2 Set of Char

You use large sets in your Pascal code when you use statements such as:

(* Pascal *)
begin

repeat

read(kbd, ch);
until ch in [*Y', 'y', !N', 'n', #271;

In this case you are checking if the value of what you are reading from the keyboard is one of the
expected values to terminate the repeat. The set [Y?, ‘y’, ‘N, ‘n’, #27] is, in fact, a set of characters
with only these five elements. Being a large set (it could contain up to 256 elements) it cannot be
automatically translated into LOGITECH MODULA-2/86. The Translator will copy the statement
as is, without flagging it, while the compiler will complain that the set is too large.

A possible solution to this problem is to use the LongSet module as described before. You create a
temporary variable of type ‘SetOfChar’, make the variable an empty set, include in the set ‘Y, y’, ‘N’,
‘n’ and 33C, and finally, you should modify your code to test if ‘ch’ is in this set.

(* Modula-2 manual translation *)
IMPORT LongSet;

VAR mySet: LongSet.SetOfChar;

45

Manual Adaptation TRANSLATOR

BEGIN
MakeEmptySet (mySet);
Include(mySet, WORD(ORD('Y*)));
Include(mySet, WORD(ORD('y')));
Include(mySet, -WORD(ORD('N')));
Include(mySet, WORD(ORD('n')));
Include(mySet, WORD(33C));
REPEAT

ReadChar(kbd, ch, 0);
UNTIL LongSet.InSet(mySet, WORD(ch));

However, in this case, a correct and more readable approach would be:

(* Modula-2 manual translation *)
BEGIN
REPEAT
;;;dChar(kbd, ch, 0);
UNTIL (ch = 'Y') OR

(ch = 'y!) OR
(ch = 'N') OR
(ch = 'n') OR
(ch = 33C);

46

TRANSLATOR Manual Adaptation

Another example of the use of a set of characters, and an alternative translation is:
(* Pascal *)

if ch IN ['a', 'L ..'p*, tzf, 10',.'9'] then
else

(* Modula-2 manual translation *)
CASE ch OF

lal' Ill_.lpl' IzI’ IOI-‘IQIJ:l
ELSE

END;

2.3.3 Use of Variables in Set Construction

In Turbo Pascal you can use a variable in a set constructor. In Modula-2 this is not allowed and
instead you have to use the predefined function INCL.

(* Pascal *)
type
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
var
myDay : Days;
workDay : Set of Days;
begin
workDay := [I;
myDay := Sat;
workDay := [Mon .. Wed, myDay 1;

47

Manual Adaptation

(* Modula-2 translation *)
TYPE
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
SetDays = SET OF Days; (* in Modula-2 you must define this type *)
(* to use the set constructor operator *)
VAR
myDay : Days;
workDay : SetDays;
BEGIN
workDay := SetDays {2; (* set constructor *)
myDay := Sat;
workDay := SetDays { Mon .. Wed }; (* set constructor *)
INCL(workDay, myDay);

TRANSLATOR

Consider the next Turbo Pascal program which scans a line entered from the keyboard and counts
the number of lower case characters, upper case characters, digits and other characters typed.

in file SETS.PAS

program sets;
(* Program to test translation of sets *)

type CharSet = SET OF CHAR;

var Answer : CHAR;

Line : STRING[80];
Digits, UpperCase, LowerCase : CharSet;
1, Digit_Count, Lower_Count, Upper_Count, Others : INTEGER;

begin

48

(* Initialize character sets *)
Digits := ['0'..'9'];
LowerCase := ['a'..'2'];
UpperCase := ['A'..'2'];
repeat

(* Initialize counters *)

TRANSLATOR Manual Adaptation

(1]
(= = =)
-~

Digit_Count :
Upper_Count :
Lower_Count
Others := 0;
writeln('Type a line up to 80 characters ');
readln(Line); writeln;
for 1 := 1 TO Length(Line) do
if Line[l] in Digits
then
Digit_Count := Digit_Count + 1
else if Linelll in LowerCase then
Lower_Count := Lower_Count + 1
else if Line[l1]l in UpperCase then
Upper_Count := Upper_Count + 1
else Others := Others + 1;

~s

.
n
-

writeln('You typed ',Length(Line),' characters with ');
writeln(Digit_Count:2,' digits');
writeln{Upper_Count:2,! upper case letters');
writeln(Lower_Count:2,' lower case letters');
writeln(Others:2,' other characters'); writeln;
WRITE('Want to type another Line? (Y/N) ');
readln(Answer); writeln;
until Answer <> 'Y!;
end.

49

Manual Adaptation TRANSLATOR

The Translator produces an intermediate Modula-2 listing, as shown below:
in file SETS.MOD
MODULE sets;

FROM Strings
IMPORT Assign, Insert, Delete, Pos, Copy, Concat, Length, CompareStr;
FROM TTextlO
IMPORT Readlnt, ReadCard, ReadChar, ReadString, ReadlLn, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, WritelLn,
Eoln, SeektEof, SeekEoln;
FROM TKernell0
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conlnPtr, auxInPtr, usrlnPtr, conOutPtr, lstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, IOresult, KeyPressed, 10Buffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

(* Program to test translation of sets *)

TYPE
CharSet = SET OF CHAR;

VAR
Answer: CHAR;
Line: ARRAY [0..80-1] OF CHAR;
Digits, UpperCase, LowerCase: CharSet;
I, DigitCount, LowerCount, UpperCount, Others: INTEGER;

BEGIN

(* Initialize character sets *)
Digits := CharSet{'0'..'9'};
LowerCase := CharSet{'a'..'z'};
UpperCase := CharSet{'A'..'2'};
REPEAT

(* Initialize counters *)
DigitCount := 0;

50

TRANSLATOR Manual Adaptation

UpperCount := 0
LowerCount := 0
Others := 0;
WriteString(stdinout, 'Type a line up to 80 characters ', 0);
WriteLn(stdinout);
ReadBuffer(on);
ReadString(stdinout, Line);
ReadLn(stdinout);
ReadBuffer(off);
Writeln(stdinout);
FOR I := 1 TO Length(Line) DO

IF

Line[I]l IN Digits THEN

.
’

INC(DigitCount, 1)
ELSIF Linel[I]l IN LowerCase THEN

INC(LowerCount, 1)
ELSIF Line{l] IN UpperCase THEN

INC(UpperCount, 1)
ELSE
INC(Others, 1)
END
END;
WriteString(stdinout, 'You typed ', 0);
WriteCard(stdinout, Length(Line), 0);
WriteString(stdinout, ' characters with ', 0);
Writeln(stdinout);
Writelnt(stdinout, DigitCount, 2);
WriteString(stdinout, ' digits', 0);
WriteLn(stdinout);
Writelnt(stdinout, UpperCount, 2);
WriteString(stdinout, ' upper case letters', 0);
WriteLn(stdinout);
Writelnt(stdinout, LowerCount, 2);
WriteString(stdinout, ' lower case letters', 0);
WriteLn(stdinout);
WriteInt(stdinout, Others, 2);

51

Manual Adaptation TRANSLATOR

WriteString(stdinout, ' other characters', 0);
Writeln(stdinout);
WriteLn(stdinout);
WriteString(stdinout, 'Want to type another line? (Y/N) ', 0);
ReadBuffer(on);
ReadChar(stdinout, Answer);
ReadLn(stdinout);
ReadBuffer(off);
Writeln(stdinout);

UNTIL Answer <> ‘Y!;

END sets.

The user needs to perform a number of changes to produce a version that is accepted by the
compiler. The Translator assumes that all sets declared in the program are small sets. This is not the

case in our example, hence we must import from the library module ‘LongSet’. The editing steps are
as follows:

1 Insert an import list for the ‘LongSet’. The list should contain ‘BuildSet’, ‘Inset’ and
‘SetOfChar’.

2 Remove the character set declaration inherited from the parent Turbo Pascal program.

3 Replace the type ‘CharSet’ with ‘SetOfChar’.

4 Replace the type INTEGER with CARDINAL.

5 The three sets are initialized using the imported procedure ‘BuildSet()’. Even though the

‘Digits’ set has ten elements, we will treat it the same way as the other two. The ‘ORD()’

function is needed to convert a single-byte character into a CARDINAL occupying one
WORD.

6 The FOR loop must have its lower and upper limits shifted by one.

7 Use the boolean function ‘Inset()’ in the TF statement and enclose the ‘Line[I]’ character in
the ‘ORD()’ function.

52

TRANSLATOR Manual Adaptation

The above modifications produce the correct and working Modula-2 program, shown below.
in file SETS.MO1
MODULE sets;

FROM Strings
IMPORT Assign, Insert, Delete, Pos, Copy, Concat, Length, CompareStr;
FROM TTextlO
IMPORT ReadInt, ReadCard, ReadChar, ReadString, ReadlLn, ReadBuffer,
WriteInt, WriteCard, WriteChar, WriteString, WriteBool, WritelLn,
Eoln, SeekEof, SeekEoln;
FROM TKernell0
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conlnPtr, auxInPtr, usrlnPtr, conOutPtr, lstOutPtr,
auxOutPtr, usroOutPtr, errorPtr, IOresult, KeyPressed, 10Buffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;
FROM LongSet
IMPORT BuildSet, InSet, SetOfChar;

(* Program to test translation of sets *)

VAR
Answer: CHAR;
Line: ARRAY [0..80-11 OF CHAR;
Digits, UpperCase, LowerCase: SetOfChar; (* MODIFIED *)
1, DigitCount, LowerCount, UpperCount, Others: CARDINAL; (* MODIFIED *)

BEGIN

(* Initialize character sets *)
BuildSet(Digits,ORD('0'),0RD('9')); (* MODIFIED *)
BuildSet(UpperCase,ORD('A'),0RD('2')); (* MODIFIED *)
BuildSet(LowerCase,ORD('a'),0RD('2"')); (* MODIFIED *)
REPEAT

53

Manual Adaptation

54

(* Initialize counters *)
DigitCount := 0;

UpperCount := 0;
LowerCount := 0;

Others := 0;

WriteString(stdinout, 'Type a line up to 80 characters

WriteLn(stdinout);
ReadBuffer(on);
ReadString(stdinout, Line);
ReadlLn(stdinout);
ReadBuffer(off);
WriteLn(stdinout);
FOR I := 0 TO Length(Line)-1 DO
IF
InSet(Digits,ORD(Line[1])) THEN

INC(DigitCount, 1)
ELSIF InSet(LowerCase,ORD(Line[I1)) THEN

INC(LowerCount, 1)
ELSIF InSet(UpperCase,ORD(Line[I])) THEN

INC(UpperCount, 1)
ELSE
INC(Others, 1)
END
END;
WriteString(stdinout, 'You typed !, 0);
WriteCard(stdinout, Length(Line), 0);

WriteString(stdinout, ' characters with ', 0);

Writetn(stdinout);
Writelnt(stdinout, DigitCount, 2);
WriteString(stdinout, ' digits', 0);
Writeln(stdinout);
Writelnt(stdinout, UpperCount, 2);

WriteString(stdinout, ' upper case letters', 0);

WritelLn(stdinout);
Writelnt(stdinout, LowerCount, 2);

WriteString(stdinout, ' lower case letters', 0)

’

D H

(* MODIFIED

(* MODIFIED

(* MODIFIED

(* MODIFIED

*)

*)

*)

*)

TRANSLATOR

TRANSLATOR Manual Adaptation

WriteLn(stdinout);
WriteInt(stdinout, Others, 2);
WriteString(stdinout, ' other characters', 0);
WriteLn(stdinout);
WriteLn(stdinout);
Writestring(stdinout, 'Want to type another Line? (Y/N) ', 0);
ReadBuffer(on);
ReadChar(stdinout, Answer);
ReadLn(stdinout);
ReadBuffer(off);
WriteLn(stdinout);

UNTIL Answer <> 'Y!;

END sets.

2.4 Strings

Pascal and Modula-2 implement strings in a very different way. This implies a fundamentally
different mechanism for keeping track of strings that will be outlined in the following sections. If you
make extensive use of the Turbo Pascal data type ‘string[x]’, read these notes carefully and apply to
the translated Modula-2 code all the needed modifications before compiling, linking and running
your program.

To help you pinpoint all the places in your program where you use strings, you can run the Translator
with the option ‘mark String’ at YES. The generated Modula-2 code will contain the flag ?3 in ALL
places where you use or refer to a string, so that you can have an easy way to detect these places and
to modify your code if needed.

2.4.1 Differences Between Pascal and Modula-2

In Pascal you can declare strings with ‘n’ characters as STRING|[n]. The element at position 0 of the
string contains the length of the string. The first valid character in the string starts from index 1 up to
index n. The maximum size of a Turbo Pascal string is 255 characters.

55

Manual Adaptation

TRANSLATOR

It is possible to know the length of your string by accessing the index 0 and modifying it, so you can
write statements such as:

len := ord(mystring{0l);

(* get the length *)

for i := 1 to ord(mystring(0]1) do (* loops on all valid element *)

mystringf0] := chr(40);

(* set length to 40 chars *)

In Modula-2 THERE IS NO predefined identifier ‘string’, thus strings are implemented as an array

of characters. In an ARRAY [x.y] OF CHAR, elements are stored starting from the lowest index of
the array (x) up to the highest (y). The maximum size of a string or array of characters is not limited
to 255 like in Turbo Pascal, but can be up to 65535 characters.

If the number of valid characters fills the whole array,the string is not terminated. Otherwise, strings
shorter than the array are terminated by storing the binary value 0 after the last valid element (like in
the C language). In other words, starting from the lowest index, an ARRAY OF CHAR is
terminated when you encounter an element with the binary value zero or reach the highest index.
This implies that binary zero is NOT a valid character.

VAR

mystring: ARRAY [0..3] OF CHAR;

BEGIN
mystring[0)
mystring[1]
mystring[2]
mystring[3]

mystring :=

mystring[0] :
mystring(1] :=

mystring[21

mystring :=

56

1= AL
:= 1B!;
1= 10
1= 1IDY;
'ABCD';

(*

(*

(*

(*

(*

loading mystring with 'ABCD®

string fully loaded no need to terminate

another way to load mystring with 'ABCD'

loading mystring with 'AB' only
string NOT fully loaded, terminated by OC

another way to load mystring with 'AB!

*)

*)

*)

*)

*)

*3

TRANSLATOR Manual Adaptation

(* here the termination is done by the code *)
(* generated by the compiler *)

NOTE:

» In Modula-2 OC is different from 0 (zero) or 0H. Modula-2 uses strong type checking so the
correct way to represent a CHAR with binary value Q is to use the its octal representation
followed by the letter C (C for CHAR). For example, to load a CHAR with the letter ‘B’
you can use both "B" or 102C, but not 42H because this is NOT a CHAR constant.

mystring[0] :

= IAI;
mystring[1] == 102C; (* correct B *)
mystring[21 := 43H; (* wrong *)

mystring[3] := 33C; (* correct ESCAPE *)

= An empty string is represented both by oc or ' :

Concat ('!, mystring,...);
mystring := 0C; (* empty string *)

= Single character strings can be considered both as an ARRAY OF CHAR Or as a single CHAR.
‘A’ is an ARRAY [0..0] OF CHAR as well as a CHAR.
 is an empty string, NOT a CHAR.

0C is a CHAR and also represents an empty string.

57

Manual Adaptation TRANSLATOR

2.4.2 How Strings are Translated From Pascal to Modula-2

Turbo Pascal strings are translated into an array of characters, with the lower index always zero (0).
(* Pascal *)

myString : string(10]1;
otherString : string[maxStrl;

(* Modula-2 *)
myString : ARRAY [0..10-1] OF CHAR;
othersString : ARRAY [0..maxStr-1} OF CHAR;

Starting the character string with an index of 0 (instead of 1) is necessary so the compiler can perform
automatic string assignments, such as:

VAR
Title: ARRAY [0..63]1 OF CHAR;

Title := 'Gone with the wind';

In this case, Title[0] stores ‘G’, Title[1] stores ‘0’ and so on. The last character ‘d’ is stored in
Title[17] and the compiler will properly terminate the string by storing 0C in Title[18]. For string
procedures to operate correctly, this is mandatory.

Since in Modula-2 a valid string starts with an index 0, and not 1 as in Turbo Pascal, some re-editing
of your program is required to insure correct behavior at run time. For example, this is necessary if
you use FOR statements or loops starting from index 1, or if you use string functions like Pos or
Delete.

Remember: In your Turbo Pascal program the valid part of the String starts at index 1, in Modula-2
it starts at Index 0.

58

TRANSLATOR Manual Adaptation

Generally, you should pay attention to statements which directly address the element at index 0 of a
string. For example, storing the length of a string in a variable:

X = myString[0];

or loading the actual length of a string:
myStringl[0] := 10;

These statements MUST be modified.

Also if you address the elements of a string using a loop statement (FOR, WHILE, REPEAT),
remember to start from element 0 and terminate either when you reach the element with value 0C or
at the physical end of the array, element Max-1.

Here are some examples of string manipulation:
(* Pascal *)

type MaxString: string[100]1;
function LoadStr(Len: Integer; var Str: MaxString);
(* if in Str there is an '*' loads Str with Len characters '*' *)
var 1i: integer;
found: boolean;
begin
found := FALSE;
for i := 1 to ord(Str{01) do
if Str[i]l = '*¢ then found := TRUE
if found then

begin
for i := 1 to Len do
begin
Strli]l := ¥,
end;
Str[0]1 := Chr(Len);
end
end;

59

Manual Adaptation TRANSLATOR

(* Modula-2 manually modified *)
TYPE MaxString: ARRAY [0..991 OF CHAR;
PROCEDURE LoadStr(lLen: INTEGER; VAR Str: MaxString);
(* if in Str there is an '*' loads Str with Len characters '*! *)
VAR i: INTEGER;
found: BOOLEAN;

BEGIN
found := FALSE;
iz:=0;
WHILE (i <= HIGH(Str)) AND (* modified to detect *)
(str[il # 0C) DO (* end of string *)
IF Str[il = '*' THEN found := TRUE; END;
INCCi);
END;
IF found THEN
FOR i := 0 TO Len-1 DO (* modified 1->0, Len->Len-1 *)
Str[i]l := %!
END;
Strilen] := 0C; (* modified *)
END;

END LoadStr;

(* Modula-2 manually modified, alternative solution using module Strings *)
FROM Strings IMPORT Length;
TYPE MaxString: ARRAY [0..99]1 OF CHAR;
PROCEDURE LoadStr(Len: INTEGER; VAR Str: MaxString);
(* if in Str there is an '*' loads Str with Len characters '*! ¥)
VAR i: INTEGER;
found: BOOLEAN;
actuallen: CARDINAL; (* used to hold the actual length *)

60

TRANSLATOR Manual Adaptation

BEGIN
found := FALSE;
actuallen := Length(Str); (* modified to use module Strings *)

FOR 1 := 0 TO actuallen DO
IF Strlil = '*' THEN found := TRUE; END;
END;
IF found THEN
FOR i := 0 TO Len-1 DO (* modified 1->0, Len->Len-1 *)
Str[il = %!
END;
strlLen] := OC; (* modified *)
END;
END LoadStr;

2.4.3 String Operator ‘+’ in Modula-2

Modula-2 does not allow you to use the operator ‘+’ to concatenate two or more strings or characters.
The correct way to perform such an operation is to use the procedure ‘Concat’ from module Strings

(see the section on Concat). These modifications should be done manually, for example:

(* Pascal *)

var str1, str2, str3: string[100];

begin
str1 := 'Release!;
str2 := 'DOS!;
str3 :=str1 + ' 1.0 ' + str2 + "M;

(* the result is the string 'Release 1.0 DOS' with <CR> at the end *)

(* Modula-2 manual translation *)
FROM Strings IMPORT Concat;

VAR str1, str2, str3: ARRAY [0..99] OF CHAR;

61

Manual Adaptation TRANSLATOR

BEGIN
stri := 'Release!’;
str2 := 'DOS';
str3 := ' (* added to make an empty string *)
Concat(str1, * 1.0 ', str3); (* loads stri+' 1.0 ! into str3, *)
Concat(str3, str2, str3); (* here adds str2 to str3 and *)
Concat(str3, 15C, str3); (* here adds the character "M to str3 *)

(* the result is the string 'Release 1.0 DOS' with <CR> at the end *)

Note that the Modula-2 procedure Concat from module Strings is VERY DIFFERENT from the
Turbo Pascal function Concat. Turbo Pascal Concat is a function that takes a variable number of
perameters and returns the concatenated string while Modula-2 Concat takes two source strings s1
and s2 (first and second parameter), concatenates them and puts the result in string s3 (third
parameter). Modula-2 Concat does not allow a variable number of parameters and returns the result,
as the third parameter of the procedure. For these reasons each ‘+’ operator in the expression should
be changed into a call to Concat. Also if there is no string variable available to hold the result, a local
temporary variable should be used.

(* Pascal *)
begin
write(_'Hello world! + "G);

(* the string ‘Hello world! goes on the screen plus the bell rings *)

(* Modula-2 *)

FROM Strings IMPORT Concat;

VAR tenpString : ARRAY [0..13] OF CHAR; (* temporary string *)

62

TRANSLATOR Manual Adaptation

BEGIN
Concat('Hello world', 07C, str3);
WriteString(str3);

(* the string 'Hello world!' goes on the screen plus the bell rings *)

2.4.4 String Expression in Modula-2

Modula-2 does not allow you to use the relational operators ‘=’, ‘<’, ‘>’ ‘<=, *>=’, ‘<>’ between
structured data types (arrays and records). For strings, the right way to perform such an operation is
to use the procedure ‘CompareStr’ from module Strings. This function compares s1 and s2 (first and
second parameters) and returns -1 if s1 is less than s2, 0 if s1 equals s2, +1 if s1 is greater than s2.

These modifications should be done manually, for example:

(* Pascal *)
;;; str1, str2, str3: string(100];
;;;in

if str1 = str2 then ...

;;.strz >= str3 then ...

if str1 < str3 then ...

(* Modula-2 *)
FROM Strings IMPORT CompareStr;

VAR str1, str2, str3: ARRAY [0..99] OF CHAR;

63

Manual Adaptation TRANSLATOR

BEGIN
IF CompareStr(str1, str2) = 0 THEN ...
IF CompareStr(str2, str3) >= 0 THEN ...

IF CompareStr(str1, str3) = -1 THEN ...

Further examples on string expressions are in the files EXPR.PAS and EXPR.MOD.
= The string assignment operations simply have been copied. Some will cause the compiler to
generate error messages and user intervention is needed (see section on Strings).
Str4 = Str1; (* not valid because of different type *)
should be changed to:
Assign(Str1, Str4);

» The string expressions simply have been copied. This will cause the compiler to generate
error messages and user intervention is needed (see section on Strings).

Str3 := 'Hello ‘+'There!';
Str3 := Ch1+Stri;

should be changed to:

Concat('Hello', *There', Str3);
Concat(Ch1, Str1, Str3);

64

TRANSLATOR Manual Adaptation

» The boolean expression using the string is also copied, similar to the above string
expressions. This will cause the compiler to generate error messages and user intervention is
needed (see section on Strings).

Flag := Str2 = 'Sally';
should be changed to:

Flag := CompareStr(str2,'Sally!) = 0;

2.4.5 Control Characters Used as String Constants

Modula-2 does not allow you to use special control character representation to be embedded in
strings. In these cases, the strings should be broken down into components and then you use the
Concat function or the assign statement.

(* Pascal *)
var stri: strings([1001;
begin
strl == 'This is another line of text'”M"J;

write("M'Hello world'~G);

(* Modula-2 *)
VAR str1: ARRAY [0..99]1 OF CHAR;
tempString : ARRAY [0..12) OF CHAR; (* temporary string *)
BEGIN
str1 := 'This is another line of text!;

stri281 := 15C; (* "M as a character in octal representation *)
str29] := 12C; (* ~J as a character in octal representation *)
str[30] := OC; (* string terminator *)

65

Manual Adaptation TRANSLATOR

tempString[0] == 15C; (* ”M as a character in octal representation *)
tempString(1] := OC; (* string terminator *)

Concat(tempString, 'Hello world!, tempString);

tempString[12]1 := 07C; (* ~G as a character in octal representation *)

(* there is no need to terminate this array with 0C because the string *)
(* fills the whole physical space of the array *)

write(tempString);

2.4.6 Turbo Pascal and Modula-2 Standard String Functions

The module String of LOGITECH MODULA-2/86 provides a complete set of string handling
procedures. Most of these procedures are similar to their counterpart in Turbo Pascal, but some of
them are slightly different (see Appendix A for more details and the definition module String).

s Length
Same as Modula-2, the resuit is always positive and could be stored in a CARDINAL
variable.

= Delete, Insert
Same as Modula-2, but be careful to change the starting position because in Modula-2 the
string starts from index 0. Generally, you should assume that the Modula-2 Pos is equal to
TurboPascal Pos-1. For example, if Str has the value 'ABcDEFG!, t0 remove 'BCDE':

in Turbo Delete(Str, 2, 4);
in Modula-2 Dpelete¢str, 1, 4);

while if Str has the value 'ascperG' and you want the value 'ABXXCDEFG!:

in Turbo Insert('XX', str, 3);
in Modula-2 Insert('xx', str, 2);

Remember that in Modula-2, the first element of a string is at position 0.
= Pos

Same as Modula-2, but if the element is not found, Turbo returns 0 while Modula-2 returns
a CARDINAL greater than HIGH(string).

66

TRANSLATOR Manual Adaptation

= Str
Depending on the parameter, Str is translated into IntToStr or RealToStr.

= Val
Depending on the parameter, Val is translated into StrTolInt or StrToReal.

= Copy, Concat
These Turbo Pascal functions are translated into the equivalent Modula-2 procedures, but
require particular attention from the user. Moreover, with the Copy function you may have
the same problems as with Delete and Insert because you must specify a position. Refer to
the sections on Copy, Concat and ParamStr in this chapter.

2.4.7 Functions Returning a String

With Turbo Pascal, you can define a function that returns a string. LOGITECH MODULA-2/86
Version 2.x does not allow you to return structured data types from a function, thus you cannot
define a function returning an ARRAY OF CHAR. Some examples of Turbo Pascal functions which
return a string are Copy, Concat and ParamStr. If you use them, refer to the sections on Copy,
Concat and ParamStr in this chapter.

If your program declares and uses other functions that return structured data types, you must change
these functions into procedures with an additional parameter, and modify all the function calls into
procedure calls. For more details refer to the section on Functions Returning Strings.

2.4.8 Open Arrays

One of the limitations of Pascal is the strong type checking on strings passed as VAR parameters, in
other words, the length of the actual and formal parameter must match. The Turbo Pascal compiler

directive {$V-} relaxes this type checking, allowing to pass actual parameters with lengths that do not
match the formal parameter length.

Modula-2 allows you more powerful programming techniques using its ‘open arrays’ and the
predefined function HIGH(X). For more information, refer to any introductory book on Modula-2.
Using both features, you can easily build procedures that operate on generic ARRAY OF <type>,
like the following example of a procedure that counts the number of spaces in a generic string:

67

Manual Adaptation TRANSLATOR

(* Modula-2 *)
PROCEDURE CountSpaces(str: ARRAY OF CHAR): CARDINAL;
VAR
i, count: CARDINAL;
BEGIN

count := 0;

i:=0;

WHILE (i <= HIGH(str) AND (str{i] # OC) DO
IF (strli]l = ' ') THEN INC(count); END;
INCCi);

END;

RETURN count;

END CountSpaces;
VAR
myStr: ARRAY [10..90] OF CHAR;

BEGIN

Assign('This is a test string!, myStr);
numberOfSpaces := CountSpaces(myStr);
numberOfSpaces := CountSpaces('This is a second test string');

In this example, str is an ‘open array’. The formal parameters ‘str’ will be bound to an actual
parameter that is a one-dimensional array of the specified type. The index type of the array is not
known. In the body of the procedure CountSpaces there is no need to know the index type of the
actual parameter as long as there is a way to access each element of the array. Modula-2 provides a
way by adopting the rule that a formal parameter of an open array type is assumed to have an index
type that is a subrange of the cardinal type, beginning at zero (0), while the maximum index in the
range is given by the predefined function HIGH(X), where x is the open array parameter.

The test (i <= HIGH(str)) is used to detect the physical end of the array, in fact HIGH(str) returns
the high index for str with the low index assumed to be zero. The test (str[i] # 0C) detects the logical

end of the string. The 0C marker indicates that the rest of the array until the physical end does not
contain valid data.

68

TRANSLATOR Manual Adaptation

A complete example on how to transform a program from Turbo Pascal into a Modula-2 program

using open arrays, is on files STAR.PAS (Pascal Version), STAR.MOD (Modula-2 translation) and
STAR.MO1 (Modula-2 modified to include open arrays).

2.5 User Defined Functions Returning a String

‘With Turbo Pascal you can define a function that returns a string. LOGITECH MODULA-2/86
Version 2.x does not allow you to return a structured data type from a function, thus you cannot
define a function returning an ARRAY OF CHAR. If your program defines other functions that
return structured data types, you will have to change these functions into procedures with an
additional parameter, and modify all the function calls into procedure calls. For example:

(* Pascal *)

type MaxString = string [255];
var str50: MaxString;
function BuildStr (Len: Integer): MaxString;
(* returns a string with Len '1' %)
var l: integer;
begin

BuildStr[0] := Chr(Len);

for I := 1 to Len do

BuildStr[I]l := "1¢;

end;

str50 := BuildStr(10);

Write(Buildstr(10));

69

Manual Adaptation

70

(* Modula-2 after translation *)

TYPE

MaxString = ARRAY [0..255-1] OF CHAR;
VAR

str50: MaxString;

(* returns a string with Len "1t *)

PROCEDURE BuildStr(lLen: INTEGER): MaxString 2?11 ; <--- translator flag

VAR
I: INTEGER;
VAR BuildstrResult: MaxString;
BEGIN
BuildStrResult[0] := CHR(Len);
FOR I := 1 TO Len DO
BuildstrResult[1] := *I!
END;
RETURN BuildStrResult
END Buildstr;
str50 := BuildsStr(10);

WriteString(stdinout, BuildStr(¢10), 0);

Fekkkdekkdedkkdedkkdededededededkdedededededededed ddededekdede e hde Rk kR ik kKKK KKK KKK I *RdRRKhkdkkkr

NUMBER OF 2 = 1

Please refer to the Translator manual for detailed explanations and solutions

20

211

system problems

to be changed in a procedure call

TRANSLATOR

TRANSLATOR Manual Adaptation

The Translator will mark the procedure heading with ‘?11’ because the function is returning a string.
The steps to modify this example to generate a correct Modula-2 program involve both the change
from a function to a procedure, including the change from function calls to procedure calls, and
changes due to the string handling in the procedure BuildStr itself:

From Function to Procedure (a):

= Modify the procedure heading adding an additional VAR parameter to hold the return value
and removing the function return type.

= Remove the local variable <functionName>Result automatically generated by the Translator
for each function. There is no need for this variable given that an additional parameter has

been added.

= Remove the RETURN statement at the end of the function. There is no need for it in
procedures.

= Modify the call to BuildStr. If the function is assigned to a variable, just move the variable as
the return parameter function. If the function is the string parameter of another procedure

X you need a temporary variable to hold the result of the function, and then you can use this
temporary variable as a parameter for the procedure X.

String handling (b):

= Asexplained in the String section of this chapter, the way to handle strings in Modula-2 is
very different from Turbo Pascal.

= In Modula-2, your string of length Len is stored in an ARRAY OF CHAR with the first
element at index 0 up to the last element at index Len-1.

s The same string is terminated by the character 0C at index Len (if the length of the string is
shorter than the size of the array).

71

Manual Adaptation TRANSLATOR

(* Modula-2 after translation and manual modification*)
TYPE
MaxString = ARRAY [0..255-11 OF CHAR;

VAR
str50: MaxString;

VAR
tempStr : MaxString; (* added because of Write call later (a) *)

(* returns a string with Len "1 %)

PROCEDURE Bui ldstr(Len: INTEGER;

VAR BuildStrResult: MaxString); (* modified (a) *)
VAR

: INTEGER;

(* VAR BuildStrResult: MaxString; removed because change in heading (a) *)
BEGIN

(* BuildStrResult[01 := CHR(Len); removed because of string handling (b) *)

FOR I := 0 TO Len-1 DO (* modified because of string handling (b) *)
BuildStrResult{I] z= 1
END;
BuildStrResult[Len] := 0C; (* added because of string handling (b) *)
(* RETURN BuildstrResult removed because of change in procedure (a) *)

END BuildStr;

Buildstr(10, str50); (* modified because of change in procedure (a) *)

BuildStr(10, tempStr); (* modified using a temporary variable *)
WriteString(stdinout, tempStr, 0); (* because of change in procedure (a) *)

2.6 Copy, Concat, ParamStr Functions and the Flag 21UNDEF

The Modula-2 definition of Copy, Concat (module Strings) and ParamStr (module TParameter) is
different from the Turbo Pascal version. LOGITECH MODULA-2/86 Version 2x does not allow
you to return structured data types from a function, thus you cannot define a function returning a

string that is an ARRAY OF CHAR.

72

TRANSLATOR Manual Adaptation

For this reason, the definition of these three functions has been changed in Modula-2 into three
procedures with an additional VAR parameter that holds the string to be returned. When Copy,
Concat and ParamStr are used as the rightmost part of an assignment, the translation will be correct,
while if they are used as parameters of other functions, some manual modification is needed.

Moreover, the Turbo Pascal function Concat allows a variable number of parameters, a feature not
available in Modula-2. A Turbo Pascal program using a Concat with more than two parameters is
translated with a series of Modula-2 Concat which produce the same result. With the function Copy,
you must specify a position and this can create the same problems as described for the Delete and
Insert function in the section on Strings.

Using Copy, Concat and ParamStr in assignments does not create problems. The Translator will
generate the correct code. It will use the leftmost part of the assignment as the procedure result
parameter:

(* Pascal *)
var s1, s2, s3: stringl10];

str: string[255];
begin

str := copy(sl, 1, 2);

str := concat(s1,s2);

str := concat(s1, 'abc!, s2, "G, s3);

str := paramstr(5);

In these cases, the code produced by the Translator is correct except for the modifications needed to
the position parameter of Copy :

(* Modula-2 after translation *)

FROM Strings IMPORT Copy, Concat;
FROM TParmater IMPORT ParamStr;

73

Manual Adaptation TRANSLATOR

VAR
s1, s2, s3: ARRAY [0..10-11 OF CHAR;
str: ARRAY [0..255-1]1 OF CHAR;
BEGIN

Copy(s1, 0, 2, str); (* modify starting position from 1 to 0 *)

Concat(s1, s2, str);
Concat(s1, 'abc', str);
Concat(str, s2, str);
Concat(str, 7C, str);
Concat(str, s3, str);

Paramstr(5, str);

Using Copy, Concat and ParamStr as parameters of functions will produce Modula-2 code with the

flag 711. The code should be modified with the introduction of temporary variables used to hold the
procedure result:

(* Pascal *)

var s1, s2, s3: string(10];
str: string[2551;

begin

;;;te(copy(s1, 1, 2));
;;;te(concat(s1,52));
;;;te(concat(s1, ‘abc', s2, "G, s3));
;;;te(paramstr(S));

74

TRANSLATOR Manual Adaptation

In these cases, the code produced by the Translator contains flag ?11 and manual modification is
needed:

(* Modula-2 after translation *)
FROM Strings IMPORT Copy, Concat;
FROM TParmater IMPORT ParamStr;
VAR
s1, s2, s3: ARRAY [0..10-11 OF CHAR;
str: ARRAY [0..255-1] OF CHAR;
BEGIN
WriteString(stdinout, 2?11 Copy(s1, 1, 2, 21UNDEF), 0);
WriteString(stdinout, ?11 Concat(s1, s2, ?1UNDEF), 0);
Writestring(stdinout, 2?11 Concat(s1, ‘abc', ?1UNDEF);
211 Concat(?1UNDEF, s2, ?1UNDEF);
211 Concat(?1UNDEF, 7C, ?1UNDEF);
211 Concat(?1UNDEF, s3, ?1UNDEF);
. 0);

WriteString(stdinout, ?11 ParamStr(5, ?1UNDEF), 0);

The flag 711 indicates that the following function is now a procedure and cannot be used as

parameter (in this case for WriteString), thus the first step is to remove these procedures from the
parameter list.

The flag 21UNDEEF indicates that a variable is expected in that position, but none is available. The

user should declare a temporary variable of the type expected by the procedure and use that variable
where 21UNDEEF indicates.

75

Manual Adaptation

The manually modified version of the Modula-2 code is as follows:

(* Modula-2 manually modified *)

FROM Strings IMPORT Copy, Concat;

FROM TParmater IMPORT ParamStr;

VAR

s1, s2, s3: ARRAY [0..10-11 OF CHAR;
str: ARRAY [0..255-1] OF CHAR;

tempStr: ARRAY [0..254] OF CHAR;

BEGIN

(* added temporary string

(* modify starting position from 1 to 0 and

Copy(s1, 0, 2, tempStr);

WriteString(stdinout, tempStr,

Concat(s1, s2, tempStr);

WriteString(stdinout, tempStr,

Concat(s1, 'abc!, tempStr);

Concat(tempStr, s2, tempStr);
Concat(tempStr, 7C, tempStr);
Concat(tempStr, s3, tempStr);

WriteString(stdinout, tempStr,

ParamStr(5, tempStr);

WriteString(stdinout, tempStr,

2.7 Other Data Types
This section looks at the differences in data types found in both Turbo Pascal and Modula-2.

76

(* replace ?1UNDEF
0); (* replace Copy()

(* replace ?1UNDEF
0); (* replace Concat()

(* replace ?1UNDEF

0); (* replace Concat()

(* replace ?1UNDEF
0);(* replace ParamStr()

with
with

with
with

with

with

with
with

tempStr
tempStr

tempStr
tempStr

tempStr

tempStr

tempStr
tempStr

*)

*)
*)
*)

*)
*)

*)

*)

*)
*)

TRANSLATOR

TRANSLATOR Manual Adaptation

2.7.1 Integers, Cardinals and Subranges

Both types represent whole numbers and are stored using the same number of bits. The
CARDINAL type is different from INTEGER in that the leftmost bit is used to contribute to its
value. This contrasts with INTEGERSs where the leftmost bit is used to store the sign. Thus,
CARDINALS have values ranging from zero to twice the range of positive INTEGER values. The
range of a CARDINAL is 0..65535, while for an INTEGER it is -32768..32767.

Modula-2 programmers tend to employ more CARDINALSs than INTEGERS in their software. In
many cases, this is optional. However, there are other instances where shifting from INTEGER to
CARDINAL is necessary to correctly compile a program. One such instance is the use of the ordinal
function ORD. In Turbo Pascal, it returns an INTEGER. In Modula-2 it returns a CARDINAL.
This can create a type incompatibility when mixed with INTEGERSs in an expression. The solution is
to use a ‘cast’ function, in other words, to officially exchange the data type you are using with another
one. For example, use the INTEGER() converter with Modula-2 functions that return
CARDINALs::

(* Pascal *)

type Color = (Red, Blue, Green, Yellow);
const Guess_Color : Color = Red;

var Choice : INTEGER;

begin

if ORD(Guess_Color) = (Choice - 1) then
The Translator produces the Modula-2 code shown below. In this case, you can ignore the comments
before the assignment "GuessColor := Red;". The translation is correct and the Modula-2 compiler

will not flag an error. The compiler finds a type incompatibility in the expression at the IF statement.
The ORD(GuessColor) returns a CARDINAL, while (Choice-1) returns an INTEGER.

77

Manual Adaptation TRANSLATOR

(* Modula-2 translation *)

TYPE

Color = (Red, Blue, Green, Yellow);
VAR

GuessColor: Color;
VAR

Choice: INTEGER;
BEGIN
(* 11! These variables were defined in Turbo Pascal as 'typed constants! *)
(* and were initialized in the program declaration part *)
(* 11! In Modula-2 *‘typed constants' become variables and are initialized *)
* in the module or procedure body part *)

GuessColor := Red;

IF ORD(GuessColor) = (Choice-1) THEN

The solution to the above problem is to convert the logical expression into:

ORD(GuessColor) = (Choice-1) into INTEGER(ORD(GuessColor)) = (Choice-1)

In other cases, you could have a variable or a constant defined as a data type, different from the one
expected as a parameter in a procedure call. You would also have to cast the parameter, as follows:

(* Pascal *)

i := Random(Mem\W [$FFFF:$001);

(* Modula-2 translation *)

i := RandomInt(MemWGet(OFFFFH, OO00H));

78

TRANSLATOR Manual Adaptation

The compiler will find two errors. First, ‘RandomlInt’ expects an INTEGER while ‘MemWGet’
returns a WORD. Second, OFFFFH is an hexadecimal constant with a value greater than 32767 so it
is considered a CARDINAL, while ‘MemWGet’ expects only INTEGERs. The manual modification
of the code will be as follows:

(* Modula-2 manual modification *)

i := RandomInt(INTEGER(MemWGet(INTEGER(OFFFFH), OO00H)));

If you define a variable as a subrange, and you pass it as a VAR parameter in a procedure, you can
generate some incompatibilities. For example:

(* Pascal *)

var keys: 0..100;
begin

read(keys);

(* Modula-2 *)

VAR keys: [0..100]
BEGIN

ReadInt(stdinout, keys);

~ The compiler will produce an error
message for type incompatibility

The solution of ‘casting’ keys with the type function INTEGER() will not work because Modula-2
does not allow you to cast a VAR parameter. The following code is therefore incorrect:

ReadInt(stdinout, INTEGER(keys));

79

Manual Adaptation TRANSLATOR

The correct solution is to introduce a temporary variable to hold the result of the procedure and later
assign it to the actual variable. For example:

(* Modula-2 *)

VAR keys: [0..100]
tempKeys: INTEGER;

BEGIN
ReadInt(stdinout, tempKeys);
keys := tempKeys;

2.7.2 Reals

Reals are supported in Modula-2 as in Turbo Pascal. For a detailed description of the the Real data
type, please refer to the chapter on Real Arithmetic in the LOGITECH MODUIA-2/86 User’s
Guide. If your programs use Reals, we strongly suggest that you study that chapter very carefully to
take advantage of the powerful features LOGITECH provides for Reals, such as 8087/80287 support
and mixed mode libraries.

You should pay particular attention when using a INTEGER/CARDINAL in REAL expressions or
using a REAL in INTEGER/CARDINAL expressions. The Translator will NOT take care for
automatic casting, so the compiler will complain about type incompatibility. To cast this data type,
you cannot use the type identifier, but instead you should use the functions ‘Float’, ‘Trunc’ and
‘Round’ (from module FloatingUtilities). You can call these functions with both positive and
negative numbers, therefore these are more powerful than the standard Modula-2 functions
FLOAT(i) and TRUNC(r) which allow only positive numbers.

80

TRANSLATOR Manual Adaptation

(* Pascal *)
var i: integer;
r: real;

begin

= sqrt(r);
sqrt(i);
= sqre(r);
1= sqrt(i);

- .
.
n

:= hi(r);
hi(i);
:= hi(r);
:= hi(i);

[T B]
"
i

(* Modula-2 with manual modification *)
VAR

i: INTEGER;

r: REAL;

= sqrt(r);

:= sqrt(Float(i));

:= Trunc(sqgrt(r));

:= Trunc(sqrt(Float(i)));

r = FloatChi(Trunc(r)));
r = Float(hi(i));

i = hi(Trunc(r));

i == hi(i);

Further examples on mixed REAL and integer expressions are in files EXPR.PAS and EXPR.MOD.

81

Manual Adaptation TRANSLATOR

2.7.3 Bytes

The predefined Turbo Pascal ‘Byte’ data type is translated into the Modula-2 ‘BYTE’ type imported
from module SYSTEM.

This means that BYTE, as well as WORD, ADDRESS and other data types defined in SYSTEM, is
‘system dependent’. In other words, programs that use this data type could face portability problems
if moved to other systems where the implementation of such types is done differently.

Like the Turbo Pascal ‘Byte’ type, the Modula-2 BYTE occupies 8 bits. However ‘BYTE’ cannot be
involved in basic math operations (+, -, *, DIV, MOD, ...). A variable of type BYTE can only be
assigned or passed as a parameter. If math operations are required either the user defines another
data type as explained later, or the code involved in the operation with BYTE should be changed
using the cast function.

(* Pascal *)
var

a,b,c: byte;
ch: char;

begin
a := $10;
b := ch;
c := 10;
a:=b+c;
ch := a;

(* Modula-2 translation *)
VAR
i: INTEGER;

a, b, c: BYTE;
ch: CHAR;

82

TRANSLATOR Manual Adaptation

BEGIN
a := BYTE(O10H);
b := BYTE(ch);
¢ == BYTE(10);
a := b+c; (* the compiler will find errors here *)
ch := a; (* the compiler will find errors here *)

(* Modula-2 manually modified *)
VAR
i: INTEGER;
a, b, c: BYTE;
ch: CHAR;
BEGIN
a := BYTE(010H);
b := BYTE(ch);
¢ := BYTE(10);
a := BYTE(CHR(ORD(CHAR(b))+ORD(CHAR(C)))); (* MODIFIED *)
ch := CHAR(a); (* MODIFIED *)

If you use the type ‘Byte’ NOT because you want to reserve 8 bits memory space, but because your
programs need a data type with range 0..255, you can declare your own type byte such as ‘TYPE Byte
= [0..255];’ to perform the all the math operations. However, this ‘Byte’ will use a 16 bit
representation and cannot be properly used in byte mapping and other 8-bit oriented, low level
operations.

2.8 WITH and CASE

2.8.1 WITH

Turbo Pascal and Modula-2 implement records in a similar way. Turbo Pascal enables the ‘WITH’
construct to include one or more record names, while Modula-2 permits one record name for each
single ‘WITH’ construct. The Translator takes care of breaking down the Turbo Pascal “WITH’ into
a series of constructs.

Manual Adaptation

(* Pascal *)
type
Home_Address = RECORD
Street, City : string(30]1;
State : stringl2];
2ip s stringl9];
END;
Phone_Numbers = RECORD
Home_Number,
Work_Number : string[7];
END;
Personal_Info = RECORD
Name : string30;
Home : Home_Address;
Phone : Phone_Numbers;
END;

var
Person : Personal_Info;

begin
with Person, Home, Phone do begin
Write(tEnter name ');
readin(Name); writeln;
write('Enter street address ');
readln(Street); writeln;

end

84

TRANSLATOR

TRANSLATOR Manual Adaptation

The Translator generates the following code with no editing required:

(* Modula-2 translation *)
TYPE
HomeAddress = RECORD
Street, City: ARRAY [0.. 30-1]1 OF CHAR;
State: ARRAY [0.. 2-1] OF CHAR;
Zip: ARRAY [0.. 9-1] OF CHAR;
END;

PhoneNumbers = RECORD
HomeNumber, WorkNumber: ARRAY [0.. 7-11 OF CHAR;
END;

PersonalInfo = RECORD
Name: ARRAY [0.. 30-1] OF CHAR;
Home: HomeAddress;
Phone: PhoneNumbers;
END;

VAR
Person: Personallnfo;

BEGIN
WITH Person DO
WITH Home DO
WITH Phone DO
WriteString(stdinout, 'Enter name ', 0);
ReadString(stdinout, Name);
ReadLn(stdinout);
WriteLn(stdinout);
END
END
END

85

Manual Adaptation TRANSLATOR

2.8.2 CASE

Turbo Pascal supports the catch-all ELSE clause, not found in standard Pascal. If there is no ELSE
clause and the examined identifier has a value that does not lie in the range of any CASE option, the
program simply resumes after the CASE statement. The above condition generates a run-time "out-
of-range" error in Modula-2 when range test is ON, thus the ELSE clause is mandatory. The
Translator will insert it when a Turbo Pascal CASE construct with no ELSE clause is encountered.
The inserted ELSE contains a do-nothing empty statement.

2.9 Absolute Statements and Untyped Variables

Both Turbo Pascal and Modula-2 support variables in a very similar way. There are a few exceptions
as discussed below.

Modula-2 supports absolute variables in a different way than Turbo Pascal. Like Turbo, Modula-2
lets you define the address constant where you want the variable to be located, but WITHOUT the
possibility to use standard identifiers (CSeg, DSeg ...) or to define a variable ‘on top’ of another
variable (i.e. they both start at the same address).

The Translator does not perform any automatic translation on absolute variables, instead it will mark
all the occurences of absolute variables and the user must manually translate them.

For simple cases, absolute variables in Tuxbo Pascal can be hand translated by the user. For example,
if we declare the following in Turbo Pascal:

VAR Abs_Name : STRING[80] Absolute $0000:$00EE;
it can be written in Modula-2 as,
VAR AbsName [OOH:EEH] : ARRAY[0..791 OF CHAR;

Note that in Modula-2 the location is defined after the variable name, but before the variable type,
and the address can only by expressed by constants.

86

TRANSLATOR Manual Adaptation

The following is a slightly more complex Turbo Pascal declaration involving a record structure:

VAR Info = RECORD
Name : STRING[301;
Address, City : STRING[40];
State : STRINGI2];
Zip : STRINGI9] Absolute $55;
END;

In Modula-2 the equivalent declaration becomes:

VAR Info = RECORD
Name : ARRAY[0..29] OF CHAR;
Address, City : ARRAY[O0..39] OF CHAR;
State : ARRAY[0..1] OF CHAR;
Z2ip[OH:55H) : ARRAY[0..8] OF CHAR;
END;

More advanced types of absolute variables, where a reference segment address is used (CSeg,
Dseg ...), are not supported by Modula-2.

Turbo Pascal allows absolute variables to be ‘overlayed’ using other variable names as addresses.

For example:

Name : STRING(91;
Long : Byte Absolute Name;
BEGIN

if Long = $FF then ...

The equivalent in Modula-2 requires you to rewrite part of the code because of the change in data
type introduced:

Name : ARRAY [0..8]1 OF CHAR;
Long : POINTER TO BYTE; (* use a POINTER notation *)
BEGIN
Long” := ADR(Name); (* loads the pointer with the address of Name *)
(* this is a new statement to initialize Long *)
IF Long” = FFH THEN ...

87

Manual Adaptation TRANSLATOR

The same technique can be used in procedures with Untyped Variable Parameters:

(* Pascal *)
procedure SwitchVar(Var Alp, A2p; Size: Integer);
type
A = array [1..Maxint]l of Byte;
var
A1: A absolute Alp;
A2: A absolute A2p;
Tmp: Byte;
Count: Integer;
begin
for Count := 1 to Size do
begin
Tmp := A1[Count];
A1[Count] := A2[Count];
A2([Count] := Tmp;
end;
end;

(* Modula-2 translation *)
PROCEDURE SwitchVar(VAR A1p, A2p: ARRAY OF BYTE;
Size: INTEGER);

TYPE
A = ARRAY [1..Maxintl OF BYTE;

VAR
Al: A 26(* absolutelAlp 1 *) ; (* <--- to be fixed 1111 *)
A2: A 26(* absolute[A2p 1 *) ; (* <--- to be fixed 111! *)

Tmp: BYTE;
Count: INTEGER;
BEGIN
FOR Count := 1 TO Size DO
Tmp := BYTE(A1([Countl);
A1[Count] := A2[Count];
A2[Count] := Tmp;
END;
END Switchvar;

88

TRANSLATOR Manual Adaptation

(* Modula-2 user modified version *)
PROCEDURE SwitchVar(VAR Alp, A2p: ARRAY OF BYTE;
Size: INTEGER);

TYPE
A = ARRAY [1..MaxInt] OF BYTE;

VAR
A1: POINTER TO A; (* MODIFIED ... POINTER TO ... *)
A2: POINTER TO A; (* MODIFIED ... POINTER TO ... *)

Tmp: BYTE;
Count: INTEGER;

BEGIN
A1 := ADR(A1pP); (* MODIFIED ... initialization ... *)
A2 := ADR(A2p); (* MODIFIED ... initialization ... *)

FOR Count := 1 TO Size DO
Tmp := BYTE(A1"[Countl); (* MODIFIED ... A1l -> A1" ... %)
A1”[Count] := A2”[Count]; (* MODIFIED ... A1 -> A1%, A2 -> A2" ... %)
A2” [Count] := Tmp; (* MODIFIED ... A2 -> A2" ... *)
END;
END SwitchVar;

2.10 Inline Machine Code

LOGITECH MODULA-2/86 supports inline machine code statements as in Turbo Pascal. In
Modula-2, you use the standard procedure ‘CODE’ (module SYSTEM) with a different syntax and
few limitations, instead of Turbo Pascal ‘inline’ . The Translator takes care to generate correct
CODE statements, separated by commas. CODE does not support the special symbols ‘>’ or ‘<’
available in Turbo Pascal, but the Translator provides a correct translation for them.

The parameters for the CODE are limited to constant expressions with values less than 2585.
Therefore, it is not possible to directly translate variable identifiers, procedure identifiers, function
identifiers, or a location counter reference in the Turbo Pascal inline statement. In Turbo Pascal, this
use of identifiers puts the offset of the item, relative to its base segment, into the code. In Modula-2
the same offset value must be passed as a constant.

To determine the offset of variables, you can use the decoder utility ‘M2DECOD’ or evaluate them

by hand, following the description in the LOGITECH MODUIA-2/86 User’s Guide about the
memory organization.

89

Manual Adaptation TRANSLATOR

For function/procedure identifiers or references to the location pointer, only an iterative step using
the decoder can solve the problem. This solution is very unflexible and dangerous. After any change
of the module, or even a recompilation with a different compiler version, the correctness of the
CODE procedure must be checked.

If your inline code is used to refer to a variable to be loaded into a register, instead of using inline
code you can use the LOGITECH MODULA-2/86 standard procedures GETREG and SETREG
from module SYSTEM. These procedures allow you to set the value of a register from an expression
or to get the value of a register into a variable. For more detailed information, refer to the

LOGITECH MODULA-2/86 User’s Guide. An example of inline code using reference to a variable
is:

(* Pascal *)

var somevar: integer;
begin

inline ($8B/$46/<somevar); (* MOV AX, somevar[BP] *)

(* Modula-2 *)
FROM SYSTEM IMPORT AX, SETREG;

VAR somevar: INTEGER;
BEGIN
SETREG(AX, somevar); (* MOV AX, somevar [BP] *)

2.11 Turbo Pascal Predefined Variables

In Turbo Pascal, the user can access some predefined variables to perform system related operations.
Some of these variables are available in LOGITECH MODULA-2/86 either as variables or as
procedures.

90

TRANSLATOR Manual Adaptation

Predefined files (input, output, con, trm, aux, Ist, kbd, usr) are defined as File variables in module
TKernellO. The variable stdinout is used in all Read/Write operations that do not use a system or
user file variable (i.e readln(ch)).

2.11.1 User I/O Drivers

As in Turbo Pascal, the user can assign the address of self-defined driver procedures to procedure
variables defined in the module TKernellO. The Translator will correctly translate the Pascal code,
but some manual modification should be applied to avoid compiler errors.

In Turbo Pascal the standard variables which contain the address of driver procedures (ConStPtr,
ConlnPtr, ...) are defined as integers. Instead, in Modula-2, we use the more correct approach of
defining them as PROCEDURE VARIABLES (see module TKernelIO in file TKERNELLDEF).
Thus, the loading of these variables should be changed to conform to the new data type.

The user defined procedure to be installed as driver should be compatible with the procedure type
definition of the variable. For example the procedure to be loaded in ’conStPtr’ should be of type
‘StatusProc’, that is a function returning a BOOLEAN, while the procedure for ‘auxOutPtr’ should
be of type ‘WriteProc’, that is a procedure with a CHAR parameter passed by value.

Here is a sample of translation:
(* Pascal *)

function Userln: char;
var ch: char;
begin
read(ch);
userin := ch;
end;

function UserOut(ch: char);
begin

write(ch);
end;

91

Manual Adaptation

begin
usrinptr := ofs(Userin);
usroutptr := ofs(UserOut);

(* Modula-2 translation *)
FROM MemeryOperations
IMPORT FillChar, Move, Hi, ...

Dseg, SSeg, MemAvail;

PROCEDURE UserIn(): CHAR;
VAR
ch: CHAR;
VAR UserlInResul t:CHAR; *
BEGIN
ReadBuffer(on);
ReadChar(stdinout, ch);
ReadBuffer(off);
UserInResult := ch;
RETURN UserlInResult;
END UserlIn;

PROCEDURE UserOut(ch: CHAR);

BEGIN
WriteChar(stdinout, ch, 0);

END UserOut;

BEGIN
usrinPtr := Ofs(ADDRESS(Userin()));
usrOutPtr := Ofs(ADDRESS(UserOut));

92

(* there is no need for this import *)
(* if the call to '0fs' procedure is *)
(* removed in the body *)

this procedure could be optimized *)

(* to be modified *)
(* to be modified *)

TRANSLATOR

TRANSLATOR

(* Modula-2 user modified version *)

(* import removed *)

PROCEDURE UserlIn(): CHAR;
VAR
ch: CHAR;

BEGIN (* here we have performed some optimization *)
ReadBuffer(on); (* removing the local variable UserinResult *)
ReadChar(stdinout, ch);

ReadBuffer(off);
RETURN ch;
END Userln;

PROCEDURE UserOut(ch: CHAR);
BEGIN

WriteChar(stdinout, ch, 0);
END UserOut;

BEGIN
usrinPtr := Userln; (* this is the correct initialization *)
usrOutPtr := Userout; (* of procedure variables *)

2.11.2 ErrorPtr

Turbo Pascal allows you to install a user defined error handler to be called in

Manual Adaptation

case of I/O or Run

Time errors. The same feature is available with LOGITECH MODULA-2/86 using a global variable

exported from module TKernellO.

In Turbo Pascal the variable that contains the address of the error handler procedure (errorPtr) is
defined as an integer. Instead, in Modula-2, we use the more correct approach of defining it as a
PROCEDURE VARIABLE (see module TKernelIO in file TKERNELLDEF). Thus, the loading of

this variable should be changed to conform to the new data type.

93

Manual Adaptation TRANSLATOR

The user defined procedure to be installed as an error handler should of type ‘ErrorProc =
PROCEDURE(INTEGER, INTEGER);, that is, a procedure with two parameters, both integers
and both passed by value.

First parameter: The first parameter passed is the error type and number. The most significant byte,
contains the error type, and the least significant byte, contains the error number. The error numbers
(Low Byte of first parameter) are the same as described in Appendices F and G of the Turbo Pascal
Manual with the exception of the following run-time errors:

03 Sqrt argument error

04 Ln argument error

10 string length error

11 Invalid string index

90 Index out of range (* in Modula-2 run time error 90 is mapped *)

(* into run time error 91 *)
FO Overlay not found

These error numbers will never be generated by the LOGITECH MODULA-2/86 Run Time System.

Other Modula-2 run time errors (see type Status in module System) are passed to the error handler
procedure as code F1.

The following error types (High Byte of first parameter) are defined:
0 User Break (Ctrl-C).
1 1/0 error.
2 Run-time error.

In case of a user interrupt (Ctrl-C), the Low Byte is always 1.

Second parameter: The second parameter has been declared for completeness of translation, but is
not used and therefore has no relevance.

94

TRANSLATOR Manual Adaptation

NOTE ON TERMINATION ROUTINE
Error Type 0 and 1: If the implementation of the user error handler includes the ‘halt’ statement (i.c.
translated into ‘Terminate(normal)’) at run time the execution will be as follow:

User Break or 1/0 error occurs

User Error handler and Terminate(xxx) executed
Modula-2 Run Time System epilog

control back to the 0.S.

If the implementation of the user error handler DOES NOT include the ‘halt’ statement (i.e.
translated into ‘Terminate(normal)’) at run time the execution will be as follows:

User Break or 1/0 error occurs

User Error handler executed

Files Library Error handler executed (* Wwill write a message on screen ¥)
Modula-2 Run Time System epilog

control back to the 0.S.

Error Type 2: In case of a Run Time error the LOGITECH MODULA-2/86 will first generate a

Memory Dump (to be analyzed by the Post Mortem Debugger) and after will call the Termination
routines.

95

Manual Adaptation

TRANSLATOR

To avoid a recursive call to the Terminate routine, the user defined error handler should not have
any further call to Terminate (in case of error type 2).

T-Pascal

PROCEDURE Error (...
BEGIN
CASE errorType OF
0 {ctrlCy : ...

1 (ICError) : ...

2 {RunTime} : ...

END;
Halt;
END;

bH

Moduta - 2

PROCEDURE Error (...);
BEGIN
CASE errorType OF
0 (*ctriC*) :
System.Terminate(normal);
| 1 (*IOError*) :
System.Terminate(normal);
| 2 (*RunTime*) :
ver 3

END;

END Error;

LOGITECH MODULA-2/86 allows to install both Initialization and Termination routines (see
module System in the LOGITECH MODULA-2/86 User’s Guide). These routines allow the user to
install procedures that are called before and/or after the execution of a program.

Here is a sample of translation:

(* Pascal *)

procedure error (errno, erraddr

var
errtype : integer;

96

integer);

TRANSLATOR
begin
errtype := errno div 256;
errno := errno mod 256;
case errtype of
0 : writeln(' User Break (Ctrl - C) ');
1 : begin
writeln(' 1/0 error ');
writeln(* error number := ', errno);
end;
2 : begin
writeln{ * Run - time error ');
writeln(' error number := !, errno);
end;
end;
halt;
end;
begin
errorptr := ofs(error);
(* Modula-2 translation *)
FROM MemoryOperations (* there is no need for this import *)
IMPORT FillChar, Move, Hi, ... (* if the call to '0fs*' procedure is *)
ces (* removed in the body *)

ces nes Dseg, SSeg, MemAvail;
PROCEDURE error(errno, erraddr: INTEGER);
VAR
errtype: INTEGER;

Manual Adaptation

97

Manual Adaptation

BEGIN
errtype := errno DIV 256;
errno := errno MOD 256;
CASE errtype OF
0:
WriteString(stdinout, ' User Break (Ctrl - C) ', 0);
WriteLn(stdinout);
| 1:
WriteString(stdinout, ' 1/0 error ', 0);
WriteLn(stdinout);
WriteString(stdinout, ' error number := ', 0);
Writelnt(stdinout, errno, 0);
Writeln(stdinout);
| 2:
WriteString(stdinout, ' Run - time error ', 0);
Writeln(stdinout);
WriteString(stdinout, ' error number := *, 0);
Writelnt(stdinout, errno, 0);
WriteLn(stdinout);
ELSE
END;
Terminate(normal); (* 111 NOTE: this call should be removed from
(* here and placed ONLY for case 0 and 1
(* in case 2 a correct termination is handled
(* by the LOGITECH MODULA-2/86 Run Time System

END error;
BEGIN

errorPtr := Ofs(ADDRESS(error)); (* to be modified *)

(* Modula-2 user modified version *)
(* import removed *)

PROCEDURE error(errno, erraddr: INTEGER);

98

)

*)

*)

TRANSLATOR

TRANSLATOR

VAR
errtype: INTEGER;
BEGIN
errtype := errno DIV 256;
errno := errno MOD 256;
CASE errtype OF
0:
WriteString(stdinout,
WriteLn(stdinout);
Terminate(normal);
| 1:
WriteString(stdinout,
WriteLn(stdinout);
WriteString(stdinout,

' User Break (Ctrl - C) ', 0);

(* here is the right place *)

' 1/0 error ', 0);

' error number := ', 0);

Writelnt(stdinout, errno, 0);

Writeln(stdinout);
Terminate(normal);

| 2:
WriteString(stdinout,
Writeln(stdinout);
WriteString(stdinout,

(* here is the right place *)

' Run - time error ', 0);

' error number := ', 0);

Writelnt(stdinout, errno, 0);

Writeln(stdinout);
ELSE
END;

END error;
BEGIN

errorPtr := error; (* this is the correct initialization *)

(* Terminate removed *)

(* of procedure variables

Manual Adaptation

99

Manual Adaptation TRANSLATOR

2.11.3 Mem, MemW, Port and PortW

The Turbo Pascal predefined variables Mem, MemW, Port and PortW are supported in LOGITECH
MODULA-2/86 by functions and procedures (module MemoryQOperations). Any reference to these
variables is automatically translated into the equivalent procedure call.

The list of these procedures includes:

MemGet : to load a byte from the Mem array into a variable
MemSet : to assign a byte from a variable to the Mem array
MemWGet : to load a word from the MemW array into a variable
MemWSet : to assign a word from a variable to the MemW array

PortGet : to load a byte from the Port array into a variable
PortSet : to assign a byte from a variable to the Port array
PortWGet : to load a word from the PortW array into a variable
PortWSet : to assign a word from a variable to the PortW array

Examples of translations are:

(* Pascal *)
Ptr := Mem[0000:$00811;

(* Modula-2 *)
Ptr := MemGet(0, 81H);

(* Pascal *)
MemW[Seg(Ptr) : Ofs(Ptr)) := Ptr_Location;

(* Modula-2 *)
MemWSet(Seg(Ptr), Ofs(Ptr), PtrLocation);

(* Pascal *)
ch := Port(403;

(* Modula-2 *)
ch := PortGet(40);

100

TRANSLATOR Manual Adaptation

(* Pascal *)
PortW[$56]1 := 10;

(* Modula-2 *)
PortWSet(56H, 10);

Note: An alternative solution to the use of Mem or MemW might be the use of variables at absolute
addresses. Instead of Port or PortW, one could also use the procedures INBYTE, OUTBYTE,
INWORD, or OUTWORD, of module SYSTEM.

2.11.4 HeapTop, Mark and Release

The variable ‘HeapPtr’ is translated into the variable ‘curProcess™".heapTop’ of module System. We
suggest that you study both module System and SYSTEM (yes, they are different!) to know more
about system dependent functions and variables available with LOGITECH MODULA-2/86.

Mark and Release functions are translated into InstallHeap and RemoveHeap from module Storage.
These Modula-2 procedures work in a balanced way, in other words, ReleaseHeap releases the last
heap installed by InstallHeap. Unbalanced use of these procedures produces unpredictable errors.
Revise your code carefully before running it.

For more details on LOGITECH MODULA-2/86 memory organization, refer to the chapter in the
MODULA-2/86 User’s Guide.

2.12 I/O Operations

The Modula-2 language does not define any I/O or file management operations. All I/O is
performed using procedures imported from library modules With a Modula-2 system you get a set of
library modules that implements the I/O operations. The LOGITECH MODULA-2/86 Base
Language System comes with such modules (for example, InOut, FileSystem, Terminal, Directories,
DiskDirectories). An additional example of a library module implementing simple MS-DOS oriented
file management routines is the module FilelO. FileIO is available as example in full source format
(file FILEIO.DEF FILEIO.MOD) in the Translator diskette.

101

Manual Adaptation TRANSLATOR

With the Translator, you receive an additional set of Modula-2 library modules, some of which
implement I/O operations similar to the ones already performed by modules of the Base Language
System, but with the same interface as used in Turbo Pascal. For example, to open a file, instead of
learning the specifications of procedure ‘Lookup’ from ‘FileSystem’, you can use the more familiar (to
Turbo Pascal users) sequence of procedures ‘Assign’ and ‘Reset’ from module “TFileIO’.

Screen oriented operations are defined in module ScreenHandler.
File management procedures are defined in five modules:

= TKernellO
File type definition, predefined files, device I/O, compiler directives, error handler pointer
s TFileIO
Operation on the entire file (all kinds of files)
n TTextIO
Formatted I/O (text files)
s TReallO
Formatted I/O for Reals (text files)
= TBinaryIO
Operations on files of records, and untyped files

The additional module ‘CMMNFiles’ contains internal common data structures and procedures used
by the previous modules, but not accessible to the end user.

This set of library modules supports the Turbo Pascal’s three kinds of files:

m Text file, equivalent to FILE OF CHAR.
» File of records, equivalent to binary file.
= Untyped files, also equivalent to binary file.

The Translator takes care to generate the correct Modula-2 procedure calls for each Turbo Pascal file
management operation. The following three different file types are mapped into the unique file type
‘File’ from ‘TKernelIO’. The Translator keeps track of the parent Turbo Pascal file type in further
operations. It also takes care to produce correct Modula-2 procedure calls in the presence of Turbo
Pascal calls with a variable number of parameters. For more details, refer to Appendix A with the
complete procedure mapping schemata used by the Translator.

102

TRANSILATOR Manual Adaptation

» When reading from the standard input, all the editing facilities available in Turbo Pascal
(ESC, DEL, BACKSPACE, Ctrl-D, Ctrl-X, ...) are supported.

= Read and Write operations on standard input/output files are translated using the
predefined standard input/output file variable ‘stdinout’.

= Consecutive Read operations from the standard input file should be preceded by
‘ReadBuffer(on);’ and terminated by ‘ReadBuffer(off);” to ensure correct buffering. For
example:

(* Pascal *)
var a, b: integer;
c: char;
begin
read(a,b,c); (* using standard input *)

(* Modula-2 *)

VAR a, b: INTEGER;
c: CHAR;

BEGIN
ReadBuffer(on);
ReadInt(stdinout, a);
ReadInt(stdinout, b);
ReadChar(stdinout, c);
ReadBuffer(off);

The following demonstrates the use of files. In the distribution diskette you will find three example
programs using files written in Turbo Pascal and their equivalent translated and modified versions in
Modula-2 (files WORD.PAS, WORD.MOD, PAGE.PAS, PAGEMOD, LOGITEL.PAS,
LOGITEL.MOD).

103

Manual Adaptation TRANSLATOR

The Turbo Pascal program ‘word’ requests the user for a text filename and a number of words to be
searched for in that file. The program displays the text file and counts the number of times the words
occur in the text. The Translator will translate the program correctly, but because the program uses
the function Pos (see section on Strings), you need to modify it. The Modula-2 file WORD.MOD
contains the modified version with comments inserted to indicate where the program was edited.
The Turbo Pascal program ‘page’ prints paginated textfiles. The program prompts the user for the
filename and the number of lines per page. The version produced by the Translator (file
PAGE.MOD) is correct.
The next example deals with a larger program. The program ‘logitel’ is a very simple motel
management system. It demonstrates the use of typed binary files and screen control. The Logitel
motel has one hundred rooms. The clerk sitting at the main desk uses this program to check guests
in and out, to add expenses and to look at the status of a particular room. The Translator generates
a Modula-2 version that requires few modifications.
In Turbo Pascal null string assignments are performed by statements such as:

(* Pascal *)

Name := '!;

if Filename = '! then ...

The equivalent Modula-2 form is as follows:
(* Modula-2 *)
Name{0] := OC;

IF Filename[0] = OC THEN ...

The Modula-2 file LOGITEL.MOD contains the modified version with comments inserted to
indicate where the program was edited.

104

TRANSLATOR Manual Adaptation

2.13 Bit Manipulation Operators ‘AND’, ‘OR’, ‘NOT’, ‘’XOR?’, ‘SHR?, ‘SHL’

Turbo Pascal allows the use of the operators AND, OR, NOT, XOR both for logical operations on
boolean operands and for arithmetic operations on integer operands. These operators perform the
logical operation on each single bit of the operands. For example:

(* Pascal *)

var i, j, k: integer;

begin
i:=0; (*idis 0%)
j = not -15; (* j is 14 %)
k := not i; (* k is -1 %)
i := 12 and 22; (* i is &4 %)
ji=jor7; (* j is 15 *)

The Modula-2 language supports the operators AND, OR, NOT only for logical operations on
boolean operands. The logical operator XOR can be substituted with a sequence of AND, OR,
NOT.

(aXORb) isequivalentto ((NOT a ANDb) OR (a AND NOT b))

The use of AND, OR, NOT, XOR for bitwise arithmetic operations on integer operands is not
allowed in Modula-2. To overcome this limitation, these operators are implemented as functions
‘And’, ‘Or’, ‘Not’, ‘Xor’ in module MemoryOperations. In the same module, you will find two
additional bitwise functions ‘Shl’ and ‘Shr’ to completely support the Turbo Pascal functionalities.

‘When the Translator encounters the operators XOR, SHL, SHR not available in Modula-2, it will

mark them with the flag ?9. If you use AND, OR, NOT as arithmetic operators the Translator will
not mark them, but the compiler will issue a compiler error.

105

Manual Adaptation TRANSLATOR

If, in your Pascal program, you are using the operator XOR as a logical operator, you will have to
modify your program as explained before. If you are using the operators for bit manipulation, you
need to make changes on the translated version to generate a correct Modula-2 program.

(* Pascal *)

var i, j, k: integer;
begin

i = (i and]) or (k shr 3);

(* Modula-2 *)
FROM MemoryOperations IMPORT And, Or, Shr;

VAR i, j, k: INTEGER;
BEGIN

i = Or(And(i,j),Shr(k,3));

2.14 Functions and Procedures

Functions and procedures are very similar in Turbo Pascal and Modula-2. The following sections
note a few important points:

2.14.1 Result of Functions

Modula-2 has dropped the keyword ‘FUNCTION’ and replaced it with PROCEDURE’. In
addition, Modula-2 does not use the function name to hold the return value, instead a local variable
(with the same function data type) must be declared in the procedure body and explicitly returned
when leaving the procedure. The Translator automatically creates a local variable using the
"<functionName>Result" name convention and generates the appropriate "RETURN
<functionName>Result" both at the and of the procedure body and in all the places where the Turbo
Pascal statement ‘Exit’ is called.

106

TRANSLATOR Manual Adaptation

2.14.2 Exit

In Turbo Pascal, this statement is used to exit a routine or a statement block (in the main program).
The Translator converts it according to context. A Turbo Pascal ‘Exit’ in a function is translated into
a ‘RETURN’ followed by the return value, otherwise the Translator produces a simple ‘RETURN’
statement.

2.14.3 Halt

In Turbo Pascal, the ‘Halt’ statement leads back to DOS or to the main Turbo Pascal command
menu. In Modula-2 ‘HALT first performs a post-mortem dump and then exits to DOS. The
Translator transforms the call ‘Halt;’ into the more correct statement ‘Terminate(normal);’ while it
translates ‘Halt(x);’ into ‘SetErrorCode(x);” followed by ‘Terminate(normal);’.

2.14.4 Forward Declarations

A FORWARD declaration is not needed in Modula-2. The language definition allows you to declare
a procedure heading and its block before the declaration of a procedure you are calling. Modula-2
automatically handles mutual calling routines. Thus, the ‘FORWARD’ reference is removed and the
‘shorthand’ routine heading at the body is replaced by the full heading declaration.

2.15 Qverlay, Chain and Execute

Modula-2 programs are not limited to 64K of code. LOGITECH MODULA-2/86 allows you to
build a program with total maximum size of one Megabyte (code plus data). For more details on
module and procedure code and data sizes, refer to the chapter on Memory Organization in the

LOGITECH MODULA-2/86 User’s Guide.

2.15.1 Overlay

Because of these high limits the overlay declaration is ignored by the Translator and is transformed
into a comment. Thus all the procedures will be linked in one executable file (LOD).

If your application still needs an overlay mechanism, you can use the LOGITECH MODULA-2/86
Overlay System. You will find detailed information in the chapter Memory Organization in the
LOGITECH MODUIA-2/86 User’s Guide and in the definition module Program.

107

Manual Adaptation TRANSLATOR

2.15.2 Chain and Execute

These routines were created in Turbo Pascal to overcome the 64K code limitations.

The procedure Chain is not supported by the Translator, so a flag ?1 will be generated. The user
needs to modify the programs to take advantage of the ability to generate large code with
LOGITECH MODULA-2/86.

The procedure Execute is supported by the Translator which generates a call to Execute from module
TExec. The Modula-2 implementation of Execute is more powerful than the Turbo Pascal
implementation, because it allows you to run any PC-DOS/MS-DOS executable program ((COM,
.EXE). The module TExec implements a Turbo Pascal compatible version of Execute while a more
complete interface to run DOS programs is available from module Exec. If you need to run Modula-
2 subprograms/overlay (.LOD) from your main program you should refer to module Program.

108

TRANSLATOR Advanced Software Engineering Using Modula-2

3 ADVANCED SOFTWARE ENGINEERING USING MODULA-2

Modula-2 allows you to implement your application using advanced software engineering
techniques. These techniques include modular software development using library modules,
concurrency using coroutines, data abstraction using opaque types and procedures passed as
parameters. To optimize the benefits of translating your Pascal programs into Modula-2, we
strongly suggest that you study these features of Modula-2 in an introductory book on the
language. (There is a bibliography of books on Modula-2 in an Appendix in your MODUI.A-2/86
User’s Guide.) If you invest the time to learn these techniques, you will develop better modular
code and hence, save development time.

A complete and working example of a library module using some of these advanced features is in
the module FileIO (files FILEIO.DEF, FILE.MOD). This module implements an interface to the
MS-DOS File System and can be used in your application when you need simple and fast file
management routines.

In this chapter we focus on two software engineering techniques: Library Modules and Opaque
Types. The source code of the sample programs used in this chapter is on the diskettes.

3.1 Creating Library Modules

Library modules are the most important feature in the Modula-2 language. In this section we
discuss and demonstrate the creation of such libraries from translated Turbo Pascal programs.
We take a number of different approaches with the same example to show how each approach
works, and how it differs from the other approaches.

3.1.1 From a Turbo Pascal Program to a Single MODULA-2/86 Module

The example we provide deals with a four-function calculator, handling complex numbers
(composed of real and imaginary parts). The program requests that the user enter a basic
operation, or the letter ‘Q’ to quit. Upon typing an operation symbol, the program requests the
real and imaginary parts of the two operands and displays the result. The Translator detects if the
user tries to divide by a zero complex number and consequently, displays an error message. If the
user types a character that is not in the set (‘Q’,'+,"-,**’,"/’) then the Translator performs the
complex addition.

109

Advanced Software Engineering Using Modula-2 TRANSLATOR

Assume that we have written the library of complex operations as part of a complete Turbo Pascal
program. After testing it thoroughly, we want to translate it into a Modula-2 program and then
build a library module. The Turbo Pascal source program is shown below.

The program defines the ‘Complex’ type as a record containing two ‘REAL’ fields that make up a
complex number. The listing shows three procedures and a function to perform the four basic
complex operations. Two additional procedures handle complex I/O.

in file COMPLEXC.PAS:

PROGRAM Complex_Calc;
(* Program to simulate a four-function complex calculator *)

TYPE Complex = RECORD
Rel, (* Real part *)
Imag (* Imaginary part *) : REAL;
END;

VAR C1, C2, C3 : Complex;
Correct : BOOLEAN;
Operation, Dummy : CHAR;

PROCEDURE Add_Complex(C1, C2 : Complex; (* input *)
VAR Result : Complex (* output *));
(* Procedure to add two complex numbers *)

BEGIN
Result.Rel := C1.Rel + C2.Rel;
Result.Imag := C1.Imag + C2.Imag
END;

PROCEDURE Subt_Complex(C1, C2 : Complex; (* input *)
VAR Result : Complex (* output *));
(* Procedure to subtract two complex numbers *)

BEGIN
Result.Rel := C1.Rel - C2.Rel;
Result.Imag := C1.Imag - C2.Imag
END;

110

TRANSLATOR Advanced Software Engineering Using Modula-2

PROCEDURE Mult_Complex(C1, C2 : Complex; (* input *)
VAR Result : Complex (* output *));
(* Procedure to multiply two complex numbers *)

BEGIN
Result.Rel := C1.Rel * C2.Rel - C1.Imag * C2.Imag;
Result.Imag := C1.Rel * C2.Imag + C2.Rel * C1.Imag
END;

FUNCTION Div_Complex(C1, C2 : Complex; (* input *)

VAR Result : Complex (* output *)) : BOOLEAN;
(* Function to divide two complex numbers and return TRUE *)
(* if operation is successful, FALSE for division by zero *)

VAR OK : BOOLEAN;
sumSqr : REAL;

BEGIN
IF (C2.Rel <> 0) OR (C2.Imag <> 0)
THEN BEGIN
OK := TRUE;
SumSqr := SQR(C2.Rel) + SQR(C2.Imag);
Result.Rel := (C1.Rel * C2.Rel + C1.Imag * C2.Imag)
/ sumSqr;
Result.Imag := (C2.Rel * C1.Imag - C1.Rel * C2.Imag)
/ SumSqr
END
ELSE

OK := FALSE;
Div_Complex := OK;
END;

PROCEDURE Read_Complex(VAR C : Complex (* output *));
(* Procedure to read complex number *)

111

Advanced Software Engineering Using Modula-2

BEGIN
WRITE('Enter real part '); READLN(C.Rel);
WRITE('Enter imaginary part f); READLN(C.Imag);
WRITELN;

END;

PROCEDURE Write_Complex(C : Complex (* input *));
(* Procedure to output a complex number *)
BEGIN
WRITELN('Complex number = ',C.Rel,' + i ',C.Imag)
END;

BEGIN (¥---=----ve--- MAIN ---=-c-cecoce- *)
REPEAT
clrscr;
WRITE('Enter operation [Q = quit] ');
READLN(Operation); WRITELN;
Operation := UpCase(Operation);
IF Operation <> 'Q!
THEN BEGIN
WRITELN('Enter first complex number');
Read_Complex(C1);
WRITELN('Enter second complex number');
Read_Complex(C2); WRITELN;
Correct := TRUE;
CASE Operation OF
'+! : Add_Complex(C1, €2, C3);
'-1 : Subt_Complex(C1, €2, C3);
V*1 @ Mult_Complex(C1, €2, C3);
'/t : BEGIN
Correct := Div_Complex(C1, C2, C3);
IF NOT Correct
THEN WRITELN('Divide by zero error ');
END
ELSE Add_Complex(C1, €2, C3);

112

TRANSLATOR

TRANSLATOR Advanced Software Engineering Using Modula-2

END;
IF Correct THEN Write_Complex(C3);
WRITELN; WRITELN;
WRITE('Press <CR> to continue ');
READLN(Dummy); WRITELN; WRITELN;
END;
UNTIL Operation = 'Q';
END.

The Translator converts the above Turbo Pascal program into the following correct Modula-2
program. Note that the position of the comment is different in the Modula-2 program than in the
Pascal program. If the new position is not acceptable, please modify the Modula-2 program
accordingly. As a reminder, in Modula-2, a comment that starts with ‘(*’ ’and ends with ‘*)’, can
be placed at any place in the code and can be nested for many levels.

in file COMPLEXC.MOD:
MODULE ComplexCalc;

FROM FloatingUtilities IMPORT Frac, Int, Round, Float, Trunc;

FROM ScreenHandler
IMPORT ClrEol, ClrScr, Delline, InsLine, GotoXY, WhereX, WhereY,
CrtInit, CrtExit, LowVideo, NormVideo, HighVideo, SetAttribute,
GetAttribute, normalAtt, boldAtt, reverseAtt, underlineAtt,
blinkAtt, boldunderlineAtt, blinkUnderlineAtt, boldBlinkAtt,
reverseBlinkAtt, boldUnderlineBlinkAtt;

FROM TReallO IMPORT ReadReal, WriteReal;

FROM TTextlIO
IMPORT ReadlInt, ReadCard, ReadChar, ReadString, Readln, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, Writeln,
Eoln, SeekEof, SeekEoln;

FROM TKernellO
IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,
conStPtr, conlnPtr, auxInPtr, usrinPtr, conOutPtr, lstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, IOresult, KeyPressed, 10Buffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

113

Advanced Software Engineering Using Modula-2 TRANSLATOR

(* Program to simulate a four-function complex calculator *)

TYPE
Complex = RECORD
Rel, (* Real part *)
(* Imaginary part *) Imag: REAL;
END;

VAR
Ci, C2, C3: Complex;
Correct: BOOLEAN;
Operation, Dummy: CHAR;

(* input *)
(* output *) (* Procedure to add two complex numbers *)

PROCEDURE AddComplex(C1, C2: Complex;
VAR Result: Complex);
BEGIN
Result.Rel := C1.Rel+C2.Rel;

Result.Imag := C1.Imag+C2.Imag
END AddComplex;

(* input *)
(* output *) (* Procedure to subtract two complex numbers *)

PROCEDURE SubtComplex(C1, C2: Complex;
VAR Result: Complex);
BEGIN
Result.Rel := C1.Rel-C2.Rel;

Result.Imag := C1.Imag-C2.Imag
END SubtComplex;

(* input *)
(* output *) (* Procedure to multiply two complex numbers *)

114

TRANSLATOR Advanced Software Engineering Using Modula-2

PROCEDURE Mul tComplex(C1, €2: Complex;

VAR Result: Complex);
BEGIN

Result.Rel := C1.Rel*C2.Rel-C1.Imag*C2.1mag;

Result.Imag := C1.Rel*C2.Imag+C2.Rel*C1.Imag
END MultComplex;

(* input *)
(* output *) (* Function to divide two complex numbers and return TRUE *)
(* if operation is successful, FALSE for division by zero *)

PROCEDURE DivComplex(C1, C2: Complex;
VAR Result: Complex): BOOLEAN;

VAR
OK: BOOLEAN;
SumSqr: REAL;

VAR DivComplexResult:BOOLEAN;
BEGIN

IF (C2.Rel <> Float(0)) OR (C2.Imag <> Float(0)) THEN

OK := TRUE;
sumSqr := (C2.Rel*C2.Rel)+(C2.Imag*C2.Imag);
Result.Rel := (C1.Rel*C2.Rel+C1.Imag*C2.Imag)/Sumsqr;

Result.Imag := (C2.Rel*C1.Imag-C1.Rel*C2.1mag)/SumSqr
ELSE

OK := FALSE
END;
DivComplexResult := OK;

RETURN DivComplexResult
END DivComplex;

(* output *) (* Procedure to read complex number *)

PROCEDURE ReadComplex(VAR C: Complex);

115

Advanced Software Engineering Using Modula-2

BEGIN

WriteString(stdinout, 'Enter real part ', 0);
ReadBuffer(on);

ReadReal (stdinout, C.Rel);

Readln(stdinout);

ReadBuffer(off);

WriteString(stdinout, 'Enter imaginary part ', 0);
ReadBuffer(on);

ReadReal (stdinout, C.Imag);

Readln{stdinout);

ReadBuffer(off);

Writeln(stdinout);

END ReadComplex;

(* input *) (* Procedure to output a complex number *)

PROCEDURE WriteComplex(C: Complex);
BEGIN

WriteString(stdinout, 'Complex number = ', 0);
WriteReal(stdinout, C.Rel, 0, -1);
WriteString(stdinout, ¢ + i ', 0);
WriteReal(stdinout, C.Imag, 0, -1);
Writeln(stdinout)

END WriteComplex;

BEGIN (*------------- MAIN ---=c-cenomnee *)
REPEAT

116

Clrscr;

Writestring(stdinout, 'Enter operation [Q = quit] ',

ReadBuffer(on);
ReadChar(stdinout, Operation);
Readln(stdinout);
ReadBuffer(off);
Writeln(stdinout);

Operation := CAP(Operation);
IF

Operation <> 'Q' THEN

0);

TRANSLATOR

TRANSLATOR Advanced Software Engineering Using Modula-2

WriteString(stdinout, 'Enter first complex number', 0);
Writeln(stdinout);
ReadComplex(C1);
WriteString(stdinout, 'Enter second complex number', 0);
Writeln(stdinout);
ReadComplex(C2);
Writeln(stdinout);
Correct := TRUE;
CASE Operation OF
I+I:
AddComplex(C1, €2, C3)
| l.l:
SubtComplex(C1, C2, C3)
I 1%,
MultComplex(C1, C2, C3)
| I/I:

Correct := DivComplex(C1, C2, C3);

IF

NOT Correct THEN
WriteString(stdinout, 'Divide by zero error !, 0);
Writeln(stdinout)

END;

ELSE
AddComplex(C1, €2, C3)

END;
IF Correct THEN

WriteComplex(C3)
END;
Writeln(stdinout);
Writeln(stdinout);
WriteString(stdinout, 'Press <CR> to continue ', 0);
ReadBuffer(on);
ReadChar(stdinout, Dummy);
Readln(stdinout);

117

Advanced Software Engineering Using Modula-2 TRANSLATOR

ReadBuffer(off);
Writeln(stdinout);
uWriteln(stdinout);
END;
UNTIL Operation = 'Q!;
END ComplexCalc.

3.1.2 How to Create a Modula-2 Library Module

We are now ready to edit the above Modula-2 program to create a library module. In Modula-2,
a module consists of two separate parts: a definition part and an implementation part. The
definition module defines the items exported. These include constants, data types, variables, and
procedures (for procedures, you only need to state the heading). The implementation module
contains local constants, data types, variables and procedures. In addition, the implementation
module contains the body of the exported procedures.

You compile the definition module before the implementation module. This enables the compiler
to detect any discrepancies between the definition and implementation modules. In a sense, the
definition module functions as an agreement or contract. It lists the promises made to ‘client’
programs. The implementation module must ‘deliver’ accordingly.

Note that constants, types and variables listed in the definition module must not necessarily
appear in the implementation module (with the exception of opaque data types).

Because Modula-2 stresses the use of separately compiled modules, application programs often
call on library modules which in turn call on other library modules, and so on. This generates a
chain of module calls. Modula-2 supports a practical aspect of modular software development
which minimizes the need for recompilation. When an implementation module is modified, it is
recompiled and then the application program should be relinked. You do not need to recompile
all modules between the altered library and the application program. If the definition and the
implementation of a module are changed, then you may need to edit, recompile, and relink other
modules and the application programs.

Now you are ready to create the definition and implementation modules for the complex
operations library. You should make duplicate source files for the translated program. Since
both modules need the same name, call them ‘ComplexLib(’. The library filenames are
‘COMPLEXL.DEF for the definition module and ‘COMPLEXL.MOD’ for the implementation
module. These files are already included in your diskette.

118

TRANSLATOR Advanced Software Engineering Using Modula-2

Invoke a text editor and start editing the definition module source file, following the steps
indicated below:

1

2

7

8

Rename the module heading to ‘DEFINITION MODULE ComplexLib0’.

Look at the import lists. In our example, none are needed in any definition module
declaration. Hence, delete the import lists. In general, the definition module must
import any items it needs to define its data types and procedures.

Insert an ‘EXPORT QUALIFIED’ statement, listing all exported items.

The example has no constants. In case there were any to be made accessible to client
programs, they would be listed in the definition module.

The data type declaration contains the single exported record type. Leave it intact so
client programs are aware of the detailed structure of the complex type. This is known as
a transparent data type export.

The variable declaration section is removed, since it belongs to the application program.
In general, list any variables the module is exporting.

The procedure and function bodies, and the original main section are deleted.

The module is terminated with ‘END ComplexLib0.’

The edited definition module is shown below:

in file COMPLEXL.DEF:

DEFINITION MODULE ComplexLibO;

(* ANY IMPORT LISTS ARE PLACED HERE *)

EXPORT QUALIFIED Complex, AddComplex, SubtComplex,

MultComplex, DivComplex,
ReadComplex, WriteComplex;

(* ANY EXPORTED CONSTANTS ARE PLACED HERE *)

119

Advanced Software Engineering Using Modula-2 TRANSLATOR

TYPE
Complex = RECORD
Rel, (* Real part *)
(* Imaginary part *) Imag: REAL;
END;

(* ANY EXPORTED VARIABLES ARE PLACED HERE *)
(* EXPORTED PROCEDURE/FUNCTION HEADINGS ARE LISTED BELOW *)

PROCEDURE AddComplex(C1, C2: Complex; (* input *)
VAR Result: Complex); (* output *)
(* Procedure to add two complex numbers *)

PROCEDURE SubtComplex(C1, C2: Complex; (* input *)
VAR Result: Complex (* output *));
(* Procedure to subtract two complex numbers *)

PROCEDURE MultComplex(C1, C2: Complex; (* input *)
VAR Result: Complex (* output *));
(* Procedure to multiply two complex numbers *)

PROCEDURE DivComplex(C1, C2: Complex; (* input *)
VAR Result: Complex (* output *)): BOOLEAN;
(* Function to divide two complex numbers and return TRUE *)

(* if operation is successful, FALSE for division by zero *)

PROCEDURE ReadComplex(VAR C: Complex (* output *));
(* Procedure to read complex number *)

PROCEDURE WriteComplex(C: Complex (* input *));
(* Procedure to output a complex number *)

END ComplexLib0.

120

TRANSLATOR Advanced Software Engineering Using Modula-2

Now we study the implementation source file ‘COMPLEXL.MOD’. Initially, it contains a copy of
the translated program. The following is the sequence of editing steps to follow to obtain the
implementation module:

1 Rename the module heading to IMPLEMENTATION MODULE ComplexLib(’.
2 Examine the import lists. In our example, all are needed, except the ‘ScreenHandler’
module, used by the client application program. The ‘ScreenHandler’ import list is

deleted.

3 Next we remove the declaration of the ‘Complex’ record because it has been already
declared in the DEFINITION MODULE.

4 The variable declaration section is also removed, since it belongs to the application
program, not to the generic library.

5 The procedure and function bodies are maintained and the original main section is
deleted.

6 In our example, the module needs no initialization body. In case you are writing one that
does, the implementation module will have a main body section for that purpose.

7 The module is terminated with ‘END ComplexLib0.".
The edited implementation module is shown below:
in file COMPLEXL.MOD:
IMPLEMENTATION MODULE ComplexLibO;
FROM FloatingUtilities IMPORT Frac, Int, Round, Float, Trunc;
FROM TReallO IMPORT ReadReal, WriteReal;
FROM TTextlO
IMPORT Readlnt, ReadCard, ReadChar, ReadString, Readln, ReadBuffer,

Writelnt, WriteCard, WriteChar, WriteString, WriteBool, Writeln,
Eoln, SeekEof, SeekEoln;

121

Advanced Software Engineering Using Modula-2

FROM TKernellO

IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,
stdinout, input, output, con, trm, kbd, lst, aux, usr,

conStPtr, conlnPtr, auxInPtr, usrInPtr, conOutPtr, LlstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, 1Oresult, KeyPressed, 10Buffer,
10Check, DeviceCheck, CtrlC, InputFileBuffer, OutputfileBuffer;

PROCEDURE AddComplex(C1, C2: Complex; (* input *)

VAR Result: Complex); (* output *)

(* Procediure to add two complex numbers *)
BEGIN

Result.Rel := C1.Rel+C2.Rel;
Result.Imag := C1.Imag+C2.Imag

END AddComplex;

PROCEDURE SubtComplex(C1, C2: Complex; (* input *)

VAR Result: Complex); (* output *)

(* Procedure to subtract two complex numbers *)
BEGIN

Result.Rel := C1.Rel-C2.Rel;
Result.Imag := C1.Imag-C2.Imag

END SubtComplex;

PROCEDURE MultComplex(C1, C2: Complex; (* input *)

VAR Result: Complex); (* output *)

(* Procedure to multiply two complex numbers *)
BEGIN

Result.Rel := C1.Rel*C2.Rel-C1.Imag*C2.1Imag;
Result.Imag := C1.Rel*C2.Imag+C2.Rel*C1.Imag

END MultComplex;

PROCEDURE DivComplex(C1, C2: Complex; (* input *)

VAR Result: Complex): BOOLEAN; (* output *)

(* Function to divide two complex numbers and return TRUE *)
(* if operation is successful, FALSE for division by zero *)

122

VAR
OK: BOOLEAN;
SumSqr: REAL;

TRANSLATOR

TRANSLATOR

VAR DivComplexResult:BOOLEAN;

BEGIN

IF (C2.Rel <> Float(0)) OR (C2.Imag <> Float(0)) THEN

OK := TRUE;
sumSqr := (C2.Rel*C2.Rel)+(C2.1mag*C2.Imag);
Result.Rel := (C1.Rel*C2.Rel+C1.Imag*C2.Imag)/SumSqr;

Result.Imag := (C2.Rel*C1.Imag-C1.Rel*C2.Imag)/SumSqr

ELSE

OK == FALSE
END;

DivComplexResult := OK;
RETURN DivComplexResult
END DivComplex;

PROCEDURE ReadComplex(VAR C: Complex); (* output *)
(* Procedure to read complex number *)

BEGIN

WriteString(stdinout, ‘'Enter real part ', 0);
ReadBuffer(on);

ReadReal (stdinout, C.Rel);

Readln(stdinout);

ReadBuffer(off);

WriteString(stdinout, 'Enter imaginary part !, 0);
ReadBuffer(on);

ReadReal (stdinout, C.Imag);

Readin(stdinout);

ReadBuffer(off);

Writeln(stdinout);

END ReadComplex;

PROCEDURE WriteComplex(C: Complex); (* input *)
(* Procedure to output a complex number *)

Advanced Software Engineering Using Modula-2

123

Advanced Software Engineering Using Modula-2 TRANSLATOR

BEGIN
WriteString(stdinout, 'Complex number = ', 0);
WriteReal(stdinout, C.Rel, 0, -1);
WriteString(stdinout, ' + i ', 0);
WriteReal(stdinout, C.Imag, 0, -1);
Writeln(stdinout)

END WriteComplex;

END ComplexLib0.
Let us go back to the original translated Modula-2 program and make some changes on the
source file to convert it into a program that calls on our newly created ‘ComplexLib(’ library.
The following procedure accomplishes this:

1 Remove the unnecessary ‘FloatingUtilities’, “TReallO’ import lists.

2 Insert an import list for the ‘ComplexLib(’.

3 Remove the original declaration of the ‘Complex’ type.

4 Remove all procedure and function definition since they are all imported from the
‘ComplexLib0’.

The new version of the application program is shown below.
in file COMPLEXC.MO1:
MODULE ComplexCalc;
FROM ScreenHandler
IMPORT ClrEol, ClrScr, DelLine, InsLine, GotoXY, WhereX, WhereY,
Crtlnit, CrtExit, LowVideo, NormVideo, HighVideo, SetAttribute,
GetAttribute, normalAtt, boldAtt, reverseAtt, underlineAtt,

blinkAtt, boldunderlineAtt, blinkUnderlineAtt, boldBlinkAtt,
reverseBlinkAtt, boldUnderlineBlinkAtt;

124

TRANSLATOR Advanced Software Engineering Using Modula-2

FROM TTextIO

IMPORT ReadInt, ReadCard, ReadChar, ReadString, Readln, ReadBuffer,
Writelnt, WriteCard, WriteChar, WriteString, WriteBool, Writeln,

Eoln, SeekEof, SeekEoln;
FROM TKernellO

IMPORT File, FileType, OptionMode, StatusProc, ReadProc, WriteProc,

stdinout, input, output, coﬁ, trm, kbd, lst, aux, usr,

conStPtr, conInPtr, auxInPtr, usrinPtr, conOutPtr, lstOutPtr,
auxOutPtr, usrOutPtr, errorPtr, IOresult, KeyPressed, 10Buffer,
I0Check, DeviceCheck, CtrlC, InputFileBuffer, OutputFileBuffer;

FROM ComplexLib0
IMPORT Complex, AddComplex, SubtComplex, MultComplex,
DivComplex, ReadComplex, WriteComplex;

(* Program to simulate a four-function complex calculator *)

VAR
C1, €2, C3: Complex;
Correct: BOOLEAN;
Operation, Dummy: CHAR;

BEGIN (*---=----==--- MAIN =-=---eemannn- *)
REPEAT

ClrScr;

WriteString(stdinout, 'Enter operation [Q = quit] ', 0);
ReadBuffer(on);

ReadChar(stdinout, Operation);

Readln(stdinout);

ReadBuffer(off);

Writeln(stdinout);

Operation := CAP(Operation);

IF

Operation <> 'Q' THEN

125

Advanced Software Engineering Using Modula-2

126

WriteString(stdinout, 'Enter first complex number', 0);
Writeln(stdinout);
ReadComplex(C1);
Writestring(stdinout, 'Enter second complex number', 0);
Writeln(stdinout);
ReadComplex(C2);
Writeln(stdinout);
Correct := TRUE;
CASE Operation OF
l+l:
AddComplex(C1, C2, C3)
| 1.1,
SubtComplex(C1, C2, C3)
I ke
MultComplex(C1, C2, C3)
I 10

Correct := DivComplex(C1, C2, C3);

IF

NOT Correct THEN
WriteString(stdinout, 'Divide by zero error ', 0);
Writeln(stdinout)

END;

ELSE
Addcomplex(C1, €2, C3)

END;
IF Correct THEN

WriteComplex(C3)
END;
Writeln(stdinout);
Writeln(stdinout);
WriteString(stdinout, 'Press <CR> to continue ', 0);

TRANSLATOR

TRANSLATOR Advanced Software Engineering Using Modula-2

ReadBuffer(on);
ReadChar(stdinout, Dummy);
Readln(stdinout);
ReadBuffer(off);
Writeln(stdinout);
Writeln(stdinout);
END;
UNTIL Operation = 'Q';
END ComplexCalc.

A second approach. Suppose that the developer of the Turbo Pascal complex calculator has
already created a generic Pascal file that implements data and procedures to be included by
application programs. Following a typical situation, the data declarations are often stored in a
separate file. We assume that file ‘COMPLEXL.TYP’ contains the definition for the ‘Complex’
type and that the library of routines are in file ‘COMPLEXL.LIB'.

in file COMPLEXL.TYP:

TYPE Complex = RECORD
Rel, (* Real part *)
Imag (* Imaginary part *) : REAL;
END;

in file COMPLEXL.LIB:

PROCEDURE Add_Complex(C1, C2 : Complex; (* input *)
VAR Result : Complex (* output *));
(* Procedure to add two complex numbers *)

BEGIN
Result.Rel := C1.Rel + C2.Rel;
Result.Imag := C1.Imag + C2.Imag
END;

PROCEDURE Subt_Complex(C1, C2 : Complex; (* input *)

VAR Result : Complex (* output *));
(* Procedure to subtract two complex numbers *)

127

Advanced Software Engineering Using Modula-2 TRANSLATOR

BEGIN
Result.Rel := C1.Rel - C2.Rel;
Result.Imag := Cl.Imag - C2.Imag
END;

PROCEDURE Mult_Complex(C1, €2 : Complex; (* input *)
VAR Result : Complex (* output *));
(* Procedure to multiply two complex numbers *)

BEGIN

Result.Rel := C1.Rel * C2.Rel - C1.lmag * C2.Imag;
Result.Imag := C1.Rel * C2.Imag + C2.Rel * C1.Imag
END;

FUNCTION Div_Complex(C1, C2 : Complex; (* input *)

VAR Result : Complex (* output *)) : BOOLEAN;
(* Function to divide two complex numbers and return TRUE *)
(* if operation is successful, FALSE for division by zero *)

VAR OK : BOOLEAN;
SumSqr : REAL;

BEGIN
IF (C2.Rel <> 0) OR (C2.Imag <> 0)
THEN BEGIN
OK := TRUE;
sumSqr := SQR(C2.Rel) + SQR(C2.Imag);
Result.Rel := (C1.Rel * C2.Rel + C1.lmag * C2.Imag)
/ SumSqr;
Result.Imag := (C2.Rel * Cl.Imag - C1.Rel * C2.1lmag)
/ sumsqr
END
ELSE

OK := FALSE;
Div_Complex := 0K;
END;

PROCEDURE Read_Complex(VAR C : Complex (* output *));
(* Procedure to read complex number *)

128

TRANSLATOR Advanced Software Engineering Using Modula-2

BEGIN
WRITE('Enter real part '); READLN(C.Rel);
WRITE('Enter imaginary part '); READLN(C.Imag);
WRITELN;

END;

PROCEDURE Write Complex(C : Complex (* input *));
(* Procedure to output a complex number *)
BEGIN
WRITELN('Complex number = *',C.Rel,! + i ',C.Imag)
END;

The main application program, using these generic files, would look like the following listing:
in file COMPLEXC.PA1:

PROGRAM Complex_Calc;
(* Program to simulate a four-function complex calculator *)
(* This version uses included files. *)

(* Get "Complex" type definition *)
(*$1 COMPLEXL.TYP *)

VAR C1, C2, C3 : Complex;
Correct : BOOLEAN;
Operation, Dummy : CHAR;

(* Get procedures and function for complex operations *)
(*$1 COMPLEXL.LIB *)

BEGIN (*--------=---- MAIN -----cccceeene *)
REPEAT
CclrScr;
WRITE('Enter operation [Q = quit] ');
READLN(Operation); WRITELN;
Operation := UpCase(Operation);
IF Operation <> *'Q'

129

Advanced Software Engineering Using Modula-2 TRANSLATOR

THEN BEGIN
WRITELN('Enter first complex number');
Read_Complex(C1);
WRITELN('Enter second complex number');
Read_Complex(C2); WRITELN;
Correct := TRUE;
CASE Operation OF
‘+! : Add_Complex(C1, C2, C3);
t-1 : subt_Complex(C1, C2, C3);
'*1 : Mult_Complex(C1, C2, C3);
t/' : BEGIN
Correct := Div_Complex(C1, C2, C3);
IF NOT Correct
THEN WRITELN('Divide by zero error ');
END
ELSE Add_Complex(C1, €2, C3);
END;
IF Correct THEN Write_Complex(C3);
WRITELN; WRITELN;
WRITE('Press <CR> to continue ');
READLN(Dummy); WRITELN; WRITELN;
END;
UNTIL Operation = 'Q!;
END.

To convert Turbo Pascal with included files, simply process the application program through the
Translator and obtain a complete Modula-2 program. You edit exactly as in the first case to yield
the sought Modula-2 library modules. This approach is the same for all application programs
using included Pascal files.

If one had already translated Turbo Pascal libraries (i.e. COMPLEXL.TYP, COMPLEXL.LIB)
into Modula-2 versions, how would one deal with converting other Turbo Pascal apphcatlon
programs that ‘include’ the same Pascal libraries? The answer is simple: either rename the include
files or move these files to a disk or directory not accessed by the Translator. When the
Translator is unable to find an included file, it continues the conversion process, placing warning
messages at what it perceives to be ‘undefined’ Pascal routines and data objects. You then edit
the converted Modula-2 program to include import statements for the previously translated
libraries.

130

TRANSLATOR Advanced Software Engineering Using Modula-2

3.2 Data Abstraction Using Opaque Types

In the above example, you exported the type ‘Complex’ and made its internal structure known to.
the client programs.

This means that other programmers can write additional routines for your program, to manipulate
complex numbers, such as complex math function routines.

Suppose you wish to modify the structure of your program or to represent complex numbers using
polar coordinates, as opposed to the rectangular ones. While the new polar coordinates also use
two reals (angle and modulus), the mathematical operations involved in the calculations are quite
different. This change is not recommended for transparent exported types, since it creates a
version conflict with routines written by others.

3.2.1 How to Hide Internal Representations of Data Types
Modula-2 allows the programmer to maintain control over exported data types by hiding their
internal structures. The client programs are limited to the operations exported.

Applying the opaque type concept to the ‘ComplexLib(’ library module, perform the following
changes:

= In the definition module replace the transparent exported ‘Complex’ with an opaque type
declaration:

TYPE Complex; (* Opaque export *)
= The complete definition of type ‘Complex’ is relocated into the implementation module
and is rewritten as a pointer structure to reflect the use of polar coordinate
representation of complex numbers:
(* Definition uses polar coordinates *)
TYPE Complex = POINTER TO RECORD
Angle, Modulus : REAL;

END;

The pointer type is mandatory for structured opaque types.

131

Advanced Software Engineering Using Modula-2 TRANSLATOR

= The change in the ‘Complex’ record structure is echoed wherever complex operations and

¥/O are performed. In our example, this includes all the routines in the implementation
module.

The library modules are shown below. You should keep in mind that while we have internally
switched from rectangular to polar representation, the client application program is unaware of
the change. As far as it is concerned, the complex calculator is still operating within rectangular
coordinates.

in file COMPLEXL.DE2:

DEFINITION MODULE ComplexLibO;
(* New version to export opaque type ¥*)

(* ANY IMPORT LISTS ARE PLACED HERE *)
EXPORT QUALIFIED Complex, AddComplex, SubtComplex,
Mut tComplex, DivComplex,
ReadComplex, WriteComplex;
(* ANY EXPORTED CONSTANTS ARE PLACED HERE *)
TYPE Complex; (* Opaque export *)
(* ANY EXPORTED VARIABLES ARE PLACED HERE *)
(* EXPORTED PROCEDURE/FUNCTION HEADINGS ARE LISTED BELOW *)
PROCEDURE AddComplex(C1, C2: Complex; (* input *)
) VAR Result: Complex); (* output *)
(* Procedure to add two complex numbers *)
PROCEDURE SubtComplex(C1, C2: Complex; (* input *)
VAR Result: Complex (* output *));
(* Procedure to subtract two complex numbers *)
PROCEDURE MultComplex(C1, C2: Complex; (* input *)

VAR Result: Complex (* output *));
(* Procedure to multiply two complex numbers *)

132

TRANSLATOR Advanced Software Engineering Using Modula-2

PROCEDURE DivComplex(C1, C2: Complex; (* input *)

VAR Result: Complex (* output *)): BOOLEAN;
(* Function to divide two complex numbers and return TRUE *)
(* if operation is successful, FALSE for division by zero *)

PROCEDURE ReadComplex(VAR C: Complex (* output *));
(* Procedure to read complex number *)

PROCEDURE WriteComplex(C: Complex (* input *));
(* Procedure to output a complex number *)

END ComplexLibO.

The implementation which uses polar coordinates is available in file ‘COMPLEXL.MO3’. You
can switch back to rectangular coordinates which are more practical to use. Notice that there are
two new local procedures, ‘MakeComplex’ and ‘BreakComplex’. The first is needed to create a
complex number from the real and imaginary parts while the second returns the latter parts from
a complex number, regardless of its internal representation.

In file ‘COMPLEXL.MO4’ you find the version of the library using rectangular coordinates and
exporting the opaque complex type. Because of the different internal representation using
rectangular coordinates, there is no need to define and use local procedures like ‘MakeComplex’
and ‘BreakComplex’. You do everything using normal dereferencing to improve performance.

Notice that in both versions we have added at the end of the implementation module the
following code:

VAR ch: CHAR;

BEGIN
Writeln(stdinout);
WriteString(stdinout, 'xxx Coordinate Version using Opaque Type!, 0);
Writeln(stdinout);
WriteString(stdinout, 'Press <CR> to continue', 0);
Writeln(stdinout);
ReadChar(stdinout, ch);

END ComplexLib0.

133

Advanced Software Engineering Using Modula-2 TRANSLATOR

This part of the module is called the ModuleBody and is a part of code belonging to the module
and executed BEFORE your main program is started. The Module Body is often referred to as
the Module Initialization Code because it can be used to explicitly initialize data structures, load
error handling routines, and perform all the procedures needed to insure the correct behavior of
the module before your application will use it.

3.2.2 Space Allocation for Opaque Types

The implementation of an opaque type as given in the previous pages (files COMPLEXL.DE2,
COMPLEXL.MO3, COMPLEXL.MO4) is not complete. As you can see from the
implementation modules the allocation of the memory space used to store a complex type is done
in the library module by the routine ‘MakeComplex’ using the statement NEW. This routine,
local to the module, and therefore not available to other client modules, takes care to allocate the
memory space but there is no equivalent routine to deallocate that memory space when the
complex number is no longer needed. Unfortunately, the ‘life’ of the complex number depends on
the application using it. To make the sample clear we have decided that a complex number would
be allocated any time an operation is requested on it. This will lead to an increased use of the
heap space without any way to release that space. This approach, although reasonable for a
sample, cannot be used in building a reusable module library using OPAQUE types. A more
correct approach is described in the following files.

The definition module (file COMPLEXL.DES) has been modified to include two new functions
‘CreateComplex’ and ‘DestroyComplex’ that allow the application to control the ‘life’ of variables
of data type Complex without knowing the implementation. Both implementation modules (file
COMPLEXL.MO6 and file COMPLEXL.MQ7) have been modified to include the
implementation of these routines and to remove the NEW call from the ‘MakeComplex’ routine.

Finally, the application module (file COMPLEXC.MOR) has been modified to generate the
appropriate calls to create or destroy complex numbers allowing the application to control their
existence.

134

TRANSLATOR

3.3 Summary

Advanced Software Engineering Using Modula-2

All the sample files used in this chapter are available on diskette. The following is a summary of

all the filenames used.
A) Normal translation

COMPLEXC.PAS -> COMPLEXC.MOD

B) Building a simple library module

COMPLEXC.PAS -> COMPLEXL.DEF
-> COMPLEXL .MCD
-> COMPLEXC.MO1

library definition
library implementation
application

C) Using opaque types with two different implementations

COMPLEXC.PAS -> COMPLEXL.DE2
-> COMPLEXL.MO3
-> COMPLEXL.MO4
-> COMPLEXC.MO1

library definition with opaque type

Library implementation using polar coordinates
library implementation using rectangular cord.
application, same as b)

D) Using opaque types and create/destroy procedure

COMPLEXC.PAS -> COMPLEXL.DES

-> COMPLEXL.MO6

-> COMPLEXL.MO7

-> COMPLEXC.MO8

library definition with opaque type and
create/destroy

library implementation using polar coordinates
and create/destroy

library implementation using rectangular
coordinates and create/destroy

application with create/destroy

135

Advanced Software Engineering Using Modula-2 TRANSILATOR

The correct sequence in compiling and linking these modules is:

Compile the definition module (COMPLEXL.DEF)

Compile the implementation module (COMPLEXL.MOD)
Compile the application/program module (COMPLEXC.MO1)
Link the application/program module (COMPLEXC.LNK)
Run the application/program module (COMPLEXC.LOD)

UL BN

From DOS you can issue the following commands:

C> m2 comp complexl.def complex]l complexc.mol (* to compile *)
C> m2 link complexc (* to link *)
C>m2 complexc (* torun *)

If you have the LOGITECH MODULA-2/86 Base Language System 512LK you can type:

C> m2c¢ complexl.def complexl complexe.mol (* to compile *)
C> m2l complexc (* to link *)
C>m2_complexc (* torun *)

From the MOD editor, to visit a file, type F3. To compile, type FS. To link, type F6. To run, type
ALT F9 r complexc<CR>.

136

TRANSLATOR External Procedures

4 CALLING TURBO PASCAL’S EXTERNAL PROCEDURES FROM MODULA-2

LOGITECH MODULA-2/86 uses its own object file format ((LNK, .LOD files). However, this
does not ease the use of code written in assembler (or another language). The LOGITECH
MODUILA-2/86 User’s Guide describes one method of interfacing assembly code libraries. This
method is based on linking the assembly code to the Modula-2 Run-Time System.

In this chapter we describe a more dynamic way to call routines written in assembler. This
method can be used to call from Modula-2 external procedures developed for Turbo Pascal. The
assembler routines are loaded at execution time and can then be called from the application. We
call such a set of installable routines a ‘driver’ and they can be used for the implementation of the
hardware dependent part of a program. An application can than decide at run-time, depending
on the existing hardware, which version of the driver to load. However, this method is not
restricted to the use of hardware specific code, but can be used for any code that may be written

more efficiently in assembler.

‘We will also describe how the features of external procedures in Turbo Pascal can be
implemented with this method of interfacing assembly code languages. Before we begin, we
review how external procedures are used in Turbo Pascal. For example, we implement three
simple screen handling routines in assembler, which we want to call from the Pascal program.

All files used in this chapter are available on diskette.
4.1 The Turbo Pascal Approach
The following is a sample Pascal program which uses these procedures:
in file TESTOUT.PAS:
PROGRAM TestOut;
(*$V-*)
TYPE

ANYSTRING = STRINGI255];

PROCEDURE OutChar(ch: CHAR); EXTERNAL 'PAS-OUT.BIN';
(* write a single character on the screen *)

137

External Procedures TRANSLATOR

PROCEDURE OutLn; EXTERNAL OutChar([3];
(* go to beginning of next Line on the screen *)

PROCEDURE OutString(s: ANYSTRING); EXTERNAL OutChar(6];
(* write a string on the screen *)

VAR
i: INTEGER;

BEGIN
outstring('This is a test of the assembler screen output interface!);
Outln;
FOR i := 1 TO 80 DO OutChar('-');
OutlLn;
END.

The following shows how to implement these procedures in assembler, following the procedure
calling conventions of Turbo Pascal. To know the offsets of the procedure entrypoints, we put a
jump table to our actual procedure code at the beginning of the code:

in file PAS-OUT.ASM:
CODE SEGMENT

CGROUP GROUP CODE
ASSUME CS: CGROUP

JMP OutChar is at offset 0
JMP OoutLn is at offset 3
JMP OutString ; is at offset 6

- =

138

TRANSLATOR External Procedures

For the standard procedure ‘Prolog’ and ‘Epilog’, we define two macros:
ENTER and LEAVE:

ENTER MACRO
PUSH BP
MOV BP, SP
ENDM

LEAVE MACRO parameterSize
MOV SP, BP
POP BP
RET parameterSize. ; remove parameters from stack
ENDM

Now, we can implement the three procedures. The record structures ‘OutCharParam’ and
‘OutStringParam’ describe the stack at address SS:BP. For Turbo Pascal, the procedures must be
declared as near procedures.

OutCharParam STRUC
DW ? ; old BP
DW ? ; return address
char DB ?
OutCharParam ENDS

OutChar PROC NEAR
ENTER O
MOV DL, [BP].char
MOV AH, 2
INT 21H ; DOS function 2, standard output
LEAVE 2
OutChar ENDP

139

External Procedures

OutLn PROC NEAR
ENTER

MOV DL, ODH ; CR

MOV AH, 2

INT 21H ; write CR with DOS function 2
MOV DL, OAH ; LF

MOV AH, 2

INT 214 ; write LF with DOS function 2

LEAVE
Outln ENDP

outStringParam STRUC

DW ? ; old BP
DW ? ; return address
str DB 256 DUP (?)

OutStringParam ENDS

OutString PROC NEAR
ENTER O
PUSH DS
PUSH SS$
POP DS

; get segment of string address

LEA SI, [BP]l.str ; get offset of string address

LODSB

CMP AL, O
JZ stop
XOR AH, AH
MOV CX, AX

nextch:
LODSB
MOV DL, AL
MOV AH, 2

INT 21H

LOOP nextch
stop:

140

’

’

; load length of string

empty string

load next character

; write character

if not at end of string or null character continue

TRANSLATOR

TRANSLATOR External Procedures

POP DS

LEAVE 256
OutString ENDP
CODE ENDS

END

The following steps lead to an executable version of our sample program:
1 Edit the assembler program in file PAS-OUT.ASM.
2 Assemble the file PAS-OUT.ASM. The result is file PAS-OUT.OBIJ.
3 Link the file PAS-OUT.OBJ. The result is file PAS-OUT.EXE.
4 Produce a file PAS-OUT.BIN with the conversion utility EXE2BIN.
5 With the Turbo editor edit the program TESTOUT.PAS.
6 Compile the program TESTOUT.PAS into the file TESTOUT.COM.

This compilation step automatically binds the code of our assembler code in PAS-
OUT.BIN in the final executable file TESTOUT.COM.

7 Run the program TESTOUT.COM.

4.2 The Modula-2 Approach

The Turbo Pascal feature of external procedures doesn’t exist in Modula-2. However, with the
help of the module ‘Drivers’, it is possible, to achieve a similar result. The following shows how
the program ‘TestOut’ looks in LOGITECH MODULA-2/86:

The declaration of the Procedure Headings for External Procedures are replaced by the
declaration of a RECORD variable, with fields of procedure types.

141

External Procedures TRANSLATOR

Since the concept of external procedures does not exist in Modula-2, the compiler or linker
cannot directly include the assembler code in the final executable file. Therefore, we load the
assembler code at run-time. For this reason, the sample program will import the module
‘Drivers’. The following sample module shows how the assembler code is loaded and executed.
The procedure calls to the external procedures in Pascal are replaced by calls to our procedure
variables in the record ‘external’.

in file TESTOUT.MOD:
MODULE TestOut;
IMPORT Drivers;

VAR
external: RECORD
OutChar : PROCEDURE (CHAR);
(* write a single character on the screen *)
outln : PROCEDURE ();
(* go to beginning of next Line on the screen ¥)
OutString: PROCEDURE (ARRAY OF CHAR);
(* write a string on the screen *)
END;
out: Drivers.Driver;
done: BOOLEAN;
i: INTEGER;

BEGIN
Drivers.InstallDriver(out, external, 'MOD-OUT.BIN', TRUE, done);
IF done THEN (* assembler code loaded *)
WITH external DO ‘
OutString('This is a test of the assembler screen output interface');
Outln;
FOR i := 1 TO 80 DO OutChar('-') END;
Outln;
END; (* WITH *)
Drivers.UninstallDriver(out);
END.
END TestOut.

142

TRANSLATOR External Procedures

The implementation of the assembler code for Modula-2 is similar to the implementation done
for Turbo Pascal. The procedures must be declared as far procedures, and the jump table at the
beginning of the module is replaced by a table of entry point offsets of the procedures. The order
of the entrypoints must correspond to the order of the procedure variables in the record
‘external’:

in file MOD-OUT,ASM:

CODE SEGMENT 'CODE’
CGROUP GROUP CODE
ASSUME CS: CGROUP

ENTER MACRO
PUSH BP
MOV BP, SP
ENDM

LEAVE MACRO parameterSize
MOV SP, BP
POP BP
RET parameterSize ; remove parameters from stack
ENDM

EntryPointOffsets DW OutChar, OutLn, OutString

OutCharParam STRUC

DW ? ; old BP

DD ? ; return address
char DB ?
dummy DB ?

OutCharParam ENDS

OutChar PROC FAR
ENTER
MOV DL, [BP].char
MOV AH, 2
INT 21H ; DOS function 2, standard output
LEAVE 2
OutChar ENDP

143

External Procedures

Outln PROC FAR
ENTER

MoV
MOV
INT
MoV
MoV
INT

DL, ODH
AH, 2

218

DL, OAH
AH, 2

21H

LEAVE

Outln ENDP

outStringParam

strAddr
strHigh

DwW
DD
DD
bW

outStringParam

outString PROC FAR

ENTER

DS SI, [BP].strAddr
MOV CX, [BP].strHigh

INC

CX

" LODSB

‘CMP AL, O
stop

JZ

nexteh:

MOV DL, AL
MOV AH, 2

INT

144

214

STRUC

?
?
?
?

ENDS

-
’
.
,

old BP

CR

LF

’

TRANSLATOR

write CR with DOS function 2

write LF with DOS function 2

return address

~e we

-

get address of string parameter
get HIGH of string parameter
number of bytes of string parameter

load first character of string

is it null character?
if yes, empty string; nothing to write

write character

TRANSLATOR External Procedures

stop:

LODSB ; load next character

CMP AL, O ; is it null character?

LOOPNE nextch ; if not at end of string or null character continue
LEAVE 6

outString ENDP

CODE ENDS

END

The following steps lead to an executable version of our sample program:

1

2

Edit the assembler program in file MOD-OUT.ASM.

Assemble the file MOD-OUT.ASM. This fesults in MOD-OUT.OB]J.
Link the file MOD-QOUT.OBJ. The result is a file MOD-OUT.EXE.
Produce a file MOD-OUT.BIN with the conversion utility EXE2BIN.
Edit (with the MOD editor) the program TESTOUT.MOD.

Compile the program TESTOUT.MOD into the file TESTOUT.LNK.
Link the file TESTOUT.LNK into the file TESTOUT.LOD

Generate the file TESTOUT.EXE, using the LOD2EXE utility.

Run the program TESTOUT.EXE.
At run-time, our program will load the assembler code of MOD-OUT.BIN in memory.

145

External Procedures TRANSLATOR

Now, let’s look at the definition module ‘Drivers’. Its implementation module is listed at the end
of this appendix.

in file DRIVERS.DEF:

DEFINITION MODULE Drivers;
FROM SYSTEM IMPORT
WORD;

EXPORT QUALIFIED
Driver, InstallDriver, UninstallDriver;

TYPE

Driver; (* driver handle; hidden structure of a driver descriptor *)

PROCEDURE InstallDriver(VAR d: Driver; VAR driverProc: ARRAY OF WORD;

fn: ARRAY OF CHAR; bin: BOOLEAN; VAR done: BOOLEAN);
(* Loads the driver from the file with the name 'fn'.

Initializes the driver handle 'd' and the user supplied record

of procedure variables ‘driverProc'.

The boolean parameter 'bin' indicates whether the file to be loaded
is a binary memory image or a relocatable file in the EXE file format.

No search strategy is performed at this level.
*)

PROCEDURE UninstallDriver(d: Driver);
(* Unloads the driver with the handle 'd‘.

should only be called if InstallDriver was successful.
*)

END Drivers.

146

TRANSLATOR External Procedures

In the example ‘TestOut’, we used the procedure ‘InstallDriver’ to load a binary memory image.
The use of a binary memory image forces some restrictions on the way the assembler code can be
written. The assembler program should only consist of one segment (size is less than 64KB), and
no segment fixup information should be generated (no far references should be used within the
assembler program). For small assembler code routines, these restrictions should not pose any
problem. The advantage of a binary memory image is faster loading due to a smaller file and no
need for fixups.

The procedure ‘InstallDriver’ is also able to load a file in the DOS EXE file format. In this case,
the restrictions for the assembler code are less severe. The assembler program can use as many
segments as possible. The table of entrypoints of the exported procedures must be at offset zero
of the first segment. In this case, the entrypoints must be full 32 bit addresses with offset and
segment values. The loader will not put a program segment prefix (PSP) in front of the loaded
program. Therefore, the assembler code should not try to use the PSP. The current
implementation restricts the overall size of the EXE program to 64KB. This is because the loader
allocates the memory to load the program on the heap. The allocatable size is limited to 64KB.

4.3 Summary

It is possible to implement a method to call external procedures written in assembler from a
Modula-2 program. In comparison with the way Turbo Pascal handles external procedures, the
implementation for Modula-2 adds some overhead at load time to load the assembler code. Also
the procedure calls are indirect procedure calls through the use of procedure variables, rather
than direct calls to the procedures. However, with this dynamic loading, one has the possibility to
use this feature to provide several different implementations of the external procedures and to
decide at run-time (rather than link-time) which of them to use.

in file DRIVERS.MOD:

IMPLEMENTATION MODULE Drivers;
FROM SYSTEM IMPORT
ADR, WORD, ADDRESS, TSIZE, DOSCALL;
FROM Storage IMPORT
ALLOCATE, DEALLOCATE;

147

External Procedures

TYPE
FileName = ARRAY [0..791 OF CHAR;
(* holds complete DOS filename, including drive, path, name
and extension
*)

DriverDescriptor = RECORD
LoadMemory: ADDRESS;
loadSize: CARDINAL; (* in bytes *)
END;
Driver = POINTER TO DriverDescriptor;
(* implement hidden driver handle *)

(* header information about the load module in a .EXE file *)
EXEhdr = RECORD

signature,

imageLengthMod512, (* used to determine load size *)

pagesinFile, (* used to determine load size *)

(* 1 page = 512 bytes *)

relocationltemCount,

headerParagraphs, (* used to determine load size *)

minFreeParagraphs,

maxFreeParagraphs,

relativess,

initialsp,

checksum,

(* - (16-bit sum of words in file) *)

initiallpP,

relativeCs,

relocationTableOffset,

overlayNumber: CARDINAL;

END;

PROCEDURE InstallDriver(VAR d: Driver; VAR driverProc: ARRAY OF WORD;
fn: ARRAY OF CHAR; bin: BOOLEAN; VAR done: BOOLEAN);

148

TRANSLATOR

TRANSLATOR

VAR
i: CARDINAL;
a: ADDRESS;
dummy: CARDI

NAL;

binSize: CARDINAL;

error: CARDI

NAL;

read: CARDINAL;
exeldr: EXEhdr;

file: CARDIN
fileName: Fi
paramBlock:

BEGIN
NEW(d); (* cre
WITH d* DO
(* copy file
here we a
otherwise
*)

AL; (* DOS file handle *)
leName;
RECORD
at: CARDINAL; (* load address in paragraphs *)
rel: CARDINAL; (* relocation factor in paragraphs *)
END;

ate driver descriptor *)
name into local variable.

ssume that HIGH(fileName) >= HIGH(fn),
an index range error will occur

FOR i := 0 TO HIGH(fn) DO

fileNamel[i
END;
fileName[HIG
(* make sure

done := FALS
DOSCALL(3DH,

(* open file
IF error = 0

1 := fn[il;

H(fn) + 11 := OC;
there is a terminating null character *)

E; (* initial value *)
ADR(fileName), O, file, error);

*)
THEN

IF bin THEN
DOSCALL(42H, file, 2, 0, 0, dummy, binSize, error);

(* get
IF error

file size, by positioning at EOF *)
= 0 THEN

loadSize := binSize;
DOSCALL(42H, file, 0, 0, O, dummy, dummy, error);
(* reposition at beginning of file *)

External Procedures

149

External Procedures TRANSLATOR

END;
ELSE (* an EXE file *)
DOSCALL(3FH, file, TSIZE(EXEhdr), ADR(exeHdr), read, error);
(* read the header of the EXE file *)
IF Cerror = 0) AND (read = TSIZE(EXEhdr)) THEN
(* successful operation *)

(* now we evaluate the size in bytes of code and data of the
driver; using the information from the EXE-header
*>
loadSize := (exeHdr.pagesInFile * 32 - exeHdr.headerParagraphs) * 16;
IF exeHdr.imagelengthMod512 > O THEN (* incomplete page *)
loadSize := loadSize - 512 + exeHdr.imageLengthMod512
END;
END;
END;
INC(loadSize, 16); (* add a little for paragraph rounding *)

ALLOCATE(loadMemory, loadSize);
(* allocate memory to load driver *)

(* now we will adjust the load address, to point to a paragraph address
(i.e. offset is 0)

*)

a := loadMemory;

a.SEGMENT := a.SEGMENT + a.OFFSET DIV 16 + 1;

a.OFFSET := 0;

(* 'a' points now to next paragraph address after 'loadMemory' *)

IF bin THEN
DOSCALL(3FH, file, binSize, a, read, error);
(* read file in load memory *)
1IF Cerror = 0) AND (read = binSize) THEN
done := TRUE;

150

TRANSLATOR External Procedures

END;
DOSCALL(3EH, file, error);
(* close file *)

ELSE
DOSCALL(3EH, file, error);
(* close file *)

(* prepare parameter block for DOS program load call *)
paramBlock.at := a.SEGMENT;

(* paragraph address of location to load driver *)
paramBlock.rel := a.SEGMENT;

(* relocation factor; is same as load address *)
DOSCALL(4BH, ADR(fileName), ADR(paramBlock), 3, error);
(* load overlay DOS function call *)

IF error = 0 THEN
done := TRUE; (* we did it *)
END;
END; (* IF *)
IF NOT done THEN
DEALLOCATE(LoadMemory, loadSize);
(* deallocate memory, load was not successful *)

END;
(*
ELSE
(* file not found *)
*)

END; (* IF *)
END; (* WITH *)
IF done THEN
(* copy entry points in user entry point table *)
FOR i := 0 TO HIGH(driverProc) BY 2 DO
driverProcli] := a*; (* load offset value *)
INCCa, 2);
IF bin THEN
driverProcli+1] := WORD(a.SEGMENT); (* set segment value *)
ELSE
driverProc[i+1] := a*; (* load segment value *)
INC(a, 2);
END;

151

External Procedures TRANSLATOR

END;
ELSE
DISPOSE(d); (* destroy driver descriptor, not needed anymore *)
END;
END InstallDriver;

PROCEDURE UninstallDriver(d: Driver);
BEGIN
WITH d* DO
DEALLOCATE(LoadMemorry, loadSize);
(* remove memory, where driver was loaded *)
END; (* WITH *)
DISPOSE(d);
(* destroy driver descriptor; no check is done, whether it was
previously allocated
*)
END UninstallDriver;

END Drivers.

152

TRANSLATOR Appendix A

APPENDIX A

MAPPING OF TURBO PASCAL PROCEDURES TO MODUILA -2

The LOGITECH Translator translates all Turbo Pascal functions and procedures into Modula-2
procedures. The mapping used is detailed in this appendix. For example, the Turbo Pascal function
‘Addr (x)’ will be translated into ‘ADR (x)’, while ‘Halt (i)’ will be translated into ‘SetErrorCode (i)’
followed by ‘Terminate (normal)’, while ‘Halt’ alone will be translated into ‘Terminate (normal)’ only.
Special cases:

s And, Or, Not, Xor, Shl and Shr are described in Chapter Two.

= Mem, MemW, Port and PortW are described in Chapter Two.

= HeapPtr and ErrorPtr are described in Chapter Two.

» Graphic functions are described at the end of this appendix.

Turbo Pascal standard Procedures

TURBO PASCAL | MODULA-2
Abs (i : Integer) : Integer; | ABS (x);
Abs (r : Real) : Real; | result type = argument type;

| MODULE SYSTEM
Addr(anyType) : Pointer; | ADR (anyType) : ADDRESS;

| MODULE TFilelO

Append (VAR f : File); | Append (VAR f : File);

153

Appendix A TRANSLATOR

| MODULE MathLibO

|

ArcTan (r : Real) : Real; | arctan (r : REAL) : REAL;
| MODULE TFilelO
!

Assign (VAR f : File; | AssignFile (VAR f : File;

name : String); | name : ARRAY OF CHAR;

| type : FileType);
|
| NOTE: type is the type corresponding to f in
| Turbo Pascal.

MODULE TBinarylO

BlockRead (VAR f : File;
VAR dest : Type;
num : Integer
(* optional *) [VAR res : Integer 1);

BlockRead (VAR f : File;
VAR dest : ARRAY OF BYTE;
: num : CARDINAL);
BlockRWResult (VAR res : INTEGER);

e.g.
BlockRead(f, dest, num);
will be translated into :
BlockRead(f, dest, num);
and
BlockRead(f, dest, num, res);
into :
BlockRead(f, dest, num);
BlockRWResult(res);

!
I
|
|
|
|
I
|
] NOTE : FileType Of File must be untypedFile;
I
|
|
|
|
|
|
|
!

154

TRANSLATOR

BlockWrite (VAR f
VAR dest
num

(* optional *) [VAR res

File;

Type;
Integer
Integer 1);

Appendix A

MODULE TBinarylO

BlockWrite (VAR f : File;
VAR dest ARRAY OF BYTE;
num CARDINAL);

NOTE : FileType Of File must be untypedFile;
es:
BlockWrite(f, dest, num);
will be translated into :
BlockWrite(f, dest, num);
and
BlockWrite(f, dest, num, res);
into :
BlockWrite(f, dest, num);
BlockRWResult(res);

..

Chain (var f : File);

MODULE TDiskDirectory

ChDir(path : ARRAY OF CHAR);

Chr ¢ 1 :

Integer) : Char;

CHRC 1 : INTEGER) : CHAR

(VAR f : File);

MODULE TFilelO

Close (VAR f : File);

MODULE ScreenHandler

ClrEol;

MODULE ScreenHandler

clrScr;

155

Appendix A TRANSLATOR

MODULE Strings

|

|

| VAR res, s1, .. , sN : ARRAY OF CHAR;
Concat(s1, s2, .. ,sN : String) | Concat(s1, s2, res);

: String; | Concat(res, s3, res);

| .
I
|

Concat(res, sN, res);

MODULE Strings

|
|
Copy (s : string; | Copy (¢ S : ARRAY OF CHAR;
pos : Integer; | pos : CARDINAL;
len : Integer) : String; | len : CARDINAL);

| VAR res : ARRAY OF CHAR);

| MODULE MathLibO

Cos (r : Real) : Real; | cos (r : REAL) : REAL;

| MODULE ScreenHandler

CrtExit; | CrtExit;

| MODULE ScreenHandler

Crtinit; | Crtinit;

| MODULE MemoryOperations
Cseg : Integer; | Cseg(): INTEGER;

| MODULE Delay

Delay (mS : Integer); | Delay (mS : INTEGER);

156

TRANSLATOR Appendix A

MODULE Strings

pos : Integer; pos : CARDINAL;
len : Integer); len : CARDINAL);

| MODULE ScreenHandler

|
I
Delete (VAR s : String; | Delete (VAR s : ARRAY OF CHAR;
I
|

DelLine; | Delline;

Dispose(var p : Pointer); DISPOSE (p);

procedure DEALLOCATE from MODULE

I
I
| NOTE: To use this procedure one should import
I
] Storage.

| MODULE MemoryOperations

|
Dseg : Integer; | Dseg(): INTEGER;
Eof : Boolean; | MODULE TFilelO
[
Eof (VAR f : File) : Boolean; | Eof (VAR f : File) : BOOLEAN;
Eoln : boolean; | MODULE TTextlo
I
Eoln (VAR f : Text) : Boolean; | Eoln (VAR f : File) : BOOLEAN;
I
| NOTE : FileType Of File must be Text.
| MODULE TFilelD
I
Erase (VAR f : File); | Erase (VAR f : File);

| MODULE TExec

Execute (var f : File); | Execute(VAR f : File);

157

Appendix A TRANSLATOR

Exit; | In a PROCEDURE it is translated with
| RETURN;
|
] In a FUNCTION it is translated with
| RETURN var;
|
| where var is of the type to be returned
| by the function.
| MODULE MathlLibkO
I

Exp (r : Real) : Real; | exp (r : REAL) : REAL;

MODULE TBinarylO
FilePos (VAR f : File) : INTEGER;

NOTE : FileType of f must be untyped File or
fileOfRecord.

..

MODULE TBinarylO
FileSize (VAR f : File) : INTEGER;

NOTE : FileType of f must be untypedFile or
fileOfRecord

MODULE MemoryOperations

I
|
FitlChar (VAR dest Integer; | FillChar(VAR dest : ARRAY OF BYTE;
length : Integer; | length : Integer;
|
|
|

data : Byte); data : BYTE);
NOTE : Turbo.dest is equivalent to
Modula-2.dest.

| MODULE TFilelo

Flush (VAR f : File); | Flush (VAR f : File);

158

TRANSLATOR Appendix A

Form (...); | NOT supported, see Introduction

| MODULE FloatingUtilities

Frac (r : Real) : Real; | Frac (r : REAL) : REAL;

| MODULE Storage

FreeMem(var p : Pointer; i : Integer) | DEALLOCATEC p, i);
| MODULE TDiskDirectory
I
GetDir(drive : Integer; | GetDir(drive : INTEGER;
VAR path : String); | VAR path : ARRAY OF CHAR);

| MODULE Storage

GetMem (var p : Pointer; i : Integer); | ALLOCATE (p, i);

| MODULE ScreenHandler

GoToXY(x, y : Integer); | GoToXY(x, y : INTEGER);

Halt(i : Integer); SetErrorCode(i);
Terminate(normal);

Halt Terminate(normal);
NOTE : - SetErrorCode is imported from MODULE
ErrorCode;
- Terminate is from MODULE System
- normal is imported from MODULE System

| MODULE MemoryOperations

Hi ¢ i : Integer) : Integer; | Hi (i : WORD) : INTEGER;

159

Appendix A TRANSLATOR

| MODULE ScreenHandler

I
Highvideo; | HighVideo;
| MODULE Strings
!
Insert (s 1 String; | Insert (s : ARRAY OF CHAR;
VAR d : String; | VAR d : ARRAY OF CHAR;
pos : Integer); | pos : CARDINAL);

| MODULE ScreenHandler

InsLine; | 1InsLine;
Int (r : Real) : Real; | Int (r : REAL) : REAL;
| MODULE TDOS
I
Intr (interruptNo : Integer; | Intr(interruptNo : INTEGER;
var result : Record) | VAR regs : ARRAY OF WORD);
| NOTE : see definition module

| MODULE TKernellO

Ioresult : Interger | I0result () : CARDINAL

| MODULE TKernellO

KeyPressed : Boolean; | KeyPressed () : BOOLEAN;
| MODULE Strings
I

Length (s : String) : Integer; | Length (VAR s : ARRAY OF CHAR): CARDINAL;
|

| MODULE MathLib0

Ln (r : Real) : Real; | In (r :REAL) : REAL;

160

TRANSLATOR Appendix A

| MODULE MemoryOperations

Lo (i : Integer) : Integer; | Lo (i : WORD) : INTEGER;

MODULE TBinarylO

LongFilePos (VAR f : File) : Real; LongFilePos ¢ VAR f : File) : REAL;
NOTE : FileType of f must be untypedFile
or fileOfRecord.

MODULE TBinaryIO

LongFileSize (VAR f : File) : Real; LongFileSize (VAR f : File) : REAL;
NOTE : FileType of f must be untypedFile
or fileOfRecord.

MODULE TBinarylO

I
I
LongSeek (VAR f : File Of Type; | LongSeek(VAR f : File;
pos : Real); | pos : REAL);
I
|
|

NOTE : FileType of f must be untypedFile
or fileOfRecord.

| MODULE ScreenHandler

LowVideo; | LowVideo;

MODULE Storage

Mark (var p : Pointer); InstallHeap;

into Modula-2 InstallHeap and
RemoveHeap ONLY in the case that we
release the last heap we have marked !

I
I
I
I
| NOTE: Mark and Realease can be translated
|
|
|

161

Appendix A TRANSLATOR

MaxAvail : INTEGER; | NOTE: is translated in MemAvail.

| MODULE MemoryOperations

MemAvail : INTEGER; | MemAvail () : INTEGER;

..

| MODULE TDiskDirectory

MkDir(path : String); | MkDir(path : ARRAY OF CHAR);
| MODULE MemoryOperations
|
Move (VAR source : Type; | Move (VAR source : ARRAY OF BYTE;
VAR dest : Type; | VAR dest : ARRAY OF BYTE;
length : Integer); | length : INTEGER);

MODULE TDOS

MsDos (Func : Integer;
param : Record);

MsDos (VAR regs : ARRAY OF WORD);
NOTE : see definition module

..

NOTE : To use this procedure one should import
procedure ALLOCATE from MODULE Storage.

| MODULE ScreenHandler

NormVideo; | NormVideo;

|
NoSound; | NoSound;
Odd(i : Integer) : Boolean; | oDD(x) : BOOLEAN;

162

TRANSLATOR Appendix A

MODULE MemoryOperations

ofs (p) : Integer; Ofs(p : ADDRESS) : INTEGER;

Ofs(ADDRESSC p));

otherwise for a variable of any type :
Ofs(ADRC p));

ord (x : Scalar) : Integer;] ORD(x : AnyEnumeration) : CARDINAL;

|
I
I
I
| NOTE : If p is a procedure the translation is :
I
I
|
I

| MODULE TParameter

ParamCount : Integer; | ParamCount () : INTEGER;

MODULE TParameter

I
!
ParamStr{ n : Integer) : String; | ParamStr (n : INTEGER;
| VAR par : ARRAY OF CHAR);

MODULE Strings

|
I
Pos (pattern String; | Pos (pattern : ARRAY OF CHAR;
source : String) : Integer; | source : ARRAY OF CHAR):CARDINAL;

‘Pred(x ¢ Scalar) : Scalar; VAL(type-of-x, ORD(x) - 1);

NOTE : Turbo Pascal never returns range error:
to have the same result in Modula-2
| one should disable range test.

163

Appendix A TRANSLATOR

MODULE MemoryOperations

Ptr (seg : Integer; off : Integer) : Pointer; Ptr (seg, off : INTEGER) : ADDRESS;

e.g.
pointer := Ptr(Cseg, $80); becomes:
pointer := Ptr(Cseg(), 80H);

MODULE Random

|
i

Randomize; | Randomize;
| NOTE : see definition module.

..

| MODULE Random

Random (range : Integer) : Integer; | RandomInt (range : INTEGER):INTEGER;

| MODULE Random

Random : Real; | RandomReal() : Real;

MODULE TBinarylO

I
l .
Read (VAR f: File Of Type; | Read(VAR f : File;
VAR v: Type H | VAR v : ARRAY OF BYTE);
I
| NOTE : Assign on f has been done with
| FileType = fileOfRecord;
| the actual parameter of v is a
| variable of any type.
l MODULE TTextIO
|
Read (VAR f : Text; | ReadInt (VAR f : File;
VAR i : Integer); | VAR i : INTEGER);
I
| NOTE : Assign on f has been done with

FileType = Text;

164

TRANSLATOR Appendix A

MODULE TReal IO

|
|
Read (VAR f : Text; | ReadReal (VAR f : File;
VAR r : Real); | VAR r : REAL);
|
I
|

NOTE : Assign on f has been done with
FileType = Text;

MODULE TTextIO

|
|
Read (VAR f : Text; | ReadChar (VAR f : File;
VAR ¢ : Char); | VAR ¢ : CHAR);
I
|
|

NOTE : Assign on f has been done with
FileType = Text;

MODULE TTextlIO

|
|
Read (VAR f : Text; | ReadString (VAR f : File;
VAR s : String); | VAR s : ARRAY OF CHAR);
|
|
I

NOTE : Assign on f has been done with
FileType = Text;

MODULE TTextIO

NOTE : Assign on f has been done with
FileType = Text;

Read (varl, var2, .. , varN); | ReadBuffer(on);

| Read<typevari> (stdinout, varl);

| Read<typevar2> (stdinout, var2);
I
I
I

I
I
Readln (VAR f : Text); | ReadLn (VAR f : File);
I
I
I

Read<typevarN> (stdinout, varN);
ReadBuffer(off);

165

Appendix A TRANSLATOR

Readln (vart, var2, .. , varN); | ReadBuffer(on);

| Read<typevari> (stdinout, vari);
| Read<typevVar2> (stdinout, var2);
| cees

| Read<typeVarN> (stdinout, varN);
| ReadlLn (stdinout);

| ReadBuffer(off);

Read (filvar, vari, .. , varN); | Read<typevari> (filevar, varl);
: Read<typeVarN>.}.}ileVar, varN);
cesdin ¢ F1lvar, varl, .., var i | Read<typeterts C filaver, vart 3
: Read<typeVarN>.}'}ile, varN);
| ReadLn (file);

MODULE Storage

Release(var p : Pointer); RemoveHeap;

NOTE: Mark and Realease can be translated
into Modula-2 InstallHeap and
RemoveHeap ONLY in the case that we
release the last heap we have marked !

..

MODULE TFilelO

Rename (VAR f

|
I

File; | Rename (VAR f : File;
name |

String); name : ARRAY OF CHAR):

166

TRANSLATOR

Reset

(VAR f

: File);

Reset

Appendix A

MODULE TFilelO

(VAR f : File ;
size : CARDINAL);

size has a different meaning depending
on the file type:

Text Files : is the size of the disk
file buffer. In Turbo Pascal it is
specified when the file variable is
declared i.e. f ¢ Text [2001 ;

’

File of Records : is the record size.

Untyped Files : is the size of each
record/block transferred by
BlockRead/Write operations.

If size = 0 for TextFile and Untyped
Files default value (128 bytes) while
for File of Record run time error 5
will occur.

167

Appendix A TRANSLATOR

MODULE TFilelO
Rewrite (VAR f : File); Rewrite (VAR f : File ;
size : CARDINAL);

NOTE : size has a different meaning depending
on the file type:

I

I

l

I

I

I

I

|

| Text Files : is the size of the disk
| file buffer. In Turbo Pascal it is
| specified when the file variable is
| declared i.e. f : Text [200] ;
I

I

!

I

I

I

I

I

I

I

I

File of Records : is the record size.

Untyped Files : is the size of each
record/block transferred by
BlockRead/Write operations.

1f size = 0 for TextFile and Untyped
Files default value (128 bytes) while
for File of Record run time error 5
will occur.

| MODULE TDiskDirectory
RmDir(path : String); | RmDir(path : ARRAY OF CHAR);

| MODULE FloatingUtilities

Round ¢ r : Real) : Integer; | Round(r : REAL) : INTEGER;

168

TRANSLATOR Appendix A

| MODULE TBinarylO
I

Seek (VAR f t File Of type; | Seek (VAR f : File;

pos : Integer); | pos : CARDINAL);

|
| NOTE : FileType of f must be untypedFile or
| fileOfRecord.

SeekEof : Boolean; | MODULE TTextIO
I

SeekEof (VAR f : File) : Boolean; | SeekEof (VAR f : File) : BOOLEAN;
I
| NOTE : FileType of File must be Text;

SeekEoln : Boolean; MODULE TTextlIO

I
|
SeekEoln (VAR f : Text) : Boolean; | SeekEoln (VAR f : File) : BOOLEAN;
| .
I

NOTE :FileType of File must be Text;

| MODULE MemoryOperations
|
Seg (p) : Integer; | Seg(p : ADDRESS) : INTEGER;
|
|

NOTE: Same as in Ofs.

| MODULE MathLibO

Sin (r : Real) : Real; | sin (r : REAL) : REAL;

| MODULE TParameter

|

SizeOf(var variable) : Integer; | S1ZEC variable) : CARDINAL;
| MODULE TParameter
I

SizeOf(<type identifier>) : Integer | TSIZE(anytype) : CARDINAL;
I

169

Appendix A TRANSLATOR

| MODULE Sounds

|
Sound (hertz : Integer); | sound (hertz : INTEGER);
Sgr (i : Integer) : Integer; | ¢i*i)
sqr ¢ r : Real) : Real; | ¢r*r)

| MODULE MemoryOperations

|
Sseg : Integer; | Sseg(): INTEGER;
] MODULE TNumberConversion
I
Str(i : Integer] IntToStr(i : INTEGER
(* option *)[:n]; | n : INTEGER
I

VAR s : String); VAR s : ARRAY OF CHAR);

| MODULE TRealNumberConversion
I
str(r : real; | RealTostr(r : REAL;
(* option *)[:n]; | n : INTEGER
(* option *)[:m); | m : INTEGER
VAR s : String); | VAR s : ARRAY OF CHAR);

Succ(x : Scalar) : Scalar; VAL(type-of-x, ORD(x) + 1);

to have the same result in Modula-2
one should disable range test.

| MODULE MemoryOperations

I
I
| NOTE : Turbo Pascal never returns range error
I
l

Swap (i : Integer) : Integer; | Swap ¢ i : WORD) : INTEGER;

170

TRANSLATOR Appendix A

| MODULE FloatingUtilities

Trunc (r : Real) : Integer; | Trunc(r : REAL) : INTEGER;

| MODULE TFilelO

I
Truncate(VAR f : File); | Truncate(VAR f : File);
UpCase (ch : Char) : Char; | CAPC ch : CHAR) : CHAR;
| MODULE TRealNumberConversion
|
Val(s : String; | StrToReal ¢ s : ARRAY OF CHAR;
VAR r : Real; | VAR r : REAL;
VAR p : Integer); | VAR p : INTEGER);
| MODULE TNumberConversion
I
val(s @ String; | strTolnt(s : ARRAY OF CHAR;
VAR i : Integer; | VAR i : INTEGER;
VAR p : Integer); | VAR p : INTEGER);
| MODULE ScreenHandler
|
WhereX : Integer; | whereX () : INTEGER;
| MODULE ScreenHandler
I
WhereY : Integer; | wWhereY () : INTEGER;

171

Appendix A TRANSLATOR

MODULE TBinarylO

Write (VAR f: File Of Type; Write(VAR f : File;

I
[
I

VAR v: Type) | VAR v : ARRAY OF BYTE);
|
| NOTE : Assign on f has been done with
| FileType = fileOfRecord;
| the actual parameter of v is a
| variable of any type.
| MODULE TTextlO
I

Write (VAR f : Text; | Writelint (VAR f : File;
i : Integer | i : INTEGER;
(* optional *)[:nl); | n : CARDINAL); (* default 0 *)
I
| NOTE : Assign on f has been done with
| FileType = Text;
| MODULE TReallO
|
Write (VAR f : Text; | WriteReal (VAR f : File;
r : Real | r : REAL;

(* optional *)[:n] | n : CARDINAL; (* default 18 *)

(* optional *)[:m]); | m : INTEGER); (* default -10 *)
|
| NOTE : Assign on f has been done with
| FileType = Text;

--

MODULE TTextIO

Write (VAR f : Text; WriteBool (VAR f

|

|

| File;

b : Boolean | b

I

I

|

|

BOOLEAN;
CARDINAL); (* default 0 *)

(* optional *)[:nl);

NOTE : Assign on f has been done with
FileType = Text;

172

TRANSLATOR Appendix A

MODULE TTextIO

Write (VAR f : Text;
c : Char
(* optional *)[:n]);

WriteChar (VAR f : File;
c : CHAR;
n : CARDINAL); (* default 0 *)

NOTE : Assign on f has been done with
FileType = Text;

MODULE TTextIO

|
I
Write ¢ VAR f : Text; | Writestring (VAR f : File;
s 1 String] s 1 ARRAY OF CHAR;
I
|
I
I

(* optional *)[:nl); n : CARDINAL); (* default 0 *)
NOTE : Assign on f has been done with
FileType = Text;
*)
n is the parameter corresponding to the
width. In Turbo Pascal can be specified
after a colon.
e.g.
Write (file, i : 4);
Wwill be translated into
Writelnt ¢ fite, i, 4) ;

e.g.

Write (file, i1);

will be translated into
Writelnt ¢ file, i, 0);

for reals default for n is 18
default for m is -10

|
[
!
I
I
|
I
I
I
| default for n is O
I
I
I
I
|
I
|
I

173

Appendix A TRANSLATOR

MODULE TTextlO

Writeln (VAR f : Text); Writeln (VAR f : File);
NOTE : Assign on f has been done with
FileTipe = Test;

Write (vari, var2, .. , varN); | Write<typevar1> (stdinout, var1);
| Write<typevar2> (stdinout, var2);
| .

| Write<typeVarN> (stdinout, varN);
| Write<typevar1> (filevar, varl);
| Write<typevar2> (filvar, var2);

| cees

| Write<typevarN> (filvar, varN);

Writeln (var1, var2, .. , varN); Write<typeVar1> (stdinout, varl);

Write<typeVar2> (stdinout, var2);

Write<typeVarN> (stdinout, varN);
Writeln (stdinout);

Writeln (filvar, var1, .. , varN); | Write<typevar1> (filevar, var1);
| Write<typevar2> (filvar, var2);

| e

| Write<typeVarN> (filvar, varN);

| wWriteltn ¢ filvar);

174

TRANSLATOR Appendix A

Graphic Functions

The Modula-2 graphic libraries are constituted by the following modules:

= GraphBasic, which corresponds to the Turbo ‘Basic graphic routines’.
= GraphExtended, which corresponds to the Turbo ‘Extended graphic routines’.
» GraphTurtle, which corresponds to the Turbo ‘Turtle graphics routines’.

The Modula-2 interface is the same as the Turbo interface with the following exceptions:

| MODULE GraphBasic
I
TextMode; | TextModeReset;
I
|

TextMode(mode : Integer); TextMode(mode : INTEGER);

MODULE GraphBasic

x1, y1, x1, y1,
X2, y2 : Integer); X2, y2 : INTEGER);

MODULE GraphBasic

I
|
GetPic (VAR buffer : anyType; | GetPic(VAR buffer : ARRAY OF BYTE;
I
|

|
I
PutPic (VAR buffer : anyType; | PutPic(VAR buffer : ARRAY OF BYTE;
X, Y & Integer); | X, Y : INTEGER);

NOTE:

The constants, such as BW40, BW80, C40, C80 and the color constants, are exported from Module
‘GraphBasic’.

The constants North, East, South and West are exported from Module ‘GraphTurtle’.

175

Appendix B TRANSLATOR

APPENDIX B

MAPPING OF TURBO PASCAL COMPILER DIRECTIVES TO MODULA-2

The Turbo Pascal compiler options are translated into Modula-2 in both LOGITECH MODULA-
2/86 compiler options and procedure calls.

When a compiler option is translated into a procedure call the effect at run time for the program is
the same as if the compiler wouid have produced a different code. All these procedures are defined
in module ‘TKernellO’.

The Translator takes care to place the procedure calls in the right place. The Translator translates
options that are global to the whole program into procedure calls placed at the beginning of the
module body, while it translates options that are local into a procedure placed locally.

Global directives are: B, C, D, G, and P.

Local directives are: I, K, and R.

‘We suggest that you also study the Modula-2 Compiler Directives in the MODUILA-2/86 User’s
Guide to take advantage of all the possibilities the LOGITECH MODULA-2/86 Compiler offers
you. Some of these include:

stack, range and index test

code generation for 80286

code generation for the Math Coprocessor 8§087/80287
alignments

statistics

interactive/batch operations

listing control

176

TRANSLATOR

Appendix B

Turbo Pascal to Modula-2 Compiler Directive Mapping

Turbo Pascal

{$B+)
{$B-3

o

4 —— —

$ o e e e e o e e o o = —— F — —— . — —— —

Modula-2

10Buffer(on);(* default *)
10Buffer(off);

NOTE : 10Buffer is slightly different from the B option
because Modula-2 does not have a read without file parameter
and so the effect of {$B-} is to buffer all the files that
refer to the console.

ctrlCC on); (* default *)
ctric(off);

DeviceCheck(on); (* default *)
DeviceCheck(off);

NOT SUPPORTED -- see LOGITECH.MODULA-2/86 User's Guide
Installation Chapter

...

177

Appendix B TRANSLATOR

{31+ | 10Check ¢ on); (* default *)
{3$1-> | 10Check ¢ off);
|
{$1 frnamed} | Include Files are fully supported,
| see section on Translator options
|
............... +......_..-_...........---.---.------....-‘..---.---.---..--.
I
{3K+) | (*$S+*) (* LOGITECH MODULA-2/86 Comp. Dir. stack test on *)
{$K-> | (*$S-*) (* LOGITECH MODULA-2/86 Comp. Dir. stack test off *)
| (* default on *)
I
............... D L R R
|
{$Psize) | OutputFileBuffer (size); (* default 128 *)
I
............... decrcmscncessncunessencaatccacsanaraneesascona e nenenaasanana
I
{$R+> | (*$T+,$R+*) (* LOGITECH MODULA-2/86 range & index test on *)
{$R-> | (*$T-,3R-*) (* LOGITECH MODULA-2/86 range & index test off *)
| (* default on *)
I
............... L L R A L R LY
|
{$V+/-> | NOT SUPPORTED -- see Modula-2 language feature Open Array
|
............... frecemcranecaaneansscuar ccorneosnaeantenn s nasescannanamnn
I
{SUWxy | NOT SUPPORTED -- CP/M-80 Compiler Directive
|
--------------- R R R L L L R
I
{$U+/-)> | NOT SUPPORTED -- see LOGITECH MODULA-2/86 User's Guide
| Aborting a program
|
............... feemcccnecenccaanceacanaseccananruaer e cee s et e
|
{$X+/-3 | NOT SUPPORTED -- CP/M-80 Compiler Directive
............... R L L R e L

178

TRANSLATOR Appendix C

APPENDIX C
COMPATIBILITY BETWEEN TURBO PASCAL AND MODULA-2 DATA FILES

This appendix addresses the problems of data representation in files created using Turbo Pascal and
Modula-2. When translating a Pascal program that uses files into a Modula-2 program, you should
be aware of the format used to store data in files. Most of these problems are due to the different
internal data representation used by Turbo Pascal and Modula-2. The incompatibilities you may
encounter for the different types of files are:

= TEXT FILES

Text files are compatible, in other words from the Modula-2 program you can read all the
text files produced by Turbo Pascal. The only problem occurs when reading a real number,
produced with Modula-2, from a Turbo Pascal program. The syntax of Turbo does not
accept the Modula-2 three-digit exponent for a real.

= UNTYPED FILES

The blocks of bytes transferred with the block read/write operation remain unchanged. The
possible incompatibilitics depend on the contents of these blocks. Check to see if you use in
- the block any data types that are not compatible.

= FILE OF RECORD

Files of record are, in general, not compatible. In fact, Turbo Pascal and Modula-2 have a
different internal representation for some data types.

To be able to use a (incompatible) data file generated using a Turbo Pascal program from the
Modula-2 translated version, you should first write a specialized utility program to convert the
original data file (Turbo Pascal data format), into a new data file (Modula-2 data format). After this
conversion, the Modula-2 program will run correctly. A possible alternative is to regenerate the data
files with the translated Modula-2 program.

179

Appendix C

TRANSLATOR

REPRESENTATION OF TYPES

--

..

| 2-BYTE : -32768 .. 32767,

two's complement notation, least
significant byte first

ENUMERATION
and
SUBRANGE

1-BYTE 1f:
integer subranges with both bounds
in the range 0..255, declared scalars
with less then 255 possible values.
This byte contains the original value
of the number.

2-BYTES 1If:
integer subranges with one or both
bounds not within the range 0..255,
and declared scalars with more than
256 possible values. These bytes
contain a 2's complement 16-bit value
with the least significant byte
stored first.

Enumeration type:
1 BYTE, elements are numbered 0..255.

Subrange type:
same representation as the base type.

180

TRANSLATOR

REAL

6-BYTES :

A floating point value with a
40-bit mantissa and an 8-bit

2's exponent. The exponent is
stored in the first byte and the
mantissa in the next 5-bytes
with the least significant byte
first. The exponent uses binary
format with an offset of 80H. If
the exponent is zero, the floating
point value is considered to be
zero.

The value of the mantissa is

‘obtained by dividing the 40-bit

unsigned integer by 2740. The
mantissa is always normalized,
i.e. the most significant bit
(bit 7 of the fifth byte)
should be interpreted as a 1.
The sign of the mantissa is
stored in this bit, a 1
indicating a negative number.

Appendix C

8-BYTES :

A floating point value with a 52-bit
mantissa, 11-bit exponent and 1-bit
sign. The exponent is stored in the
last word bits 1..11 (bit 0 being
the sign), the mantissa in bit
12..15 of the last word and in the
other 3 words, with the least
significant byte first. The
exponent uses binary format with an
offset of 3FFH. If the exponent is 0
the floating point value is 0.

The value of the mantissa is obtained
by dividing the 52-bit unsigned
integer by 2°52. The mantissa is
always normalized, i.e. the implicit
binary point (before bit 12 of the
last word) is interpreted as
following a 1. The sign bit
indicates negative numbers with a 1.

STRING

A string occupies as many bytes
as the maximum length plus one.
The first byte (element 0)
contains the current length of
the string.

A string (ARRAY [0..length-11)
occupies 'length' bytes.

The string with less than length
elements is terminated by OC .

No current length is stored in the
string

181

Appendix C TRANSLATOR

I I
ARRAY | An array is stored as a | Same representation as T-Pascal, but
| contiguous sequence of elements, | each array element may have a
| with the index in ascending | different representation in
| order, the right-most index | accordance with its type.
| varing most quickly. |
I I
SETS | An element in a set occupies one | 2-BYTES:
i bit, and the maximum number of | The maximum number of elements
| elements in a set is 256. | in a set is 16.
| The number of bytes occupied by | I1f we number the elements of a
| a set variable is calculated as | set from 0 to 15, the
| (Max DIV 8) - (MinDIV8) + 1. | representation in a memory word
| | is:
| | 76 ..10 1514 ..98
| | ¢ tow byte) (high byte)
| I
POINTER | 4-BYTES: | same representation as T-Pascal
| The first two bytes (lower |
| address) hold the offset value |
| (lower byte first) and the |
| second two bytes hold the |
| segment value (lower byte |
| first). |
| NOTE: NIL = 0000:0000; | NOTE : NIL = FFFF:FFFF;
| I
RECORD | The first field of a record is | Same representation as T-Pascal, but
| stored at the lowest memory | each field may have a different
| address. | representation in accordance with its
I | type
| I
FILE | 76 BYTES |
| for text files there are 128 | see module TKernellO
| bytes more to store the buffer. |

182

TRANSLATOR Appendix D
APPENDIX D

INDEX OF LIBRARY MODULES

For quick reference, we briefly describe in this section the set of library modules provided with the
Translator. More detailed information is available in each definition module file (DEF). Modules
with names starting with ‘T.." implement functions similar to the one already available in other
LOGITECH MODULA-2/86 Base Language System Library Modules.

= MODULE Delay
Interrupts the program execution for a given delay time.

= MODULE Exec
Handles the execution of any DOS program from a Modula-2 program.

s MODULE FloatingUtilities
Operations on fractional/integer part of a real number.

= MODULE GraphBasic

= MODULE GraphExtended

s MODULE GraphTurtle
Graphics functions.

= MODULE LongSet
Procedures for the management of sets larger than 16 elements.

= MODULE MemoryOperations

Miscellaneous memory oriented operations like bitwise operations, fast move memory,
procedures to get segments and offset, operations on
predefined arrays Mem, MemW, Port, PortW.

= MODULE Random
Generates random numbers.

183

Appendix D TRANSLATOR

= MODULE Sounds
Generates sounds.

» MODULE ScreenHandler
Screen management procedures.

MODULE TKernellO
MODULE TFileIO
MODULE TTextIO
MODULE TRealIO
MODULE TBinarylO

File Management procedures.

» MODULE TNumberConversion
= MODULE TRealNumberConversion
Conversion between integers or reals and strings.

= MODULE TParameter
Handles the command parameters string.

= MODULE TDiskDirectory
Interface to directory functions.

= MODULE TDOS
Interface to PC-DOS.

= MODULE TExec
Execute any DOS program from a Modula-2 program (Turbo Pascal interface).

The following are other modules for which the Translator generates references: These are available
with the LOGITECH MODULA-2/86 Base Language System.

= MODULE ErrorCode
Handles return code to the operating system.

= MODULE MathLib0
Real Math functions.

184

TRANSLATOR Appendix D

MODULE Storage
Standard dynamic storage management.

MODULE Strings
Variable length character string handler.

MODULE SYSTEM
Implementation and system dependent types, variables and procedures.

MODULE System
Additional system dependent facilities.

185

Appendix D TRANSLATOR
LIST OF ALL IDENTIFIERS USED IN LIBRARY MODULES

Identifier Module
ADDRESS (SYSTEM)
ADR (SYSTEM)
ALLOCATE (Storage)
And {MemoryOperations)
Append (TFileIO)
Arc (GraphExtended)
arctan (MathLib0)
Assign (Strings)
AssignFile (TFileIO)
aux (TKernellO)
auxInPtr (TKernelIO)
auxOutPtr (TKernelIO)
Auvailable (Storage)
Back (GraphTurtle)
Black (GraphBasic)
Blink {GraphBasic)
blinkAtt (ScreenHandler)
blinkUnderlineAtt (ScreenHandler)
BlockRWResult (TBinaryIO)
BlockRead (TBinaryIO)
BlockWrite (TBinaryIO)
Blue (GraphBasic)
boldAtt (ScreenHandler)
boldBlinkAtt (ScreenHandler)
boldUnderlineAtt (ScreenHandler)
boldUnderlineBlink Att (ScreenHandler)
Brown (GraphBasic)
BuildSet (LongSet)
BW40 (GraphBasic)
BWS80 (GraphBasic)
BYTE (SYSTEM)

186

TRANSLATOR Appendix D

C40 (GraphBasic)
C80 (GraphBasic)
CardToStr (TNumberConversion)
ChDir (TDiskDirectory)
Circle (GraphExtended)
ClearScreen (GraphTurtle)
Close (TFileIO)
ClrEol (ScreenHandler)
ClrScr (ScreenHandler)
CODE (SYSTEM)
ColorTable (GraphExtended)
CompareStr (Strings)
con (TKernellO)
Concat (Strings)
conInPtr (TKernelIO)
conOutPtr (TKernelIO)
conStPtr. (TKernellO)
Copy. (Strings)
cos, (MathLib0)
curProcess. (System)
CrtExit (ScreenHandler)
CrtlInit (ScreenHandler)
Cseg (MemoryOperations)
CtrlC (TKernellO)
Cyan (GraphBasic)
DarkGray (GraphBasic)
DEALLOCATE (Storage)
DelLine (ScreenHandler)
Delay (Delay)
Delete (Strings)
DeviceCheck (TKernelIO)
DISABLE (SYSTEM)
DOSCALL (SYSTEM)
Draw (GraphBasic)
Dseg (MemoryOperations)

187

Appendix D TRANSLATOR

East (GraphTurtle)
ENABLE (SYSTEM)
entier (MathLib0)
Eof (TFileIO)
Eoln (TTextIO)
EqualSet (LongSet)
Erase (TFileIO)
ErrorProc (TKernellO)
errorPtr (TKernellO)
Exclude (LongSet)
Execute (TExec)
€xp (MathLib0)
File (TKernelIlO)
FilePos (TBinarylO)
FileSize (TBinaryIO)
FileType (TKernellO)
FillChar (MemoryOperations)
FillPattern (GraphExtended)
FillScreen (GraphExtended)
FillShape {(GraphExtended)
Float (FloatingUtilities)
Flush (TFilelO)
Forwd (GraphTurtle)
Frac (FloatingUtilities)
GetAttribute (ScreenHandler)
GetDir (TDiskDirectory)
GetDotColor (GraphExtended)
GetPic (GraphExtended)
GETREG (SYSTEM)
GotoXY (ScreenHandler)
GraphBackground (GraphBasic)
GraphColorMode (GraphBasic)
GraphMode (GraphBasic)
GraphWindow (GraphBasic)
Green (GraphBasic)

188

TRANSLATOR Appendix D

Heading (GraphTurtle)
Hi (MemoryOperations)
HiRes (GraphBasic)
HiResColor (GraphBasic)
HideTurtle (GraphTurtle)
HighVideo (ScreenHandler)
Home (GraphTurtle)
IOBuffer (TKernellO)
INBYTE (SYSTEM)
I0Check (TKernellO)
IOresult (TKernellO)
InSet (LongSet)
Include (LongSet)
InitProcedure (System)
input (TKernellO)
InputFileBuffer (TKernelIO)
InsLine (ScreenHandler)
Insert (Strings)
InstallHeap (Storage)
Int (FloatingUgtilities)
IntToStr (TNumberConversion)
Intr (TDOS)
INWORD (SYSTEM)
kbd (TKernelIO)
KeyPressed (TKernelIO)
Length (Strings)
LightBlue (GraphBasic)
LightCyan (GraphBasic)
LightGray. (GraphBasic)
LightGreen (GraphBasic)
LightMagenta (GraphBasic)
LightRed {GraphBasic)
In (MathLib0)
Lo (MemoryOperations)
LongFilePosition (TBinaryIO)
LongFileSize (TBinaryIO)

189

Appendix D TRANSLATOR

LongSeek (TBinaryIO)
LowVideo (ScreenHandler)
Ist (TKernellO)
IstOutPtr (TKernelIO)
Magenta (GraphBasic)
MakeEmptySet (LongSet)
MemAuvail (MemoryOperations)
MemGet {(MemoryOperations)
MemSet (MemoryOperations)
MemWGet (MemoryOperations)
MemWSet (MemoryOperations)
MKDir (TDiskDirectory)
Move (MemoryOperations)
MsDos. (TDOS)
NEWPROCESS (SYSTEM)
NoSound (Sounds)
NoWrap (GraphTurtle)
normalAtt (ScreenHandler)
NormVideo (ScreenHandler)
North (GraphTurtle)
Not (MemoryOperations)
Ofs (MemoryOperations)
OptionMode (TKernellO)
Or (MemoryOperations)
OUTBYTE (SYSTEM)
output (TKernellO)
OutputFileBuffer (TKernellO)
OUTWORD (SYSTEM)
Palette (GraphBasic)
ParamCount (TParameter)
ParamStr (TParameter)
Pattern (GraphExtended)
PenDown (GraphTurtle)
PenUp (GraphTurtle)
Plot (GraphBasic)

190

TRANSLATOR Appendix D

PortGet (MemoryQOperations)
PortSet (MemoryOperations)
PortWGet (MemoryOperations)
PortWSet (MemoryOperations)
Pos (Strings)
PROCESS (SYSTEM)
ProcessDescriptor (System)
ProcessPtr (System)
Ptr (MemoryOperations)
PutPic (GraphExtended)
RandomInt (Random)
RandomReal (Random)
Randomize (Random)
Read (TBinaryIO)
ReadCard (TTextIO)
ReadChar (TTextIO)
ReadInt (TTextIO)
ReadLn (TTextIO)
ReadProc (TKernellO)
ReadReal (TReallO)
ReadString (TTextIO)
real (MathLib0)
RealToStr (TRealNumberConversion)
Red (GraphBasic)
RegPack (TDOS)
RemoveHeap (Storage)
Rename (TFileIO)
Reset (TFileIO)
reverseAtt (ScreenHandler)
reverseBlinkAtt (ScreenHandler)
Rewrite (TFileIO)
RmbDir (TDiskDirectory)
Round (FloatingUtilities)
RTSVECTOR (SYSTEM)
Seek (TBinaryIO)
SeekEof (TTextIO)
SeekEoln (TTextIO)

191

Appendix D TRANSLATOR

Seg (MemoryOperations)
SetAttribute (ScreenHandler)
SetDifference (LongSet)
SetErrorCode (ErrorCode)
SetHeading (GraphTurtle)
SetIncluded (LongSet)
SetIntersection (LongSet)
SetPenColor (GraphTurtle)
SetPosition (GraphTurtle)
SETREG (SYSTEM)
SetUnion (LongSet)
Shl (MemoryOperations)
ShowTurtle (GraphTurtle)
Shr (MemoryOperations)
sin (MathLib0)
SIZE (SYSTEM)
Sound (Sounds)
South (GraphTurtle)
sqrt (MathLib0)
Sseg (MemoryOperations)
Status (System)
StatusProc (TKernellO)
stdinout (TKernelIO)
StrToCard (TNumberConversion)
StrTolnt (TNumberConversion)
StrToReal (TRealNumberConversion)
Swap (MemoryOperations)
SWI (SYSTEM)
SymmetricSetDifference (LongSet)
TermProcedure (System)
Terminate (System)
TextBackground (GraphBasic)
TextColor (GraphBasic)
TextMode (GraphBasic)
TextModeReset (GraphBasic)
TRANSFER (SYSTEM)
trm (TKernellO)
Trunc (FloatingUtilities)

192

TRANSLATOR Appendix D
Truncate (TFileIO)
TSIZE (SYSTEM)
TurnLeft (GraphTurtle)
TurnRight (GraphTurtle)
TurtleDelay (GraphTurtle)
TurtleThere (GraphTurtle)
TurtleWindow (GraphTurtle)
underlineAtt (ScreenHandler)
usr (TKernelIO)
usrInPtr (TKernelIO)
usrOutPtr (TKernelIO)
West (GraphTurtle)
- WhereX (ScreenHandler)
WhereY (ScreenHandler)
White (GraphBasic)
Window (GraphBasic)
WORD (SYSTEM)
Wrap (GraphTurtle)
Write (TBinaryIO)
WriteBool (TTextIO)
WriteCard (TTextIO)
WriteChar (TTextIO)
WriteInt. (TTextIO)
WriteLn (TTextIO)
WriteProc (TKernellO)
WriteReal (TReallO)
WriteString (TTextIO)
Xcor (GraphTurtle)
Xor (MemoryQOperations)
Ycor (GraphTurtle)
Yellow (GraphBasic)

193

INDEX

80286 176
8087 code 16
8087/80287 8, 176

Abs 153

Absolute 18, 86
Absolute variables 21, 86
Addr 153
Alignments 176

And 18, 153

Append 153

ArcTan 154
ARRAY 56, 182
Array of characters 58
Assembler 137, 147
Assign 154

Aug, .ilst 91

BCD 3

Binary memory image 147

Bit Manipulation Operators 105
BlockRead 154

BlockWrite 155

BOOLEAN 180

BW40 175

BWS80 175

Bytes 82

C40 175

C80 175

CARDINAL 77
CASE 86

Chain 18, 107, 108, 155
CHAR 180

ChDir 155

Chr 155

194

Close 155

CIrEol 155

ClrScr 155

Code 89

Comment 113

Comments 13
CompareStr 63
Compatible 179
Compiler directives 13, 102
Con 91

Concat 18, 61, 62, 67, 72, 156
Conditional statements 14
Constant string 20, 21
Constants 30

Control character 37
Control characters 33, 65
Conversion 179

Convert 179

Coprocessor 8

Copy 18, 67,72, 156
Copy, Concat 15

Cos 156

CrtExit 156

CrtInit 156

CSeg 86, 87, 156

CtrlC 177

Data file 179

Data files 179

Data representation 179
Decimal 3

Decimal point 14
Definition module 118, 119
Delay 156, 183

Delete 66, 157

DellLine 157

Device I/O 102
DeviceCheck 177
Devices 16

Directories 11, 12
Dispose 157
Driver 146

DSeg 86, 87, 157

East 175

Empty 57

Emulation 16
ENUMERATION 180
Eof 157

Eoln 157

Erase 157

Error 18

Error handler 102
Error Handling 19
Error messages 16
ErrorCode 184
ErrorPtr 18,93, 153
EXCL 43

Exec 183

Execute 15, 18, 107, 108, 157
Exit 106, 107, 158

Exp 158

EXPORT 119
EXTERNAL 137
External procedure 22
External procedures 137, 141
External Subprogram 19

File 16,91, 101, 182
FILE OF RECORD 179
File of records 16
FileIO 109

FilePos 158

Files of records 102
FileSize 158

FillChar 158

Flag 711 75

Flag 21UNDEF 75

Flags 19

Float 80
FloatingUtilities 8, 183
Flush 158

Form 159

Formatted I/O 102
Forward 107
Forward declarations 15
Frac 159

FreeMem 159
Function 15

Function returning 18
Functions 69, 153

GetDir 159

GetMem 159
GETREG 90

Goto 18, 21,30
GoToXY 159
GraphBasic 183
GraphExtended 183
Graphic 22

Graphic functions 153
GraphTurtle 183

Halt 107, 159

HeapPtr 101, 153
HeapTop 101
Hexadecimal constants 33
Hi 159

HighVideo 160

I/0 101

I/O drivers 18,91

Identifiers 14

Implementation 118

Implementation module 118,
121, 131

IMPORT list 14

IN 43

In-line 22

INCL 43

Include 11,13
Include file 11
Include Files 178
Included 127, 130
Included files 130
Incompatibilities 179
Indent 1ii

Index test 176, 178
Initialized variables 18, 30, 32
Inline 89

Inline code 18
Input 91

Insert 66, 160

Inset 52

InsLine 160
Installation 7
InstallDriver 146

LongFileSize 161
LongSeek 161
LongSet 42, 183
Loops. 14
Lower case 14
LowVideo 161

Mark 101, 161
Mark String 55
MathLib0 184
MaxAvail 162
Maxint 16, 30
Mem 18, 100, 153
MemAvail 162
MemGet 100

MemoryOperations 183

MemSet 100
MemW 18, 100, 153
MemWGet 100
MemWSet 100

InstallHeap 101 MkDir 162

Int 160 Module ‘Drivers’ 142
INTEGER 77, 180 MODULE Drivers 146
Intr 160 Module Initialization 134

IntToStr 67
IOresult 160

Kbd 91
KeyPressed 160

Label 18,21, 30

Length 59, 66, 160

Libraries 16

Library modules 17, 109, 183
Limits 20

Listing control 176

Ln 160

Lo 161

LongFilePos 161

196

Module name 13
ModuleBody 134
Move 162
MsDos 162

New 162
NormVideo 162
North 175
NoSound 162
Not 18, 105, 153

Object file 137
0dd 162
OF CHAR 56
Ofs 163

Opaque type 131

Opaque Types 131, 134, 135
Open Arrays 67

Options 10, 11, 176

Or 18, 105, 153

ORD 77, 163

Output 91

Overlay 15, 18, 107, 108
Overlays 19

OvrPath 18, 163

ParamCount 163
ParamStr 15, 18, 72, 163
Path 11

Paths 11

Pi 16,30

POINTER 182

Port 18, 100, 153
PortGet 100

PortSet 100

PortW 18, 100, 153
PortWGet 100
PortWSet 100

Pos 66, 163
Post-mortem debugger 2
PRED 15, 163
Predefined files 16, 102
Predefined Variables 90
Procedures 153
Program 107

Program name 13

Ptr 164

PutPic 175

Random 8§, 164, 183
Randomize 164
Range 176, 178
Read 164, 165, 166
ReadBuffer 103

Readln 165, 166
REAL 181

Real Arithmetic 3, 8
Real number 14
Reals 16, 80
RealToStr 67
RECORD 182
Release 101, 166
RemoveHeap 101
Rename 166
Reserved words 14
Reset 167

Result of Functions 106
RETURN 106
Rewrite 168
RmDir 168

Round 80, 168

ScreenHandler 102, 184
Seek 169
SeekEof 169
SeekEoln 169
Seg 169

Set 14,16

Set constructor 47
Set of characters 42, 47
SETREG 90

Sets 18, 42, 182
Shl 18, 105, 153
Shr 18, 105, 153
Sin 169

SizeOf 169
Sound 170
Sounds 184
South 175
Spelling 14

Sqr 170

Sqrt 170

Sseg 170

197

Stack 176

Stack test 178

Standard identifiers 14, 16, 17
Stdinout 91, 103

Storage 185

Str 67,170

String 11, 21, 30, 55, 181
String constant 37
String Functions 66
String Operator ‘+* 61
Strings 11, 14, 15, 21, 55, 58, 185
Strings operations 18
StrTolnt 67

StrToReal 67
Structured constant 41
Structured data types 15
Structured statements 14
Subprogram 15, 22
Subprograms 108
Subrange 15, 180

SUCC 15,170

Swap 170

SYSTEM 185

TBinaryIO 8, 184
TDiskDirectory 184
TDOS 184

TExec 184

Text files 102, 179
TextMode 175

TFileIO 184

. The Run-Time Debugger 2
TKernellO 184
TNumberConversion 184
TParameter 184
Translation Rules 13
Translator’s Capacities 23
TReallO 8, 184
TRealNumberConversion 8, 184

198

Trm 91

Trunc 80, 171
Truncate 171
TTextIO 184
Turbo-BCD 19

Typed constants 30, 32

Underscore 31

Underscores 14

UninstallDriver 146

Untyped files 16, 102, 179
Untyped Variable Parameters 88
Untyped Variables 86

UpCase 171

Upper 14

Uppercase 14

Usr 91

Val 67,171

Warning messages 33
West 175

WhereX 171
WhereY 171

WITH 83

Write 172, 173, 174
Writeln 174

Xor 18, 105, 153

LOGITECH
MODULA-

VERSITON 3.0

TURBO PASCAL
TO LOGITECH"
MODULA-2
TRANSLATOR

BLOGITECH

Logitech U.S.A. Logitech Switzerland Logitech Taiwan Algol-Logitech Italy
Corporate Headquarters European Headquarters Far East Headquarters Via Durazzo 2

6505 Kaiser Drive CH-1111 Romanel/Morges 15 R&D Road 2 20134 Milano MI
Fremont, CA 94555 Switzerland Science Based Industrial Park Italy

Tel: 415-795-8500 Tel: 41-21-869-9656 Hsinchu, Taiwan, ROC Tel: 39-2-215-5622

Tel: 886-35-77-8241

