Jeroen P. Broks

A beginner's guide to:

-

.
- ~

Table of Contents

1. Introduction to Lua and this DOOK..........cciiiiiiiiiiiiiiiieie e 3
L OV 1 1 T30 I3 T PSS UUSTSRE 3
1.2 What do you need to install for thiS COUISE..........ceevuiiiiiiiiiiiie et 3
1.3 HOW t0 USE thiS DOOK.....cciiiiiiiiieceiiie et et e e e e e s e e e e e 4

2. Hello World! Your first real program...........c.ceccuieiiieiiiiniiie ettt see e esnneesnee e 5

R IV 0 T 1 0] (<1 PRTI 7
R B U ST 111 1 o LTSRS 7
3.2 THe NUMDET [YPC....veeiiiiieeiiie et ettt etee ettt e ettt e e st e e s aaeesaeeesaeeesssseeessseesassaeeansseeensseeenssseennns 8

3.2.1 Definition and ShOWING NUMDETS...........cceoieeiiiiiiiiieiieeieerieee et e ebee e see e 8
3.2.2 Mathematics With Variables...........cccvieiiiiiieiiiiiiiicecee e e e e s 8
3.2.3 ASSIZNIMENL......tiiiiiiiieeiie ettt et ette e tte et et e et estte e bt esseeenbeeateenseesnbeeseeenbeenseesnseenseennsens 10
3.3 THE SHINE LY PC.uveieeiiieeeitie ettt eectte e e steeeette e e ette e e sttt e e ssaeeessaeesssaeeesseesanseeeasseeenssaeeassseesnsseeenns 10
3.3.1 An Introduction tO SEEINZS.....ccccuieiiiiiiieeiieeiieeieeeieeertee et e este et e eseteesebeesbeessseesnseesnseaans 10
RN IO) s Lo 1 <3 0 T 15 10 4 OSSR 11
3.3.3 C formatted Strings i Lua.......c.ooouiiiiiiiiiiie et 12
3.3.4 SHING SHCINE...eeeutieeiiie ettt ee et e et e et e e sbeeesbeeessbaeesssaeeasseeensseeessseesnsseeensseennes 12
3.4 BOOLCAN LYPC.. e eeieiiieeiiie ettt ettt te et et ettt e tee s tee et e e st e e bt e et eesabeeenbe e nbeetaeenbeeenteeeabeenaeen 14

4. The “U KEYWOTA. ... eiiiiiiieeie ettt e e et e et e e estae e et eeesntaeeessaeesnsseeenssaeennseannns 17
O N O 1 1 1< 4 B 3 s 1« OO PRI 17
4.2 1. then...€ISe... €Nd...cc.uiiieiiiieie e et e et e e aaee s 18
43 1f ... then ... elseif ... then ... €lse ... eNd......ccceeoiiiiiiiiiii e 18

TR 15100 oL TSP UPPPRURPRRN 19
T I 20 PP P P UPRRUPPRRPR 19
5.2 WHRILE...eiee ettt ettt e ettt et et h ettt eat e n e et e enteeneeneenee e 20
5.3 REPEAL UNTIL..cuiiiiiiiiiieiii ettt et ettt st e et e et e e st e e abeesbeeenbeesabeesaeenneenn 21
R (T | RSP SRRTR 22

1. Introduction to Lua and this book

1.1 What is Lua?

Lua is a scripting language, which works completely in an interpreted environment. It has been
coded in C and has been set up to be easily implemented with any program written in C. It's been
used for many kinds of application. For example for creating addons for utilities, and most of all for
games.

Lua was designed by Roberto lerusalimschy, Waldemar Celes and Luiz Henrique de Figueiredo in
a university in Rio de Janeiro in Brazil, and is completely free. It was named after the moon as
“lua” means “moon” in Portuguese. Despite Lua itself being set up in C, you don't need any
knowledge of C in order to use it, due to language quite often being implemented in tools in which
you may need it.

Lua is very extremely symplistic in its syntax and general setup, making it very easy to learn and
understand, even when you never touched a programming language before. Still Lua has a kind of
low-level approach and is despite being interpreted quite fast. Since it's specifically designed to
work in a C environment, it's very popular in the professional industry and knowing the basics of
Lua can get you some extra tickets into the professional gaming industry.

I will go into the deep of how Lua works later in this book, but the famous “Hello World”
program is only one line: “print('"Hello World!")”.

Lua has also been designed to not bother about platform specific issues. So basically a Lua script
should work in Windows, MacOS and Linux and basically any platform you can think of.

1.2 What do you need to install for this course.

When it comes to Game programming one of the most complete Lua engines to make anything is
LOVE (http://love2d.org) but I advise you not to start with LOVE right away. Before we get onto a
complete engine like that it's essential that you first understand how Lua itself works. For that you
need a Lua program you can run from the CLI. This program can only perform the core features,
but it's good enough for testing what you've learned. If CLI tools are too difficult for you to
understand, you can also use the Lua playground (https://www.lua.org/cgi-bin/demo). You can just
enter the Lua code and the result will appear as soon as you click “run”. For training this will do.

To Test the playground just type “print('"Hello World!")” in the textarea and then click “Run”, and
“Hello World!” should appear below. When you use the cli tool type “cat > hello.lua” in the
terminal when you use Linux, Mac or BSD and “copy con hello.lua” on Windows and type

-3.

http://love2d.org/
https://www.lua.org/cgi-bin/demo

“print('"Hello World!")” and press enter and press ctrl-D in Linux/Mac/BSD and ctrl-z on Windows
then type “lua hello.lua” and if you see “Hello World!”, you can see you installed the CLI tool
correctly.

When you really get serious into Lua scripting you will need an editor that can handle Lua
Scripting. I use the Lua Devolopment Tools for Eclipse, but that can be a rather complex to
understand. Atom, Geany, SublimeText, NotePad++ should all be able to allow you to work with
Lua scripts.

1.3 How to use this book

I will try to take you step by step into the secrets of Lua. I will show you many scripts. It could be
wise to copy these and try what they do.

Code will look like this:
-— Test
a="Hello World"

print (a)

The colors you see is called “Syntax Highlight”. This will help you a lot keep some overview over
your code.

When you see this icon on an amber background, it means that I am about to tell
you some typical nerdy stuff, that is just nice to know, but most of all aimed to
people who can look beyond the regular stuff. If you have no understanding of
what I tell here, then don't you worry one bit, as it's not really important to move
on. Perhaps if you got more understanding of Lua and you want to read this over,
hey, why not ;)

And lastly when you see this icon on a green background, I'll be giving you some
exercise. The best way to learn to code, no matter if you do that in Lua, Pascal,
BASIC or even in C is by doing it. And thus a few assignments never hurt.

These assignments may sometimes have some code snippets, but mostly you are
on your own, but you area allowed to look things up in the previous chapter or
paragraphs or sections to see the solution. Sometimes I may even give you some
pointers of the expected output, so you can check a few things for yourself.

And with this all discussed, I wish you good luck with this book.

2. Hello World! Your first real program.

Most traditionally the first program you'll be writing in whatever language you're gonna learn is
Hello World! It's been said that the first time Hello World was written was to demonstrate a
prototype of the C programming language.

In C Hello World looks like this:
#include <stdio.h>
int main (void) {

printf ("Hello World\n") ;
}

Not really much to it, even in C, although in C you need 4 lines and in Lua, just one.
print ("Hello World")

Now “print” is a function. I'll go into the deep about what functions are later in this book, but for
now it's important to know that a function can be used to make Lua do something. In the case of
“print” that is to put something on the screen. “Hello World” is was we call a string. A string is a
series of characters, usually used to form text. So in English we said to Lua put the text “Hello
World” on the screen.

Let's test this out. Copy that line into a program or onto the playground and run it and see what
happens. It should show “Hello World”.

When it comes to strings in nearly any language you will need quotes. In the
example I used double quotes. Lua will also understand single quotes. It doesn't
really matter if you use single or double quotes, as long as you are consequent in
using the same quotes to end the quotes as you started them. [however advice
double quotes. If you will ever consider moving on to C, Go, C# and some other
languages in this family single quotes have a different meaning, and thus you can
confuse yourself when you use single quotes (big exception is Pascal that requires single quotes).

PRINT ("Hello World")

Now with this knowledge you can take this a little bit further. “print” will not only show text on
screen. It will also move to the next line. And thus we can also do this:

So without trying this out in the playground or a cli tool, you must be able to tell what this
program does:
print ("USA stands for United States of America")

print ("Its first president was George Washington")

print ("It borders to Canada and Mexico")

Now write a program that shows your name and your age, your date of birth and
your city of birth onto the screen. All data fields I asked for should have their own

line in the output.

If you can do this, you have understood the basic of the Hello World sequence
and then we can get on the move for the next chapter.

3. Variables

Like any programming language Lua handles data most of all through variables.

Unlike compiler based languages such as C, Go and Pascal, Lua does not require any variable
declarations. A variable is technically created on the moment it's first asked for.

Variables can be defined, and read out. Read data can be put on the screen, or be used for creating
new data, or be checked.

In this particular chapter I'll limit stuff to definitions of variables, reading and some nice
manipulations.

Strictly speaking Lua only has 5 data types for variables: nil, boolean, string, number, table and
function. I will not discuss function in this chapter. I will get to that once we'll really go into the
deep of functions, and for tables same story.

Variables can also be global and local. I will get to the difference between the local and global in a
later section. For now we'll only use globals. Global variables are available in your entire script, and
that is all you need to know for now.

Definining variables is as easy as this:

a = 1 —— number

b = true -- boolean

c = "Hello World" -- string

d={ 3, 4, 5, 10 } -- table

e = function () print("Yo!") end —- function

n = nil -- nil

Now “--” in Lua means a comment. Lua will ignore everything that comes after that.

3.1 The nil type

Nil is a word that you'll soon hate when you get into Lua coding. It will haunt you wherever you
go. Any variable you did not yet define will automatically be of the nil type, and the nil type only
has one “value”. Nil.

Nil just means your variable contains no data at all. In most cases nil cannot be used and thus an
error will pop up if you try.

Nil can also be enforced like you can see in the code in the intro section of this chapter by simply
saying “myvar = nil”. Especially when working with tables this can get you far as this may cause
Lua to automatically clean up all the memory taken by the table. More about that when I actually
come to tables.

3.2 The number type

The number type is like the name suggests for storing numbers. These can be integers as well as
floats. Now number variables are pretty important as they allow you to perform mathematical
calculations, and even the simplest of programs (well except maybe Hello World) will often require
you to do some calculations. Scoring points, deducting hitpoints, but also determining coordinates
of the player or the enemies. The number type makes it all possible.

3.2.1 Definition and showing numbers
a =1
print (a)

Yeah, well it's really that simple. This program will define 1 into variable a. And print will then
show the content of a.

Note that now that we are using a variable and not a string we do not quote it. Due to that Lua
understands this is a variable and will thus just show the value of variable a

a=1
b =25
print (b)
print (a)

Now 1 will be put in a and 5 will be put in b. Note that I first asked to show variable b and then
variable a. This will cause Lua to first output 5 and then 1. It is very important that you put the
commands in the correct order to prevent bugs. In this case it didn't matter in which order I defined
the variables, but the order of the print instructions do.

3.2.2 Mathematics with variables
Now we get into actual programming.

For this I'll need to discuss operators. For mathematic formulas Lua has 6 operators at your
disposal.

Addition +
Subtraction -
Multiplication *
Division /
Modulo %
Empower A

Lua does take in calculations the official order into account when multiple operators are used, so
first empowering, then multiplication and division and lastly additions and subtractions, but just like
in normal mathematics you can alter this order with parents ().

Now I'm sure this all sounds a bit like abracedabra. So let's explain by means of some examples.

When doing math in Lua you can use both numbers and variables in your formulas and you can
use them in both your definitions as in function arguments, so you can do this:

print(2 + 5)

And you can also do this:

a = 2

print(a + 5)

Both examples will put 7 on the screen.
But this works too:

a=2+>5

print (a)

And yeah, you can also go this way:
a = 2

b =5

c = atb

print (c)

Anything is possible.

Now that's interesting, but can you also make a variable increment itself? Sure!
a =1

a=a+ 1

print (a) -- outputs 1
a=a+ a
print (a) -- outputs 4

And basically you can go all the way with this with the other operators.

The “%” operator or “modulo” (in some programming languages this is the
“mod” keyword) is an operator that can confuse some people. It contains the
remainder value of a division.

8%4=0
9% 4=1(8:4=2 and 1 remains).

If you have been using C/C++/Go/C# before you will not like to hear this, but
Lua has no shortcut incrementors or manipulation support. So a++ or a-- do not
exist in Lua and there is also no variant for a+=4 or anything like that. I'm afraid
this is something you'll have to deal with.

I've not been informed by any plans of support for this in the future. I wouldn't be
surprised if it will be implemented, but for the good of this book, I'll do without
them. :(

Now like I said before, Lua can handle more complex formulas by working with parents, in which
like in real-life mathematics the stuff between parents takes priority

N o WD

b =
c =

d = (atb)/c
print (d)

Since ais 4 and b is 6 and c is 2 the formula send to d is basically (4+6)/2, so first calculate what
is between the parents, well 4+6=10, so that makes 10:2 which is 5 and thus the output.

3.2.3 Assignment

Write a program in which you have variable a and b are defined with random
numbers of your choice, as long as it's anything higher than zero.

Then let it output the result of adding the two variables, then subtract then
multiplied by each other and then divided.

Then make the same program make the two variables double themselves and do
the same sequence of mathematic results again.

Please make sure you read the assignment well and that you've understood it well, as this may be
one of the more complex ones to understand at once.

3.3 The string type

3.3.1 An introduction to strings
Strings are in Lua pretty easy to use. Like I said strings are a chain of characters, usually used for
text. Technically strings can have any length and you can do various things with them.
Defining a string variable is as simple as this:
mystring = "Hello World"
It's that easy. Now you can just use functions like print to put the content onto the screen.
mystring = "Hello World"

print (mystring)

Copying a string to another variable does not require special functions (like strcpy in C), but can
just be done as easily as this:

mystring = "Hello World"
mystring2 = mystring

print (mystring2)

-10 -

3.3.2 Concatenation

Now in Lua you cannot do any mathematic things on strings (seems logical, but there are some
languages (like JavaScript) that can under certain circumstances, so that's why I explicitly note it),
but there are ways to do some manipulations on strings.

One of the most common actions you can do with strings is concatenation, which is, simply
appending a string to a string. Maybe that didn't make much sense, so let's demonstrate.

h = "Hello"

w = "World"
hw = h..w
print (hw)

So we placed “Hello” in h and “World” in w. In the third line we concatenate these strings and the
result is stored in hw.

Now when you copied this program to the playground or a cli tool you will see
something went “wrong”. The output is “HelloWorld” and not “Hello World”. This
is not Lua's fault, but mine. I didn't put a space in the original variables. Spaces are
just characters just like letters, so if you want them you must put them in, and if
you don't want them, leave them out. Unwanted spaces or spaces not appearing
when they should can easily happen in careless handing of strings, and sometimes

the results are pretty downhearting and heart to find when debugging.

Now the funny part to concatenation is that Lua even allows numbers to be concatenated into
strings.

s = "I am "..40.." years old"
print (s)

s = "I was born in "

y = 1975

s2 = s..y

print (s2)

Both examples work just fine.

Create a program in which one variable contains your name as a string and
another variable that contains your age (in years) as a number.

Create a third variable that concatenates the variables in a string where the out put
will be “My name is <name> and I am <age> years old.”

-11 -

3.3.3 C formatted strings in Lua

Now the C junkies reading this will very likely prefer C-formatting for
concatenation, and therefore it's good to know that Lua has full support for this.
There are basically 2 ways to do this, and it just comes down to what you think is
best.

There is no variant to printf, but rather to sprintf and the result is just returned as a string. Two
examples to do this:

name = "Jeroen"

year = 1975

mystring = string.format ("My name is %s and I was born in %d",name, year)
print (mystring)

This is the simple way to do this. Of course to a real C programmer it goes without saying that
you can use functions as parameters, so you can also do print(string.format(blah blah)).

There is also a kind of OOP way to do this and that'll look like this:

name = "Jeroen"

year = 1975

mystring = ("My name is %$s and I was born in %d") :format (name, year)
print (mystring)

Now this way to go is also completely valid. Please note the (and the) in which the format string
is set is required, or Lua will throw an error.

3.3.4 String Slicing

String slicing has always been an important thing you can do with strings. And that's why Lua too
has support for this. Lua uses the string.sub() function for this.

The basic syntax for string.sub is as follows:
string.sub(string, startsubstring, endsubstri ng)
Now this is pretty vague, I know.

When you are new to programming let me first tell you what string slicing is. It's nothing more or
less than cutting or copying a part out of a string and make a new string out of that.

I guess that made even less sense, so let's demonstrate with some examples:
s = "I am Jeroen"

print (string.sub (s, 6))

print (string.sub(s,1,4))

print (string.sub (s, 6,8))

print (string.sub(s,6,6))

Of course, the question is if you have understood what this all does.

Let's ignore the first print line for now, I'll get back to that later. The second line I did request the

-12 -

characters on spots 1 till 4. Well:
1. Spot #1 contains “I”
2. Spot #2 contains a space
3. Spot #3 contains “a”
4. Spot #4 contains “m”

And the combined result is returned and thus the string “I am” was formed this way. Now all the
two lines below that line basically perform the same trick.

In the first print line you may have seen that I did not give a number for the ending spot. And yet
the line outputs “Jeroen”. When no ending spot is given Lua will assume that the last spot of the
string will be the ending spot, and since the first letter of “Jeroen” was on spot #6, it therefore puts
in all letters coming next.

Now there's another trick... Negative numbers in string.sub()
s = "I am Jeroen"

print (string.sub (s, -6))

print (string.sub(s,-6,-2))

print (string.sub(s,-6,8))

Well do you have any idea what just happened here?

Indeed when negative numbers are used, it will count from the right in stead of the left. So -6
means 6™ spot from the right. Since the last word “Jeroen” contains 6 letters, you can easily guess
why my name was outputted. And I did not give an ending number so Lua did just assume I wanted
to go to the end of the string.

Well the -6 -2 combination is now easy to guess. From the 6™ spot from the right (J) to the 2™ spot
from the right (e) and thus “Jeroe” was outputted. Easy, huh?

The last one is put in to show you that negative numbers and positive numbers can just be
combined. From the 6™ spot from the right (J) to the 8" spot from the left (r) and thus “Jer” was
outputted.

Now Lua will not moan or whine or anything when you come up with an
impossible combination like from 6 to 5 (from the left). Whenever you come up
with impossible combinations, string.sub will just return an empty string. As a
programmer you are fully responsible for giving correct digits to string.sub for
proper output!

Now create a program with a string variable containing the string “Donald Trump
is the 45th president of the United States™.

Then make it output “Donald” by slicing out that name.

Then make it output “States” simply by slicing out from the right without an
ending point.

Then make it output “Trump” by slicing out that name from the left.

And lastly (and that may be a tricky one) make it output “United” simply by slicing from the right
only.

-13 -

3.4 Boolean type

Now the last type I will cover in this chapter (as I will go into the deep of tables and functions
types later) is the boolean type. Now “boolean” is not really coming from an existing word like the
names of the other types. It was named after the English mathematician and philosopher George
Boole, who lived from 1815 until 1864.

Boolean types can be pretty abstract when you are new to programming, but they might well be
one of the most important types in the history of programming.

A boolean type can only have two values. “true” and “false”.

Now at first sight, this may seem pretty pointless, however boolean values are often generated
through expressions. When I'm gonna explain about the 'if' and the 'while' commands you will find
out how important boolean expressions can be, and then it's good to know that you can store the
output in a variable.

Now this is getting quite abstract, so let's throw in an example:

sl = "Donald Trump"
s2 = "Donald Trump"
s3 = "Barack Obama"
bl = sl == s2

b2 = s1 == s3

print (bl)

print (b2)

Now the first three lines don't need any explanation, I think.

Now in Lua “==" means that Lua needs to check if the value in both variables are the same. If so
the outcome is “true” if not the outcome is false. Now this makes it very easy to see why b1
contains “true” since both sl and s2 contained “Donald Trump”. As s3 contains “Barack Obama”
which is of course not “Donald Trump” b2 became false.

sl = "Donald Trump"

s2 = "Donald Trump"

s3 = "Barack Obama"

bl = sl ~= s2

b2 = s1 ~= s3

print (bl)

print (b2)

Now I've altered the code a bit. You can see I replaced both “==" operators with “~=". In Lua

“~="means “is not”. And hence now bl became false as [made it check if “Donald Trump” is not
“Donald Trump”, but as that is both the same string “is not” is therefore not the case (you follow as
double negative is always hard to understand), and thus the outcome “false”. And I wanted “Donald
Trump” not to be “Barack Obama” in b2, well since that is not the case, the outcome is “true”.

-14 -

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/George_Boole

Now boolean expressions too are in for combinations.

sl = "Donald Trump"

s2 = "Donald Trump"

s3 = "Barack Obama"

bl = sl == s2 and sl == s3
b2 = sl == s2 or sl == s3
print (bl)

print (b2)

“and” and “or” are keywords reserved for usage in boolean checks. Now can you see why the
output is the way it is?

Basically the code explains itself.

For bl in wanted “Donald Trump” to be “Donald Trump” AND “Donald Trump” to be “Barack
Obama”. Due to the “and” keyword both statements must be true, but as the latter is false the entire
expression is false.

For b2 either one of the two statements or both had to be true, well since the first statement is true
so the entire statement is true and that the latter is not, is no longer relevant.

Then there is one final keyword to keep in mind and that is “not” and it does exactly what the
name implies.

sl = "Donald Trump"
s2 = "Donald Trump"
s3 = "Barack Obama"
bl = not (sl == s2)
b2 = not (sl == s3)
print (bl)

print (b2)

Since I put in “not” this time, it basically may not be “true”. Since sl Aas the same value as s2 that
is true, but as it may not be true, “false” is the result, and since s1 did not have the same value we
did see what we want and get “true”.

Lua can be a very strange beast in parse checkings, and if you are using an IDE
_ that supports parse checking then “bl = not s1==s2" will be taken as a valid
~_instruction, but the outcome may surprise you as what Lua will do is “bl = (not
_s1)==s2". 1 therefore advice to never use 'not' without parents, but to always
include them like shown above.

Now it is also cool to note, and that is where boolean expressions can be powerful is that they can
also be used on mathematic operations and concatenations, and all this in real time. Let's write a

-15 -

small program to demonstrate this:

bl
b2
dl
d2
d3
b3

5+7 == 12

5+8 == 15
"Donald"
"Trump"
"DonaldTrump"

d3 == dl..d2

print (bl)

print (b2)

print (b3)

Well since 5+7 is indeed 12, bl will be true. Since 5+8 is 13 and not 15, b2 will be “false”, and
the concatenation of “Donald” and “Trump” is indeed “DonaldTrump”, so that outcome also fits
and thus “true”.

Lastly there are a few more operators for you to keep in mind:

Greater than >
Lower than <
Greater than or equal >=

Lower than or equal <=

They can be used in stead of == or ~= but only when you are using number values.

bl
b2
dl
d2
d3
b3

5+7 == 12

5+8 <= 15
"Donald"
"Trump"
"DonaldTrump"

dst == "di..d2

print (bl)

print (b2)

print (b3)

When I change the code to this, you will see 3x “true” as output, and that fits since 5+8 is 13
which happens to be lower than 15.

-16 -

4. The “if” keyword

4.1if... then ... end

Now the “if” keyword is important to understand. This is one of the commands in which you'll be
able to make your program actually respond to what the user is doing.

Basically you say “if something is the case then perform all instructions until the end”.
The basic syntax is like this:
i f <bool ean-expressi on> t hen

<all instructions to performwhen the bool ean expressi on happens
to be true>

end

Now the “end” keyword pops up for the first time in this book, and it's the most used keyword in
Lua. “if” creates what we call a scoop. A scoop is just a collection of commands. Every scoop ends
with the “end” keyword (few exceptions, but we'll get to that later). For C users, it's basically what
you use accolades for in C, but in Lua “if” and other commands like that will always open a scoop.

Now let's demonstrate this:
name = "Neil Armstrong"
print (name)
if name=="Neil Armstrong" then
print ("Yup, that's the name of the first man on the moon.")

end

Let's break this down a bit. The first two lines should be known by now. With “if” we start the
“if’-statement and as you can see the name is checked in the same way as we create a boolean
variable. The “then” keywords lets Lua know the end of the expression is reached and starts the
scoop with all the commands that should be executed then, which is now only one, but there is no
limit how far you can go with then and lastly the “end” commands closes the “if”” scoop.

If you run this program you can see that the program confirms that Neil Armstrong is the first man
on the moon. If you put anything else in the “name” variable nothing will happen aside from
showing the name, after all that confirmation command should only be executed if the expression is
true.

NOTE: You can see that I put in some leading spaces for all commands within
\ the “if” scoop. We call this “indenting”. It is good practice to follow my example
.\ on this, as this keeps your code more readable. It's then easier to see what belongs
_to what scoop. If you want to plan to learn Python in the future all scoops end
when you stop indenting in Python. Although Lua doesn't care about this, you can
spare yourself some misery when you also learn Python, and also for good overview it's better.

-17 -

4.2 if...then...else... end

name = "Neil Armstrong"
print (name)
if name=="Neil Armstrong" then
print ("Yup, that's the name of the first man on the moon.")
else
print ("No, the name is not the name of the first man on the moon.")
end

Perhaps you can see a little where I'm going here. If the variable name contains “Neil Armstrong”
then the first scoop is performed. Else will end the first scoop and open a new one and there all the
commands are shown performed when the expression was false.

Now you should be able to make a program that checks if a variable called
“name” (string) actually contains your name, and if a variable called “age”(number)
contains your correct age and make the computer say “Correct” if it's correct and
“Incorrect” when it's incorrect.

All the information you need to do so is in the last two subsections.

4.3if ... then ... elseif ... then ... else ... end

name = "Neil Armstrong"
print (name)
if name=="Neil Armstrong" then

print ("That's the name of the first man on the moon.")
elseif name=="George Washington" then

print ("That's the first president of the United States")
elseif name=="Margaret Thatcher" then

print ("That's the first female prime minister of the United Kingdom")
else

print ("I don't know who that is.")
end

Now this looks a bit more complicated, but it's not as hard as it looks.

“elseif” simply means “if any of the previous statements was wrong check this one and execute if
true”. You can throw in as many elseif statements as you want, and the last else is also optional.
Now you can get a real show on the road, eh?

This note only matters when you have experience with C, Go, C#, Pascal or any
other programming language.

Lua has no case-support, meaning that if you ever need casing you are basically
condemned to use if-elseif-else structures like above. It's a very serious downside
about Lua, and I do not know if future versions will ever support it. Sorry about
that!

Now make a program in which you put in the name of a person you know in a
variable called “name” and use ifs and elseifs to check the name and state that
person's profession and in the end an else statement stating that you don't know that
persons profession. Now change the name variable with several tests to see what
happens.

-18 -

5. Loops
Loops allow your program to do things over and over, again and again.

Now basically there are three ways in which Lua can loop. “For”, “While” and “Repeat/Until”.

5.1 For

For can be used in multiple ways, but for now, we will only use it for countdowns and countups.
Let's demonstrate the for routine, eh?

for i=1,10 do
print (i)
if i%2==0 then
print ("Even")
else
print ("odd")
end
end

The “for” command creates a variable just for itself and that is in this case “i”. This variable will
only exist within the “for”’-scoop, not outside of it. It will be defined as 1 and then all commands in
the for-scoop will be executed and after that “i”” will be increased with 1 and then the scoop will go
on again. Once “i” has reached 10 at the end of the for-scoop, the loop will end and the first
command after the “end” will then execute.

Now it's nice to note that if has its own scoops. Lua will know which end belong to which scoop,
as basically end closes all scoops in reverse order as they are created, so the parser (the program
inside Lua that checks and interprets your code) will not get confused.

Now basically any value can do, as long as you first put in the start value and the end value at the
end. The instruction as shown above however, can only count up, but like I hinted, counting down
is possible if you enter a third number, which we call the “step value”

for i=10,1,-1 do
print (i)
if i%2==0 then
print ("Even")
else
print ("odd")
end
end

Due to the step value being negative Lua knows it should now count backwards.

-19 -

Now this is fun, but we can basically go into any direction here with any kind of values
for i=0,50,5 do
print (i)
if 1i%2==0 then
print ("Even")
else
print ("0dd")
end
end

[13%2]
1

This example works the same as the programs before, however now “i”” will be incremented with

5 every cycle.

Now make a program and use the for-command in order count from 1 till five and
combine it with the if-elseif commands to make it print the number in word in stead
of digits.

5.2 While

Now proper understanding of the “while” command is very important. The working of the “while”
command is similar to “if” command however while keeps repeating the scoop until the boolean
expression it comes with returns false.

Now while should be handled with care and perhaps this examples show you why:
name = "Jeroen"
while name=="Jeroen" do
print ("Looping")
end

Yup, the loop goes on forever, as the expression will always be true.

But we can do something else here:

a =20
b =1
while b<10 do
a=a+1
if a>b then
a = 1
b =Db + 1
end
print(a..","..Db)
end
Well as the variable being checked by while now we don't have an infinite loop. The variable b
can be changed in every cycle, but that doesn't necessarily happen (as would be the case in a for-

-20 -

loop). This is one of the most common loops in most of your programming work. Since we've not
yet gone into the deep of functions yet, I cannot demonstrate much more, but this does show the
basic idea of what to expect on while loops.

5.3 Repeat Until

Repeat until work pretty similar to while, although it is different on a small yet essential point.
Where while checks as soon as the loop starts, repeat until checks when the loop ends. Due to this it
is possible with while the loop gets skip altogether, as there could be a boolean expression that is
false from the start. Since Repeat Until checks at the end the loop will always be executed at least
once.

a =20
b =1
repeat
a=a+ 1
if a>b then
a =1
b=Db+ 1
end
print(a..","..b)

until b>=10

This program is a bit of the repeat/until variant of the program I wrote earlier with while. Now if
you'd make b to value 10 in the while-version of this program, you'd see nothing happens, if you do
that here, you'll see the loop is performed once. In this original setup you should see any difference.
Whether you should go for while or repeat/until is always a matter of judging the situation you're in
as a programmer.

Please note that repeat until does not require an “end” to end the scoop the loop is in. Since until
always comes at the end of the scoop, it's simply not needed.

Now here's a trapdoor, and especially when you are used to coding in C (or any
of its variants) and therefore used to the do{}while() loops you can easily fall for
this.

Where while keeps looping as long as the boolean expression is true, the
repeat/until loops will loop like the word “until” implies, loop until the expression
is true. In other words the expression must be false in order to keep looping. (It may seem a bit
strange for a language developed in C to take over the standard of Pascal for this).

221 -

5.4 Break

This is a command I do not want to put too much attention on, as you can better avoid it, but when
you need it, it's there. The break command will immediately terminate a loop and continue the
program with the next command after it.

while true do - start infinite loop
a = math.random(1l,10) -- generate random number from 1 till 10
print (a)
if a == 5 then break end

end

print ("I have now left the loop")

Normally I'd use repeat until for this, but this terrible code demonstrates how break works.

The math.random() function just generates (pseudo-)random numbers and as soon as number 5
was generated the break command is executed causing the loop to end and go to the “print”
command after the “end” (or until in case of a repeat/until loop).

Please note that break only works inside a loop. It has no effect on other kinds of scoops and
without a loop it may even throw an error.

-2

6. Tables

Tables is where working with Lua becomes fun. Tables are a very powerful instrument. There is a
lot a programming language should support which Lua does not, however tanks to the table system
you can cheat on that. Even OOP (object oriented programming) becomes possible, although Lua
officially doesn't support that.

6.1 Using tables as arrays

Arrays in programming languages are variables containing a series of values. In Lua you can use
tables to make this happen. Best is maybe to show this in example code.

"One"

" TWO"

"Three"

"Four"

"Five"

for i=1,5 do
print(alil)

| | | B et

end

When you ever programmed in another language you'll be used to 0
being starting index of an array. Lua however uses 1 as starting
index on an array. Never forget this or you can mess up dearly!

Although 0 can be used as an index, in array usage it will be
ignored.

Well the variable “a” is thus the table and the numbers between the brackets [and] are called the
indexes. Now now you can see maybe why understanding arrays is so important and how much
power they can give. The for-loop at the end of the code above shows that you can use a variable to
determine the index number.

The fun doesn't end there. The example above can be done with less code. Like this:

a = {"One","Two", "Three", "Four", "Five","Six", "Seven", "Eight", "Nine", "Ten"}
for i=1,+#a do

print (afi])
end

You can, as you can see, easily define the entire array in one line. The first entry will be index #1,
the 2™ will be index #2 and so on. And #a means “length” of “a”. This sign can be used for strings
and array-based tables to get the length. If it's a string #a will contain the number of characters, and
in a table the number of indexes.

Now in Lua any undefined variable will be considered “nil”. Table elements are
_ no different from this point. So a[12] will be nil, as I didn't define that index. #a
- _will basically count from index 1 until the first 'nil'. Since a[11] is the first nil in
_the example above #a will therefore be 10. When you put in the line a[6]=nil, then
#a will be 5 and despite 7, 8, 9 and 10 having values. They will be ignored. I'll get
later on how you can properly remove values from an array.

-23 -

The for loop I used in the example above is considered dirty in Lua. Many programming
languages contain a workabout that we often call “foreach”. Now “foreach” is not a keyword in
Lua, but the name is based on the fact that much programming languages either have “foreach” or
“for” and an expression with “each” in it. Forget about that for now, let's do this the Lua way.

a = {"One","Two","Three", "Four", "Five","3Six", "Seven", "Eight", "Nine", "Ten"}

for i,n in ipairs(a) do

print (n)
end

The keyword “ipairs” is one you'll find a lot in Lua scripts. The “for” command will loop as
always, but a bit differently than in the examples we had up until now. It will now take all indexes
in order and loop the scoop tied to this until the first “nil” arrives. In the example above “i” will
contain the index number during each loop cycle and “n” the value stored in that specific element.

Is the fun over of using arrays in Lua. No! Lua can do something more. Tables can be altered after
their definitions. In the first example you saw you can do that one by one so adding
“a[11]='Eleven" is just a simple way to go, but in an OOP set up game, you can go even further
than this, as then you can just add objects as they go. Imagine a space shooter in which enemies just
fly in at random, becoming more and more? Arrays can do this.

a = {}
table.insert (a, "One")

table.insert (a, "Two")
table.insert (a, "Three")

al[#a+l]="Four"
al#a+l]="Five"
al#a+l]="six"

for i,n in ipairs(a) do
print (n)
end

In the example above I've shown you two methods to add elements to an array. There is some
debate among Lua programmers which method is best and even the creators of Lua are not too sure,
but I personally prefer method #2.

Anyway, you can go as far as you want to go with this. There is no official limit (although there
are limitations to your RAM, but don't worry about that when you are only an amateur. In my Sixty-
Three Fires of Lung game, I've used with array with over thousands if not ten-thousands if
elements).

Make a program and create a table and add three animal names in it in the
creation instruction. Then add a random number of other animals with either
table.insert() or the a[#a+1] method I showed above.

Now make a for-loop that shows all these animals.

Lastly use a print instruction that shows how many animals there are in your
array.

-4 -

Lastly I will explain table.remove(). That can be used to remove one element from your array and
all the other elements will be adapted to the new situation.

Try adding the line “table.remove(a,3)” in your program (assuming your table variable is “a”) just
before the for-loop and run the program again and see what happens. ;)

-25-

	1. Introduction to Lua and this book
	1.1 What is Lua?
	1.2 What do you need to install for this course.
	1.3 How to use this book

	2. Hello World! Your first real program.
	3. Variables
	3.1 The nil type
	3.2 The number type
	3.2.1 Definition and showing numbers
	3.2.2 Mathematics with variables
	3.2.3 Assignment

	3.3 The string type
	3.3.1 An introduction to strings
	3.3.2 Concatenation
	3.3.3 C formatted strings in Lua
	3.3.4 String Slicing

	3.4 Boolean type

	4. The “if” keyword
	4.1 if … then … end
	4.2 if...then...else... end
	4.3 if … then … elseif … then … else … end

	5. Loops
	5.1 For
	5.2 While
	5.3 Repeat Until
	5.4 Break
	6. Tables
	6.1 Using tables as arrays

