
1

RMP Light-Weight RTOS
TRM

Rev. R4T4

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

2

Back to Top

演进·远古·原核（五阶）

Mutatus·Protero·Prokaron(R.V)

M5P1(Prokaron) R4T4

Light-Weight RTOS (Rev.4 Typ. 4)

Technical Manual

System Features
1.High Usablility

·Light-weight and ease of use as first-class requirements

·Easy to configure development environment and project path

·Provides generic inter-thread communication interfaces

2.Hard Real-Time

·Fully preemptive hard-real-time kernel

·Round-robin scheduling for threads with the same priority

·O(1) time complexity for all key kernel operations

3.High Portability

·Least assembly required amongst all RTOSes

·Strict ISO/ANSI C89 & MISRA C compliance ensures full compatibility

·Least resource required amongst all RTOSes

·Can run as a guest OS on embedded hypervisors

4.High Efficiency

·Highly optimized performance-critical routines

·Lightening-fast context switching & extremely low interrupt latency

5.High Reliability

·Provides argument assertion and pervasive parameter checking

·Formally verified to reach IEC 61508 SIL4 or Orange book A1 or EAL7+

*Work in progress; current software is SIL2 precertified equivalent

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

3

Back to Top

Contents

System Features...2

Contents...3

List of Tables... 7

List of Figures..10

Revision History... 11

Chapter 1 Introduction... 12

1.1 Preface... 12

1.1.1 Design Goal and Specifications.. 12

1.1.2 Copyright Notice and License... 12

1.1.3 Terms and Definitions...12

1.1.4 Major Reference Systems... 13

1.2 Forewords... 13

1.3 Performance and Specifications of RTOSes..14

1.3.1 Kernel Size... 15

1.3.2 Execution Time, Worst-Case Execution Time and Jitter... 15

1.3.3 Interrupt Response Time, Worst-Case IRT and Jitter...17

1.3.4 Realistic IRT, Realistic Worst-Case IRT and Jitter... 18

1.4 RMP System Calls.. 19

1.5 Bibliography... 20

Chapter 2 System Kernel..21

2.1 Kernel Introduction...21

2.1.1 Scheduler...21

2.1.2 Memory Management and Memory Protection.. 21

2.1.3 Application Updating and Application Modules... 22

2.1.4 System Booting Sequence... 22

2.2 Thread-Related Operations.. 22

2.2.1 Yield to Another Thread..23

2.2.2 Create a Thread.. 24

2.2.3 Delete a Thread.. 25

2.2.4 Set Thread Parameters...26

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

4

Back to Top

2.2.5 Suspend a Thread.. 26

2.2.6 Resume a Thread... 27

2.2.7 Delay a Thread.. 27

2.2.8 Cancel a Thread's Delay... 27

2.3 Thread Communication Interfaces... 28

2.3.1 Send to a Thread Mailbox...28

2.3.2 Send to a Thread Mailbox from Interrupt...29

2.3.3 Receive from a Thread Mailbox...29

2.3.4 Create a Semaphore..30

2.3.5 Delete a Semaphore.. 30

2.3.6 Pend for a Semaphore.. 31

2.3.7 Abort Pend on a Semaphore... 31

2.3.8 Post to a Semaphore...32

2.3.9 Post to a Semaphore from Interrupt... 32

2.4 Memory Management Interfaces... 33

2.4.1 Memory Pool Initialization...34

2.4.2 Allocate Memory...34

2.4.3 Free Memory... 34

2.4.4 Realloc Memory..35

2.5 Other System Interfaces.. 36

2.5.1 Interrupt and Scheduler Interfaces..36

2.5.2 Helper Functions..37

2.5.3 Hook Function Interfaces...41

2.6 Bibliography... 44

Chapter 3 Light-Weight Graphics Library... 45

3.1 Introduction to Embedded Graphic User Interfaces... 45

3.1.1 Simplicity... 45

3.1.2 Diversity..45

3.1.3 Planarity...45

3.1.4 Restrictiveness..45

3.2 Embedded GUI Support of RMP... 46

3.2.1 Draw Line... 47

3.2.2 Draw Dotted Line... 47

3.2.3 Draw Rectangle...48

3.2.4 Draw Rounded Rectangle...48

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

5

Back to Top

3.2.5 Draw Circle...49

3.2.6 Draw Monochrome Bitmap..50

3.2.7 Draw Monochrome Bitmap with Anti-Aliasing.. 50

3.2.8 Draw Cursor...51

3.2.9 Draw Checkbox...52

3.2.10 Set Checkbox.. 53

3.2.11 Clear Checkbox...53

3.2.12 Draw Command Button..54

3.2.13 Push Command Button.. 54

3.2.14 Release Command Button...55

3.2.15 Draw Text Editing Box...55

3.2.16 Clear a Portion of Text Editing Box.. 55

3.2.17 Draw Radio Button.. 56

3.2.18 Set Radio Button..57

3.2.19 Clear Radio Button.. 57

3.2.20 Draw Progress Bar... 57

3.2.21 Set Progress of Progress Bar... 58

3.3 GUI Design Guidelines.. 59

3.3.1 Planar Design.. 59

3.3.2 Use Simple Background and Bitmaps...59

3.3.3 Design and Implementation of Character Libraries...60

3.3.4 Design and Implementation of Complex Widgets.. 60

3.4 Bibliography... 60

Chapter 4 Formal Verification... 61

4.1 Introduction to Formal Verification.. 61

4.2 Formal Model of the System... 65

4.3 Formal Proof...66

4.4 Other Documents.. 66

4.5 Bibliography... 66

Chapter 5 Porting RMP to New Architectures..67

5.1 Introduction to Porting.. 67

5.2 Checklist Before Porting.. 67

5.2.1 Processor... 67

5.2.2 Compiler...67

5.2.3 Assembler.. 68

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

6

Back to Top

5.2.4 Debugger..68

5.3 Architecture-depedent Portions of RMP.. 68

5.3.1 Typedefs...68

5.3.2 Defines..70

5.3.3 Low-Level Assembly Functions...72

5.3.4 System Interrupt Vectors... 72

5.3.5 Other Low-Level Functions..72

5.4 Porting of Assembly Functions...73

5.4.1 Implementation of RMP_Disable_Int.. 73

5.4.2 Implementation of RMP_Enable_Int... 73

5.4.3 Implementation of _RMP_Yield.. 73

5.4.4 Implementation of _RMP_Start.. 74

5.5 Porting of System Interrupt Vectors... 74

5.5.1 System Tick Timer Interrupt Vector...74

5.5.2 Thread Context Switch Interrupt Vector...75

5.6 Porting of Other Low-Level Functions..75

5.6.1 Low-Level Hardware Initialization... 76

5.6.2 Initialization of Thread Stack.. 76

5.7 Bibliography... 76

Chapter 6 Appendix...77

6.1 Implementation of Special Kernel Functionality... 77

6.1.1 Implementation of a Tick-Less Kernel...77

6.1.2 Saving and Restoring FPU Registers..77

6.1.3 Thread Memory Protection..78

6.1.4 Low-Power Design Considerations.. 78

6.2 Factors That are Known to Hamper Real-Time Performance in RMP............................. 78

6.2.1 Delay Queue.. 78

6.2.2 Lock Scheduler and Disabling Interrupts... 79

6.3 Bibliography... 79

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

7

Back to Top

List of Tables

Table 1-1 The First Case of Thread Context Switch.. 16

Table 1-2 The Second Case of Thread Context Switch...17

Table 1-3 Asynchronous Communication between Threads..17

Table 1-4 Interrupt Response Time.. 18

Table 1-5 Realistic Interrupt Response Time..19

Table 1-6 List of RMP System Calls... 19

Table 2-1 Meanings of the Number Markings in the Thread State Transition Graph.................... 23

Table 2-2 Possible Return Values for Thread Related Interfaces...23

Table 2-3 Yield to Another Thread.. 24

Table 2-4 Create a Thread...24

Table 2-5 Delete a Thread...25

Table 2-6 Set Thread Parameters... 26

Table 2-7 Suspend a Thread...26

Table 2-8 Resume a Thread.. 27

Table 2-9 Delay a Thread...27

Table 2-10 Cancel a Thread's Delay..27

Table 2-11 Send to a Thread Mailbox...28

Table 2-12 Send to a Thread Mailbox from Interrupt... 29

Table 2-13 Receive from a Thread Mailbox...29

Table 2-14 Create a Semaphore.. 30

Table 2-15 Delete a Semaphore.. 30

Table 2-16 Pend for a Semaphore...31

Table 2-17 Abort Pend on a Semaphore..31

Table 2-18 Post to a Semaphore... 32

Table 2-19 Post to a Semaphore from Interrupt..32

Table 2-20 Memory Pool Initialization... 34

Table 2-21 Allocate Memory...34

Table 2-22 Free Memory..35

Table 2-23 Realloc Memory.. 35

Table 2-24 Disable Interrupts...36

Table 2-25 Enable Interrupts..36

Table 2-26 Lock Scheduler..37

Table 2-27 Unlock Scheduler... 37

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

8

Back to Top

Table 2-28 Clear Memory.. 37

Table 2-29 Print a Character...38

Table 2-30 Print a Signed Integer..38

Table 2-31 Print an Unsigned Integer...38

Table 2-32 Print a String..39

Table 2-33 Get the Most Significant Bit..39

Table 2-34 Get the Least Significant Bit...39

Table 2-35 Reverse the Bits.. 40

Table 2-36 Create a List... 40

Table 2-37 Delete a Node in a List...40

Table 2-38 Insert a Node in a List.. 41

Table 2-39 CRC16 Calculation..41

Table 2-40 System Startup Hook...42

Table 2-41 Context Save Hook...42

Table 2-42 Context Load Hook.. 42

Table 2-43 Scheduler Hook.. 43

Table 2-44 Tick Timer Hook..43

Table 2-45 Init Thread Initialization Hook...43

Table 2-46 Init Thread Loop Hook.. 44

Table 3-1 Macros Required when Using Built-in GUI Support..46

Table 3-2 Draw Line..47

Table 3-3 Draw Dotted Line.. 47

Table 3-4 Draw Rectangle... 48

Table 3-5 Draw Rounded Rectangle... 49

Table 3-6 Draw Circle... 49

Table 3-7 Draw Monochrome Bitmap.. 50

Table 3-8 Draw Monochrome Bitmap with Anti-Aliasing...51

Table 3-9 Draw Cursor... 51

Table 3-10 Draw Checkbox... 52

Table 3-11 Set Checkbox...53

Table 3-12 Clear Checkbox... 53

Table 3-13 Draw Command Button.. 54

Table 3-14 Push Command Button...54

Table 3-15 Release Command Button... 55

Table 3-16 Draw Text Editing Box... 55

Table 3-17 Clear a Portion of Text Editing Box...56

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

9

Back to Top

Table 3-18 Draw Radio Button...56

Table 3-19 Set Radio Button...57

Table 3-20 Clear Radio Button...57

Table 3-21 Draw Progress Bar..57

Table 3-22 Set Progress of Progress Bar..58

Table 4-1 EAL Levels and Descriptions...61

Table 5-1 List of Typedefs... 69

Table 5-2 List of Necessary Typedefs... 69

Table 5-3 List of Macro Definitions..70

Table 5-4 Low-Level Assembly Functions... 72

Table 5-5 System Interrupt Vectors.. 72

Table 5-6 Other Low-Level Functions.. 73

Table 5-7 Implementation of RMP_Disable_Int...73

Table 5-8 Implementation of RMP_Enable_Int..73

Table 5-9 Implementation of _RMP_Yield...74

Table 5-10 Implementation of _RMP_Start.. 74

Table 5-11 System Tick Timer Interrupt Processing Function... 74

Table 5-12 Thread Context Switch Interrupt Processing Function... 75

Table 5-13 Implementation of _RMP_Low_Level_Init... 76

Table 5-14 Implementation of _RMP_Stack_Init...76

Table 6-1 Get the Time to the Nearest Tick...77

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

10

Back to Top

List of Figures

Figure 2-1 Thread State Transition Graph...23

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

11

Back to Top

Revision History

Version Date (YYYY-MM-DD) Notes

R1T1 2018-02-15 Initial release

R2T1 2018-03-12 Add porting guide and appendix

R4T3 2018-07-31 Fix manual errors

R4T3 2018-09-01 Update the manual to new version

R4T4 2018-10-10
Lift 128MB restriction on memory manager and optimize

rounded rectangle drawing algorithm

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

12

Back to Top

Chapter 1 Introduction
1.1 Preface

In miniature IoT systems, 16-bit and 32-bit processors are becoming increasingly prevalent.

In the meantime, the concerns for low development time and high system reliability is rising.

Thus, it is necessary to develop new light-weight Real-Time Operating Systems (RTOSes) for

simple IoT application implementations. With the advent of light-weight virtualization in modern

embedded systems, light-weight OS may also be used as a guest OS to run on embedded

hypervisors. Moreover, there's no memory protection for such operating systems, thus formal

verification are necessary to reach high reliability.

RMP is a fully-preemptible RTOS highlighting simplicity, usability and efficiency. It

implemented a fixed-priority round robin scheduler, along with many features commonly found

in many other RTOSes. It also features a simple memory management interface as a standalone

module, some additional GUI interface support, and the ability to exploit hardware features for

execution speed. To sum up, RMP can be deployed on microcontrollers (MCUs) with as little as

2kB ROM and 1kB RAM.

This manual described the APIs of RMP kernel from the user's perspective. We will review

some basic concepts of RTOSes before we detail RMP and its APIs.

1.1.1 Design Goal and Specifications

The first-class design goal is to make RMP open-source, as simple and usable as possible,

while being reliable and real-time at the same time. In addition to this, it must outclass other

RTOSes in terms of resource consumption and average efficiency.

1.1.2 Copyright Notice and License

Taking the license requirements of different applications into consideration, RMP adopted

LGPLv3 as its main license. For some special cases[1], some special terms apply. These special

terms might be different for each particular application.

1.1.3 Terms and Definitions

The terms and abbreviations used in this manual are listed as follows:

[1] E.g. security and medical equipment

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

13

Back to Top

1.1.3.1 Operating System

The lowest level software infrastructure which is responsible for processor, memory and

device management.

1.1.3.2 Thread

A control flow that have one standalone stack and can be scheduled independent of each

other. There can be multiple threads in one process address space.

1.1.3.3 Static Allocation

All system resource allocations are done at compile time.

1.1.3.4 Dynamic Allocation

At least a part of the resources can be allocated or freed at runtime.

1.1.3.5 Soft Real-time

A system that meets most of its deadline requirements. Some deadline misses are

acceptable, provided that these cases are rare.

1.1.3.6 Hard Real-time

A system that meets all of its deadline requirements. Any deadline misses are not allowed.

1.1.3.7 Constant Real-time

All operations are O(1) with regards to user input and system configuration. The constant

time factor must be reasonable and small enough. This is the strongest real-time guarantee.

1.1.3.8 Constant Real-time to a Certain Value

All operations are O(1) when the value is given, and the constant factor must be reasonable

and small enough.

1.1.4 Major Reference Systems

Scheduler : FreeRTOS (@RT Engineering LTD/Amazon).

Formal proof : seL4 (@2016 Data61/CSIRO).

API : RMProkaron (@EDI).

All other references will be listed in respective chapters.

1.2 Forewords

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

14

Back to Top

Operating system is a category of basic software that is responsible for low-level CPU,

memory and device management. For RTOSes, all operations of the system must be predictable

and always meet its deadline. Generally speaking, there are two subtypes of real-time systems:

soft real-time systems, which meets its deadline in most cases, and hard real-time systems,

which meets its deadline in all cases. Practically no system is completely hard real-time or soft

real-time; all of them can be split in half, one portion being soft real-time and the other portion

being hard real-time. One example is the motor controller: the LCD GUI part is soft real-time, an

the motor controller part is hard real-time.

RMP belongs to the basic hard real-time system class, which exhibits all the fundamental

features of a RTOS. This class of systems should be deployed on high-end 8/16-bit and 32-bit

machines at most times, and requires a system tick timer. These systems does not have genuine

kernel space and user space separation; however, it is possible to configure the MPU or MMU to

protect some ranges of memory. The hardware abstraction layers of these systems include some

simple assembly, which must be modified when porting to other architectures. The porting also

involves system tick timer, context switching, interrupt management and coprocessor

management. These systems can use a customized linker script; however this is not always

necessary, except in the case of memory protection.

In these systems, a task is always a thread, and can be reentrant. Threads have their own

respective stacks. The application code can be either linked with the kernel or as standalone

modules. There are no system calls and the system API is just normal function calls.

These systems provide priorities, and the threads on the same priority level are scheduled

with round-robin algorithm, while threads on different priorities will preempt each other. They

also have primitive memory management support, which is usually based on SLAB or buddy

system.

Interrupts can be totally transparent to the system, and when so the system will be totally

unaware of the interrupts. When it a context switch is needed in an interrupt, we must insert

context switching stubs into the interrupt routine, and some assembly programming is required.

Typical such systems include RT-Thread, FreeRTOS, uC/OS, Salvo and ChibiOS. It is usually

easy to perform a complete formal verification on such systems, due to the minimal number of

lines of kernel code. Contrary to traditional software engineering which tests the functionality of

the software systematically, formal approaches seek to apply formal logic and eventually prove

that the system is free of bugs under given preconditions.

1.3 Performance and Specifications of RTOSes
There are hundreds of different RTOSes out there on the market, and kernels developed by

hobbyists are virtually uncountable. The performance and reliability of these systems vary, and

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

15

Back to Top

we need some measures to benchmark them. All the measurements listed below can only be

directly compared against each other when the processor architecture, compiler, and compiling

options are all the same. If different processors, compilers or compiler options are used, then the

results cannot be directly compared to each other and can only serve as a reference. One

recommended approach is to use industry-standard ARM or MIPS processors and GCC -O2

compilation option. Simulators such as Chronos are also useful. When performing the evaluation,

system load will also influence the results, thus the system load must be the same when

comparing the results.

1.3.1 Kernel Size

Kernel size is a key aspect of RTOSes. RTOSes are usually deployed on resource-constrained

devices, thus a small kernel size is critical. The size of the kernel will be evaluated in two

dimensions, respectively being the read-only memory size and read-write memory size. The

read-only size includes the code and constant data segment, while the read-write size includes

the modifiable data segment. On Flash-based MCUs, the read-only segments will consume Flash,

and the read-write segments will consume SRAM[1].

RTOSes are highly configurable, thus their kernel size is rarely a fixed number and these

numbers are tied closely to a specific configuration. Therefore, to measure this performance, you

should measure the kernel size under the minimal kernel configuration, common kernel

configuration, and full-featured kernel configuration[1].

Obtaining kernel size data is as simple as compiling the kernel with a compiler and then

using a dedicated binary viewer[1] to inspect the size of each section of the target file.

1.3.2 Execution Time, Worst-Case Execution Time and Jitter

The execution time refers to the time consumption of a particular RTOS system call. The

Worst Case Execution Time (WCET) refers to the maximum length of execution time under the

most unfavorable conditions. WCETs is usually achieved when the most tedious system call is

made and the most number of cache misses occur. RTOSes generally disable interrupts when

executing of system calls; the worst execution time is usually the longest interval in which the

system disables interrupts, so the impact of WCETs on the real-time performance is enormous.

These WCETs can be divided into two categories: the first is the WCETs of system calls, and

the second is the WCETs of inter-thread synchronizations.

To get the first type of WCETs, before calling a system call, jot down the time stamp Ts at this

time, and then after the end of the system call, read the timer to get the time stamp Te. Then,

[1] Such as Objdump

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

16

Back to Top

read the timer twice in a row to get two timestamps, Tts and Tte, and obtain the extra cost of

reading the timer as Tte-Tts. In this case, the execution time is Te-Ts-(Tte-Tts). Repeat this on all

system calls, then the WCET will be largest number among all measurements.

To get the second type of WCETs, jot down the timestamp Ts at the sending side of the

communication channel, then at the receiving end, read the timer get the timestamp Te. The

measurement for the cost of reading the timer is similar to the first-type WCETs. The resulting

Te-Ts-(Tte-Tts) is the execution time. Repeat this on all communication mechanisms calls, then the

WCET will be largest number among all measurements.

Jitter of execution time is also very important. We often get a distribution when conduct the

same measurement multiple times. The average of this distribution is the execution time, and its

standard deviation[1] is called the jitter.

For a RTOS, we usually wish the execution time, the WCET and the jitter to be as small as

possible. Execution time can be further divided into the following categories in detail[1]:

1.3.2.1 Thread Context Switch Time

Thread context switch time is the time cost of switching from one thread to another. We use

the following method to measure this value. In the measurement, except for the method of using

Te-Ts, it is also possible to use the difference between two consecutive Ts divided by 2. There are

two types of context switching, one is to switch between threads with the same priority, and the

second is to wake up a high-priority thread in low-priority thread[2].

In the first case, we assume that the two threads have the same priority, and at the

beginning of the measurement we are executing thread A, which was just switched to by thread

B.

Table 1-1 The First Case of Thread Context Switch

Thread A Thread B

Loop forever

{

>> Read Ts;

Switch to thread B;

}

Loop forever

{

Read Te;

>> Switch to thread A;

}

In the second case, we assume that the thread B have a higher priority, and at the beginning

of the measurement we are executing the thread A, which was just switched to by thread B.

[1] In some cases we also use range

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

17

Back to Top

Table 1-2 The Second Case of Thread Context Switch

Thread A Thread A

Loop forever

{

>> Read Ts;

Wake B up;

}

Loop forever

{

Read Te;

>> Sleep forever;

}

1.3.2.2 Asynchronous Communication Time

Asynchronous communication time refers to the time to communicate between two threads

with asynchronous channels. We use the following method to measure this value. We assume

that thread B is blocked at the receiving end, thread A sends to thread B, and thread B has a

higher priority than thread A.[2]

Table 1-3 Asynchronous Communication between Threads

Thread A Thread B

Loop forever

{

>> Read Ts;

Send to thread B;

}

Loop forever

{

Read Te;

>> Receive from own mailbox;

}

1.3.3 Interrupt Response Time, Worst-Case IRT and Jitter

Interrupt response time refers to the time between the occurrence of an interrupt and the

corresponding processing thread's wakeup. The Worst-Case Interrupt Response Time (WCIRT)

refers to the maximum length that an interrupt response time can reach under the most

unfavorable conditions. The WCIRT is usually reached when a large number of cache misses and

Trans Look-aside Buffer (TLB) misses occur during interrupt processing. Interrupt response time

is the most important indicator of the RTOS, and it can even be asserted that everything of the

RTOS should be designed around it. This measurement is the most direct reflection of the RTOS's

real-time performance.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

18

Back to Top

To obtain the WCIRT, a timer can be read in the first line of assembly of the interrupt vector[1],

resulting in a time stamp Ts; read the timer at the first line of code of the interrupt processing

thread to get a timestamp Te. The measurement of the cost of readinf the timer is the same as

above. The resulting Te-Ts-(Tte-Tts) is the interrupt response time. The worst-case interrupt

response time is the one with the highest response time among all the interrupt-response tests.

The jitter of this is also critical. We often get a distribution when we measure the IRT of the

same system multiple times. The average of this distribution is the average interrupt response

time, and its standard deviation[2] is called interrupt response time jitter.

For a RTOS, we usually wish the IRT, the WCIRT and the jitter to be as small as possible.

Interrupt response time measurement is usually performed as follows [1][3]:

Table 1-4 Interrupt Response Time

Kernel Thread A

Hardware interrupt handler

{

>> Read Ts;

Send to thread A from interrupt;

}

Hardware interrupt handler

{

Read Te;

>> Receive from own mailbox;

}

1.3.4 Realistic IRT, Realistic Worst-Case IRT and Jitter

The realistic interrupt response time refers to the time between the external stimulus's input

and the corresponding I/O operations' completion. The realistic worst-case interrupt response

time refers to the maximum length that an realistic interrupt response time can reach under the

most unfavorable conditions. In addition to the factors that can affect the WCIRT, CPU and IO

hardware's inherent overhead will also affect realistic WCIRT.

To get realistic IRT, we will need some extra hardware to conduct the measurement. For

example, we need to measure the actual interrupt response time of an I/O line. We can connect

the output pin of a FPGA to the input pin of a CPU or motherboard, then connect the input pin of

the same FPGA to the CPU or motherboard's output pin. Firstly, the FPGA sends a signal on its

output pin. At this time, the high-resolution timer in the FPGA starts counting. When the FPGA

receives the signal on its input pin, the high-resolution timer in the FPGA stops counting. The

[1] We cannot wait until the C handler starts execution because register and stack maintenance are also part

of the interrupt response time
[2] In some cases we also use range

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

19

Back to Top

resulting internal FPGA timer value is the realistic IRT. The realistic WCIRT is the one with the

highest response time among all tests.

For a cyber-physical system, we wish that the realistic IRT, the realistic WCIRT and the jitter

are as small as possible. It is noteworthy that the realistic WCIRT will generally be approximately

equal to the WCET plus the WCIRT plus the hardware's inherent overhead. For example, when a

system is just starting to execute a system call at the time of stimulus, the hardware interrupt

vector cannot be executed immediately, and the system call must be completed before we can

respond to it. After the system call is completed, the hardware interrupt vector begins to execute,

after this we will switch to the processing thread and produce the output. The realistic IRT is

usually measured as follows[1]:

Table 1-5 Realistic Interrupt Response Time

FPGA (or oscilloscope) System under test

Loop forever

{

>> Send stimulus and start the timer;

Wait until receipt of the response;

Stop the timer;

}

Loop forever

{

Receive signal from I/O;

Minimal processing routine;

Send response to I/O;

}

1.4 RMP System Calls
System call is the only way to use the system's functionality. For RMP, the system calls are

actually identical to regular function calls. All system calls in RMP are listed hereinafter.

Table 1-6 List of RMP System Calls

System call name ID Explanation

RMP_Yield 0 Yields the processor of the current thread

RMP_Thd_Crt 1 Create a thread

RMP_Thd_Del 2 Delete a thread

RMP_Thd_Set 3 Set a thread's priority and timeslice

RMP_Thd_Suspend 4 Pend a thread

RMP_Thd_Resume 5 Resume a thread from pend

RMP_Thd_Delay 6 Delay for a interval

RMP_Thd_Cancel 7 Cancel the delay of a thread

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

20

Back to Top

System call name ID Explanation

RMP_Thd_Snd 8 Send to a thread's mailbox.

RMP_Thd_Snd_ISR 9 Send to a thread's mailbox from interrupt

RMP_Thd_Rcv 10 Receive a value from own mailbox

RMP_Sem_Crt 11 Create a counting semaphore

RMP_Sem_Del 12 Delete a counting semaphore

RMP_Sem_Pend 13 Try to pend for a semaphore

RMP_Sem_Abort 14 Cancel the thread's pend on semaphore

RMP_Sem_Post 15 Post to a semaphore

RMP_Sem_Post_ISR 16 Post from interrupt to a semaphore

1.5 Bibliography
[1] T. N. B. Anh and S.-L. Tan, "Real-time operating systems for small microcontrollers," IEEE

micro, vol. 29, 2009.

[2] R. P. Kar, "Implementing the Rhealstone real-time benchmark," Dr. Dobb's Journal, vol. 15, pp.

46-55, 1990.

[3] T. J. Boger, Rhealstone benchmarking of FreeRTOS and the Xilinx Zynq extensible processing

platform: Temple University, 2013.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

21

Back to Top

Chapter 2 System Kernel
2.1 Kernel Introduction

The RMP kernel provided all the basics found on a usable commodity RTOS, including

threads, thread delays, thread mailboxes and counting semaphores. More complicated

communication facilities can be easily developed with existing built-in facilities of RMP. This

system also featured a light-weight Graphics User Interface (GUI) library, which does not

consume any memory when not enabled[1].

RMP is recommended for systems where less than 32 priorities and 64 threads are present.

Theoretically, an infinite number priorities and threads can be supported; however, from a

usability standpoint, it is not recommended to implement such systems with RMP. If more

sophisticated embedded system implementations are required, the higher-ranked RMEukaryon

(M7M1) is more appropriate.

2.1.1 Scheduler

RMP features a fixed priority round robin scheduler. It employs preemptive scheduling

between threads with different priorities, and round-robin scheduling between threads with the

same priority. Different from some RTOSes, the RMP scheduler never disables interrupts on some

architectures, which guarantees the real-time properties of the system. To further boost the

real-time performance, when the CLZ instruction is available on the processor, RMP will employ

it to speed to priority searches.

RMP doesn't have built-in multi-core support[2]. However, it is possible to naively support

multi-core by running a different instance of RMP on each core, which resembles Barrelfish's[1]

separation kernel approach.

2.1.2 Memory Management and Memory Protection

RMP provided a memory allocator based on the Two-Level-Segregated-Fit (TLSF)[2][3]

approach. This allocator is O(1) in all allocation and free operations, and have a very high space

efficiency. However, using dynamic memory allocation in small embedded systems is generally

not recommended. RMP does not feature genuine memory protection, and there is no sepration

of address space between threads. Thus, it is mandatory that some programming standard be

adhered to when writing applications.

[1] No relevant macros are defined
[2] And will never in the future as well

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

22

Back to Top

2.1.3 Application Updating and Application Modules

As RMP is a small system, no application updates and application modules are inherently

supported. Usually, the resulting image is less than 128kB and can be updated on the whole. If

such functionality is desired, it can be implemented by the user manually.

2.1.4 System Booting Sequence

The first thread of RMP is always RMP_Init, which is in the kernel code provided. Init is

responsible for boot-time initialization and low-power mode management, and shall never stop

running. Two hooks RMP_Init_Hook and RMP_Init_Idle are provided, and they are responsible

for importing user code to the booting process. Please refer to section 2.5 for detailed

description.

2.2 Thread-Related Operations
Because RMP-based systems run all their applications in the same address space, RMP only

provides threads as the abstraction for control flow. There can be four states for each thread,

namely READY, RUN, PEND and BLOCK[1]. The BLOCK state can be set to return upon timeout if

the requested service is unavailable. The PEND state can be imposed on any thread, upon which

the thread will always stop its execution no matter what state it was in.

The complete thread state transition graph is included hereinafter:

PEND

RUN

READY

BLOCK

(1) (2)

(3) (4)

(5)

(6)

(7)
(8)

(9)
(10)

[1] Includes four variants: blocked on delay or semaphore or send or receive

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

23

Back to Top

Figure 2-1 Thread State Transition Graph

The meanings of the number markings are as follows:

Table 2-1 Meanings of the Number Markings in the Thread State Transition Graph

No. Meaning

(1) It is the thread with the highest priority so far thus will be scheduled.

(2) There's one thread with higher priority thus the current thread will go into READY state.

(3) The thread is unblocked and with highest priority, thus it will go into RUN state.

(4) The thread blocks and go into BLOCK state.

(5) The thread is unblocked but not with highest priority, thus it will go into READY state.

(6) The thread is pended while being READY and will go into the PEND state.

(7) The thread is pended while BLOCK and will go into the PEND state.

(8) The thread is resumed and still blocking, thus it will go into the PEND state.

(9) The thread is pended while RUN and will go into the PEND state.

(10) The thread is resumed and with the highest priority, thus it will go into the RUN state.

All thread related interface are listed below and they can only be called in normal threads;

calling them in interrupts is prohibited. They can have the following return values:

Table 2-2 Possible Return Values for Thread Related Interfaces

Return value Value Meaning

RMP_ERR_THD -1 Operation failed due to thread control block relayed issues.

RMP_ERR_PRIO -2 Operation failed due to priority related issues.

RMP_ERR_SLICE -3 Operation failed due to timeslice related issues.

RMP_ERR_STATE -4 Operation failed due to thread state related issues.

RMP_ERR_OPER -5 Operation failed due to other issues.

RMP_ERR_SEM -6 Operation failed due to semaphore issues.

All system calls and their return values are listed hereinafter.

2.2.1 Yield to Another Thread

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

24

Back to Top

This operation will cause the current thread to give up CPU, and the scheduler will

automatically pick the next thread to schedule. If the current thread is the only thread with the

highest priority, then the same thread will still be scheduled.

Table 2-3 Yield to Another Thread

Prototype void RMP_Yield(void)

Return None.

Parameter None.

2.2.2 Create a Thread

This operation will create a new thread and put it into READY state. RMP does not provide

kernel object management facilities thus the thread control block needs to be allocated by the

user. The Stack parameter of this function is the start address of the thread stack; for ascending

stacks, this address is at the low-end of the stack memory; for descending stacks, this address is

at the high-end of the stack memory.

It is worth noting that the stack address passed in will be directly assigned to the current

stack pointer of the thread, and on the first context restoration of the thread, the stack popping

will begin here. Thus it is necessary to reserve some space at the top of the stack for context

initialization in thread creation. If other information needs to be stored on the stack, this space

also needs to be reserved.

For example, if the size of Stack_Array is 256 words, the processor has an context size of 16

words and uses a descending stack, and we wish to reserve 10 extra words for safety redundancy.

Then, the Stack parameter passed to this function should be &Stack_Array[256-16-10]. In this

example, if the processor uses a ascending stack, then the Stack parameter should be

&Stack_Array[16+10].

Table 2-4 Create a Thread

Prototype

rmp_ret_t RMP_Thd_Crt(volatile struct RMP_Thd* Thread,

rmp_ptr_t Entry, rmp_ptr_t Stack, rmp_ptr_t Arg,

rmp_ptr_t Prio, rmp_ptr_t Slices)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_PRIO The priority is not smaller than RMP_MAX_PREEMPT_PRIO.

RMP_ERR_SLICE The timeslice is 0 or not smaller than RMP_MAX_SLICES.

RMP_ERR_THD The thread control block is 0 (NULL) or being used.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

25

Back to Top

Parameter

volatile struct RMP_Thd* Thread

A pointer to an empty thread control block to be used for this thread.

rmp_ptr_t Entry

The entry of the thread.

rmp_ptr_t Stack

The execution stack of the thread. For architectures that use a grow-down stack, it

points to the high end of the stack space; for architectures that use a grow-down

stack, it points to the low end of the stack space.

rmp_ptr_t Arg

The argument to pass to the thread.

rmp_ptr_t Prio

The priority of the thread.

rmp_ptr_t Slices

The number of timeslices for the thread. The unit of timeslice is ticks.

2.2.3 Delete a Thread

This operation will delete a thread in the system. When the thread is deleted, all its resource

will be revoked. If there are any thread sending to it, the send will be canceled and a failure will

be returned.

It is worth noting that RMP threads does not allow exiting by a direct return; if it wants to

terminate itself, it must call this function to delete itself. This restriction is designed to make

thread deletion explicit to the user, thus deprecating the “create - run once - delete”

programming style[1].

Table 2-5 Delete a Thread

Prototype rmp_ret_t RMP_Thd_Del(volatile struct RMP_Thd* Thread)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or being used.

Parameter
volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to be deleted.

[1] Such style should be replaced by a “block - run once - block again” style

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

26

Back to Top

2.2.4 Set Thread Parameters

This operation will set a thread's timeslice and priority. When setting only one of them is

required, it is necessary to keep the other parameter the same with its original value.

Table 2-6 Set Thread Parameters

Prototype
rmp_ret_t RMP_Thd_Set(volatile struct RMP_Thd* Thread,

rmp_ptr_t Prio, rmp_ptr_t Slices)

Return

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_PRIO The priority is not smaller than RMP_MAX_PREEMPT_PRIO.

RMP_ERR_SLICE The timeslice is 0 or not smaller than RMP_MAX_SLICES.

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

Parameter

volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to be set parameters.

rmp_ptr_t Prio

The priority to set to the thread.

rmp_ptr_t Slices

The timeslice to set to the thread.

2.2.5 Suspend a Thread

This operation will suspend a thread and force it into the PEND state. Whatever state the

thread is in, it can be suspended, however its former state will be retained in some sense. If the

thread was in delay or send or receive before it gets suspended, these states are still valid in the

background and these operations will still proceed. If these operations are completed while the

thread is suspended, then the thread will stay in a pure PEND state and will not be scheduled

until the PEND state is manually resumed.

Table 2-7 Suspend a Thread

Prototype rmp_ret_t RMP_Thd_Suspend(volatile struct RMP_Thd* Thread)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

RMP_ERR_STATE The thread is already PEND and cannot be suspended again.

Parameter struct RMP_Thd* Thread

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

27

Back to Top

A pointer to the thread control block of the thread to be suspended.

2.2.6 Resume a Thread

This operation will resume the suspended state of a thread, and make it schedulable again.

Table 2-8 Resume a Thread

Prototype rmp_ret_t RMP_Thd_Resume(volatile struct RMP_Thd* Thread)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

RMP_ERR_STATE The thread is not suspended and cannot be resumed.

Parameter
volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to be resumed.

2.2.7 Delay a Thread

This operation will delay the current thread for some time.

Table 2-9 Delay a Thread

Prototype rmp_ret_t RMP_Thd_Delay(rmp_ptr_t Slices)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_SLICE The timeslice is 0 or not smaller than RMP_MAX_SLICES.

RMP_ERR_OPER The delay was cancelled before it completed.

Parameter
rmp_ptr_t Slices

The number of timeslices to delay.

2.2.8 Cancel a Thread's Delay

This operation will cancel a thread's delay operation.

Table 2-10 Cancel a Thread's Delay

Prototype rmp_ret_t RMP_Thd_Cancel(volatile struct RMP_Thd* Thread)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

28

Back to Top

RMP_ERR_STATE The thread is not in delay state and cannot be canceled.

Parameter
volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to be canceled.

2.3 Thread Communication Interfaces
RMP provides a relatively simple but efficient mechanism for inter-thread communication,

including thread mailboxes and semaphores. These mechanisms can be used alone or combined

to construct more complex communication interfaces. Blockable communication interface has

three options: return immediately upon detection of possible blocking, return after the timeout

or block indefinitely. This greatly improves the flexibility of the interface. Note that for all

communication interfaces, when a number of threads are blocked on one of them, the service is

always first-come first-served, and no queue cutting functionality is provided. If a high-priority

thread is blocked after a low-priority thread have blocked, the first one to be serviced is the

low-priority thread and then the high-priority thread.

2.3.1 Send to a Thread Mailbox

This operation will send a message of one processor word to a thread's mailbox.

Table 2-11 Send to a Thread Mailbox

Prototype
rmp_ret_t RMP_Thd_Snd(volatile struct RMP_Thd* Thread,

rmp_ptr_t Data, rmp_ptr_t Slices)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

RMP_ERR_OPER

Possible block detected when a non-blocking option is

specified, or trying to send to its own mailbox, or the send

failed because of timeout, or the target thread is deleted.

Parameter

volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to send to.

rmp_ptr_t Data

The data to send.

rmp_ptr_t Slices

The number of timeslices to wait in case a block may happen. If 0 is specified, upon

detection of possible blocking, the function will return immediately. If a value

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

29

Back to Top

between 0 and RMP_MAX_SLICES is specified (RMP_MAX_SLICES is not included),

then the operation will block for at most this value of timeslices. If a value greater

or equal to RMP_MAX_SLICES is specified, then the operation will indefinitely block

until the send operation is complete or the target thread gets destroyed.

2.3.2 Send to a Thread Mailbox from Interrupt

This operation will send to a thread from an interrupt handler. Different from the version

described above, this version will always return without blocking. This function will not lock the

scheduler, and does not care whether the scheduler is locked or not. This is because if the

interrupts where this function can be called is entered, the scheduler is definitely not locked.

Table 2-12 Send to a Thread Mailbox from Interrupt

Prototype rmp_ret_t RMP_Thd_Snd_ISR(volatile struct RMP_Thd* Thread, rmp_ptr_t Data)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

RMP_ERR_OPER The target thread's mailbox is full.

Parameter

volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to send to.

rmp_ptr_t Data

The data to send.

2.3.3 Receive from a Thread Mailbox

This operation receive a value from the thread's mailbox.

Table 2-13 Receive from a Thread Mailbox

Prototype rmp_ret_t RMP_Thd_Rcv(rmp_ptr_t* Data, rmp_ptr_t Slices)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_OPER

Possible block detected when a non-blocking option is

specified, or the receive failed because of timeout, or a null

pointer is passed in.

Parameter
rmp_ptr_t* Data

This parameter is used for output, outputs the data received.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

30

Back to Top

rmp_ptr_t Slices

The number of timeslices to wait in case a block may happen. If 0 is specified, upon

detection of possible blocking, the function will return immediately. If a value

between 0 and RMP_MAX_SLICES is specified[1], then the operation will block for at

most this value of timeslices. If a value greater or equal to RMP_MAX_SLICES is

specified, then the operation will indefinitely block until the receive operation is

complete.

2.3.4 Create a Semaphore

This operation will create a new counting semaphore.

Table 2-14 Create a Semaphore

Prototype
rmp_ret_t RMP_Sem_Crt(volatile struct RMP_Sem* Semaphore,

rmp_ptr_t Number)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_SEM The semaphore control block is 0 (NULL) or used.

RMP_ERR_OPER
The initial semaphore number is greater than or equal to

RMP_SEM_MAX_NUM.

Parameter

volatile struct RMP_Sem* Semaphore

A pointer to an empty semaphore control block to be used for this semaphore.

rmp_ptr_t Number

The initial semaphore number, must be smaller than RMP_SEM_MAX_NUM.

2.3.5 Delete a Semaphore

This operation will delete a semaphore. If there are threads that are blocked on it, then

these threads' pend call will return RMP_ERR_OPER.

Table 2-15 Delete a Semaphore

Prototype rmp_ret_t RMP_Sem_Del(volatile struct RMP_Sem* Semaphore)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_SEM The semaphore control block is 0 (NULL) or not used.

[1] RMP_MAX_SLICES is not included

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

31

Back to Top

Parameter
volatile struct RMP_Sem* Semaphore

A pointer to the semaphore control block of the semaphore to delete.

2.3.6 Pend for a Semaphore

This operation will pend the current thread on a semaphore. The number to pend for is

always 1.

Table 2-16 Pend for a Semaphore

Prototype
rmp_ret_t RMP_Sem_Pend(volatile struct RMP_Sem* Semaphore,

rmp_ptr_t Slices)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_SEM The semaphore control block is 0 (NULL) or not used.

RMP_ERR_OPER

Possible block detected when a non-blocking option is

specified, or the pend failed because of timeout, or the

semaphore is deleted.

Parameter

volatile struct RMP_Sem* Semaphore

A pointer to the semaphore control block of the semaphore to pend for.

rmp_ptr_t Slices

The number of timeslices to wait in case a block may happen. If 0 is specified, upon

detection of possible blocking, the function will return immediately. If a value

between 0 and RMP_MAX_SLICES is specified[1], then the operation will block for at

most this value of timeslices. If a value greater or equal to RMP_MAX_SLICES is

specified, then the operation will indefinitely block until the pend operation is

complete, or the semaphore is deleted.

2.3.7 Abort Pend on a Semaphore

This operation aborts a thread's pend on a semaphore. If the pend is successfully aborted,

the waiting thread's pend call will return RMP_ERR_OPER.

Table 2-17 Abort Pend on a Semaphore

Prototype rmp_ret_t RMP_Sem_Abort(volatile struct RMP_Thd* Thread)

Return rmp_ret_t

[1] RMP_MAX_SLICES is not included

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

32

Back to Top

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_THD The thread control block is 0 (NULL) or not used.

RMP_ERR_STATE
The thread is not pending on a semaphore and cannot

be aborted.

Parameter
volatile struct RMP_Thd* Thread

A pointer to the thread control block of the thread to cancel the semaphore pend.

2.3.8 Post to a Semaphore

This operation will post a certain number of tokens to a semaphore.

Table 2-18 Post to a Semaphore

Prototype
rmp_ret_t RMP_Sem_Post(volatile struct RMP_Sem* Semaphore,

rmp_ptr_t Number)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_SEM The semaphore control block is 0 (NULL) or not used.

RMP_ERR_OPER
If this number is posted to the semaphore, the semaphore

count will exceed RMP_SEM_MAX_NUM.

Parameter

volatile struct RMP_Sem* Semaphore

A pointer to the semaphore control block of the semaphore to post to.

rmp_ptr_t Number

The number of tokens to post.

2.3.9 Post to a Semaphore from Interrupt

This operation will post a certain number of tokens to a semaphore from an interrupt

handler. This function will not lock the scheduler, and does not care whether the scheduler is

locked or not. This is because if the interrupts where this function can be called is entered, the

scheduler is definitely not locked.

Table 2-19 Post to a Semaphore from Interrupt

Prototype
rmp_ret_t RMP_Sem_Post_ISR(volatile struct RMP_Sem* Semaphore,

rmp_ptr_t Number)

Return
rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

33

Back to Top

RMP_ERR_SEM The signal control block is 0 (NULL) or not used.

RMP_ERR_OPER
If this number is posted to the semaphore, the semaphore

count will exceed RMP_SEM_MAX_NUM.

Parameter

volatile struct RMP_Sem* Semaphore

A pointer to the semaphore control block of the semaphore to post to.

rmp_ptr_t Number

The number of tokens to post.

2.4 Memory Management Interfaces
RMP provided a TLSF-based memory allocator, which has been proven for dynamic memory

management. TLSF is a two-level fit algorithm which separates the memory blocks into different

First-Level Intervals (FLIs) according to their power of 2, such as 127-64 Byte, 255-128 Byte and so

on. Then it cuts each FLI into smaller Second-Level Intervals (SLIs) linearly. For example, the

127-64 Byte FLI's SLIs are [127, 112], [111, 96], ... ,[79, 64], totaling 8 intervals. When allocating

memory, the corresponding SLI's next SLI will be searched to see if any memory is available; if

not, then it will search the bigger SLIs to see if there are any available. When freeing memory, the

neighboring available blocks will be combined into a larger block and inserted into the

corresponding SLI to prepare for the next allocation.

In RMP's TLSF implementation, the number of FLIs will be decided by the size of the memory

pool, while the number of SLIs are always 8. The FLI 0 corresponds to 127-64 Byte blocks, and the

memory pool size shall be bigger than 1024 machine words[1]. This memory allocator is

optimized for memory pools that are less than 128MB, and it is not recommended to use this for

larger pools. Additionally, the memory pool address and size shall be aligned to a machine word,

and the smallest allocation size is always 64Byte.

The initialization and usage of memory pools are very flexible[2], thus RMP's memory

operations do not lock the scheduler by default. If locking the scheduler during operation is

desired, the feature can be implemented by guarding the operations with RMP_Lock_Sched and

RMP_Unlock_Sched.

Last but not least, the memory allocator does not implement protection of any kind, and is

unable to recover from any corruption. Therefore, if buffer overflow happens, it may destroy the

allocator data structure and make the memory scheme unrecoverable.

The TLSF allocator of RMP merely included 4 function calls, which are listed hereinafter.

[1] For 16-bit machines the pool shall not be smaller than 2kB and for 32-bit machines 4kB
[2] The threads can use their own private pools or share them

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

34

Back to Top

2.4.1 Memory Pool Initialization

This operation initializes the memory pool according to the address and size passed in. Both

parameters must be aligned to a machine word.

Table 2-20 Memory Pool Initialization

Prototype rmp_ret_t RMP_Mem_Init(volatile void* Pool, rmp_ptr_t Size)

Return

rmp_ret_t

If successful, 0. If failed, one the following values will be returned:

RMP_ERR_MEM

The memory pool is 0 (NULL) or the address/size is not aligned

or the size is smaller than 4096 machine words or bigger than

128MB.

Parameter

volatile void* Pool

The pointer to the blank memory to initialize as a memory pool.

rmp_ptr_t Size

The size of the memory pool.

2.4.2 Allocate Memory

This operation will try to allocate memory from a memory pool. The minimum amount of

allocation is 64 Byte. If the Size passed in is smaller than 64 and bigger than 0, the 64 Byte will be

allocated; if the Size passed in is 0, the allocation will always fail.

Table 2-21 Allocate Memory

Prototype void* RMP_Malloc(volatile void* Pool, rmp_ptr_t Size)

Return
void*

If successful, the pointer to the memory block. If failed, 0 (NULL).

Parameter

volatile void* Pool

The pointer to the memory pool to allocate from.

rmp_ptr_t Size

The memory to allocate, in bytes.

2.4.3 Free Memory

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

35

Back to Top

This operation will return memory to a memory pool. The pointer passed in must be the

exact value returned by a previous RMP_Malloc call, and the memory must be returned to the

same pool where it was allocated from.

Table 2-22 Free Memory

Prototype void RMP_Free(volatile void* Pool, void* Mem_Ptr)

Return None.

Parameter

volatile void* Pool

The pointer to the memory pool to return memory to.

void* Mem_Ptr

The pointer to the memory block to return.

2.4.4 Realloc Memory

This operation will try to resize the memory block to the Size that is needed. The pointer

passed in must be the exact value returned by a previous RMP_Malloc call, and the memory pool

must be the same pool where the memory block was allocated from. When successful, this

function will return a new memory block whose first Size byte have the same content with the

old memory block; else 0 (NULL) will be returned and nothing will happen on the old memory

block. Moreover, if Size is 0, this function behaves like RMP_Free and will directly free the

memory block; if Mem_Ptr is 0, this function behaves like RMP_Malloc and will directly allocate

new memory.

Table 2-23 Realloc Memory

函数原型 void* RMP_Realloc(volatile void* Pool, void* Mem_Ptr, rmp_ptr_t Size)

Return

void*

If successful, return a non-zero (not NULL) pointer to the resized memory block;

else return 0 (NULL).

Parameter

volatile void* Pool

The pointer to the memory pool which the old memory block belongs to.

void* Mem_Ptr

The pointer to the memory block to be resized.

rmp_ptr_t Size

The desired new size of the memory block. Can be smaller or bigger than the

original size.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

36

Back to Top

2.5 Other System Interfaces
Other interfaces provided by RMP includes interrupt enabling & disabling, scheduler locking

& unlocking and some other helper functions. These functions might be useful in particular

application developments.

2.5.1 Interrupt and Scheduler Interfaces

In RMP, the interrupt system interface only included a pair of functions to enable & disable

interrupts. This pair of functions is supplied to the user because on some architectures RMP

never completely disables interrupts at any point. It is not recommended to use this pair of

function unless necessary because it degrades the real-time performance of the system heavily.

The scheduler interface included a pair of functions that can lock & unlock the scheduler

with nesting count capabilities. Locking the scheduler also degrades system performance to

some degree. Thus it is recommended that the scheduler not be locked where unnecessary. The

rule of the thumb is, if scheduler locking is unnecessary, then don't lock the scheduler; if the

problem can be solved by locking the scheduler, then don't disable interrupts. Disabling

interrupts is a last-ditch approach, and the section should be kept as short as possible.

2.5.1.1 Disable Interrupts

This operation disables the system's response to all interrupts, including the system tick

timer interrupt and the system scheduling interrupt. This function does not have built-in nesting

count capabilities, and this functionality should be supplied by the user where necessary.

Table 2-24 Disable Interrupts

Prototype void RMP_Disable_Int(void)

Return None.

Parameter None.

2.5.1.2 Enable Interrupts

This operation re-enables the system's response to all interrupts. This function does not

have built-in nesting count capabilities, and this functionality should be supplied by the user

where necessary.

Table 2-25 Enable Interrupts

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

37

Back to Top

Prototype void RMP_Enable_Int(void)

Return None.

Parameter None.

2.5.1.3 Lock Scheduler

This operation locks the scheduler and thus no other threads can be scheduled. This

function have built-in nesting count functionality.

Table 2-26 Lock Scheduler

Prototype void RMP_Lock_Sched(void)

Return None.

Parameter None.

2.5.1.4 Unlock Scheduler

This operation unlocks the scheduler so that a new thread can be scheduled. This function

have built-in nesting count functionality.

Table 2-27 Unlock Scheduler

Prototype void RMP_Unlock_Sched(void)

Return None.

Parameter None.

2.5.2 Helper Functions

To facilitate user application development, RMP provided a useful library, including memory

zeroing, debug information printing and linked list operations. The list of these functions are as

follows:

2.5.2.1 Clear Memory

This operation zeros a segment of memory.

Table 2-28 Clear Memory

Prototype void RMP_Clear(volatile void* Addr, rmp_ptr_t Size)

Return None.

Parameter
volatile void* Addr

The start address of the memory to zero.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

38

Back to Top

rmp_ptr_t Size

The size of the memory to zero, in bytes.

2.5.2.2 Print a Character

This operation prints a character to the console[1].

Table 2-29 Print a Character

Prototype void RMP_Putchar(char Char)

Return None.

Parameter
char Char

The character to send.

2.5.2.3 Print a Signed Integer

This operation will print a signed integer to the console.

Table 2-30 Print a Signed Integer

Prototype rmp_cnt_t RMP_Print_Int(rmp_cnt_t Int)

Return
rmp_cnt_t

The number of characters printed.

Parameter
rmp_cnt_t Int

The integer to print.

2.5.2.4 Print an Unsigned Integer

This operation will print a hexadecimal unsigned integer to the console.

Table 2-31 Print an Unsigned Integer

Prototype rmp_cnt_t RMP_Print_Uint(rmp_ptr_t Uint)

Return
rmp_cnt_t

The number of characters printed.

Parameter
rmp_ptr_t Uint

The unsigned integer to print.

[1] Usually a serial port interface

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

39

Back to Top

2.5.2.5 Print a String

This operation will print a string with a maximum length of 255 bytes to the console.

Table 2-32 Print a String

Prototype rmp_cnt_t RMP_Print_String(rmp_s8_t* String)

Return
rmp_cnt_t

The number of characters printed.

Parameter
rmp_s8_t* String

The string to print.

2.5.2.6 Get the Most Significant Bit

This operation will get a word's most significant bit's (MSB) position[1]. If the number is zero,

-1[2] will be returned.

Table 2-33 Get the Most Significant Bit

Prototype rmp_ptr_t RMP_MSB_Get(rmp_ptr_t Val)

Return
rmp_ptr_t

The MSB's position.

Parameter
rmp_ptr_t Val

The unsigned integer to get the MSB.

2.5.2.7 Get the Least Significant Bit

This operation will get a word's least significant bit's (LSB) position[3]. If the number is zero,

then a value equal to the processor word length[4] will be returned.

Table 2-34 Get the Least Significant Bit

Prototype rmp_ptr_t RMP_LSB_Get(rmp_ptr_t Val)

Return
rmp_ptr_t

The LSB's position.

Parameter rmp_ptr_t Val

[1] On 32-bit machines, it should return 0-31
[2] For 32-bit machines, 0xFFFFFFFF
[3] For 32-bit machines, it should return 0-31
[4] For 32-bit machines, 32

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

40

Back to Top

The unsigned integer to get the LSB.

2.5.2.8 Reverse the Bits

This operation will reverse the bits of a word. On 32-bit processors this will cause the bit 0 to

exchange with bit 31, the bit 1 to exchange with bit 30, the bit 2 to exchange with bit 29, and the

same rule applies to all the other bits.

Table 2-35 Reverse the Bits

Prototype rmp_ptr_t RMP_RBIT_Get(rmp_ptr_t Val)

Return
rmp_ptr_t

The result after bit reversal.

Parameter
rmp_ptr_t Val

The unsigned integer to reverse the bits.

2.5.2.9 Create a List

This operation will initialize the list head of the doubly-linked list.

Table 2-36 Create a List

Prototype void RMP_List_Crt(volatile struct RMP_List* Head)

Return 无。

Parameter
volatile struct RMP_List* Head

The pointer to the list head structure to initialize.

2.5.2.10 Delete a Node in a List

This operation will delete a node (or a series of nodes) from a doubly linked list.

Table 2-37 Delete a Node in a List

Prototype void RMP_List_Del(volatile struct RMP_List* Prev, volatile struct RMP_List* Next)

Return None.

Parameter

volatile struct RMP_List* Prev

The pointer to the previous node of the node(s) to delete.

volatile struct RMP_List* Next

The pointer to the next node of the node(s) to delete.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

41

Back to Top

2.5.2.11 Insert a Node in a List

This operation will insert a node into a doubly linked list.

Table 2-38 Insert a Node in a List

Prototype
void RMP_List_Ins(volatile struct RMP_List* New,

volatile struct RMP_List* Prev, volatile struct RMP_List* Next)

Return None.

Parameter

volatile struct RMP_List* New

The pointer to the new node to insert into the list.

volatile struct RMP_List* Prev

The pointer to the previous position of the place where the node is to be inserted.

volatile struct RMP_List* Next

The pointer to the next position of the place where the node is to be inserted.

2.5.2.12 CRC16 Calculation

This function will calculate the CRC16 checksum of a memory segment with the polynomial

0xA001. Only when type rmp_u8_t & rmp_u16_t are typedef'ed and macro __RMP_U8_T__ &

__RMP_U16_T__ are defined will this function be available.

Table 2-39 CRC16 Calculation

Prototype rmp_ptr_t RMP_CRC16(const rmp_u8_t* Data, rmp_ptr_t Length)

Return
rmp_ptr_t

The resulting CRC16 value.

Parameter

const rmp_u8_t* Data

The pointer to the data to calculate CRC16 for.

rmp_ptr_t Length

The length of the data, in bytes.

2.5.3 Hook Function Interfaces

To make it easier to hook user functions into the kernel routines without explicit code

modification, RMP provided a series of hook functions to import user code. To use these hooks,

the macro RMP_USE_HOOKS needs to be defined as RMP_TRUE. The list of hook functions are

listed as follows:

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

42

Back to Top

2.5.3.1 System Startup Hook

This hook function will be called immediately after system initialization. Due to the fact that

each port will initialize some basic hardware on startup, it is recommended to put further

initialization into this hook. If the desired basic system setup conflicts with what is provided in

the platform's basic initialization sequence[1], reinitialization of these basic hardware can also be

performed here.

Table 2-40 System Startup Hook

Prototype void RMP_Start_Hook(void)

Return None.

Parameter None.

2.5.3.2 Context Save Hook

This hook function will be called after the system have performed its basic context save

routine. Should there be more registers to save[2], they can be pushed to stack or be written to

some other memory that is associated with the task. Refer to chapter 4 for implementation

details.

Table 2-41 Context Save Hook

Prototype void RMP_Save_Ctx(void)

Return 无。

Parameter 无。

2.5.3.3 Context Load Hook

This hook function will be called before the system performs its basic context load routine.

Should there be more registers to load[3], they can be popped from stack or be read from some

other memory that is associated with the task. Refer to chapter 4 for implementation details.

Table 2-42 Context Load Hook

Prototype void RMP_Load_Ctx(void)

Return None.

Parameter None.

[1] E.g. configuring the system for different operating frequencies
[2] Peripheral state or FPU registers
[3] Peripheral state or FPU registers

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

43

Back to Top

2.5.3.4 Scheduler Hook

This hook function will be called whenever there is a scheduler invoke. This can be used to

implement a tickless system. Refer to 6.1.1 for implementation details.

Table 2-43 Scheduler Hook

Prototype void RMP_Load_Ctx(void)

Return None.

Parameter None.

2.5.3.5 Tick Timer Hook

This hook function will be called whenever there is a system tick. This can be used to

implement a tickless system. Refer to 6.1.1 for implementation details.

Table 2-44 Tick Timer Hook

Prototype void RMP_Tick_Hook(rmp_ptr_t Ticks)

Return None.

Parameter
rmp_ptr_t Ticks

The number of ticks passed from the last tick interrupt.

2.5.3.6 Init Thread Initialization Hook

This hook function will be called once when the initial thread runs for the first time, and by

default the scheduler is locked in this function. This hook will always be enabled regardless of

the RMP_USE_HOOKS macro. It is recommended to use this function to create threads and

semaphores.

Table 2-45 Init Thread Initialization Hook

Prototype void RMP_Init_Hook(void)

Return None.

Parameter None.

2.5.3.7 Init Thread Loop Hook

This hook function will be called repeatedly when the initial thread runs. This hook will

always be enabled regardless of the RMP_USE_HOOKS macro. It is recommended to use this

function to put the processor into sleep state, or do performance auditing and stack monitoring.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

44

Back to Top

Table 2-46 Init Thread Loop Hook

Prototype void RMP_Init_Idle(void)

Return None.

Parameter None.

2.6 Bibliography
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, et al., "The multikernel: a

new OS architecture for scalable multicore systems," in Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, 2009, pp. 29-44.

[2] M. Masmano, I. Ripoll, A. Crespo, and J. Real, "TLSF: A new dynamic memory allocator for

real-time systems," in Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro

Conference on, 2004, pp. 79-88.

[3] X. Sun, J. Wang, and X. Chen, "An improvement of TLSF algorithm," in Real-Time Conference,

2007 15th IEEE-NPSS, 2007, pp. 1-5.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

45

Back to Top

Chapter 3 Light-Weight Graphics Library
3.1 Introduction to Embedded Graphic User Interfaces

Embedded Graphic User Interfaces (GUIs) are GUIs that are designed specifically for

embedded systems. Compared to traditional GUI systems, the embedded GUI systems have four

distinct idiosyncrasies: simplicity, diversity, planarity and restrictiveness. Keeping the four

idiosyncrasies in mind is the key to successful embedded GUI designs.

3.1.1 Simplicity

In most cases, traditional GUIs have scroll bars and tree views, which are designed for

complex user interfaces. On the contrary, the composing elements of embedded GUI are

relatively simple, which are often a few buttons and display widgets. Moreover, once the

embedded GUI design phase is complete, the interface itself seldom changes.

3.1.2 Diversity

After many years of evolution, traditional GUIs have converged to a common style, which is

seen in many common desktop environments such as Windows, MacOS, Gnome and Unity. All of

them are optimized for keyboard and mouse operation experiences, and have standardized

widgets. However, in embedded GUIs it is just the contrary. Mouses and keyboards are rarely

used, while touch screens and customized keypads are prevalent. More customized widgets are

required for different purposes, and they need to be optimized or customized for their respective

applications.

3.1.3 Planarity

Traditional GUIs emphasize vertical sequence of multiple windows. To calculate the display

area of the windows, sophisticated window clipping algorithms must be applied. This is

necessary in multi-window multi-task environments; however in embedded GUI realm this is not

the case. For embedded GUIs, the display area is usually very small, and means of input are

usually very limited. This renders complex vertical sequence of windows useless, and more effort

is put into optimizing for a planar design. This trend can also be discovered by investigating the

evolution of smart phone GUIs.

3.1.4 Restrictiveness

Traditional GUIs perform complicated graphics operations which are backed by powerful

CPUs and GPUs. In embedded GUI environments however, only a mediocre CPU is available, let

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

46

Back to Top

alone dedicated graphics hardware. Sometimes even making space for frame buffers is difficult.

When designing embedded GUIs, this factor also needs to be taken into consideration.

3.2 Embedded GUI Support of RMP
RMP supports various GUI functionality by providing a series of graphics rendering functions.

The basics includes dot and line rendering, polygon rendering and bitmap anti-aliasing

rendering; more advanced features include many widgets. All of these interfaces do not store any

internal information about the GUI object, and are not designed in a object-oriented manner;

thus, when the GUI feature is enabled, only ROM is consumed. To use the GUI components, a few

extra macros must be defined in the configuration header, and only when they are defined will

the corresponding function be available. A comprehensive list of these macros are as follows:

Table 3-1 Macros Required when Using Built-in GUI Support

Name Explanation

RMP_POINT

The macro for drawing a point. This macro is used across all GUI

functions, and must be defined to use the GUI module. This macro

shall be defined as the point drawing function's name, and the

function must have the following prototype:

void foo(rmp_cnt_t X, rmp_cnt_t Y, rmp_ptr_t Color);

This function shall draw a point on the screen.

Example: #define RMP_POINT RMP_Point

RMP_COLOR_25P(C1, C2)

RMP_COLOR_50P(C1, C2)

RMP_COLOR_75P(C1, C2)

The macro for mixing colors. Defining these macros are only

required for drawing anti-aliased bitmaps. All three macros carry

two colors as their argument, and shall return a color.

RMP_COLOR_25P means mixing C1 and C2 with a 25%+75% ratio,

RMP_COLOR_50P means mixing C1 and C2 in half,

RMP_COLOR_75Pmeans mixing C1 and C2 with a 75%+25% ratio.

RMP_CTL_WHITE

RMP_CTL_LGREY

RMP_CTL_GREY

RMP_CTL_DGREY

RMP_CTL_DARK

RMP_CTL_DDARK

RMP_CTL_BLACK

The macro for built-in widget colors. Defining them is only

necessary when using built-in widgets.

RMP_CTL_WHITE white, #FFFFFF recommended.

RMP_CTL_LGREY light grey, #B8B8B8 recommended.

RMP_CTL_GREY grey, #E0E0E0 recommended.

RMP_CTL_DGREY dark grey, #A0A0A0 recommended.

RMP_CTL_DARK dark, #787C78 recommended.

RMP_CTL_DDARK darker dark, #686868 recommended.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

47

Back to Top

Name Explanation

RMP_CTL_BLACK black, #000000 recommended.

The functions provided by RMP will not check whether the X and Y coordinates of the

widgets are out of the border. It is the developer's duty to check this and take actions when

needed. The comprehensive list of functions is shown hereinafter:

3.2.1 Draw Line

This function will draw a line on the screen with Bresenham algorithm. The width of the line

is always 1 pixel.

Table 3-2 Draw Line

Prototype
void RMP_Line(rmp_cnt_t Start_X, rmp_cnt_t Start_Y,

rmp_cnt_t End_X, rmp_cnt_t End_Y, rmp_ptr_t Color)

Return None.

Parameter

rmp_cnt_t Start_X

The X coordinate of the starting point of the line.

rmp_cnt_t Start_Y

The Y coordinate of the starting point of the line.

rmp_cnt_t End_X

The X coordinate of the ending point of the line.

rmp_cnt_t End_Y

The Y coordinate of the ending point of the line.

rmp_ptr_t Color

The color of the line.

3.2.2 Draw Dotted Line

This function will draw a dotted line on the screen with Bresenham algorithm. The width of

the dotted line is always 1 pixel.

Table 3-3 Draw Dotted Line

Prototype

void RMP_Dot_Line(rmp_cnt_t Start_X, rmp_cnt_t Start_Y,

rmp_cnt_t End_X, rmp_cnt_t End_Y,

rmp_ptr_t Dot, rmp_ptr_t Space)

Return None.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

48

Back to Top

Parameter

rmp_cnt_t Start_X

The X coordinate of the starting point of the dotted line.

rmp_cnt_t Start_Y

The Y coordinate of the starting point of the dotted line.

rmp_cnt_t End_X

The X coordinate of the ending point of the dotted line.

rmp_cnt_t End_Y

The Y coordinate of the ending point of the dotted line.

rmp_ptr_t Dot

The color of the dots.

rmp_ptr_t Space

The color of the spaces. If RMP_TRANS, the spaces will not be drawn.

3.2.3 Draw Rectangle

This function will draw a rectangle on the screen. The rectangle can have a different border

color than the filling color, and the filling is optional.

Table 3-4 Draw Rectangle

Prototype
void RMP_Rectangle(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y, rmp_cnt_t Length,

rmp_cnt_t Width, rmp_ptr_t Border, rmp_ptr_t Fill)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of the top-left corner of the rectangle.

rmp_cnt_t Coord_Y

The Y coordinate of the top-left corner of the rectangle.

rmp_cnt_t Length

The length of the rectangle.

rmp_cnt_t Width

The width of the rectangle.

rmp_ptr_t Border

The border color of the rectangle.

rmp_ptr_t Fill

The color of the filling. If RMP_TRANS, the rectangle will not be filled.

3.2.4 Draw Rounded Rectangle

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

49

Back to Top

This function will draw a rounded rectangle on the screen. The border color is always the

same with the filling color, and the rounded rectangle must be filled.

Table 3-5 Draw Rounded Rectangle

Prototype

void RMP_Round_Rect(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width,

rmp_cnt_t Round, rmp_ptr_t Color)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of the top-left corner of the rounded rectangle.

rmp_cnt_t Coord_Y

The Y coordinate of the top-left corner of the rounded rectangle.

rmp_cnt_t Length

The length of the rounded rectangle.

rmp_cnt_t Width

The width of the rounded rectangle.

rmp_cnt_t Round

The radius of the rounded corner.

rmp_ptr_t Color

The color of the rounded rectangle.

3.2.5 Draw Circle

This function will draw a circle on the screen. The circle border can have a different color

than the filling color, and the filling is optional.

Table 3-6 Draw Circle

Prototype
void RMP_Circle(rmp_cnt_t Center_X, rmp_cnt_t Center_Y, rmp_cnt_t Radius,

rmp_ptr_t Border, rmp_ptr_t Fill)

Return None.

Parameter

rmp_cnt_t Center_X

The X coordinate of the center of the circle.

rmp_cnt_t Center_Y

The Y coordinate of the center of the circle.

rmp_cnt_t Radius

The radius of the circle.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

50

Back to Top

rmp_ptr_t Border

The border color of the circle.

rmp_ptr_t Fill

The color of the filling. If RMP_TRANS, the circle will not be filled.

3.2.6 Draw Monochrome Bitmap

This function will draw a monochrome bitmap to the screen. The length of the bitmap must

be a multiple of 8, and must be stored in a left-to-right, up-to-down manner. When rendering the

bitmap, the bit order can be configured as high-order or low-order. When the former is selected,

the MSB in a byte represents the pixel with lower X value, and the latter is just the opposite[1].

Table 3-7 Draw Monochrome Bitmap

Prototype

void RMP_Matrix(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

const rmp_u8_t* Matrix, rmp_cnt_t Bit_Order,

rmp_cnt_t Length, rmp_cnt_t Width, rmp_ptr_t Color)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of the top-left corner of the bitmap.

rmp_cnt_t Coord_Y

The Y coordinate of the top-left corner of the bitmap.

const rmp_u8_t* Matrix

The pointer to the monochrome bitmap data.

rmp_cnt_t Bit_Order

The bit order in a byte. RMP_MAT_BIG for high-order, 0 for low-order.

rmp_cnt_t Length

The length of the bitmap, must be a multiple of 8 or the bitmap will not be

rendered.

rmp_cnt_t Width

The width of the bitmap.

rmp_ptr_t Color

The color to use for this bitmap.

3.2.7 Draw Monochrome Bitmap with Anti-Aliasing

[1] This concept is very similar to endianness; but this is referring to the pixel sequence in a byte

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

51

Back to Top

This function will draw a monochrome bitmap with 4xFXAA to the screen. The length of the

bitmap must be a multiple of 8, and must be stored in a left-to-right, up-to-down manner. When

rendering the bitmap, the bit order can be configured as high-order or low-order. The

background color also needs to be passed in for anti-aliasing. Additionally, all three color mixing

macros must be defined to use this function.

Table 3-8 Draw Monochrome Bitmap with Anti-Aliasing

Prototype

void RMP_Matrix_AA(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

const rmp_u8_t* Matrix, rmp_cnt_t Bit_Order,

rmp_cnt_t Length, rmp_cnt_t Width,

rmp_ptr_t Color, rmp_ptr_t Back)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of the top-left corner of the bitmap.

rmp_cnt_t Coord_Y

The Y coordinate of the top-left corner of the bitmap.

const rmp_u8_t* Matrix

The pointer to the monochrome bitmap data.

rmp_cnt_t Bit_Order

The bit order in a byte. RMP_MAT_BIG for high-order, 0 for low-order.

rmp_cnt_t Length

The length of the bitmap, must be a multiple of 8 or the bitmap will not be

rendered.

rmp_cnt_t Width

The width of the bitmap.

rmp_ptr_t Color

The color to use for this bitmap.

rmp_ptr_t Back

The background canvas' color.

3.2.8 Draw Cursor

This function will draw a 16x16 cursor on the screen. To use this function and all the

functions that follow this function, all widget color macros must be defined.

Table 3-9 Draw Cursor

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

52

Back to Top

Prototype void RMP_Cursor(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y, rmp_ptr_t Style)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of the top-left corner of the cursor.

rmp_cnt_t Coord_Y

The Y coordinate of the top-left corner of the cursor.

rmp_ptr_t Style

The style of the cursor. One of the following can be appointed:

RMP_CUR_NORM The normal cursor.

RMP_CUR_BUSY The cursor with a busy mark.

RMP_CUR_QUESTION The cursor with a question mark.

RMP_CUR_HAND The hand-shaped cursor.

RMP_CUR_TEXT The text-editing cursor.

RMP_CUR_STOP The “stop” cursor.

RMP_CUR_MOVE The “move” cursor.

RMP_CUR_LR The left-to-right adjustment cursor.

RMP_CUR_UD The up-to-down adjustment cursor.

RMP_CUR_ULBR
The bottom-right to upper-left adjustment

cursor.

RMP_CUR_URBL
The bottom-left to upper-right adjustment

cursor.

RMP_CUR_CROSS The cross mark cursor.

3.2.9 Draw Checkbox

This function will draw a scalable checkbox on the screen.

Table 3-10 Draw Checkbox

Prototype
void RMP_Checkbox(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_ptr_t Status)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the checkbox.

rmp_cnt_t Coord_Y

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

53

Back to Top

The Y coordinate of top-left corner of the checkbox.

rmp_cnt_t Length

The length[1] of the checkbox.

rmp_ptr_t Status

The status of the checkbox. RMP_CBOX_CHECK for checked, 0 for unchecked.

3.2.10 Set Checkbox

This function will check a checkbox that is already drawn.

Table 3-11 Set Checkbox

Prototype
void RMP_Checkbox_Set(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the checkbox.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the checkbox.

rmp_cnt_t Length

The length (width) of the checkbox.

3.2.11 Clear Checkbox

This function will clear a checkbox that is already drawn.

Table 3-12 Clear Checkbox

Prototype
void RMP_Checkbox_Clr(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the checkbox.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the checkbox.

rmp_cnt_t Length

The length[2] of the checkbox.

[1] Also width
[2] Also width

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

54

Back to Top

3.2.12 Draw Command Button

This function will draw a scalable command button.

Table 3-13 Draw Command Button

Prototype
void RMP_Cmdbtn(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width, rmp_ptr_t Status)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the command button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the command button.

rmp_cnt_t Length

The length of the command button.

rmp_cnt_t Width

The width of the command button.

rmp_ptr_t Status

The status of the command button. RMP_CBTN_DOWN for pushed, 0 for not

pushed.

3.2.13 Push Command Button

This function will push a drawn command button.

Table 3-14 Push Command Button

Prototype
void RMP_Cmdbtn_Down(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the command button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the command button.

rmp_cnt_t Length

The length of the command button.

rmp_cnt_t Width

The width of the command button.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

55

Back to Top

3.2.14 Release Command Button

This function will pop up a drawn command button.

Table 3-15 Release Command Button

Prototype
void RMP_Cmdbtn_Up(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the command button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the command button.

rmp_cnt_t Length

The length of the command button.

rmp_cnt_t Width

The width of the command button.

3.2.15 Draw Text Editing Box

This function will draw a scalable text edit box.

Table 3-16 Draw Text Editing Box

Prototype
void RMP_Lineedit(rmp_cnt_t Coord_X,rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the text edit box.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the text edit box.

rmp_cnt_t Length

The length of the text edit box.

rmp_cnt_t Width

The width of the text edit box.

3.2.16 Clear a Portion of Text Editing Box

This function will clear a portion of the text edit box.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

56

Back to Top

Table 3-17 Clear a Portion of Text Editing Box

Prototype

void RMP_Lineedit_Clr(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width,

rmp_cnt_t Clr_X, rmp_cnt_t Clr_Len)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the text edit box.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the text edit box.

rmp_cnt_t Length

The length of the text edit box.

rmp_cnt_t Width

The width of the text edit box.

rmp_cnt_t Clr_X

The relative X coordinate of the position to start clearing.

rmp_cnt_t Clr_Len

The length to clear.

3.2.17 Draw Radio Button

This function will draw a scalable radio button.

Table 3-18 Draw Radio Button

Prototype
void RMP_Radiobtn(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_ptr_t Status)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the radio button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the radio button.

rmp_cnt_t Length

The length[1] of the radio button.

rmp_ptr_t Status

[1] Also width

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

57

Back to Top

The status of the radio button. RMP_RBTN_SEL for selected, 0 for not selected.

3.2.18 Set Radio Button

This function will select a drawn radio button.

Table 3-19 Set Radio Button

Prototype
void RMP_Radiobtn_Set(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the radio button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the radio button.

rmp_cnt_t Length

The length[1] of the radio button.

3.2.19 Clear Radio Button

This function will clear a drawn radio button.

Table 3-20 Clear Radio Button

Prototype
void RMP_Radiobtn_Clr(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the radio button.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the radio button.

rmp_cnt_t Length

The length (width) of the radio button.

3.2.20 Draw Progress Bar

This function will draw a progress bar on the screen.

Table 3-21 Draw Progress Bar

[1] Also width

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

58

Back to Top

Prototype

void RMP_Progbar(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width, rmp_cnt_t Style,

rmp_cnt_t Prog, rmp_ptr_t Fore, rmp_ptr_t Back)

Return None.

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the progress bar.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the progress bar.

rmp_cnt_t Length

The length of the progress bar.

rmp_cnt_t Width

The width of the progress bar.

rmp_cnt_t Style

The style of the progress bar. Can be one of the following:

RMP_PBAR_L2R Grows from left to right.

RMP_PBAR_D2U Grows from down to up.

RMP_PBAR_R2L Grows from right to left.

RMP_PBAR_U2D Grows from up to down.

rmp_cnt_t Prog

The progress of the progress bar, must be between 0 and 100.

rmp_ptr_t Fore

The foreground of the progress bar, that is, the color of the progress.

rmp_ptr_t Back

The background of the progress bar, that is, the color of the empty region.

3.2.21 Set Progress of Progress Bar

This function will change the progress of a drawn progress bar.

Table 3-22 Set Progress of Progress Bar

Prototype

void RMP_Progbar_Set(rmp_cnt_t Coord_X, rmp_cnt_t Coord_Y,

rmp_cnt_t Length, rmp_cnt_t Width, rmp_cnt_t Style,

rmp_cnt_t Old_Prog, rmp_cnt_t New_Prog,

rmp_ptr_t Fore, rmp_ptr_t Back)

Return None.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

59

Back to Top

Parameter

rmp_cnt_t Coord_X

The X coordinate of top-left corner of the progress bar.

rmp_cnt_t Coord_Y

The Y coordinate of top-left corner of the progress bar.

rmp_cnt_t Length

The length of the progress bar.

rmp_cnt_t Width

The width of the progress bar.

rmp_cnt_t Style

The style of the progress bar. Can be one of the following:

RMP_PBAR_L2R Grows from left to right.

RMP_PBAR_D2U Grows from down to up.

RMP_PBAR_R2L Grows from right to left.

RMP_PBAR_U2D Grows from up to down.

rmp_cnt_t Old_Prog

The old progress of the progress bar, must be between 0 and 100.

rmp_cnt_t New_Prog

The new progress of the progress bar, must be between 0 and 100.

rmp_ptr_t Fore

The foreground of the progress bar (the color of the progress).

rmp_ptr_t Back

The background of the progress bar (the color of the empty region).

3.3 GUI Design Guidelines
Some guidelines needs to be followed when designing GUIs due to the restrictions of the

library. Some tricks are also needed to ensure a good design outcome. These guidelines will be

explained in detail in the following sections.

3.3.1 Planar Design

Due to the fact that window manager is not supported by this library, a planar design style is

recommended. For detailed concepts of this style, please refer to internet resources and related

articles, such as the UI design guides of the Apple Inc.

3.3.2 Use Simple Background and Bitmaps

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

60

Back to Top

Due to the fact that this GUI does not support display layers and alpha blending, its

anti-aliasing bitmap rendering function requires a background color as a input. If a non-unicolor

background is used, this function cannot be used. In most cases complex background is not

required, and what is needed is simply a dark grey background.

If possible, avoid full-color pictures as well. This is mainly due to storage constraints on Flash

ROM. Using monochrome bitmaps can save up to 90% storage when compared to colored

pictures.

3.3.3 Design and Implementation of Character Libraries

There are two ways of implementing the character libraries when using this GUI library. One

is to pick only the characters used and render them as monochrome bitmaps, which is stored in

the ROM of the microcontroller. The other one is to use external dedicated character library chips.

For applications that emphasize aesthetic values and do not require a full character set, the

former is recommended; for applications that require display of a full character set, the latter is

recommended.

3.3.4 Design and Implementation of Complex Widgets

This GUI only implemented basic widgets and is unable to meet very high aesthetic

standards. When this is the case, customized widgets must be designed. To implement custom

widgets, the bitmap rendering functions can be used and the bitmap of the widgets should be

updated by the user upon detection of state changes.

3.4 Bibliography
None.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

61

Back to Top

Chapter 4 Formal Verification
4.1 Introduction to Formal Verification

The definitive idiosyncrasies of an embedded real-time operating systems are complexity,

diversity and reliability. The hardware-independent part of the RMP operating system includes

approximately 2000 lines of code, with complex functions and connections between the various

code sections. As an operating system, RMP needs to meet the various needs of different

applications yet still must guarantee the correctness of the functionality. Meanwhile, we also

need to improve development efficiency, control development costs and development cycles,

and ensure on-time delivery of software.

Traditional software design techniques are based on natural language thinking, designing

and description. They are often unscientific and vague, and will easily cause misunderstanding.

Such development processes can only be analyzed by human developers, and cannot be

automatically examined. Based on a relatively clear, graphical depiction of software system,

some semi-formal methods such as UML can also automatically generate the code framework

and examine the analysis. The two methods mentioned can only support use case testing, and in

some cases they are automatic or structured. However, none of them can guarantee that there

are no errors in the system and are not suitable for the analysis and development of

safety-critical systems. Therefore, we need to apply a more rigorous design approach. Formal

methods are based on well-defined mathematical concepts and definitions and can leverage

fully automated tools for inspection and analysis. It brings the rigorousness of mathematics into

all phases of software development, and only with rigorous mathematical proofs, we can say

that that there are no vulnerabilities in the system.

The EAL standard of software safety have 7 levels, listed hereinafter[1][1]:

Table 4-1 EAL Levels and Descriptions

EAL Lvl. Description

EAL1

EAL1 provides a basic level of assurance by a limited security target and an analysis

of the SFRs (Specification of Functional Request) in that ST (Security Target) using a

functional and interface specification and guidance documentation, to understand

the security behaviour.

The analysis is supported by a search for potential vulnerabilities in the public

domain and independent testing (functional and penetration) of the TSF (TOE

Security Function).

[1] EAL7+ is also inluded as a separate level

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

62

Back to Top

EAL1 also provides assurance through unique identification of the TOE (Target of

Evaluation) and of the relevant evaluation documents.

This EAL provides a meaningful increase in assurance over unevaluated IT.

EAL2

EAL2 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and interface specification, guidance documentation and a

basic description of the architecture of the TOE, to understand the security

behaviour.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification, selective independent confirmation of

the developer test results, and a vulnerability analysis (based upon the functional

specification, TOE design, security architecture description and guidance evidence

provided) demonstrating resistance to penetration attackers with a basic attack

potential.

EAL2 also provides assurance through use of a configuration management system

and evidence of secure delivery procedures.

This EAL represents a meaningful increase in assurance from EAL1 by requiring

developer testing, a vulnerability analysis (in addition to the search of the public

domain), and independent testing based upon more detailed TOE specifications.

EAL3

EAL3 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and interface specification, guidance documentation, and an

architectural description of the design of the TOE, to understand the security

behaviour.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification and TOE design, selective independent

confirmation of the developer test results, and a vulnerability analysis (based upon

the functional specification, TOE design, security architecture description and

guidance evidence provided) demonstrating resistance to penetration attackers with

a basic attack potential.

EAL3 also provides assurance through the use of development environment controls,

TOE configuration management, and evidence of secure delivery procedures.

This EAL represents a meaningful increase in assurance from EAL2 by requiring more

complete testing coverage of the security functionality and mechanisms and/or

procedures that provide some confidence that the TOE will not be tampered with

during development.

EAL4
EAL4 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and complete interface specification, guidance

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

63

Back to Top

documentation, a description of the basic modular design of the TOE, and a subset of

the implementation, to understand the security behaviour.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification and TOE design, selective independent

confirmation of the developer test results, and a vulnerability analysis (based upon

the functional specification, TOE design, implementation representation, security

architecture description and guidance evidence provided) demonstrating resistance

to penetration attackers with an Enhanced-Basic attack potential.

EAL4 also provides assurance through the use of development environment controls

and additional TOE configuration management including automation, and evidence

of secure delivery procedures.

This EAL represents a meaningful increase in assurance from EAL3 by requiring more

design description, the implementation representation for the entire TSF, and

improved mechanisms and/or procedures that provide confidence that the TOE will

not be tampered with during development.

EAL5

EAL5 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and complete interface specification, guidance

documentation, a description of the design of the TOE, and the implementation, to

understand the security behaviour. A modular TSF design is also required.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification, TOE design, selective independent

confirmation of the developer test results, and an independent vulnerability analysis

demonstrating resistance to penetration attackers with a moderate attack potential.

EAL5 also provides assurance through the use of a development environment

controls, and comprehensive TOE configuration management including automation,

and evidence of secure delivery procedures.

This EAL represents a meaningful increase in assurance from EAL4 by requiring

semiformal design descriptions, a more structured (and hence analyzable)

architecture, and improved mechanisms and/or procedures that provide confidence

that the TOE will not be tampered with during development.

EAL6

EAL6 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and complete interface specification, guidance

documentation, the design of the TOE, and the implementation to understand the

security behaviour. Assurance is additionally gained through a formal model of select

TOE security policies and a semiformal presentation of the functional specification

and TOE design. A modular, layered and simple TSF design is also required.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

64

Back to Top

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification, TOE design, selective independent

confirmation of the developer test results, and an independent vulnerability analysis

demonstrating resistance to penetration attackers with a high attack potential.

EAL6 also provides assurance through the use of a structured development process,

development environment controls, and comprehensive TOE configuration

management including complete automation, and evidence of secure delivery

procedures.

This EAL represents a meaningful increase in assurance from EAL5 by requiring more

comprehensive analysis, a structured representation of the implementation, more

architectural structure (e.g. layering), more comprehensive independent

vulnerability analysis, and improved configuration management and development

environment controls.

EAL7

EAL7 provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and complete interface specification, guidance

documentation, the design of the TOE, and a structured presentation of the

implementation to understand the security behaviour.

Assurance is additionally gained through a formal model of select TOE security

policies and a semiformal presentation of the functional specification and TOE

design. A modular, layered and simple TSF design is also required.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification, TOE design and implementation

representation, complete independent confirmation of the developer test results,

and an independent vulnerability analysis demonstrating resistance to penetration

attackers with a high attack potential.

EAL7 also provides assurance through the use of a structured development process,

development environment controls, and comprehensive TOE configuration

management including complete automation, and evidence of secure delivery

procedures.

This EAL represents a meaningful increase in assurance from EAL6 by requiring more

comprehensive analysis using formal representations and formal correspondence,

and comprehensive testing.

EAL7+

EAL7+ provides assurance by a full security target and an analysis of the SFRs in that

ST, using a functional and complete interface specification, guidance

documentation, the design of the TOE, and a structured presentation of the

implementation to understand the security behaviour.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

65

Back to Top

Assurance is additionally gained through a formal model of select TOE security

policies and a completely formal presentation of the functional specification and TOE

design. A modular, layered and simple TSF design is also required.

The analysis is supported by independent testing of the TSF, evidence of developer

testing based on the functional specification, TOE design and implementation

representation, complete independent confirmation of the developer test results,

and an independent vulnerability analysis demonstrating resistance to penetration

attackers with a high attack potential.

EAL7 also provides assurance through the use of a structured development process,

development environment controls, and comprehensive TOE configuration

management including complete automation, and evidence of secure delivery

procedures.

This EAL represents a meaningful increase in assurance from EAL7 by requiring

complete analysis using formal representations and formal correspondence, and

comprehensive testing.

RMP is designed to meet the EAL7+ standard.

Most operating systems e.g. FreeRTOS, Windows and Linux are certified to the equivalent of

EAL4. Some systems are certified to EAL5, and INTEGRITY-178B is certified to EAL6+. Due to the

relative simple construction of RMP and the fact that RMP does not need to guarantee security[1],

it will be easy to certify it to a very high level.

4.2 Formal Model of the System
In the RMP system, the architecture-dependent part of the system is usually very short[2], and

it is easy to guarantee their correctness, thus they are not verified. Another reason is that the

architecture dependent part usually changes with the chip design, while RMP aims to support a

myriad of architectures. It is very time-consuming and simply impossible to establish formal

models for every architecture and verify them one by one. Thus, the bulk of the verification work

concentrates on the 1500 Lines Of Code (LOC) in rmp_kernel.c file, of which about 1000 are

Source Lines Of Code (SLOC). Due to the same reason, we only verify the correctness of this

software to the C programming language semantic level and will not perform any binary

verification. This means that the correctness of the final binary is still dependent on the

correctness of the compilers. Practically speaking, these compilers are usually certified to a high

[1] Most CC/CAPP/LSPP standards are not applicable
[2] Usually within 50 lines of code

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

66

Back to Top

level of confidence, and it is appropriate to trust them. If you do not wish to trust the compiler,

formally verified compilers such as CompCert[2] are also available.

Formal verification does not rule out all errors in a cyber-physical system, especially these

hardware-introduced ones[1]. The formal verification of RMP does not help in case of a hardware

failure or a faulty Hardware Abstraction Layer (HAL) implementation.

4.3 Formal Proof
Future work in progress.

4.4 Other Documents
Future work in progress.

4.5 Bibliography
[1] Common Criteria. "Common Criteria for Information Technology Security Evaluation", Part 3:

Security assurance components, 2012.

[2] X. Leroy, "The CompCert verified compiler," Documentation and user manual. INRIA

Paris-Rocquencourt, 2012.

[1] E.g. CPU or peripheral silicon bugs, which are often found in chip errata sheets from their manufacturers

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

67

Back to Top

Chapter 5 Porting RMP to New Architectures
5.1 Introduction to Porting

Porting of an OS refers to the work to modify it to run on new architecture and platform.

Sometimes, we call the work to make it possible to use a new compiler porting as well.

Compared to the porting process of uC/OS and RT-Thread, the porting of RMP is very simple. All

code of RMP is written in MISRA-C compliant ANSI/ISO C89, and contains minimal assembly code.

Thus, the porting work includes just a few steps.

Before porting, we need some preparation to make sure that porting is possible. Then we

modify the code sections accordingly to make it work on new platforms. After porting, we can

run the test bench to validate that porting is successful. Because the architecture-independent

portion of RMP is formally verified, any modification to these code is prohibited otherwise the

formal verification guarantees will void.

5.2 Checklist Before Porting
5.2.1 Processor

RMP requires that the processor family selected have at last 2 interrupt sources, one of them

needs to be connected to a timer, the other one must be software-triggerable. No other

requirements are imposed. It makes little sense to run RMP on 8-bit platforms, especially these

MCUs with less than 8kB Flash; in these cases RMS state machine OS might be a better choice. If

the target platform supports an MMU or have multiple cores, consider running RME microkernel

on it. RMP does not support hardware stack architectures; the stack must be implemented in

software[1] and not in hardware[2].

5.2.2 Compiler

RMP requires that the compiler is C89 compliant, and can produce code according to some

function calling convention. Because the RMP is written with strict accordance to the standard,

and did not use any C runtime library components, so it only requires that the compiler is C89

compliant. Common compilers such as GCC, CLANG/LLVM, MSVC, ARMCC, ICC, IAR, TASKING

satisfy the requirement very well. Also, RMP does not use compiler extensions that may vary

across compiler implementations, such as bitfield, enum and struct packing, and undefined

behaviors are avoided as much as possible, thus maximum compatibility can be expected.

[1] Such that the stack pointer and stack content can be software manipulated
[2] E.g. some PIC microcontrollers

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

68

Back to Top

When using the compiler, although in most cases maximum optimization will not cause

problems, it is recommended to turn off dead code elimination and link-time optimizations, as

well as the loop invariant code motion, especially on low-quality compilers. Do not use any

aggressive optimization feature. On common compilers, the recommended optimization level is

GCC -O2 or its equivalent optimization level.

5.2.3 Assembler

RMP requires that the assembler is capable of exporting symbols to C and importing

symbols from C. The assembler must be able to generate code that conform to the calling

convention. Usually these are easily satisfied. If the compiler supports inline assembly, then an

standalone assembler is not required.

5.2.4 Debugger

RMP does not have any special requirements regarding the debugger . It is best if debuggers

are available, however, porting is possible without one. Variables can be inspected with a

debugger where available; when not available, it is recommended to implement the low-level

RMP_Putchar function first to print characters, then it will be possible to print log with this

facility. Please refer to the sections that follows for detailed description about the function.

5.3 Architecture-depedent Portions of RMP
RMP's architecture dependent part is located in the Platform folder's corresponding

subfolders. For instance, the Cortex-M architecture's folder is located at Platform/CortexM. The

corresponding headers are located at Include/Platform/CortexM, and the same rule applies to all

other architectures.

Each architecture includes one or more source files and headers. When the kernel includes a

certain architecture's header, it does so by including the file Include/rmp_platform.h, which in

turn includes all other headers. When changing RMP's target platform, this file is changed to

include corresponding platform's header. For instance, if we are compiling for the Cortex-M

architecture, then the header should include the corresponding header(s) of Cortex-M.

Cortex-M port can be used as a template and start the porting work can be started from

there.

5.3.1 Typedefs

For each architecture and compiler, the typedefs are always among the first things to be

ported. It is worth noting that for some architectures and compilers, the long type corresponds

two machine words instead of one; in this case, the int type should be used as a base to

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

69

Back to Top

represent a machine word; for some other ones, the int type corresponds to half a machine

word's length, it which case long should be used as a base to represent a machine word. For the

exact length of every primitive data type that the compiler provided, be sure to write some small

programs with sizeof() to confirm their exact length.

To make the programming more smooth, defining these types are recommended:

Table 5-1 List of Typedefs

Type Meaning

rmp_s8_t
Signed 8-bit integer.

Example: typedef char rmp_s8_t;

rmp_s16_t
Signed 16-bit integer.

Example: typedef short rmp_s16_t;

rmp_s32_t
Signed 32-bit integer.

Example: typedef int rmp_s32_t;

rmp_u8_t
Unsigned 8-bit integer.

Example: typedef unsigned char rmp_u8_t;

rmp_u16_t
Unsigned 16-bit integer.

Example: typedef unsigned short rmp_u16_t;

rmp_u32_t
Unsigned 32-bit integer.

Example:typedef unsigned int rmp_u32_t;

These three ones are required by RMP:

Table 5-2 List of Necessary Typedefs

Type Meaning

rmp_ptr_t

The pointer integers' type. This shall be defined as an unsigned integer with the

same length as one machine word.

Example: typedef unsigned long rmp_ptr_t;

rmp_cnt_t

The counting variables' type. This shall be defined as an signed integer with the

same length as one machine word.

Example: typedef long rmp_cnt_t;

rmp_ret_t

The return values' type. This shall be defined as an signed integer with the same

length as one machine word.

Example: typedef long rmp_ret_t;

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

70

Back to Top

5.3.2 Defines

The second part is the porting of macro definitions. The macro definitions are listed as

follows:

Table 5-3 List of Macro Definitions

Name Explanation

EXTERN

The extern keyword of the compiler. Some compiler dos not have

standard extern keywords, this this define is necessary.

Example:

#define EXTERN extern

RMP_WORD_ORDER

The processor word length's[1] corresponding order. 32-bit

processors will have a word order of 5, and 64-bit processors will

have a word order of 6, etc.

Example:

#define RMP_WORD_ORDER 5

RMP_INIT_STACK

Initial stack start address. If the stack grows down, then this is the

top of the stack; if the stack grows up, then this is the bottom of the

stack.

RMP declared two macros RMP_INIT_STACK_HEAD(X) and

RMP_INIT_STACK_TAIL(X), which can help in making this macro.

The former macro means that the address will be offset to higher

addresses from the start address of the stack defined in the kernel,

while the latter means that the address will be offset to lower

addresses from the end address of the stack defined in the kernel.

The unit of the offset is machine words.

Example:

#define RMP_INIT_STACK RMP_INIT_STACK_TAIL(16)

The stack start address will be 16-word offset to lower address from

the end of the initial stack.

RMP_INIT_STACK_SIZE

Initial thread stack size, in bytes.

Example:

#define RMP_INIT_STACK_SIZE 1024

RMP_MAX_PREEMPT_PRIO The maximum number of preemptive priorities supported by the

[1] In bits

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

71

Back to Top

Name Explanation

kernel. This must be a multiple of machine word length[1]. Usually it

is sufficient to define this as the same length with the machine

word.

Example:

#define RMP_MAX_PREEMPT_PRIO 32

RMP_MAX_SLICES

The maximum timeslice value for thread or delays allowed by the

kernel.

Example:

#define RMP_MAX_SLICES 100000

RMP_SEM_MAX_NUM

The maximum number of tokens allowed for a counting

semaphore.

Example:

#define RMP_SEM_MAX_NUM 100

RMP_USE_HOOKS

Indicates whether the hook function is used. If yes, then the user is

expected to provide the implementation of all four hook functions

mentioned in section 2.5.3.

Example:

#define RMP_USE_HOOKS RMP_TRUE

RMP_MASK_INT()

RMP_UNMASK_INT()

Indicates whether the system interrupts should be masked when

the scheduler is locked. If this functionality is not desired, the two

macros can be defined as empty values, and the interrupts which

call the interrupt send functions may occur when the scheduler is

locked. However, their interrupt send functions will fail due to the

scheduler lock. If this functionality is desired, the RMP_MASK_INT()

can be defined to mask all interrupts that may call interrupt send

functions, and RMP_UNMASK_INT() can be defined to unmask

these interrupts, thus the interrupt sending functions will not be

called when the scheduler is locked. Some processors does not

support disabling the interrupts below a certain priority, in this

case the two macros can be configured to disable and enable

global interrupts. In this case, the real-time performance will be

affected.

Example:

[1] In bits

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

72

Back to Top

Name Explanation

#define RMP_MASK_INT MASK(SYSPRIO)

#define RMP_UNMASK_INT MASK(0x00)

Refer to the Cortex-M3 port of RMP for more details.

MASK(SYSPRIO) means masking all the interrupts below the

SYSPRIO value, and MASK(0x00) means clearing the mask. The

SYSPRIO value should be equal to the maximum interrupt priority

level that can call interrupt send functions.

5.3.3 Low-Level Assembly Functions

RMP only requires 4 assembly snippet functions which can be implemented in either

assembly or inline assembly. The names and explanations for these functions are as follows:

Table 5-4 Low-Level Assembly Functions

Function Name Explanation

RMP_Disable_Int Disable all processor interrupts.

RMP_Enable_Int Enable all processor interrupts.

_RMP_Yield Trigger the context switch.

_RMP_Start Start the initial thread.

The implementation details and requirements will be explained later.

5.3.4 System Interrupt Vectors

RMP requires that the 2 vectors are written in assembly. The names and explanations are:

Table 5-5 System Interrupt Vectors

Vector Name Explanation

System Timer Vector Process system timer interrupt and manage timeslice usage.

Thread Context Switch Vector Process thread context switches.

The implementation details and requirements will be explained in later sections.

5.3.5 Other Low-Level Functions

These low-level functions are used in booting or debugging of RMP. These functions can be

implemented in either assembly or C. The list of these functions are as follows:

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

73

Back to Top

Table 5-6 Other Low-Level Functions

Function Name Explanation

RMP_Putchar Print a character to the kernel debugging console.

RMP_MSB_Get Get the MSB position of the word.

_RMP_Low_Level_Init Initialize the low-level hardware.

_RMP_Stack_Init Initialize a thread's stack.

5.4 Porting of Assembly Functions
The detailed implementation requirements and prototypes of these functions are listed

hereinafter.

5.4.1 Implementation of RMP_Disable_Int

This function just need to return immediately after disabling interrupts. There are no special

precautions - in most cases it only involves a single instruction or register write.

Table 5-7 Implementation of RMP_Disable_Int

Prototype void RMP_Disable_Int(void)

Explanation Disable processor interrupts.

Return None.

Parameter None.

5.4.2 Implementation of RMP_Enable_Int

This function just need to return immediately after enabling interrupts. There are no special

precautions - in most cases it only involves a single instruction or register write.

Table 5-8 Implementation of RMP_Enable_Int

Prototype void RMP_Enable_Int(void)

Explanation Enable processor interrupts.

Return None.

Parameter None.

5.4.3 Implementation of _RMP_Yield

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

74

Back to Top

This function needs to trigger the context switch interrupt vector. Usually it is writing to

some memory address or executing some special instruction.

Table 5-9 Implementation of _RMP_Yield

Prototype void _RMP_Yield(void)

Explanation Software-triggerable context switch interrupt vector.

Return None.

Parameter None.

5.4.4 Implementation of _RMP_Start

This function implemented switch from kernel state to thread state, and is only called in the

last step of the system booting process. After this, the system will start running. The only job for

this function is to assign Stack to the stack pointer and then jump to the address specified by

Entry. This function will never return.

Table 5-10 Implementation of _RMP_Start

Prototype void _RMP_Start(rmp_ptr_t Entry, rmp_ptr_t Stack)

Explanation Begin to execute the initial thread.

Return None.

Parameter

rmp_ptr_t Entry

Entry of the initial thread, which is RMP_Init.

rmp_ptr_t Stack

Stack address of the initial thread.

5.5 Porting of System Interrupt Vectors
RMP system only requires porting of two vectors, namely the system timer interrupt routine

and the thread context switch routine. The timer interrupt vector may be implemented in pure C

language, however the thread switch interrupt vector must be written in either assembly or

inline assembly.

5.5.1 System Tick Timer Interrupt Vector

In the timer interrupt, only the following system tick timer interrupt processing function

needs to be called:

Table 5-11 System Tick Timer Interrupt Processing Function

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

75

Back to Top

Prototype void _RMP_Tick_Handler(rmp_ptr_t Ticks)

Explanation Execute timer interrupt handling.

Return None.

Parameter

rmp_ptr_t Ticks

The number of ticks passed between the last interrupt and the current

interrupt.

This function is implemented by the system and does not need to be implemented by the

user.

5.5.2 Thread Context Switch Interrupt Vector

The context switch interrupt vector must be implemented in assembly, and must complete

the following in the sequence listed below:

1. Switch to kernel stack and push all CPU registers to stack;

2. Call RMP_Save_Ctx save extra context such as FPU registers;

3. Place the current stack pointer into RMP_Cur_SP;

4. Call _RMP_Get_High_Rdy to pick the thread;

5. Assign RMP_Cur_SP to the current stack pointer;

6. Call RMP_Load_Ctx to load extra context such as FPU registers.

7. Pop all CPU registers from stack and switch to user stack, then exit interrupt.

RMP_Save_Ctx and RMP_Load_Ctx is introduced in chapter 2 and thus not introduced again

here. Only the thread context switch interrupt processing function will be explained in detail.

Table 5-12 Thread Context Switch Interrupt Processing Function

Prototype void _RMP_Get_High_Rdy(void)

Explanation
Do the context switch processing. This will update the RMP_Cur_SP and

RMP_Cur_Thd, which is used by context switch assembly and other system calls.

Return None.

Parameter None.

This function is implemented by the system and the user does not need to implement it.

5.6 Porting of Other Low-Level Functions
Among all the low-level functions, RMP_Putchar and RMP_MSB_Get is discussed in chapter 2

and thus not discussed here. We just discuss _RMP_Low_Level_Init and _RMP_Stack_Init.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

76

Back to Top

5.6.1 Low-Level Hardware Initialization

This function will initialize all low-level hardware. When initializing the interrupt system, it is

necessary to set the system tick timer's interrupt priority to the lowest, and make the context

switch interrupt's priority the second lowest, and they can't be nested with any other interrupt

vectors. All vectors that may call RMP_Thd_Snd_ISR and RMP_Sem_Post_ISR may not nest with

other vectors as well. For all other vectors such restriction does not apply and can be nested with

each other freely.

Table 5-13 Implementation of _RMP_Low_Level_Init

Prototype void _RMP_Low_Level_Init(void)

Explanation
Initialize basic hardware including PLL, CPU, interrupt controller and system tick

timers, etc.

Return None.

Parameter None.

5.6.2 Initialization of Thread Stack

This function will be called by the thread creation system call to initialize a thread's stack.

Because the second half of thread context switch will pop registers out of the stack, thus the

registers needs to be placed in the corresponding order, especially the entry and arguments. The

particular sequence depends on the processor and context switch vector implementation.

Table 5-14 Implementation of _RMP_Stack_Init

Prototype void _RMP_Stack_Init(rmp_ptr_t Entry, rmp_ptr_t Stack, rmp_ptr_t Arg)

Explanation Fill in the thread's stack and construct an interrupt return stack.

Return None.

Parameter

rmp_ptr_t Entry

The entry of the thread.

rmp_ptr_t Stack

The initial stack address of the thread.

rmp_ptr_t Arg

The parameter to pass to the argument.

5.7 Bibliography
None.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

77

Back to Top

Chapter 6 Appendix
6.1 Implementation of Special Kernel Functionality

In RMP, there are some features that are not implemented in the kernel by default. However,

it is possible to implement these functionality in RMP; the detailed implementation mechanisms

are listed below, and the user need to implement them if such functionality is desired.

6.1.1 Implementation of a Tick-Less Kernel

Tickless kernels usurally require a high-resolution time which is used to generate interrupts.

To implement tick-less systems, we only needed to check the current thread's slices left and the

earliest timer to expire, and set the timer to the smallest of these two in the system's timer tick

hook RMP_Timer_Hook and the context switch hook RMP_Sched_Hook. The RMP provided a

function _RMP_Get_Near_Ticks to get this value. When tickless feature is not implemented,

there's no need to call the function. Should the time interval be longer than what the system tick

timer can provide, the tick can be sliced into multiple ones until the last portion can be

completed by a single timer delay.

Table 6-1 Get the Time to the Nearest Tick

Prototype rmp_ptr_t _RMP_Get_Near_Ticks(void)

Explanation Get the time to the nearest tick, which can be used to set the system's tick timer.

Return
rmp_ptr_t

The number of ticks until the next interrupt.

Parameter None.

This function is implemented by the system and the user does not need to implement it.

6.1.2 Saving and Restoring FPU Registers

To save and restore Floating-point Processing Unit (FPU) registers, the RMP_Save_Ctx and

RMP_Load_Ctx hook should be used. In the save function, detect whether the task uses FPU first,

if yes, then save the FPU registers to stack or some other position; in the load function, after

confirming that the task uses FPU, just restore all the registers from where they are stored. In

RMP, the recommended scheme is to only allow one thread to access the FPU - in this case the

FPU context does not need to be saved or restored, thus boosting real-time responsiveness and

efficiency.

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

78

Back to Top

6.1.3 Thread Memory Protection

The memory access control that are pervasive in MCUs are Memory Protection Units (MPUs).

MPUs usually have a set of registers where you can fill the access permissions of different

memory regions. Each thread may have a different MPU configuration, and can limit its access

permissions in a tailored way. A recommended implementation is to treat the MPU registers as

coprocessor registers, and save/restore them in RMP_Save_Ctx and RMP_Load_Ctx. It is worth

noting that the MPU configuration of each thread should allow accesses to RMP kernel memory

and execution of RMP kernel code; this is because RMP does not have genuine user space and

kernel space separation, and all system calls are actually implemented as function calls. This

also explains the fact that RMP-based memory protection can only prevent the thread from

executing random code or running into a fault, but cannot provide any information security.

6.1.4 Low-Power Design Considerations

In low-power designs, it is recommended to use tick-less implementations, and in the

meantime, some instructions that can put the processor into sleep mode can be inserted into the

RMP_Init_Idle hook[1].

6.2 Factors That are Known to Hamper Real-Time Performance in RMP
There are only two factors in RMP that can possibly hamper real-time performance, as listed

below. The two factors are usually easy to avoid in real-world applications; generally speaking, if

the system's real-timer performance is hampered due to these factors, the application is

ill-designed.

6.2.1 Delay Queue

RMP employs a delay queue to manage all its delays[2]. From the head to the tail, the time to

overflow always increases. Thus, at each clock tick, RMP only needs to check the first timer to see

any of the timers can possibly overflow. However, this design requires that the list be traversed

to find the correct position every time a timer is to be installed. This traversal keeps the

incremental time property of the queue, but it also makes all insertion O(n) relative to the

existing number of timers in the queue. It can be mathematically proved that there does not exist

an algorithm that makes all operations on timers O(1), thus it is required that the application

does not excessively use timers or block with timeout.

[1] On ARM processors, WFI or WFE instructions should do the job, and on MSP430 some STATUS register

modifications are needed to put the processor to sleep.
[2] That is, RMP_Thd_Delay

M5P1(RMP) Light-Weight RTOS User Manual R4T4

M5P1-TRM

Nov 9 2018 www.edi-systems.org

79

Back to Top

6.2.2 Lock Scheduler and Disabling Interrupts

RMP provides interfaces to lock the scheduler and disable interrupts. However, this

obviously hampers the real-time performance of the system, thus it is best to avoid them in user

applications. For instance, if it is known that only one thread will use a particular memory pool,

then there's no need to lock the scheduler when allocating and freeing memory.

6.3 Bibliography
None.

	System Features
	Contents
	List of Tables
	List of Figures
	Revision History
	Chapter 1 Introduction
	1.1 Preface
	1.1.1 Design Goal and Specifications
	1.1.2 Copyright Notice and License
	1.1.3 Terms and Definitions
	1.1.3.1 Operating System
	1.1.3.2 Thread
	1.1.3.3 Static Allocation
	1.1.3.4 Dynamic Allocation
	1.1.3.5 Soft Real-time
	1.1.3.6 Hard Real-time
	1.1.3.7 Constant Real-time
	1.1.3.8 Constant Real-time to a Certain Value

	1.1.4 Major Reference Systems

	1.2 Forewords
	1.3 Performance and Specifications of RTOSes
	1.3.1 Kernel Size
	1.3.2 Execution Time, Worst-Case Execution Time and Jitt
	1.3.2.1 Thread Context Switch Time
	1.3.2.2 Asynchronous Communication Time

	1.3.3 Interrupt Response Time, Worst-Case IRT and Jitter
	1.3.4 Realistic IRT, Realistic Worst-Case IRT and Jitter

	1.4 RMP System Calls
	1.5 Bibliography

	Chapter 2 System Kernel
	2.1 Kernel Introduction
	2.1.1 Scheduler
	2.1.2 Memory Management and Memory Protection
	2.1.3 Application Updating and Application Modules
	2.1.4 System Booting Sequence

	2.2 Thread-Related Operations
	2.2.1 Yield to Another Thread
	2.2.2 Create a Thread
	2.2.3 Delete a Thread
	2.2.4 Set Thread Parameters
	2.2.5 Suspend a Thread
	2.2.6 Resume a Thread
	2.2.7 Delay a Thread
	2.2.8 Cancel a Thread's Delay

	2.3 Thread Communication Interfaces
	2.3.1 Send to a Thread Mailbox
	2.3.2 Send to a Thread Mailbox from Interrupt
	2.3.3 Receive from a Thread Mailbox
	2.3.4 Create a Semaphore
	2.3.5 Delete a Semaphore
	2.3.6 Pend for a Semaphore
	2.3.7 Abort Pend on a Semaphore
	2.3.8 Post to a Semaphore
	2.3.9 Post to a Semaphore from Interrupt

	2.4 Memory Management Interfaces
	2.4.1 Memory Pool Initialization
	2.4.2 Allocate Memory
	2.4.3 Free Memory
	2.4.4 Realloc Memory

	2.5 Other System Interfaces
	2.5.1 Interrupt and Scheduler Interfaces
	2.5.1.1 Disable Interrupts
	2.5.1.2 Enable Interrupts
	2.5.1.3 Lock Scheduler
	2.5.1.4 Unlock Scheduler

	2.5.2 Helper Functions
	2.5.2.1 Clear Memory
	2.5.2.2 Print a Character
	2.5.2.3 Print a Signed Integer
	2.5.2.4 Print an Unsigned Integer
	2.5.2.5 Print a String
	2.5.2.6 Get the Most Significant Bit
	2.5.2.7 Get the Least Significant Bit
	2.5.2.8 Reverse the Bits
	2.5.2.9 Create a List
	2.5.2.10 Delete a Node in a List
	2.5.2.11 Insert a Node in a List
	2.5.2.12 CRC16 Calculation

	2.5.3 Hook Function Interfaces
	2.5.3.1 System Startup Hook
	2.5.3.2 Context Save Hook
	2.5.3.3 Context Load Hook
	2.5.3.4 Scheduler Hook
	2.5.3.5 Tick Timer Hook
	2.5.3.6 Init Thread Initialization Hook
	2.5.3.7 Init Thread Loop Hook

	2.6 Bibliography

	Chapter 3 Light-Weight Graphics Library
	3.1 Introduction to Embedded Graphic User Interfaces
	3.1.1 Simplicity
	3.1.2 Diversity
	3.1.3 Planarity
	3.1.4 Restrictiveness

	3.2 Embedded GUI Support of RMP
	3.2.1 Draw Line
	3.2.2 Draw Dotted Line
	3.2.3 Draw Rectangle
	3.2.4 Draw Rounded Rectangle
	3.2.5 Draw Circle
	3.2.6 Draw Monochrome Bitmap
	3.2.7 Draw Monochrome Bitmap with Anti-Aliasing
	3.2.8 Draw Cursor
	3.2.9 Draw Checkbox
	3.2.10 Set Checkbox
	3.2.11 Clear Checkbox
	3.2.12 Draw Command Button
	3.2.13 Push Command Button
	3.2.14 Release Command Button
	3.2.15 Draw Text Editing Box
	3.2.16 Clear a Portion of Text Editing Box
	3.2.17 Draw Radio Button
	3.2.18 Set Radio Button
	3.2.19 Clear Radio Button
	3.2.20 Draw Progress Bar
	3.2.21 Set Progress of Progress Bar

	3.3 GUI Design Guidelines
	3.3.1 Planar Design
	3.3.2 Use Simple Background and Bitmaps
	3.3.3 Design and Implementation of Character Libraries
	3.3.4 Design and Implementation of Complex Widgets

	3.4 Bibliography

	Chapter 4 Formal Verification
	4.1 Introduction to Formal Verification
	4.2 Formal Model of the System
	4.3 Formal Proof
	4.4 Other Documents
	4.5 Bibliography

	Chapter 5 Porting RMP to New Architectures
	5.1 Introduction to Porting
	5.2 Checklist Before Porting
	5.2.1 Processor
	5.2.2 Compiler
	5.2.3 Assembler
	5.2.4 Debugger

	5.3 Architecture-depedent Portions of RMP
	5.3.1 Typedefs
	5.3.2 Defines
	5.3.3 Low-Level Assembly Functions
	5.3.4 System Interrupt Vectors
	5.3.5 Other Low-Level Functions

	5.4 Porting of Assembly Functions
	5.4.1 Implementation of RMP_Disable_Int
	5.4.2 Implementation of RMP_Enable_Int
	5.4.3 Implementation of _RMP_Yield
	5.4.4 Implementation of _RMP_Start

	5.5 Porting of System Interrupt Vectors
	5.5.1 System Tick Timer Interrupt Vector
	5.5.2 Thread Context Switch Interrupt Vector

	5.6 Porting of Other Low-Level Functions
	5.6.1 Low-Level Hardware Initialization
	5.6.2 Initialization of Thread Stack

	5.7 Bibliography

	Chapter 6 Appendix
	6.1 Implementation of Special Kernel Functionality
	6.1.1 Implementation of a Tick-Less Kernel
	6.1.2 Saving and Restoring FPU Registers
	6.1.3 Thread Memory Protection
	6.1.4 Low-Power Design Considerations

	6.2 Factors That are Known to Hamper Real-Time Perform
	6.2.1 Delay Queue
	6.2.2 Lock Scheduler and Disabling Interrupts

	6.3 Bibliography

