

MOTOROLA
SelJ'1iconductor Products Inc_

M6800

MICROPROCESSOR

APPLICATION MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser MIKBUG and EXbug are trademarks of Motorola Inc.

First Edition
Second Printing

© MOTOROLA INC., 1975
"All Rights Reserved"

Printed in U.S.A.

ii

TABLE OF CONTENTS

CHAPTER 1

1

1-1

1-1.1

1-1.1.1

1-1.1.2

1-1.2

1-1.2.1

1-1.2.2

1-2

1-2.1

1-2.2

1-2.3

1-2.3.1

1-2.3.2

1-2.3.3

1-2.3.4

1-2.3.5

1-2.3.6

1-3

1-3.1

1-3.2

1-3.3

1-3.3.1

1-3.3.2

1-3.3.3

1-3.3.4

1-3.4

1-3.4.1

1-3.4.2

Introduction to the MC6800 Microprocessor 1-1

System Organization .. 1-1

MC6800 Family Elements .. 1-3

Memory on The Bus .. 1-3

I/O on the Bus ... 1-5

Typical System Configuration ... 1-7

Memory Allocation ... 1-7

Hardware Requirements .. 1-7

Source Statements and Addressing Modes 1-10

Source Statements .. 1-11

Labels .. 1-11

Addressing Modes 1-12

Inherent (Includes "Accumulator Addressing " Mode) 1-12

Immediate Addressing Mode .. 1-13

Direct and Extended Addressing Modes 1-13

Relative Addressing Mode .. 1-14

Indexed Addressing Mode .. 1-16

Mode Selection ... 1-16

Instruction Set ... 1-20

Condition Code Register Operations .. 1-20

Number Systems ... 1-21

Accumulator and Memory Operations 1-24

Arithmetic Operations .. .; 1-24

Logic Operations ... 1-26

Data Test Operations .. 1-26

Data Handling Operations .. 1-26

Program Control Operations .. 1-26

Index Register/Stack Pointer Operations 1-26

Jump and Branch Operations .. 1-33

CHAPTER 2

2

2-1

2-1.1

2-1.2

2-1.3

2-1.4

2-1.4.1

2-1.5

Programming Techniques .. 2-1

Arithmetic Operation .. 2-1

Number Systems ... 2-1

The Condition Code Register ... 2-2

Overflow .. 2-2

The Arithmetic Instructions ... 2-4

Use of Arithmetic Instructions " 2-4

Addition and Subtraction Routines ... 2-8

iii

TABLE OF CONTENTS (Continued)

2-1.6 Multiplication .. 2-12

2-1.7 Division .. 2-18

2-2 Counting and Delay Measurement/Generation 2-26

2-3 Evaluating Peripheral Control Routines 2-30

2-3.1 Service Requests and Programs as Waveforms on a Timing Diagram -

Notation Used .. 2-30

2-3.2 Development of Equations and Inequalities Used to Test Successful

System Operation ... 2-32

2-3.3 Floppy Disk Data Transfer Routine .. 2-34

2-3.4 Cassette Data Transfer Routine .. 2-35

2-3.5 Utilization of MPU Processing Time 2-36

2-3.6 Program Model for Two Prioritized Service Requests 2-38

2-3.7 Requirements That Must Be Satisfied When an MPU Services Multiple SR's 2-39

2-3.8 Serial Data Transfer and Dynamic Refresh Processing 2-41

2-3.9 Increasing MPU Processing Efficiency with the Flip-Flop Model for Two

"Equal Period SR's" .. 2-42

2-4 Use of the Index Register .. 2-44

CHAPTER 3
3

3-1

3-2

3-2.1

3-2.2

3-2.3

3-2.4

3-3

3-4

3-4.1

3-4.1.1

3-4.1.2

3-4.1.3

3-4.1.4

3-4.2

3-4.2.1

3-4.2.2

3-4.2.3

3-4.2.4

3-4.3

Input/Output Techniques ... 3-1

Introduction ... 3-1

MC6800 Interrupt Sequences ... 3-2

Interrupt Request (IRQ) .. 3-2

Non Maskable Interrupt (NMI) .. 3-4

Reset (RES) .. 3-4

Software Interrupt (SWI) ... 3-6

Interrupt Prioritizing ... 3-7

Program Controlled Data Transfers ... 3-8

MC6820 Peripheral Interface Adapter 3-8

Input/Output Configuration ... 3-8

Internal Organization .. 3-9

Addressing and Initialization ... 3-16

System Considerations ,' 3-20

MC6850 Asynchronous Communications Interface Adapter 3-21

Input/Output Configuration .. .3-21

Internal Organization .. 3-22

Addressing and Initialization .. 3-25

System Considerations .. .3-26

MC6860 Low Speed Modem .. .3-28

iv

3-4.3.1

3-4.3.2

3-4.3.3

3-5

TABLE OF CONTENTS (Continued)

Input/Output Configuration ... 3-29

Internal Organization .. 3-33

Handshake and Control .. 3-34

Direct Memory Access .. 3-38

CHAPTER 4

4

4-1

4-1.1

4-1.1.2

4-1.2

4-1.3

4-1.4

4-1.5

4-2

4-2.1

4-2.1.1

4-2.1.2

4-2.2

4-2.2.1

4-2.2.2

4-2.2.3

4-2.2.4

4-2.3

4-2.4

4-2.5

4-2.5.1

4-2.5.2

4-2.5.3

M6800 Family Hardware Characteristics4-1

Clock Circuitry for the MC6800 .. .4-1

Clock Requirements and Circuitry .. .4-1

Clock Module .. 4-6

Halting the MC6800 and Single Instruction Execution4-13

MC6800 Reset and Interrupt Controls4-13

Three-State Control Line Operation4-19

M6800 Family Interface and Enabling Considerations4-19

M6800 System Hardware Techniques4-24

Interrupt Priority Circuitry4-24

8-Level Prioritizing .. .4-24

13-Level Prioritizing4-27

Direct Memory Access (DMA)4-31

DMA Transfers by Halting Processor4-32

DMA Transfers by Cycle Stealing .. .4-35

Multiplexed DMA!MPU Operation , .. .4-38

Summary of DMA Techniques4-42

Automatic Reset and Single Cycle Execution Circuitry4-42

Interval Timer .. 4-46

Memory System Design .. 4-48

Interfacing the MC6800 with Slow and Dynamic Memories4-48

2KX8 RAM Memory Design Example4-62

8KX8 Non-Volatile RAM Design Example4-69

4-2.5.4 Design Considerations When Using Non-Family Memories with the MC68004-88

CHAPTERS

5 Peripheral Control Techniques .. 5-1

5-1

5-1.1

5-1.1.1

5-1.1.2

5-1.2

5-1.2.1

5-1.2.2

5-1.2.3

5-1.2.4

Data Input Devices .. 5-1

Keyboards for Manual Entry of Data 5-1

Decoded Keyboard for a POS Terminal 5-1

Non Encoded Keyboard .. 5-6

Scanning Wand for Capturing Data From Printed Symbols 5-12

Universal Product Code (UPC) Symbol 5-12

Hardware Requirements .. 5-16

Data Recovery Technique .. 5-18

Wand!MPU Interface .. 5-18

v

5-1.2.5

5-2

5-2.1

5-2.1.1

5-2.1.2

5-2.1.3

5-2.1.4

5-2.2

5-3

5-3.1

5-3.1.1

5-3.1.2

5-3.1.3

5-3.1.4

5-3.2

5-3.2.1

5-3.2.2

5-4

5-4.1

5-4.2

5-4.3

5-4.4

5-4.5

5-4.5

5-4.6.1

5-4.6.2

5-4.6.3

5-4.6.4

5-4.7

5-4.7.1

5-4.7.2

5-4.7.3

5-4.7.4

5-4.8

5-4.9

5-4.A

5-4.B

5-4.C

5-4.0

5-4.E

TABLE OF CONTENTS (Continued)

Data Recovery Control Program ... 5-22

Data Output Devices .. 5-34

Printer Control " 5-34

SEIKO AN-I0IF Operating Characteristics 5-42

Printer Hardware/Software Tradeoffs 5-43

Printer I/O Configuration ... 5-43

Printer Control Program .. 5-44

Burroughs Self-Scan Display Control 5-57

Data Interchange Devices .. 5-57

Introduction to Data Communications 5-57

TTY to ACIA Hardware ... 5-57

TTY to ACIA Software .. 5-63

ACIA to Modem Hardware ... 5-71

ACIA to Modem Software ... 5-71

Tape Cassette System ... 5-73

Hardware Description ... 5-74

Software Description .. 5-88

Floppy Disk .. 5-113

Introduction ... 5-113

Overall Considerations ... 5-114

System Hardware/Software Interface 5-119

Disk Program Routine Linking Control 5-128

Seek and Restore Operations .. 5-129

Read Operation ... 5-143

The Read Operation Interface ... 5-144

Data Recovery ... 5-147

Read Data Logic ... 5-153

Read Operation Program Routine .. 5-156

Write Operation .. 5-163

The Write Operation Interface ... 5-167

Formatter Write Logic ... 5-171

Formatter Error Detect Logic ... 5-174

Write Operation Program Routine .. 5-175

Special Operations - UPC Lookup .. 5-181

Integrated Read/Write Logic .. 5-198

SA900/901 Diskette Storage Drive ... 5-203

Orbis Model 74 Diskette Drive .. 5-219

Cal Comp 140 Diskette Drive ... 5-228

Recording Formats .. 5-239

Floppy Disk Program Listings ... 5-246

vi

TABLE OF CONTENTS (Continued)

CHAPTER 6

6

6-1

6-2

6-3

6-3.1

6-3.2

6-3.3

6-3.4

6-4

6-4.1

6-4.2

6-4.2.1

6-4.2.2

6-4.2.3

6-4.2.4

6-4.3

System Design Techniques ... 6-1

Introduction 6-1

Transaction Terminal Definition ... 6-2

Hardware/Software Tradeoffs ... 6-6

Memory Reference I/O vs DMA I/O 6-6

Software vs Hardware Peripheral Service Prioritizing 6-7

Software vs Hardware Timer .. 6-7

Display With or Without Memory ... 6-8

Transaction Terminal Hardware and Software' 6-10

Hardware Configuration .. 6-10

Transaction Terminal Software Development 6-21

Software Background Preparation .. 6-21

Development of Macro Flow Diagram 6-48

Technique of Executive Program Organization 6-50

Description of Macro Flow Diagram 6-57

Interrupt Control .. 6-90

CHAPTER 7

7

7-1

7-1.1

7-1.1.1

7-1.1.2

7-1.1.3

7-1.1.4

7-1.1.5

7-1.2

7-1.3

7-1.4

7-1.5

7-1.5.1

7-1.5.2

7-1.5.3

7-1.5.4

7-1.5.5

7-1.6

7-1.7

7-2

7-2.1

System Development Tasks ... 7-1

Assembly of the Control Program .. 7-2

M6800 Cross-Assembler Syntax ... 7-2

Line Numbers .. 7-13

Fields of the Source Statement .. 7-13

Labels .. 7-13

Operands .. 7-13

Comments ... 7-14

Accessing a Timeshare Service .. 7-14

Entering a Source Program ... 7-15

Assembling a Source Program .. 7-18

Simulation ... 7-21

Simulator Commands .. 7-21

Operating the Simulator .. 7-29

Macro Commands .. 7-30

Sample Simulated Program ... 7-34

Simulation Results .. 7-39

HELP .. 7-40

Build Virtual Machine ... 7-50

The EXORciser .. 7-69

Hardware Components ... 7-71

vii

7-2.1.1

7-2.2

7-2.2.1

7-2.2.2

7-2.3

7-2.4

7-2.4.1

7-2.4.2

7-2.4.3

7-2.4.4

7-2.4.5

7-2.4.6

7-2.5

7-2.5.1

7-2.5.2

7-2.5.3

7-2.5.4

7-2.6

7-3

TABLE OF CONTENTS (Continued)

Hardware Specifications ... 7-71

Software Components ... 7 -74

EXORciser Control ... 7-74

MAID , .. 7-74

Memory Utilization ... 7-75

Hardware Operations and Controls ... 7-78

Combined Hardware/Software ... 7-78

ABORT Button Circuit .. 7-79

REST AR T Button Circuit .. 7-79

VMA Inhibit Decoder ... 7-79

Asynchronous Communications Interface 7-80

Scope SYNC .. 7 -80

Interrupts .. 7-80

NMI ... 7-80

RESET ... 7-81

SWI .. 7-81

Hardware Interrupt .. 7-81

Test Signals ... 7 -82

Evaluation Module .. 7-88

APPENDIX A: Questions and Answers

1. Systems Operation .. A-l

2. Control ... A-5

3.

4.

Interrupt Operation .. A-9

Programming .,' .. A-15

viii

LIST OF FIGURES

CHAPTER 1

1-1.1

1-1.1.1-1

1-1.1.1-2

1-1.1.2-1

1-1.1.2-2

1-1.1.2-3

1-1.1.2-4

1-1.1.2-5

1-1.1.2-6

1-1.2-1

1-2.1

1-2.3.1-1

1-2.3.1-2

1-2.3.2-1

1-2.3.3-1

1-2.3.4-1

1-2.3.4-2

1-2.3.5-1

1-2.3.6-1

1-3.1

1-3.1-1

1-3.1-2

1-3.3.1-1

1-3.3.2-1

1-3.3.3-1

1-3.3.4-1

1-3.4.1-1

1-3.4.1-2

1-3.4.1-3

1-3.4.2-1

1-3.4.2-2

1-3.4.2-3

1-3.4.2-4

1-3.4.2-5

1-3.4.2-6

1-3.4.2-7

1-3.4.2-8

1-3.4.2-9

MC6800 Bus and Control Signals

MCM6810 RAM Functional Block Diagram

MCM6830 ROM Functional Block· Diagram

MPU Parallel I/O Interface

MPU/PIA Interface

PIA Registers

MPU Serial I/O Interface

MPU/ACIA Interface

ACIA Registers

MPU Minimum System

Programmable Registers

Accumulator Addressing

Inherent Addressing

Immediate Addressing Mode

Direct Addressing Mode

Relative Addressing Mode

Extended Addressing Mode

Indexed Addressing Mode

Addressing Mode Summary

MC6800 Instruction Set

Condition Code Register Bit Definition

Condition Code Register Instructions

Arithmetic Instructions

Logic Instructions

Data Test Instructions

Data Handling Instructions

Index Register and Stack Pointer Instructions

Stack Operation, Push Instruction

Stack Operation, Pull Instruction

Jump and Branch Instructions

Program Flow for Jump and Branch Instructions

Program Flow for BSR

Program Flow for JSR (Extended)

Program Flow for JSR (Indexed)

Program Flow for RTS

Program Flow for Interrupts

Program Flow for RTI

Conditional Branch Instructions

ix

LIST OF FIGURES (Continued)

CHAPTER 2

2-1.5-1

2-1.6-1

2-1.6-2

2-1.6-3

2-1.6-4

2-1.6-5

2-1.6-6

2-1. 7-1

2-1.7-2

2-3.1-1

2-3.1-2

2-3.1-3

2-3.1-4

2-3.4-1

2-3.4-2

2-3.6-1

2-3.7-1

2-3.7-2

2-3.7-3

2-3.8-1

2-3.8-2

2-3.9-1

Decimal Subtract Assembly Listing

Multiplication Using Booth's Algorithm

Flow.Chart for Booth's Algorithm

Assembly Listing for Booth's Algorithm

Simulation of Booth's Algorithm

XKMULT Flow Chart

XKMULT Assembly Listing

XKDIVD Flow Chart

XKDIVD Assembly Listing

Peripheral Service Request (SR) and Data Transfer Program Waveforms and Notation

Flow Chart for a Typical Data Transfer Program for a Single Service Request

Data Transfer Program Indicating Method Used to Calculate Program Parameters

Relationship of Peripheral Data Stream to Program Timing

Flow Chart for Serial Data Transfer

Cassette Bit Serial Data Transfer Program

Program Model for Two Prioritized Time Dependent Service Requests

Timing Constraints for Successful System Operation for Prioritized Multiple Service Requests

Timing Diagram Showing Requirements of Equation 14 for Two SR's

Timing Diagram Showing Requirements of Equation 15 for Two SR's

Serial Data Transfer and Dynamic Display Refresh Routine

Serial Data Display SR Parameters and System Requirement Test

Flip-Flop Model for Two "Equal" Period SR's

CHAPTER 3

3-2.1-1 Hardware Interrupt Request Sequence

3-2.1-3 Interrupt Vectors, Permanent Memory Assignments

3-2.2-1 Non-Maskable Interrupt Sequence

3-2.3-1 Reset Interrupt Sequence

3-2.4-1 Software Interrupt Sequence

3-3-1 Hardware Interrupt Prioritizing - Block Diagram

3-4.1.1-1 MC6820 PIA VO Diagram

3-4.1.2-1 MC6820 PIA - Block Diagram

3-4.1.2-2 PIA Output Circuit Configurations

3-4.1.2-3 PIA Control Register Format

3-4.1.2-4 Read Timing Characteristics

3-4.1.2-5 Write Timing Characteristics

3-4.1.3-1 PIA Register Addressing

3-4.1.3-2 Family Addressing

3-4.1.3-3 Typical VO Configuration

x

3-4.2.1-1

3-4.2.2-1

3-4.2.2-2

3-4.2.2-3

3-4.2.3-1

3-4.2.4-1

3-4.3.1-1

3-4.3.1-2

3-4.3.2-1

3-4.3.3-1

3-4.3.3-2

3-4.3.3-3

3-4.3.3-4

LIST OF FIGURES (Continued)

MC6850 ACIA I/O Diagram

ACIA Block Diagram

ACIA Status Register Format·

ACIA Control Register Format

ACIA Register Addressing

Asynchronous Data Format

Typical MC6860 System Configuration

I/O Configuration for MC6860 Modem

MC6860 Modem Block Diagram

Answer Mode

Automatic Disconnect - Long or Short Space

Originate Mode

Initiate Disconnect

CHAPTER 4

4-1.1-1

4-1.1-2

4-1.1-3

4-1.1-4

4-1.1-5

4-1.1-6

4-1.2-1

4-1.3-1

4-1.3-2a

4-1.3-2b

4-1.3-3

4-1.3-4

4-1.3-5

4-1.3-6

4-1..4-1

4-1.5-1

4-1.5.2

4-2.1-1

4-2.1.1-1

4-2.1.1-2

4-2.1.1-3

4-2.1.2-1

4-2.1.2-2

4-2.1.2-3

4-2.2.1-1

MPU Clock Waveform Specifications

MPQ6842 Clock Buffer

MPU Clock Circuit

Clock Circuit Waveforms

Monostable Clock Generator

Monostable Clock Circuit Waveforms

Halt and Single Cycle Execution

~ESET Timing
Interrupt Timing

Wait Instruction Timing

Interrupt Signal Format

Interrupt Enabling

Interrupt Not Properly Enabled

Alternate Enable Generation

Three State Control Timing

Buffered M6800 System

M6800 Bus Expansion Example

8-Level Priority Interrupt Configuration Block Diagram

8-Level Hardware Prioritized Interrupt Logic

Prioritizing Interrupt Circuitry Relative Timing

Interrupt Vector Memory Allocation

13-Level Hardware Prioritized Interrupt Logic

13-Level Priority Circuitry Truth Table

Interrupt Vector Memory Allocation

DMA Transfers by Halting Processor

xi

4-2.2.1-2

4-2.2.2-1

4-2.2.2-2

4-2.2.3-1

4-2.2.3-2

4-2.2.3-3

4-2.3-1

4-2.3-2

4-2.3-3

4-2.4-1

4-2.4-2

4-2.5.1-1/

4-2.5.1-2

4-2.5.1-3

4-2.5.1-4

4-2.5.1-5

4-2.5.1-6

4-2.5.1-7

4-2.5.1-8

4-2.5.1-9

4-2.5.1-10

4-2.5.1-11

4-2.5.1-12

4-2.5.2-1

4-2.5.2-2

4-2.5.2-3

4-2.5.2-4

4-2.5.2-5

4-2.5.3-1

4-2.5.3-2a

4-2.5.3-2b

4-2.5.3-2c

4-2.5.3-3

4-2.5.3-4

4-2.5.3-5

4-2.5.3-5

4-2.5.3-7

4-2.5.3-8

4-2.5.3-9

LIST OF FIGURES (Continued)

Timing of DMA Transfers by Halting the MPU

Block Diagram of DMA Transfers by Cycle Stealing

Timing of DMA Transfers by Cycle Stealing

Multiplexed DMA/MPU Operation

Timing of Multiplexed DMA/MPU Operation

Timing of Multiplexed DMA/MPU Operation Using MCM6605 4K RAM

Automatic Reset and HALT Synchronization

Single Instruction Timing

~ingle Cycle Instruction Execution

Interval Timer

Timer Software Examples

MPU Clock Waveform Specifications

Read Data From Memories or Peripherals

Write Data to Memories or Peripherals

Read Cycle with 1.0ILS Memory

Write Cycle with 1.0ILS Memory

Effect of Memory Ready on Clock Signals

General MPU to Memory Interface

Dynamic Memory Interface

M6800 Clock Circuitry with Interface for Slow and Dynamic Memory

MPU Clock Circuitry Waveforms

MPU Clock Circuitry Waveforms

Monostable Clock Generator with Memory Ready

2KX8 Memory System Block Diagram

2KX8 Memory System Schematic Diagram

MPU/2KX8 Memory Read Cycle

MPU/2KX8 Memory Write Cycle

2KX8 Memory System with Memory Ready

MCM6605 4K RAM Block Diagram

Read Cycle Timing (Minimum Cycle)

Write and Refresh Cycle Timing (Minimum Cycle)

Read-Modify-Write Timing (Minimum Cycle)

Non- Volatile Memory System Block Diagram

EXORciser/4K Memory System Timing Diagram

Memory Timing in Standby Mode

Address Buffers and Decoding Logic

Data Buffers and Memory Array

Refresh Control Logic

Refresh Timing

xii

4-2.5.3-10

4-2.5.3-11

4-2.5.3-12

4-2.5.3-13

4-2.5.3-14

4-2.5.3-15

LIST OF FIGURES (Continued)

Power Fail Logic and Chip Enable Driver

Power Up/Down Synchronization

Memory System Breadboard

Alternate Read and Write Memory Accesses

Memory PC Board Array

Power Line Ripple

CHAPTER 5

5-1.1.1-1

5-1.1.1-2

5-1.1.1-3

5-1.1.1-4

5-1.1.1-5

5-1.1.2-1

5-1.1.2-2

5-1.1.2-3

5-1.1.2-4

5-1.1.2-5

5-1.1.2-6

5-1.1.2-7

5-1.1.2-8

5-1.1.2-9

5-1.2.1-1

5-1.2.1-2

5-1.2.1-3

5-1.2.1-4

5-1.2.1-5

5-1.2.2-1

5-1.2.3-1

5-1.2.3-2

5-1.2.3-3

5-1.2.4-1

5-1.2.5-1

5-1.2.5-2

5-1.2.5-3

5-1.2.5-4

5-1.2.5-5

5-1.2.5-6

5-1.2.5-7

5-1.2.5-8

POS Keyboard Configuration

Keyboard Coding/PIA Interface

Keyboard/PIA Hardware Interface

Flow Chart for Keyboard Service Routine

Keyboard Service Assembly Listing

Keyboard/PIA Interface

Keyboard Control Flow Chart

Keyboard Control Assembly Listing

Initial PIA I/O Configuration

Result of Key Closure

Contents of Accumulator A

I/O Conditions Reversed

Generation of Output Word

Lookup Table

UPC Symbol from Box of Kleenex Tissues

UPC Standard Symbol

UPC Character Structure

Nominal Dimensions of Printed UPC Symbol

Encoding for UPC Characters

UPC Wand Signal Conditioning Circuitry

Dimensions for Standard Symbol Characters

UPC Symbol Printing Tolerances

Worst Case Printing Tolerances

Transaction Terminal Flow Diagram

Flow Chart for XKIWND Initialization Routine

XKIWND Assembly Listing

Flow Chart for YKW AND Routine

YKW AND Assembly Listing

Flow Chart for WSOR T Routine

WSOR T Assembly Listing

Flow Chart for WCNVRT UPC to BCD Conversion Routine

WCNVRT Assembly Listing

xiii

LIST OF FIGURES (Continued)

5-1.2.5-9 XKWAND Table and Buffer Memory Locations

5-1.2.5-10 Flow Chart for WERCHK ERROR Check

5-1.2.5-11

5-1.2.5-12

5-1.2.5-13

5-2.1.1-1

5-2.1.1-2

5-2.1.1-3

5-2.1.3-1

5-2.1.4-1

5-2.1.4-2

5-2.1.4-3

5-2.1.4-4

5-2.1.4-5

5-2.1.4-6

WERCHK Assembly Listing

Flow Chart for WBCDPK Packing Routine

WBCDPK Assembly Listing

SEIKO AN-101F Printing Mechanism

Timing Signal Generation

Timing Signals

SEIKO Printer Circuit Requirements

Print Cycle Timing: "MICROPROCESSOR"

Initialization

Printer Enable

Reset Service

Printer/MPU Relative Activity

Print Service

5-2.1.4-7(a) PKSCAN Flow Chart

5-2.1.4-7(b) PKSCAN Assembly Listing

5-2.1.4-8 Roll Left Operation on PIA Registers

5-2.1.4-9 Printer Column/Text Buffer Relationship

5-2.2-1

5-2.2-2

5-3.1-1

5-3.1-2

5.3.1.1-1

5-3.1.2-1

5-3.1.2-2

5-3.1.3-1

5-3.2.1-1

5-3.2.1-2

5-3.2.1-3

5-3.2.1-4

5-3.2.1-5

5-3.2.1-6

5-3.2.1-7

5-3.2.1-8

5-3.2.1-9

5-3.2.1-10

5-3.2.1-11

5-3.2.1-12

5-3.2.1-13

Burroughs Self-Scan Display Characteristics

PIA/Burroughs Display Interface

Paper Tape Format

TTY/ACIA and Modem/ACIA Systems

MPU to TTY Interface

Flow Chart for Comm. Program

Data Comm. Assembly Listing

MPU to Remote Site

800 BPI Recording Format

PIA, Tape Drive and Read/Write Control Electronics Interface

Read/Write Circuitry

Write Operation Timing and Format Conversion

Read Operation Timing

EOT/BOT Circuitry with Hardware Safety Feature

Phase Locked Loop Data Recovery

Read Data Recovery Timing (After Preamble, with Loop in Lock)

Cassette Serial Read/Write and Control Logic

Read Operation Sequence Timing

Write Operation Sequence Timing

Start, Stop, and Interblock Gaps Derived From the Tape Velocity Profile

Load Point

xiv

5-3.2.2-1

5-3.2.2-2

5-3.2.2-3

5-3.2.2-4

5-3.2.2-5

5~3.2.2-6

5-3.2.2-7

5-3.2.2-8

5-4.1-1

5-4.1-2

5-4.2-1

5-4.2-2

5-4.2-3

5-4.2-4

5-4.3-2

5-4.3-1

5-4.5-1

5-4.5-2

5-4.5-3

5-4.5-4

5-4.6.1-1

5-4.6.1-2

5-4.6.1-3

5-4.6.2-1

5-4.6.2-2

5-4.6.2-4

5-4.6.2-5

5-4.6.2-6

5-4.6.3-1

5-4.6.3-2

5-4.6.4-2

5-4.6.4-3

5-4.7.1-1

5-4.7.1-2

5-4.7.2-1

5-4.7.2-3

5-4.7.3-1

5-4.7.4-2

5-4.8-1

5-4.8-2

LIST OF FIGURES (Continued)

System Integration of Rewind to Load Point

Move to Load Point Flow Chart

Move to Load Point Assembly Listing

System Integration of Write Routine

Flow Chart of Write Routine

Write Routine Assembly Listing

Flow Chart of Read Routine

Read Routine Assembly Listing

M6800/Floppy Disk Subsystem

Floppy Disk System

Example of a Serial Task System

Multiple MPU System

Radial Interface

Daisy Chain Interface

Byte Ready/Request Interface

Floppy Disk Functional Interface

Typical Host/Floppy Disk Program Interaction

Seek/Restore Interface

'FKSKIN' Flow

'FKSEEK' Flow

Read Operation Interface

Read Clock Logic

Error Detect Logic

Floppy Disk IBM 3740 Format Data and Clock Recovery

Data and Clock Recovery Timing

VCM Frequency Faster Than Data Rate

PLL Response - Worst Case Capture Time

MC4024 Voltage vs Frequency for Floppy Disk Data Recovery

Read Data Logic (Read Shift Register, Read Buffer, Bit Counter and CRC Check)

Start Read Timing

Read Routine Flow Chart

System Integration of Floppy Disk Routines

Write Operation Interface

Write Control Signal Sequence

Floppy Disk Write Logic

Append CRC Timing

Error Detect Logic

Write Flow

UPC Track Format

UPC Lookup Program Integration

xv

5-4.8-4

5-4.9-1

5-4.9-2

5-4.9-3

5-4.A-2

5-4.A-3

5-4.A-4

5-4.A-5

5-4.A-6A

5-4.A-6B

5-4.A-7

5-4.A-8

5-4.A-9

5-4.A-10

5-4.A-11

5-4.A-12

5-4.A-13

5-4.A-14

5-4.A-15

5-4.A-15

5-4.A-17

5-4.B-1

5-4.B-3

5-4.B-4

5-4.B-5

5-4.C-1

5-4.C-8

5-4.C-9

5-4.C-10

5-4.C-11

5-4.C-12

5-4.C-13

5-4.D-1

5-4.D-2

5-4.D-4

5-4.D-3

5-4.D-5

5-4.D-6

5-4.D-7

5-4.D-8

LIST OF FIGURES (Continued)

UPC Search Program Flow Chart

Combined Read/Write Data Logic

Combined Read/Write Clock Logic

Error Detect Logic

Loading SA900/901

SA900 Functional Diagram, One Sector Hole

SA901 Functional Diagram, 32 Sector Holes

Head Load and Carriage Assembly

SA100 Diskette and Cartridge Layout

SAlOl Diskette and Cartridge Layout

Standard Interface Lines, SA 900/901

Index Timing, SA 900/901

Index/Sector Timing, SA 900/901

Data Line Driver/Receiver Combination, SA 900/901

Control Signal Driver/Receiver, SA 900/901

Sector Recording Format, SA 901

Track Access Timing, SA 900/901

Read Initiate Timing, SA 900/901

Read Signal Timing, SA 900/901

Write Initiate Timing, SA 900/901

File Inop Circuit, SA 900/901

Orbis Model 74 Functional Block Diagram

Power Up Sequence, Orbis Model 74

Read/Write Sequence, Orbis Model 74

Interface Drive & Receiver, Orbis Model 74

Floppy Disk Cartridge, Cal Comp 140

The CDS 140, Cal Comp 140

Driver Mechanism, Cal Comp 140

Centering Cone and Driver Hub, Cal Comp 140

Positioning Mechanism, Cal Comp 140

Model 140 Functional Block Diagram, Cal Comp 140

Tunnel Erase, Cal Comp 140

Data Pattern

Bit Cell

Data Bytes

Byte·

Track Format

Index Recording Format

Sector Recording Format

Index Address Mark

xvi

LIST OF FIGURES (Continued)

5-4.D-9 ID Address Mark

5-4.D-10 Data Address Mark

5-4.D-11 Deleted Data Address Mark

CHAPTER 6

6-1-1

6-1-2

6-2-1

6-4.1-1

6-4.1-2

6-4.1-3

6-4.1-4

6-4.1-5

6-4.1-6

6-4.1-7

6-4.1-8

6-4.1-9

6-4.2.1-1

6-4.2.2-1

6-4.2.3-1

6-4.2.4-1

6-4.2.4-2

6-4.2.4-3

6-4.2.4-4

6-4.2.4-5

6-4.2.4-6

6-4.2.4-7

6-4.2.4-8

6-4.2.4-9

6-4.2.4-10

6-4.2.4-11

6-4.2.4-12

6-4.3-1

6-4.3-2

Conventional Design Cycle

MPU -Based Design Cycle

POS Keyboard Configuration

Transaction Terminal Block Diagram

Control Circuitry Configuration

I/O Control Card Schematic Diagram

MPU /Control Card Schematic

MIKBUG™ PIA and TTY /RS-232 Circuitry

Transaction Terminal Memory Map

Transaction Terminal Address Decoding Chart

Bus Extender Enable/Disable

MC8T26, Partial Schematic

Flow for Key Entry Data

Transaction Terminal Flow Diagram

XLABEL Assembly Listing

System Initialization Assembly Listing

Software Poll for Service Assembly Listing

Keyboard PIA Hardware Interface

Keyboard Coding/PIA Interface

Keyboard Decode Assembly Listing

XKSAFE General Flow Diagram

XKSAFE Initialization Section Flow Chart

XKSAFE Entry Point Flow Charts

XKSAFE Main Processing Flow Chart

XKSAFE Defining Section

XKSAFE Service Routine Flow Charts

Flag Reference Summary

Interrupt Control Flow Chart

Interrupt Poll Assembly Listing

CHAPTER 7

7-1

7-1.3-1

7-1.3-2

7-1.4-1

System Development: Like an Iceberg

Entering the Source Program "AAA"

Listing of the Source Program "AAA"

Fields of Assembly Listing

xvii

7-1.4-2
7-1.5.4-1

7-2
7-2-1
7-2-2
7-2.3-1
7-2.6-1

7-3-1
7-3-2
7-3-3

LIST OF FIGURES (Continued)

Assembly Listing for Sample Program "AAA"

Simulation of "AAA"

Procedure for Designing and Verifying a System Using the M6800 Microcomputer

Motorola EXORciser

Typical EXORciser System Block Diagram

Memory Map and Addressing

EXORciser Backplane Connections for All Boards

Motorola Evaluation Module

Evaluation Module Block Diagram

Evaluation Module Memory Map

xviii

LIST OF TABLES

CHAPTER 2

2-1.2-1

2-1.3-1

2-1.3-2

2-1.4-1

2-1.4-2

2-1.4.1-1

2-1.4.1-2

Condition Code Register

Overflow for Addition

Overflow for Subtraction

Arithmetic Instructions

Effect of DMA instruction

Truth Table for" Add with Carry"

Truth Table for "Subtract with Borrow"

CHAPTER 4

4-1.1-1

4-1.1-2

4-2.1.1-1

4-2.1.1-2

4-2.2.1-1

4-2.2.4-1

4-2.4-1

4-2.5.3-1

4-2.5.3-2

4-2.5.3-3

4-2.5-4-1

Performance of Circuit in Figure 4-1.1.1-3

Performance of Circuit in Figure 4-1. 1. 1-6

8 Level Priority Circuitry Truth Table

PROM Code for Priority Encoder

Address Assignment

Summary of DMA Techniques

Interval Timer Programming Chart

8KX8 Non-Volatile Memory System Power Requirements

Standby Mode Current Allocation

Battery Characteristics

MPU Family Interface Chart

CHAPTER 5

5-4.4-1

5-4.4-2

5-4.4-3

5-4.5-5

5-4.5-6

5-4.5-7

5-4.6.4-1

5-4.7.4-1

5-4.8-3

5-4.C-2

5-4.C-3

5-4.C-4

5-4.C-5

5-4.C-6

5-4.C-7

'FUDELT' RAM Location

'FVABOR' RAM Location

'FVSTAT' RAM Location

Seek/Restore Preparation Routine

Interrupt Driven Seek/Restore Routine

Seek Examples

Floppy Disk Read Routine

Floppy Disk Write Data Routine

UPC Search Routine

Physical Characteristics, Cal Comp 140

Power Requirements, Cal Comp 140

Operating Environment, Cal Comp 140

Specifications, Cal Comp 140

140'Disk Drive Output Signals, Cal Comp 140

Interface Logic Levels, Cal Comp 140

xix

LIST OF TABLES (Continued)

CHAPTER 6

6-4.2.1-1 Transaction Terminal Keyboard/Wand Entry

6-4.2.1-2 Transaction Terminal Keyboard Buffers

6-4.2.1-3 Transaction Terminal Keyboard Flags

CHAPTER 7

7-1-1

7-1.1-1

7-1.1-2

7-1.4-1

7-1.5.5-1

7-1.6-1

7-1.6-2

7-1.6-3

7-1.7-1

7-2.2.2-1

7-3-1

Alphabetic Listing of Instruction Mnemonics

Assembler Directives

ASCn Code

Assembler Error Messages

Typical Simulator Errors

HELP Error Messages

HELP Listing of Simulator and B VM Commands

HELP Messages

B VM Machine File and Output Memory Commands

MAID Control Commands

Evaluation Module Specifications

xx

CHAPTER 1

1. INTRODUCTION TO THE MC6800 MICROPROCESSOR

Motorola has elected to provide a microprocessor family of parts headed by the MC6800

Microprocessing Unit (MPU). The MC6800 MPU is an eight-bit parallel microprocessor with addressing

capability of up to 65,536 words. It is TTL compatible requiring only a single five-volt supply and no external

TTL devices for bus interface in small systems.

In support of the MPU are several memory and I/O interface devices. To date, the family consists of

a 128 X 8 RAM (MCM6810), a 1024 X 8 ROM (MCM6830), a parallel I/O interface (MC6820 PIA), and an

asynchronous serial I/O interface (MC6850 ACIA). In keeping with the family concept, each operates on a

single five-volt power supply and is compatible with the system bus signals. The family of parts is not a chip set

in the sense that the MPU operation is dependent upon other family elements; the MC6800 is a self-contained

microprocessor capable of operating with virtually any MOS or standard TTL device. The significant point is

that the other family members merely add additional capability and/or flexibility. They provide excellent tools

in configuring a full microprocessor operating system.

1-1 SYSTEM ORGANIZATION

Before describing the individual parts in any detail, an explanation of the MPU bus and control

structure will serve to demonstrate how a system is brought together. Figure 1-1-1 is organized to show the

processor's inputs and outputs in four functional categories; data, address, control, and supervisory.

The width and drive capability of the Data Bus has become a standard means of measuring

microprocessors. The MC6800 has an 8-bit bidirectional bus to facilitate data flow throughout the system. The

MPU Data Bus will drive up to 130 pf and one standard TTL load. As a result of the load characteristics of the

RAM, ROM, ACIA, and PIA, the MPU can drive from 7 to 10 family devices without buffering.

Using the family I/O interface devices allows the 16-bit Address Bus to assume additional

responsibility in the M6800 system. Not only does the Address Bus specify memory, but it becomes a tool to

specify I/O devices. By means of its connections to the Data Bus, Control Bus, and selected address lines, the

I/O interface is allocated an area of memory. As a result, the user may converse with I/O using any of the

memory reference instructions, selecting the desired peripheral with a memory address.

In addition to the Data and Address Bus, a Control Bus is provided for the memory and

interface devices. The Control Bus consists of a heterogeneous mix of signals to regulate system opera

tion. Following is a brief review of the designated Control Bus signals shown in Figure 1-1-1. ¢2 is one

phase of the system clock applied to the MPU. It is applied to the enable or chip select inputs of the

family parts to insure that the devices are enabled only when the address bus and VMA are stable. Reset

is used to reset and start the MPU from a power down condition. It is also routed to the Reset inputs

of the PIAs for use during power on initialization. Interrupt Request is generated by the PIA, ACIA, or

user defined hardware to notify the MPU of a request for service.

1-1

Read/Write (R/W) and Valid Memory Address (VMA) are MPU outputs characterizing the Data

Bus and Address Bus, respectively. R/W designates whether the MPU is in a Read or Write mode for each

cycle. VMA indicates to memory and I/O that the MPU is performing a read or write operation in a given cycle.

This signal is applied to the enable or chip select inputs of each family device in order to disable data transfer

when VMA is low.

The last set of signals in Figure 1-1-1, the MPU Supervisory, is used for timing and control of the

MC6800 itself. Note that three of the Supervisory signals are shared with the control bus and affect the memory

and I/O devices as well.

cp1 is one of the two clock phases to the MPU. Non-Maskable Interrupt (NMI) is similar to the

interrupt request input mentioned earlier, except that NMI will always be serviced regardless of the state of a

programmable interrupt mask contained within the processor. Data Bus Enable (DBE) is the three-state control

signal for the MPU data bus. Normally, this signal will be ¢2, derived from the clock. Three-State Control

(TSC) affects the address bus and the R/W line in the same manner that DBE controls the data bus. This signal

can be used, for example, to accomplish a direct memory access by putting the Address Bus and the R/W line in

the high impedance state. The last supervisory input is the Halt signal. When Halt is low, the MPU will stop

processing. In the Halt mode, all three-state signals will be in a high impedance state (address, data and R/W),

VMA will be low, and Bus Available will be high.

The Bus Available supervisory output from the MPU is normally in an inactive low state. It is

brought high by the occurrence of the Halt input low or by execution of a WAIT instruction. In either case, the

MPU stops program execution and sets Bus Available high, indicating that all the three-state buffers are in the

high impedance state. If the MPU has stopped as a result of the Hal t signal, Bus Available will remain high until

the Halt input is again taken high. If the MPU has stopped as a result of the WAIT instruction, it is waiting for an

interrupt and Bus Available will remain active until a non-maskable interrupt or interrupt request occurs. Bus

Available may be used to signal external hardware that the MPU is off the bus for multiprocessor or direct

memory access applications.

BUS AVAILABLE

HArT

THREE·STATE CONTROL

DATA BUS ENABLE

NON·MASKABLE INT.

RESET

</>1

</>2

+5 V GND

MC6800 16

VALID MEM.
ADDRESS

---------------.INT.REQ

~------------~-</>2

--------------. RESET

..
TO/FROM

6800 CONTROL
CIRCUITS

.. ..
TO/FROM

MEMORY AND
PERIPHERALS

FIGURE 1-1-1. MC6800 Bus and Control Signals

1-2

DATA
BUS

ADDRESS
BUS

CONTROL
BUS

1-1.1 M6800 FAMILY ELEMENTS

With the MC6800 as the focal point, a variety of memory and I/O devices may be tied onto the bus

network. The busses will provide TTL compatible voltage levels (VOH = 2.4 volts, VOL = 0.4 volts) while

dri ving capacitive loads up to 130 picofarads with current loads of up to 1.6 rna sink current and 100 /-La source

current.

1-1.1.1 Memory On The Bus

Memory is connected in a straightforward fashion by tieing directly to the MC6800 busses.

Motorola currently provides two byte oriented memory devices as part of the microprocessor family: The 128 X

8 RAM (MCM681 0) and the 1024 X 8 ROM (MCM6830). Block diagrams of the RAM and ROM are shown

in Figures 1-1.1.1-1 and 1-1.1.1-2, respectively. Notice that the data lines have three-state buffers permitting

the memory data signals to wire-OR directly onto the system data bus. Address decoding is minimized by

providing multiple enable (E) inputs. The enable inputs, when active, select the specified device as defined by

the address inputs. For a small to medium size system, no additional address decoding is necessary. The

memories operate from a single 5V power supply and are TTL compatible. Static operation eliminates the need

for clocks or refresh.

R/W_-----..t

E ----4.--"
E-----I
Ee__---l
E"e__---I

MEMORY
MATRIX
128 X 8

............

MEMORY CONTROL

(8) DATA BUS

FIGURE 1-1.1.1-1. MCM6810 RAM Functional Block Diagram

(I)

l-
~
a..
~

~
w
a:
0
0
<
~

E*"----,

E*..-----.

E* __ ---I

ADDRESS
DECODER

•
•
•
•
•
•
•
•

MEMORY
MATRIX

*DEFINED BY USER

THREE-STATE
OUTPUT
BUFFERS DATA BUS

FIGURE 1-1.1.1-2. MCM6830 ROM Functional Block Diagram

1-3

MPU

FIGURE 1-1.1.2-1. MPU Parallel I/O Interface

Control

(8)~} Peripheral
(8)~ Data

r=====~L _____ .t=~==~ Control

ADDRESS

FIGURE 1-1.1.2-2. MPU/PIA Interface

"A" CONTROL

"A" DATA
DIRECTION

DATA "A" DATA
REGISTER

ADDRESS

"8" CONTROL
CONTROL

"8" DATA
DIRECTION
"8" DATA
REGISTER

FIGURE 1-1.1.2-4. MPU Serial I/O Interface

MPU

DO
Dl

~----------------~~ D2
~----------------~~~ D3

D4
D5
D6
D7

CSO
CSl
CS2
RSO
RSl

E
Eill'L
IROA
IR08

DATA ADDRESS
CONTROL

RESET

CAl

CA2

PAO-PA7

C81
FIGURE 1-1.1.2-3. PIA Registers

C82

P80-P87

MPU

'L "- iI.

... TRANSMIT DATA -- -
~

RECEIVE DATA
"-- ACIA A ,....- r '" I/" .. I/O CONTROL

",I- ..,1.-

DATA CONTROL ,
ADDRESS

1-4

PIA

PERIPHERAL
OR MODEM

1-1.1.2 I/O On The Bus

The family VO devices are also tied directly to the bus network. In the M6800 architecture, VO is

configured to respond to MPU instructions in the same fashion as memory. This is accomplished by tapping off

the MPU busses such that VO has a "memory" address that the MPU references. Two devices available for

interfacing the microprocessor with the outside world are the MC6820, Peripheral Interface Adapter (PIA), for

parallel interface, and the MC6850, Asynchronous Communication Interface Adapter (ACIA), for serial

interface. Both are designed to tie directly to the MPU busses and transfer signals between peripherals and the

MPU under program control.

Interfacing the MPU to a variety of VO devices is straightforward with the Peripheral Interface

Adapter (PIA). It is a programmable general purpose parallel interface device designed to interface the MPU to

peripherals through two 8-bit bidirectional peripheral data busses and four control lines as shown in Figure

1-1.1.2-1.

The MPU/PIA interface consists of three elements: 8 data lines, 5 address lines, and 5 control lines

(see Figure 1-1.1.2-2). The data lines are bidirectional common to the MPU data bus. The PIA taps off 5 bits

from the 16-bit MPU address bus. These 5 inputs are ~tilized to select the PIA (CSO, CSl, CS2) as well as

registers within the PIA (RSO and RS 1).

The PIA uses all of the signals on the MPU Control Bus. The R!W input ties directly to the MPU

R!W output to control direction of data flow. The PIA has two independent Interrupt Request outputs that may

be wire-ORed together and tied to the IRQ line of the Control Bus or applied separately to prioritizing circuitry.

The Reset input may be tied directly to the MPU control bus to initialize the PIA to an all zero condition when

required. Finally, the Enable input is the timing signal to be supplied to the PIA. This input is typically the cf>2

clock.

The PIA is programmable in the sense that the MPU can Read and/or Write into its internal registers.

There are a total of six 8-bit registers in the PIA. They are separated into an A and B side, each side containing a

Control Register, Data Direction Register, and an Output Data Register (Figure 1-1. 1.2-3). To define operation

of the PIA control lines, an 8-bit word is loaded into the Control Register. Likewise, to define the

PINperipheral data lines to be inputs or outputs, an 8-bit word is loaded into the Data Direction Register.

Finally, data being transferred to peripherals may be saved in the PIA Output Data Register.

Motorola has also made available a serial interface device to accommodate asynchronous data

transfer. The MC6850 Asynchronous Communications Interface Adapter (ACIA) is a general purpose

programmable interface for use between the MPU and asynchronous I/O as shown in Figure 1-1.1.2-4. The

ACIA ties into the MPU Address, Data, and Control Busses enabling the MPU to handle the serial VO using

memory reference instructions.

1-5

The MPU/ACIA interface consists of three elements (see Figure 1-1.1.2-5): 8 data lines, 4 address

lines, and 3 control lines. The data lines are bidirectional common to the MPU data bus. Four of the sixteen

MPU address signals are used to select a particular ACIA (CSO, CS1, CS2), and to select registers within the

ACIA (RS).

The control signals from the bus are Read/Write (R/W) and Enable (E). The R/W input is common to

the MPU control bus R/W signal and the E input in a typical application is the cf>2 clock.

The internal structure of the ACIA is centered around four registers (Figure 1-1.1.2-6): Control,

Status, Transmit Data, and Receive Data. The ACIA is programmed by storing an 8-bit word into the write only

Control Register. This register controls the function of the receiver, transmitter, interrupt enables, and the

DATA

MPU

ADDRESS
CONTROL

CSO
CS1

R/W
IRQ
E

FIGURE 1-1.1.2-5. MPU/ACIA Interface

DATA I TRANSMIT DATA I
ADDRESS

RECEIVE DATA I
CONTROL

ACIA

TRANSMIT DATA

RECEIVE DATA

CLEAR-TO-SEND

CONTROL STATUS
DATA CARRIER DETECT

REQUEST-TO-SEND

FIGURE 1-1.1.2-6. ACIA Registers

1-6

modem control signals. ACIA status and error conditions are monitored by reading the 8-bit Satus Register.

The ACIA also has independent transmit and receive data buffers to save data and perform serial/parallel

transformation.

1-1.2 TYPICAL SYSTEM CONFIGURATION

With the preceding material as background, the family devices and bus structure can be combined in

a system configuration. Figure 1-1.2-1 shows a system controlled by the MC6800 containing one each RAM,

ROM, PIA, and ACIA. With the exception of suitable peripherals, this block diagram represents all of the

hardware required for a fully operational MPU system. The family of parts represents 5 devices, clock circuitry

can be designed with 2 devices, and start-up can be accomplished with one device l . Therefore, a functional

system can be configured with as few as eight devices and have both parallel and serial I/O capability.

The configuration of Figure 1-1.2-1 represents typical interconnections regardless of the size of the

system. The data bus is shared fully between all devices in the system. The control bus is shared by all devices,

with each tapping off signals as required. The I/O devices wire-OR all interrupt request signals to the MPU IRQ

input. The PIA has two interrupts and the ACIA, one. VMA and cp2 are both required inputs to the family

devices and are, therefore, applied to the inputs as shown in Figure 1-1.2-1. </>2 guarantees that all busses are

stable and VMA designates a valid memory cycle whenever a memory or I/O device is enabled.

1-1.2.1 Memory Allocation

The Address Bus lends itself to very flexible memory allocation. Different combinations of signals

may be tapped off the Address Bus to define where in "memory" each device is located. The chip select signals
(CSO, CS 1, CS2) of the PIA/ ACIA and the enable inputs of the RAM/ROM are used to select specific

devices. In Figure 1-1.2-1, for example, A2, A 14, and A 15, are used to enable the PIA for MPU data

transfer. The least significant address bits (AD, AI) are then utilized to select a memory word or I/O

register within the selected device. Therefore, a given address will specify the device, and a location

within the device.
Table 1-1.2.1-1 shows the "memory map" of the example system. This map represents the area in

memory where each device is located, including I/O. For example, address bits A14 and A15 are both tied to

the E inputs of the RAM. Therefore, whenever both of these address signals are low, the RAM will be

conversing with the MPU on the data bus. It should be noted that without address decoding, the devices will be

allocated a block of memory because the "don't care" address bits may be either logical "0" or" 1", thereby

widening the devices apparent address band. Having defined the memory map, the user may then determine the

address of registers in a specific I/O device. Table 1-1.2.1-2 shows the corresponding register addresses for

each ACIA and PIA register. Notice that bit 2 of the control registers (CRAb2 and CRBb2) and R!W areused to

assist the address signals to select PIA and ACIA registers, respectively.

1-1.2.2 Hardware Requirements

The final point to consider is that the example configuration represents a minimum system. To

expand the system, the user need only make further use of the bus network. If, for example, an additional PIA is

required, A4, A14, and A15 may be tied to CSO, CS1, and CS2, respectively. This procedure could be

continued to add multiple memory and I/O devices without address decoding.

lSee Chapter 4 for typical clock and start-up circuits.

1-7

START·
UP

CLOCK

VMA

1/>2

1/>1

VMA.1/>2

MPU

AO-A9 DBO-DB7

ROM
-....;..;...;..;......--1 E
-~~---LE~ ______________ ~

AO-AS DBO-DB7

E RAM

E
E
E

RSO
RS1 DBO-DB7

CSO
PIA

CS1
CS2

~'---y----J
PARALLEL I/O (DATA AND CONTROL)

__ ...;A..;,;O;...,-t RS

DBO-DB7

ACIA

IRQ

SERIAL I/O (DATA AND CONTROL)

FIGURE 1-1.2-1. MPU Minimum System

1-8

The MC6800 microprocessor complemented by its family of parts was designed with ease of use in

mind. Interfacing peripherals to the microprocessor with PIAs and ACIAs eases the burden of hardware design

and minimizes software requirements by distributing intelligence to these interfaces. Power supply

requirements are uncomplicated: one five-volt supply throughout the family. Neither decode nor buffering

circuitry is required in systems containing less than 7 to 10 family devices. As the system grows, the design may

require buffers to prevent overloading or address decoders to more precisely define memory blocks. Be that as

it may, the rules don't change and bussing continues to be straightforward.

ADDRESS DEVICE MEMORY MAP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 X X X X X X X RAM 0000-007F HEX

1 1 X X X X X X X X X X ROM COoo-C3FF HEX

0 1 1 X X PIA 4004-4007 HEX

0 1 1 X ACIA 4008-4009 HEX

X = Variable address o = Logical zero

. = Don't care 1 = Logical one

TABLE 1-1.2.1-1

ADDRESS(HEX) I/O REGISTER

(4004-4007) RSI RSO (PIA)

4004 0 0 Data direction register A (CRAb2 =0)

4004 0 0 Peripheral interface register A (CRAb2 = 1)

4005 0 1 Control register A

4006 1 0 Data direction register B (CRBb2 = 0)

4006 1 0 Peripheral interface register B (CRBb2 = 1)

4007 1 1 Control register B

(4008-4009) RS (ACIA)

4008 0 Control register (write only)

4008 0 Status register (read only)

4009 1 Transmit data register (write only)

4009 1 Receiver data register (read only)

TABLE 1-1.2~1-2

1-9

1-2 SOURCE STATEMENTS AND ADDRESSING MODES

A hardware configuration similar to that described in the preceding Section provides the nucleus for

a system based on the M6800 Microprocessor Family. Three additional elements are required to complete a

typical system design: (1) the actual peripheral equipment that is dictated by the system specification; (2) any

auxiliary electronics required to control the peripherals; (3) the' 'intelligence" that enables the MPU to perform

the required control and data processing functions.

In an MPU based design, "intelligence" refers to the control program, a sequence of instructions

that will guide the MPU through the various operations it must perform. During development, the designer uses

the MC6800's predefined instruction set to prepare a control program that will satisfy the system requirements.

The program, usually called "software" at this point, is then stored in ROM memory that can be accessed by

the MPU during operation, thus becoming the system's intelligence. Once in ROM, the program is often called

"firmware", however, it is common to find the terms software and firmware used interchangeably in this

context.

Definition of suitable peripheral interfaces is discussed in detail in Chapter 5. The remainder of this

Chapter provides the background information necessary for generation of the control program. Source

statement format and the MPU's addressing modes are introduced in this section. The instruction set is

described in Section 1-3.

The MPU operates on 8-bit binary numbers presented to it via the Data Bus. A given number (byte)

may represent either data or an instruction to be executed, depending on where it is encountered in the control

program. The M6800 has 72 unique instructions, however, it recognizes and takes action on 197 of the 256

possibilities that can occur using an 8-bit word length. This larger number of instructions results from the fact

that many of the executive instructions have more than one addressing mode.

These addressing modes refer to the manner in which the program causes the MPU to obtain its

instructions and data. The programmer must have a method for addressing the MPU's internal registers and all

of the external memory locations. The complete executive instruction set and the applicable addressing modes

are summarized in Figure 1-3-1, however, the addressing modes will be described in greater detail prior to

introducing the instruction set later in this chapter. A programming model of the MC6800 is shown in Figure

1-2-1. The programmable registers consist of: two 8-bit Accumulators; a 6-bit Condition Code Register; a

Program Counter, a Stack Pointer, and an Index Register, each 16 bits long.

7 0

ACCA ACCUMULATOR A

7 0

ACCB ACCUMULATOR B

15 0

IX INDEX REGISTER

15 0

PC PROGRAM COUNTER

15 0

SP STACK POINTER

5 0

IHlllNlzlvlcl CONDITION CODES REGISTER

FIGURE 1-2-1. Programming Model of MC6800

1-10

1-2.1 SOURCE STATEMENTS

While programs can be written in the MPU's language, that is, binary numbers, there is no easy way

for the programmer to remember the particular word that corresponds to a given operation. For this reason,

instructions are assigned a three letter mnemonic symbol that suggests the definition of the instruction. The

program is written as a series of source statements using this symbolic language and then translated into

machine language. The translation can be done manually using an alphabetic listing of the symbolic instruction

set such as that shown in Appendix AI. More often, the translation is accomplished by means of a special

computer program referred to as a cross-assembler. The cross-assembler and other "software" design aids

available to the user are described in Chapter 7.

During assembly, each source statement or executive instruction is converted to from one to three

bytes of operating code (opcode), depending on the addressing mode used. The term" executive instruction" is

used here to distinguish between statements that generate machine code and "assembly directives" that are

useful in controlling and documenting the source program but generate no code. The Assembly Directives are

described in Section 7-1. 1.

Each statement in the source program prepared by the user may have from one to four fields: a label,

a mnemonic operator (instruction), an operand, and a comment. The four fields are illustrated in the following

typical source statement:

Label

BEGIN 1

Operator

TST

Operand

DATA1B

Comment

TEST CONTENTS OF DATA1B

(This instruction causes the MPU to test the contents of the memory location labeled DATA1B and set the

Condition Code Register bits accordingly.)

Each source statement must have at least the mnemonic operator field. An operand mayor may not

be required, depending on the nature of the instruction. The comment field is optional, at the programmer's

convenience, for describing and documenting the program.

1-2.2 LABELS

Labels and their use are described in greater detail in Chapter 7. In general, they may correspond to

either a numerical value or a memory location. This use of symbolic references to memory permits

programming without using specific numerical memory addresses. For instance, the operand label "DM1B"

in the example may be anywhere in memory. Labels are required for source statements that are the destination

of jump and branch instructions. In the example, "BEGIN1" identifies the statement as the destination of a

branch or jump instruction located elsewhere in the control program. That instruction will, in turn, have

"BEGIN1" as its operand.

Labels may be up to six characters long and use any alphanumeric combination of the character set

shown in Appendix A2 with the restriction that the first character be alphabetic. Three single character labels,

A, B, and X, are reserved for referring to accumulator A, accumulator B , and the Index Register, respectively.

1-11

1-2.3 ADDRESSING MODES

1-2.3.1 Inherent (Includes "Accumulator Addressing" Mode)

The successive fields in a statement are normally separated by one or more spaces. An exception to

this rule occurs for instructions that use dual addressing in the operand field and for instructions that must

distinguish between the two accumulators. In these cases, A and B are "operands" but the space between them

and the operator may be omitted. This is commonly done, resulting in apparent four character mnemonics for

those instructions.

The addition instruction, ADD, provides an example of dual addressing in the operand field:

Operator

ADDA

or ADDB

Operand

MEM12

MEM12

Comment

ADD CONTENTS OF MEM12 TO ACCA

ADDCONTENTSOFMEM12TOACCB

The example used earlier for the test instruction, TST, also applies to the accumulators and uses the

"accumulator addressing mode" to designate which of the two accumulators is being tested:

or

Operator

TSTB

TSTA

Comment

TEST CONTENTS OF ACCB

TEST CONTENTS OF ACCA

A number of the instructions either alone or together with an accumulator operand contain all of the

address information that is required, that is, the address is "inherent" in the instruction itself. For instance, the

instruction ABA causes the MPU to add the contents of accumulators A and B together and place the result in

accumulator A. The instruction INCB, another example of "accumulator addressing" , causes the contents of

accumulator B to be increased by one. Similarly, INX, increment the Index Register, causes the contents of the

Index Register to be increased by one.

Program flow for instructions of this type is illustrated in Figures 1-2.3.1-1 and 1-2.3.1-2. In these

figures, the general case is shown on the left and a specific example is shown on the right. Numerical examples

are in decimal notation. Instructions of this type require only one byte of opcode.
MPU MPU

INDEX

1199_2001

RAM RAM

PC PC = 5000
............ ----/

GENERAL FLOW EXAMPLE

FIGURE 1-2.3.1-1. Inherent Addressing

1-12

PC

MPU

RAM

PROGRAM
MEMORY

t-----t

GENERAL FLOW

MPU

ACCB

115_161

RAM

PC = 5001 _---1

EXAMPLE

FIGURE 1-2.3.1-2. Accumulator Addressing

MPU

PC t-----f

GENERAL FLOW

MPU

ACCA

25

RAM

PROGRAM
MEMORY

EXAMPLE

FIGURE 1-2.3.2-1. Immediate Addressing Mode

1-2.3.2 Immediate Addressing Mode

MPU

ADDR t----.....

PC

PC + 1

PROGRAM
MEMORY

1----....

1-----4

ADDR = 0 ~255

GENERAL FLOW

MPU

ADDR = 100 t----..;.--i

PC = 5004

5005

PROGRAM
MEMORY

t----.....

1-----1

EXAMPLE

FIGURE 1-2.3.3-1. Direct Addressing Mode

In the Immediate addressing mode, the operand is the value that is tobe operated on. For instance,

the instruction

Operator

LDAA

Operand

#25

Comment

LOAD 25 INTO ACCA

causes the MPU to "immediately load accumulator A with the value 25; no further address reference is

required. The Immediate mode is selected by preceding the operand value with the" #" symbol. Program flow

for this addressing mode is illustrated in Figure 1-2.3.2-1.

The operand format allows either properly defined symbols or numerical values. Except for the instructions

CPX, LDX, and LDS, the operand may be any value in the range 0 to 255. Since Compare Index Register

(CPX) , Load Index Register (LDX) , and Load Stack Pointer (LDS), require 16-bitvalues, the immediate mode

for these three instructions require two-byte operands. In the Immediate addressing mode, the" address" of the

operand is effectively the memory location immediately following the instruction itself.

1-2.3.3 Direct and Extended Addressing Modes

In the Direct and Extended modes of addressing, the operand field of the source statement is the

address of the value that is to be operated on. The Direct and Extended modes differ only in the range of

memory locations to which they can direct the MPU. Direct addressing generates a single 8-bit operand and,

hence, can address only memory locations 0 through 255; a two byte operand is generated for Extended

addressing, enabling the MPU to reach the remaining memory locations, 256 through 65535. An example of

Direct addressing and its effect on program flow is illustrated in Figure 1-2.3.3-1.

The MPU, after encountering the opcode for the instruction LDAA (Direct) at memory location

5004 (Program Counter = 5094), looks in the next location, 5005, for the address of the operand. It then sets

1-13

the program counter equal to the value found there (100 in the example) and fetches the operand, in this case a

value to be loaded into accumulator A, from that location. For instructions requiring a two-byte operand such as

LDX (load the Index Register), the operand bytes would be retrieved from locations 100 and 101.

Extended addressing, Figure 1-2.3.3-2, is similar except that a two-byte address is obtained from

locations 5007 and 5008 after the LDAB (Extended) opcode shows up in location 5006. Extended addressing

can be thought of as the "standard" addressing mode, that is, it is a method of reaching anyplace in memory.

Direct addressing, since only one address byte is required, provides a faster method of processing data and

generates fewer bytes of control code. In most applications, the direct addressing range, memory locations

0-255, are reserved for RAM. They are used for data buffering and temporary storage of system variables, the

area in which faster addressing is of most value.

MPU

PC
~---I

ADDR;;;' 256

GENERAL FLOW

MPU

ADDR = 3001---:';;'_-1'

PC = 5006

5009

PROGRAM
MEMORY

EXAMPLE

FiGURE 1-2.3-3-2. Extended Addressing Mode

1-2.3.4 Relative Addressing Mode

In both the Direct and Extended modes, the address obtained by the MPU is an absolute numerical

address. The Relative addressing mode, implemented for the MPU's branch instructions, specifies a memory

location relative to the Program Counter's current location. Branch instructions generate two bytes of machine

code, one for the instruction opcode and one for the "relative" address (see Figure 1-2.3.4-1). Since it is

desirable to be able to branch in either direction, the 8-bit address byte is interpreted as a signed 7 -bit value; the

8th bit of the operand is treated as a sign bit, "0" = plus and" 1" = minus. The remaining seven bits represent

the numerical value. This results in a relative addressing range of ± 127 with respect to the location of the

branch instruction itself. However, the branch range is computed with respect to the next instruction that would

be executed if the branch conditions are not satisfied. Since two bytes are generated, the next instruction is

located at PC + 2. If D is defined as the address of the branch destination, the range is then:

(PC + 2) - 127 =:::; D =:::; (PC + 2) + 127

or PC - 125 =:::; D =:::; PC + 129

that is, the destination of the branch instruction must be within -125 to + 129 memory locations of the branch

instruction itself. For transferring control beyond this range, the unconditional jump (JMP) ,jump to subroutine

(JSR), and return from subroutine (RTS) are used.

1-14

In Figure 1-2.3.4-1, when the MPU encounters the opcode for BEQ (Branch if result of last

instruction was zero), it tests the Zero bit in the Condition Code Register. If that bit is "0", indicating a

non-zero result, the MPU continues execution with the next instruction (in location 5010 in Figure 1-2.3.4-1).

If the previous result was zero, the branch condition is satisfied and the MPU adds the offset, 15 in this case, to

PC + 2 and branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficiently direct the MPU to one point or another

in the control program depending on the outcome of test results. Since the control program is normally in

read-only memory and cannot be changed, the relative address used in execution of branch instructions is a

constant numerical value.

MPU MPU

RAM RAM

Program Program
Memory Memory

PC

PC 5008

(PC + 2) Next Instr.

PC 5010 Next Instr.

(PC + 2) + (Offset) PC 5025 Next Instr.
1--------1

FIGURE 1-2.3.4-1. Relative Addressing Mode

1-15

1-2.3.5 Indexed Addressing Mode

With Indexed addressing, the numerical address is variable and depends on the current contents of

the Index Register. A source statement such as

Operator

STAA

Operand

X

Comment

PUT A IN INDEXED LOCATION

causes the MPU to store the contents of accumulator A in the memory location specified by the contents of the

Index Register (recall that the label "X" is reserved to designate the Index Register). Since there are

instructions for manipulating X during program execution (LDX, INX, DEX, etc.), the Indexed addressing

mode provides a dynamic "on the fly" way to modify program activity.

The operand field can also contain a numerical value that will be automatically added to X during

execution. This format is illustrated in Figure 1-2.3.5-1.

When the MPU encounters the LDAB (Indexed) opcode in location 5006, it looks in the next

memory location for the value to be added to X (5 in the example) and calculates the required address by adding

5 to the present Index Register value of 400. In the operand format, the offset may be represented by a

label or a numerical value in the range 0-255 as in the example. In the earlier example, STAA X, the operand is

equivalent to O,X, that is, the 0 may be omitted when the desired address is equal to X.

1-2.3.6 Mode Selection

Selection of the desired addressing mode is made by the user as the source statements are written.

Translation into appropriate opcode then depends on the method used. If manual translation is used, the

addressing mode is inherent in the opcode. For example, the Immediate, Direct, Indexed, and Extended modes

may all be used with the ADD instruction. The proper mode is determined by selecting (hexidecimal notation)

8B, 9B, AB, or BB, respectively (see Figure 1-3-1).

The source statement format includes adequate information for the selection if an assembler

program is used to generate the opcode. For instance, the Immediate mode is selected by the Assembler

whenever it encounters the "#" symbol in the operand field. Similarly, an "X" in the operand field causes the

Indexed mode to be selected. Only the Relative mode applies to the branch instructions, therefore, the

mnemonic instruction itself is enough for the Assembler to determine addressing mode.
MPU

ADDR = INDX I-----I~
+ OFFSET t--....o...;.;.~

PROGRAM
MEMORY

PC
1-----1

OFFSET';;; 255
GENERAL FLOW

ADDR = 405

PC = 5006

MPU

ACCS
nn
Tr\Jl5'E"X
U2[]

1--""";';'--1"'"

PROGRAM
MEMORY

t-----I

EXAMPLE

FIGURE 1-2.3.5-1. Indexed Addressing Mode

1-16

For the instructions that use both Direct and Extended modes, the Assembler selects the Direct mode

if the operand value is in the range 0-255 and Extended otherwise. There are a number of instructions for which

the Extended mode is valid but the Direct is not. For these instructions, the Assembler automatically selects the

Extended mode even if the operand is in the 0-255 range. The addressing modes are summarized in Figure

1-2.3.6-1.

Direct:

Example: SUBB Z
Addr. Range = 0-255

&

(K = One-Byte Oprnd)

(K = Two-Byte Oprnd)

n DO Instruction

n + 1 Z = Oprnd Address

n+2 Next Instr.

•
•
•

Z K = Operand

OR

Z KH = Operand

Z + 1 KL = Operand

& If Z ~>""'255, Assembler Select Direct Mode
If Z 255, Extended Mode is selected

Extended:

Example: CMPA Z

Addr. Range:

& 256-65535

(K = One-Byte Oprnd)

(K = Two-Byte Oprnd)

n

n + 1

n+2

n+3

Z

Z

Z + 1

FO Instruction

ZH = Oprnd Address

ZL = Oprnd Address

Next Instr.

•
•
•

K = Operand

OR

KH = Operand

KL = Operand

Immediate: n

Example: LOAA #K n + 1
(K = One-Byte Oprnd)

n+2

(K = Two-Byte Oprnd) n
(CPX, LOX, and LOS)

n + 1

n+2

n+3

Relative: n

Example: BNE K n + 1

(K = Signed 7-Bit Value) n + 2

Addr. Range:
-125 to +129
Relative to n.

(n + 2) ±K

Instruction

K = Operand

Next Inst.

OR

Instruction

KH = Operand

KL = Operand

Next Instr.

Instruction

±K = Brnch Offset

Next Instr. &

•
•
•

Next Instr. &

& If Brnch Tst False, & If Brnch Tst True.

Indexed: n Instruction

Example: AODA Z, X n + 1 Z = Offset

Addr. Range: n+2 Next Instr.
0-255 Relative to
I ndex Register, X •

•
•

(Z = 8-Bit Unsigned X+Z K = Operand
Value)

FIGURE 1-2.3.6-1. Addressing Mode Summary

1-17

ADDRESSING MODES COND CODE REG
BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND IN HER (All register I,bels 5 4 3 2 1 0

OPERATIONS MNEMONIC OP - # OP - # OP ""' # OP - # OP ""' # refer to contents) H I N Z V C

Add AOOA 8B 2 2 9B 3 2 AB 5 2 BB 4 3 A + M->A t • t t t t
AOOB CB 2 2 DB 3 2 EB 5 2 FB 4 3 B+M->B t • t t t t

Add Acmltrs ABA lB 2 1 A+B->A t • t t t t
Add with Carry AOCA 89 2 2 99 3 2 A9 5 2 B9 4 3 A+M+C->A t • t t t t

AOCB C9 2 2 09 3 2 E9 5 2 F9 4 3 B+M+C->B t • t t t t
And ANOA 84 2 2 94 3 2 A4 5 2 B4 4 3 A.M->A • • ~ t R •

ANDB C4 2 2 04 3 2 E4 5 2 F4 4 3 B·M->B • • t t R •
Bit Test BITA 85 2 2 95 3 2 A5 5 2 B5 4 3 A·M • • t t R •

BITB C5 2 2 05 3 2 E5 5 2 F5 4 3 B.M • • t t R •
Clear CLR 6F 7 2 7F 6 3 00 ->M • • R S R R

CLRA 4F 2 1 00 ->A • • R S R R

CLRB 5F 2 1 00 ->B • • R S R R
Compare CMPA 81 2 2 91 3 2 Al 5 2 Bl 4 3 A-M • • t t t t

CMPB Cl 2 2 01 3 2 El 5 2 Fl 4 3 B-M • • t t t t
Compare Acmltrs CBA 11 2 1 A-B • • t t t t
Complement, l's COM 63 7 2 73 6 3 M->M • • t t R S

COMA 43 2 1 A->A • • t t R S
COMB 53 2 1 B->B • • t t R S

Complement, 2's NEG 60 7 2 70 6 3 00 -M->M • • t teD ®
(Negate) NEGA 40 2 1 00 - A->A • • t teD ®

NEGB 50 2 1 00 - B->B • • t teD ®
Decimal Adjust, A DAA 19 2 1 Converts Binary Add. of BCD Characters • • t t t@

into BCD Format
Decrement DEC 6A 7 2 7A 6 3 M -l->M • • t t @.

UI:CA 4A 2 i A - i ->A ... t · 0· +

DECB 5A 2 1 B-1->B • • t t @.
Exclusive OR EORA 88 2 2 98 3 2 A8 5 2 B8 4 3 AEIlM->A • • t t R •

EORB C8 2 2 08 3 2 E8 5 2 F8 4 3 BEIlM->B • • t t R •
Increment INC 6C 7 2 7C 6 3 M+l->M • • t t ® •

INCA 4C 2 1 A+1->A • • t t ® •
INCB 5C 2 1 B +l->B • • t t ® •

Load Acmltr LDAA 86 2 2 96 3 2 A6 5 2 B6 4 3 M ->A • • t t R •
LDAB C6 2 2 06 3 2 E6 5 2 F6 4 3 M ->B • • t t R •

Dr, I nelusive ORAA 8A 2 2 9A 3 2 AA 5 2 BA 4 3 A+M->A • • t t R •
ORAB CA 2 2 DA 3 2 EA 5 2 FA 4 3 B+M ->B • • t t R •

Push Data PSHA 36 4 1 A -> MSp, SP-l ->SP • • • • • •
PSHB 37 4 1 B ->MSp, SP-1->SP • • • • • •

Pull Data PULA 32 4 1 SP + 1 ->SP, MSp -> A • • • • • •
PULB 33 4 1 SP + 1 ->SP, MSp -> B • • • • • •

Rotate Left ROL 69 7 2 79 6 3

:1 CO IIIIIIIII~
• • t t® t

ROLA 49 2 1 <- • • t t® t c b 7 <- bo
ROLB 59 2 1 • • t t ® t

Rotate Right ROR 66 7 2 76 6 3

~l Co
• • t t ® t

RORA 46 2 1 -+ IIII(III~ • • t t® t
RORB B I c b7 -> bo t t® t 56 2 1 • •

Shift Left, Arithmetic ASL 68 7 2 78 6 3

:1
<- • • t t® t

ASLA 48 2 1 0 <- I I I I I I I I 1<- 0 • • t t@ t c b] bo
ASLB 58 2 1 • • t t@ t

Shift Right, Arithmetic ASR 67 7 2 77 6 3
MJ ~ • • t t@ t

ASRA 47 2 1 A 0 1 I III I I I -> 0 • • t t@ t
ASRB 2 1

b7 bo c
t t@ t 57 B • •

Shift Right, Logic. LSR 64 7 2 74 6 3

:} -> • • R t@ t
LSRA 44 2 1 0->111111111 -> 0 • • R t@ t

b7 bo c
t@ LSRB 54 2 1 • • R t

Store Acmltr. STAA 97 4 2 A7 6 2 B7 5 3 A->M • • t t R •
STAB 07 4 2 E7 6 2 F7 5 3 B->M • • t t R •

Subtract SUBA 80 2 2 90 3 2 AO 5 2 BO 4 3 A-M->A • • t t t t
SUBB CO 2 2 00 3 2 EO 5 2 FO 4 3 B-M->B • • t t t t

Subract Acmltrs. SBA 10 2 1 A-B->A • • t t t t
Subtr. with Carry SBCA 82 2 2 92 3 2 A2 5 2 B2 4 3 A-M-C->A • • t t t t

SBCB C2 2 2 02 3 2 E2 5 2 F2 4 3 B-M-C->B • • t t t t
Transfer Acmltrs TAB 16 2 1 A->B • • t t R •

TBA 17 2 1 B->A • • t t R •
Test, Zero or Minus TST 60 7 2 70 6 3 M - 00 • • t t R R

TSTA 40 2 1 A-OO • • t t R R

, TSTB 50 2 1 B -00 • • t t R R

FIGURE 1-3-1 MC6800 Instruction Set

1-18

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTNO INHER 5 4 3 2 1 0

POINTER OPERATIONS MNEMONIC OP - # OP - # OP - # OP - # OP - # BOOLEAN/ARITHMETIC OPERATION H I N Z V C

Compare I ndex Reg CPX BC 3 3 9C 4 2 AC 6 2 BC 5 3 (XH/XL) - (M/M + 1) • • 0 t @.
Decrement Index Reg DEX 09 4 1 X-l-+X • • • t • •
Decrement Stack Pntr DES 34 4 1 SP -1 -+SP • • • • • •
Increment Index Reg INX 08 4 1 X+l-+X • • • t • •
Increment Stack Pntr INS 31 4 1 SP + 1 -+SP • • • • • •
Load I ndex Reg LOX CE 3 3 DE 4 2 EE 6 2 FE 5 3 M -+XH' (M + 1) -+XL • • ®t R •
Load Stack Pntr LOS 8E 3 3 9E 4 2 AE 6 2 BE 5 3 M -+SPH, (M+ 1) -+SPL • • ®t R •
Store I ndex Reg STX OF 5 2 EF 7 2 FF 6 3 XH -+M, XL -+(M + 1) • • ®t R •
Store Stack Pntr STS 9F 5 2 AF 7 2 BF 6 3 SPH -+M, SPL -+(M + 1) • • ®t R •
Indx Reg -+Stack Pntr TXS 35 4 1 X-l-+SP • • • • • •
Stack Pntr -+ Indx Reg TSX 30 4 1 SP + 1 -+ X • • • • • •
JUMP AND BRANCH RELATIVE INDEX EXTND INHER 5 4 3 2 1 0

OPERATIONS MNEMONIC OP - it OP - it OP - # OP - # BRANCH TEST H I N Z V C

Branch Always BRA 20 4 2 None • • • • • •
Branch If Carry Clear BCC 24 4 2 C=O • • • • • •
Branch If Carry Set BCS 25 4 2 C = 1 • • • • • •
Branch If = Zero BEQ 27 4 2 Z = 1 • • • • • •
Branch If ;;. Zero BGE 2C 4 2 N $V = 0 • • • • • •
Branch If > Zero BGT 2E 4 2 Z+ (N $V) = 0 • • • • • •
Branch If Higher BHI 22 4 2 C + Z = 0 • • • • • •
Branch If .;;; Zero BLE 2F 4 2 Z+(N$V)=l • • • • • •
Branch If Lower Or Same BLS 23 4 2 C + Z = 1 • • • • • •
Branch If < Zero BLT 20 4 2 N $V = 1 • • • • •. •
Branch If Minus BMI 2B 4 2 N = 1 • • • • • •
Branch If Not Equal Zero BNE 26 4 2 Z=O • • • • • •
Branch If Overflow Clear BVC 28 4 2 V = 0 • • • • • •
Branch If Overflow Set BVS 29 4 2 V = 1 • • • • • •
Branch If Plus BPL 2A 4 2 N=O • • • • • •
Branch To Subroutine BSR 80 8 2

} S .. S"';', 0 .. ,,01,",
• • • • • •

Jump JMP 6E 4 2 7E 3 3 • • • • • •
Jump To Subroutine JSR AD 8 2 BD 9 3 • • • • • •
No Operation NOP 01 2 1 Advances Prog. Cntr. Only • • • • • •
Return From Interrupt RTI 3B 10 1 --@--
Return From Subroutine RTS 39 5 1

} S ... ,,,,,1 0,,,,,;,", TJTIT Software Interrupt SWI 3F 12 1 • S ••••

Wait for Interrupt WAI 3E 9 1 • @ ••••

CONDITIONS CODE REGISTER INHER 5 4 3 2 1 0 CONDITION CODE REGISTER NOTES: BOOLEAN
OPERATIONS MNEMONIC OP - ::;: OPERATION H I N Z V C (Bit set if test is true and cleared otherwise)

Clear Carry CLC OC 2 1 O->C • • • • • R 0 (Bit V) Test: Result = 10000000?

Clear Interrupt Mask CLI OE 2 1 0-+1 • R • • • • @ (Bit C) Test: Result = OOOOOOOO?

Clear Overflow CLV OA 2 1 O->V • • • • R • @ (Bit C) Test: Decimal value of most significant BCD Character greater than nine?

Set Carry SEC 00 2 1 l->C • • • • • S
(Not cleared if previously set.)

Set Interrupt Mask SEI OF 2 1 1 -> I • S • • • • @ (Bit V) Test: Operand = 10000000 prior to execution?

Set Overflow SEV OB 2 1 l->V • • • • S • ® (Bit V) Test: Operand = 01111111 prior to execution?

Acmltr A -->CCR TAP 06 2 1 A -> CCR ---@-- ® (Bit V) Test: Set equal to result of N $ C after shift has occurred.

CC R -> Acmltr A TPA 07 2 1 CCR -> A ·1·I·r·'·I· 0) (Bit N) Test: Sign bit of most significant (MS) byte of result = I?

8 Bit V Test: 2's com lement overflow from subtraction of LS b tes? ®
® (Bit N) Test: Result less than zero? (Bit 15 = 1)

LEGEND: 00 Byte = Zero; ® (All) Load Condition Code Register from Stack. (See Special Operations)

OP Operation Code (Hexadecimal); H Half-carry from bit 3;

Number of MPU Cycles; I Interrupt mask

+F Number of Program Bytes; N Negative (sign bit)

<i3l (Bit Il Set when interrupt occurs. If previously set, a Non-Maskable I nterrupt is
required to exit the wait state.

@ (All) Set according to the contents of Accumulator A.

+ Arithmetic Plus; Z Zero (byte)

Arithmetic Minus; V Overflow, 2's complement

Boolean AND; C Carry from bit 7

MSp Contents of memory location R Reset Always
pointed to be Stack Pointer; S Set Always.

+ Boolean Inclusive OR; t Test and set if true, cleared otherwise
$ Boolean Exclusive 0 R; • Not Affected

M Complement of M; CCR Condition Code Register

Transfer Into; LS Least Significant

Bit = Zero; MS Most Significant

FIGURE 1-3-1 (continued)

1-19

1-3 INSTRUCTION SET

The MC6800 instructions are described in detail in the M6800 Programming Manual. This Section

will provide a brief introduction and discuss their use in developing MC6800 control programs.

The instruction set is shown in summary form in Figure 1-3-1. Microprocessor instructions are often

divided into three general classifications: (1) memory reference, so called because they operate on specific

memory locations; (2) operating instructions that function without needing a memory reference; (3) I/O

instructions for transferring data between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same operation on both its internal accumulators and

the external memory locations. In addition, the M6800 interfaces adapters (PIA and ACIA) allow the MPU to

treat peripheral devices exactly like other memory locations, hence, no I/O instructions as such are required.

Because of these features, other classifications are more suitable for introducing the MC6800's instruction set:

(1) Accumulator and memory operations; (2) Program control operations; (3) Condition Code Register

operations.

1-3.1 CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR), also called the Program Status Byte, will be described first

since it is affected by many of the other instructions as well as the specific operations shown in Figure 1-3.1-2.

The CCR is a 6-bit register within the MPU that is useful in controlling program flow during system operation.

The bits are defined in Figure 1-3.1-1.

The instructions shown in Figure 1-3.1-2 are available to the user for direct manipulation of the

CCR. In addition, the MPU automatically sets or clears the appropriate status bits as many of the other

instructions are executed. The effect of those instructions on the condition code register will be indicated as

they are introduced and is also included in the Instruction Set Summary of Figure 1-3-1.

b5 b4 b3 b2 b1 bO

IHlllNlzlvlcl

H = Half-carry; set whenever a carry from b3 to b4 of the result is generated

by ADD, ABA, ADC; cleared if no b3 to b4 carry; not affected by other
instructions.

Interrupt Mask; set by hardware or software interrupt or SEI instruction;
cleared by Cli instruction. (Normally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if 1m stored on the
stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result = 0; cleared otherwise.

v = Overlow; set if there was arithmetic overflow as a result of the operation;
cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b7) of the
result; cleared otherwise.

FIGURE 1-3.1-1. Condition Code Register Bit Definition

1-20

CONOITIONS CODE REGISTER 5 4 3 2 1 0
BOOLEAN

OPERATIONS MNEMONIC OPERATION H I N Z V C

Clear Carry CLC O~C - - - - - R

Clear Interrupt Mask CLI O~I - R - - - -Clear Overflow CLV O~V - - - - R -Set Carry SEC l~C - - - - - S

Set Interrupt Mask SEI 1 ~I - S - - - -Set Overflow SEV l~V - - - - S -Acmltr A ~ CCR TAP A~CCR 8
CCR ~ Acmltr A TPA CCR ~A -I-I-I-l-t-
R = Reset
S = Set
• = Not affected

CD (A LL) Set according to the contents of Accumulator A.

FIGURE 1-3.1-2. Condition Code Register Instructions

1-3.2 NUMBER SYSTEMS

Effective use of many of the instructions depends on the interpretation given to numerical data, that

is, what number system is being used? For example, the ALU always performs standard binary addition of two

eight bit numbers using the 2's complement number system to represent both positive and negative numbers.

However, the MPU instruction set and hardware flags permit arithmetic operation using any of four different

representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number in the range -128 to + 127:

26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

1 0 0 0 0 0 0 0 (-128 in 2's complement)

1 1 1 1 1 1 1 1 (-1 in 2's complement)

0 0 0 0 0 0 0 0 (0 in 2's complement)

0 0 0 0 0 0 0 1 (+ 1 in 2's complement)

0 1 1 1 1 1 1 1 (+ 127 in 2's complement)

1-21

(2) Each byte can be interpreted as a signed binary number in the range -127 to + 127:

26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

1 1 1 1 1 1 1 1 (-127 in signed binary)

1 0 0 0 0 0 0 1 (-1 in signed binary)

0 0 0 0 0 0 0 0 (0 in signed binary)

0 0 0 0 0 0 0 1 (+ 1 in signed binary)

0 1 1 1 1 1 1 (+ 127 in signed binary)

(3) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:
27 26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

0 0 0 0 0 0 0 0 (0 in unsigned binary)

1 1 1 1 1 1 1 (255 in unsigned binary)

(4) Each byte can be thought of as containing two 4-bit binary coded decimal (BCD) numbers. With

this interpretation, each byte can represent numbers in the range 0 to 99:

23 22 21 2° 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

0 0 0 0 0 0 0 0 (BCD 0)

0 0 1 0 0 1 1 1 (BCD 27)

1 0 0 1 1 0 0 1 (BCD 99)

The two's complement representation for positive numbers is obtained simply by adding a zero (sign

bit) as the next higher significant bit position:

27 26 25 24 23 22 21 20

a7 a6 a5 a4 a3 a2 a1 ao

1 1 1 1 1 1 1 (binary 127)

0 1 1 1 1 1 1 1 (+ 127 in 2's complement representation)

0 0 0 0 0 0 1 (binary 1)

0 0 0 0 0 0 0 1 (+ 1 in 2's complement representation)

1-22

When the negative of a number is required for an arithmetic operation, it is formed by first

complementing each bit position of the positive representation and then adding one.

o
1

1

o
1

o

o
1

1

64 32 16 8 4

1

o

o

o
1

o

o
1

1

1 1 1 1

o 000

o 0 0 0

o 0 0 0

1 1 1 1

o 0 0 0

o 0 0 0

1 1 1 1

1 1 1 1

2 1

1 1

o 0
1

o 1

o 0
1 1

1

o 0

o 1

1 0

1

1 1

(+ 127 in 2's complement representation)

(l's complement)

(add one)

(-127 in 2's complement representation)

(0 in 2's complement representation)

(l's complement)

(add one)

("0" is same in either notation)

(+ 1 in 2's complement representation)

(l's complement)

(add one)

(-1 in 2's complement representation)

Note that while + 127 is the largest positive two's complement number that can be formed with 8

digits, the largest negative two's complement number is 10000000 or -128. Hence, with this number system,

an eight bit byte can represent integers on the real number line between -128 and + 127 and a7 can be regarded

as a sign bit; if a7 is zero the number is positive, if a7 is one the number is negative:

10000000 11111111 00000000 00000001 01111111
I 1'1" I I I rc I ~------~~~--------+--------------~--------------~------~?/~--------~

-128 -1 0 +1 +127

Since much of the literature on arithmetic operations presents the information in terms of signed

binary numbers, the difference between 2's complement and signed binary notation is of interest. Signed binary

number notation also uses the most significant digit as a sign bit (0 for positive, 1 for negative). The remaining

bits represent the magnitude as a binary number.

± 64 32 16 8 4 2 1

111

100

000

000

011

1 1

o 0
o 0

o 0

1 1

1

o
o
o
1

1

o
o
o
1

1

1

o
1

1

(-127 in signed binary)

(- 1 in signed binary)

(0 in signed binary)

(+ 1 in signed binary)

(+ 127 in signed binary)

An 8-bit byte in this notation represents integers on the real number line between -127 and + 127:

11111111 10000001 00000000 00000001 01111111
1~ ______ ~rtl~~ ________ ~I~ ____________ ~I ______________ +I ______ ~«~ __ ----~I

-127)) -1 0 +1 II +127

1-23

Comparing this to the 2 's complement representation, the positive numbers are identical and the negative

numbers are reversed, i.e., -127 in 2's complement is -1 in signed binary and vice versa. In normal

programming of the MPU, the difference causes no particular problem since numerical data is automatically

converted to the correct format during assembly of the program source statements. However, if during system

operation, incoming data is in signed binary format, the program should provide for conversion. This is easily

done by first complementing each bit of the signed binary number except the sign bit and then adding one:

± 64 32 16 8 4 2 1

a7 a6 a5 a4 a3 a2 al ao

1 1 1 1 1 1 1 1 (-127 in signed binary)

1 0 0 0 0 0 0 0 (1's complement except for sign bit)

0 0 0 0 0 0 0 1 (add 1)

1 0 0 0 0 0 0 1 (-127 in 2's complement)

The MPU instruction set provides for a simple conversion routine. For example, the following

program steps can be used:

10

20

30

40

50

CONVRT

NEXT

TSTA

BPL NEXT

NEGA

ORAA % 10000000

STAA DATAl

Test sign bit, a7, and set N if a7 = 1

Go to NEXT if N = 0

Form 2's complement of A

Restore sign bit

Store data in DATAl

This routine assumes that the signed binary data is stored in accumulator A (ACCA). The program tests the sign

bit and if the number is negative (N= 1) performs the required conversion. The contents of ACCA and the N bit

of the Condition Code Register would be as follows after each step of a typical conversion:

Instr N a7 a6 a5 a4 a3 a2 al ao

TSTA 1 1 1 1 1 0 0 0 1 (-113 in signed binary)

BPL NEXT 1 1 1 1 1 0 0 0 1

NEGA 0 0 0 0 0 1 1 1 1 (2's complement of ACCA)

ORAA #% 1 0000000 1 0 0 0 0 1 1 1 1 (-113 in 2's complement)

Note that the sign bit status, N, is updated as the NEG and ORA instructions are executed. This is typical for

many of the instructions; the Condition Code Register is automatically updated as the instruction is executed.

1-3.3 ACCUMULATOR AND MEMORY OPERATIONS

For familiarization purposes, the Accumulator and Memory operations can be further subdivided

into four categories: (1) Arithmetic Operations; (2) Logic Operations; (3) Data Testing; and (4) Data Handling.

1-3.3.1 Arithmetic Operations

The Arithmetic Instructions and their effect on the CCR are shown in Figure 1-3.3. 1-1. The use of

these instructions in performing arithmetic operations is discussed in Section 2-1.

1-24

CONDo CODE REG.
BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 5 4 3 2 1 0

OPERATIONS MNEMONIC refer to contents) H I N Z V C

Add ADDA A+M---+A i • i i i i
ADDB B + M---+B i • i i i i

Add Acmltrs ABA A+ B---+A i • i i i i
Add with Carry ADCA A+M+C---+A i • i i t t

ADCB B+M+C---+B i • t t t t
Complement, 2's NEG 00 - M---+M • • t t CD ®

(Negate) NEGA 00 - A---+A • • t t CD ®
NEGB 00 - B ---+ B • • t t 0 ®

Decimal Adjust, A DAA
Converts Binary Add. of BCD Characters • • t t t @
into BCD Format*

Subtract SUBA A-M---+A • • t t t t
SUBB B - M---+B • • i i i i

Subract Acmltrs. SBA A-B---+A • • t. i i i
Subtr. with Carry SBCA A-M-C---+A • • i i i i

SBCB B-M-C---+B • • i i i i

*Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCD numbers. DAA adds 0110 to lower half-byte if least significant number >1001 or if preceding instruction
caused a Half-carry. Adds 0110 to upper half-byte if most significant number >1001 or if preceding instruction
caused a Carry. Also adds 0110 to upper half-byte if least significant number >1001 and most significant num
ber = 9.

(Bit set if test is true and cleared otherwise)

CD (Bit V) Test: Result = 10000000?

@ (Bit C) Test: Result = OOOOOOOO?

@ (Bit C) Test: Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)

FIGURE 1-3.3.1-1. Arithmetic Instructions

1-25

1-3.3.2 Logic Operations

The Logic Instructions and their effect on the CCR are shown in Figure 1-3.3.2-1. Note that the

Complement (COM) instruction applies to memory locations as well as both accumulators.

1-3.3.3 Data Test Operations

The Data Test instructions are shown in Figure 1-3.3.3-1. Bit Test (BIT) is useful for updating the

CCR as if the AND function was executed but does not change the contents of the accumulator. The Test (TST)

instruction also operates directly on memory and updates the CCR as if a comparison (CMP) to zero had been

executed.

1-3.3.4 Data Handling Operations

The Data Handling instructions are summarized in Figure 1-3.3.4-1. Note that the Clear (CLR),

Decrement (DEC), Increment (INC), and Shift/Rotate instructions all operate directly on memory and update

the CCR accordingly.

1-3.4 PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two categories: (1) Index Register/Stack Pointer

instructions; (2) Jump and Branch operations.

1-3.4.1 Index Register/Stack Pointer Operations

The instructions for direct operation 'on the MPU's Index Register and Stack Pointer are summarized

in Figure 1-3.4.1-1 Decrement (DEX, DES), increment (lNX, INS), load (LDX, LDS), and store (STX, STS)

instructions are provided for both. The Compare instruction, CPX, can be used to compare the Index Register

to a 16-bit value and update the Condition Code Register accordingly.

The TSX instruction causes the Index Register to be loaded with the address of the last data byte put

onto the "stack". The TXS instruction loads the Stack Pointer with a value equal to one less than the current

contents of the Index Register. This causes the next byte to be pulled from the "stack" to come from the

location indicated by the Index Register. The utility of these two instructions can be clarified by describing the

"stack" concept relative to the M6800 system.

The "stack" can be thought of as a sequential list of data stored in the MPU's read/write memory.

The Stack Pointer contains a 16-bit memory address that is used to access the list from one end on a

last-in-first-out (LIFO) basis in contrast to the random access mode used by ~~t! I\t!J>U's other a~~ressin~ lllod~s.

The M6800 instruction set and interrupt structure allow extensive use of the stack concept for

efficient handling of data movement, subroutines and interrupts. The instructions can be used to establish one

or more" stacks" anywhere in read/write memory. Stack length is limited only by the amount of memory that is

made available.

1-26

CONO. CODE REG.
BOOLEAN ARITHME TI 10 C OPERAT N

ACCUMULATOR AND MEMORY (All register labels 5 4 3 2 1 0

OPERATIONS MNEMONIC refer to contents) H I N Z V C

And ANDA A _M-')oA • • t t R •
ANDB B - M-')oB • • t t R •

Complement, l's COM M~M • • t t R S

COMA A~A • • t t R S

COMB B ~B • • t t R S

Exclusive OR EORA AEBM~A • • t t R •
EORB BEBM-')oB • • t t R •

Or, Inclusive ORA A+M-')oA • • t t R •
ORB B+M-')oB • • t t R •

FIGURE 1-3.3.2-1_ Logic Instructions

CONDo CODE REG.
I BOOLEAN ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 5 4 3 2 1 0

OPERATIONS MNEMONIC refer to contents) H I N Z V C

Bit Test BITA A-M • • t t R •
BITB B-M • • t t R •

Compare CMPA A-M • • t t t t
CMPB B-M • • t t t t

Compare Acmltrs CBA A-B • • t t t t
Test, Zero or Minus TST M - 00 • • t t R R

TSTA A-DO • • t t R R
TST8 B - 00 • • t t R R

FIGURE 1-3.3.3-1. Data Test Instructions

1-27

BOO I LEAN ARITHME TIC OP ERATION
ACCUMULATOR AND MEMORY (All register labels

OPERATIONS MNEMONIC refer to contents)

Clear CLR 00 ~M

CLRA 00 ~A

CLRB 00 ~B

Decrement DEC M -1 ~M

DECA A-1~A

DECB B -1~B

Increment INC M +1~M

INCA A+1~A

INCB B +l~B

Load Acmltr LDAA M~A

LDAB M~B

Push Data PSHA A ~ MSp, SP-1 ~SP

PSHB B ~MSp, SP-1 ~SP

Pull Data PULA SP+ 1 ~SP, MSp~A

PULB SP + 1 ~SP, MSp~B

Rotate Left ROL

:1 CO IIIIIIIII:J ROLA +-
C b 7 +- bo

ROLB

Rotate Right ROR

:1 ~ 11111111 ~ RORA ~

b7 ~ bO
RORB

Shift Left, Arithmetic ASL

:1
+-

ASLA D +- 111111111+-0
C b7 bo

ASLB

Shift Right, Arithmetic ASR M} ~
ASRA A C211111111 ~ D

b7 bo C
ASRB B

Shift Right, Logic. LSR

:1
~

LSRA O~IIIIIIIII ~ D
b7 bo C

LSRB
Store Acmltr. STAA A~M

STAB B~M

Transfer Acmltrs TAB A~B

TBA B~A

@ (Bit V) Test: Operand = 10000000 prior to execution?

® (Bit V) Test: Operand = 01111111 prior to execution?

® (Bit V) Test: Set equal to result of N E9 C after shift has occurred.

FIGURE 1-3.3.4-1. Data Handling Instructions

1-28

CONDo CODE REG.

5 4 3 2 1 0

H I N Z V C

• • R S R R

• • R S R R

• • R S R R

• • t t @ •
• • t t @ •
• • t t @ •
• • t t ® •
• • t t ® •
• • t t ® • • • t t R •
• • t t R •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • t t ® t

• • R t @ t

• • R t ® t

• • R t ® t
• • t t R •
• • t t R •
• • t t R •
• • t t R •

INDEX REGISTER AND STACK

POINTER OPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION

Compare Index Reg CPX (XH/Xd - (M/M + 1)

Decrement Index Reg DEX X-1~X

Decrement Stack Pntr DES SP - 1 ~SP

I ncrement I ndex Reg INX X + 1 ~X

I ncrement Stack Pntr INS SP + 1 ~SP

Load Index Reg LOX M ~XH' (M + 1) ~XL

Load Stack Pntr LOS M ~SPH' (M + 1) ~SPL

Store I ndex Reg STX XH ~M, XL ~(M + 1)

Store Stack Pntr STS SPH ~M, SPL ~(M + 1)

Indx Reg ~Stack Pntr TXS X - 1 ~SP

Stack Pntr ~ Indx Reg TSX SP + 1 ~ X

Q) (Bit N) Test: Sign bit of most significant (MS) byte of result = 11

® (Bit V) Test: 2's complement overflow from subtraction of LS bytes?

® (Bit N) Test: Result less than zero? (Bit 15 = 1)

FIGURE 1-3.4.1-1. Index Register and Stack Pointer Instructions

1-29

5 4 3 2 1 0

H I N Z V C

• • CD t ® •
• • • t • •
• • • • • •
• • • t • •
• • • • • •
• • ® t R •
• • ® t R •
• • ® t R •
• • ® t R •
• • • • • •
• • • • • •

Operation of the Stack Pointer with the Push and Pull instructions is illustrated in Figures 1-3.4.1-2

& 1-3.4.1-3. The Push instruction (PSHA) causes the contents of the indicated accumulator (A in this example)

to be stored in memory at the location indicated by the Stack Pointer. The Stack Pointer is automatically

decremented by one following the storage operation and is "pointing" to the next empty stack location. The

m -2

m -1

SP ----l.~ m

Previously
Stacked

Data 1
m + 1

m + 2

m + 3

MPU

ACCA

7F

63

FD

3C

m -2

SP ---.. m - 1

New Data m

Previously
Stacked

Data I
m

m++21

m+3

MPU

ACCA

PC~ PSHA

PC ~ Next I nstr.

(a) Before PSHA (b) After PSHA

FIGURE 1-3.4.1-2. Stack Operation, Push Instruction

1-30

m -2

m -1

SP~m

Previously
Stacked

Data
f ::~
1 m + 3

MPU

ACCA

~ -

1A

3C

D5

EC -
~

MPU

ACCA

m -2

m -1

m

SP ~ m + 1 1A I m +2

3C

Previously
Stacked m + 3 D5

Data
EC

PC~ PULA

PC ~ Next Instr.

(a) Before PULA (b) After PULA

FIGURE 1-3.4.1-3. Stack Operation, Pull Instruction

1-31

JUMP AND BRANCH

OPERATIONS MNEMONIC BRANCH TEST

Branch Always BRA None
Branch If Carry Clear BCC C=O
Branch If Carry Set BCS C = 1
Branch If = Zero BEQ Z = 1

Branch If ~ Zero BGE NEBV=O

Branch If > Zero BGT Z + (N EB V) = 0
Branch If Higher BHI C + Z = 0
Branch !f ~ Zero BLE Z + (N EB V) = 1

Branch If Lower Or Same BLS C + Z = 1
Branch If < Zero BlT NEBV=l

Branch If Minus BMI N = 1

Branch If Not Equal Zero BNE Z=O

Branch If Overflow Clear BVC V=O

Branch If Overflow Set BVS V = 1

Branch If Plus BPL N=O

Branch To Subroutine BSR

} See Special Operations Jump JMP

Jump To Subroutine JSR

No Operation NOP Advances Prog. Cntr. Only

Return From Interrupt RTI

Return From Subroutine RTS
} See special Operations

Software I nterru pt SWI

Wait for Interrupt WAI

o
®

(AiD

(Bit I)

Load Condition Code Register from Stack. (See Special Operations)

Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is
required to exit the wait state.

FIGURE 1-3.4.2-1. Jump and Branch Instructions

1-32

5 4 3 2 1 0

H I N Z V C

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
--(2)--
• • • • • •
• S • • • •
• ® • • • •

Pull instruction (PULA or PULB) causes the last byte stacked to be loaded into the appropriate accumulator.

The Stack Pointer is automatically incremented by one just prior to the data transfer so that it will point to the

last byte stacked rather than the next empty location. Note that the Pl.:JLL instruction does not "remove" the

data from memory; in the example, 1A is still in location (m+ 1) following execution of PULA. A subsequent

PUSH instruction would overwrite that location with the new "pushed" data.

Execution of the Branch to Subroutine (BSR) and Jump to Subroutine (JSR) instructions cause a

return address to be saved on the stack as shown in Figures 1-3.4.2-3 through 1-3.4.2-5. The stack is

decremented after each byte of the return address is pushed onto the stack. For both of these instructions, the

return address is the memory location following the bytes of code that correspond to the BSR and JSR

instruction. The code required for BSR or JSR may be either two or three bytes, depending on whether the JSR

is in the indexed (two bytes) or the extended (three bytes) addressing mode. Before it is stacked, the Program

Counter is automatically incremented the correct number of times to be pointing at the location of the next

instruction. The Return from Subroutine instruction, RTS, causes the return address to be retrieved and loaded

into the Program Counter as shown in Figure 1-3.4.2-6.

There are several operations that cause the status of the MPU to be saved on the stack. The Software

Interrupt (SWI) and Wait for Interrupt (WAI) instructions as well as the maskable (IRQ) and non-maskable

(NMI) hardware interrupts all cause the MPU's internal registers (except for the Stack Pointer itself) to be

stacked as shown in Figure 1-3.4.2-7. MPU status is restored by the Return from Interrupt, RTI, as shown in

Figure 1-3.4.2-8.

1-3.4.2 Jump and Branch Operations

The Jump and Branch instructions are summarized in Figure 1-3.4.2-1. These instructions are used

to control the transfer of operation from one point to another in the control program.

The No Operation instruction, NOP, while included here, is ajump operation in a very limited sense.

Its only effect is to increment the Program Counter by one. It is useful during program development as a

"stand-in" for some other instruction that is to be determined during debug. It is also used for equalizing the

execution time through alternate paths in a control program.

Execution of the Jump Instruction, JMP, and Branch Always, BRA, effects program flow as shown

in Figure 1-3.4.2-2. When the MPU encounters the Jump (Indexed) instruction, it adds the offset to the value

in the Index Register and uses the result as the address of the next instruction to be executed. In the extended

addressing mode, the address of the next instruction to be executed is fetched from the two locations

immediately following the JMP instruction. The Branch Always (BRA) instruction is similar to the JMP

(extended) instruction except that the relative addressing mode applies and the branch is limited to the range

within -125 or + 127 bytes of the branch instruction itself (see Section 1-2.3.4 for a description of the

addressing modes). The opcode for the BRA instruction requires one less byte than JMP (extended) but takes

one more cycle to execute.

The effect on program flow for the Jump to Subroutine (JSR) and Branch to Subroutine (BSR) is

shown in Figures 1-3.4.2-3 through 1-3.4.2-5. Note that the Program Counter is properly incremented to be

pointing at the correct return address before it is stacked. Operation of the Branch to Subroutine and Jump to

Subroutine (extended) instruction is similar except for the range. The BSR instruction requires less opcode than

JSR (2 bytes versus 3 bytes) and also executes one cycle faster than JSR. The Return from Subroutine, RTS, is

used at the end of a subroutine to return to the main program as indicated in Figure 1-3.4.2-6.

The effect of executing the Software Interrupt, SWI, and the Wait for Interrupt, WAI, and their

1-33

PC Main Program PC Main Program
Main Program

6E = JMP
n 7E = JMP

21>= BRA n
n+1 KH = Next Address

n

INDXD
n+1 K:::: Offset

EXTND n+2 KL = Next Address n + 1 K = Offset* .. . • • : I • (n + 2) ±K X+K Next Instruction . Next Instruction
K Next Instruction

*K = Signed 7-bit value

(a) Jump (b) Branch

FIGURE 1-3.4.2-2. Program Flow for Jump and Branch Instructions

------- ---m-2

m -1 m -1 (n + 2)H

SP~ m m (n + 2)L

m + 1 7E m + 1 7E

7A - ~

PC~ n BSR n BSR

n + 1 ±K = Offset" n + 1 ±K = Offset

n+2 Next Main Instr. n+2 Next Main Instr .

.. K = Signed 7-Bit Value
PC-+-(n + 2) ±K 1st Subr. Instr.

(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-3. Program Flow for BSR

1-34

m-2

m -1

SP--"m

m + 1

m + 2

PC~n

n + 1

n+2

n+3

m -2

m-1

SP ---+- m

m + 1

PC--n

n + 1

n+2

7E

7A

7D

L----

JSR = BD

SH = Subr. Addr.

SL = Subr. Addr.

Next Main Instr.

(a) Before Execution

m -3

SP--m -2

m -1

m

m+ 1

m + 2

n

n + 1

n+2

n+3

(S formed from
SH and SL)

(n + 3)H

(n + 3)L

7E

7A

7C -
~

JSR

SH = Subr. Addr.

SL = Subr. Addr.

Next Main Instr.

1st Subr. Instr.

(b) After Execution

FIGURE 1-3.4.2-4. Program Flow for JSR (Extended)

sp~m-2

m -1 (n + 2)H

m (n + 2)L

7E m + 1 7E

7A 7A

~

JSR = AD JSR = AD

K = Offset' n + 1 K = Offset

Next Main Instr. n+2 Next Main Instr.

• K = 8·Bit Unsigned Value PC--x' + K 1st Subr. Instr.

'Contents of Index Register

(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-5. Program Flow for JSR (Indexed)

1-35

-
SP~m-2 m-2

m -1 (n + 3)H m -1

m (n + 3)L SP----" m

m + 1 7E m + 1 7E

7A~ __ _

n JSR = BO n JSR = BD

n + 1 SH = Subr. Addr. n + 1 SH = Subr. Addr.

n+2 SL = Subr. Addr. n+2 SL = Subr. Addr.

n+3 Next Main Instr. PC~n+3 Next Main Instr.

--
Last Subr. I nstr. Last Subr. Instr.

RTS RTS

(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-6. Program Flow for RTS

1-36

Software Interrupt
Main Program

n 3F = SWI
n + 1 Next Main I nstr.

SWI

FFFA
FFFB

Wait For
Interrupt

Main Program

3E = WAI

Next Main Instr.

SP -7

~

HDWR
INT

FFF8
FFF9

m -7

m -6

m -5

m -4

m -3

m -2

m -1

m

No

I nterrupt Memory Assignment 1

Constant, Hdware

Constant, Hdware

Software

MS

LS
MS

Hardware I nterrupt or
Non-Maskable Interrupt (NM I)

Main Program

YES

Stack

Condition Code

Acmltr. B

Acmltr. A
Index Register (XH)

Index Register (XL)
PC(n + 1)H

PC(n + 1)L

FFF8

FFF9

FFFA

FFFB

FFFC

FFFD
FFFE

FFFF

Software

Non-Maskable Int.

LS--J"'.....
MS L..-.-V

First I nstr.
Addr. Formed
By Fetching
2-Bytes From
Per. Mem_
Assign_

Non-Maskable Int_ LS

Restart MS

Restart LS

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

No

Continue Main Prog_

n + 1 Next Main Instr .

WAI

NMI

load Interrupt
Vector Into

Program Counter

1st I nterrupt I nstr.

NMI

FFFC
FFFD

FIGURE 1-3.4.2-7. Program Flow for Interrupts

1-37

relationship to the hardware interrupts is shown in Figure 1-3.4.2-7. SWI causes the MPU contents to be

stacked and then fetches the starting address of the interrupt routine from the memory locations that respond to

the addresses FFFA and FFFB. Note that as in the case of the subroutine instructions, the Program Counter is

incremented to point at the correct return address before being stacked. The Return from Interrupt instruction,

RTI, (Figure 1-3.4.2-8) is used at the end of an interrupt routine to restore control to the main program. The

SWI instruction is useful for inserting break points in the control program, that is, it can be used to stop

operation and put the MPU registers in memory where they can be examined. The WAI instruction is used to

decrease the time required to service a hardware interrupt; it stacks the MPU contents and then waits for the

interrupt to occur, effectively removing the stacking time from a hardware interrupt sequence.

-
SP ___ m-7 m -7

m -6 CCR m-6 CCR

m -5 ACCB m - 5 ACCB

m -4 ACCA m -4 ACCA

m -3 XH (Index Reg) m -3 XH

m -2 XL (Index Reg) m -2 Xl

m -1 PC(n+1)H m -1 PCH

m PC(n+1)l sp-.-. m PCl

~
- ~

n + 1 PC- n + 1

PC~

(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-8. Program Flow for RTI

1-38

BMI N = 1 BEQ Z=1
BPL N=</> BNE Z=</>

BVC : V=</> BCC C=</>
BVS : V = 1 BCS C=1

BHI C+Z=</> BLT NEBV= 1
BLS C+Z=1 BGE NEBV=</> ;

BLE Z + (N EBV) = 1
BGT : Z+ (NEBV) =</>

FIGURE 1-3.4.2-9. Conditional Branch Instructions

The conditional branch instructions, Figure 1-3.4.2-9, consist of seven pairs of complementary

instructions. They are used to test the results of the preceding operation and either continue with the next

instruction in sequence (test fails) or cause a branch to another point in the program (test succe~ds).
Four of the pairs are used for simple tests of status bits N, Z, V, and C:

(1) Branch On Minus (BMI) and Branch On Plus (BPL) tests the sign bit, N, to determine if the

previous result was negative or positive, respectively.

(2) Branch On Equal (BEQ) and Branch On Not Equal (BNE) are used to test the zero status bit, Z,

to determine whether or not the result of the previous operation was equal to zero. These two

instructions are useful following a Compare (CMP) instruction to test for equality between an

accumulator and the operand. They are also used following the Bit Test (BIT) to determine

whether or not the same bit positions are set in an accumulator and the operand.

(3) Branch On Overflow Clear (BVC) and Branch On Overflow Set (BVS) tests the state of the V

bit to determine if the previous operation caused an arithmetic overflow.

(4) Branch On Carry Clear (BCC) and Branch On Carry Set (BCS) tests the state of the C bit to

determine if the previous operation caused a carry to occur. BCC and BCS are useful for testing

relative magnitude when the values being tested are regarded as unsigned binary numbers, that

is, the values are in the range 00 (lowest) to FF (highest). BCC following a comparison (CMP)

will cause a branch if the (unsigned) value in the accumulator is higher than or the same as the

value of the operand. Conversely, BCS will cause a branch if the accumulator value is lower

than the operand.

The fifth complementary pair, Branch On Higher (BHI) and Branch On Lower or Same (BLS) are in

a sense complements to BCC and BCS. BHI tests for both C and Z = 0; if used following a CMP, it will cause a

branch if the value in the accumulator is higher than the operand. Conversely, BLS will cause a branch if the

unsigned binary value in the accumulator is lower than Of the same as the operand.

The remaining two pairs are useful in testing results of operations in which the values are regarded as

signed two's complement numbers. This differs from the unsigned binary case in the following sense: In

unsigned, the orientation is higher or lower; in signed two's complement, the comparison is between larger or

smaller where the range of values is between -128 and + 127 (see Section 1-3.2 for a review of number

systems).

Branch On Less Than Zero (BL T) and Branch On Greater Than Or Equal Zero (BGE) test the status

bits for NEB V = 1 and NEB V = 0, respectively. BLT will always cause a branch following an operation in

1-39

which two negative numbers were added. In addition, it will cause a branch following a CMP in which the value

in the accumulator was negative and the operand was positive. BLT will never cause a branch following a CMP

in which the accumulator value was positive and the operand negative. BGE, the complement to BLT, will

cause a branch following operations in which two positive values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE) and Branch On Greater Than Zero (BGT)

test the status bits for Z + (N EB V) = 1 and Z + (N EB V) = 0, respectively. The action ofBLE is identical to

that for BLTexcept that a branch will also occur if the result of the previous result was zero. Conversely, BGTis

similar to BGE except that no branch will occur following a zero result.

1-40

CHAPTER 2

2. PROGRAMMING TECHNIQUES

The objective of this Chapter is to present examples of programs and techniques that have been

found useful in developing control programs for the MC6800 MPU. Much of the material in subsequent

Chapters also covers programming methods. I/O techniques are discussed in Chapter 3. Chapter 5 is devoted to

peripheral programming; Chapter 6 discusses system integration programming techniques. In this Chapter, the

emphasis is on three programming areas: (1) arithmetic processing; (2) counter and delay operations; (3) use of

the indexed addressing mode. In addition, Section 2-3 presents techniques for determining if a given program is

usable and/or efficient for a particular application.

2-1 ARITHMETIC OPERATION

2-1. 1 NUMBER SYSTEMS

The ALU always performs standard binary addition of two eight bit numbers with the numbers

represented in 2's complement format. However, the MPU instruction set and hardware flags permit arithmetic

operation using any of four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number in the range -127 to + 127:

± 26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

1 0 0 0 0 0 0 1 (-127 in 2's complement representation)

1 1 1 1 1 1 1 1 (-1 in 2's complement representation)

0 0 0 0 0 0 0 0 (0 in 2's complement representation)

0 0 0 0 0 0 0 1 (+ 1 in 2's complement representation)

0 1 1 1 1 1 1 1 (+ 127 in 2's complement representation)

(2) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:

27 26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

0 0 0 0 0 0 0 0 (0 in unsigned binary)

1 1 1 1 1 1 1 1 (255 in unsigned binary)

(3) Each byte contains one 4-bit BCD number in the 4 LSBITS, the 4 MS bits are zeros. This is

referred to as unpacked BCD and can represent numbers in the range of 0-9:

27 26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 bo

0 0 0 0 0 0 0 0 (BCD 0)

0 0 0 0 0 1 0 1 (BCD 5)

0 0 0 0 1 0 0 1 (BCD 9) ,
'Y

Always must be 0

2-1

(4) Each byte can be thought of as containing tw04-bit binary coded decimal (BCD) numbers. With

this interpretation, each byte can represent numbers in the range 0 to 99:

23 22 21 20 23 22 21 20

b7 b6 bs b4 b3 b2 b1 bo

0 0 0 0 0 0 0 0 (BCD 00)

0 0 1 0 0 1 1 1 (BCD 27)

1 0 0 1 1 0 0 1 (BCD 99)

Each of these number systems will be illustrated with programming examples after the condition

code flags and instruction set have been introduced in more detail.

2-1.2 THE CONDITION CODE REGISTER

During operation, the MPU sets (or clears) flags in a Condition Code Register as indicated in Table

2-1.2-1:

bs b4 ba b2 b1 bo

H I I I N I z I V I C I Condition Code Register

H = Half-carry; set whenever a carry from b3 to b4 of the result is generated; cleared otherwise.

I = !nterrupt Mask; set by hardware interrupt or SEI instruction; cleared by CLI instruction. (Normally not

used in arithmetic operations).

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result = 0; cleared otherwise.

V = 0 Verflow; set if there was arithmetic overflow as a result of the operation; cleared otherwise.

C = ~arry; set if there was a carry from the most significant bit (b7) of the result; cleared otherwise.

TABLE 2-1.2-1: Condition Code Register

2-1.3 OVERFLOW

The description of most of the condition code bits is straight forward. However, overflow requires

clarification. Arithmetic overflow is an indication that the last operation resulted in a number beyond the ± 127

range of an 8-bit byte. Overflow can be determined by examining the sign bits of the operands and the result as

indicated in Table 2-1.2-1 where the results for addition of A + B is shown.

Row a7 b7 r7 V

1 0 0 0 0

2 0 0 1 1

3 0 1 0 0

4 0 1 1 0

5 1 0 0 0 (A + B) = R

6 1 0 1 0

7 1 1 0 1

8 1 1 1 0

TABLE 2-1.3-1: Overflow for Addition

2-2

If the sign bits of the operands, a7 and b7, are different (rows 3 through 6 of the Table) no overflow can occur

and the V flag is clear after the operation. If the operand sign bits are alike and the result exceeds the byte

capacity, the sign bit of the result (r7) will change and the overflow bit will be set. This is illustrated in the

following example. The example follows actual ALU operation in that the starting number A is initially in the

accumulator but is replaced by the result of the current operation.

V 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 1 0 A = +54;

1 0 0 0 0 1 1 1 B = -121; (negative numbers are in 2's complement

notation)

0 1 0 1 1 1 1 0 1 Ro= A + B = -67; (signs of A & B different; no

overflow)

0 1 0 1 1 1 1 0 1 Ro= -67;

1 1 0 1 1 1 1 1 B = -33;

0 1 0 0 1 1 1 0 0 Rl = Ro + B = - 100; (Signs alike but byte capacity

not exceeded; no. overflow)

V 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 0 Rl= -100;

1 1 1 0 0 0 0 0 B = -32;

1 0 1 1 1 1 1 0 0 R2= + 124 (Signs of Rl & B alike and sign of result

occurred)

Here the capacity of the register has been exceeded and the result is + 124 rather than -132. Overflow is said to

have occurred.

In subtraction operations, the possibility of overflow exists whenever the operands differ in sign.

Overflow conditions For A - B are illustrated in Table 2-1.3-2.

Row a7 b7 r7 V

1 0 0 0 0

2 0 0 1 1

3 0 1 0 0

4 0 1 1 0 (A - B) = R

5 1 0 0 0

6 1 0 1 0

7 1 1 0 1

8 1 1 1 0

TABLE 2-1.3-2: Overflow for Subtraction

Note that Table 2-1.3-2 is identical to the addition table except that b7has been replaced by b7. This is explained

by the fact that the ALU performs subtraction by adding the negative of the subtrahend B to the minuend A.

Hence, the ALU first forms the 2's complement of B and then adds. The subtraction table with b7 negated then

2-3

reflects the sign bits of two numbers that are to be added. If a7 and b7 are alike, overflow will occur if the byte

capacity is exceeded.

2-1.4 THE ARITHMETIC INSTRUCTIONS

Table 2-1.4-1 summarizes the instructions used primarily for arithmetic operations. The effect of

each operation on memory and the MPU' s Accumulators is shown along with how the result of each operation

effects the Condition Code Register.

The carry bit is used as a carry for addition and as a borrow for subtraction and is added to the

Accumulators with the Add With Carry Instructions and subtracted from the Accumulators in the Subtract With

Carry instructions.

The Decimal Adjust instruction, DAA, is used in BCD addition to adjust the binary results of the

ALU. Used following the operations, ABA, ADD, and ADC on BCD operands, DAA will adjust the contents

of the accumulator and the C bit to represent the correct BCD Sum.

Table 2-1.4-2 shows the details of the DAA instruction and how it affects and is effected by the

Condition Code Register bits.

2-1.4.1 Use of Arithmetic Instructions

Typical use of the arithmetic instructions is illustrated in the following examples:

The ABA instruction adds the contents of ACCB to the contents of ACCA:

ACCA 10101010 ($AA)

ACCB 11001100 ($CC)

ACCA 01110110 ($76) with a carry.

CARRY 1

The ADCA instruction adds the operand data and the carry bit to ACCA:

b7 b6 b5 b4 ba b2 bl bo

ACCA 1 0 1 0 1 0 1 0 $AA

OPERAND DATA 1 1 0 0 1 1 0 0 CC

CARRY 1

ACCA 0 1 1 1 0 1 1 1 $77 with carry

CARRY 1

In both of these examples, the 2's complement overflow bit, V, will be set as shown in Table

2-1.4.1-1.

2-4

ACCUMULATOR AND MEMORY

OPERATIONS MNEMONIC OP

Add ADDA 8B

ADDB CB

Add Acmltrs ABA

Add with Carry ADCA 89

ADCB C9
Complement, 1 's COM

COMA

COMB

Complement, 2's NEG
(Negate NEGA

NEGB

Decimal Adjust, A DAA

Rotate Left ROL

ROLA

ROLB

Rotate Right ROR

RORA

RORB

Shift Left, Arithmetic ASL

ASLA

ASLB

Shift Right, Arithmetic ASR

ASRA

ASRB

Shift Right, Logic, LSR

LSRA

LSRB

Subtract SUBA 80

SUBB CO

Subract Acmltrs. SBA

Subtr. with Carry SBCA 82

SBCB C2

LEGEND: 00

OP Operation Code (Hexadecimal); H

Number of MPU Cycles; I

Number of Program Bytes; N

+ Arithmetic Plus; Z

Arithmetic Minus; V

Boolean AND; C

MSp Contents of memory location R
pointed to be Stack Pointer; S

+ Boolean Inclusive OR; t
Ell Boolean Exclusive OR; •
M Complement of M; CCR

Transfer Into; LS
Bit = Zero; MS

ADDRESSING MODES

IMMED DIRECT INDEX EXTND

~ # OP ~ # OP ~ # OP ~ #

2 2 9B 3 2 AB 5 2 BB 4 3

2 2 DB 3 2 EB 5 2 FB 4 3

2 2 99 3 2 A9 5 2 B9 4 3

2 2 09 3 2 E9 5 2 F9 4 3

63 7 2 73 6 3

60 7 2 70 6 3

69 7 2 79 6 3

66 7 2 76 6 3

68 7 2 78 6 3

67 7 2 77 6 3

64 7 2 74 6 3

2 2 90 3 2 AO 5 2 BO 4 3

2 2 DO 3 2 EO 5 2 FO 4 3

2 2 92 3 2 A2 5 2 B2 4 3

2 2 02 3 2 E2 5 2 F2 4 3

Byte = Zero;

Half·carry from bit 3;

I nterrupt mask

Negative (sign bit)

Zero (byte)

Overflow, 2's complement

Carry from bit 7

Reset Always

Set Always

Test and set if true, cleared otherwise

Not Affected

Condition Code Register

Least Significant

Most Significant

BOOLEAN/ARITHMETIC OPERATION
INHER (All register labels

OP ~ # refer to contents)

A+M--+A

B+M--+B

1B 2 1 A+B--+A

A+M+C--+A

B+M+C--+B

M--+M

43 2 1 A--+A

53 2 1 B--+B

00 - M--+M

40 2 1 00 - A--+A

50 2 1 00 - B --+ B

19 2 1 Converts Binary Add, of BCD Characters
into BCD Format

:1 CO [UIIIlIJ:J 49 2 1 <-
C b 7 <- bo

59 2 1

:l Co 46 2 1 --+ IIIIIIII~
56 2 B I C

b7 --+ bO
1

Ml <-
48 2 1

: I
0 <- I 1 I 1 1 1 1 1 1<- 0
C b7 bo

58 2 1

"} ~ 47 2 1 A 011111111--+ 0
b7 bo C

57 2 1 B

;}
--+

44 2 1 o --+1 1 1 1 1 1 1 1 I --+ 0
b7 bo C

54 2 1

A-M--+A

B-M--+B

10 2 1 A-B--+A

A-M-C-->A

B-M-C-->B

CONDITION CODE REGISTER NOTES:

(Bit set if test is true and cleared otherwise)

Q) (Bit V) Test: Result = 10000000?

@ (Bit C) Test: Result = OOOOOOOO?

CONDo CODE REG.

5 4 3 2 1 0

H I N Z V C

t • t t t t
t • t t t t
t • t t t t
t • t t t t
t • t t t t

• • t t R S

• • t t R S

• • t t R S

• • t tQ) 0 '. • t teD 0
• • t teD 0
• • t t t @

• • t t ® t
• • t t ® t

• • t t ® t
• • t t ® t
• • t t ® t
• • t t ® t
• • t t® t
• • t t ® t

• • t t® t

• • t t® t
• • t t® t
• • t t® t
• • R t® t
• • R t® t

• • R t® t

• • t t t t
• • t t t t

• • t t t t

• • t t t t

• • t t t t

@ (Bit C) Test: Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)

® (Bit V) Test: Set equal to result of N Ell C after shift has occurred.

TABLE 2-1.4-1. Arithmetic Instructions

2-5

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set the carry
bit, as indicated in the following table:

State of Upper Initial Lower Number Added State of
C-Bit Half-Byte Half-Carry Half-Byte to ACCA C-Bit

Before DAA (Bits 4-7) H-Bit (Bits 0-3) by DAA After DAA
(Col. 1) (Col. 2) (Col. 3) (Col. 4) (Col. 5) (Col. 6)

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 0-3 06 0

0 A-F 0 0-9 60

0 9-F 0 A-F 66
0 A-F 0-3 66

0-2 0 0-9 60
0-2 0 A-F 66
0-3 0-3 66

NOTE: Columns (1) to (4) of the above table represent all possible cases which can result from
any of the operations ABA, ADD, or ADC, with initial carry either set or clear, applied
to two binary-coded-decimal operands. The table shows hexadecimal values.

Effect on Condition Code Register:

H Not affected.

I Not affected.

N Set if most significantbit of the result is set; cleared otherwise.

Z Set if all bits of the result are cleared; cleared otherwise.

V Not defined.

C Set or reset according to the same rule as if the DAA and an immediately preceding ABA,
ADD, or ADC were replaced by a hypothetical binary-coded-decimal addition.

TABLE 2-1.4-2. Effect of DAA Instruction

2-6

2's complement b7 b7 b7

overflow carry ACC ACC OPERAND (OR ACCB)

after after after before before

0 0 0 0 0

1 0 1 0 0

0 0 1 0 1

0 1 0 0 1

0 0 1 1 0

0 1 0 1 0

1 1 0 1 1

0 1 1 1 1

TABLE 2-1.4.1-1 Truth Table for "Add with Carry"

The SUBA instruction subtracts the operand data from ACCA:

b7 b6 b5 b4 b4 b2 bi bo

ACCA 0 1 1 0 0 1 0 1 $65

OPERAND DATA 1 0 0 0 0 1 1 1 $87

ACCA 1 1 0 1 1 1 1 0 $DE with a borrow

BORROW 1

The SBCA instruction subtracts the operand and the borrow (carry) it from ACCA.

b7 b6 b5 b4 b3 b2 bi bo

ACCA 1 0 1 1 1 1 0 0 $BC

OPERAND DATA 0 1 1 1 1 0 1 1 $7B

BORROW (carry) 1 C=l

0 1 0 0 0 0 0 0 $40 no borrow

BORROW 0

The 2's complement overflow and carry bits are set in accordance with Table 2-1.4.1-2 as a result of

a subtraction operation.

2-7

2's b7 b7 b7

complement carry ACCA ACCA OPERAND

overflow after after before before

0 0 0 0 0

0 1 1 0 0

0 1 0 0 1

1 1 1 0 1

1 0 0 1 0

0 0 1 1 0

0 0 0 1 1

0 1 1 1 1

TABLE 2-1.4.1-2: Truth Table for "Subtract with Borrow"

2-1.5 ADDITION AND SUBTRACTION ROUTINES

Most MPU based systems will require that the arithmetic instruction set be combined into more

complex routines that operate on numbers larger than one byte. If more than one number system is used,

routines must be written for each, or conversion routines to some common base must be used. In many cases,

however, it is more efficient to write a specialized routine for each system requirement, i.e., hexadecimal

(HEX) versus unpacked BCD multiplication, etc. In this section, several algorithms will be discussed with

specific examples showing their implementation with the MC6800 instruction set.

The basic arithmetic operations are binary addition and subtraction:

ALPHA + BETA = GAMMA

LDAA ALPHA

ADDA

STAA

BETA

GAMMA

ALPHA - BETA = GAMMA

LDAA ALPHA

SUBA

STAA

BETA

GAMMA

These operations are so short that they are usually programmed in line with the main flow. Addition

of single packed BCD bytes requires only one more instruction. The DAA instruction is used immediately after

the ADD, ADC, or ABA instructions to adjust the binary generated in accumulator A (ACCA) to the correct

BCD value:

Carry ACCA

X 67

X +79 --
0 146

46

LDAA

ADDA

DAA

STAA

01100111

carry 0111 1001

o 11100000

1 0100 0110

ALPHA

BETA

GAMMA

= ACCA

= MEMORY

= ACCA

= ACCA

2-8

binary result

after DAA; the carry bit will also be set

because of the BCD carry.

Since no similar instruction is available for BCD subtraction, 10's complement arithmetic may be

used to generate the difference. The follow routine performs a BCD subtraction of two digit BCD numbers:

LDAA #$99

SUBA BETA (99-BETA) = ACCA

SEC carry = 1

ADCA ALPHA ACCA + ALPHA + C = ACCA

DAA DECIMAL ADJUST (-100)

STAA GAMMA ALPHA-BETA = GAMMA

The routine implements the algorithm defined by the following equations.

ALPHA - BETA = GAMMA

ALPHA + (99-BETA) -99 = GAMMA

ALPHA + (99-BETA+1) -100 = GAMMA

9's COMPLEMENT OF BETA

10's COMPLEMENT OF BETA

One is added to the 9's complement of the subtrahend by setting the carry bit to find the 10's complement of

BETA which is then added to the minuend ALPHA and saved in ACCA. The DAA instruction adjusts the result

in ACCA to the proper BCD values before storing the difference in GAMMA. Since 100 has been added (99 +

1) to the subtrahend by finding the 10's complement, 100 must also be subtracted. This is accomplished by the

DAA instruction since the resulting carry is discarded.

Multiple precision operations mean that the data and results require more than one byte of memory.

The simplest multiple precision routines are addition and subtraction of 16 bit binary or 2's complement

numbers. This is often called double precision since 2 consecutive bytes are required to store 16 binary bits of

information. The following routines illustrate these functions:

LDAA ALPHA +1

LDAB ALPHA

ADDA BETA +1 ADD LS BYTES

ADCB BETA ADD MS BYTES WITH CARRY FROM LS BYTES

STAA GAMMA +1

STAB GAMMA

LDAA ALPHA +1

LDAB ALPHA

SUBA BETA +1 SUBTRACT LS BYTES

SBCB BETA SUBTRACT MS BYTES WITH BORROW FROM LS BYTES

STAA GAMMA +1

STAB GAMMA

Four digit BCD addition can be accomplished in a similar fashion with the use of the DAA

instruction. The following routine has been expanded to a 2N digit addition where N is the max number of

packed BCD bytes used:

2-9

START CLC
LDX #N

LOOP LDAA ALPHA ,X
ADCA BETA ,X
DAA
STAA GAMMA ,X
DEX
BNE LOOP

NOTE: ALPHA, BETA, and GAMMA must be in the direct addressing range and adjusted for

offset for this example (See indexed addressing for further details).

This routine uses indexed address to select the bytes to be added, starting with the least significant.

The carry is cleared at the start and is affected only by the DAA and ADCA instructions. This allows the carry to

be included in the next byte addition.

Expanding sllbtraction to multiple precision is accomplished in a manner similar to the single byte

case; 10's complement arithmetic is used. A suitable routine is shown in the Assembly Listing of Figure

2-1.5-1.

This routine first finds the 9's complement of the subtrahend and stores it in the result buffer. The

carry is then set to add 1 to 9's complement, making it the 10's complement which is then added to the minuend

and stored in the result buffer. Note that this routine has 2 loops, the first to calculate the 9's complement, the

second to add anddecimal adjust the result. The decimal add and subtract routines operate on 10's complement

numbers as well as packed BCD numbers. A number is known to be negative in 10's complement form when

the most significant digit in the most significant byte is a 9. When in the 10's complement form, this digit is

reserved for the sign and the actual number of magnitude digits is one less than 2 times the number of bytes. A

routine similar to the above subtract program will convert the 10's complement number to decimal magnitude

with sign for display or output purposes:

DCONV CLR SINFLG CLEAR SIGN FLAG
LDAA RESULT+l GET MSBYTE
BPL END POSITIVE: END
LDX #8 NEGATIVE:

DCONVl LDAA #$99
SUBA RSLT,X SUBTRACT RESULT FROM
STAA RSLT,X ALL 9's INCLUDING
DEX SIGN DIGIT
BNE DCONV1
LDX #8
CLRA
SEC

DCONV2 ADCA RSLT,X ADD 1 TO RESULT
DAA
STAA RSLT,X
DEX
BNE DCONV2
DEC SINFLG SET SIGN FLAG

END RTS RETURN

The sign flag would be used to indicate plus when clear and minus when not clear.

2-10

00010
000:30
OOOE.O
00070
00080
000'30 0100
000'32

000'34
000'35
000'36

.000'37
00097
000'37
000'37
000'3?
000'37

00100
00110

)120
00130
00140
00150
001~,O

00170
00180
001'30
00200
00210
00220
00230
00240

00251
00252

00254

0100
0103
0105
fl107

109
lOA
10e
10F
110
112

1J114
0115
0117
0118
011A

0000
000:::
0010

CE 000::::
::::E. '39
AO 00
A7 10
09
26 F7
CE 0008
OD
AE. o~=:
A9 10
19
A7 10
09
26 FE,
39

S'r'MBDL TA:E:LE

NA,..l
OPT

:S:UBTF.~H EG!U
,..1 I t"iUEt-i EG!U
F.':S:L T EOU

D:5:UB 1 E.
:S:'iME:!I t'lE"'l=MEMSUE:
o

16
OPG 256

• DECIMAL SUBTPACT SUBPOUTINE FOR 16 DECIMAL DIGIT

• TH I :5: POUT I ,..iE :S:U:E:TF.~ACTS THE :S:IJ:BT~?AHEtiD (" SUE:TF.~H II ::.

• FPOrl THE ,..1 I t"iUEND (",..1 I NUEN "::' At-iII PLACES: THE
• D I FFEF.~Et~CE Iti "F.~:S:L T • "

• THE MEMORY ALLOCATION IS AS FOLLOWS:
• ADDPESS PANGE LSB
• SUBTRAHEND 1-8 :::
• MINUEND '3-16 16
• DIFFERENCE 17-24 24
• ADDPESS VALUES APE DECIMAL

IISUB LD::< ~~:=~ :5:ET B'lTE COUtiTEF.~

DSUE: 1 LDA A ~~$9'3

SUB A SUBTRH !I>:: FINn 9---S COt'lPLEMEtiT
:5:TA A J;:~SL T !I ~:< USE "P:S:L T" AS TE,..lP STOPE
DE>:: DECPE"'lEt-iT B 'TE COUt-~TEP

Br-iE D:5:UB 1 LOOP '-'t-~T I L LA:S:T B'iTE
LD;:'=: ~~;=: RESTO~~E B 'TE COUt~TER
SEC :5:ET CAF=:~F.:·r' TO AIID 1 TO COt'lPL

DSUB:::: LDA A ,..1 I NUEt-~ !I ;:-:: LOAD t'l I f'iUEt-iD
ADe A P:S:L T !I::< ADII CDt'lPLE,..lENT SUB T F.~ A H E ti II
DAA DEC It'lAL ADJU:S:T
:5:TA A P:5:L T !I;:':: STORE II I FFEF.'EtiCE
DE;:':: DECREMEtiT B'lTE COUr-1TEF.:
E:r-iE D:5:UB2 LOOP '-'t-iT I L LAST B'y'TE
PTS RETURN TO HO:5:T PROGRAt1

• THE EXECUTION TIME OF THIS SUBROUTINE IS
• 384 MPU CYCLES EXCLUDING THE RTS.

-~UB 0100 DSUBI 0103 DSUB2 0110 MINUEN 0008 RSLT 0010
_-dBT~~H 0 I) 0 0

FIGURE 2·1.5·1. Decimal Subtract Assembly Listing

2-11

2-1.6 MULTIPLICATION

Multiplication increases programming complexity. In addition to the addition and subtraction

instructions, the use of the shift and rotate instructions is required. The general algorithm for binary

multiplication can be illustrated by a short example:

(1) Test the least significant multiplier bit for 1 or O.

(a) If it is 1, add the multiplicand to the result, then 2.

(b) If it is 0, then 2.

(2) Shift the multiplicand left one bit.

(3) Test the next more significant multiplier bit; then la or lb.

DECIMAL

13

BINARY

1101

1011

MULTIPLICAND

11

13

13

143

1101

1101

MULTIPLIER LSB=I; ADD MULTIPLICAND TO RESULT (A)

(A)

(B) SHIFT MULTIPLICAND LEFT ONE BIT (B)

100111 (C) LSB+1 = 1; ADD MULTIPLICAND TO RESULT (C)

1101 (D) SHIFT MULTIPLICAND LEFT ONE BIT (D)

1101 (E) LSB+2 = 0; SHIFT MULTIPLICAND LEFT 1 (E)

10001111 (F) LSB+3 = 1; ADD MULTIPLICAND TO RESULT (F)

128 + 15 = 143

Signed binary numbers in 2 's complement form cannot be multiplied without correcting for the cross

product terms which are introduced by the 2 's complement representation of negative numbers. There is an

algorithm which generates the correct 2's complement product. Since positive binary numbers are correct 2's

complement notations, they also may be multiplied using this procedure. It is called Booth's Algorithm.

Simply stated the algorithm says:

(1) Test the transition of the mUltiplier bits from right to left assuming an imaginary 0 bit to the

immediate right of the multiplier.

(2) If the bits in question are equal, then 5.

(3) If there is a 0 to 1 transition, the multiplicand is subtracted from the product, then 5.

(4) If there is a 1 to 0 transition, the multiplicand is added to the product, then 5.

(5) Shift the product right one bit with the MSBit remaining the same. (This has the same effect as

shifting the multiplicand left in the previous example).

(6) Go to 1 to test the next transition of the multiplier.

2-12

The following example (Figure 2-1.6-1) shows the typical steps involved in an actual calculation.

A Flowchart and Assembly Listing for a program using the MC6800 instruction set is shown in

Figures 2-1.6-2 and 2-1.6-3, respectively. The results of simulating this program, Figure 2-1.6-4, shows worst

case processing time to be approximately 1.662 msec. The worst case condition results when alternate

additions and subtraction are required in each of the 16 loops required to have the result in the proper location.

Sign Bits 5 Bits

~:9 = -3
= -5

o 0 \0 0 0 0 0 0 1 1 1 ~ = + 1 5

""" 1 0 Bits

o 1

o 1 ~O)

o 000 0 0
+00001

o 0 0 0 1
00000 1
o 0 0 000

+ 1 0

o 1

o
+000011

o 0 0 0 0 1
000 000 1
000 0 000

~~ 0 0 0 ~..-0_1 __ ..,.!,
Sign 15

Multiplicand

Multiplier

o to 1; subtract by adding the 2's

complement of the multiplicand

PRODUCT

Shift PRODUCT

1 to 1 shift PRODUCT

1 to 0 add

PRODUCT

Shift PRODUCT

o to 1 su btract

PRODUCT

Shift PRODUCT

1 to 1 shift

1 to 1 shift

FIGURE 2-1.6-1. Multiplication Using Booth's Algorithm

2-13

Add the Multiplicand
to the Product with

the MS Bytes Lines Up

Return
from

Subroutine

YES

YES

Clear the Working Registers
This Includes the Previous LS Bit

of the Multiplier Test Byte
Initialize the Shift Count to 16

Subtract the Multiplicand
from the Product with
the MS Bytes Lined Up

Clear the Previous
LS Bit of the Multiplier Test Byte

Shift the Multiplier Right One
Bit with the LS Bit Going into

the LS Bit of the
Multiplier Test Byte

Shift the Product Right One Bit,
the MS Bit Remaining the Same

Decrement the
Shift Counter

FIGURE 2-1.6-2. Flow Chart for Booth's Algorithm

2-14

NO

0001 (I
00020
00030
0'004 (I
00050
00060
I) (I 0';::- (I

o (I o~=: (I
(I I) CI? (I

001 00
001 1 0
00120 I) ;=: n
001 ~: (I 0 ::;:0 00
00140 (I : :; ~:.: on
001 50 OO.~:4 0(1

0Olf.O (,0'':::::: 00
001 7,-,

i "_I

0(11 - (I -' -,
00 1 90
00200
00.='1 1)

Oi=~':-: (I

o ... ~·=: (I
240
,::~5 I)

:7:.:;. I) U4 no

-,::.
:-
1-.

4
1

•
• '. ..
•
•
•
'I'

":./ ":.;;
"

i ! -
FF
.. ,.
..
•

nAt'1 r'1UL T 16
O;::'T t'1t:: t'1

T HIS PO U T Ir'4 E t'1 U L TIP LIE -s: T ! ,.I iJ j 6 E. I T c: ", S
COMPLIMENT ~UMPERS USING BOnTHS 8LGORITHM

THE MULTIPLIER = Y = i(~SB)~Y(L5B) = Y~Y+l
THE MULTIPLICAND =~X=~X(M:B)~XX(LSB) = \X~)X+l
r i-i E !=' P 0 DU C T = U = U (t'E: F: ') ~ U + 1 ~ i..l + c: ~ U + 3
THE TEST BYTE FOR Y(LSB-l) = FF

Of;:~(3

~~t'1B

~:t'1B

er'1B
:;;:r'1B

4
1

THE t,t!)!... T I p~ I EP i=inp T Hf~ r'1ULT I C:'!._l '=:At·.j D i:1US T PE
:: TOPED 1 ['1 ",' i=tr'1D ::{':< F:E'S:PEC T I \"EL \' ~ THEH ,;) ='q TO
i"k!LT16 ! .. JILL l':;Ef'1E;:;:~ATE iHF .::"':S: COr'1 P L Ii'ltEr'iT e':;'ODt',::T
OF Y AND ~X IM U .

TH~=- ;.1UL T I ;::'L. I CAt·{[(,} I LL.. bE iJr'iCHh r16.:=n .P·4E
MULTIPLIE? WIL~ BE DESTROYED.

FIGURE 2-1.6-3: Assembly Listing for Booth's Algorithm (Sheet 1 of 2)

2-15

o O,=:7 n

002'?0

0400 CE 0005
04(13 4F--
04 (14 A? S·::~

o (I .~: (I (I I) 4 06 C'::;'
00310 040;:' i.:"6 FE:
00320 0409 CE 0010
o (133 I) (I'::;' 0 C 9 -::. ::; 1
(I (I ':: 4 (I 04 0 E ::: 4 0 1
00350 0410 16
0036 (I 041.1 9·:; '-.,::
o (13 ? 0 04 1 :::: 2? 1 II
I) (I :.: .~: I) (14 1. S 5 D
00390 041t:. 27 OE
00400041::: 96 :::3
(I 04 1 (I /}:1 1 A D~. ::;: 4
o 0 4~::: I) (14 1. C 9 I) '::::3
(I (14 3 C' 04 1. E Ii i:;: ::: 2
0044 (I 04;:;: (I 97 !=::::i

r'1UL T 1.,:. i_Ii>:;
eLf::: H

L ;::. 1 :: T ~i FI
DE::<
BnE
L.D><
LDA A
AND A
TAE:
EOP Ii
E:EO
TS:T B
BEG
LDA A
LDA .B
SU,t: FI
::f;C B
'S:TA A

00450 0422 D7 84 STA B
00460 0424 20 OC BRA
00470 0426 96 35 ADD LDA A
00480 0428 D6 84 LDA B
00490 042A 9B 8~ ~DD A
00500 042C D9 ~~ ADe B
00510 042E 97 85 STA A
00520 0430 D7 84 STA B
00530 043~ ?F 0088 SHI~T CLP
00540 0435 76 0080 ROR
00550 0438 76 0081 POP
(1056 I) 043B 79 I) O::~;::: ~:OL

00570 043E 77 0084 ASR
00530 0441 76 0085 POR
00590 0444 76 0086 POP
00600 0447 76 0087 ROR
00610 044A 09 DEX
00620 044£ 26 BF BNE
00630 044D 39 RTS
00640 END

ij'-l ,><

LF'l
~~ 1 ,_,
/+1
~~ 1

FF
S:H IF r

ADD
'-'+1
U
;:':;';':;+1

U +-1
u
'~:'-j 1FT
U+1
U
;;-::::<+ 1

U+1
U
FF
l
\'+ 1
FF
U
U+1
U+2
U+~:

LP2

CLEA~~ THE WORKING REGISTERS

InI T"':_ SHIFT CDut'iTEP TO U:,
!:ET \' (LS.B IT')

S~VE;(LSBIT) IN ReeF
DOE? Y(LSBIT) = Y(LSB-l) ?
'/E:: ':3U TO :S:H 1FT ':;;'OUT I t'~E
riO: DOE'S:''''':: L.S:B I T.:r = (I "7'
'r'E'S:: <3D TO ADD ROUT I r-iE
NO: SUBTRACT M0LTIPLICAND
PRODUCT WITH THE MSBYTES
LInED UP

THEN GO TO SHIFT ROUTINE
ADD THE r'1UL T I F'L I CAt-iIi TO THE
PPODUCT r.d I TH THE r·1SB 'TES
~ I r-iED UP

CLEAR THE TEST BYTE
SrlIFT THE MULTIPLIER RIGHT
ONE BIT WITH THE LSBIT
IHTD THE LSBIT OF FF
SHIFT THE PRODUCT RIGHT ONE
BIT. THE MSB REMAINING THE
~:A~'1E

DECREMENT THE SHIFT COUNT
IF NOT 0 CONTINUE

FIGURE 2-1.6-3: Assembly Listing for Booth's Algorithm (Sheet 2 of 2)

2-16

.:: TPT; DB 11:::,.
~rRT; ~D P,X,A~B~T .
. =:: r" i~:~"r; t·~ ~~: ~)!=i.

F' 20 U

~M JO,OAA~OAB~5~,55.
::. ST!~:T

~;:~ F.: T ~ 1. B 1. 6 •
~: T P T; II F: l~,.

t:? ;:: I) 0 •
I tE:T Fi=iUi._T
HH Ii T

0001 0000 lC (7 0001635
? Dl"1 !:: (I ,:::

T
Dr'1 f (I •

(I 0::: 0 0 I) 0 0 5.'5 '5 S .-E;.,,;;;.;_: __ ;: :; E ... __ '; :' 1 --.C.-7
? STi~'T

1. 6 .

. ~: r j~~ T; He

.~: T F: T; :~: P F' 4 (I I) , T (I •

? SM 80~7F,OF~q7F,OFF

S~ 80~7F~OFF,7F~OF~.

? P;~ C 0
1 H.=:T ,=-!=tUL. T
HH;:' >:~ T

0001 0000 .FE 7F 0001256
? '[11'1 ;:; 0 ~ ::::

0080 00 00 7F FF 3F FF 00 01

FIGURE 2-1.6-4: Simulation of Booth's Algorithm

2-17

In the transaction terminal design described in Chapter 6, it is necessary to multiply price by

quantity, price by weight, and total price by tax. All these operations, as defined, require a 5 by 3 digit

unpacked BCD multiply, where unpacked means one BCD digit per byte. Decimal point poisition is

determined by the executive program's use of the subroutine buffers. The main multiply loop XKMPLY (refer

to the flow chart of Figure 2-1.6-5 and the Assembly Listing of Figure 2-1.6-6) is similar to the basic multiply

algorithm shown in the first example of this Section except that it has been modified to test the shifted multiplier

byte for zero. This minimizes the number of shifts required to generate the correct result. This result or partial

product is generated in ACCA and then decimal adjusted to determine the number of tens and the number of

ones it contains. The number of ones results is in ACCA and the number of tens is in ACCB. ACCA is then

added to the result buffer for the present partial product, ACCB is added to the result buffer for the next more

significant partial product. The maximum number stored in any result buffer before it is added to the new partial

product is 18 (9 max from its previous decimal adjustment plus 9 max from number of tens from the adjustment

of the next least significant partial product.) This value, when added to the maximum partial product of 81, is

less than 255, the maximum value in one byte so no carry or overflow will occur. This combined with the fact

that the multiplication progresses from the least to the most significant byte says that the last partial product to

be adjusted will be for the most significant result and that it and all previous result bytes will be in the proper

decimal format.

The simulation for XKMULT gave the following results:

99999

X 999

99899001

00009

X 007

63

00079

X 700

55300

00005

X 100

500

in

in

III

in

4.651 ms

1.108ms

1.426 ms

974 ms

From this, the worst case multiplication is approximately 4.7 milliseconds, most of which is used up

in determining the number of 10's and 1 's in each partial product. The program is general in nature, i.e., it can

easily be expanded (or shortened) to any number of unpacked BCD digits by increasing or decreasing the

maximum value of the various address pointers and their corresponding memory buffers.

2-1.7 DIVISION

Another arithmetic routine developed for the transaction terminal demonstrator divides a timing

2-18

MULTCND T1T2T3T4TS-+TN

MUL TPLR X SI S2 S3 -+ SM

RESULT Rl R2 R3 R4 RS R6 R7 RS -+ Rp

Initialize Result Address Pointer: P = 8

Initiali;~e~U~~;~~~ '!.u;~~:s~~:":'~ M = 3

If Multiplier Digit = 0
Skip Partial Product Loops

If Multiplicand Digit = 0
Skip this Partial Product Loop

Right Shift
BCD Multiplier

One Bit

Set Multiplicand
Pointer for Next
Multiplicand Digit

Add Partial
Product to
Accumulator A

Decimal Adjust
Partial Product
in ACCA

ACCA = # of Units
ACCB = # of Tens

Update Result Buffer
Set Result Pointer for
Next Multiplicand Digit

NO:
Get Next Multiplicand
Digit

YES:
Reset Result Pointer
for Next Multiplier
Digit

YES

Has the Last Multiplicand
Digit Been Used?

Set Result and
Multiplicand Pointers

for Next
Multiplicand Digit

Set Result and
Multiplier Pointers
for Next
Multiplier Digit FIGURE 2-1.6-5. XKMUL T Flow Chart

NO

NO:
Get Next
Multiplier Digit

2-19

Has the Last Multiplier
Digit Been Used?

YES:
Return to Main Program

00100
00100
00110
00120
00130 5860
00150
00160
00170
001.80
00190
OO,~OO

00210
00220
00240
00250
00260
00270
o Oi~::: 0
00290
00300
00310
00320

•

OPT
:'~At'l
OPT

L
::-::~:::r'1UL T
r'lEt1
1 • 0

OPG $5860
•• THIS SUBROUTINE MULTIPLIES THE 5 DIGIT DECIMAL
•• NUMBER STORED IN THE 5 BYTES STARTING AT
•• XKMT (ES) BY THE 3 DIGIT DECIMAL NUMBER StORED
•• IN THE 3 BYTES STARTING AT XKMS (E2) AND
•• STORES THE RESULT IN THE 8 BYTES STARTING AT
•• XKMR (EA). THE MULTIPLICAND [T], THE
•• MULTIPLIER (S] AND THE RESULT [R] ARE UNPACKED
•• RIGHT JUSTIFIED BCD NUMBERS
•• XKMTMM = M = INDEXED ADDRESSING POINTER FOR S
•• :: r'lA::':: ~~ OF DEC I j'lAL DIG I TS I t'i 'S:
•• XKMTMN = N - INDEXED ADD~ESSING POINTER ~OR T
•• = t'lA;:':: ~~ OF DEC rr'lAL DIG I TS I r-i T
•• XKMTMP = P = INDEXED ADDRESSING POINTER FOR R
•• = t'lR>-:: ~~ Ot=" DEC I r'1AL DIG I TS I r'1 R
•• ;:·:;t::J'fS:CR -:: ;'lU'- T I F'L I CAND Ii I G I T 'S:CRATCH F'RD
•• BY GHANGr~G THE POINTER INIT~L •• AND THE
•• MEMORY BUFFER SIZES LARGER NUMBERS M8Y BE
•• MULTIPLIED WITH THIS SUBROUTINE.

FIGURE 2·1.6·6: XKMUL T Assembly listing (Sheet 1 of 2)

2-20

00350
00360
00370
00380
00390
00400
00410
00420
0043n
0044
0045
0046
0047
004S
004-~ -'

5:::6 (I CE 000:::
5:::63 DF F6
5:::65 4F

5~::'::'9 26 FE:
5:::6E: I::E I) 0 1)3
5:::6E E6 E 1
5:::70 DF F2

5 1::74 t=~E
c: ,-, -,-, _":t f' ,. 86

0005
E4

;:-:;~(r'1UL T Ln;:·::
·S:T;:·:;
CL~~ Ft

~:-::Kr'1LP 1 'S:TA A
DE>:;
Br'iE
'_II::-:;

::<~:::t'l:~: TP L DR f:
-::T>::
BEl)
LIt;:.::

>:~:::r'l::-:; TT ~_DA A
::TA A
BEG!
F'S:H E:

00500 587E 4F CLR A
00510 S87F 54 XKMPlY LSP B
00520 5380 24 02 prr
00530 ~882 9B F8 ADD H
00540 5884 5D ~KMSHF TST B
00550 5885 27 05 BEO
00550 588? 78 OOF8 ASL
00570 588A 20 F3 BRA
00530 ~88C 03 XkMC4 DE~
00590 583D DF F4 STX
00600 588F DE F6 LDX
00610 5391 AB E9 ADD A
00620 589? 81 OR ~KMLP3 CMF' 9
00630 5395 2D 05 BLT
00640 5397 30 OA XkMCl SUB R
00650 58~9 5C INC B
00660 5S9A 20 F7 B~A

00670 SS9C ~B E8 ~KMC2 ADD B
00680 S89E 87 ~9 STA A
00690 S3AO E7 E8 STA B
00700 5882 J3 PUL B
00710 58A3 09 DEX
00720 58A4 D~ ~6 STX
o (17 ::: (I 5 ::: A'::' DE F 4
00740 5;:: A::: c. ,:- CD
(1075 (I 5~::~A ~;!=-

o O?~- (I S:::AB -3::' F7
o 0 ('7 0 5 ':; A II:::; f; I) S
(107::: 0 S'::AF 97 F?
(I I) ('9 (I 5 ;:: PI:' :'
0080n 53B2 7~ OOF?
I) (131 0 5::: B'5 [il:: F,~

I) 0::::2 (I 5;:: E: 7 o·~

(11):::3 (I 5:::B3 E':- :84
(10340 5:::BA :::::;
00850 SSBB (,S OOF?
(I O'::65·::BE (:-~

(10:::7 5::: F:;: 2 (I 1::(

00'::::

;="S:H A
:....DA 9
ADD rl
-~:TA 8
c'UL A

':<:<" r'1D':: F' Ii EC
>.: r::' r-~ >:: r :~: 1_ D ';.::

DE>:;
Br',E
PT'::

DE;:'::
B~'9

Er'1D

", .. "-. , ... :..

::<Kr'lS-1 !I >:;
;:< K r'1 T t'l r-l

::< t(,..l·S: I:: ~~
;:-:;vr'lTZO

•• I~IT'L P=8=N+M ••
I nIT .. ' ,_ P POI r'i T E ~~

CLEAR RESULT BUFFER

•• I~IT'L M=3 ••
B:::"s"

:-A',/E /"'1 PO I t-1TE~~
IF B:::Q THEN GO TO NEXT
•• I~IT~L N:::5 ••

SAVE T IN XKM:CR
l:3i] TO i"iE>::T .. T"
S:A',/E .. :S:" lJn S:TRCJ:::

11.::-.11

..;.

RIGHT SHIFT AceB INTO CARRY
~KMSHF IF C=O GO TO :HIFT T
X(~SCR NO~ 8:::A+T

:HlcT T: DOES gCCB=O
XKMC4 YES~ ~INISHED WITH THIS T.
~KMSCR NO~ LEFT SHIFT T 1NE BIT

r'~ '=r'~-1

::-:: k: r-1 T r'1 F'
XKMR-l~X 8DD R TO AeCA
~; 1 0 DI::-C I r'1gL ADY-'~:T A
::<Ki"'lC2 A = ~~;JF 1 "'S:
~~ 1 0

B ::: ~ ~ J F 1 n .. ' ::::

~KMP-~!I\ ~DD R-l TO ReeB
\VMR-l~~ ~ = R + A
~KMR-2~~ R-1 = R-1 + B

.:< ~::: 1'1 T r'1 F'
>-:: t::: t'1 T ~'1 f'~
:« f'1>< T T

.. &.~.
'It" _I

>< < r-1 T 1'1 ~'+ 1
>:: < (-1 T "1 t·,

~~t:'::T!J~:E .. '::" FPDr'1 ::TACY
P=F'-1

•• INIT'l 5=N ••
I:' =F' +-1--1':: I nIT .. ' L ")

;--1='"'1--1
I 1= r-1 ~ if] T 0:3 0 TO r'~ E >:: T

r-i = n - 1

'1 ::-.1. . ..:.

FIGURE 2·1.6·6: XKMUl T Assembly listing (Sheet 2 of 2)

2·21

Initialize Shift Count to 8 (S = 8)
Clear Quotient Buffers

LSB Goes into Carry

NO

Save Shift Count for Determining
the Offset of the Remainder

Shift Divisor Back Right One Bit

Shift Quotient Left One Bit
with LSB = 1

Divisor is Now Left
Justified and the Shift
Count is in ACCB

NO

Subtract: Dividend (MS Byte) =
Dividend (MS Byte) - Divisor

Subtract 9 from Saved Shift Count

Store Result in Remainder
Displacement Buffer

YES

(DVDEND)

Shift Quotient Left One Bit
with LSB = 0

Shift Dividend Left One Bit with:
LSB = 0 and MSB into Carry

YES NO

FIGURE 2-1.7-1. XKDIVD Flow Chart

2-22

count accumulated in the index register (up to 4 HEX digits) by the constant 7. This routine is used to determine

an average module width during a portion of the UPC label scan routine. (See the description of the UPC label

scanner in Chapter 5 for further details.) The routine permits division by a 2-digit Hex number as shown in

Figures 2-1.7-1 and 2-1.7-2; it calculates the displacement of the remainder left in the dividend and sets the

quotient to FFFF if division by zero is attempted.

The algorithm used for this straight forward binary division is as follows:

(1) Left justify the divisor byte.

(2) If the MS byte of the dividend is less than the divisor byte, shift quotient left one bit with the LS

bit = 0; then 4.

(3) If the MS byte of the dividend is greater than or equal to the divisor, (2) shift the quotient left one

bit with the LS Bit = 1; (b) subtract the divisor from the MS byte of the dividend, the result

being stored in the MS byte of the dividend; then 4.

(4) Shift the dividend left one bit with the LS Bit = 0, and the MS Bit going into the carry.

(5) If the carry is set, go to 3a.

(6) If the carry is not set, go to 2a.

The process continues until the number of quotient shifts equals 8 + the number of shifts required to

left justify the divisor. A simulation (Figure 2-1.7 -3) shows a typical divide takes approximately 1 millisecond.

This section is, by no means, comprehensive. It is intended to provide some examples that can be

used as is or that will suggest the direction for modifying them for other specialized applications.

00100
00000
00010
000;:::0 5900
o I) (I~; I)
00040
00050
000::·0
00070
I) I) 0:: (I
00090
0(11)0
OOil0
00120
00130
00140
00150
001.':,0
00170
(I (I 1 ~:; (I
(1) 1. ':'40
I) 1.')2 0 0
f) 0·:::1 0
(I '::c: 0
0::::::0
(I 240
;) .:::50

J?T L
r'~8r'1 >:1< Ii I 1,.,1 Ii
CPT t'lEt'1
:JF:J~ 1;5'3 (I 0

• SUB~~UrINE TO DIVIDE 8N U~iIGNED 4 DIGIT
• HEX NUMBER [16 BIT BINARY] BY AN UNSIGNED
• c~ D I :; I T 1-1 E. ;:.:; ri U i'l E: E P r: ':; BIT B I r'1 A;:;;~ \'] •
•
• THE DIVISOR = X = ~KDVS~ = (F9J
• T :.-f E D I ',.,! I II E j"i D = '/.:: "1 > ,",' (" ' .. _ >
.. - \KDVND,XKDVND+l
• = [FA~FBJ
• THE QUOTIENT = O(~)~](~)
• = XkOUOT~~~QUOr+l
• = [FC,FDJ
• TrlE SHIFT COUNTER = S = ACeB
• THE '_EFT D r:''::'LACEP1Er'iT 0;:- TYE ~'tJ'1A I r-iDEP = ;:<i-<D:::;:P' ..
.. '- [FE J

•
• T!-f E D I '/ I .::] ::;;: A ("i D THE D I ./ I II :::: r-i[l \'1 U::;. T B E ~ 0 A II E II
• INTO XKDVSR AND \(DV0D,XKDVND+l RESPECTIVELY
• THEN A JSR TO XkDIVO.
•
• Trl~ ?~MAIND~R WILL BE I~ (M> [XKDVNDJ,
.. .::1-/ I!= rED i_E!=T THE ~:: OF E: ITS: I r"1D I CATEr' I n :';~t:'Tf'S:F'L

.. TH::: D I \,1 IS:c]P (,I I i_L BE f: P'lA~~ I L.... ~_EFT JIYS'T I F I ED ..
FIGURE 2-1.7-2: XKDIVD Assembly Listing (Sheet 1 of 2)

2-23

o OZ:f. (I 5'3 ("I ' .. ,:' (,':;:

00270 59 2 ?~ OOFe
00290 5? ~ ?~ OocD
o OE9 (I ':~'3:' 5C
o (I ,;! I~: (! :: '~ '~ ',:: 1 1 (I
(I (I '::: 1 (I S~::.j I) f:; :-: I::' .:? .:+
00320 590D 73 OO~9
o I) 3 3 I) 5 ':; 1 I) : • ..:j. F .:'
00340 5912 D7 ~E
00350 5914 76 oo~s
003t::,O
oo::;?O

:<k'[I I \;n LDFi 1:::

'::L':;:'
,:: L F.'

[1./ DL P CI I"1C B
::r'lP B
,t: 13T

• ..

g :r ..
B,:'C

00390 5919 91 ~9 DiDLP1 CMP ~

00400 531B ~~ OD Be?
00410 591D OD DVD~P2 ~EC
00420 591E 73 OO~D ~OL

00430 5921 79 OOFC ~DL
00440 5924 30 cg SUB A
00450 ~?26 97 cA ?fR ~

00460 5929 20 07 B~A

00470 5928 OS DVMSUB elC
00430 592B 7~ OocD
0049n 592E 73 OO~C

:;~O'._

(105 (I I) 5'331. 5,~ It\.' S:HF T
00510 5932 27 12

C0530 5Q 35 73 OOFB
00540 5938 73 OOFA

-°1 -,

• "'7. ; ••. ~ :... ...

00550 593B 35 FA _D~ ~

OOS~,O S'3~:D ,::5 Dt: PJ~.~'

00570 593F 20 D2 BRA
005::: (I '5'341. 1.:1:. Fi=FI=" D\"DEPP L D:=-::
00590 5944 DF Fe STX
(1060(1 5946 [!:. FE [l1·,,'[lE1"·1D ~_DA B
00610 5948 CO 09 SUB B
00620 594A C1 04 SMP B
(106,30 594C 25 O,?
OO~.40 594~ CO 04
o 06~~ 0 "595 (I D? FE
006,::.0
I) 06? (I 'S':'-i52 ':::'3
00'::,80

:::UB B
[1',/[11..):::3 STFi B

•
;:;:·T :::

:::r-iD

',,:;<'~!uo'r
':')::>~:!Ui.J T +- 1

;~ 1~.

D\"DE':;:~':;;:

;:< ,< .D :/ '::: ,;;:.
[i·/Di_C'I)

::<:< DSF'L
,:·:;r:::D'·/S:;:;::

I;-1 IT'·' 1_ :: ='::;
2ERO)JQTI~NT B0FFER

IF ;)16 DIVIDE E~~OR
IF S(16 ~EFT SHIFT DIVISOR
IF C=O CO~/T LGOP
I~ C=1 ~(DSPL = SHIFT CaUNT
?HIFf THE DrVISO~ 88:k 1
SHIFT COUNT ~aw IN ReeF
DrVISJR LEFT JUST. I~ X

X<DVSR r= r4~ DIVIDEND (DIVISOR
DVNSUB DON/f SUBTRACT

IF T4~ DIVIDEND >J~= DIVI=~
:<I<O~.JO T'" 1 'S'H I i= r l~i i_EFT 1. E I T
~<O~ST ~ITY ~SB = 1

':·::V D\,ii"1D
O"/'S:HFT

:<i< D',/r'i D + 1.
:'-:; ~::: D'/ ,..~ n
~:< ~::' D ".. "1 [!
[1,/ DLP;::
D\lDLi::' 1
~~f;FFFF

;:«i~!UiJT

::.::~< D S:PL

D\iDLC'3
~~4

>:: to::: [is: F' L

?~IFT Q ~E~T ~IT~
L~: B = (I

_.' ~:'-1

IF S=:O ::TOF
r~ S > 0 SHIFT DrvrD~ND
~EFT ONE BIT; LSB=O

\'1 ~;. B I >~ T 0 ,=: A l:;;~ ;.~ \'

I~ C = 1 GO TO LOOP2
13:] Ti] LC1iJ P 1

GET S~I~T COUNT INTO A2CB
~XDSP~ = ~KDSPL-9
::'::K [I ~:F='L ::: 4
i~S:30 TO RETURN
~O: !<DSPL=XKDSPL-4
DrSPL~CEMENT OF REMAINDER
S:TJ~:ED I r-i >::VD'S:PL

FIGURE 2·1.7·2: XKDIVD Assembly Listing (Sheet 2 of 2)

2-24

STF.:T; SS.
STF.:T; lB.
STF.:T; DB 16.
SrF.:T; SP P5:::6 O!l S7FF!I TO.
STF.:T; S:D PAB::-::CT.
:S:TF.:T; HF.: 5.
? SF.: P5'3 0 (I

P 100

r'1Er'1 FAUL T

FFFF = 5555
03

*1DC1 0000*00*02
,0;:- Dt'1 OFC!I 2

000000 0001020 1
:::: 1 ms -

[11"1 OFC, 2
(lOFC ~ S5 00

FIGURE 2-1.7-3: Simulation Results, Division

2-25

2-2 COUNTING DELAY MEASUREMENT/GENERATION

When microprocessor systems are initially considered as replacements for conventional logic

designs there is a natural tendency to formulate. such questions as: What is the program that replaces a flip-flop?

A counter? A shift register? A one-shot? Etc. ? Such questions are better posed as: What is the function that must

be performed? The answer to the question then often falls in one of two categories: (1) The number of times

something occurs must be determined (counted); (2) A particular time interval must be measured or generated

prior to taking some action.

These functions are also commonly used for controlling internal program flow; the MC6800

provides a variety of ways for performing them. Short (up to 8-bits or decimal 255) counter requirement can be

implemented using either of the two accumulators or any RAM location. The increment (INC) and decrement

(DEC) instructions apply to random access memory locations outside the MPU as well as the accumulators.

(The instruction set for the MC6800 is discussed in Section 1-3) The data test instructions BITA, BITB, CMPA,

CMPS, CBA, TST (memory), TSTA, and TSTB that are available for updating the Condition Code Register

combined with the branch instructions permit complete control of counter operations.

For applications requiring long counters (up to 16-bits or decimal 65 ,535) the Index Register and its

full complement of instructions are availabie. When more than one long counter is required simultaneously, a

short program can be written that permits two adjacent RAM locations to be used as a 16-bit counter:

INC N + 1 Increment memo loco (N + 1)

BNE CNTNUE if result not = 0 continue

INC N

CNTNUE xxx xxxxxx Next program instruction

This sequence effectively increments a 16-bit word located in memory locations Nand N + 1. A similar

procedure is available for decrementing a 16-bit word:

TST N+l Mem. loco N+ 1 = O?

BNE NEXT No, go decr. N + 1

DEC N Yes, first decr. N

NEXT DEC N+l Decr. N=1

2-26

In addition to their use for long counters, these instruction sequences can be used for modifying return

addresses. During execution of subroutines and interrupt service routines the program counter containing the

return address is stored on the stack, a designated area in RAM. The increment or decrement sequences can be

used to change the program counter value on the stack and thus cause the return from subroutine or interrupt to

be to a different location in the main program.

It is possible in some cases to use the index Register and Accumulators for two functions

simultaneously when one is a counting function. As an example, assume that data from a peripheral device is to

be entered into the MPU's memory via an MC6820 PIA 1 • The peripheral is to indicate the presence of data by

setting a flag, bit 7 of the PIA's Control Register. Each time the flag is set the MPU is to retrieve the data from

the PIA Data Register and store it in an internal memory location until a total of 8 bytes have been accumulated.

Since the PIA's Data Register and Control Register look like memory to the MPU, a program is required that

will cause the MPU to monitor one memory location for a change in a flag bit and then fetch the data from

another location. This operation is to be repeated the specified number (8) of times.

The following sequence of instructions uses a single register, Accumulator B, for both the

monitoring and counting functions:

LDAB #08 Put 2's CompI. of byte count in ACCB.

LOOP I BITB PIACRA Byte Available flag set?

BPL LOOP I Not yet; loop back, chk. again.

LDAA PIADRA Yes; Fetch byte.

PSHA Put byte on stack.

INCB Eight bytes yet?

BNE LOOP I No, go wait for next byte.

xxx xxxxxx Yes, continue with program.

This program takes advantage of the fact that incrementing an accumulator containing FF cause it to "roll

over" to 00. The two's complement of the required count is entered as the byte count. Since this will cause the

sign bit (bit 7) of ACCB to be positive and since the BIT test does not affect ACCB but does update the

Condition Code Register, the Bit test followed by the Branch on Plus instruction can be used to monitor the flag

bit. As soon as bit 7 of the Control Register is set to one, the BPL test fails and the MPU fetches the current data

byte by reading the Data Register (PIADRA) and then pushes the byte onto a stack location in RAM. The design

of the PIA is such that the flag is automatically cleared by the LDAA PIADRA operation. The byte count is then

"reduced" by incrementing ACCB and tested by the Branch on Not Equal Zero instruction. Unless the eighth

byte has just been transferred the program loops back to wait on the next data byte. If the current byte was the

eighth, the INC B instruction cause the count to roll over to zero, the branch test fails, and program flow falls

through to the next instruction. The other test instructions (TST, CMP, and CBA) can also be used in a similar

lOperation of the PIA is described in detail in Section 3-4.

2-27

fashion since they too update the condition Code bits but do not affect register contents. Note also that it was not

necessary to bring the contents of the Control Register into the MPU in order to examine the flag.

sequence:

Delays can be generated in a variety of ways. A typical procedure is shown in the following

LDAA #32

LOOP 1 DEC A

BNE LOOP 1

Takes 4 cycles to execute.

(2 cycles)

(4 cycles)

In this example, the MPU will go through LOOP1 32 times so that the total delay introduced by these

instructions is, for a 1.0 JLsec cycle time:

4 + 32 (2+4) = 196 JLsec

The number of times through the loop is calculated as the program is developed. If, for instance, the required

delay is 200 JLsec, the value to be loaded into ACCA is determined from:

(200 - 4)/6 = 32.6 = 32

Note that since the nearest smaller integer is selected, the actual delay generated in only 196 JLsec. If greater

accuracy is required, the sequence above could be followed by two NOP instructions, since each NOP advances

the program counter and takes up two cycles. Delays beyond the capacity of an 8-bit Register and a single loop

can be generated by using the Index Register and/or multiple loops. It is also sometimes desirable to write the

delay sequence as a callable subroutine that can be used to generate variable delays. This is illustrated by the

following routine. This sequence assumes that the amount of delay, in milliseconds, is loaded into a RAM

location identified as "DLYBFR" prior to calling the routine.

DELGEN LDAA DLYBFR (a) 4 cycles

LOOP 1 LDAB #165 (b) 4 cycles

LOOP2 DECB (c) 2 cycles

BNE LOOP2 (d) 4 cycles

DECA (e) 42cycles

BNE LOOP 1 (f) 4 cycles

RTS (g) 5 cycles

2-28

The MPU will go through LOOP2 165 times each time it is entered: 165 (c+d) = (165)(6) + 990 cycles. For

every time through LOOP 1 there will be a total LOOP2 time plus the b, e, and f cycle times, or the total time,

including the RTS cycle time, is:

Total delay = DLYBFR (990+4+2+4) + 5

= DLYBER(1000) + 5

If, for example, DLYBFR had been loaded with 17, indicating that a 17 msec delay was required, then for a 1.0

JLsec cycle time. The total delay is 17,005 JLsec = 17 msec with small error. The value 165 that is loaded into

ACCB was of course selected to provide the desired scale factor, i.e., so that the delay could be entered as an

integral number of milliseconds. Variation on these procedures can be used to generate virtually any amount of

delay. Note that if for some reason it is undesirable to disturb the contents of the Accumulators or Index Register

while generating a delay, RAM memory registers may be used. The INC and DEC instructions also operate

directly on memory.

2-29

2-3 EVALUATING PERIPHERAL CONTROL ROUTINES

Data handling often involves the transfer of data between a microprocessor's memory and a time

dependent peripheral. It is necessary to synchronize the data transfer program to the peripheral because the

peripheral data clock is asynchronous with respect to the program clock. The I/O controller which handles the

data transfer consists of both hardware and software. An implicit assumption is that the best trade-off occurs by

minimizing the hardware in the controller.

In a microprocessor based I/O controller, it is necessary to determine:

(1) How fast can the microcomputer transfer program move data (as contrasted with a direct

memory access scheme)?

(2) Will a given data transfer program work successfully in the system?

(3) Is there any processing time remaining after handling the data movement?

(4) Can any additional time dependent functions be performed?

(5) What is the maximum length routine that can be performed in addition to the data transfer?

An analysis is required that will provide a technique for testing the operation of a proposed program. In

addition, if there is unused processing time in the system, it may be possible to eliminate additional hardware

(e.g., buffer registers). If a given program does not work in the system, the analysis should enable the user to

modify the program or add additional hardware to allow the system to work.

Specific examples of the word transfer problem for a floppy disk and the bit transfer problem for a

cassette system will be used to illustrate the typical problems. The cassette data transfer example also illustrates

the technique for increasing the amount of usable spare time by borrowing it from adjacent data cells. In this

case, the spare time is used to refresh a display.

When a peripheral signals the MPU requesting processing time, it will be referred to as a Service

Request, (SR). When the service request is periodic, as in the above mentioned examples, it is called a time

dependent service request. Read or Write Data Transfers are both examples of such service requests and where

the examples show programs or terms referring to a Read Data Transfer, they are meant to be illustrative of both

Read and Write Data Transfers.

2-3.1 NOTATION USED SERVICE REQUESTS AND PROGRAMS AS WAVEFORMS ON A

TIMING DIAGRAM

The process of synchronizing a data transfer program to a peripheral can be visualized more easily

when the SR's and the program are both represented as waveforms on a timing diagram. The peripheral SR

waveform is developed from the specifications of the peripheral which identify the maximum time, TIm it takes

to load the data buffer (the period during which data is invalid), and the minimum period, Tom between service

requests.' The subscript m refers to the parameters of the mth peripheral.

The data transfer waveform is developed by writing the actual data transfer program and then

calculating the time it takes to:

(1) Capture the data (T 4m)

2-30

(2) Process the data (T2m - includes period T4m)

(3) Loop in a synchronization delay loop until a SR is active. (nT3 - where T3 is the single loop

time and n is the number of times the program loops).

These values are calculated by counting the number of processor clock cycles required to execute

each function, and multiplying the numbers by the MPU clock rate. The waveforms and notation for a typical

situation are illustrated in Figure 2-3.1-1. Figure 2-3.1-2 shows a flow chart for a data transfer program for a

single peripheral. Figure 2-3.1-3 details the technique for calculating the program parameters and Figure

2-3.1-4 illustrates the relation between the peripheral word ready service request and the program timing. The

values of the SR parameters are for a floppy disk data transfer.

The period TOl is the worst case (fastest) peripheral data word rate, and it is calculated taking into

consideration floppy disk motor speed variations. The SR update time T 11, is the time during which a new word

is being loaded into the data buffer, and at the end of which there exists an active SR.

The timing diagram of Figure 2-3.1-4 shows a processor clock running at a 1 'Ilsec cycle time and

shows how the word capture time is developed from a knowledge of the point in the instruction cycle when the

word capture begins and ends. In this case, the program begins the word transfer at the positive edge of the

fourth processor clock cycle during the LDAA RDCTL instruction and completes it at the negative edge of the

fourth clock cycle during the LDAA RDDATA instruction which moves the data. Therefore, T 41 is equal to the

number of clock periods between initiation and the end of transfer, 8.5 cycles = 8.5JLs. The first two

instructions form the sync loop (T3) and the total program represents the program processing time (T21).

~Tom -i
PERIPHERAL SRm I --., ,..- T1m

lJ~-----IU (word ready) u
---tf T 4m f4-

PROGRAM DATA n n .,
TRANSFER ----~...IJ ~------"!"'-----' """-----~--I L-
(word fetch) j I I I I

t1 m k----T 2m .,. nT 3--.1t--T 2m----.f

TOm Period of service request of mth peripheral (word ready period).

T1m Service request update time (Data Invalid) for mth peripheral.

T 2m Program Processing Time of the mth SR. Includes

time to capture data.

T 3 Synchronization Loop time when the program has checked

and found no active service requests.

T 4m Data Capture Time of the mth SR.

t1 m Initial offset between the SR and Program Data

Transfer Waveforms.

n number of times the program goes through the

synchronization delay loop.

FIGURE 2-3.1-1. Peripheral Service Request (SR) and Data
Transfer Program Waveforms and Notation

2-31

2-3.2 DEVELOPMENT OF EQUATIONS AND INEQUALITIES USED TO TEST SUCCESSFUL
SYSTEM OPERATION

A successful data transfer means that each time the peripheral indicates, via an SR, that a data word

is available, the program is able to capture the data before it is replaced by the next data word. It is implied that

the program is able to proces the data between data word transfers. (In the floppy disk data transfer program,

processing involves storing the data in Random Access Memory (RAM) and checking whether it was the last

word that needed to be transferred.) Similarly for data transfers to the peripheral, the program must make the

data word requested available before the succeeding request arrives. In other words, a successful data transfer

consists of avoiding an overrun (during READ) and underflow (during WRITE).

If the SR is not ative at the time that the program checks for a SR, (i.e., the data word is not ready),

then the program goes into a synchronization (sync) loop, which causes a delay (T3). At the end of a sync loop,

the program again checks for an active SR.

In the following analysis, it is assumed that the values of the parameters detailed in Figure 2-3.1-1

are at their worst case limits and are constant for simplicity, the single SR model (where m = 1) will be used

initially.

For the system to transfer data successfully the average wotd processing time T.'\VG must be

approximately equal to the peripheral data word SR period To!.

TAVG = Tot (1)

More precisely stated, in the limit as the number of words transferred, p, approaches infinity, the

average word processing time, T A VG, is exactly equal to the byte cell period To!.

STORE
WORD

DECREMENT
WORD COUNTER

NO

FIGURE 2-3.1-2. Flow Chart for a Typical Data Transfer Program
for a Single Service Request

2-32

LABEL

RDLOOP

MNEMONIC OPERAND COMMENT PROCESSOR CYCLES

4

EXIT

LDAA
BPL

LDAA
PSHA

DEX
BNE

RDCTL
RDLOOP

RDDATA

4

LOAD READ DATA DATA

LOAD CONTROL WORD j-SYNC
LOOPIFSR ISINAc:3IVE LOOP

(T3)

STORE ON STACK CAPTURE PROGRAM

RDLOOP
DECREMENT WORD COUNT
IF WORD COUNT IS NOT
ZERO RETURN FOR NEXT WORD

(T41)
~~~~ESSING 4 

(T21) 4 

TOTAL 

4 
4 

24 CYCLES 

IF THE MPU CLOCK PERIOD IS 111s THEN SYNC LOOP TIME T 3 = 811s 

PROGRAM PROCESSING TIME T 21 = 2411s 

DATA CAPTURE TIME T41 = 8.511S (See Text) 

FIGURE 2-3.1-3. Data Transfer Program Indicating Method Used to 
Calculate Program Parameters 

PERIPHERAL 

WORD READY SR 

WORD IN READ 

BUFFER 

PROCESSOR 

CLOCK 

INSTRUCTION 

EXECUTION 

.. ~ ____ T O1----... ~~~-----T O1------.1101~ 

~-T-1-1 -------=6----. T11 ~ T1 

----.J 

1.0,u. -.lit- : 
I 

fUUUUlJlJ 

1 
g 1 <t;:! I g "- -J 

81 <t~ 
"- <t "-

I~ 1 
0 I ~g I I-J§ I <t~ wg 1 <t 0 <t 

~ 
w-J ~c5 ~g <to :I: ~ 

0 
ZO -Ja: ,,-0 00 ~ zo CD a: ala::: ...Ja::: CD a: ..Ja: 0 CD a: 

~c5 ~g: iic5 
CDa:~a: 

PROGRAM RECOGNIZES -----Pl------'I'--------~L__ __ ___J n n 
WORD ! 0.5u. ~ nL... ___ _ 

I I 

FT41 ----.j°.5,u. FT41 ~L. _____ _ 

PROGRAM TRANSFERS 

WORD 

PROGRAM 

WORD FETCH 

----~k ~----------.-----~ . 
• ~~--------T21----------~~W.--T3 ~ 

29.7 jJS, to 
0.75 jJS 

24 jJS 

T3 8 jJS 

T41 8.511s 

33.6K WORDS/SEC (FLOPPY DISK FASTEST DATA RATE) 

(BUFFER PROPAGATION DELAY) 

. FIGURE 2-3_1-4. Relationship of Peripheral Data Stream to 
Program Timing 

2-33 



Lim 

poo 
TAVG = TOl (2) 

The time TAVG consists of the program word processing time T21 and a time nT3 while the program 

loops until the next word is ready. Stated mathematically, 

TAVG = T21 + ~ (I:npT3) 
p=l 

(3) 

Where np is the number of sync loops taken while waiting for the pth SR, and whose value may vary 

from 0 to n (n = np maximum). 

The program byte processing time, T21, must be equal to or less than the SR period T01, or else the 

program could not keep up with the word rate of the peripheral. Therefore, 

(4) 

If the program loops n times in the sync delay loop before the next data word is ready, then equation 

(4) can be modified to read: 

T21 + (n-l) T3 ~ TOl (5) 

Also, the time T21 + nT3 must be greater than TOl so that the program may begin the transfer of the 

next word even if the offset Tll is equal to zero. This is true simply because the program loops until the next 

word SR is active. Hence, 

TOl < T21 + nT3 (6) 

Therefore, the peripheral word ready period is bounded by T21 + (n-l) T3 and T21 + nT3 for 

successful operation: 

T21 + (n-l) T3 ~ TOl < TOl ~T3 (7) 

IfTol = T21 then the program and peripheral are said to be synchronous. IfTol > T21 (equation 4), 

then the offset Tll gets smaller and smaller until it is negative or zero, which means that after the program has 

processed one word, the next word will not be ready. At this time, the program goes into the synchronization 

loop, and samles the peripheral Word Ready line until the SR is again active. 

The maximum value of the synchronization loop for which the system will work may be determined 

from the following argument. Since the peripheral SR and the program are independent, it is entirely possible 

that the SR occurs immediately after the program has initiated a sync loop. Since the data capture time is T 41 

and the data is invalid for a period Tll out of every TOl, it is necessary that: 

T3 ~ TOl - Tll - T41 (8) 

This is the inequality used to calculate the maximum permissible value of T3. 

2-3.3 Floppy Disk Data Transfer Routine 

The parameters of the Floppy Disk Data transfer routine are listed in Figure 2-3 .1-4. The parameters 

2-34 



can now be tested with equations (7) and (8): 

From Equation (7) 

n=1 (9) 

24 ::.;; 29.7 < 32/J-s 

and from Equation (8) 

(8) 

8 ::.;; 29.7 - 0.75 - 8.5 

Both requirements are met and the program will transfer data successfully, (at a maximum rate when TOl = 

T21). 

1 1 
Max Data Rate = - =-- = 41.6K Bytes/sec. 

T2l 24/J-s 

Note that in this example, the time left over in each data byte after processing is: 

TOl - T2l = 29.7 - 24 = 5.7/J-s (10) 

This time is too small to be usable for other tasks by the M6800. 

2-3.4 CASSETTE DATA TRANSFER ROUTINE 

The data transfer routine of Figure 2-3.1-3 is equally valid for the case of word data transfer between 

the cassette and an MPU. The significant difference is the slower data rate, i. e. , the SR period for word transfer 

is much longer. For the cassette with a worst case data transfer rate of 1.85 KBytes/sec (15KBits/sec): 

1 
TOl = -- = 540.5/J-s 

1850 

All other parameters remain essentially the same. 

Tll = l/J-s 

It may be verified that both Equation 7 and 8 are satisfied by the above parameters for n = 65. The time available 

after processing the word is: 

TOl - T21 = 540.5 - 24 = 516.5/J-s 

This time is normally used up in synchronization delay loops. Since so much additional time is 

available, it may be possible to transfer cassette data in serial form (bit transfer), and eliminate the hardware 

2-35 



associated with the serial to parallel conversion. The Serial Data Transfer Flow Chart and Program are shown in 

Figures 2-3.4-1 and 2-3.4-2 respectively. Equation 7 and 8 are both satisfied for n=4. The unused processing 

time per bit cell is: 

TOl - T21 = 66.6 - 40 = 26.6/Ls (11) 

2-3.5 UTILIZATION OF MPU PROCESSING TIME 

Assume that it is required that a program must service a cassette for serial data transfers, as described 

earlier, and simultaneously refresh a dynamic display (display without memory). Let the subscripts 1 and 2 be 

used to refer to parameters of the cassette and displays respectively. Assume that the program processing time 

T22, to refresh the display, is longer than the available processing time in a single bit cell, i.e. 

T22 > 26.6 s (From Equation 11) 

However, if the period of the display SR is longer than that of the Cassette (To2 > TOl) an interesting question 

arises. Is it possible to borrow time from adjacent data cells and process SR2 without losing SRI data? The 

following analysis shows that it is, if the parameters meet certain requirements. 

To maximize the utilization of an MPU's processing time the extra time spent in synchronization 

delay loops can be used for doing other routines. This is similar to adding a time equal to the additional delay 

loops to the program processing time T 11. The condition that must now be satisfied by the program and the 

peripheral SR period may be stated as: 

(11) 

where 

T'21 = T21 + (n-l) T3 (12) 

and (n - ) T 3 is the additional time now used for processing. The length of the program processing time has been 

extended; however, there is still only one independent service request being serviced as illustrated in the flow 

chart in Figure 2A. 

It is often required that the unused processing time be used to process SR's from another time 

dependent peripheral. Assume that it is required that the unused processing time be used to process SR's from a 

display, i.e. , to refresh the display. Will the system be able to successfully handle the two SR's? This question 

leads to considering the program model for handling multiple SR's, and the conditions that must be satisfied for 

successful operation. 

2-36 



LABEL 

LOOPC 

EXIT 

NO 

NO 

NO 

FIGURE 2·3.4·1. Flow Chart for Serial Data Transfer 

MNEMONIC 

LDAA 

BPL 

RORA 

ROLB 

BCC 

PSH B 

LDA B 

DEC 

BNE 

OPERAND 

CLKDAT 

LOOPC 

LOOPC 

401 

COUNT 

LOOPC 

COMMENT 

LOAD CLOCK & DATA WORD 
(CLOCK IN BIT 7, DATA IN 
BIT 1) 

LOOP IF SR IS INACTIVE 

TRANSFER DATA BIT TO CARRY 

ASSEMBLE WORD IN 
ACCUMULATOR B 

IF WORD IS NOT ASSEMBLED 
RETURN FOR NEXT BIT 

STORE ASSEMBLED WORD ON 
STACK 

RESET BIT COUNTER 

DECREMENT WORD COUNT 

IF WORD COUNT NOT ZERO 
RETURN FOR NEXT WORD 

TOTAL 

At MPU clock rate of 1 MHZ 

T3 = B[.I5 

T21 = 40[.15 

T41 = 0.5[.15 

and TOl 1 66.6 [.15 
15000 

PROCESSOR CYCLES 

4 

4 

6 

4 

4 

4 

40 CYCLES 

FIGURE 2·3.4·2. Casette Bit Serial Data Transfer Program 

2·37 



2-3.6 PROGRAM MODEL FOR TWO PRIORITIZED SERVICE REQUESTS 

When two independent periodic SR's are allowed, the program model for servicing them may be 

prioritized. The prioritizing is done such that the SR with the shorter period (hgher frequency) has the higher 

priority. Figure 2-3.6-1 indicates the programming model for two SR's where SR #1 (SRI) has higher priority. 

Notice that SRI is tested first, regardless of which SR was last processed. 

The parameters of the SRI, SR2 waveforms are derived as before, from specifications of the two 

peripherals. The parameters for the program are derived in conjunction with the prioritized model. For 

example, the synchronization loop time T3, is now the time it takes the program to test for an active SRI, and 

YES 

PROCESS 
SR1 

NO 

PROCESS 
SR2 

YES 

NO 

FIGURE 2-3.6-1. Program Model for Two Prioritized Time Dependent 
Service Requests 

2-38 



then test for an active SR2, and find them both inactive. Similarly, T22, the program processing time for SR2, 

includes the time to test for SR 1, (which is inactive) and then test for SR2 (active), process SR2, and test if it is 

the end of SR2 processing. 

2-3.7 REQUIREMENTS THAT MUST BE SATISFIED WHEN AN MPU SERVICES MULTIPLE 

SR's 

The following requirements were developed by studying the failure mechanisms using the program 

model for two prioritized time-dependent service requests. A failure was defined as an overflow or underflow, 

and the program was run to process a very large number of consecutive SR's (up to 100,000 service requests). 

Each time there was a failure, the timing relationships between the two SR waveforms and the program 

processing waveform was studied to give a clue to the failure mechanism. The results are listed in Figure 

2-3.7-1. Of the requirements listed in Figure 2-3.7 -1, Equations 7 and 8 have already been discussed. Equation 

12 is really implied by the program flowchart model for a single SR where the data capture time is included in 

the SR processing time. 

Equation 13 states that the sum of the processing times expressed as a fraction of the SR frequency is 

no greater than unity. This is true because of the periodic nature of each SR and the fact that each SR uses 

T2m/Tom of the MPU's processing time. As an example, if the cassette serial data transfer routine uses 40JLs 

every 66.6JLs then it uses 40/66.6 = 60% (approx.) of the MPU's capability. Hence, 40% of the remaining 

MPU capability may be used by another SR. This result is used shortly to test the cassette-display service 

program. 

For each SR it is required that: 

A. T2m ~ Tom < T2m + nT3 

B. T3 ~ Tom - T1m T4m 

c. T4m ~ T2m 

For the system it is required that: 

D. ~ (T2m) 
;;;. 0 

m TOm 

The equality is the synchronous case where no synchronization loops are taken. 

E. For each peripheral when compared to the fastest peripheral k, 

Where k is the peripheral with the highest frequency of operation, and the 

SR's are prioritized by frequency with the highest frequency SR being first. 

(7) 

(8) 

(12) 

(13) 

(14) 

(15) 

FIGURE 2-3.7-1. Timing Constraints for Successful System Operation 
for Prioritized Multiple Service Requests 

2-39 



Equation 14 is best illustrated by the timing diagram in Figure 2-3.7-2 where SR2 and SRI occur 

almost simultaneously, but SR2 is active first. This implies that just prior to this occurrence, the last SR from 

both SRI and SR2 has already been processed and SRI has been tested first, according to the prioritized model, 

and found to be inactive. SR2 must be processed in a time T22; then data from SRI must be captured in time T 41, 

before it becomes invalid. The data becomes invalid a time T 11 prior to the next SR 1. Therefore, the condition 

that must be satisfied is: 

T01 - Tll - T41 ~ T22 (m=2) (14) 

Equation 15 implies that the program should be able to synchronize, then process SRI, and capture 

data from SR2 before it becomes invalid. This situation occurs after the last SRI has just been processed, and 

then neither SRI nor SR2 are active (see Figure 2-3.7-3). After the sync loop, SRI is processed, and SR2 data 

must be captured: 

T02 - T12 - T 42 ~ T21 + T3 (m=2) (15) 

Equations 14 and 15 are stated in a general form for m SR's in Figure 2-3.7-1 but they have been verified only 

for the case of two SR's. Equations 7: 8 and 13 of that Figure, however; must be satisfied by any set afm SR's. 

SR1 u u 
~1" ____ T02----~' 

SR2 U ,I::,!:: Ur----T3 starts just i ---: ~ T12 

:::::~ SR'" ~:,i : i 
~ rtL 

PROGRAM --'----+----~~" T 
PROCESSING- T21 -----.- T3 .;4 T21 T42 ~ 12 

FIGURE 2-3.7-2. Timing Diagram Showing Requirements of 
Equation 15 for Two SR's 

~T01-_~ 
I _I T11 

SR1 __ ...., r-------..~ 

I I SR2 is active I I 
y before SR1 by a H 

I nominal time I 

:1 
SR2 __ ...., ,. 

U I 
I 
I 

I I 

~ T01~ 
--.j T42 j4- ~ T41 ~ 

Program ___ .... n ..... __ .... n : : 
Processing L ~ ~ ~T11 : 

T22 .14 T21--': 

(m = 2) 

u 
u 

(14) 

FIGURE 2-3.7-3. Timing Diagram Showing Requirements of 
Equation 15 for Two SR's 

2-40 



2-3.8 SERIAL DATA TRANSFER AND DYNAMIC DISPLAY REFRESH PROCESSING 

The cassette serial data transfer program is now modified and extended to service both the cassette 

data SR and the Display Refresh SR. The combined program, listed in Figure 2-3.8-1 follows the model of two 

prioritized SR's of Figure 2-3.6-1. SR2 is generated by a 16 character dynamic display, and the characters are 

refreshed cyclically. Figure 2-3.8-2 lists the parameters of the two SR's and verifies that all requirements are 

met for the two SR's to be successfully serviced. Note that use of Equation 13 provides a measure of the 

efficiency of usage of the MPU processing time. In this case: 

1 - - + - = 1 - 0.985 = 0.015 ( 
40 50~ 

66.6 130 

which implies that 98.5% of the total processing time is being used. 

The amount of spare time remaining is calculated by multiplying the left-hand side of Equation 13 by 

the period of the highest frequency SR. Thus, 

Unused processing time = 0.015 x 66.6 = 1.00j.ts every SRI period. 

LABEL MNEMONIC OPERAND COMMENT PROCESSOR CYCLES 

LOOPC LDAA CLKDAT LOAD CLOCK & DATA WO~ T41 4 

BPL LOOPD BRANCH TO DISPLAY IF SRt Ton 4 IS INACTIVE 
I 

RORA I 
6 I 

I 
ROLB I 6 

BCC LOOPC SEE FIG. 3B 
T21 

j 
4 

PSH B 4 

LOA B #01 2 

DEC COUNT 6 

BNE LOOPC ......L 
EXIT TOTAL 40 

LOOPD LDAA DSPCTL LOAD DISPLAY CONTROL WORD 

1 

4 

BPL LOOPC BRANCH TO CASSETTE IF SR2 4 
IS INACTIVE 

BSR DSP2 BRANCH TO DISPLAY -
SUBROUTINE IF SR2 IS ACTIVE 8 

DSP2 LDAA DATA,X LOAD DISPLAY CHARACTER T42 
5 

(INDEXED ADDRESSING) 

J STAA DISPLY REFRESH DISPLAY 5 

DEX DECREMENT INDEX REG T22 

j 
4 

BNE DSPEND 16 CHARACTERS REFRESHED? 4 

LOX #16 LOAD THE NUMBER 16 IN INDEX 3 
REGISTER 

DSPEND RTS RETURN FROM SUBROUTINE 
~ 

EXIT 2 TOTAL 42 + 8 

FIGURE 2-3.8-1. Serial Data Transfer and Dynamic Display Refresh Routine 

2-41 



PARAMETERS OF SR1 (SERIAL DATA) 

T01 66.6J,Ls T21 ~ T01 < T21 + nT3 

T11 1J,Ls 40 ~ 66.6 < 40 + 2 x 16 

AND T3 ~ T01 - T11 - T41 

16 ~ 66.6 - 1 - 0.5 

T01 ~ T02 

PARAMETERS OF SR2 (DISPLAY REFRESH) 

130J,LS 

50 ~ 130 < 50 + 5 x 16 

FROM EQU. 13 

1 _ L T2m ~ 0 
m TOm 

1 - (40 + 50) 
66.6 130 

FROM EQU. 14 

50J,LS 

0.015 > 0 

T 01 - T 11 - T 41 ~ T 22 

66.6 - 1 - 0.5 > 50 

FROM EQU. 15 

130 - 1 - 26 > 40 + 16 

AND 

16 ~ 130 = 1 - 26 

FIGURE 2·3.8·2. Serial Data Display SR Parameters and 
System Requirement Test 

2-3.9 INCREASING MPU PROCESSING EFFICIENCY WITH THE FLIP-FLOP MODEL FOR 

TWO "EQUAL" PERIOD SR'S 

When the SR's have approximately equal SR periods, as in Read/Write, or bi -directional data flow, 

the processing time for SR2 may be reduced if a flip- flop model is used in place of the prioritized model. Figure 

2-3.9-1 shows the Flip-Flop model in which, after completion of SR 1 processing, the program checks SR2 first 

and vice versa. 

242 



PROCESS 
SRl 

NO 

PROCESS 
SR2 

FIGURE 2-3.9-1. Flip-Flop Model for Two "Equal" Period SR's 

The advantage gained in processing efficiency is reflected in the fastest data rate that the program 

can successfully transfer for both SR 's. This can be illustrated using the example of cassette serial data transfer. 

Let SRI and SR2 programs be identical in form such that: 

T4l = T42 = 0.5JLs 

Tll = T12 = IJLs 

T3 = 16JLs 

MAX TOl =T02 = ? 

If the prioritized model is used, then: 

T21 = 40JLs and T22 = 50JLs 

because it takes 8JLs to test if SRI is active and this is always tested first. 

In this case, the maximum data transfer rate for the two SR's may be calculated by using the equality 

in Equation 13. 

40 50 
-+ =1 
TOl (T02 = TOl) 

1 
TOl =-- = 11.IKbits/sec. 

90JLs 

If the flip-flop model is used then. 

2-43 



and the maximum data transfer rate for the two SR's may be calculated from Equation 13 as: 

40 40 
-+---- = 1 
T01 (To2 = T01) 

1 
T01 = --= 12.5 Kbits/sec. 

80ILS 

This provides approximately a ten percent increase in maximum data rate. 

Note, however, that when the flip-flop model is used there is an additional condition that now must 

be satisfied. This is required because both SRI and SR2 may occur simultaneously. Therefore, 

(16) 

The techniques described in this section enable the user to determine if a given data transfer program 

will work in the microprocessor system. If it is found that the program does not work, the user may modify the 

program/hardware to allow the system to work. The techniques also provide a measure of the utilization of the 

microprocessor's capability. This provides the opportunity to add functions to or delete hardware from the 

system until the microprocessor is being used to its full capability. The techniques may be extended to cover 

operation of systems where interrupts are the periodic service requests. 

2-4 USE OF INDEX REGISTER 

Effective programming of the MPU makes extensive use of the Indexed Addressing mode. For this 

mode, the address is variable and depends on the current contents of the Index Register. A source statement 

such as 

Operator 

LDAA 

Operand 

X 

Comment 

Load ACCA from M=X 

will cause the contents of the memory location specified by the contents of the Index Register to be loaded into 

accumulator A, that is, the effective address is determined by X. Since there are instructions for manipulating 

the contents of the Index Register during program execution (LDX, INX, DEX, etc.), the Indexed Addressing 

mode provides a dynamic "on the fly" way to modify program activity. 

The Index Register can be loaded either with "constants" such as the starting address of a file in 

ROM or with a variable located in RAM that changes as the program runs. The Indexed Addressing mode also 

allows the address to be modified by an offset. The operand field can include a value that will be automatically 

added to X during execution. The format for this technique is: 

Operator 

STAA 

Operand 

K,X 

Comment 

Store ACCA in M=(X+K) 

When the MPU encounters the opcode for LDAA (Indexed), it looks in the next memory location for the value 

to be added to X and calculates the required address, X + K in this example. (See Section 1-2.3.5 for additional 

information on the Indexed Addressing Mode.) The control program is normally in ROM, hence, the offset is a 

2-44 



constant that was established during program development and cannot be changed during program execution. 

There are numerous examples of indexed addressing techniques in the sample programs throughout 

this Manual, however, it is of interest to summarize some of the methods in this Section. A common usage is 

shown in the following sequence of instructions for setting a series of RAM locations to zero (perhaps part of an 

initialization routine): 

Label Operator Operand Comment 

LDX #FIRST Get starting Address 

LOOP! CLR X Clear current location. 

INX Move to next location. 

CPX LAST+! Finished yet? 

BNE LOOP! No, continue clearing. 

NEXT xxx xxxxxx Yes, continue with program. 

This sequence causes the consecutive memory locations FIRST through LAST to be cleared. The labels 

FIRST, LAST, NEXT, etc., will have been assigned specific values during assembly of the program. Note that 

only every other memory location would be operated on if a second INX had been included in the program: 

LDX 

LOOP! CLR X 

INX 

INX 

CPX LAST +2 

BNE LOOP! 

NEXT xxx xxxxxx 

This technique is commonly used to establish the "size" of the increment that will be stepped through. If the 

size of the step is large (many INXs) or if it is desirable to have a variable step size, another procedure can be 

used to advantage. The following sequence of instructions can be used to effectively add a variable offset to X: 

2-45 



Label Operator Operand Comment 

LDAB VALUE Get variable into ACCB. 

LDX #FIRST Get Starting Address. 

LOOPl INX Advance address pointer. 

DECB Is ACCB zero yet? 

BNE LOOPl No, continue advancing pointer. 

NEXT xxx xxxxxx Yes, proceed with program. 

This sequence has the effect of adding the contents of accumulator B to the Index Register, that is, a variable 

offset is generated. If, for example, the value in ACCB is one, the INX instruction increases X by one and the 

DECB instruction reduces ACCB to zero. The program flow falls through to NEXT since the BNE test fails but 

the Index Register is now loaded with X + 1 rather than X. A different value for B would cause the program to 

pass through the loop until B is reduced to zero. Since X is increased by one during each pass, the net effect is to 

add the variable "VALUE" to X. 

This technique is illustrated in the following example: A program is required that will check for a 

zero result in every 8th location in a block of memory extending from FIRST to LAST. The first zero result 

encountered is to cause the program to branch to location ZROTST. If no zero results are encountered, 

processing is to continue: 

BEGIN LDX 

START LDAB 

LOOPl INX 

NEXT 

DECB 

BNE 

TST 

BEQ 

CPX 

BNE 

xxx 

#FIRST 

#$08 

LOOPl 

X 

ZROTST 

LAST+l 

START 

xxx xxx 

Get starting address. 

Load step size. 

Advance address pointer. 

Next location yet? 

No, continue advancing pointer. 

Yes, test for zero result. 

Branch to zero test if zero. 

Finished? 

No, move to next location. 

Yes, continue with program. 

In this case, the program will pass through LOOPl eight times prior to each test, effectively adding eight to the 

value in the Index Register. Note also that the INX instruction could be replaced by the decrement X 

instruction, DEX, thus providing a means of "negative" or backward indexing if desired. 

There is another "variable indexing technique" that combines the Indexed Addressing mode with 

suitable memory allocation to obtain dynamic indexed addressing. Assume that a program is required that will 

2-46 



select a mask pattern that is determined by the current contents of a counter. The counter content is variable and 

depends on the results of previous program operation. Such sequences are useful for establishing particular bit 

patterns required by the program. 

As an example, assume that one of the bit patterns shown below is required, depending on the 

current value of BITCNT, a value that has been previously computed and stored in RAM: 

Bit Count Bit Pattern 

b7 b6 b5 b4 b3 b2 bi bo 

0 1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 

3 0 0 0 1 0 0 0 0 
4 0 0 0 0 1 0 0 0 

5 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 1 

The following memory allocation can be used to permit indexed addressing of the desired pattern: 

COLBIT 

START 1 0 

1 

2 

3 

BIT COUNT 4 

5 

6 

7 

STARTI (XH) n } RAM 
BITCNT (XL) n+ 1 

~ 

10000000 
01000000 
00100000 

00010000 

00001000 
00000100 

00000010 

00000001 --

m 

m+l 

ROM 

By putting the upper byte of the starting address of the table (upper byte of m = START 1) in the RAM location 

immediately preceding BITCNT , the LDX instruction can be used to load the Index Register with the address of 

the desired bit pattern. This method has the limitation that the lookup table must begin (STARTl above) at an 

address whose least two significant Hex digits are zero, that is, of the form XXOO. Such tables can be at the 

beginning of any multiple of 256 ROM locations. 

This technique is illustrated in the following sample program for updating a bit pattern stored in two 

PIA Output Registers, PIA ORA and PIA ORB . The registers contain a pattern for driving an external display 

array that must be updated to include the results of each new calculation of a word count, WRDCNT, and a bit 

count, BITCNT. The current update goes to PIA ORA if the word count is odd and to PIAORB if even. The 

steps involved in the update are: 

(1) Test WRDCNT for odd or even and set a flag. 

(2) Get PIA ORA (odd WRDCNT) or PIA ORB (even WRDCNT) into accumulator A. 

2-47 



(3) Determine the bit pattern that corresponds to the current BITCNT. 

(4) Combine with the contents of accumulator A, preserving any previously set bits. 

(5) Write updated pattern back into appropriate PIA register. 

The following program can be used if the memory allocation recommended above is used: 

ROR WRDCNT Sets Carry if odd. 

ROR COLFLG Set sign bit on odd WRDCNT. 

BMI TAG! Get appropriate register. 

LDAA PIAORB * into 

BRA TAG2 * ACCA 

TAG! LDAA PIA ORA * for update 

TAG2 LDX COLBIT Point to bit pattern. 

ORAA X Combine with previous pattern. 

TST COLFLG Put updated pattern. 

BMI TAG3 * back. 

STAA PIAORB * out 
BRA TAG4 * to 

TAG3 STAA PIAORA * display 

TAG4 xxx xxxxxx 

Note that the single instruction LDX COLBIT is all that is required to locate a ROM location that depends on a 

dynamic program result. 

2-48 



CHAPTER 3 

3. INPUT/OUTPUT TECHNIQUES 

3-1 INTRODUCTION 

Due to the type of applications in which they are used, the capability to efficiently handle 

Input/Output (I/O) information is perhaps the most important characteristic of microprocessor systems. The 

M6800 architecture incorporates supervisory controls and interface devices that permit a wide variety of I/O 

techniques to be used. This Chapter describes the I/O characteristics of the M6800 system and their use in 

typical applications. 

Most I/O information can be placed in one of two general categories: (1) control and status signals; 

(2) data that is to be processed by the MPU. Much of the MC6800's flexibility in handling control and status 

information depends on three system features: 

(1) Many of the routine peripheral control tasks can be delegated to the interface adapters. 

(2) Because the design of the interface adapters allows the MPU to treat peripherals exactly like 

other memory locations, the memory reference instructions that operate directly on memory are 

also used to control peripherals. 

(3) While all MPU's must be able to continuously control simple peripherals under program 

control, in many typical applications, the peripheral information to the MPU is often 

asynchronous in nature and is best handled on an interrupt basis. The interrupt structure of the 

MC6800 allows such applications to be processed in an orderly manner, that is, interrupts are 

handled without disrupting other system tasks in progress. 

The currently available interface devices are described in detail in Section 3-4. The various interrupt 

control techniques are discussed in Sections 3-2 and 3-3. 

In the M6800 system, all data movement between family elements (memory and/or peripheral 

interface adapters) is normally done through the MPU via the Data Bus. This means that the transfers are 

program controlled, that is, the movement is accomplished by execution of instructions such as Load, Store, 

Push, Pull, etc. Numerous examples of programmed controlled data transfers are shown throughout this 

manual. For example, a program for moving 8-bit bytes from a peripheral to memory (at the rate of 43,000 

bytes per second) is described in conjunction with the floppy disk application discusse~ in Section 5-4. 

In most system designs, it is possible to "speed up" data movement by surrendering program 

control and transferring data directly between the other system elements. This bypassing of the MPU, usually 

called Direct Memory Access (DMA) , requires that the MPU be provided with supervisory signals. In addition, 

external hardware for generating addresses and controlling the transfer must be provided. The MC6800's 

supervisory control features allow DMA to be accomplished in a variety of ways. The details of implementation 

depend on the particular system configuration and timing requirements. Several methods and their relative 

merits are discussed in Section 3-5 of this Chapter. 

3-1 



3-2 MC6800 INTERRUPT SEQUENCES 

In a typical application, the peripheral devices may be continuously generating asychronous signals 

(interrupts) that must be acted on by the MPU. The interrupts may be either requests for service or 

acknowledgements of services performed earlier by the MPU. The MC6800 MPU provides several methods for 

automatically responding to such interrupts in an orderly manner. 

In the control of interrupts, three general problems must be considered: (1) It is characteristic of most 

applications that interrupts must be handled without permanently disrupting the task in process when the 

interrupt occurs. The MC6800 handles this by saving the results of its current activity so that processing can be 

resumed after the interrupt has been serviced. (2) There must be a method of handling multiple interrupts since 

several peripherals may be requesting service simultaneously. (3) If some signals are more important to system 

operation or if certain peripherals require faster servicing than others, there must be a method of prioritizing the 

interrupts. Techniques for handling each of these problems with the MC6800 will be described in the following 

paragraphs. 

The MPU has three hardware interrupt inputs, Reset (RES)l, Non-Maskable Interrupt (NMI) , and 

Interrupt Request (IRQ). An interrupt sequence can be initiated by applying a suitable control signal to any of 

these three inputs or by using the software SWI instruction. The resulting sequence is different for each case. 

3-2.1 INTERRUPT REQUEST (IRQ) 

The IRQ input is the mainstay of system interrupt control. Inputs to IRQ are normally generated in 

PIAs and ACIAs but may also come from other user-defined hardware. In either case, the various interrupts 

may be wire-ORed and applied to the MPU's IRQ input. This input is level sensitive; a logic zero causes the 

MPU to initiate the interrupt sequence2 • A flow chart of the IRQ sequence is shown in Figure 3-2.1-l. 

After finishing its current instruction and testing the Interrupt Mask in the Condition Code 

Register, the MPU stores the contents of its programmable registers in memory locations specified by 

the Stack Pointer. (Operation of the Stack Pointer is discussed in Section 1-3 A.l.) This stacking process 

takes seven memory cycles: two each for the Index Register and Program Counter, and one each for 

Accumulator A, Accumulator B, and the Condition Code Register. The Stack Pointer will have been 

decremented seven locations and is pointing to the next empty memory location. 

The MPU's next step of setting the Interrupt Mask to a logic one is an important aspect of system 

interrupt control. Setting the mask allows the control program to determine the order in which multiple 

interrupts will be handled. If it is desirable to recognize another interrupt (of higher priority, for example) 

before service of the first is complete, the Interrupt Mask can be cleared by a CLI instruction at the beginning of 

the current service routine. If each interrupt is to be completely serviced before another is recognized, the eLI 

instruction is omitted and a Return from Interrupt instruction, RTI, placed at the end of the service routine 

restores the Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts. 

Note that if the former method is selected (immediate enable of further interrupts), the original 

interrupt service will still eventually be completed. This is due to the fact that the later interrupt also causes the 

current status to be put on the stack for later completion. This process is general and means that interrupts can be 

IThe bar convention over the symbols is used to indicate an active low signal condition. 

2IRQ is a maskable input. If the Interrupt Mask Bit within the MPU is set, low levels on the IRQ line will not be recognized; the MPU 
will continue current program execution until the mask bit is cleared by encountering the Clear Interrupt (CLI) instruction in the control 
program, or an RTI is encountered. 

3·2 



Continue Executing 
Current Program 

r--_ 

Stack MPU 
Contents 

Load Program Counter 
With Contents of Memory 

Locations: FFF8~ PCH 
FFF9~ PCL 

Jump to Interrupt 
Service Routine as 
Determ ined by PC 

~ SP-7 

c:::::> S P-6 

SP-5 

SP-4 

SP-3 

SP-2 

SP-1 

SP 

CCR 

ACCB 

ACCA 

INXH 

INXL 

PCH 

PCL 

... 

"'---

FIGURE 3-2.1-1: Hardware Interrupt Request Sequence 

CONTENTS ADDRESS 

RES (Low Byte) FFFF 

RES (High Byte) FFFE 

NMI (Low Byte) FFFD 

NMI (High Byte) FFFC 

SW I (Low Byte) FFFB 

SW I (High Byte) FFFA 

IRQ(LowByte) FFF9 

IRQ (High Byte) FFF8 

-

FIGURE 3-2.1-2: Interrupt Vector, Permanent Memory Assignments 

3-3 



"nested" to any depth required by the system limited only by memory size. The status of the interrupted 

routines is returned on a Last-In-First-Out (LIFO) basis. That is, the last result to be stacked is the first to be 

returned to the MPU. 

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service 

routine instruction from memory locations permanently assigned to the IRQ interrupt input. This is 

accomplished by loading the Program Counter's high and low bytes from memory locations responding to 

addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location now 

designated by the Program Counter. 

This technique of indirect addressing (also called vectoring) is also used by the other interrupt 

sequences. The' 'vectors" are placed in the memory locations corresponding to addresses FFF8 through FFFF 

as shown in Figure 3-2.1-2 during program development. 

The MPU places two of the address bytes in the range FFF8 - FFFF on the Address Bus during 

interrupt sequences. It should be noted that the vector data is fetched from the memory locations that respond to 

these addresses even though they may not actually be FFF8 - FFFF. For example, in the memory allocation 

that was illustrated in Section 1-1.2.1 of Chapter 1, the ROM was assigned the 1024 memory locations between 

CODa and C3FF (decimal 49152 to 50175) by tying Address Lines Al5 and A14 to the ROM's chip enables: 

Address 

Lines A15 Al4 Al3 A12 Al1 Alo A9 As A7 A6 A5 A4 A3 A2 Al Ao 

ROM 

Connections E E x x x X As A7 A6 A5 A3 Al Ao -----...... ~--_./ 
Not Connected 

Notice that if the MPU outputs the address FFFF (all ones) while fetching the vector data for a Reset, 

it is actually addressing memory location C3FF in the system memory. 

The significant point is that the eight locations that respond to FFF8 - FFFF must be reserved for 

the interrupt vectors. 

3-2.2 NON-MASKABLE INTERRUPT (NMI) 

As implied by its name, the Non-Maskable Interrupt (NMI) must be recognized by the MPU as soon 

as the NMI line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt 

service to a "hot" peripheral that must be allowed to interrupt. 

Except for the fact that it cannot be masked, the NMI interrupt sequence is similar to IRQ (See 

Figure 3-2.2-1). After completing its current instruction, the MPU stacks its registers, sets the Interrupt mask 

and fetches the starting address of the NMI interrupt service routine by vectoring to FFFC and FFFD. (See 
Figure 3-2.1-2). 

3-2.3 RESET (RES) 

The Reset interrupt sequence differs from NMI and IRQ in two respects. When RES is low, the 

MPU places FFFE (the high order byte of the RES vector location) on the Address Bus in preparation for 

executing the RES interrupt sequence. It is normally used following power on to reach an initializing program 

that sets up system starting conditions such as initial value of the Program Counter, Stack Pointer, PIA Modes, 

34 



etc. It is also available as a restart method in the event of system lockup or runaway. Because of its use for 

starting the MPU from a power down state, the RES sequence is initiated by a positive going edge. Also, since it 

is normally used only in a start-up mode, there is no reason to save the MPU contents on the stack. The flow is 

shown in Figure 3-2.3-1. After setting the Interrupt mask, the MPU loads the Program Counter from the 

memory locations responding to FFFE and FFFF and then proceeds with the initialization program. 

Stack MPU 
Contents 

Set 1m 

Load Program Counter 
With Contents of Memory 
Locations: FFFC'-"PCH 

FFFD~PCL 

Jump to Interrupt 
Service Routine as 
Determined by PC 

~ SP-7 

¢ SP-6 

SP-5 

SP-4 

SP-3 

SP-2 

SP-1 

SP 

r-

CCR 

ACCB 

ACCA 

INXH 

INXL 

PCH 

PCL 

~ 

FIGURE 3-2.2.1: Non-Maskable Interrupt Sequence 

Load Program Counter 

With Contents of Memory 

Locations: FFFE~ PCH 

FFFF~PCL 

Jump to Interrupt 

Service Routine as 

Determined by PC 

FIGURE 3-2.3-1: Reset Interrupt Sequence 

3-5 



3-2.4 SOFTWARE INTERRUPT (SWI) 

The MPU also has a program initiated interrupt mode. Execution of the Software Interrupt (SWI) 

instruction by the MPU initiates the sequence shown in Figure 3-2.4-1. The sequence is similar to the hardware 

interrupts except that it is ini tiated by "software" and the vector is obtained from memory locations responding 

to FFFA and FFFB. 

The Software Interrupt is useful for inserting break-points in the program as an aid in debugging and 

troubleshooting. In effect, SWI stops the process in place and puts the MPU register contents into memory 

where they can be examined or displayed. 

Load Program Counter 
With Contents of Memory 

Locations: F F FA PCH 
FFFB PCL 

Jump to Interrupt 
Service Routine as 
Determined by PC 

~ SP-7 

c:::!> SP-6 

SP-5 

SP-4 

SP-3 

SP-2 

SP-l 

SP 

r---

FIGURE 3-2.4-1: Software Interrupt Sequence 

3-6 

CCR 

ACCB 

ACCA 

INXH 

INXL 

PCH 

PCL 

~ 



3-3 INTERRUPT PRIORITIZING 

In the previous section, the various methods available for finding the "beginning" of an interrupt 

control program were described. If there is only one peripheral capable of requesting service, the source of the 

interrupt is known and the control program can immediately begin the service routine. More often, several 

devices are allowed to originate interrupt requests and the first task of the interrupt routine is to identify the 

source of the interrupt. 

There is also the possibility that several peripherals are simultaneously requesting service. In this 

case, the control program must also decide which interrupt to service first. The IRQ interrupt service routine in 

particular may be complex since most of the I/O interrupts are wire-ORed on this line. 

The most common method of handling the multiple and/or simultaneous IRQ interrupts is to begin 

the service routine by "polling" the peripherals to see which one generated the request. If the interrupts are 

generated by peripheral signals coming in through a PIA or an ACIA, the polling procedure is very simple. In 

addition to causing IRQ to go low, the interrupting signal also sets a flag bit in the PIA's or ACIA's internal 

registers. Since these registers represent memory locations to the MPU, the polling consists of nothing more 

than stepping through the locations and testing the flag bits3 . 

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The 

simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first I/O flag 

encountered gets the service, so higher priority devices are polled first. The second method first finds all the 

interrupt flags and then uses a special program to select the one having highest priority. This method permits a 

more sophisticated approach in that the priority can be modified by the control program. For example, it might 

be desirable to select the lower priority of two simultaneous requests if the lower priority has not been serviced 

for some specified period of time. 

Software techniques can, in theory, handle any number of devices to any sophistication level of 

prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the appropriate 

interrupt can exceed the time available to do so. In this situation, external prioritizing hardware can be used to 

speed up the operation. 

One method for implementing hardware prioritized interrupts is shown in block diagram form in 

Figure 3-3-1. With this technique, each interrupting device is assigned its own address vector which is stored in 

ROM memory similarly to the RES, SWI, IRQ, and NMI vectors. An external hardware priority encoder 

selects the interrupt to be recognized and directs the MPU to the proper locations in memory for obtaining the 

vectors. 

Operation of the MPU itself is unchanged; after recognizing an IRQ, the MPU still outputs addresses 

FFF8 and FFF9 as before. However, some of the address lines are no longer tied directly to memory but go 

instead to a 1-of-2 Data Selector. The other set of inputs to the Data Selector are generated by a Priority Encoder 

that outputs a binary number corresponding to the highest priority interrupt signal present at the time the 

interrupt was recognized by the MPU. 

Detection of the FFF8 and FFF9 addresses by the Address Bus monitoring circuitry then causes the 

outputs of the priority encoder to be substituted for part of the normal address. Hence, even though the MPU 

outputs FFF8 and FFF9, other locations in ROM are read by the MPU. Suitable vectors for sending the MPU 

directly to the appropriate service routine are stored in these locations. Specific circuits for implementing this 

prioritizing method are described in Section 4-2.1. 

3See Section 5-4 for a specific example of software polling. 

3-7 



11 

12 

13 

I (n-1) 

In 

• 

Interrupt 
Address 
Decode 

Priority 
Encoder 

Interrupt 
Partial Address 

Address Bus 

1-of-2 
Data 

Selector 

MPU 
Memory 

(MCM6830 
ROM) 

FIGURE 3-3-1: Hardware Interrupt Prioritizing Block Diagram 

3-4 PROGRAM CONTROLLED DATA TRANSFERS 

3-4.1 MC6820 PERIPHERAL INTERFACE ADAPTER 

3-4.1.1 Input/Output Configuration: 

Data 
Bus 

The MC6820 Peripheral Interface Adapter (PIA) provides a flexible method of connecting 

byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the MPU to handle a 

wide variety of equipment types with minimum additional logic and simple programming. An Input/Output 

Diagram of the MC6820 is shown in Figure 3-4.1.1-1. 

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional data lines, 

DO through D7. The direction of data flow is controlled by the MPU via the Read/Write input to the PIA. 

The" MPU side" of the PIA also includes three chip select lines, CSO, CS 1, and CS2, for selecting a 

particular PIA. Two addressing inputs, RSO, and RS 1, are used in conjunction with a control bit within the PIA 

for selecting specific registers in the PIA. The MPU can read or write into the PIA's internal registers by 

addressing the PIA via the system Address Bus using these five input lines and the R!W signal. From the MPU' s 

point of view, each PIA is simply four memory locations that are treated in the same manner as any other 

read/write memory. 

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse is used 

to condition the PIA's internal interrupt control circuitry and for the timing of peripheral control signals. Since 

all data transfers take place during the cp2 portion of the clock cycle, the Enable pulse is normally cp24. 
The "Peripheral side" of the PIA includes two 8-bit bi-directional data buses (PAO-PA7 and 

PBO-PB7), and four interruptlcontrollines, CAl, CA2, CB1, and CB2. All of the lines on the "Peripheral 

Side" of the PIA are compatible with standard TTL logic. In addition, all lines serVing as outputs on the "B" 

side of each PIA (PBO-PB7, CB1, CB2) will supply up to one milliamp of drive current at 1.5 volts. 

4 See Section 4-1. 3 for exceptions required in some applications. 

3-8 



CA1 
IRQA 

CA2 
IRQB 

DB</> - DB7 PA</>-PA7 

RS</> MC6820 
RS1 Peripheral 

CS</> Interface 

CS1 Adapter 
(PIA) 

CS2 

PB</> - PB7 

R/W 

Enable CB2 

Res CB1 

'" ::l 
ro 
~ 
ro 
0 

FIGURE 3-4.1.1-1: MC6820 PIA 1/0 Diagram 

3 -4. 1.2 Internal Organization: 

An expanded Block Diagram of the PIA is shown in Figure 3-4.1.2-1. Internally, the PIA is divided 

into two symmetrical independent register configurations. Each half has three main features: an Output 

Register, a Control Register, and a Data Direction Register. It is these registers that the MPU treats as memory 

locations, i.e., they can be either read from or written into. The Output and Data Direction Registers on each 

side represent a single memory location to the MPU. Selection between them is internal to the PIA and is 

determined by a bit in their Control Register. 

The Data Direction Registers (DDR) are used to establish each individual peripheral bus line as 

either an input or an output. This is accomplished by having the MPU write "ones" or "zeros" into the eight 

bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function as inputs or 

outputs, respectively. 

The Output Registers, ORA and ORB, when addressed, store the data present on the MPU Data Bus 

during an MPU write operation5 . This data will also appear on those peripheral lines that have been 

5 As used here, an "MPU Write" operation refers to the execution of the "Store" instruction, i.e., writing into Output Register A is 
equivalent to execution of STAA PIAORA by the MPU. Similarly, an "MPU Read" operation is equivalent to execution of the 
"Load" instruction: LDAA PIAORA. 

3-9 



IROA 38. 
I nterrupt Status 

40 CAl 

Control A 
39 CA2 

Register A 
DO 33 (CRA) 

01 32 Data Direction 

02 31 Register A 

Data Bus 
(DORA) 

03 30 
Buffers 

04 29 (DBB) Output Bus 
05 28 

06 27 2 PAO 

07 26 Output 3 PAl 
Register A 

(ORA) 4 PA2 

Peripheral 5 PA3 
Interface 

6 PA4 
A 

III 7 PA5 
Bu~ iflput. 

:) 

CO 
8 PA6 Register .... 

:) 

(BIR) c. 9 PA7 c 

VCC = Pin 20 
10 PBO 

VSS= Pin 1 
Output 11 PBl 

Register B 
12 PB2 

(ORB) 
CSO 22 Peripheral 13 PB3 

CSl 24 Interface 
B 14 PB4 

CS2 23 Chip 15 PB5 

RSO 36 Select 
16 PBS and 

RSl 35 R/W 17 PB7 

R/W 21 Control 

Enable 25 

Reset 34 
Data Direction 

Register B 
(DDRB) 

Interrupt Status 
18 CB1 

IROB 37 Control B 
19 CB2 

FIGURE 3-4.1.2-1: MC6820 PIA - Block Diagram 

3-10 



programmed as outputs. If a peripheral line has been programmed as an input, the corresponding bit 

position of the Output Register can still be written into by the MPU, however, the data will be 

influenced by the external signal applied on that peripheral data line. 
During an MPU Read operation, the data present on peripheral lines programmed as inputs is 

transferred directly to the system Data Bus. Due to differing circuitry, the results of reading positions 

programmed as outputs differ slightly between sides A and B of the PIA. On the B side, there is three-state 

buffering between Output Register B and the peripheral lines such that the MPU will read the current contents 

of ORB for those bit positions programmed as outputs. (See Figure 3-4.1.2-2.) During an MPU Read of the A 

side, the data present on the Peripheral lines will effect the MPU Data Bus regardless of whether the lines are 

programmed as outputs or inputs. The bit positions in ORA designated as outputs will be read correctly only if 

the external loading on the Peripheral lines is within the specification for one TTL load. That is, a logic one 

level could be read as a logic zero if excessive loading reduced the voltage below 2.0 volts. 

The two Control Registers, CRA and CRB, allow the MPU to establish and control the operating 

modes of the peripheral control lines, CAl, CA2, CB 1, and CB2. It is by means of these four lines that control 

information is passed back and forth between the MPU and peripheral devices. The control word format and a 

summary of its features is shown in Figure 3-4.1.2-3. 

The Data Direction Register access bit (b2 = DDR Access) is used in conjunction with the register 

select lines to select between internal registers. For a given register select combination, the status of the DDR 

bit determines whether the Data Direction Register (b2 of DDR = 0) or the Output Register (b2 of DDR = 1) is 

addressed by the MPU. 
+5 

To Data 
Bus ~----< t------_ ....... __ ~ PAx 

From ORA »----------4 
0= True Data 

A) A - Side 

From DDR 

+5 

To Data Bus 

~--~-------_+----_e~ __ -~PBx 

From ORB 

1 = True Data 

B) B - Side 

FIGUR E 3-4.1.2-2: PIA Output Circuit Configurations 

3-11 



Determine Active CA 1 (CB 1) Transition for Setting 
Interrupt Flag I RQA(B)1 -(bit b7) 

b1 = 0: IRQA(B)1 set by high-to-Iow transition on 

CA 1 (CB1). 

b1 = 1 I RQA(B) 1 set by low-to-high transition on 

CA1 (CB1). 

I RQA(B) 1 Interrupt Flag (bit b7) 

Goes high on active transition of CA1 (CB1); Automatically 
cleared by MPU Read of Output Register A(B). May also be 
cleared by hardware Reset. 

b7 b6 b5 b4 

I RQA(B)1 I RQA(B)2 
Flag Flag 

CA2(CB2) 
Control 

I 
J 

I RQA(B)2 Interrupt Flag (bit b6) 

CA2 (CB2) Established as Input (b5 = 0): Goes high on active 
transition of CA2 (CB2); Automaticallv cleared by MPU RpFtrl 

of Output Register A(B). May also be cleared by hardware 
Reset. 

CA2 (CB2) Established as Output (b5 = 1): IRQA(B)2 = 0, 
not affected by CA2 (CB2) transitions. 

1 
CA2 (CB2) Established as Output by b5 = 1 

b5 

.2.£ 

1 

b4 

a 

b4 

1 

(Note that operation of CA2 and CB2 
output functions are not identical) 

~CA2 

b3 = 0: Read Strobe With CA 1 Restore 

CA2 goes low on first high-to
low E transition following an 
MPU Read of Output Register 
A; returned high by next 
active CA 1 transition. 

b3 = 1: Read Strobe with E Restore 

CA2 goes low on first high-to
low E transition following an 
MPU Read of Output Register 
A; returned high by next 
high-to-Iow E transition. 

~CB2 

b3 = 0: Write Strobe With CB1 Restore 

CB2 goes on low on first low
to high E transition following 
an MPU Write into Output 
Register B; returned high by 
the next active CB1 transition. 

b3 = 1: Write Strobe With E Restore 

CB2 goes low on first low-to
high E transition following an 

b3 MPU Write into Output 

l 
Register B; returned high by the 
next low-to-high E transition. 

Set/Reset CA2 (CB2) 

CA2 (CB2) goes low as MPU writes 
b3 = a into Control Register. 

CA2 (CB2) goes high as MPU writes 
b3 = 1 into Control Register. 

3-12 

CA 1 (CB1) Interrupt Request Enable/Disable 

b3 

bO = 0: Disables IRQA(B) MPU Interrupt by CA1 (CB1) 
active transition. 1 

bO = 1 : Enable I RQA(B) MPU Interrupt by CA 1 (CB1) 
active transition. 

1. I RQA( B) will occur on next (MPU generated) positive 
transition of bO if CA1 (CB1) active transition occurred 
while interrupt was disabled. 

b2 

DDR 
Access 

b1 I bet> 

CA1(CB1) 
Control 

I 

I 
Determines Whether Data Direction Register Or Output 
n~9ister is Addressed 

b2 = a : Data Direction Register selected. 

b2 = 1 : Output Register selected. 

I 
CA2 (CB2) Established as Input by b5 = 0 

b5 

a 

b4 
-,-

b3 

L CA2 (CB2) Interrupt Request Enable/ 
Disable 

b3 = 0: Disables I RQA(B) MPU 
Interrupt by CA2 (CB2) 
active transiti on. 1 

b3 = 1: Enables I RQA(B) MPU 
Interrupt by CA2 (CB2) 
active transition. 

1. I RQA(B) will occur on next (MPU 
generated) positive transition of b3 
if CA2 (CB2) active transition 
occurred while interrupt was 
disabled. 

'----.... - Determines Active CA2 (CB2) Transition 
for Setting Interrupt Flag I RQA(B)2 -
(bit b6) 

b4 = 0: I RQA(B)2 set by high-to-Iow 
transition on CA2 (CB2). 

b4 = 1: I RQA(B)2 set by low-to-high 
transition on CA2 (CB2). 

FIGURE 3-4.1.2-3: PIA Control Register Format 



Each Control Register has two interrupt request flags, b7 = IRQA(B) 1 and b6 = IRQA(B)2; they are 

set by transitions on the CA1(CB 1) and CA2(CB2) control lines and can be read by an MPU read Control 

Register operation. The status of the interrupt flags cannot be altered by an MPU write instruction, that is, 

IRQA(B) 1 and IRQA(B)2 are Read Only with respect to the MPU. They are indirectly reset to zero each time 

the MPU reads the corresponding Output Register or can be cleared with the hardware Reset. 

Bits bo and bl of the Control Registers determine the CA1(CB 1) operating mode. A "one" written 

into bl by the MPU will cause subsequent positive-going transitions of the CA1(CB 1) input to set IRQA(B)1; if 

bl = 0, negative-going transitions on CA1(CB 1) cause IRQA(B)1 to set. If bo = 1 when the IRQA(B)1 flag 

goes high, the PIA's external interrupt request line, IRQA(B), immediately goes low, providing a hardware 

interrupt signal to the MPU. The external interrupt is disabled if bo = 0 when the internal interrupt is set by 

CA1(CB1). Ifbo is later set by an MPU Write Control Register operation, the disable is immediately released 

and a pending external interrupt request will occur. 

When b5 = 0, b3 and b4 of the Control Register perform similarly to bo and bl, controlling the 

IRQA(B)2 interrupt via the CA2(CB2) input. The IRQA(B) interrupt terminal, when enabled, responds to 

either IRQA(B) 1 or IRQA(B)2. 

Ifb5 = 1, CA2(CB2) acts as an output and will function in one of three modes. Ifb4 is also equal to 

one, CA2(CB2) serves as a program-controlled set/reset output to the peripheral and follows b3 as it is changed 

by MPU Write Control Register operations. If b4 = 0 when b5 = 1, CA2(CB2) can be used in either a 

pulse-strobed or handshake mode. Operation of the two sections differ slightly for these two operating modes. 

In the handshake mode (b3 = 0) CA2 is taken low by the negative transition of the MPU Enable Pulse following 

an MPU Read Output Register operation and returns high when IRQA1 is next set by CAl. This, in effect, tells 

the peripheral it has been read and allows it to acknowledge via CA 1. The' 'B" Side operation is similar except 

that CB2 is taken low following an MPU Write Output Register operation and returned high by the next CB 1 

transition; this tells the peripheral it has been written into and allows it to respond via CB 1. 

In the pulse-strobed mode (b3 = 1), CA2 is again set low by a Read Output Register command, but is 

now returned high by the negative transition of the next MPU originated Enable Pulse. CB2 operation is similar 

except that an MPU Write Operation initiates the pulse. Relative timing waveforms for the strobe control 

modes are shown in Figures 3-4.1.2-4 and 3-4.1.2-5. The use of A side for Read and B side for Write in those 

figures is not meant to imply that the A and B sides must be used only for peripheral data in and out, 

respectively. However, the strobe modes are implemented only as shown, i.e., a strobe is not generated by an A 

side Write or a B side Read. Strobes can be generated for these cases by including "dummy" instructions in the 

program. For example, an A side Write instruction can be followed immediately by an A side dummy Read to 

generate the strobe. Similarly, a B side Read can be followed by a dummy Write. 

3-13 



Enable 

~~~---r--~----------------~-------------------------2.4V Address 

1'---.,.....---+----+-------------+------------------------ 0.4 V
Peripheral

Data
--------~ j~~~_4----~--~~----------------_+----------------------------- 2.4V

~....;;;....;....------1r--t--------------_+--------------------- 0.4 V

Data Bus

CA2 (CRA-5 = CRA-3 = 1, CRA-4 = 0)

~-T-H-R---~--+--------------2.4 V
---------------/ ~At:2==========3====:=r======T=R=S=1================ 0.4 V

------------- 2.4 V 2.0 V
0.8 V ------- 0.4 V

-----2.4V CA1

CA2 (CRA-5 = 1, CRA-3 = CRA-4 = 0) \----------------------~

Loading = 30 pF and one TTL load for PAO·PA 7, PBO·PB7, CA2, CB2
= 130 pF and one TTL load for DO-D7 IROA IROB)

Characteristic Symbol Min

Delay Time, Address valid to Enable positive transition TAEW 180

Delay Time, Enable positive transition to Data valid on bus TEDR -
Peripheral Data Setup Time TPDSU 300

Data Bus Hold Time THR 10

Delay Time, Enable negative transition to CA2 negative transition TCA2 -

Delay Time, Enable negative transition to CA2 positive transition TRSl -

Rise and Fall Time for CA 1 and CA2 input signals tr,tf -

Delay Time from CA 1 active transition to CA2 positive transition TRS2 -
Rise and Fall Time for Enable input trE, tfE -

FIGURE 3-4.1.2-4: Read Timing Characteristics

3-14

Typ Max Unit

- - ns

- 395 ns

- - ns

- - ns

- 1.0 !J.s

- 1.0 !J.s

- 1.0 !J.s

- 2.0 !J.~

- 25 ns

Enable

.---l---------+------------- 2.4 V
Address

'--4-----------lf------------ 0.4 V

2.4 V
Read/Write

-,..;..:;.:..::......:;......-+-+-". ,----1·---------1------------- 0.4 V

2.4 V
Data 8us

--------------~ ,~-J~~, __ ~~~----------------_4------~------------------- 0.4V
Vee - 30%

---------:..:::..:..:..-..:...-_..JIo"-....i...oL---------+--------------2.4V
Peripheral Data

----------- 1O;;;;';:'~~--------I__~----------- 0.4 V

C82
(CR 8-5 = CR8-3 = 1. CR 8-4 = 0)

C81

C82
(CR8-5 = 1. CR8-3 = CR8-4 = 0)

Characteristic Symbol Min

Enable Pulse Width TE 0.470

Delay Time. Address valid to Enable positive transition TAEW 180

Delay Time. Data valid to Enable negative transition TDSU 300

Delay Time. Read/Write negative transition to Enable positive transition TWE 130

Data Bus Hold Time THW 10

Delay Time. Enable negative transition to Peripheral Data valid TPDW -

Delay Time. Enable negative transition to Peripheral Data Valid. CMOS TCMOS -
(VCC - 30%) PAO-PA 7. CA2

Delay Time, Enable positive transition to CB2 negative transition TCB2 -

Delax Time, Peripheral Data valid to CB2 negative transition TDC 0

Delay Time, Enable positive transition to CB2 positive transition TRS1 -

Rise and Fall Time for CB1 and CB2 input signals tr,tf -

Delay Time, CB1 active transition to CB2 positive transition TRS2 -

FIGURE 3-4.1.2-5: Write Timing Characteristics

3-15

1.------------ 2.4 V

Typ Max

- 25

- -

- -

- -

- -

- 1.0

- 2.0

- 1.0

- 1.5

- 1.0

- 1.0

- 2.0

Unit

J..LS

ns

ns

ns

ns

J..LS

J..LS

J..LS

J..LS

J..LS

J..LS

J..LS

0.4 V

2.4 V

0.4 V

2.4V

3 -4. 1.3 Addressing and Initialization:

Chapters 6 and 7 of this manual include numerous examples of PIA addressing and initialization,

however, some basic considerations are discussed in the following paragraphs. As indicated in Section 3 -4. 1. 1 ,

the MPU addresses the PIA via the five chip select and register select inputs and bit 2 of the Control Registers.

The correspondence between internal registers and the address inputs is shown in Figure 3-4.1.3-1.

eS2 eS1 escf> RS1 RScf> b2

cf> cf> cf> cf> Data Direction Register A (PIADRA)

cf> cf> cf> 1 Output Register A (PIAORA)

cf> cf> 1 X Control Register A (PIACRA)

cf> cf> cf> Data Direction Register B (PIADRB)

cf> cf> 1 Output Register B (PIAORB)

cf> 1 X Control Register B (PIACRB)

X X cf> X X X PIA Not Selected

X cf> X X X X PIA Not Selected

1 X X X X X PIA Not Selected

X = Doesn't Matter

FIGURE 3-4.1.3-1: PIA Register Addressing

Addressing a PIA can be illustrated in conjunction with the simple system configuration shown in

Figure ~-4. 1.3-26. The method sho'.vn is typical fer assigning mutually exclusive memory addresses to the

family devices without using additional address decode logic. The connections shown in Figure 3-4.1.3-2

assign memory addresses as follows:

RAM

PIA

ACIA

ROM

0000 - 007F

4004 - 4007

4008 - 4009

COOO- C3FF

(Hexadecimal notation)

In most cases, the desired I/O configuration and Control Register modes are established as part of an

initialization sequence. The steps involved depend on the particular application but can be clarified by means of

a specific example.

Assume that a PIA is to be used as the interface between two peripherals. When interrupted by a

positive transition on a control line, the MPU is to fetch 8 bits of data from Peripheral # 1 and then send an

acknowledgement pulse. The MPU must be able to transfer a byte of data to Peripheral #2 and receive

acknowledgement that it was accepted. Peripheral #2 must be provided with a control signal indicating that

there is data ready for it.

A suitable hardware configuration is shown in Figure 3-4.1.3-3. Peripheral Lines PAO-PA7 are

assigned to "read" Peripheral #1 and, hence, must be established as inputs. CAl provides the interrupt input

and must be conditioned to recognize incoming positive transitions. CA2 will be used to signal that data has

been read, hence, it must be established as an output using the pulse strobe mode, i.e., reading PIAORA 7 will

automatically transmit a pulse to the peripheral.

Peripheral Lines PBO-PB7 are assigned for transmitting data to Peripheral #2 and, hence, must be

established as outputs. CB2 will be used as an output for signalling that there is data ready. CB 1 will be

6Figure 3-4.1.3-2 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

7In order to use symbolic labels instead of absolute addresses in the initialization program, the labels introduced in Figure 3-4.1.3-1 will
be used to refer to PIA registers.

3-16

START
UP

CLOCK

VMA

02

01

VMA·02

MPU

AO-A9 DBO-DB7

ROM

---.... -IE
---.... -IE

L-____________ ~~

'-----y---' '-----v--'
PARALLEL 1/0 (DATA AND CONTROL)

AO
RS

DBO-DB7
A3

CSO ACIA
CS1
CS2 E

R/W
IRO

CTS DCD RTS
IRO

FIGURE 3-4.1.3-2: Family Addressing

3-17

Data Ready
CA1 ---

Data Accepted
CA2 -
PAO -
PA1 -
PA2 - Peripheral

PA3 #1 -
PA4 --
PA5 --
PA6 -
PA7 -
PBO ---
PB1 -
PB2 ..

PIA PB3 ..
PB4 ..
PB5 -- Peripheral - #2
PB6 .. -
PB7

Data Ready
CB2 -
CB1 -

Data Accepted

FIGURE 3-4.1.3-3: Typical I/O Configuration

3-18

conditioned to accept a negative transition acknowledgement signal from Peripheral #2. CB2 is to be restored

by that transition.

If it is known that a hardware system Reset is to be applied prior to initializing, all PIA register bits

will be zero initially and the following sequence can be used:

10 LDAA #$2F SELECT ORA; SET MODE CONTROL

20 STAA PIACRA FOR "A" SIDE

30 COM PIADRB ESTABLISH PBO-PB7 AS OUTPUTS

40 LDAA #$24 SELECT ORB; SET MODE CONTROL

50 STAA PIACRB FOR "B" SIDE

The constantS $2F = 0010 1111 loaded into the A Control Register by Instruction 20 has the following effect: bO

= 1 enables a CA 1 interrupt; b 1 = 1 selects positive transition for interrupt recognition; b2 = 1 selects ORA

(the initial zeros in DDRA establishPAO-PA7 as inputs); b3 = 1, b4 = o selects read strobe with Erestore; b5 =
1 establishes CA2 as an output; b6 and b7 are don't cares since MPU cannot write into those two positions:

b7 b6 b5 b4 b3 b2 b1 nO

o 0 1 0 1 1 1 1 = 2F (Hex)

Instruction 30 writes "ones" into the B Data Direction Register, thus establishing PBO-PB7 as outputs. The

constant loaded into the B Control Register by instruction 50 has the following effect: bO = 0 disables IRQB

interrupt by CB 1 transition (it is assumed that the MPU will read flag bit b7 to check for acknowledgement

rather than allowing an interrupt); b1 = 0 selects recognition of negative transition on CB 1 for setting flag bit 7;

b2 = 1 selects ORB; b3 = 0, b4 = 1 selects Write strobe with CB 1 restore; b5 = 1 establishes CB2 as an output;

b6 and b7 are don't cares:

b7 b6 b5 b4 b3

00100

b2 b1

1 0

bO

o = 24 (Hex)

If there is no assurance that the PIA internal register bit positions are initially zero prior to

initialization, the following sequence can be used:

10 CLRA SELECT

20 STAA PIACRA DATA DIRECTION REGISTER A

30 STAA PIACRB AND DATA DIRECTION REGISTER B.

40 STAA PIADRA ESTABLISH PAO-PA7 AS INPUTS.

50 LDAA #$2F SELECT ORA; SET MODE

60 STAA PIACRA CONTROL FOR" A" SIDE.

70 LDAA #$FF ESTABLISH

80 STAA PIADRB PBO-PB7 AS OUTPUTS.

90 LDAA #$24 SELECT ORB; SET MODE

100 STAA PIACRB CONTROL FOR "B" SIDE.

Note that if the initialization sequence is started from a known hardware clear only half as many instructions are

required.

8Refer to Figure 3-4.1.2-3 for derivation of the Control Register words.

3-19

3-4.1.4 System Considerations:

The information provided in the preceding paragraphs has been limited to only the more obvious

characteristics of the PIA. The features described greatly simplify VO processing, as will be seen in the

examples of later chapters. There are several general techniques worth considering as a system is configured.

The fact that the PIA registers are treated as memory combined with the fact that many of the MPU' s

instructions (CLR, ASL, COM, TST, etc) operate directly on memory makes possible a variety of I/O

techniques. This characteristic should be given careful attention when hardware/software tradeoffs are being

considered.

The flexibility inherent in being able to change the I/O direction of individual peripheral lines under

program control was not adequately stressed in the initialization discussion. A detailed example making use of

this feature to decode a switch matrix is included in Section 5-1.1.1.

Only a simple case of address assignment was considered. Other approaches may lead to a more

efficient system. As an example, consider the memory allocation that results from applying AO, and Al of the

address bus to RSO and RS 1, respectively:

RSI RSO

(AI) (AO) ~
0 0 PIAORA

0 1 PIACRA

0 PIA ORB

1 1 PIACRB
~

Here the registers alternate between output and Control9 Registers. If AO is connected to RSI and Al to RSO,

the following result is obtained:

RSI RSO

(AO) (AI)

0 0 PIAORA

1 0 PIA ORB

0 PIACRA

1 PIACRB

Notice that the output registers are now in adjacent memory locations. This configuration can be used to

advantage in applications where 16 bits must be brought into memory. With both the A and B sides established

as input ports, the LDX and STX instructions can be used to efficiently transfer two bytes at a time. A specific

example of this technique is described in Section 5-4. If this allocation is selected, initialization routines such as

the first example of Section 3 -4 .1. 3 can also be simplified:

10 LDX

20 STX

#$2F24 ESTABLISH CONTROL MODES

PIACRA FOR BOTH SIDES.

In this sequence, the single instruction STX causes the appropriate constant to be loaded into both Control

Registers.

9This assumes that b2 of the Control Registers has been set to select the Output Registers.

3-20

3-4.2 MC6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

3-4.2.1 Input/Output Configuration

The MC6850 Asynchronous Communications Interface Adapter (ACIA) provides a means of

efficiently interfacing the MPU to devices requiring an asynchronous serial data format. The ACIA includes

features for formatting and controlling such peripherals as Modems, CRT Terminals, and teletype

printer/readers. An Input/Output Diagram of the MC6850 is shown in Figure 3-4.2.1-1.

Data flow between the MPU and the ACIA is via 8 bi-directionallines, DBO through DB7, that

interface with the MPU Data Bus. The direction of data flow is controlled by the MPU via the Read/Write input

to the ACIA.

The "MPU side" of the ACIA also includes (see Figure 3-4.1.3-2) three chip select lines, CSO,

CS 1, and CS2, for addressing a particular ACIA. An additional addressing input, Register Select (RS), is used

to select specific registers within the ACIA. The MPU can read or write into the internal registers by addressing

the ACIA via the system Address Bus using these four input lines. From the MPU's addressing point of view,

each ACIA is simply two memory locations that are treated in the same manner as any other read/write memory.

The MPU also provides a timing signal to the ACIA via the Enable input. The Enable (E) pulse is

used to condition the ACIA's internal interrupt control circuitry and for the timing of status/control changes.

Since all data transfers take place during the 4>2 portion of the clock cycle, 4>2 is applied as the E signal.

The "Peripheral side" of the ACIA includes two serial data lines and three control lines. Data is

transmitted and received via the Tx Data output and Rx Data inputs, respectively. Control signals

Clear-To-Send (CTS) , Data Carrier Detect (DCD), and Request-To-Send (RTS) are provided for interfacing

with Modems such as the MC6860. Two clock inputs are available for supplying individual data clock rates to

the receiver and transmitter portions of the ACIA.

Clk Tx

IRQ Tx Data

DBO - DB7 CTS

RS RTS
MC6850

CSO Asynchronous DCD
CS1 Communications

CS2 Interface

Adapter

(ACIA)

R/W

E

If)

:::l
Rx Data

If)
OJ :::l Clk Rx
If) OJ If)

~ g If) "0
:::l "0 C
OJ « 0

~ u
(0

0

FIGURE 3-4.2.1-1: MC6850 ACIA I/O Diagram

3-21

elk Tx 4

DO 22

01 21

02 20

03 19

04 18
05 17

06 16

07 15

IRQ 7

.........
~
.-.
...--.
...--.
.-..
..........

-

-J eso 8

CS1 10

CS2 9
'-----.

RS 11

R/W 13

E 14

Clk Rx 3

---.
-----.

-------.

.. -

~
-

Data Bus
Multiplexor/

Buffers 4-

,;t--- hl "-r-

t- -

I
Chip Select

and ---41
R/W Control

3 -4.2.2 Internal Organization

~

..
Transmit JI.

. Data Reg.
"

-
Status f4-Register

r- Interrupt

Control - ~

...
Control
Register

-
~

Receive

Data Reg. ..

L+o

--
FIGURE 3-4.2.2-1: ACIA Block Diagram

Transmit

Clk. Gen.

+ I
Transmit

Shift Reg.

I
Transmit

Control

Clock
Select

Receive

Control

I ,
Receive

Shift Reg.

+
Receive

Clk. Gen.

Parity

Generation

j

--

J Parity

~ Check

j I

.....- Sync .

Logic

-

a

-

6 Tx Data

24 CTS

5 RTS

23 DCD

2 Rx Data

An expanded Block Diagram of the ACIA is shown in Figure 3-4.2.2-1. While the ACIA appears to

the MPU as two addressable memory locations, internally there are four registers, two that are Write Only and

two that are Read Only. The Read Only registers are for status and received data and the Write Only registers

are for ACIA control and transmit data.

The Status Register format and a summary of the status bits is shown in Figure 3-4.2.2-2. The first

two bits bO and b 1 indicate whether the Receiver Data Register is full (RDRF) or if the Transmit Data Register is

empty (TDRE). bO will go high when Rx data has been transferred to the Receiver Data Register (RDR). bO will

go low on the trailing edge of the Read Data command (reading the Receiver Data Buffer) or by a master reset

command from bits bO and b 1 of the Control Register.

Status bit bl (Tx Data Register Empty) will go high when a transmitter data transfer has taken place

indicating that the Transmit Data Register (TDR) is available for new data entry from the MPU Bus. Bit bl will

return low on the trailing edge of a write data command. bl will be held low if Clear-To-Send is not received

from a peripheral device (CTS = "1")

Status bits b2 (Data Carrier Detect) and b3 (Clear-To-Send) are flag indicators from an external

modem. Bit b2 (DCD) will be high when the received carrier at the modem has been lost (ACIA's DCD input is

high). Bit b2 will remain high until the interrupt is cleared by reading the Status Register and the Receiver Data

Register. Bit b3 (CTS) is low during reception of a Clear-To-Send command from a modem or other peripheral

device.

3-22

Interrupt Request

The interrupt request bit is the complement of
the I RQ output. Any interrupt that is set and
enabled will be available in the status register
in addition to the normal I RQ output.

l

Data Carrier Detect

b2 = 0: I ndicates carrier is present.
b2 = 1: I ndicates the loss of carrier.

1. The low-to-high transition of the DCD in
put causes b2=1 and generates an interrupt
(b7=1), (IRQ=O)

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=0 and b7=0.

I

Receiver Data Register Full

bO = 0:

bO = 1:

Indicates that the Receiver Data
Register is empty.
I ndicates that data has been trans
ferred to the Receiver Data Register
and status bits states are set (PE,
OVRN, FE).

1. The Read Data Command on the high-to
low E transition or a master reset causes
bO = O.

2. A "high" on the DCD input causes bO=O
and the receiver to be reset.

I
r

r
b7 I

IRQ

b6

PE
b5 I

OVRN

b4

FE

b3

CTS I b2

DCD
b1 I

TxDRE

.----___ ---ll I

Framing Error

b4 = 1: I ndicates the absence of the first stop
bit resulting from character synchro
nization error, faulty transmission, or
a Break condition.

1: The internal Rx data transfer signal causes
b4=1 due to the above conditions and causes
b4=0 on the next Rx data transfer signal if
conditions have been rectified.

Overrun Error

b5 = 1: Indicates that a character or a num
ber of characters were received but
not read from the Rx data register
prior to subsequent characters being

'-- received.

1. The Read Data Command on the high-to
low E transition causes b5=1 and bO=1 if an
overrun condition exists. The next Read
Data Command on the high-to-Iow E transi
tion causes b5=0 and bO=O.

Parity Error

b6 = 1: I ndicates that a parity error exists.
The parity error bit is inhibited if no
parity is selected.

1. The parity error status is updated during
the internal receiver data transfer signal.

I
Transmitter Data Register Empty

b1 = 1:

b1 = 0:

Indicates that the transmitter data
Register is empty.
I ndicates that the transm itter data
Register is full.

1. The internal Tx transfer signal forces b1=1.

2. The Write Data Command on the high-to
low E transition causes b1=0.

3. A "high" on the CTS input causes b1=0.

Clear to Send

The CTS bit reflects the CTS input status for
use by the MPU for interfacing to a modem.

NOTE: The CTS input does not reset the
transmitter.

FIGURE 3-4.2.2-2: ACIA Status Register Format

3-23

Bit b4 (Framing Error) will be high whenever a data character is received with an improper start/stop

bit character frame. The framing error flag b4 is cleared by the next data transfer signal if the condition causing

the framing error has been rectified. Bit b5 (Receiver Overrun) being high indicates that the Receiver Data

Register has not been read prior to a new character being received by the ACIA. This bit is cleared by reading

the Receiver Data Register. Status Register bit b6 (Parity Error) is set whenever the number of high (" 1 's' ') in

the received character does not agree with the preselected odd or even parity. Bit b7 (Interrupt Request) when

high indicates the ACIA is requesting interrupt to the MPU via the ACIA IRQ output and may be caused by bO

or b 1 or b2 being set. All of the Status Register bits (except b3) will be cleared by an ACIA Master Reset.

The Control Register is an eight bit write only buffer which controls operation of the ACIA receiver,

transmitter, interrupt enables, and the modem Request-To-Send control line. The Control Register format and a

summary of its features is shown in Figure 3-4.2.2-3.

Control bits bO and bl select a Master Reset function for the ACIA when both bits are high and

selects different clock divide ratios for the transmitter and receiver sections for the other combinations:

bl bO

(CDS2) (CDSI) Clock Division

0 0 + 1

0 1 +16

1 0 +64

1 1 Master Reset

The next 3 control bits, b2, b3, and b4, are provided for character length, parity, and stop bit

selection. The encoding format is as follows:

b4 b3 b2

(WS3) (WS2) (WSl) Character Frame

0 0 0 7 Bit + Even Parity + 2 Stop Bits

0 0 1 7 Bit + Odd Parity + 2 Stop Bits

0 1 0 7 Bit + Even Parity + 1 Stop Bit

0 1 1 7 Bit + Odd Parity + 1 Stop Bit

1 0 0 8 Bit + No Parity + 2 Stop Bits

1 0 1 8 Bit + No Parity + 1 Stop Bit

1 1 0 8 Bit + Even Parity + 1 Stop Bit

1 1 1 8 Bit + Odd Parity + 1 Stop Bit

The ACIA transmitter section is controlled by control bits b5 (TC 1) and b6 (TC2). The four

combinations of these two inputs provide transmission of a break command, Modem Request-To-Send (RTS)

command, and a transmitter inhibit/enable for the ACIA Interrupt Request output. When both b5 and b6 are

low, the Request-To-Send (RTS) output will be active low and the transmitter data register empty flag is

inhibited to the ACIA's Interrupt Request (IRQ) output. If b5 is high and b6 is low the RTS output remains

active low but the transmit IRQ input is enabled. To turn off the RTS output b6 should be high and b510w. This

selection also inhibits the transmitter interrupt input to the IRQ output. When both b5 and b6 of the control

register are high, Request-To-Send is on (RTS) = 0, IRQ is inhibited for the transmitter, and a break is

transmitted (a space).

3-24

Enable for Receiver Interrupt

b7 = 1: Enables Interrupt Output in
Receiving Mode

b7 = 0: Disables Interrupt Output in
Receiving Mode

~
b7 b6

RIE TC2

b5 b4

TC1 WS3

Transmitter Control Bits: Controls the Interrupt Output* and RTS
Output, and provides for Transmission of a Break

b6 b5 Function

0 0 Sets RTS = 0 and inhibits Tx interrupt (TI E)

0 1 Sets RTS = 0 and enables Tx interrupt (TI E)

1 0 Sets RTS = 1 and inhibits Tx interrupt (TI E)

1 1 Sets RTS = 0, Transmits Break and inhibits Tx
interrupt (TI E)

*TI E is the enable for the interrupt output in transmit mode.

b3 b2

WS2 WS1

I

Counter ratio and Master reset select used
in both transmitters and receiver sections

b1 bO Function (Tx, Rx)

0 0 -;-1

0 1 -;-16

1 0 -;-64

1 1 MASTER RESET

b1 bO

CDS2 CDS1

I
Word Length, Parity, and Stop Bit Select

b4 b3 b2 Word Length + Parity + Stop Bits

0 0 0 7 Even 2

0 0 1 7 Odd 2

0 1 0 7 Even 1

0 1 1 7 Odd 1

1 0 0 8 None 2

1 0 1 8 None 1

1 1 0 8 Even 1

1 1 1 8 Odd 1

FIGURE 3-4.2.2-3: ACIA Control Register Format

Bits b7 controls the Receiver Interrupt Enable to the IRQ output. When b7 is high IRQ will indicate

an interrupt request of the Receiver Data Register is Full (RDRF).

3-4.2.3 Addressing. and Initialization

A specific example of ACIA usage is shown by the application described in Section 5-3, however,

some basic considerations are discussed in the following paragraphs. As indicated in Section 3-4.1.2, the MPU

addresses the ACIA via the chip select and register select inputs from the Address Bus. The correspondence

between internal registers and the address inputs is shown in Figure 3-4.2.3-l.

With the chip selects properly enabled and RS = 0, either the Status or Control Register will be

selected, depending on the current state of the Read/Write line: R/W = 0 = Write, Control Register is selected;

3-25

CS2 CS1 CS¢ RS R/W

¢ ¢ ¢ Control Register
¢ ¢ 1 Status Register
¢ ¢ Transmit Data Register
¢ 1 Receive Data Register
X X ¢ X X ACIA Not Selected
X ¢ X X X AC!A Not Selected

X X X X ACIA Not Selected

X = Don't Care

FIGURE 3-4.2.3-1: ACIA Register Addressing

R/W = 1 = Read, Status Register is selected. Similarly, when RS = 1, either the Receive Data Register (R/W

= 1 = Read) or the Transmit Data Register (RjW = 0 = Write) is selected.

Addressing the ACIA can be illustrated in conjunction with the simple system configuration shown

in Figure 3-4.1.3-210. The method shown is typical for assigning mutually exclusive memory addresses to the

family devices without the use of additional decode logic. The connections shown assign memory addresses as

follows:

RAlvl

PIA

ACIA

ROM

0000 - 007F

4004 - 4007

4008 - 4009

COOO- C3FF

(Hexadecimal notation)

As voltage is applied to the ACIA during the power-on sequence, its internal registers are cleared to

zerollby circuitry within the ACIA to prevent spurious outputs. This initial condition means that interrupts are

disabled, IRQ to theMPU is high (no interrupt request), and the Ready-To-Send, RTS, output is high. The first

step in preparation for using the ACIA must be a master reset via bits bO and b 1 of the Control Register, that is,

the MPU must write ones into those positions. Once reset, the ACIA operating mode is established by writing

the appropriate data into the Control Register.

3-4.2.4 System Considerations

The ACIA is used primarily to transfer serial data between the microprocessor and real time

peripheral devices such as teletypes, CRT terminals, etc. The most common data format used for the transfer of

real-time data is the asynchronous data format. Use of this format is generally limited to low transmission rates

- below 1200 bps or 120 char/sec. For example, the maximum transmission rate of a teletype is 10 char/sec.

Here, the transmission of data to the MPU depends on the operator's dexterity of depressing a key on the

keyboards. Since the transmission of data is dependent on the operator, gaps (non transmission of data)

between data characters occur as a general rule.

In the transmission of asynchronous data, there is no pre-synchronized clock provided along with

the data. Also, the gaps between data characters in this transmission mode requires that synchronization be

re-established for each character. Therefore, the receiving device must be capable of establishing bit and

IOFigure 3-4.1.3-1 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

11 If external high signals are present on the DCD and CTS inputs, their respective bits, b2 and b3, in the Status Register will also be
high.

3-26

character synchronization from the characteristics of the asynchronous format. Each character consists of a

specified number of data bits preceded by a start bit and followed by one or more stop bits as shown in Figure

3-4.2.4-1.

These start and stop elements do not contain any information and they actually slow down the

effective transmission rate. Since the asynchronous format is used in real time systems, the effect of the start

and stop bits on the transmission rate is negligible. The purpose of the start bit is to enable a receiving system to

synchronize its clock to this bit for sampling purposes and thereby establish character synchronization. The

stop bit is used as a final check on the character synchronization.

Since the MPU processes eight bit parallel bytes that do not include start and stop elements,

received serial data in an asynchronous format must be converted to parallel form with the start and

stop elements stripped from the character. Likewise, in order to transmit serial data the parallel data

byte from the MPU must be converted to serial form with the start and stop elements added to the

character. This serial-to-serial/parallel-to-parallel conversion is the primary function of the ACIA.

Desired options such as variable clock divider ratios, variable word length, one or two stop bits, odd

or even parity, etc. are established by writing an appropriate constant into the ACIA's Control Register. The

combination of options selected depends on the desired format for a particular application. The general

characteristics of data flow through the ACIA are described in the following paragraphs.

A typical transmitting sequence consists of reading the ACIA status register either as a result of an

interrupt or in the ACIA's turn in a polling sequence. A character may be written into the Transmit Data

Register if the status read operation has indicated that the Transmit Data Register is empty. This character is

transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start

bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character

and will occur between the last data bit and the first stop bit. After the first character is written in the data

register, the Status Register can be read again to check for a Transmit Data Register Empty condition and

current peripheral status. If the register is empty, another character can be loaded for transmission even though

the first character is in the process of being transmitted. This second character will be automatically transferred

into the shift register when the first character transmission is completed. The above sequence may be continued

until all the characters have been transmitted.

Start I 2 3 4 5 I 6
I

Start Bit - "Space" - Logic Zero

Start Bits - "Mark" - Logic One

Idling Bits - "Mark"

7

FIGURE 3-4.2.4-1: Asynchronous Data Format

3-27

8

Data is received from a peripheral by means of the Rx Data input. A divide by one clock ratio is

provided for an external clock that is synchronized to its data; the divide by 16 and 64 ratios may be used for

internal synchronization. Bit synchronization in the divide by 16 and 64 modes is obtained by detecting the

leading mark-to-space transition of the start bit. False start bit detection capability insures that a full halfbit of a

start bit has been received before the internal clock is synchronized to the bit time. As a character is being

received, parity (odd or even) will be checked and the possible error indication will be available in the status

register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence,

the Status Register is read to determine if a character has been received from a peripheral. If the receiver data

register is full, the character is placed on the Data Bus when the MPU reads the ACIA Receive Data Register.

The status register can be read again to determine if another character is available in the receiver data register.

The receiver is also double buffered so that a character can be read from the data register as another character is

being received in the shift register. The above sequence may be continued until all characters have been

received.

MC6860

. Transmit
Data

Modulator

Receive
Data De-

modulator

Asynchronous
Communications

Interface
Adapater Auto

Control Term. Answer/
(ACIA) Control ~ Discon.

Logic Logic , ,
I

Clock &
Timing

~

j
Buffer

I

Data Flow

4--

+ Duplexer I Kp-I
I Receive I

Filter

Data
Coupler

I
Limiter r

I

I Threshold
I Detector

Control Signals

FIGUR E 3-4.3.1-1: Typical MC6860 System Configuration

3-4.3 MC6860 LOW SPEED MODEM

3-4.3.1 Input/Output Configuration

Telephone
Network

The MC6860 Modem provides a very effective method of interfacing a MPU based system, via a

MC6850 ACIA, to a telephone network as shown in Figure 3-4.3.1-1. The modem provides full automatic

answer/originate and initiate disconnect capability under MPU program control thru the ACIA. Data may be

asynchronously sent and received over the telephone network at data rates up to 600 bits per second.

3-28

en
:l

CO
co
co
0

The Input/Output configuration of the MC6860 when used with the MC6850 ACIA and the MC6800

MPU family is shown in Figure 3-4.3.1-2. Data flow from the terminal side of the modem enters in serial digital

format via the transmit data line of the modem. It is then digitally processed by the modulator section and exits

the telephone network side of the modem via the transmit carrier line. This digitized sinewave FSK signal is

post filtered by an output buffer/low pass filter. The filtered analog sinewave passes through a line duplexer to

the telephone line via a data coupler.

The returning analog signal from the remote modem at the other end of the telephone line passes

through the data coupler and duplexer and is applied to a bandpass filter/amplifier. The receive bandpass filter

bandlimits the incoming signal to remove noise and adjacent transmit channel interference. After being band

limited the analog signal is full limited to a 50% duty cycle TTL level signal by the input limiter. This digital

signal is the receive carrier that is applied to the modem. The output signal from the bandpass filter is also

routed to a threshold detector to determine if the input signal to the limiter is above the minimum detectable sig

nallevel presented to the modem. When the signal input level exceeds the bias point of the threshold detector,

the detector's output goes low at the threshold input pin to the MC6860 modem indicating that carrier is present.

A complete listing and functional description of all I/O pins for the MC6860 (Figure3-4. 3.2-1) is

provided in the following:

Data Terminal Ready (DTR)

The Data Terminal Ready signal must be low before the modem function will be enabled. To initiate

a disconnect, DTR is held high for 34 msec minimum. A disconnect will occur 3 seconds later.

A3

A14 CS1
A13

CS2

VMA¢2
en en E :l :l R/W CO CO R/W ::: g IRQ

IRQ ~
1J c:
1J 0 « u

MC
14411

BRG

MC
6850

ACIA

Tx Data

Rx Data

CTS

DCD

xTal
1---___ --' DTR

I---____ ~ Tx Data

14----; Rx Data
MC

6860

~

Bandpass
Filter/

Amplifier

TD Rx~~------------~
Car
Tx
Car I------~

AnPh FIT SH
+V -v

'-------1---1 S H

'-------1---1 R I

~_ __ ---t 0 H

DA

- DR Gnd

CBT Data
Coupler

Telephone

Line

FIGURE 3-4.3.1-2: I/O Configuration For MC6860 Modem

3-29

Data Terminal 0
Ready 2

Clear-to-Send 23

Break Release 9

Receive Break 3

Transmit Break 8

Digital Carrier 11

Transmit Data 2

Transm it Carrier 10

Receive Data 24

Receive 14
Data Rate

Receive Carrier 17

Crystal 13

Test Clock 18

Clear-To-Send (CTS)

Terminal
Control

Logic

Modulator

De
modulator

Auto
Answer/

Disconnect
Logic

NOTE 1.

4 Answer Phone

19 Ring Indicator

21 Switch Hook

15 Mode

7 Threshold Detect

VD D = Pin 12
VSS = Pin 1

ESD = Enable Space Disconnect

FI S = Fngb!e LO!'1g Space D!scamH~ct

ESS = Enable Short Space Disconnect

Self Test 16 22 5 6 ESS (Note 1)

ESD ELS

FIGURE 3-4.3-2-1: MC6860 Modem Block Diagram

A low on the CTS output indicates the Transmit Data input has been unclamped from a steady Mark,

thus allowing data transmission.

Ring Indicator (RI)

The modem function will recognize a receipt of a call from the CBT if at least 20 cycles of the 20-47

Hz ringing signal are present. The CBS RI signal must be level-converted from EIA RS-232 levels before

interfacing it with the modem function. The receipt of a call from the CBS is recognized if the RI signal is

present for at least 51 msec. This input is held high except during ringing. A RI signal automatically places the

modem function in the Answer Mode.

Switch Hook (SH)

SH interfaces directly with the CBT and via a EIA RS-232 level conversion for the CBS. An SH

signal automatically places the modem function in the Originate Mode.

SH is low during origination of a call. The modem will automatically hang up 17 seconds after the

release of SH if the handshaking routine between the local and remote modem has not been accomplished.

3-30

Threshold Detect (TD)

This input is derived from an external threshold detector. If the signal level is sufficient, the TD

input must be low for 20JLs at least once every 32 msec to maintain normal operation. An insufficient signal

level indicates the absence of the Receive Carrier; an absence for greater than 32 msec will not cause channel

establishment to be lost; however, data during this interval will be invalid.

Answer Phone (An Ph)

Upon receipt of Ring Indicator or Switch Hook signal and Data Terminal Ready, the Answer Phone

output goes high [(SH + RI) • DTR]. This signal drives the base of a transistor which activates the Off Hook

(OH) and Data Transmission (DA) control lines in the data coupler. Upon call completion, the Answer Phone

signal returns to a low level.

Mode

The Mode output indicates the Answer (low) or Originate (high) status of the modem. This output

changes state when a Self Test command is applied.

Transmit Break (Tx Brk)

The Break command is used to signal the remote modem to stop sending data.

A Transmit Break (low) greater than 34 msec forces the modem to send a continuous space signal for

233 msec. Transmit Break must be initiated only after CTS has been established. This is a negative edge sense

input. Prior to initiating Tx Brk, this input must be held high for a minimum of 34 msec.

Receive Break (Rx Brk)

Upon receipt of a continuous 150 msec space, the modem automatically clamps the Receive Break

output high. This output is also clamped high until Clear-To-Send is established.

Break Release (Brk R)

After receiving a 150 msec space signal, the clamped high condition of the Receive Break output can

be removed by holding Break Release low for at least 20 JLS.

Transmit Data (Tx Data)

Transmit Data is the binary information presented to the modem function for modulation with FSK

techniques. A high level represents a Mark.

Receive Data (Rx Data)

The Receive Data output is the data resulting from demodulating the Receive Carrier. A Mark is a

high level.

Receive Data Rate (Rx Rate)

The demodulator has been optimized for signal-to-noise performance at 300 bps and 600 bps. The

Receive Data Rate input should be low for 0-600 bps and should be high for 0-300 bps.

Digital Carrier (FO)

A test signal output is provided to decrease the chip test time. The signal is a square wave at the

transmit frequency.

3-31

Transmit Carrier (Tx Car)

The Transmit Carrier is a digitally-synthesized sinewave derived from the 1.0 MHz crystal

reference. The frequency characteristics are as follows:

Transmit

Mode Data Frequency Accuracy *

Originate Mark 1270 Hz -0.15 HZ

Originate Space 1070 Hz +0.09 Hz

Answer Mark 2225 Hz -0.31 Hz

Answer Space 2025 Hz -0.71 Hz

*The reference frequency tolerance is not included.

The proper output frequency is transmitted within the 3.0 ILS following a data bit change with no

more than 2.0 ILS phase discontinuity. The typical output level is 0.35 V (RMS) into a 200 k-ohm load

impedance.

The second harmonic is typically 32 dB below the fundamental.

Receive Carrier (Rx Car)

The Receivt: Carrier is the FSK input to the demodulator. The local Transmit Carrier must be

balanced or filtered out prior to this input, leaving only the Receive Carrier in the signal. The Receive Carrier

must also be hard limited. Any half-cycle period greater than or equal to 429 ± 1.0 ILs for the low band or 235 ±

1.0 ILs for the high band is detected as a space.

Enabled Space Disconnect (ESD)
--- ---

When ESD is strapped low and DTR is pulsed to initiate a disconnect, the modem transmits a space

for either 3 seconds or until a loss of threshold is detected, whichever occurs first. If ESD is strapped high, data

instead of a space is transmitted. A disconnect occurs at the end of 3 seconds.

Enable Short Space Disconnect (ESS)

ESS is a strapping option which, when low, will automatically hang up the phone upon receipt of a

continuous space for 0.3 seconds. ESS and ELS must not be simultaneously strapped low.

Enable Long Space Disconnect (ELS)

ELS is a strapping option which, when low, will automatically hang up the phone upon receipt of a

continuous space for 1.5 seconds.

Crystal (Xtal)

A 1.0-MHz crystal with the ·following parameters is required to utilize the on-chip oscillator. A

1.0-MHz square wave can also be fed into this input to satisfy the clock requirement.

Mode:

Frequency:

Series Resistance:

Shunt Capacitance:

Temperature:

Test Level:

Load Capacitance:

3-32

Parallel

1.0 MHz ±0.1 %

750 ohms max

7.0 pF max

0-70°C

1.0mW

13 pF

When utilizing the 1.0-MHz crystal, external parasitic capacitance, including crystal shunt

capacitance, must be ~9 pF at the crystal input.

Test Clock (TST)

A test signal input is provided to decrease the test time of the chip. In normal operation this input

must be strapped low.

Self Test (ST)

When a low voltage level is placed on this input, the demodulator is switched to the modulator

frequency and demodulates the transmitted FSK signal. Channel establishment, which occurred during the

initial handshake, is not lost during self test. The Mode Control output changes state during Self Test,

permitting the receive filters to pass the local Transmit Carrier.

INPUTS OUTPUT

ST SH RI Mode

H L H H

H H L L

L L H L

L H L H

MODE CONTROL TRUTH TABLE

3-4.3.2 Internal Organization

The MC6860 Modem may be broken down into internal functional sections as shown in Figure

3 -4.3.2-1. The terminal control logic and auto answer/disconnect logic sections are referred to as the

supervisory control section. This section contains digital counters which provide the required time out intervals

and necessary control gating logic. This provides logic outputs Clear-To-Send and Answer Phone from inputs

Ring Indicator, Switch Hook, and Data Terminal Ready. Also the control section has some local strapping

options available on pins 5, 6, and 22. These options provide time outs for line hang-up or termination of the

data communication channel.

The oscillator/timing blocks accept a 1.0 MHz clock into pin 13 either from an external clock source

or by connecting a 1.0 MHz crystal between pin 13 and ground. A test clock input is provided to allow more

rapid testing of the MC6860 timing chains used for various timeouts. This input must be strapped low during

normal operation.

The modulator section takes the input digital data and converts it to one of two FSK tones for

transmission over the telephone network. There are two tones for transmission and two tones used for reception

during full depulx operation. During data transmission from the call origination modem the transmit tones are:

1270 Hz for a Mark and 1070 Hz for a Space. This originating modem will receive two frequencies in the high

band which are: 2225 Hz for a Mark and 2025 Hz for a space. If the local modem answers the data call it will

transmit in the high band 2225/2025 Hz and receive in the low band 1270/1070 Hz. The modulator section

generates these frequencies digitally by synthesizing a sinewave with an 8 step D to A available on pin 10 and a

digital square wave output at the above frequencies available on pin 11.

The demodulator accepts a 50% duty cycle TTL level square wave derived from amplifying,

filtering, and limiting the incoming line FSK analog signal. The binary data is recovered from the FSK signal

by detecting when the signal has a zero crossing and digitally using post detection techniques to discriminate

3-33

between the two incoming mark/space tones. A receive data rate input (pin 14) is used to optimize the post

detection filter at either 300 or 600 bits per second.

3 -4.3.3 Handshaking and Control

The supervisory control section of the modem can function in four different modes. Two are

associated with data communication channel initialization (Answer Mode and Originate Mode) and two are for

channel termination or hang-up (Automatic Disconnect and Initiate Disconnect).

Answer Mode

Automatic answering is first initiated by a receipt of a Ring Indicator (RI) signal. This can be either a

low level for at least 51 msec as would come from a CBS data coupler, or at least 20 cycles of a 20-47 Hz ringing

signal as would come from a CB T data coupler. The presence of the Ring Indicator signal places the modem in

the Answer Mode; if the Data Terminal Ready line is low, indicating the communication terminal is ready to

send or receive data, the Answer Phone output goes high. This output is designed to drive a transistor switch

which will activate the Off Hook (OH) and Data Transmission (DA) relays in the data coupler. Upon answering

the phone the 2225-Hz transmit carrier is turned on.

The originate modem at the other end detects this 2225-Hz signal and after a 450 msec delay (used to

disable any echo suppressors in the telephone network) transmits a 1270-Hz signal which the local answering

modem detects provided the amplitude and frequency requirements are met. The amplitude threshold is set

external to the modem chip. If the signal level is sufficient the TD input should be low for 20 /-LS at least once

every 32 msec. The absence of a threshold indication for a period greater than 51 msec denotes the loss of

Receive Carrier and the modem begins hang-up procedures. Hang-up will occur 17 seconds after RI has been

released provided the handshaking routine is not re-established. The frequency tolerance during handshaking is

± 100 Hz from the Mark frequency.

After the 1270-Hz signal has been received for 150 msec, the Receive Data is unclamped from a

Mark condition and data can be received. The Clear-To-Send output goes low 450 msec after the receipt of

carrier and data presented to the answer modem is transmitted.

Automatic Disconnect

Upon receipt of a space of 150 msec or greater duration, the modem clamps the Receive Break high.

This condition exists until a Break Release command is issued at the receiving station. Upon receipt of a 0.3

second space, with Enable Short Space Disconnect at the most negative voltage (low), the modem

automatically hangs up. If Enable Long Space Disconnect is low, the modem requires 1.5 seconds of

continuous space to hang up.

Originate Mode

Upon receipt of a Switch Hook (SH) command the modem function is placed in the Originate Mode.

If the Data Terminal Ready input is enabled (low) the modem will provide a logic high output at Answer Phone.

The modem is now ready to receive the 2225-Hz signal from the remote answering modem. It will continue to

look for this signal until 17 seconds after SH has been released. Disconnect occurs if the handshaking routine is

not established.

Upon receiving 2225 ± 100 Hz for 150 msec at an acceptable amplitude, the Receive Data output is

unclamped from a Mark condition and data reception can be accomplished. 450 msec after receiving a 2225-Hz

3-34

signal, a 1270-Hz signal is transmitted to the remote modem. 750 msec after receiving the 2225-Hz signal, the

Clear-To-Send output is taken low and data can now be transmitted as well as received.

Initiate Disconnect

In order to command the remote modem to automatically hang up, a disconnect signal is sent by the

local modem. This is accomplished by pulsing the normally low Data Terminal Ready into a high state for

greater than 34 msec. The local modem then sends a 3 second continuous space and hangs up provided the

Enable Space Disconnect is low. If the remote modem hangs up before 3 seconds, loss of Threshold Detect will

cause loss of Clear-To-Send, which marks the line in Answer Mode and turns the carrier off in the Originate

Mode.

If ESD is high the modem will transmit data until hang-up occurs 3 seconds later. Transmit Break is

clamped 150 msec following the Data Terminal Ready interrupt.

Each of the four above operational modes are shown in Figures 3-4.3.3-1 through 3-4.3.3-4.

Call Received

-----1 51 m s I----R' I d' Min ;.-_____________________________ _
mg n Icator """"CBSlL.. __ ---'

Ring Indicator ~ n ~~ n ~ 1-----------------------------
CBT U U U U U

I
Mode {Originate ~ Answer (Low)

Answer --

Data~inal On (Low) I
Ready ~------------------------------

Answer Phone I II---------2225 Hz, 900 ms I' 2025 Hz or 2225 Hz

Transmit Carrier _____ ...J F450 m'-----t--1270 Hz, 300 ms--+----

Receive Carrier ------------------'

Threshold Detect --.,;.(_H...:ig:,...h.:,...} ---------------h---r--.-r---r--f----r--...-+.--r-r--r---,,--

Clear-to-Send _O_f_f_(H_·..;;:.19_h} _____________ -+-_______ t-__ --;

~--450ms--~----~~~~~-----

Transmit {Mark
Data Space Clamped at Mark -------------+----------+-----!'""'"'''''''''''' ~;..,

Receive {Mark
Data Space -------------------------1-- 150 ms + 150 ms

--------------Clamped -------------+-1-0-------- Unclamped -------
at Mark

FIGURE 3-4.3.3-1: Answer Mode

3-35

Ring Indicator
High

CBS High
Ring Indicator ----------------------~C~B~T~---

Answer (Low)
Mode

Data Terminal

Ready

Answer Phone

Transmit Carrier

Receive Carrier

Threshold Detect

Clear-to-Send

. {Mark Transmit S
pace

On (Low)

-------------- 2025 Hz or 2225Hz ----------i-I
~tinuousSpace - 1070 ~

---1070 Hz or 1270 Hz--
1
---- 0 .3 s ESS or 1.5 s ELS /"\. /"\.(

On (Low)

------------Unclamped I

Clamped at Mark

Receive .{ Mark Wd$&y~~d&#~ C!ernped at !\~a!"k
Data l ~pace I i---- Unclamped ~

FIGUR E 3-4.3.3-2: Automatic Disconnect - Long or Short Space

SH Can Be Released
Switch Hook

Data Terminal

Ready

IL----I:~~~~:a.0~:@/W~~W~{L~:a.0LL.~LL.;g;:L.:::.:::LW:L::c::.:;c.::::~~CLLL...LL£.L.LLLL..~~CLLL.t.~~~~~~
On (Low)

{
Originate

Mode Answer

Answer Phone

Receive Carrier

Threshold Detect

Receive Data

Transmit Carrier

Clear-to-Send

Transmit Data

Enable Space

Disconnect

Originate (High)

Answer (High)

2025 Hz

f------ Establ ish Call -----1---

Clamped at Mark -----------4--------~

--------------------------------t~~~~~~~~~~~~~~~~~7~5~0~m--s~===============:~~o~n~(~L~o:W~)_

Clamped at Mark

On (Low) Unclamped

FIGURE 3-4.3.3-3: Originate Mode

3-36

Switch Hook

Data Terminal

Ready

Mode

Answer Phone

Receive Carrier

Threshold Detect

Receive Data

Transmit Carrier

Clear-to-Send

High

---j r-- 34 ms Pulse Initiates Space Disconnect

_____ O_n_(~L_o_W_) ______ ~r___lL __ __

Originate (High)

Off Hook

On Hook

---------- Unclamped .1 ·1· 50 ms Internal Threshold Detect Delay

Clamped at Mark

---1070 Hz or 1270 Hz I 1070 Hz ~

~----s ----,..,1--
On (Low) Off (High)

Transmit Data ~ unclamped~ Clamped at Space Clamped at Mark

Enable Space

Disconnect

On (Low)

FIGURE 3-4.3.3-4: Initiate Disconnect

3-37

3-5 DIRECT MEMORY ACCESS

The term Direct Memory Access (DMA) is applied to a variety of techniques for speeding up overall

system operation by loading and unloading memory faster than can be done using an MPU control program.

DMA is often described as a means of allowing fast peripherals (perhaps another Microprocessor), to access the

system memory without' 'bothering" the MPU. However, most DMA procedures do interfere with normal

operation to some extent. The capability for handling the various techniques is an often used figure of merit for

evaluating Microprocessors.

The MC6800's supervisory control features permit any of three commonly used DMA techniques to

be used; (1) Transfer data with MPU halted; (2) Transfer data on burst basis (cycle stealing) with MPU running;

(3) Transfer data synchronously with MPU running. Methods for implementing each of these techniques are

described in Section 4-2.2 therefore, only qualitative descriptions are included here.

The simplest procedure for DMA merely uses the Halt control to shut the MPU down while the

DMA takes place. In the Halt state, the MC6800 effectively removes itself from the Address and Data Buses by

putting all buffers in the high impedence off state. This method has the disadvantage that it can take a relatively

long time for the MPU to "vacate" the buses. The MC6800 is designed to finish executing its current

instruction before entering the Halt or Wait state; the resulting delay depends on which instruction is being

executed and may be as much as 13 machine (clock) cycles. However, due to its simplicity this is the preferred

method if the delay can be tolerated and long transfers are required.

In contrast to this, the Three-State Control (TSC) may be used to obtain DMA control within 500

nanoseconds of initiation but must be used only for short transfers. Activation ofTSC puts the MPU's buffers in

the high impedence off state. This technique has the disadvantage that activation of TSC should be

synchronized with the ~1 clock and both clocks must be "frozen" (~1 high, ~210w) for the duration of the

DMA. Due to the MPU's address and R/Wrefresh requirements, the clocks can only be frozen for a maximum

of 5 microseconds, thus limiting the duration of the transfer.

A third method can be used that is completely transparent to the MPU. This technique takes

advantage of the fact that MPU data transfers take place only during ~2 of the clock cycle. If the DMA control

signals are properly synchronized and the memory is fast enough, DMA can be accomplished during ~1 of each

clock cycle.

Each of these three methods is described in greater detail in Section 4-2.2. It should be noted that the

faster methods impose additional external hardware requirements on the system.

The techniques described above of course do not exhaust all methods for performing DMA. As an

additional example, DMA can be program controlled in the sense that a control program and hence the MPU

can be used to establish the memory area to be used and to grant permission for the DMA. In this case the DMA

circuitry is treated as another peripheral from which status and control signals can be passed through a PIA.

This technique is also outlined in Section 4-2.2.

3-38

CHAPTER 4

4 M6800 FAMILY HARDWARE CHARACTERISTICS

There are four classes of control signals which control the execution of the MC6800 MPU. The first

pair of control signals is the two phase clock cf>1 and cf>2 which time the entire MPU system. The second pair of

signals, HALT and Bus Available (BA), are used to stop program execution and free up the Address and Data

Bus for other uses such as a DMA channel. The interrupt signals make the MPU responsive to outside control

and are listed in decreasing order of priority: RESET, Non-Maskable Interrupt (NMI) and Maskable Interrupt

(IRQ). The Three-State Control (TSC) and Data Bus Enable (DBE) control lines provide a way to momentarily

remove the MPU from the busses and can be used for implementing a burst type DMA channel.

4-1 CLOCK CIRCUITRY FOR THE MC6800 MPU

4-1.1 Clock Requirements and Circuitry

Figure 4-1.1-1 is a summary of the MC6800 Microprocessor clock waveform requirements. The cf> 1

and cf>2 clock inputs require complementary 5 volt non -overlapping clocks. The clock inputs of the MPU appear

primarily capacitive being 110 pf typical and 160 pf maximum plus 100 p.,a of leakage. Provision is made in the

specification for the undershoot and overshoot that will result from the generation of a high speed transistion

into a capacitive load.

The clock specifications which constrain the clock driver the most are the rise and fall times required

to meet the pulse widths at the maximum operating frequency of 1 MHz, the non-overlapping requirement, and

the logic level requirements of Vss + 0.3 volts and Vee -0.3 volts. The clock buffer circuit that drives the

MPU clock inputs must be designed to meet the rise and fall time requirements as well as the logic level

requirements. The non-overlapping requirement of the clock signals can be met by the design of the control

logic which drives the buffers. A clock buffer, the MPQ6842 *, will guarantee the clock designer the speed and

saturation voltages necessary to design the clock circuit to meet the MPU clock requirements. Relevant

specifications of the MPQ6842 for this design are detailed in Figure 4-1.1-2. Note that the VeE (SAT),s, rise

and fall times are specified to meet this clock driver requirement.

Figure 4-1.1-3 is a circuit designed with TTL logic devices and the MPQ6842 buffer to meet the

MPU clock requirements while operating from a single +5 volt supply. The oscillator can be any source with a

maximum frequency of 1 MHz, TTL logic levels and 50% duty cycle. This oscillator signal source could vary

from a commercial oscillator such as a K1100A available from Motorola's Component Product Department, 1

to a signal derived from a higher frequency signal already available in the system. The TTL gates shown are

standard MC3000 and MC3001 (74HOO and 74H08) which were chosen for their speed and drive characteris

tics. The discrete buffers require good" 1" level pull up and drive capability which is provided by the MC3001.

The circuit was constructed on a wire wrap board and tested on an EXORciser. 2 Good power and ground

distribution practice was followed but no special care was taken in parts layout.

12553 N. Edgington, Franklin Park, Illinois 60131,312-451-1000
2A system prototyping tool for the M6800 Microprocessor family.

*To be introduced first quarter 1975.

4-1

~------------tCLK---------------4~

~------------tUT----------~~

tf

</>1

</>2
"----- PWO H --_-.I

UNDERSHOOT

CHARACTERISTIC SYMBOL MIN TVP MAX UNITS

Input High Voltage cpl, cp2 VIHe Vee-0.3 Vee + 0.1 Vdc
Input Low Voltage cp 1, cp2 VILe Vss-O.l Vss + 0.3 Vdc

Clock Overshoot/U ndershoot Vas Vdc
Input High Voltage Vee-0.5 Vee + 0.5 Vdc
Input Low Voltage Vss-0.5 Vss + 0.5

Input Leakage Current cp 1, cp2
(VIN = 0 to 5.25 V, Vee = MAX) lIN 100 /-La

Capacitance
(VIN = 0, TA = 25°C, f = 1.0MHz) CIN 80 120 160 pf

Frequency of Operation f 0.1 1.0 MHz

Clock Timing
Cycle Time tcyc 1.0 10 /-LS
Clock Pulse Width

(Measured at Vee-0.3 V) cpl PWaH 430 4500 ns
cp2 450 4500 ns

Rise and Fall Times cp 1, cp2 tr, tf 5 50 ns

(Measured between
Vss + 0.3 V and Vee-0.3 V)

Delay Time or Clock Overlap td 0 9100 ns
(Measured at Vav = Vss + 0.5 V)

Overshoot/U ndershoot Duration tas 0 40 ns

Clock High Times tUT 940 ns

FIGURE 4-1.1-1 MPU Clock Waveform Specifications

4-2

DEVICE CHARACTERISTICS: T = 25°C, VCC = 5.00 VDC

Characteristic

Propagation Delay

Rise Time

Fall Time

Collector-Emitter
Saturation Voltage

Pulse
Generator
o to 5 V
t r • tf ,,;;; 2 ns

51

PW "'" 200 ns
Period"'" 1 000 ns

Symbol Measurement Levels Min Typ Max

TpD 50% Points TP1 to TP3 - 5 15
50% Points TP2 to TP4 - 5 15

tr 0.3 V to 4.7 V 5 20 25
TP3 and TP4

tf 4.7 V to 0.3 V 5 15 25
TP3 and TP4

VCE(sat) IC = 0.5 ma, IS = 0.05 ma - 0.10 0.15
T = OoC to 70 0 C

TEST CI RCUIT

1/4 MC3001 (74H08)

TP1

1/4 MC3000

(74HOO)

TP2

VCC

~--~------~IJ TP3

VCC

~-""----iO) TP4

FIGURE 4-1.1-2. MPQ6842 Clock Buffer

4-3

CONNECTION DIAGRAM

MP06842

Units

nsec
nsec

nsec

nsec

VDC

7

~
1. Unless otherwise noted, all resistors

carbon composition Y.. W ±5%, all
capacitors dipped mica ±2%.

2. Use short interconnect wiring with
good power and ground busses.

3. TP1~TP4 are coaxial connectors to
accept scope probe tip and provide a
good ground.

4. Device under test is MP06842.

5. 200 pf load includes strays plus
scope probe capacitance.

~

.i:..

Oscillator

K1100A Y.. MC3000 Y.. MC3000
(74HOO)

Y.. MC3001
(74H08)

MHz 50 ± 2% Duty Cycle

SPARE

=0-
Y.. MC3001

NOTES:
1. Unless otherwise noted

All resistors are carbon composition Y..W, = 5%
All capacitors are dipped mica ± 2%

2, * MPQ6842

+5V

. '1IJ.f Ceramic I

Y.. MC3001 I Y.. MC3000 Y.. MC3001

+5V

.1/-Lf Ceramic I

DBE

Y.. Mc3000

'--------Il- h . BUS</>2

FIGURE 4-1.1-3 MPU Clock Circuit

and

Waveforms typical of the circuit in Figure 4-1.1-3 at T = 20°C and Vee = 5.00 volts are shown in

Figure 4-1.1-4. Figure 4a and 4b depict the logic levels and pulse widths achieved by this circuitry with Vee

and GND as reference levels. Figure 4c superimposes the two clock waveforms so that their phase relationship

can be seen. Figure 4d shows the phase relationship of BUS cf>2 and MPU cf>2. Figures 4e and 4f examine the

non-overlap regions as well as rise and fall times typical of this clock drive circuit. Table 4-1.1-1 presents

test data taken over a voltage range of 4. 75 volts to 5.25 volts and over a temperature range ofO°C to 70°C. Note

the stability of these measured parameters and that the logic levels achieved will provide noise margin on the

system clocks. Both cf>1 and cf>2 clock high times were designed to be about 20 ns wider than the minimum

required by the MPU (cf>1 - 430 ns, cf>2 - 450 ns) to provide system margin. Rise and fall times were

minimized to provide maximum clock high times consistent with non-critical circuit layout considerations. The

overlap margin shown easily meets the MPU requirement of 0 ns at 0.5 volts but will decrease as the capacitive

loading increases. The MPU tested for this data had a clock input capacitance on the order of the 110 pf typical

value.

MPU cJ>1 MPU cJ>2 Non-Overlap Region

Test Conditions PW RT FT "1" LL * "0" LL* PW RT FT "1" LL* "0" LL* cJ>1 t to cJ>2t cJ>2t to cJ>1t

T = 20°C

Vee = 4.75 V 460 ns 15 ns 10 ns 4.75 V 0.1 V 465 ns 15 ns 10.5 ns 4.75 V OV 10.5 ns 12 ns

Vee = 5.00 V 460 16 11 5.00 0.1 465 16 10 5.00 0 10 11

Vee = 5.25 V 460 16 11 5.25 0.1 465 16 11 5.25 0 9.5 10.5

Vee = 5.00 V, eL = 210 pf 450 21 15.5 5.00 0.1 460 22 15 5.00 0 2 5.5

T = 70°C

Vee = 4.75 V 460 15 12 4.75 0.1 465 16 12 4.75 0 9 10.5

Vee = 5.00 V 460 16 12 5.00 0.1 465 16 12 4.75 0 8.5 10

Vee = 5.25 V 455 17 12.5 5.25 0.1 465 17 13 5.25 0 8 9

T=OoC

Vee =4.75 V 460 14 10 4.75 0.1 465 15 10.5 4.75 0 11 12

Vee = 5.00 V 460 15 10 5.00 0.1 465 15 10 5.00 0 10.5 11.5

Vee = 5.25 V 460 15 10.5 5.25 0.1 465 15 10 5.25 0 10 10.5

*Resolution of this measurement ~ ±50 mv

LEGEND:

PW: Pulse width measured at Vee - 0.3 V

RT: Rise time measured from 0.3 V to Vee - 0.3 V

FT: Fall time measured from Vee - 0.3 V to 0.3 V TABLE 4·1.1-1. Performance of Circuit in Figure 4-1.1-3

"0" LL: Zero logic level

"1" LL: One logic level

Non-Overlap: Measured from 0.5 volt levels

In many systems, especially in the breadboard and evaluation stage, it may be desirable to have the

flexibility to vary the system clock to test the effects on data throughput, real time operation with interrupts or to

help diagnose a system timing problem. In these applications, or in those not requiring crystal oscillator

stability, an even simpler clock circuit can be used. A pair of cross coupled monostable multivibrators with

individual pulse width adjustments can be used as the clock oscillator with the previously described clock

driver. This approach is shown in Figure 4-1.1-5. The non-overlapping clock is generated by the propagation

delays through the monostable multi vibrators . Figure 4-1. 1-6 shows waveforms resulting from this circuit.

Table 4-1.1-2 shows test data taken of this circuit over the voltage and temperature range driving a typical MPU

(CL = 110 pf). Note the small variations in the pulse widths.

4-5

MPU <p1

Test Conditions PW RT FT "1" LL * "0" LL * PW

T = 20°C

Vee = 4.75 V 470 ns 11 ns 11.5 ns 4.75 V 0.1 V 450 ns

Vee = 5.00 V 470 12.5 13 5.00 0.1 460

Vee = 5.25 V 470 13 12 5.25 0.1 460

T = 70°C

Vee = 4.75 V 455 12.5 13.5 4.75 0.1 450

Vee = 5.00 V 455 13 14 5.00 0.1 450

Vee = 5.25 V 455 13 14.5 5.25 0.1 450

T = OOC

Vee = 4.75 V 473 12 12 4.75 0.1 470

Vee = 5.00 V 475 12 12 5.00 0.1 470

Vee = 5.25 V 475 12.5 12.5 5.25 0.05 473

*Resolution of this measurement ;::::::;±50 mv

LEGEND:

PW: Pulse width measured at Vee - 0.3 V

RT:

FT:

"0" LL:

Rise time measured from 0.3 V to Vee - 0.3 V

Fall time measured from Vee - 0.3 V to 0.3 V

Zero logic level

"1" LL: One logic level

Non-Overlap: Measured from 0.5 volt points

MPU <p2 Non·Overlap Region

RT FT "1" LL* "0" LL * <Plt to <p2t <p2 t to (/>It

12 ns 12 ns 4.75 V OV 12 ns 11 ns

13 12.5 5.00 a 11 9.5

13.5 12.5 5.25 a 10 9

13 13 4.,75 a 11 10

14 14 5.00 a 10 9

14 14 5.25 a 8.5 7

12 12 4.75 a 11 11

12.5 12 5.00 a 9 11

12.5 12 5.25 a 9 8

TABLE 4·1.1·2. Performance of Circuit in Figure 4·1.1·5

The fast rise and fall times produced by this circuitry and the highly capacitive loads require some

care in layout to avoid excessive ringing and/or pulse distortion. While no particular care was taken in the

construction of the wirewrap test boards other than placing all of the discretes into one header board, the

following construction guidelines are recommended. Wide power and ground lines (50-100 mils) should be

used to provide low impedance voltage and ground sources. The clock driver should be physically located as

near the MPU as possible to avoid ringing down long lines. Close proximity of the clock circuitry to the MPU

allows common power and ground connections so that any noise appears common mode rather than differential

to the MPU and clock driver. Finally, it is recommended that the MPU ~2 clock signal not be used to clock any

device other than the MPU so that it is not distributed allover the system with the possibility of picking up noise

and causing reflections. The circuits shown in this section provide an additional buffer for the other ~210ads in

the system to isolate MPU ~2 from all the other ~2 loads.

For further discussion on clock generators for the MC6800 including interface with dynamic and

slow memories, the reader is referred to Section 4-2.5.1.

4-1. 1.2 Clock Module

A hybrid clock module is being developed by the Communications Division of Motorola 1 for the

M6800 Microprocessor family. This module is composed of a crystal oscillator and associated buffering

circuitry to provide either 1 MHz or user specified frequency operation of the M6800 family. Provision is made

within this module for cycle stealing in order to interface with dynamic memory (see Section 4-2.5.1) or

implement a DMA channel (see Section 4-2.2.2). The module is designed to provide a MEMORY READY

'Component Products, 2553 N. Edgington St., Franklin Park, Illinois 60131, 312-625-0020

4·6

+5.00 V

1 V/cm

Gnd

200 ns/cm

FIGURE 4-1.1-4a MPU <P1 Clock

+5.00 V

1 V/cm

Gnd

200 ns/cm

FIGURE 4-1.1-4b. MPU <P2 Clock

4-7

</>1

+5.00 V

1 V/cm

Gnd

100 ns/cm

FIGURE 4-1.1-4c. MPU </>1 and </>2 Clocks

Bus </>2: 4V Pulse MPU </>2: 5 V Pulse

+5.00 V

1 V/cm

Gnd

100 ns/cm

FIGURE 4-1.1-4d. MPU </>2 Clock and Bus </>2

4-8

5.00 V

1 V/em

Gnd

5 ns/em

F I GU R E 4-1.1-4e. MPU Clock Non-Overlap Region

qy2 5.00 V

1 V/em

qy1 Gnd

5 ns/cm

FIGURE 4-1.1-4f. MPU Clock Non~Overlap Region

4-9

+5 V +5 V

11 K 1%

T1 T2 T1

MC8602

C C

NOTE:
1) Unless otherwise noted

All resistors are carbon composition Yt.W, ±5%
All capacitors are dipped mica ±2%

2) * MPQ 6842

+5 V

11 K 1%

T2

Q

1/3 MC7404

Q

CD

+5 V

470

+5 V

470

"'MPQ6842

33 pf

FIGURE 4-1.1-5. Monostable Clock Generator

4-10

Bus 1>2

+5 V

I .1 J.l.f Ceramic

+5 V

I.1 J.l.f Ceramic

ct>1 ct>2 ct>1

5.00 V

1 V/cm

GND

200 ns/cm

FIGURE 4-1.1-6a. MPU Clock Waveforms

ct>1 5.00 V

1 V/cm

ct>2 GND

5 ns/cm

FIGURE 4-1.1-6b. MPU Clock Non-Overlap Region

4-11

5.00 V

1 V/cm

GND

5 ns/cm

FIGURE 4·1.1·6c. MPU Clock Non·Overlap Region

Bus ¢2

2 V/cm

MPU ¢2

200 ns/cm

FIGURE 4·1.1·6d. MPU ¢2 Clock and Buss ¢2

4·12

function in order to interface with slow memories (see Section 4-2.5.1). Those interested in this device should

contact their Motorola salesman for further details.

4-1.2 HALTING THE MC6800 AND SINGLE INSTRUCTION EXECUTION

The HALT line provides an input to the MPU to allow control of program execution by an outside

source. If HALT is high, the MPU will execute; if it is low, the MPU will go to a halted or idle mode. A response

signal, Bus Available (BA) provides an indication of the MPU's current status. When BA is low, the MPU is in

the process of executing the control program; if BA is high, the MPU has halted and all internal activity has

stopped. When BA is high, the Address Bus, Data Bus, and R/W line will be in a high impedance state,

effectively removing the MPU from the system bus. VMA is forced low so that the floating system bus will not

activate any device on the bus that is enabled by VMA.

While the MPU is halted, all program activity is stopped and, if either a NMI or IRQ interrupt

occurs, it will be latched into the MPU and acted on as soon as the MPU is taken out of the halted mode. If a

RESET command occurs while the MPU is halted, the following states occur: VMA-low, BA-low (while

RESET is low), Data Bus-high impedance, R/W-Read state (while RESET is low), and the Address Bus will

contain the reset address FFFE (while RESET is low). As soon as the HALT line goes high, the MPU will go

to locations FFFE and FFFF for the address of the reset routine.

Figure 4-1.2-1 shows the timing relationships involved when halting the MPU and executing a

single instruction. Both of the instructions illustrated are single byte, 2 cycles, such as CLRA and CLRB. The

MPU always halts after completing execution of an instruction when HALT is low. If HALT is low within 100

nsec after the leading edge of cf> 1 in the last cycle of an instruction (point A in the figure) then the MPU will halt

at the end of the current instruction. The fetch of the OP code by the MPU is the first cycle of an instruction. If

HALT had not been low at point A but went low during cf>2 of that cycle, the MPU would have halted after

completion of the next instruction after instruction X. BA will go high within 470 nsec of the leading edge of the

next cf>2 clock after the last instruction cycle executed. At this point in time, VMA is low and the R/W line,

Address Bus, and the Data Bus are in the high impedance state.

To single cycle the MPU, HALT must be brought high for one MPU cycle and then returned low as

shown at (B). Again, the transitions of HALT must occur within 100 nsec of the leading edge of cf> 1. BA will go

low within 300 nsec of the leading edge of the next cf>1 indicating that the Address Bus Data Bus, VMA and

R/W lines are back on the bus. A single byte, 2 cycle instruction, such as CLRB is used for this example also.

During the first cycle, the instruction Y is fetched from address M + 1. BA returns high 470 nsec after cf>2 on the

last cycle indicating the MPU is off the bus. If instruction Y had more than two cycles, the width of the BA's

low time would have been increased proportionally.

4-1.3 MC6800 RESET AND INTERRUPT CONTROLS

The RESET input is used to reset and start the MPU from a power down condition resulting from a

power failure or initial start-up of the processor. This input can also be used to reinitialize the machine at any

time after start up. If a positive edge is detected on this input, this will signal the MPU to begin the restart

sequence. During the reset sequence, all of the higher order address lines will be forced high. The contents of

the last two locations (FFFE, FFFF) in memory will be loaded into the program counter to point to the reset

program. During the reset routine, the interrupt mask bit is set and must be reset by an Instruction in the

initializing program before the MPU can be interrupted by IRQ. While RESET is low (assuming 8 clock cycles

4-13

f"
+:-

cJ>1

cJ>2

Halt

BA

VMA

R/W

Address
Bus

Data
Bus

Last Cycle
of Current
Instruction

J r~, J
Single Cycle

Fetch
Single Cycle

Execute

lllll~~--l f, II -'1-- '00n'M" y -l f.'00n'Max~
~ y-; " --I 1--470 n, M" J J 300 n' Max~ j4-- ----1 f.---470 n' Max

______ ---J 1/ Jf ~ /

mote '..... If I--~ \~ ___ _
Note 2

.. • ~ L ff • ~---
Fetch Execute

_ A~dr .,....-----...,., .. ~:\=-~ {f ~ ~~~r ~--

~ --------.....,,, -----~

M + 1 = 100116, Y = CLRB (OP = 5F)

NOTE 1: Crosshatch indicates data not valid
intervals.

NOTE 2: Midrange waveform indicates high
impedance state. FIGURE 4-1.2-1. Halt and Single Instruction Execution

have occurred) the MPU output signals will be in the following states: VMA-Iow, BA-Iow, Data Bus-high

impedance, R/W (Read State) and the Address Bus will contain the reset address FFFE.

Figure4-1.3-1 illustrates a power up sequence using the RESET control line. After the power supply

reaches 4.75 volts, eight clock cycles are required for the processor to stabilize in preparation for restarting.

During these eight cycles, VMA will be in an indeterminate state so any devices that are enabled by VMA

which could accep.t a false write during this time (such as a battery backed RAM) must be disabled until VMA is

forced low after 8 cycles. RESET can go high asynchronously with the system clock, however, its rise time

must be less than 500 nsec. If RESET is high at least 200 nsec before the leading edge of cf>1 in any given cycle,

then the restart sequence will begin in that cycle as shown in Figure 4-1.3-1. The RESET control line may also

used to reinitialize the MPU system at any time during its operation. This is accomplished by pulsing RESET

low for the duration of at least three complete cf>2 pulses. The RESET pulse can be completely asynchronous

with the MPU system clock.

The MC6800 is capable of handling two types of interrupts, maskable (IRQ) and non-maskable

(NMI). The handling of these interrupts by the MPU is the same with the exception that each has its own vector

address. The behavior of the MPU when interrupted by these two Wpes of interrupts falls into two categories as

shown in Figure 4-1.3-2. Figure 4-1.3-2a details the MPU response to an interrupt while the MPU is executing

the control program. The interrupt shown could be either an IRQ or NMI and can be asynchronous with respect

to cf> 1. The Interrupt is shown going low 200 nsec before the leading edge of cf> 1 in cycle #2 which is the first

cycle of an instruction (OP code fetch). This instruction is not executed but instead the Program Counter, Index

Register, Accumulators, and the Condition Code Register are pushed onto the stack. The Interrupt Mask is then

set to prevent further IRQ interrupts. The address of the interrupt service routine is then fetched from FFFC,

FFFD, for a NMI interrupt and from FFF8, FFF9 for an IRQ interrupt. Upon completion of the interrupt service

routine, the execution of RTI will pull the PC, X, ACCUMULATORS, and CCR off of the stack.

Figure 4-1.3-2b is a similar interrupt sequence except, in this case, a WAIT instruction has been

executed in preparation for the interrupt. This technique speeds up the MPU's response to the interrupt because

the stacking of the PC, X, ACCUMULATORS, and the CCR is already done. While the MPU is waiting for the

Interrupt, Bus Available will go high indicating the following state of the control lines: VMA-Iow, Address

Bus-R/W-Data Bus all in the high impedance state. After the interrupt occurs, it is serviced as previously

described.

4-15

I 2 I X 5 6 7 8 9 n n+1 n+2 n+3 n+4 n+5

cj.>1
----1 ruu ,.., ,--, ,--, ,--, .-. .-. r1

Power on
Switch

J fS 1rJ------~--------------------

5.25 V

Power
Supply

4.75:;:r f JS .. u

----..t
Reset .p.

.......
0\

R/W

---0 if 1"" --=-f--t/~ 500 ns max

-~~IFFFE
~~ ~~~~~------

VMA ~ I Reset Routine
'-1/ J: of f Address Bits 0-7

Data
Bus ~~ ~-~~~~~. ~ ~ Reset Routine Instruction of

Address Bits 8-15 Reset Routine

FIGURE 4-1.3-1. RESET Timing

~
-.J

rfJ1

Address
PLS

IRQ or
NMI

1M

Data
Bus

R/W

VMA

Address
Bus

R/W

Cycle
#1

----,
I Cycle I Cycle I Cycle

#2 #3 #4

r--I rI II

Inst (X)

2 3 4

Cycle I Cycle I Cycle I Cycle I Cycle
#5 #6 #7 #8 #9

II II r-l II II

PCO-7 PC8-15 XO-7 X8-15 ACCA

FIGURE 4-1.3-2a Interrupt Timing

5 6 7 8 9

I Cycle I Cycle I Cycle I Cycle Cycle Cycle
#10 #11 #12 #13 #14 #15

II r-1 II r-

ACCB ~NeWPC8-15 First Inst. of
Address Interrupt Routine

I / Note 1 Cycle
n n+1 n+2 n+3 n+4 #n+5

VMA

1M

IRQ
NMI

\, I
-~,'f--

~ ~200ns
Data
Bus ==:J x==:x X X X X X~? (t " " n

Wait PCO-7 PC8-15 IX-0-7 IX8-15 ACCA ACCP CCR
Inst rfJ2 of Cycle

#10 ~ BA

NOTE 1: Midrange waveform indicates high
impedance state. FIGURE 4-1.3-2b Wait Instruction Timing

First Inst.
of Interrupt

Routine

{
4

CA(~~~1f~B)2 --------------____ ~.-------------~t~--------------
FIGURE 4-1.3-3. Interrupt signal Format

INTERRUPT ENABLING DURING HALT AND/OR WAI

While there are nominally no restrictions on the format of interrupt signals into CA 1, CA2, CB 1 ,

and CB2 of the PIA, there are certain combinations of system situations that require special consideration.

Assume that the interrupt signal format follows one of the cases shown in Figure 4-1.3-3 and that the PIA has

been conditioned by the MPU to recognize the transition polarity represented by the "trailing edge" of the

interrupt pulse.

The design of the PIA is such that at least one E pulse must occur between the inactive and active

edges of the input signal if the interrupt is to be recognized. Relative timing requirements are shown in Figure

4-1.3-4. Note that an internal enable signal that is initiated by the first positive transition of E following the

inactive edge of the input signals is included.

E=VMA~

PIAlnte,"aIEn'b~~

I
Enables} i

Int. to CA(B)lnpu" I ,

iA'O. (Int. req. to MPU) q
~------------------------

FIGURE 4-1.3-4: Interrupt Enabling

When the MPU has been halted either by hardware control or execution of the Wait For Interrupt

(WAI) instruction, its VMA output goes low. Since VMA is normally used to generate the Enable signal (E =

VMAecp2) either of these two conditions temporarily eliminates the E signal. The effect of this on the trailing

edge interrupt format is shown in Figure 4-1.3-5 where it is assumed that VMA went low and eliminated the

Enable pulses before the PIA's interrupt circuitry was properly conditioned to recognize the active transition. It

should be noted that this condition occurs only when an active transition is preceded by an inactive transition

and there are no intervening E pulses.

VMA ~ After Halt or WAI

F = VMA·1j>2 ~
r-, ,-, ,-, ,-,

I \ I \ I \ I \ I
__ ~ __ ~\~~I __ ~\~-LI ____ ~\ __ ~/ ____ ~) __ ~I~

PIA Internal Enable

Interrupt to CA(B) Inputs

IRQ (Int. req. to MPU)

I
I

,--------------------------

~~,~-: _________ h __

FIGURE 4-1.3-5. Interrupt not properly enabled

4-18

If this combination occurs during system operation, valid interrupts will be ignored. Either of two

simple precautions can be adopted. If the format of the interrupt signals is up to the designer, the potential

problem can be avoided by not using the pulse-with-trailing-edge-interrupt format.

If this format is compulsory, the Chip Select signal can be generated by ANDing VMA and one of

the PIA's chip select inputs as shown in Figure 4-1.3.6, while the cf>2 clock is used to enable the PIA.

Acj) RScj)

A1 RS1

From
Address A3 CScj)

Bus
A13 CS1

A14 CS2

VMA
E

cj)2

FIGURE 4-1.3-6. Alternate Enable Generation

4-1.4 THREE-STATE CONTROL LINE OPERATION

When the Three-State Control (TSC) line is a logic one, the Address Bus and the R/W line are placed

in a high impedance state. VMA and BA are forced low whenever TSC = "1" to prevent false reads or writes

on any device enabled by VMA. BA is low to indicate that the bus is not available for long term use. While TSC

is held high, the cf> 1 and cf>2 clocks must be held high and low, respectively, in order to delay program execution

(this is required because of the bus lines being in the high impedance state). Since the MPU is a dynamic device,

the clocks can be stopped for no more than 4.5 JLsec without destroying data within the MPU.

Figure 4-1.4-1 shows the effect of TSC on the MPU. TSC must have its transitions within 50 nsec of

the leading edge of cf>1 while holding cf>1 high and cf>210w as shown. Within 500 nsec of TSC going high, the

Address Bus, and R/W line will reach the high impedance state with VMA being forced low. In this example,

the Data Bus is also in the high impedance state while cf>2 is being held low because DBE is controlled by cf>2. At

this point in time, a DMA transfer could occur as explained in Section 4-2.2.2.

When TSC is returned low, the MPU's Address and R/W lines return to the bus within 500 nsec.

Because it is too late in cycle number 5 to access memory, this cycle is a dead cycle used for synchronization

and program execution resumes in cycle 6.

4.1.5 M6800 FAMILY INTERFACE AND ENABLING CONSIDERATIONS

The specifications of the M6800 family allow easy interfacing with other family members and with

TTL systems. All logic levels (with the exception of the clocks) are TTL compatible with the outputs having a

fanout of 1 7400 TTL load and 130 pf shunt capacitance at a 1.0 MHz clock rate. TTL logic level compatibility

allows the system designer access to a whole realm of standard interface and memory devices to complement

the M6800 family.

The limiting factor on size in building a M6800 system without buffering will usually be the loading

on the data bus. Data bus loading by family devices in the high impedance state is 10 JLa of leakage current with

10 pf of capacitance each for the PIA and ACIA and 15 pf of capacitance each for the MPU, RAM, and ROM.

4-19

System
cf>1

MPU cf>1

Address
Bus

R/W

Cycle

#1 2

.-.;;,,,--~'"'l

VMA

Data
Bus ~~~

cf>2 = DBE

TSC
--~

3

Max

50 ns
Max

4 5 6 7 8 9

~ Data Not Valid

FIGURE 4-1.4-1. Three-State Control Timing

Each family device can source 100;.,ta and drive a 130 pfload at rated speed (refer to the family uala sheeis for

more detail), thus, the data bus fanout varies from 7 to 10 family parts when assuming 25-30 pf of stray

capacitance. Once the system becomes larger than the 7 to 10 family parts of a minimum system, Bus Extenders

(BEX) are necessary in order to increase the fanout.

Figure 4-1.5-1 shows a generalized block diagram of a buffered M6800 system. The different

modules shown could be composed of family members (PIA, ACIA, 128 X 8 RAM, and lK X 8 ROM) or other

devices such as 4K RAMS (forlarge memory arrays) or bipolar PROMs (for bootstrap loaders). Bus drivers and

receivers are available which provide a fanout on the order of 50 receivers for each driver, providing almost

unlimited system expansion.

The buffers shown are used on the unidirectional lines, i.e., Address, R/W, VMA and <jJ2 clock.

Devices used for this function can vary from MC7404 hex buffers for a fanout of 10 to Bus Interface devices

such as the MC8T97* which can provide fanout on the order of 50 MC8T97 receivers from one MC8T97

driver. These buffer devices may have three state capability but unless the bus is needed for something like a

DMA channel, the buffers can remain enabled all the time. Devices that can be used for the bidirectional data

transceivers are the MC8T26* and the MC8833 *. The data transceiver at the MPU should be controlled by the

following signals, <jJ2, VMA, and R/W. <jJ2 and VMA can be used to enable the data transceivers only during

the data transfer portion of the cycle and only on memory reference cycles. The R/W line is used to control the

direction of the data transfer. The data transceivers for each module are enabled by these same signals plus an

additional signal which selects one module from the others. This additional signal can be derived from a full

decode of the Address Bus or it could be as simple as one of the high order address lines in an abbreviated

address decoding method as described in Section 1-1.2.

Figure 4-1.5-2 is an example of a buffered system using MC8T97 buffers and MC8T26 data

transceivers. In this example, all MC8T97s are enabled permanently because they are used with unidirectional

lines and no DMA channel is included. The drivers from the MPU could be disabled to allow control of the bus

by a DMA channel. The MC8T26 is used as the data bus transceiver in Figure 4-1.5-2. The enabling logic

*To be introduced third quarter, 1975.

4-20

shown places the transceiver in the mode of normally driving the bus except during cf>2 of a valid read cycle in

which case the driver is disabled and the receiver enabled. The logic of the data transceivers for the module

enables the receiver and disables the driver except during cf>2 of a valid read cycle for that module (For a valid

read cycle, the receiver is disabled and the driver enabled). The AD DR input to this logic is used to enable only

one driver of the modules on the bus at anyone time and is dependent on the address decoding method used.

r----------. AO-A 15, R/W
VMA, (j>2

19

MC6800
MPU

,. --

00-07

Buffer
(Driver)

Address and Data
Control Bus •• Il Bus

r---------------, I Module #1 I

I I
I I

1\ I _ Buffer I __ AO-A15 I
---+----+-~- (Receiver) r- R/W,(j>2

Data _
Transceiver ~---+--

+
(j>2, VMA, R/W

I\.

I VMA I
I I
I I
I I
I I
I .. Data I -- I I -- Transceiver r- 00-07

I I
I

-

--

Buffer
(Receiver)

Data
Transceiver

AO-A15
-. R/W,(j>2

VMA

.... 00-07

I

FIG U R E 4-1.5-1. Buffered M6800 System

4-21

MC6800
MPU

<1>1 <1>2

AO

DO

D7

MC8T97

MC8T26 _

•
•
•

DE

1/3 MC7410
<1>2

VMA

R/W

OTHER MODULES

r

I
L

- - - -

MC8T97

MC8T26 -

RE

OTHER MODULES

-

•
•
•

DE

- - - - - - -
MODULE #N

AO

A15

R/W

VMA

<1>2

D<1>

1/2 MC7420

<1>2

VMA

R/W

Addr

FIGURE 4-"1.5.2. M6800 Bus Expansion Example

4-22

- - - - - - - -,

RAM

•
ROM

•
PIA

•
ACIA

•
•

_______ -.1

Enabling Considerations of Module Devices

VMA, R/W, and 4>2 are all available to enable RAMs, ROMs, and PIA/ACIAs. In some cases, it

may be desirable to eliminate one of these enabling signals so that the enable input is available for address

decoding. The following discussion indicates which control signals could be deleted for a given device and the

effects on the system operation:

ROM

R/W and 4>2 can be used to enable the ROMs without using the VMA signal. Not using

the VMA signal means that the ROM may be enabled during a non-memory reference read cycle

(VMA would be low but since it is not used, the ROM may be enabled). A false read of the ROM

will have no effect on the system and if the non-memory reference cycle had been a write, then the

R/W signal would have disabled the ROM.

RAM

VMA can be left off as an enable to a RAM if the MPU will not be halted, the WAI instruction

not used, or if the TSC will not be used. Either of these conditions cause the Address lines and the

R/W lines to float which could produce a false write into RAM if not prevented by VMA. During

normal operation of the MPU, only one instruction, TST, causes a false write to memory (i. e. , the

R/W line going low without VMA going high). This instruction does not pose a problem because it

first reads the memory and then rewrites the same data. If VMA was used to enable the RAM, this

false write would not occur, however, since the memory is rewritten with the same data, no problem

occurs by not using VMA as an enable.

PIA/ACIA

All three signals must be used to enable or select a PIA or ACIA. Both of these devices

automatically clear the Interrupt Flags when the MPU reads the PIA or ACIA data registers so that a

false read of a PIA or ACIA may cause an interrupt on CAl, CB 1, CA2, or CB2 to be missed. In

addition, it is suggested that VMA.4>2 not be used as an Enable signal for a PIA because, if the

machine is halted, VMA is forced low removing the clocks from the PIA. Without the Enable input

to the PIA, an external interrupt may not be recognized. 1 4>2 should be used for the PIA Enable

signal so that the PIA Enable clock always occurs whether or not the MPU is halted. VMA may then

be taken directly to Chip Select inputs or be gated with address signals to the Chip Select inputs.

lRefer to Section 4-1.3 for a complete explanation.

4-23

4-2 M6800 SYSTEM HARDWARE TECHNIQUES

4-2.1 INTERRUPT PRIORITY CIRCUITRY

The interrupt control features of the MC6800 are described in Sections 3-2 & 3-3. The software

polling and prioritizing methods discussed there are adequate for most applications. However, in s,ystems

having several interrupts that must be handled quickly on a priority basis, hardware prioritizing circuitry can be

used to advantage.

The prioritizing method recommended in Chapter 3 is shown in more detail in the block diagram of

Figure 4-2.1-1. With this technique, each interrupting device is assigned a separate ROM location which is

used to store the starting address of a service routine. After the MPU recognizes an interrupt, external circuitry

selects the interrupt that is to be serviced and directs the MPU to the proper location in memory.
--- ---

The MPU responds to an IRQ by trying to fetch the IRQ vector address from locations FFF8 and

FFF9. However, some of the address lines are no longer tied directly to memory but go instead to a l-of-2 Data

Selector. The other set of inputs to the Data Selector is generated by a Priority Encoder that outputs a binary

number corresponding to the highest priority interrupt signal present at the time the interrupt is recognized by

the MPU.

Detection of addresses FFF8 and FFF9 by the INTERRUPT ADDRESS DECODE circuitry then

causes the outputs of the Priority Encoder to be substituted for part of the normal address. Hence, even though

the MPU outputs FFF8 and FFF9, other locations are read by the MPU.

4-2.1.1 8-Level Prioritizing

Specific circuitry for prioritizing eight interrupts is shown in Figure 4-2.1.1-1. The interrupting

System
Clock

2

Interrupt 3

Inputs 4
In Order

of 5

Priority 6

7

S

-..

~

...
---------.
--.
-.

--~

Interrupt
Address
Decode

&
Control

l

Clk

Interrupt
Register
(latches

or
fl ip-flops)

<: Address Bus (

I ..

IRQ To MPU

"
r r r -- A9 -.. AS .. Read

A7
Only

~ ~ A6 Data Bus - Memory

-. ----- Quad - A5

-...
Priority 1-of-2 - A4

---- ~ Encoder Data . A3

r----- Selector .. A2

~ r---- - A1

~ r-------- ---. AI/>

I--

FIGURE 4-2.1-1. 8-level Priority Interrupt Configuration Block Diagram

4-24

.f::..
N
VI

¢1

¢2

Int.

In

In
of p

r---<J==: A 1
A2

A3

MC7430 A4
(2 Places)

rL
A5

A6

A7 Interrupt Vector Location

A8 RES FFFF - FFFE
NMI FFFD - FFFC

Interrupt A9 SWI FFFB-FFFA
Address Decode #8 FFF9-FFF8

" #7 FFF7 - FFF6

A10 #6 FFF5-FFF4
#5 FFF3 - FFF2

A11
#4 FFF1 - FFFO

+5 A12 #3 FFEF - FFEE
#2 FFED - FFEC

K
A13 #1 FFEB - FFEA

1/2MC7479

S
A14

~D 01-- A15

-C VMA
..... C 0/0 Latch
",

~ +5 R Clock

Disable A1 A2 A3 A4 A9 A8 A7A6 A5 A4

+5
......
./ E

4MC7402 Latch

4 Places) Clock
___ ~'RQ to MPQ A9

A8

MTCH B YO Y1 ,Y2 Y3 A7
,....
1_

10 A1
DO 00 - AO DO r---- XO A6

11
2_ D1 01 - A1 - ~ A5

3- 12 Priority A2
A4 D2 02 - A2 D1 r--- X1 ZO

irrupt
4- Interrupt 13 Encoder Data

D3 03 - A3 Z1 A3 Juts (
Register 14 256 x 4 A3 Selector

Jrder 5_ D4 04 - A4 HPROM· D2 r-- X2 (MC8266) Z2 A2
"iority

(MC8502 15
6_ D5 LRCC/Data 05 - A5 1024 Z3 A1

16 A4
7- D6 Register) ci6 ,......-- A6 D3 I--- X3 '- AO -
8- D7 07 17 A7 -

'-
~ D8 08 -. E E A

4~ Mode .J:. .J:. -b
4~ Reset - - -

-=-

FIGURE 4-2.1.1-1. 8 Level Hardware Prioritized Interrupt Logic

Addr ess
Bw

E ~ VM A. ¢2

E t-- R/W

E _ +5

1024 D7 r-----.
X
8

D6 r-----.
ROM D5 r----.

(MCM6830) D4 r----
D3 r--..
D2 r-----.
D1 r----- Data
DO r----- Bus

...... --

signals are tied to the D inputs of an MC8502. 1 In the absence of interrupts, all the inputs are low and the IRQ

line to the MPU is high. One or more interrupts going high causes IRQ to go low (following the next positive

transition of 1>2), thus initiating an IRQ.

After setting the Interrupt Mask and stacking its contents, the MPU responds in the normal manner

by outputting FFF8 and FFF9 onto the Address Bus where it is decoded by the INTERRUPT ADDRESS

DECODE circuitry. The resulting decode pulses are shown in the relative timing diagram of Figure 4-2. 1. 1-2.

The INTERRUPT DECODE signal causes the MC8266 Data Selector to select the Priority Encoder

outputs for addressing inputs Al through A4 of the ROM. If any address other than FFF8 or FFF9 is on the

Address Bus, INTERRUPT ADDRESS DECODE is low and the normal AI-A4 address lines are routed to the

ROM.

The INTERRUPT ADDRESS DECODE signal is also used in generating the LATCH CLOCK

DISABLE signal. When the INTERRUPT DECODE pulses are not present, the contents of the D flip-flops in

the Interrupt Register are updated by each negative transition of 1>2. During retrieval of the current interrupt

vector, further changes on the interrupt inputs are shut out by disabling the LATCH CLOCK. The clock is

disabled by the presence of the INTERRUPT DECODE signal on the D input of the LATCH CLOCK Disable

flip-flop which causes the disable signal to go high on the next negative transition of 1>1.

On the negative transition of 1> 1 following the FFF9 decode pulse the D input to the disable flip-flop

will again be low, the disable signal will go low, and sampling of the interrupts will be resumed.

When no interrupts are present, all inputs to the Interrupt Register/Priority Encoder are low and IRQ

is high. With one or more of the interrupt inputs high, the Priority Encoder translates the highest priority input

into a corresponding 4-bit output. The priority is an indicated in Table 4-2.1.1-1; IO is the highest, 11 is second

highest, etc. The response of the Priority Encoder to various combinations of interrupts is shown in Table

4-2.1.1-1.

The AI-A4 outputs corresponding to each priority are obtained by encoding a 256 X 4 PROM with

the desired results. 2 The code is determined by where the vectors are to be located in memory. In this case, the

VMA

Int. Addr.

Decode

Latch Clk.
Disable

Latch
Clock

,-----,
I ,

FIGURE 4-2.1.1-2. Prioritizing Interrupt Circuitry Relative Timing

IThe MC8502 Longitudinal Redundancy Check/Data Register is a dual-mode circuit developed for use in 9-channel magnetic tape
systems. It contains nine flip-flops and logic to detect an all zeros condition. All nine flip-flops have common reset, clock, and mode
control inputs. Each flip-flop may operate either as a Toggle (mode control high) or D (mode control low) flip-flop. The flip-flops are
edge-triggered and are updated on the negative edge of the clock input. An all zero condition in the register is indicated by a low state at
the Match output.

2 A complete code listing is shown in Table 4-2.1.1-2.

4-26

IRQ vectors are contiguous with the RES, NMI, and SWI vectors as shown in Figure 4-2.1.1-3. The code that

must be generated by the Priority Encoder to accomplish this is enclosed by dashed lines in the Figure.

If a conventional8-input priority encoder such as the MC9318 (see next section) was used only five

interrupts could be implemented without additional address decoding. This is due to the fact that three of its

inputs would, if active, cause the addresses for RES, NMI, and SWI to be accessed by an IRQ. Use of the

PROM allows any desired code and, hence, any memory locations to be selected.

In this example, addressing is shown for an MCM6830 1024 X 8 ROM assigned memory locations

FFOO to FFFF with the interrupt vectors located at the top of memory. If no interrupts are being processed, lines

AO through A9 of the Address Bus select individual ROM locations in the usual manner. A suitable chip enable

for locating the ROM at FFXX is developed by decoding A10-A15 and tying it to an E on the ROM. The chip

enable requires no additional logic since A10-A15 must be decoded for the interrupt circuitry anyway.

Interrupt
Priority DO 01 02 03 04 05 06 07 A4 A3 A2 A1 IRQ Vector Location

1 (H ighest) 1 X X X X X X X 0 0 0 FFF8 - FFF9

2 0 1 X X X X X X 0 1 0 FFF6 - FFF7

3 0 0 1 X X X X X 0 1 0 0 FFF4-FFF5

4 0 0 0 1 X X X X 0 0 1 0 FFF2 - FFF3

5 0 0 0 0 1 X X X 1 0 0 0 0 FFFO - FFF1

6 0 0 0 0 0 1 X X 0 0 FFEE-FFEF

7 0 0 0 0 0 0 X 0 1 0 0 FFEC-FFED

8 (Lowest) 0 0 0 0 0 0 0 1 0 1 0 1 0 FFEA-FFEB

0 0 0 0 0 0 0 0 0 0 0 0

X = Doesn't matter

TABLE 4-2.1.1-1. 8·Level Priority Circuitry Truth Table

4-2.1.2 13-level Prioritizing

For the 8-level prioritizing circuitry described in the preceding section, the vector addresses were

located near the top of a block of memory assigned locations FFOO to FFFF. This required decoding address

lines AIO-A15; in addition, for purposes of illustration, the Interrupt Address Decode signal was generated by

doing a complete decode of the Address Bus.

In a typical application, the block memory assignments may be different and the decoding can be

simplified. This is illustrated in Figure 4-2.1.2-1 where the specific circuitry for prioritizing 13 levels of

interrupt is shown. The addressing follows the example of Section 1-1.2.1 and assigns the ROM to memory

locations COOO through C3FF by tying address lines A14 and A15 to chip enables on the ROM.

The requirements for decoding the IRQ Interrupt Address Decode signal are determined by the

following considerations:

(1) When the MPU places addresses on the Address Bus during interrupt sequences the vector data

is fetched from the memory locations that respond to those addresses even though they are not

actually locations FFF8 through FFFF. For example, if the MPU outputs the address FFFF (all

ones) while fetching the vector data for a Reset, in this case it is actually addressing memory

locations C3FF in the ROM since the A15 and A14 "ones" on the chip enable selects the

particular ROM and the X3FF portion of the address is determined by the ones on AO-A9.

4-27

ADDR IS II IS 15 I4 13 .I2 11 A4A3A2A1 ADDR IS 17 16 15 14 I3 12 11 A4A3A2A1 ADDR 18 17 16 15 14 13 12 11 A4A3A2A1

0 0 0 0 0 0 0 0 0 0 000 86 0 1 0 1 0 1 1 0 1 0 1 1 172 1 0 1 0 1 1 0 0 1 0 1 0
1 0 0 0 0 0 0 0 1 1 1 0 0 87 0 1 0 1 0 1 1 1 1 1 o 0 173 1 0 1 0 1 1 0 1 1 1 0 0
2 0 0 0 0 0 0 1 0 1 0 1 1 88 0 1 0 1 1 0 0 0 1 0 0 1 174 1 0 1 0 1 1 1 0 1 0 1 1
3 0 0 0 0 0 0 1 1 1 1 0 0 89 0 1 0 1 1 0 0 1 1 1 0 0 175 1 0 1 0 1 1 1 1 1 1 0 0
4 0 0 0 0 0 1 0 0 1 0 1 0 90 0 1 0 1 1 0 1 0 1 0 1 1 176 1 0 1 1 0 0 0 0 1 0 0 0
5 0 0 0 0 0 1 0 1 1 1 0 0 91 0 1 0 1 1 0 1 1 1 1 0 0 177 1 0 1 1 0 0 0 1 1 1 0 0
6 0 0 0 0 0 1 1 0 1 0 1 1 92 0 1 0 1 1 1 0 0 1 0 1 0 178 1 0 1 1 0 0 1 0 1 0 1 1
7 0 0 0 0 0 1 1 1 1 1 0 0 93 0 1 0 1 1 1 0 1 1 1 0 0 179 1 0 1 1 0 0 1 1 1 1 0 0
8 0 0 0 0 1 0 0 0 1 0 0 1 94 0 1 0 1 1 1 1 0 1 0 1 1 180 1 0 1 1 0 1 0 0 1 0 1 0
9 0 0 0 0 1 0 0 1 1 1 0 0 95 0 1 0 1 1 1 1 1 1 1 0 0 181 1 0 1 1 0 1 0 1 1 1 0 0

10 0 0 0 0 1 0 1 0 1 0 1 1 96 0 1 1 0 0 0 0 0 0 1 1 1 182 1 0 1 1 0 1 1 0 1 0 1 1
11 0 0 0 0 1 0 1 1 1 1 0 0 97 0 1 1 0 0 0 0 1 1 1 0 0 183 1 0 1 1 0 1 1 1 1 1 0 0
12 0 0 0 0 1 1 0 0 1 0 1 0 98 0 1 1 0 0 0 1 0 1 0 1 1 184 1 0 1 1 1 0 0 0 1 0 0 1
13 0 0 0 0 1 1 0 1 1 1 0 0 99 0 1 1 0 0 0 1 1 1 1 0 0 185 1 0 1 1 1 0 0 1 1 1 0 0
14 0 0 0 0 1 1 1 0 1 0 1 1 100 0 1 1 0 0 1 0 0 1 0 1 0 186 1 0 1 1 1 0 1 0 1 0 1 1
15 0 0 0 0 1 1 1 1 1 1 0 0 101 0 1 1 0 0 1 0 1 1 1 0 0 187 1 0 1 1 1 0 1 1 1 1 0 0
16 0 0 0 1 0 0 0 0 1 0 0 0 102 0 1 1 0 0 1 1 0 1 0 1 1 188 1 0 1 1 1 1 0 0 1 0 1 0
17 0 0 0 1 0 0 0 1 1 1 0 0 103 0 1 1 0 0 1 1 1 1 1 0 0 189 1 0 1 1 1 1 0 1 1 1 0 0
18 0 0 0 1 0 0 1 0 1 0 1 1 104 0 1 1 0 1 0 0 0 1 0 0 1 190 1 0 1 1 1 1 1 0 1 0 1 1
19 0 0 0 1 0 0 1 1 1 1 0 0 105 0 1 1 0 1 0 0 1 1 1 0 0 191 1 0 1 1 1 1 1 1 1 1 0 0
20 0 0 0 1 0 1 0 0 1 0 1 0 106 0 1 1 0 1 0 1 0 1 0 1 1 192 1 1 0 0 0 0 0 0 0 1 1 0
21 0 0 0 1 0 1 0 1 1 1 0 0 107 0 1 1 0 1 0 1 1 1 1 0 0 193 1 1 0 0 0 0 0 1 1 1 0 0
22 0 0 0 1 0 1 1 0 1 0 1 1 108 0 1 1 0 1 1 0 0 1 0 1 0 194 1 1 0 0 0 0 1 0 1 0 1 1
23 0 0 0 1 0 1 1 1 1 1 0 0 109 0 1 1 0 1 1 0 1 1 1 0 0 195 1 1 0 0 0 0 1 1 1 1 0 0
24 0 0 0 1 1 0 0 0 1 0 0 1 110 0 1 1 0 1 1 1 0 1 0 1 1 196 1 1 0 0 0 1 0 0 1 0 1 0
25 0 0 0 1 1 0 0 1 1 1 0 0 111 0 1 1 0 1 1 1 1 1 1 0 0 197 1 1 0 0 0 1 0 1 1 1 0 0
26 0 0 0 1 1 0 1 0 1 0 1 1 112 0 1 1 1 0 0 0 0 1 0 0 0 198 1 1 0 0 0 1 1 0 1 0 1 1
27 0 0 0 1 1 0 1 1 1 1 0 0 113 0 1 1 1 0 0 0 1 1 1 0 0 199 1 1 0 0 0 1 1 1 1 1 0 0
28 0 0 0 1 1 1 0 0 1 0 1 0 114 0 1 1 1 0 0 1 0 1 0 1 1 200 1 1 0 0 1 0 0 0 1 0 0 1
29 0 0 0 1 1 1 0 1 1 1 0 0 115 0 1 1 1 0 0 1 1 1 1 0 0 201 1 1 0 0 1 0 0 1 1 1 0 0
30 0 0 0 1 1 1 1 0 1 0 1 1 116 0 1 1 1 0 1 0 0 1 0 1 0 202 1 1 0 0 1 0 1 0 1 0 1 1
31 0 0 0 1 1 1 1 1 1 1 0 0 117 0 1 1 1 0 1 0 1 1 1 0 0 203 1 1 0 ,0 1 0 1 1 1 1 0 0
32 0 0 1 0 0 0 0 0 0 1 1 1 118 0 1 1 1 0 1 1 0 1 0 1 1 204 1 1 0 0 1 1 0 0 1 0 1 0
33 0 0 1 0 0 0 0 1 1 1 0 0 119 0 1 1 1 0 1 1 1 1 1 0 0 205 1 1 0 0 1 1 0 1 1 1 0 0
34 0 0 1 0 0 0 1 0 1 0 1 1 120 0 1 1 1 1 0 0 0 1 0 0 1 206 1 1 0 0 1 1 1 0 1 0 1 1
35 0 0 1 0 0 0 1 1 1 1 0 0 121 0 1 1 1 1 0 0 1 1 1 0 0 207 1 1 0 0 1 1 1 1 1 1 0 0
36 0 0 1 0 0 1 0 0 1 0 1 0 122 0 1 1 1 1 0 1 0 1 0 1 1 208 1 1 0 1 0 0 0 0 1 0 0 0
37 0 0 1 0 0 1 0 1 1 1 0 0 123 0 1 1 1 1 0 1 1 1 1 0 0 209 1 1 0 1 0 0 0 1 1 1 0 0
38 0 0 1 0 0 1 1 0 1 0 1 1 124 0 1 1 1 1 1 0 0 1 0 1 0 210 1 1 0 1 0 0 1 0 1 0 1 1
39 0 0 1 0 0 1 1 1 1 1 0 0 125 0 1 1 1 1 1 0 1 1 1 0 0 211 1 1 0 1 0 0 1 1 1 1 0 0
40 0 0 1 0 1 0 0 0 1 0 0 1 126 0 1 1 1 1 1 1 0 1 0 1 1 212 1 1 0 1 0 1 0 0 1 0 1 1
41 0 0 1 0 1 0 0 1 1 1 0 0 127 0 1 1 1 1 1 1 1 1 1 0 0 213 1 1 0 1 0 1 0 1 1 1 0 0
42 0 0 1 0 1 0 1 0 1 0 1 1 128 1 0 0 0 0 0 0 0 0 1 0 1 214 1 1 0 1 0 1 1 0 1 0 1 1
43 0 0 1 0 1 0 1 1 1 1 0 0 129 1 0 0 0 0 0 0 1 1 1 0 0 215 1 1 0 1 0 1 1 1 1 1 0 0
44 0 0 1 0 1 1 0 0 1 0 1 0 130 1 0 0 0 0 0 1 0 1 0 1 1 216 1 1 0 1 1 0 0 0 1 0 0 1
45 0 0 1 0 1 1 0 1 1 1 0 0 131 1 0 0 0 0 0 1 1 1 1 0 0 217 1 1 0 1 1 0 0 1 1 1 0 0
46 0 0 1 0 1 1 1 0 1 0 1 1 132 1 0 0 0 0 1 0 0 1 0 1 0 218 1 1 0 1 1 0 1 0 1 0 1 1
47 0 0 1 0 1 1 1 1 1 1 0 0 133 1 0 0 0 0 1 0 1 1 1 0 0 219 1 1 0 1 1 0 1 1 1 1 0 0
48 0 0 1 1 0 0 0 0 1 0 0 0 134 1 0 0 0 0 1 1 0 1 0 1 1 220 1 1 0 1 1 1 0 0 1 0 1 1
49 0 0 1 1 0 0 0 1 1 1 0 0 135 1 0 0 0 0 1 1 1 1 1 0 0 221 1 1 0 1 1 1 0 1 1 1 0 0
50 0 0 1 1 0 0 1 0 1 0 1 1 136 1 0 0 0 1 0 0 0 1 0 0 1 222 1 1 0 1 1 1 1 0 1 0 1 1
51 0 0 1 1 0 0 1 1 1 1 0 0 137 1 0 0 0 1 0 0 1 1 1 0 0 223 1 1 0 1 1 1 1 1 1 1 0 0
52 0 0 1 1 0 1 0 0 1 0 1 0 138 1 0 0 0 1 0 1 0 1 0 1 1 224 1 1 1 0 0 0 0 0 0 1 1 1
53 0 0 1 1 0 1 0 1 1 1 0 0 139 1 0 0 0 1 0 1 1 1 1 0 0 225 1 1 1 0 0 0 0 1 1 1 0 0
54 0 0 1 1 0 1 1 0 1 0 1 1 140 1 0 0 0 1 1 0 0 1 0 1 0 226 1 1 1 0 0 0 1 0 1 0 1 1
55 0 0 1 1 0 1 1 1 1 1 0 0 141 1 0 0 0 1 1 0 1 1 1 0 0 227 1 1 1 0 0 0 1 1 1 1 0 0
56 0 0 1 1 1 0 0 0 1 0 0 1 142 1 0 0 0 1 1 1 0 1 0 1 1 228 1 1 1 0 0 1 0 0 1 0 1 1
57 0 0 1 1 1 0 0 1 1 1 0 0 143 1 0 0 0 1 1 1 1 1 1 0 0 229 1 1 1 0 0 1 0 1 1 1 0 0
58 0 0 1 1 1 0 1 0 1 0 1 1 144 1 0 0 1 0 0 0 0 1 0 0 0 230 1 1 1 0 0 1 1 0 1 0 1 1
59 0 0 1 1 1 0 1 1 1 1 0 0 145 1 0 0 1 0 0 0 1 1 1 0 0 231 1 1 1 0 0 1 1 1 1 1 0 0
60 0 0 1 1 1 1 0 0 1 0 1 0 146 1 0 0 1 0 0 1 0 1 0 1 1 232 1 1 1 0 1 0 0 0 1 0 0 1
61 0 0 1 1 1 1 0 1 1 1 0 0 147 1 0 0 1 0 0 1 1 1 1 0 0 233 1 1 1 0 1 0 0 1 1 1 0 0
62 0 0 1 1 1 1 1 0 1 0 1 1 148 1 0 0 1 0 1 0 0 1 0 1 0 234 1 1 1 0 1 0 1 0 1 0 1 1
63 0 0 1 1 1 1 1 1 1 1 0 0 149 1 0 0 1 0 1 0 1 1 1 0 0 235 1 1 1 0 1 0 1 1 1 1 0 0
64 0 1 0 0 0 0 0 0 0 1 1 0 150 1 0 0 1 0 1 1 0 1 0 1 1 236 1 1 1 0 1 1 0 0 1 0 1 0
65 0 1 0 0 0 0 0 1 1 1 0 0 151 1 0 0 1 0 1 1 1 1 1 0 0 237 1 1 1 0 1 1 0 1 1 1 0 0
66 0 1 0 0 0 0 1 0 1 0 1 1 152 1 0 0 1 1 0 0 0 1 0 0 1 238 1 1 1 0 1 1 1 0 1 0 1 1
67 0 1 0 0 0 0 1 1 1 1 0 0 153 1 0 0 1 1 0 0 1 1 1 0 0 239 1 1 1 0 1 1 1 1 1 1 0 0
68 0 1 0 0 0 1 0 0 1 0 1 0 154 1 0 0 1 1 0 1 0 1 0 1 1 240 1 1 1 1 0 0 0 0 1 0 0 0
69 0 1 0 0 0 1 0 1 1 1 0 0 155 1 0 0 1 1 0 1 1 1 1 0 0 241 1 1 1 1 0 0 0 1 1 1 0 0
70 0 1 0 0 0 1 1 0 1 0 1 1 156 1 0 0 1 1 1 0 0 1 0 1 0 242 1 1 1 1 0 0 1 0 1 0 1 1
71 0 1 0 0 0 1 1 1 1 1 0 0 157 1 0 0 1 1 1 0 1 1 1 0 0 243 1 1 1 1 0 0 1 1 1 1 0 0
72 0 1 0 0 1 0 0 0 1 0 0 1 158 1 0 0 1 1 1 1 0 1 0 1 1 244 1 1 1 1 0 1 0 0 1 0 1 0
73 0 1 0 0 1 0 0 1 1 1 0 0 159 1 0 0 1 1 1 1 1 1 1 0 0 245 1 1 1 1 0 1 0 1 1 1 0 0
74 0 1 0 0 1 0 1 0 1 0 1 1 160 1 0 1 0 0 0 0 0 0 1 1 1 246 1 1 1 1 0 1 1 0 1 0 1 1
75 0 1 0 0 1 0 1 1 1 1 0 0 161 1 0 1 0 0 0 0 1 1 1 0 0 247 1 1 1 1 0 1 1 1 1 1 0 0
76 0 1 0 0 1 1 0 0 1 0 1 0 162 1 0 1 0 0 0 1 0 1 0 1 1 248 1 1 1 1 1 0 0 0 1 0 0 1
77 0 1 0 0 1 1 0 1 1 1 0 0 163 1 0 1 0 0 0 1 1 1 1 0 0 249 1 1 1 1 1 0 0 1 1 1 0 0
78 0 1 0 0 1 1 1 0 1 0 1 1 164 1 0 1 0 0 1 0 0 1 0 1 1 250 1 1 1 1 1 0 1 0 1 0 1 1
79 0 1 0 0 1 1 1 1 1 1 0 0 165 1 0 1 0 0 1 0 1 1 1 0 0 251 1 1 1 1 1 0 1 1 1 1 0 0
80 0 1 0 1 0 0 0 0 1 0 0 0 166 1 0 1 0 0 1 1 0 1 0 1 1 252 1 1 1 1 1 1 0 0 1 0 1 0
81 0 1 0 1 0 0 0 1 1 1 0 0 167 1 0 1 0 0 1 1 1 1 1 0 0 253 1 1 1 1 1 1 0 1 1 1 0 0
82 0 1 0 1 0 0 1 0 1 0 1 1 168 1 0 1 0 1 0 0 0 1 0 0 1 254 1 1 1 1 1 1 1 0 1 0 1 0
83 0 1 0 1 0 0 1 1 1 1 0 0 169 1 0 1 0 1 0 0 1 1 1 0 0 255 1 1 1 1 1 1 1 1 1 1 0 0
84 0 1 0 1 0 1 0 0 1 0 1 0 170 1 0 1 0 1 0 1 0 1 0 1 1
85 0 1 0 1 0 1 0 1 1 1 0 0 171 1 0 1 0 1 0 1 1 1 1 0 0

TABLE 4-2.1.1-2 PROM Coding for Priority Encoder

4-28

(2) During system operation, the unused lines All and A12 will be high only when the MPU is

processing an interrupt; otherwise the address generated would be outside (below) the highest

system assignment.

(3) If one of the lines All-A13 is included in the decode, the MPU's response to an IRQ can be

decoded by distinguishing between XXX8 and XXX9 and the other fourteen possibilities that

can be generated by Al through A4.

The resulting decode requirement is simply A 1·A2·A3·Al 3 , as shown in Figure 4-2. 1.2-1. INTER

RUPT ADDRESS DECODE will be high only when the MPU has put FFF8 or FFF9 on the Address Bus.

Operation of the clock disable and data selection control for the 13-level circuitry is identical to that

described in the preceeding section for the 8-level case. However, a different priority encoding method that

uses two cascaded MC9318 8-input Priority Encoders is shown (this technique can be extended to any required

ADDRESS BUS A15 A14 A13 A12 A11 A1D A9 A8 A7 A6 A5 A4 A3 A2 A1 AD
(V MA • A 1 5 • A 14 • A 13 • A 1 2 • A 11 • A 10)

, J --.......,,-
ROM Connection E A9 AS A7 A6 A5 A4 A3 A2 A1 AO

0 1 1 1 1 1 1 FFFF}_ RES
0 1 0 FFFE

0 0 FFFD}_ NMI
0 0 0 FFFC

0 1 0 FFFB} SWI
0 1 1 0 1 0 FFFA

0 1 r,-1"-o--o-' 1 FFF9 }

0 1 I 1 0 0 0 FFF8

0 I 1 0 1 FFF7 }

I
2

0 1 0 1 0 FFF6

0 1 I 1 0 0 FFF5} 3
0 1 I 1 0 0 0 FFF4

0 1 I 1 0 0 1 FFF3} 4
0 1 I 1 0 0 1 0 FFF2

0 1 I 1 0 0 0 1 FFF1} 5
0 1 I 1 0 0 0 0 FFFO

0 1 I 0 1 FFEF} 6
0 1 I 0 I 0 FFEE

0 1 I 0 0 I 1 FFED} 7
0 1 I 0 1 0 I 0 FFEC

0 1 I 0 0 1 I 1 FFEB} S
0 L 0 __ ~ _ ~ _.2.J 0 FFEA

FIGURE 4-2.1.1-3. Interrupt Vector Memory Allocation

number of priority levels). The five additional interrupt register stages are obtained by using the ninth flip-flop

in the MC8502 and an MC4015 Quad D Flip-Flop.

The characteristics of the MC9318 Priority Encoder introduce several other minor differences

between the 13-level and 8-level circuits. Their operation requires active low input signals, hence the interrupts

must be active low. The OUT of the lowest priority MC9318 stage can be used to generate IRQ. EOUT of the

highest priority stage (E'OUT in Figure 4-2.1.2-1) is used for the fourth bit, A4.

The resulting truth table for this configuration is shown in Figure 4-2.1.2-2. The' 'substitute partial

4-29

1/37427
(3 Places)

I nterrupt Address Decode:

1/2 7479
A 1 • A2 • A3 • A 13 1/6 MC7404

+5 cP1 I (2 PI)

S " ~ ro(l=~~L <h
Al

:

ce

,

o Dt--+---' --i\~~~ ~ ~ l
--(l Q C r-

R
. 'x. MC3001

(4 Places)

Address Bus

r-______ ..,VMA·

+5
1
A5 .¢2

'--+-+-+-i-+--f--+~ E 1 024 E ~
.fa E X E 'r-R/W

S
A9 A9 ROM

'--+--+--+--II--T
A
;;:':S9 (M C M 6S3 0)

~ Clk

--- Ein INT 13-t- DO 00f--c DO

A1 A2 A3 A4
B YO Yl Y2 Y3

XO

L...-+--+--+--+:..=.t AS

L---+--+--fA'-'-'-j7 A 7

,--+--+A96 A6

'--~ A5

INT 12-1- D1 Q1 f---<l Dl Ooo-----n-A3' 20 t-A_4 _______ -t---1 A4

INT ll-t- D2 Q2~ D2 Priority Xl
MCS502 I~ Encoder -

Data 21 A3 A3
Selector

INT 10-1- D3 LRCC/ Q3t----< D3 01 n A2
' (MCS266) 22 A2 A2

INT 9 -- D4 Da.ta Q4 f----<l D4 (MC931S) X2
Register A1'

23 ... A--.:.1 _______ +--i A 1

INT S -- D5 Q5 f-----<l D5 02 r- ~I_ X3

I NT 7 -- D6 Q6 f----<: D6 ~ A

INT 6 -- D7

INT 5 -- OS

f
t- Mode

I- Reset

Q7 f----c D7 E
out

GS p

QS I-

-~~C-I-k----~
E'in

~DO'

INT 4- Dl Ql ~ Dl' QO'D--t-t-1--t--'

I NT 3 _ D2 MC4015 Q2 -----" D2' Priority
Ouad --~ ·Encoder

INT 2- D3 D 03 --0 D3' 01'

INT 1 - D4 F-F Q4 f----c D4' (MC931S)

,-<l D5' 02'~-

+5 e----o Reset ~ D6'

~ D7' E'out GS' p-

+5

~------r-------

-b

IRO to MPU

FIGURE 4-2.1.2-1. 13-Level Hardware Prioritized Interrupt Logic

INT 07'

3
4

5

6

7

8
9

10
11

12

13

06'

x = Ooesn't Matter

05' 04'

o

03'

x
o

02'

x
x
o

D1'

x
x
x
o

00'

x
x
x
x
o

07

x
x
x
x
x
o

06

x
x
x
x
x
x
o

D5

x
x
x
x
x
x
x
o

04

x
x
x
x
x
x
x
x
o

03

x
x
x
x
x
x
x
x
x
o

02

x
X

X

X

X

X

X

X

X

X

o

01

X

X

X

X

X

X

X

X

X

X

X

o

00

X

X

X
X

X
X

X

X

X

X

X

X

o

G'S

(A4') A3

o 0
o
o
o
o 1

o
o
o
o

o
o

1

o
o

o
o

FIGURE 4-2.1.2-2. Truth Table, 13-Level Priority Circuitry

A'f
1

o
1

o
1

o
1

o

o
1

o

AO AO

Interrupt
RES
NMI
SWI

~t

1
2
3
4
5
6
7
S
9
10
11
12
13

TRQ A4

o
o
o
o
o 1

o 0
o 0
o 0
o 0
o 0

o 0

o 0

o 0
o

A3

o
o
o
o

o
o
o
o
o

DO --..

D1 r---....
D2 r---....
D3 r---....
D4 r---....
D5 r---....
D6 --..

D7 ---.,

'--

Data
BUS

Vector Location
C3FE-C3FF
C3FC-C3FD
C3FA-C3FB
C3FS-C3F9
C3FG-C3F7
C3F4-C3F5
C3F2-C3F3
C3FO-C3F 1
C3EE-C3EF
C3EC-C3ED
C3EA-C3EB
C3ES-C3E9
C3E6-C3E7
C3E4-C3E5
C3E2-C3E3
C3EO-C3E1

A2

o

1

o
o

1

o
o

1

o
o
o

A1

o

o

o

o
1

o
1

o
1

o
o

C3F8-C3F9

C3F6-C3F7
C3F4-C3F5

C3F2-C3F3

C3FO-C3F 1

C3EE-C3EF

C3EC-C3EO

C3EA-C3EB

C3E8-C3E9

C3E6-C3E7

C3E4-C3E5

C3E2-C3E3

C3EO-C3E 1

IThe MC4015 contains 4 type D flip-~ops. All four flip-flops have common resets and common positive edge triggered clocks.

4-30

addresses" that are selected during processing of an IRQ are shown in the memory map of Figure 4-2.1.2-3.

Note that low signals on inputs D5', D6' and DT of the high priority encoder stage would generate addresses in

the range C3FA- C3FF. As mentioned in the preceding section, this would cause accessing of the locations

reserved for RES, NMI, and SWI vectors so those encoder inputs are not used.

This method can be expanded as required. For example, 21 levels could be obtained by adding one

additional MC8502 register stage, one more MC9318 Priority Encoder, and one more bit of data selection.

Three-input AND gates would be required for combining the encoder outputs.

A15 A14 A13 A12 All A1D A9 A8 A7 A6 A5 A4 A3 A2 Al AD

ROM Connection E E A9 A8 A7 A6 A5 A4 A3 A2 Al AD

1 C3FF}-RES
1 0 C3FE

0 C3FD}-NMI
1 0 0 C3FC

1 0 1 C 3 F B }SWI
1 1 0 1 0 C3FA

r'---;--"Q-OI 1 C 3 F 9} I~T
0 0 I 0 C3FS

0 1 C3F7}2
0 1 0 C3F6

0 0 C3F5}3
0 0 0 C3F4

0 0 C3F3}4
0 0 0 C3F2

0 0 0 1 C3F1}5
0 0 0 0 C3FO

0 1 C3EF}6
0 1 0 C3EE

0 0 1 C3ED}7
0 0 0 C3EC

0 0 1 C3EB}S
0 0 0 C3EA

0 1 0 0 1 C3E9}9
0 1 0 0 0 C3ES

0 0 C3E7}10
0 0 1 0 C3E6

0 0 0 C3E5} 11
0 0 1 0 0 C3E4

0 0 0 C3E3}12
0 0 0 0 C3E2

0 0 0 0 1 C3E1}

L~_.£._~_~J
13

1 0 C3EO

FIGURE 4-2.1.2-3. Interrupt Vector Memory Allocation.

4-2.2 DIRECT MEMORY ACCESS (DMA)

In this section, three methods of implementing DMA using the MC6800 microprocessor are

discussed along with the advantages and disadvantages of each method. The methods range from completely

halting the processor in order to do the DMA transfer, to "sandwiching" in the DMA transfer during an MPU

cycle without reducing throughput or increasing execution time appreciably.

4-31

4-2.2.1 DMA Transfers by Halting Processor

A block diagram of a minimum system configured for aDMA channel is shown in Figure 4-2.2. I-I.

This system is shown with only four family parts for simplicity in demonstrating the DMA concept and can be

expanded to a larger system without affecting the DMA methods discussed here. The DMA interface consists

of a 16-bit address bus, an 8-bit bi-directional data bus, and the following control signals cf>2, BA or DMA
-- ---

GRANT, VMA, HALT or DMA REQUEST, and R/W. The cf>2 clock occurs whether the MPU is halted or not

and is used to synchronize the DMA data.

The Bus Available (BA) signal from the MPU goes to a logic" I " when the MPU has halted and all

three-state lines are in the high impedance state. The VMA signal is from an open collector gate and is high

when the MPU is halted. This signal can be wire-ORed with an external signal from the DMA circuitry to

enable the RAM during a DMA transfer. The HALT (DMA REQUEST) signal from the DMA circuitry

commands the MPU to halt and place all three-state lines in the high impedance state. The R/W line is a

command signal from the DMA channel to control the direction of transfer through the DMA interface. For this

system to operate correctly, the DMA circuitry connected to the MPU's Address Bus, Data Bus, and R/W line

must have three-state outputs which are in the high impedance state when BA is low and the MPU is controlling

the Address, Data, and Control Busses. The address assignment of this system is given in Table 4-2.2.1-1.

A timing diagram of the DMA/MPU interface using this technique is presented in Figure 4-2.2.1-2.

A DMA transfer is initiated by the DMA channel pulling the HALT (DMA REQUEST) low. HALT must go low

synchronously with cf>1. The negative transition of HALT must not occur during the last 250 nsec of cf>1 for

proper MPU operation to occur. It is suggested that HALT be brought low coincident with the rising edge of cf> 1.

The MPU always completes the current instruction before halting. If the HALT line is low within 100 nsec after

the leading edge of the cf> I in the last cycle of an instruction, the MPU will halt at the end of that instruction (this

case is shown in Figure 4-2.2.1-2). If the HALT line goes low after this 100 nsec region from the leading edge of

cf> I in the last cycle of an instruction, then the MPU will not halt at the end of the current instruction but will halt

at the end of the next instruction.

SELECTION ADDRESS
BITS

A15
1
o
o

A14
1
o
1

AMOUNT OF
DEVICE ADDRESS MEMORY

ROM COOO-C3FF 1024 Bytes
RAM 0000-007F 128 Bytes
PIA 4000-4003 4 Bytes

T ABL E 4-2.2.1-1. Address Assignment

What this means to the OMA channel is that the time from the HALT line going low to the MPU

halting and producing a BA (OMA GRANT) will be variable depending on what instruction is being executed

at the time HALT goes low and in which cycle of that instruction HALT goes low. Since the HALT (OMA

REQUEST) signal will probably be asynchronous with respect to the instruction currently being executed, this

will result in a variable time delay from HALT going low to BA (OMA GRANT) responding by going high. The

minimum time delay between HALT and BA is shown in Figure 4-2.2. 1-2 as being two cycles which would be

2 JLseconds at the maximum clock rate of 1 MHz. The maximum time delay would occur if the HALT line goes

low on the first cycle of a long instruction such as Software Interrupt (SWI), which is 12 cycles long. Added to

4-32

VMA

Clock

VMA

Address
Bus

AO-A15

cj>2

AO

A1

A14

A15

MPU

R/W

MPU MC6800
V M A 1----11 - ... 1;·

AO-A9 DBO-DB7

E

E

AO-A6

E

E

E

E

RSO

RS1

CS1

CS2

CA1 CA2

ROM
E

MCM6830 E

DBO-DB7

E
RAM

E

R/W

MCM6810

MC6820
CScj>

DBO-DB7

PIA

Parallel I/O
(Data & Control)

E

RES

R/W

IRQA

cj>2

R/W

VMA

-~-

</>2 BA VMA HALT R/W

FIGURE 4-2.2.1-1. OMA Transfers by Halting Processor

4-33

Data
Bus

DO-D7

DMA
Interface

~ w
~

MPU c/>1

MPU c/>2

i=i"Ai:T 0 r
DMA REQUEST

BA or
DMA GRANT

VMA

R/W

Address
Bus

Data
Bus

Vi\iiA from
DMA Channel

430 ns

Last Cycle
of Current
Instruction

--f~
470 ns I ~ I I I I I I I

l I I. r-
100n,---.jf- Yf----l ~~ ~L \ ----I I-- 100 n'

470 n, Max--.l f-- If / _I I-
I I J (f --., ~ 300 ns Max

---------~~--~' \
at 'IIi ~" 300n, Max II /'------

lWfL '11/ ~ DMA)-if-{ DMA) (. Y

~ =A~~r1 a ~ DMA Hf\ DMA) (~d~r • =~~r1)

II LJ)/ U
~ Data Not Valid

FIGURE 4-2.2.1-2. Timing of DMA Transfers by Halting the Microprocessor

the twelve cycles required to complete SWI is the one cycle required for the MPU's address, data and R/W

signals to go into the high impedance state. In summary then, the delay time for the BA signal to go high after

HALT goes low (assuming it occurs within 100 nsec of the leading edge of cf>1) will vary from two to thirteen

machine cycles. This delay must be taken into account in the design of the DMA channel, however, it should

not present a significant problem in most systems.

The other signals shown in Figure 4-2.2.1-2 indicate the response of the MPU to the HALT

command. The VMA signal is forced low within 300 nsec of the leading edge of the cf> 1 signal that occurs after

the last instruction cycle has been completed. This signal going low will prevent false reads or writes to memory

or peripherals on the MPU bus as the address and R/W lines go into the high impedance state. VMA from the

MPU will remain low as long as the MPU is halted. The address, R/W, and data lines will be in the high

impedance state when BA reaches the logic" 1 " state, indicating that DMA transfers can begin. Addresses,

R/W commands, and Data to or from the DMA interface are shown in the timing dIagram synchronized with cf>2

to indicate the DMA transfers. The MPU can remain in the halted mode indefinitely placing no constraints on

the length of the DMA transfer.

Note that the RAM is enabled by VMA which is the output of an open collector inverting gate with

VMA (from the MPU) as its input. This VMA signal is provided to the DMA interface so that the RAM can be

enabled during the DMA transfer. During the transition into the DMA mode, the VMA signal from the MPU

was forced low (forcing VMA high) to disable the RAM in order to protect it from false writes or reads as the

address and R/W lines went into a high impedance condition. During DMA transfers, the VMA signal is

wire-ORed with a DMA controller signal to enable the RAM. In order to exit the DMA mode, the HALT line is

switched high (synchronously with the leading edge of cf>1), the BA signal returns low and the MPU resumes

control. When BA returns low, it is required that the DMA channel's address, R/W and data lines be in the high

impedance state and that VMA from the DMA channel be high so as not to affect MPU operation.

4-2.2.2 DMA Transfers by Cycle Stealing

The previous section discussed the transfer of DMA information by completly halting the MPU

which stops program execution. This section discusses a technique of DMA transfer which slows down

program execution during DMA transfer but does not completely stop execution. The basic technique is to

"steal" MPU clock cycles for a DMA transfer; this results in a apparently lower clock rate and, therefore,

slower program execution during the DMA transfer.

The block diagram of Figure 4-2.2.2-1 uses the same minimum system concept as was used in

Section 4-2.2.1 to illustrate this DMA technique. The DMA Interface using this technique is composed of the

following signals: a 16-bit Address Bus, an 8-bit Data Bus, CLOCK, VMA, Three-State Control (TSC), and

Read/Write (R/W). The CLOCK signal is an uninterrupted system clock that is used to synchronize DMA data

transfers with the execution of the MPU. The VMA signal frrom the DMA interface is wire-ORed with the

VMA signal generated in the clock circuitry to enable the RAM for either MPU access or a DMA transfer. The

Three-State Control (TSC) or DMA ENABLE signal causes the address bus and the R/W signal to go into the

high impedance state and forces the VMA signal low. This signal can also "stretch" the cf> 1 and cf>2 clock

signals. The Read/Write (R/W) line controls the direction of the data in or out of the DMA Interface. The

Address Bus, Data Bus, and R/W signals at the DMA Interface must have three-state outputs so that when TSC

is low, the DMA signals will not interfere with normal MPU execution.

A timing diagram of the DMA/Microprocessor interface using this technique is shown in Figure

4-2.2.2-2. Assume that the clock rate is initially adjusted to 1JLsec and that the MPU is executing the control

4-35

VMA

VMA

TSC

(f)
(f)

~
"tl
"tl
<!

Address
Bus

AO-A15

IRQ

RESET

BA
</>2

OBE

</>2

</>1

TSC

AO-A9

E

E

AO-A6

E

E

E
E

A1
RS1

A14
CS1

A15
CS2

CAl CA2

MPU

R/W

MPU MC6800
VMA

OBO-OB7

ROM
E

MCM6830 E

OBO-OB7

E
RAM

E

R/W

MCM6810

MC6820
CS</>

OBO-OB7

PIA

PA PB

Parallel I/O
(Data & Control)

E

RES

R/W

IRQA

Clock

</>2

R/W

VMA

VMA TSC

FIGURE 4-2.2.2-1. Block Diagram of DMA Transfers by Cycle Stealing

4-36

R/W
Data

Bus

00-07

OMA
- Interface

-1 r-1 j.Ls Min

Clock

</J1

</J2
L-----J

.I: 3 j.Ls Max

DMA ENABLE 50 ns orTSC

ADDRESS
BUS

.j::.. R/W
W
.......:J

VMA MPU

VMA MPU t\\\\\;J \ DMA II \ DMA ~\\\\\W MPU

Data
Bus

DBE

FIGURE 4-2.2.2-2 Timing of DMA Transfers by Cycle Stealing

program. In order to initiate a DMA transfer, the DMA controller takes the DMA ENABLE (TSC) line to a

logic" 1 " within 50 nsec of the leading edge of the ~ 1 clock. This signal goes to the TSC input of the MPU to

command the Address Bus and the R/W line into the high impedance state. This will occur within 500 nsec of

the rising edge of the TSC signal. The DMA ENABLE signal also goes to the clock generating circuitry to

control the ~1 and ~2 clocks to the MPU as shown in Figure4-2.2.2-2. ~1 must be held in the high state while

DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. ~2 is held in the low state

while DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. Neither ~1 nor ~2 to

the MPU can be held high for longer than 4.5 JLsec because of the need to refresh dynamic registers within the

MPU. This constraint places a maximum time limit on DMA ENABLE being high of 3 JLsec using this

technique, so that the ~1 high time will not be greater than 4.5 JLsec. DMA ENABLE may occur on the leading

edge of any ~1 signal and MPU execution will be stopped regardless of the instruction currently being

executed. This feature provides a fast and constant response of the MPU to the DMA ENABLE line.

The DMA address, R/W, and data signals can be placed on the MPU bus 500 nsec after DMA

ENABLE (TSC) goes high (this is the time required for the MPU outputs to go to the high impedance state). In

order to maintain a fully synchronous system, the DMA data is shown transferred during the CLOCK high time

in Figure 4-2.2.2-2. The signal labeled VMA is from the MPU and is forced low when TSC is high. VMA is the

output of a three-state or open collector inverter which normally follows VMA but can be pulled low by the

DMA controller to enable the RAMs during the DMA transfer. DBE of the MPU is driven by the ~2 clock and

enables the MPU data buffers only during the MPU cycles.

In the timing diagram, only two DMA transfers (of two bytes each) are shown before the full

execution rate of the MPU is resumed for simplicity in drawing the figure. There is no limit to the number of

DMA transfers that can be made using this technique, which can range from one byte transfers (by shortening

the DMA ENABLE high time to 2 JLsec and only pulsing it once) to a continuous average DMA transfer rate of

one byte every 2.5 JLsec (by pulsing DMA ENABLE high for 3 JLsec at a periodic rate of 5.0 JLs). By using the

continuous DMA transfer mode, one can handle a DMA channel with a maximum date rate of one byte every

2.5 JLS and still execute the control program at a minimum rate of one cycle every 5.0 JLs.

4-2.2.3 Multiplexed DMA/MPU Operation

This method of implementing DMA results in the highest DMA transfer rate and, at the same time,

allows the highest MPU execution rate when compared to the previous DMA techniques discussed, but requires

higher speed memories.

A block diagram of this technique is shown in Figure 4-2.2.3-1. The three-state buffers and

transceivers shown are enabled when the control signals are high and provide the high speed multiplexing

required to transfer DMA data to the memory during ~1 and to allow MPU access during ~2. The signals at the

DMA INTERFACE are the following: 16 bit Address bus, 8-bit bidirectional Data Bus, Read/Write (R/W),

Valid Memory Address (VMA), DMA SYNCH and the DMA CLOCK.

Figure 4-2.2.3-2 is a timing diagram of a multiplexed DMA/MPU operation. C1 and C2 are positive

enables for the three-state buffers and transceivers and bracket the ~ 1 and ~2 signals so that the buffers are out

of the high impedance state before either ~1 or ~2 goes high. The MPU operation has been slowed down to a 1.2

JLS clock rate in order to show the timing requirements for a specific memory, the MCM6605; in general, the

MPU clock rate will have to be adjusted for the speed of the memory devices dused. This timing diagram

assumes that the memory cycle is equal to or less than 560 nsec. During ~ 1, the buffers associated with Clare

4-38

.,J::..
W
\0

C1 C2

Clock

C1 C2

</J1 -
</J2 .. -

C2

"
PIA, ACIA, ROM r-'---

Ci
>

"ai

)
()

K
CII
c::

DATA
co DATA
~
Q)
Cl
co

(J)

M

'---

~Z ~7

MC6800 RAM
Microprocessor Memory

i=iALT" = "1" ~~
TSC = "0"
DBE = </J2
NMI = "1"

r---

~

> :J
CO
Q) Addresses, R/W, VMA, Clock
....
!l
U?
M

~r-- PIA, ACIA, ROM
~

C2

FIGURE 4-2.2.3-1" Multiplexed DMA/MPU Operation

C1 ,
-'---

Ci
>

"OJ

>
()
CII
c::
co

~
~
co

(J)

M
'---

r----

...
i
:J

CO
Q)
co

0
M

--
j

C1

w
U

4:1~
:?!Ia: o W

I-

I~

~
[Y--t-v

~:
I
I
I
I
1 __

DMA
DATA

MA ADDR
W, VM1

MA Clock

MA Synch

C1

C2

</J2

.Address
R/W, VMA

.... 1 .. ------ 600 ns ----...... -.11

I I
~~ ___ ------600ns----___ ~~1

I I
.... 1 .. .------560nS------~~-.l1

I I
... 14.----- 560 ns ----...... _.11

~~ __________ ~I I

______ ~X~ _________ D_M_A ________ __JX ____________ M_P_U ________ _JX~ ____ __

Data Bus ~ ~ ~
Memory Write _____ -I~ DMA ~ MPU ~

Data Bus
Memo~y Read __ --J

FIGURE 4-2.2.3-2. Timing of Multiplexed DMA/MPU Operation

enabled and the buffers associated with C2 are strobed into the high impedance state. The DMA SYNCH signal

(C1) causes the DMA channel to place valid addresses, R/W, VMA and Data signals on the DMA INTER

FACE. When C2 goes high, the buffers from the DMA Interface are switched to the high impedance state and

the MPU buffers are strobed on, applying the MPU's address, R/W, and VMA signals (which become valid

during cp1) to the memory. The Data Bus signals from the MPU are applied to the memory at the leading edge of

C2, however, the Data Bus signals do not become valid until 200 nsec after the leading edge of cp2.
By multiplexing in this manner, the MPU will have one cp2 cycle every 1.2 JLS and the DMA channel

can have access to the memory every 1.2 JLS during cpl. This concept is not limited to DMA channels alone. For

example, a multiprocessing system with two MPU's accessing one memory system could be implemented by

connecting another MPU to the DMA INTERFACE. The second MPU will execute during the high portion of

cp1 in place of the areas marked DMA on Figure 4-2.2.3-2.

Figure 4-2.2.3-3 details the timing interface with a memory device that is capable of meeting the

speed requirements dictated by a'560 nsec memory system cycle time. This memory device is the MCM6605, a

4K X 1 dynamic RAM, which has an access time of 210 nsec and a Write Cycle Time of 490 nsec. Only the

timing for the MPU data transfer is shown, however, the same timing would apply during cp1 for a DMA

transfer. The address bus becomes valid 30 nsec (the delay of the bus buffers and transceivers in responding to

the C2 signal) after the leading edge of C2. Addresses will remain valid until after cp2 's negative edge, however,

they are only required for 60 nsec after the leading edge of CE to the memory as they are latched on the memory

device. 100 nsec is allocated for delays in the memory system to receive the address, drive the memory array,

and decode and drive the RIW and CS inputs of the memory array.

The CE signal is created from cp2 when the memory system has been selected by the Address Bus,

and is delayed 180 nsec from the leading edge of cp2. The CE signal remains high until the trailing edge of cp2,
creating a 380 nsec CE pulse which is 50 nsec longer than the 330 nsec minimum specification of the

MCM6605.

4-40

Cl

C2

cf>1

I~

I-

MPU Address
Bus, VMA, R!W

MCM6605 Address,
R!W, CS Inputs

MCM6605 CE
Input

~ J ~;'~~~~5

U 1 MPU
-g Data Bus
Q)

II:
Q)

U

> (MPU ~ Data Bu,

MCM6605
Data Bus

600 ns ~I

600 ns

560 ns .\

560 ns

104-----i~ __ -380 ns-__ ~
180 ns

40 ns~ ~ 320 ns

~ Not Valid

FIGURE 4-2.2.3-3. Timing of Multiplexed DMA/MPU Operation Using MCM6605 4k RAM

During a Read cycle, data is specified to be valid 190 nsec after the leading edge of the CE signal,

assuming that the addresses are valid 20 nsec before the CE signal (which is the case here). Assuming a 40 nsec

delay between the data lines of the memory array and the MPU data bus results in 150 nsec of valid data before

the trailing edge of cp2. This exceeds the MPU requirement of 100 nsec by 50 nsec. In a Write cycle, the data is

valid on the MPU Data Bus within 200 nsec of the leading edge of cp2. Again, assuming a 40 nsec delay

between the MPU data bus and the data lines of the memory array results in 320 nsec of valid data before the

trailing edge of CE. This exceeds the minimum DIN stable requirement of the 4K RAM (160 nsec) by a factor of

2.
This timing has been based on the MCM6605, which is one of the faster MOS memories available.

Even with this memory, the processor is required to run slightly slower to avoid exceeding the memory's speed.

Many other timing diagrams could be drawn for the variety of memory devices available but the exact system

implemention depends on the following considerations: DMA channel speed requirement, MPU execution rate

requirement, and the speed of memory devices available.

441

4-2.2.4 Summary of DMA Techniques

Table 4-2.2.4-1 summarizes the DMA techniques previously discussed plus a comparison with a

technique of bringing the data in through a PIA under software control, which is described in Section 5-4 on the

Floppy Disk Controller design.

TECHNIQUE

Halt Processor
Cycle Steal
Mu Iti plexed D MA
Software/PIA

MAX DMA CHANNEL RATE

1 byte/1 J.lS11

1 byte/2.5J.ls
1 byte/1.2J.ls
1 byte/14 J.lS

1 Limited only by memory speed.

MPUPROGRAM
EXECUTION RATE

o
1 cycle/5J.ls

1 cycle/1.2J.ls
Dedicated to service

DMA Channel

TABLE 4·2.2-4.-1: Summary of DMA Techniques

HARDWARE
COMPLEXITY

Lowest
Medium
Highest
Lowest

The first DMA technique is to halt the processor and transfer the DMA data at the maximum rate the

memories can handle. This technique has the advantage of requiring the least amount of hardware of the

techniques discussed, but has the disadvantage of stopping program execution. The second technique of cycle

stealing is a compromise between DMA transfer rate, MPU execution rate, and hardware complexity. The

MPU execution time and the DMA transfer rate can be maximized using the third technique with an increase of

system hardware complexity and memory speed by using a multiplexing technique for DMA. The Software/

PIA technique is based on the data being brought into memory through a PIA or ACIA interface under MPU

software control. Using this technique, the MPU can be used at full capacity to service a data channel with a

date rate of approximately 1 byte every 14 /LS.

This brief description of DMA techniques is intended to provide a basic understanding of how the

various control signals of the MPU can be used to implement a DMA channel. Each system design will involve

different tradeoffs in order to satisfy the specific system requirements.

4-2.3 AUTOMATIC RESET AND SINGLE CYCLE EXECUTION CIRCUITRY

In an MPU based system where a manual reset is not desirable (manual reset can be accomplished

with a switch and a debounce circuit), such as a remote peripheral controller, an automatic RESET signal must

be provided. A circuit designed to accomplish this must satisfy the two start up criteria:

(1) It must insure that the power supply to the MPU has reached the minimum required operating

voltage of 4.75 Vdc.

(2) The RESET line must then be held low for a minimum of 8 complete clock periods.

Of the many ways in which these criteria can be met, the circuit shown in Figure 4-2.3-1 is among the cheapest

and simplest.

The MC 1455 TIMER MODULE provides the delay necessary to complete a minimum of 8 clock

cycles with the R2C2 time constant after the RlCl time constant input has triggered the device insuring that Vee

4-42

.J:::.
,J::.
W

All resistors are 10% % W carbon
all capacitors are ceramic

RESET Inputs

3.3 k 3.3 k

VCC

VCC

I:J VSS 0 Re'e' b 40 16 '
TSC 39 0<

I - Cl Halt

R1 R2
8 4

RST VCC . I ..
Tng

~

6
• I Thres

• 10SCRG. C1

7

t---+----II Out
3

MC1455

cf>1
38 1/6 MC7405

Maskable Interrupts ~. I 4 9 IRQ

N on-Maskable Interrupts

•
cf>1 Flip-Flop

• IClk

VMA

~ • 9 NMI

SA

--.... CI VCC

AO

A1

A2

A3

A4

A5

A6
OutPut~I--"''' __ ----------------~

o
• Iinput

Halt Inputs

A7

A8

A9

A10

A11

cf>2

OSE

37

36

N.C. P 35 +

o

R/W

DO

01

g 02

~ 03
~

04

05

06

07

A15

A14

A13

34

33

32

31

30

29

28

27

26

25

24

23

22 A12 2 1
1

VSS p~---.... " L..-____ _

* HALT may be tied high similarly to IRQ
-and NME. as long as the HALT circuitry
will not allow the HALT transition to
occur during the last 250 ns of cf>1

VCC

FIGURE 4-2.3-1. Automatic Reset and HALT Synchronization

Gnd CV

5
C2

C3

RESET Circuit for Automatic
Power on RESET or

Power Failure Restart

R1 = 1 Meg n.}
C1 = .1 IJf
R2 = 1 Meg n. }
C2 = .4lJf (4 x .1 IJf)
C3 = .1 IJf

Delay for a
Minimum of

8 Clock
Periods

Note: A RESET switch may be used where
automatic operation is not required

5 ms 400 ms

Time ~

has reached the minimum level. The particular RC values shown were chosen to be used with a crystal oscillator

clock circuit which has a start-up time of approximately 100 ms. A 400 ms time out was used to cover the

tolerances of the components used with room to spare. In an application requiring minimum reset delay, a

counter could be used to determine when the 8 clock cycles were complete.

The interrupt inputs, IRQ and NMI, need not be tied high if they are not used due to internal pull up

resistors, but greater noise immunity will be had if they are tied high with a 5.IKO resistor. In wired-or

interrupt applications, a pull up resistor of 3.3KO will provide optimum device operation.

The HALT input must not make a transition during the last 250 ns of cp 1. If this input is to be used in

applications requiring the MPU status be saved (most applications), it must be synchronized with the leading

edge of cpI or the trailing edge of cp2. A flip-flop will accomplish this synchronization, or the circuitry

generating the HALT request may use the system clock and not require extra hardware. This input also may be

wire-ORed using an external 3. 3Kfi pull up resistor.

Single instruction operation, which is useful during debug, is accomplished by holding the HALT

high for one cpI clock cycle (Figure 4-2.3-2).

c:f>2

~----~?~?----------------

...- No MPU ActivitY--I ... I · ~ __ ---- Execute One Instruction -----1 1

FIGURE 4-2.3-2. Single Instruction Timing

Non Overlapping Clock
Is Exaggerated

For Single Instruction
Operation ON L Y

The circuit and timing diagrams of Figure 4-2.3-3 show how the single instruction execution can be

accomplished in conjunction with the HALT input restrictions.

When the GO/HALT switch (S2) is in the GO position, A will be low after the first cpI clock

causing the HALT input to be high. When the GO/HALT switch (S2) is in the HALT position, A will be high

after the first cpI clock. Since S 1 's normal position causes C to be low, signal B will be high. A and B

high cause the HALT to go low halting MPU activity.

When S 1 is pushed, C goes high allowing the next positive cpI transition to clock Fl. Since the J

and K inputs of FI are 1 and 0 respectively, this clock will cause D to go high and B to go low. The J and K

inputs of FI are now both 1. The next positive cpI transition will cause D to go low and B to go high

clocking F2. J of FI now goes low. With both J and K of FI low, any further clock transitions will cause no

change in the outputs until C is again made to go low. A and Bare NANDed to produce the HALT input
signal.

4-44

S1 is a Momentary
Contact Push Button

Switch

VCC

Step One Instruction
When S2 in HALT

<t>1

7400

+5

S2 Toggle
Switch

S2 GO

14

3

VCC

11
CLK

12
0

~t 10k %7479

VCC

Timing for HALT to GO

<t>1

S2

A

HALT

HALT GO

2

ClR
Q

12

CLK

F1

Q 13
K

13

Q 9

8

VCC

6

0 9

7473
ClK

F2

10
K a 8

E

B

h--------- TO HALT
Of MC6800

A

Timing for GO to HALT/one instruction

A rf f(

((
I~)

C

B (~ ((

(~ f f j)
o

E
(f

(f

4~ ((I Execute One -I" .1 .. --GO Instruction .4
HALT

FIGURE 4-2.3-3. Single Cycle Instruction Execution

4-45

HALT-

4-2.4 INTERVAL TIMER

A hardware interval timer circuit can be used to provide the MPU system with timing interrupts that

are under program control. This allows the system to perform other functions while long critical timing

functions, e.g., disk head step time during seek, printer line feed solenoid hold period, cassette gap and record

length, etc., are performed by the interval timer. An interval timer using an MC6820 PIA to interface to TTL

timing circuitry shown in Figure 4-2.4-1.

Table 4-2.4-1 shows how the interval timer of Figure 4-2.4-1 is programmed. An 8 bit binary count

(COUNT) is preset into the MC74455 up/down counter from Output Register B of the controlling PIA (If a

MC74454 counter was used, a 2-digit BCD value may be used). The counter then counts this value down to

zero using the clock rate provided by the programmable divider circuits. When the counter reaches 0, the SEO'

output triggers the CB 1 input of the PIA generating an interrupt to the operating system.

I: _L
CB1 -
PB<1>

1
0<1>

2
1 01

0 3
N 2 02
CX) 4 (0

U 3 03
~ 5

4 04
6

5 05 L!)

7
L!)

"" 6 06
"" 8 " U

7 07 ~ CB2r-i> 9
PRST

::.!: III 10 --u- SET
PRESET(Load) II IlL 11

UE

--IL 11t~ U/O
14

Clock
- 15
SED

~

14

11 ~
PA <1> A

0 12
N 1 B

MC9312 CX)
13 (0

U 2 C
~ 10

3 E X5 X4 X3 X2 X1 Xo X6 X7

I I 1 UI fr--
... ...

.-

TIT L3 T I
"

9 .,..8 4 13 12 4 13 12
<1>1 , - 3

MC74452 MC74452
Clock

In 1 2 14 15 1 2 14 15

1 I : II I 1 I ~II I -- J

FIGURE 4-2.4-1. Interval Timer

4-46

PAO-PA3 CLOCK INTERVAL
b3 b2 b1 bO FREQ TIMER DELAY

0 0 0 0 0 -

0 0 0 1 100 Hz COUNT X 10 ms
0 0 1 0 1 KHz COUNT X 1 ms
0 0 1 1 10 KHz COUNT X 100J,ts
0 1 0 0 100 KHz COUNT X 10J,ts
0 1 0 1 1 MHz COUNT X ·1J,ts
0 1 1 0 0 -

0 1 1 1 0 -
1 0 0 0 0 -

Count = Binary Value of PBO - PB7

01800 • I nterval Timer 8-8 it Prescale Constants

01800 0005 01US EQU 5 Microsecond Clock

01800 0004 010US EQU 4 10 Microsecond Clock

01800 0003 0100US EQU 3 100 Microsecond Clock

01800 0002 01MS EQU 2 1 Millisecond Clock

01800 0001 010MS EQU 10 Mi II isecond Clock

01801 • I nterval Timer 16-8it Prescale Constants

01801 0500 S1US EQU 1280 Microsecond Clock

01801 0400 S10US EQU 1024 10 Microsecond Clock

01801 0300 S10PUS EQU 768 100 Microsecond Clock

01801 0200 S1MS EQU 512 1 Mill isecond Clock

01801 0100 S10MS EQU 256 10 Millisecond Clock

01900 5000 ORG 15000 10 Millisecond Clock

TABLE 4-2.4-1. Interval Timer Programming Chart

The programmable divider uses the P AO-PA2lines of the PIA to control the MC9312 8-channel data

selector which acts as a single pole 8 position switch. A 4 decade divider chain is provided by the 2-MC74452

dual decade counters. The input clock (cf>1, nominally 1 MHz) and all 4 decade outputs (l00 KHz, 10KHz, 1

KHz, 100 Hz) are provided as inputs to the data selector. Table 4-2.4-1 shows the various data selector output

frequencies and the resulting delay generated. The binary value of COUNT is preset into the MC74454 counter

as the starting point of the count down. The counter counts down at the rate determined by the code in P AO-P A3

until the zero state is reached at which time SEO goes low causing a MPU interrupt. A one written in ba of

Peripheral Register A causes PA3 to go high, disabling the clocks to the MC74455 and the interval timer. The

timer may also be disabled by selecting a grounded input code on the 9312 as noted by "0" clock frequency in

Table 4-2.4-1.

Figure 4-2.4-2 shows examples of software control of the interval timer hardware in Figure 4-2.4-1.

In these examples, it is assumed that the PIA's are already intialized to provide PBO-PB7 and PAO-PA3 as data

output lines (ones in the Data Direction Registers). In the first example, the control registers for the A and B

sides of the PIA are initialized to provide access to Peripheral Register B, to provide a negative pulse on CB2

when the B Data Register is written into, and to cause an interrupt on the IRQ line when CB 1 sees a negative

transition. Control Register A is set up to provide access to Peripheral Register A. The clock rate of 1

millisecond is binary 0010 or decimal 2 from Table 4-2.4-1 and is stored in XP2DRA (peripheral Data Register

A) which outputs 0010 on PAO-PA3 selecting the clock rate. The counter value of decimal 236 is stored into

XP2DRB (peripheral Data Register B) causing binary 1110 1100 to appear on PBO-PB7 and CB2 to pulse low,

4-47

** 236 MS TIME OUT USING 8 BIT PRESCALE

LDAA #%00101101 PRB ACCESS, CB2 PULSE LOW, CB1 +
STA XP2CRB STORE IN CONTROL REGISTER B
LDAA #%00000100 PRA ACCESS
STA XP2CRA STORE IN CONTROL REGISTER A
LDAA #C1MS CLOCK RATE
LDAB #236 COUNTER VALUE
STAA XP2DRA OUTPUT RATE TO PAO-PB3
STAB XP2DRB OUTPUT COUNTER VALUE TO PBO-PB7

C1 MS EQU 2 1 MI LLiSECOND CLOCK RATE

** 236 MS TIME OUT USING 16 BIT PRESCALE
LDAA #$0010101 PRB ACCESS, CB2 PULSE LOW, CB1 t
STA XP2CRB STORE IN CONTROL REGISTER B
LDX #S1 MS+236 LOAD INDEX REGISTER WITH S1 MS+236
STX SP2DRA RATE TO PAO-PA3, VALUE TO PBO-PB7

S1MS EQU 512 1 MILLISECOND CLOCK RATE

FIGURE 4-2.4-2. Timer Software Examples

thereby, presetting the MC74455 counter. CB 1 is monitoring the SED output of the counter waiting for a low

transition indicating that the counter has reached the zero state, resulting in the required 236 msec delay.

The second example uses different software code to arrive at the same result. The initialization of the

PIA's is the same as discussed previously. In this case, the index register is used to form a 16-bit word which is

then loaded into PRA and PRB. Address line AD is connected to RS 1 and Al is connected to RSD of the PIA so

that PRA and PRB are consecutive memory locations. The 16-bit word is formed by loading the sum of S2MS

and decimal 236 into the index register. Note that SIMS always will occupy XH and the offset (which has to be

less than 255) will always occupy XL of the index register. By storing this value to XP2DRA (peripheral

Register A), SIMS will be loaded into PRA and 236 will be loaded into PRB (the next memory location). This

technique of connecting the PIA for adjacent Peripheral Reg. locations and using the Index instructions to store

two bytes at a time produces the same result as the previous example with less code.

4-2.5 MEMORY SYSTEM DESIGN

4-2.5.1 Interfacing the MC6800 with Slow and Dynamic Memories

There are many different system configurations utilizing the MC6800 microprocessor (MPU) with

memories that are not a part of the M6800 family. In many applications, the most cost effective system will use

memories that are slower than the 575 ns access time required by the MC6800 running at maximum speed or

will be of the dynamic type so that the refresh requirement of the memory will have to be handled by the system.

4-48

The purpose of this section is to discuss methods of operating the MC6800 with these two classes of memories

and to describe the operation of the MC6800 in relationship to memory usage in enough detail so that the user

can develop system configurations using slow and/or dynamic memories.

The MC6800 microprocessor uses two non-overlapping clocks to time the execution of the program

by the MPU. Figure 4-2.5. 1-1 details the specification of the clock requirements for the M6800 family. The use

of dynamic registers inside of the MC6800places the following timing restriction on the clock waveforms. The

clocks can be held in one state for a maximum of 5 JLS without loss of the information contained in the dynamic

registers.

In Figures 4-2.5.1-2 and 4-2.5.1-3 are the timing diagrams of a M6800 Read and Write cycle. As

can be seen from these timing diagrams, during cp1 control lines (address, R/W and VMA) are placed valid on

the MPU bus and during cp2, data is transferred between the MPU and memories or peripherals.

The minimum cycle time is 1.0 JLsec and the following control signals are valid 300 nsec after the

leading edge of cp1: R/W (TASR), address lines (TASC), and VMA (Tvsc). During a read cycle, the data must be

valid on the data bus 100 nsec (TDSU) before the trailing edge of cJ>2, allowing 575 nsec for memory or

peripheral access time (TACC) assuming a rise time on the clock waveform of 25 nsec. During a write cycle, the

timing is the same for the control signals; the MPU places data to be written on the data bus within 200 nsec

(TASD) after the leading edge of cJ>2 and will hold the data valid for a minimum of 10 nsec (TH) after the trailing

edge of cp2. This produces a minimum of280 nsec (470 + 10 -200) of valid data (TDATA VALID) available to be

written into the memory or peripheral. Many memory or peripheral devices including the M6800 family

devices can meet this timing requirement and their use poses no problems.

SLOW MEMORY INTERFACE

The following discussion will describe some techniques that can be used to interface the MC6800

with memories or peripherals that have an access time slower than 575 nsec and/or require data valid during a

write operation for longer than 280 nsec. The basic technique of using the MC6800 with slower memories is to

lengthen or stretch cp2, the data transfer portion of the MPU cycle. cJ>2 can be stretched to a maximum of 5.0

JLsec, allowing use of memories with an access time of 5,105 nsec (575 + 5000 -470) and a write data valid

time of 4,810 nsec (280 + 5000 - 470). Operation of the MPU at these speeds is slow enough for the vast

majority of memory or peripheral devices on the market today. Operation with a slower device than can be

accomplished by stretching cJ>2 to 5 JLsec is possible by using the interrupt feature of the MC6820 Peripheral

Interface Adapter and treating the extremely slow memory as one would a slow peripheral.

There are two ways to implement the stretching of cp2 to accommodate slower memories. The first

and the simplest method is to stretch cp2 every cycle regardless of whether the current cycle is an access to slow

memory or not. cp2 should be lengthened by the amount the access time of the slowest peripheral or memory

exceeds 575 nsec (TACC of 6800). Examples are shown in Figures 4-2.5.1-4 and 4-2.5.1-5 for a slow memory

with access time of 1000 nsec with cp2 increased by 425 nsec (1000-575). The cycle time of the MPU has now

become 1.425 JLsec, resulting in slower program execution by about 30% due to the slow memory. The

advantage of this approach is that it is the simplest to implement in hardware (only a change in the clock

waveforms is required). The disadvantage is the reduction of execution time and corresponding reduction in

data throughout.

If the MPU is servicing several slow peripherals, the reduction in MPU speed may not affect system

operation. However, in many systems such as real time control, the MPU speed is critical to system operation

and a 30% reduction would be undesirable. The second method of operation with slow memories that has a

4-49

~------------tCLK---------------1~

~------------tUT-----------'~

cp1

cp2

UNDERSHOOT

CHARACTERISTIC SYMBOL MIN TYP MAX UNITS

Input High Voltage 4> 1, 4>2 VIHe Vee-0.3 Vee + 0.1 Vdc
Input Low Voltage 4> 1, 4>2 VILe Vss-0.1 Vss + 0.3 Vdc

Clock Overshoot/Undershoot Vas Vdc
Input High Voltage Vee-0.5 Vee = 0.5 Vdc
Input Low Voltage Vss-0.5 Vss + 0.5

Input Leakage Current cf> 1, 4>2
(VIN = 0 to 5.25 V, Vee = MAX) lIN 100 JLa

Capacitance
(VIN = 0, TA = 25°C, f = 1.0MHz) CIN 80 120 160 pf

Frequency of Operation f 0.1 1.0 MHz

Clock Timing
Cycle Time tcyc 1.0 1.0 JLS
Clock Pulse Width

(Measured at Vee-0.3 V) 4>1 PWaH 430 4500 ns

4>2 450 4500 ns

Rise and Fall Times 4> 1, 4>2 tr, tf 5 50 ns
(Meas ured between
Vss + 0.3 V and Vee-0.3 V)

Delay Time or Clock Overlap td 0 9050 ns
(Measured at Vav = Vss + 0.5 V)

Overshoot/U ndershoot Duration tas 0 40 ns

Clock High Times tuT 940 ns

FIGURE 4-2.5.1-1. MPU Clock Waveform Specifications

4-50

1>1

1>2

R/W

Address
From MPU

I~----------------------------__ --________ tcyc --~

-+~ __ ~~~~~~--_t~~~2.4V

---.~r------------------------TACC--------------------------~~

Data 2.0 V----::::=-~-~===~~

From Memory --__ a=~~~
or Peripherals 0.8 V----"""'..,.-;;;;;;;;;;;;;:;==;pr=

~ Data Not Valid

tcyc = 1.425 J.1s
T ASA = T ASC = TVSC = 300 ns Min

TACC = 1.0 J.1s Max
TDSU = 100 ns Min

1>1 PWO H = 430 ns Min
1>1 PWO H = 895 ns Min

FIGURE 4-2.5.1-4. Read Cycle With 1.0 J.1S Memory

4·52

Start of Cycle

~-------------------------------tcyc ------------------------------~

cf>1

cf>2
VCC-0.3V

---..... IE::T~:....r.-~~1--- 2.0 V
R/W

0.8 V'-------=T----------t------------------_---+--_ 0.4 V

~~~~~~----~--~----_+----------------------------h~~--2.4V 
Address 2.0 V 

FromMPU ~0~.8~V~~~~--~1_=-----------+_-----------------------------~~~~-0.4V 

VMA 

Data 
From MPU 

DBE = cf>2 

2.0 V -+----~~~I-------------t--------------------------+~"""'~ 2.4 V 

--~J.~-------------------n:_----- 2.4 V 

----+----------------------+----~~ 
--~~~-------------_+.r_---- 0.4 V 

~-----------------TEH-------------~~ 

~ Data Not Valid 

tcyc = 1.425 J,1S cf>1 PWO H = 430 ns Min 

T ASR = T ASC = TVSC = 300 ns Max cf>2 PWOH = TEH = 895 ns Min 

T ASD = 200 ns Max 

FIGURE 4-2.5.1-5. Write Cycle With 1.0 p,s Memory 

smaller reduction in MPU execution time involves the use of a Memory Ready concept. In this configuration, a 

MEMORY READY signal is used between the slow memory and the MPU clock circuitry to indicate that a 

slow memory has been accessed. This signal goes low long enough for data to become valid out of the slow 

memory. While MEMORY READY is low, cf>2, is stretched or lengthened as shown in Figure 4-2.5.1-6. This 

technique only slows execution of the processor when the slow memory is being accessed. The amount by 

which the throughput of the MPU is reduced due to the slow memory is directly proportional to the number of 

slow memory accesses and can be evaluated for each system configuration. Memory devices do not inherently 

provide a MEMORY READY type signal; this signal must be generated by the interface circuitry associated 

with the slow memory system. 

MPU cf>1 

MPU cf>2 

Memory Ready 

FIGURE 4-2.5.1-6. Effect of MEMORY READY on Clock Signals 

4-53 



A block diagram of a generalized MPU to memory interface is shown in Figure 4-2.5.1-7. The 

address and control signals are shown buffered from the MPU bus to increase fanout (in a small system, this 

may not be required). The low order address lines (AO to A9 for a lK memory) and the R/W signal are routed to 

the memory devices directly. The high order address lines, VMA, and cf>2 are decoded to select this memory 

system using the Chip Select input of the memory devices. All high order address lines may be decoded, 

however, in many small systems, this decoding logic may be eliminated by selecting the memory devices with 

only one or two of the high order address bits. By not decoding all address lines, multiple areas of the 65K 

address map are selected at the same time requiring careful assignment of addresses for memory and peripherals 

(see the minimum system discussion in Chapter 1 for further explanation). The data buffers may be required for 

AC/> 

A15 

R/W 

VMA 

C/>2 

DC/> 

07 

• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

Address 
Buffers 

Control 
Signal 
Buffers 

Data 
Buffers 

Low Order 
Address Lines 

(AO - A9 For 
1 K of Memory) 

High Order 
Address Lines 

VMA 

C/>2 

Memory 
Decode 

Logic 

Memory Array 

R/W 

Pulse 
'---~ Generator 1--+--___ Memory Ready 

I nput and Output Data Lines 

• Optional Depending on Size of MP U System 
··Required For Memory Ready Feature 

*. * Can Be Replaced by Multiple Chip Select Inputs on Memory Devices 

FIGURE 4-2.5.1-7. General MPU to MEMORY INTERFACE 

system fanout considerations or may be required to combine the separate data input and data output lines found 

on many memory devices into bidirectional data lines as required by the MPU. If the memory devices chosen 

are not fast enough to meet the MPU timing requirements at maximum operating frequency of 1 MHz, pulse 

generating circuitry can be added to provide the MEMORY READY signal. This signal can be triggered by the 

Chip Select decoding logic to stretch cf>2 of the current cycle long enough to allow proper operation of the slow 

memory devices. 

4-54 



DYNAMIC MEMORY INTERFACE 

All dynamic memories have the basic characteristic that they require periodic refreshing of their data 

storage elements (usually capacitors). Most dynamic memory devices handle this refresh requirement by 

performing 32 or 64 refresh cycles every 2 msec. During these refresh cycles, the memory is not available for a 

Read or Write cycle from the system bus (by MPU or DMA). The "memory busy" period for most dynamic 

memory devices is of short duration, normally 1-5% of the total time. 

The simplest method for handling this refresh requirement is to steal MPU cycles in order to refresh 

the memory. The effect of the stolen processor cycles on system operation is to slow program execution or data 

throughput. Figure 4-2.5.1-8 shows the dynamic memory interface and the clock waveforms associated with a 

cycle steal configuration. During cf>1, address control signals are set valid by the MPU in preparation for the 

MPU Bus cpl 

MPU Buscp2 

Refresh Request 

Refresh Grant 

Memory Clock 

cpl Address and .. - Control Bus 

cp2 MC6800 r----
r+' 

.. 

"I; '1 

f--cpl en 
:::I 

Clock al "'- Dynamic 
Circuitry ~ ... Memory 

(1J 

I--cp2 0 

.~ j 

'IIi 7 

Refresh Request 

Refresh Grant 

Memo ry C lac k 

Occurs Every 62.5 IlS 

War'J 
____ .-1 

W M Don't Care 

FIGURE 4-2.5.1-8. Dynamic Memory Interface 

4-55 

"-

v 



data transfer during 1>2. By stretching or lengthening the 1> 1 portion of the cycle, program execution is delayed, 

allowing memory refresh to take place. Circuitry in the memory system controller multiplexes in the refresh 

addresses and controls the memory R/W and CS lines to provide proper signals for the refresh cycle. For a 

dynamic memory that requires 32 cycles of refresh every 2 msec and with the MPU running at the maximum 

clock rate of 1 f.Lsec, the reduction in MPU speed due to clock stealing would be 32 x 1 f.Lsec (100) = 1.6%. 

2 msec 

In most systems, this reduction in program execution time would not affect system performance. 

In some systems, the design constraints may be such that a reduction in program execution time due 

to memory refresh requirements cannot be tolerated. For these types of systems, a "hidden" refresh 

configuration may be used. The place to hide or perform the memory refresh independent of MPU program 

execution time is during 1>1 as no data is being transferred between the MPU and memory or peripherals. This 

technique places the additional constraint on the dynamic memory system of being able to perform a complete 

refresh cycle during 1>1 (430 ns minimum) and a complete Read or Write cycle during 1>2 (470 ns minimum) if 

the MPU is to operate at full speed. Using this concept only 32 of the 1>1 periods every 2 msec are used for 

refreshing (for the dynamic memory discussed earlier) leaving the other 1>1 time periods open for other uses. 

One use would be for a DMA transfer from some external source. In this mode, DMA and memory refresh 

would share the 1> 1 portion of the cycle while the MPU would have access to the memory during 1>2 portion of 

the cycle. See Section 4-2.2 for a further discussion of DMA techniques. 

4-56 



CLOCK CIRCUITRY FOR SLOW AND DYNAMIC MEMORIES 

The circuitry to modify the clock signals to interface the M6800 with dynamic and slow memories as 

described above can be evolved from the clock circuitry described in Section 4-1.1.1. Figure 4-2.5.1-9 

illustrates a previous clock circuit (Figure 4-1.1.1-3) with a crystal stabilized source which has been extended 

to include interface signals for dynamic (REFRESH REQUEST and REFRESH GRANT) and slow memories 

(MEMORY READY). Note that the only extra parts required are a MC7479 dual latch, MC7404 hex inverter, 

and a pair of 10K ohm pull-up resistors. The state of REFRESH REQUEST is sampled during the leading edge 

of cp1 and, if it is low, the cp1 and cp2 clocks to the MPU are held in the high and low states respectively for at 

least one full clock cycle. A high REFRESH GRANT signal is issued to indicate to the dynamic memory 

system that this cycle is a refresh cycle. Upon receipt of the REFRESH GRANT signal, the memory system 

controller sets REFRESH REQUEST back high which is clocked through on the next leading edge of cp 1, 

thereby restoring the system back to normal operation. The MEMORY READY line is sampled on the leading 

edge of cp2 and, iflow, the MPU cp1 and cp2 clocks are held in the low and high states, respectively. The clocks 

will be held in these states until the MEMORY READY line is brought high by the slow memory controller, 

allowing the slow memory controller to determine the amount by which cp2 is stretched. Figures 4-2.5.1-10a, b 

show the effect of REFRESH REQUEST and MEMORY READY signals on the MPU clocks. Note that the 

REFRESH REQUEST signal is asynchronous with the MPU clocks as it is generated by the refresh oscillator in 

the dynamic memory controller. Figures 4-2.5.11a, b shows the phase relationship between MPU cp2, BUS 

cp2, and DYNAMIC MEMORY CLOCK. Note that BUS cp2 and MPU cp2 are in phase and that DYNAMIC 

MEMORY CLOCK leads MPU cp2 to help offset delays added by the memory system controller in decoding 

the level shifting this signal onto the memory array. 

4-57 



~ 

~ 
00 

Refresh 

Request 

Oscillator 

K1100A 

MHz 50 ±2% Duty Cycle 

+5V 

10K 

1/6 MC7404 

% MC3000 
(74HOO) 

Y:. MC7479 

~. 10 Q 

C Q 

1/6 MC7404' R S 
A A 

+5V 

Refresh 
Grant 4. __ ----------------~ 

Memory 
Ready 

+5V 

10K 

NOTES: 
~ss otherwise noted 

% MC3001 
Dynamic 

.... ----------•• Memory 

% MC3000 

1/6 
MC7404 

% MC3001 
(74H08) 

Y:. MC7479 

o Q 

C 

R S 

+5V 

Clock 

% MC3001 

+5V 

.1Mf Ceramic I 

% MC3000 % MC3001 

+5V 

.1Mf Ceramic I 

DBE 

% Mc3000 

All resistors are carbon composition %W, = 5% 
All capacitors are dipped MICA ± 2% 

10 • BUS C/J2 

2. *MPQ 6842 

FIGURE 4-2.5.1-9. MPU Clock Circuitry with Interface for 
Slow and Dynamic Memory 



MPU cjJ1 

MPU cjJ2 

E 
() 

); 
l!) REFRESH REQUEST 

REFRESH GRANT 

500 ns/cm 

(a) 

MPU Clocks, REFRESH REQUEST, REFRESH GRANT 

E MPU cjJ1 
() 

); 
l!) 

MPU cjJ2 

MEMORY READY 

500 ns/cm 

(b) 

MPU Clocks, MEMORY READY 

FIGURE 4-2.5.1-10: MPU Clock Circuitry 

4-59 



1 V/cm 

1 V/cm 

Mem elk: 4 V Pulse 

100 ns/cm 

(a) 

MPU ¢2: 5 V Pulse 

Dynamic Memory Clock and MPU 02 

Bus ¢2: 4 V Pulse 

100 ns/cm 

(b) 

Bus </>2 and MPU ¢2 

MPU ¢2: 5 V Pulse 

FIGURE 4-2.5.1-11: MPU Clock Circuitry 

4-60 



The circuit in Figure 4-2.5.1-12 shows how the MEMORY READY concept can be added to the 

cross coupled monostable clock generator of Figure 4-1.1.1-5. The MEMORY READY feature is incorporated 

into this circuit by switching an additional timing resistor in or out of the cp2 pulse width generator. By selection 

of the timing resistors for cf> 1 and cf>2, all combinations of cf> 1, cf>2, and stretched cf>2 pulse width can be 

generated. 

+5 V +5 V +5 V +5 V 

11 K 1% 22 K 1% 

~~------------~ __ ---------4~----------------~ Memory 
Ready 

T1 T2 T1 T2 

MC8602 Q 

C C Q 

CD 

NOTE: 

1) Unless otherwise noted 
All resistors are carbon composition Yo.W, ±5% 
All capacitors are dipped mica ±2% 

2) *MPQ6842 

*MPQ6842 

1/3 MC7404 +5 V 

33 pf 

+5 V 

470 

+5 V +5 V 

470 

FIGURE 4-2.5.1-12. Monostable Clock Generator with Memory Ready 

4-61 

Bus cp2 

I 
.1 Mf Ceramic 

I.1 Mf Ceramic 



4-2.5.2 2K X 8 RAM Memory Design Example 

This section will describe the design of a memory system for the MC6800 microprocessor using 

memory devices that are not a part of the MPU family but that are cost-effective choices in many MPU based 

system designs. The intent is to demonstrate the ease with which memory systems can be designed around the 

MC6800 because of its straightforward architecture. The MPU signals to be considered in the memory system 

design are the clock signals (cf>1 and cf>2), the 16 bit Address Bus, the 8-bit bidirectional Data Bus and the control 

signals: Valid Memory Address (VMA), Read/Write (R/W), and clock control signals such as MEMORY 

READY, REFRESH REQUEST or REFRESH GRANT if they are required. 

The MCM6602, lK X 1 static RAM, can be a cost-effective choice for MPU memory systems in the 

size range of lK bytes up to about 8K bytes. Below lK bytes, memory systems composed of the MCM6810 

will probably be the cost effective choice. Memory systems larger than 8K bytes will probably use a 4K RAM 

such as the MCM6605 in order to be cost effective. In this section, the detailed design of a 2K X 8 memory 

system is described for the MC6800 MPU using sixteen MCM6602 L-l N-channel static MOS RAMs. This 

memory system is available from Motorola as a component module of the EXORciser. 

The 2K Static Memory System (illustrated in Figure 4-2.5.2-1) receives the 16 address bits AO 

through A15, the cf>2 timing signal, the 8 bit bidirectional data bus, VMA (Valid Memory Address) signal, and 

a R/W (Read/Write) command during each MPU memory operation. The system address lines connect to the 

address bus interface and the cf>2, VMA, and R/W inputs from the MPU connect to the control bus interface. 

Data lines connect to the Data Bus Interface. 

AO-A15 

cf>2 

VMA 

R/W 

-;. 
1 6 

-------.. 
----.. 

Address 
Bus 

Interface 

Control 
Bus 

Interface 

CE1 

Ram1 
Memory ~ 
Array 

• 
AO-A9 

8 Data D 
L ~ / -

I 
Bus 

- '8 
10 

Interface 

A10-A 15 
CE2 
r--- • 

RAM1 RAM2 
Select ~~ Memory 4--
Circuit Array 

~ ;--

I 
I 6 

~ 

/6 RAM2 
.L._ Select 
A10-A15 Circuit 

t .... 
cf>2 

VMA 

R/W & R/W /2 
I 

-R1 
R/W -

Control ---.. Logic 
R2 R/W 

DOE 

FIGURE 4-2.5.2-1. 2k X 8 Memory System Block Diagram 

4-62 



The address bus interface, after buffering the inputs, applies the ten address bits AO through A9 to 

the RAM 1 and RAM 2 memory blocks. (Refer to Figure 4-2.5.2-2, the Schematic Diagram) The address bus 

interface, at the same time, applies the six address bits A10 through A15 with their complements to the RAM 1 

and RAM 2 select circuits. The control bus interface applies the VMA signal to the RAM 1 and RAM 2 select 

circuits and cp2 with the R/W signal and its complement to the control logic. The two RAM select circuits 

decode the address bits and determine whether the MPU is addressing their respective RAM memory block. 

Since the two RAM select circuits and the RAM memory blocks are identical, only the RAM 1 select circuit and 

the RAM 1 memory block will be discussed in detail. 

The RAM 1 select circuit consists of two base memory address switches and a decoding circuit. The 

address switches allow the 2K X 8 of memory to be allocated as two independent 1K X 8 blocks any where in 

the system's 65K memory field. The base address switches select the base memory address for the RAM 1 

memory block and the decoding circuit determines when its memory is being addressed. The RAM 1 select 

circuit, on determining that its memory is being addressed, couples a CE1 (Chip Enable 1) signal to the RAM 1 

memory block and to the control logic. The RAM 1 memory block, consisting of eight 1K X 1 bit MOS static 

RAM chips, is then enabled to perform a memory read or memory write operation. 

During a memory read operation, the control bus interface receives a high level R/W signal and 

applies this signal with its complement to the control logic. The control logic now transfers a high level R1 R/W 

(Read Memory 1 Read/Write) pulse to the RAM 1 memory block and couples a DOE (Data Output Enable) 

signal to the data bus interface. The high level R1 R/W pulse instructs the RAM 1 memory block to perform a 

memory read operation (providing the address select signal, CE1, is low) and the DOE signal instructs the data 

bus interface to transfer the memory's output to the MPU via the system bus. 

During a memory write operation, the control bus interface receives a low level R/W signal and the 

data bus interface receives the eight data bits DO through D7. The control bus interface applies the low level 

R/W signal and its complement to the control logic and the data bus interface applies the data bits to the RAM 

memory blocks. The control logic now reads the position of the RAM 1 RAM/ROM switch and determines 

whether the RAM 1 memory block is protected or may be written into. When this RAM/ROM switch is in the 

ROM position, the switch inhibits the control logic from initiating a memory write operation. When the switch 

is in the RAM position, however, it enables the control logic to generate a 470 nsec low level R1 R/W pulse. 

This low level pulse instructs the RAM 1 memory block to perform a memory write operation and to store the 

data it receives from the data bus interface. (If the address select signal (CE1) is low). 

The following paragraphs discuss the operation of the various circuits contained on the 2K Static 

RAM Module. Refer to the module's block diagram in Figure 4-2.5.2-1 and schematic diagram in Figure 

4-2.5.2-2 as required. 

The address bus interface, consisting of U1 through U4, receives and buffers the 16 MPU address 

bits Al through A15. Address bits AO through A9 are applied to the RAM 1 and RAM 2 memory blocks. The 

address bus interface applies the six address bits A10 through A15 and their complements to the RAM 1 and 

RAM 2 select circuits. The control bus interface, U5, receives and buffers the cp2, the VMA, and the R/W 

signals. The control bus interface couples the cp2 and VMA signals to the RAM 1 and RAM 2 select circuits and 

applies the R/W signal and its complement to the control logic circuit. U1 through U5 are MC8T26* bus 

receivers which provide very light loading on the MPU bus so that the fanout is not reduced appreciably. The 

loading of these devices is - 200 /-La for a logic 0 and + 20 /-La for a logic 1. 

The RAM 1 and RAM 2 select circuits decode the address bits and determine whether the MPU is 

addressing their respective RAM memory blocks. Since the two RAM select circuits are identical, only the 

*To be introduced third quarter, 1975. 

4-63 



RAM 1 select circuit is discussedin detail with the RAM 2 select circuit components identified parenthetically 

after the RAM 1 select circuit components. 

The RAM 1 select circuit consists of the two switches S 1 and S2 (S3 and S4) along with gate U8 

(U9). Switches Sl and S2 (S3 and S4) are set during use and, through their switching of bits A10 through AI5, 

select the base memory address for their respective memory block. The position of each switch determines 

whether the switch is coupling the address bit or its complement to gate U8 (U9). Gate U8 (U9), on receiving a 

VMA signal, decodes the switches outputs and determines whether the MPU is addressing its memory block. If 

its memory block is being addressed, U8 (U9) couples a CE1 (CE2) signal to the RAM 1 memory block (RAM 

2 memory block) and to gate U10A of the control logic circuit. 
-- ---

The control logic circuit decodes the CE1 (CE2) signal, the R/W, the cp2 clock signal, and the 

position of the RAM/ROM switches to determine whether to read data from, to write data into, or to inhibit the 

write function of the selected RAM memory block. Each time one of the RAM select circuits determines that 

the MPU is addressing its RAM memory block, this circuit causes gate U10A to couple a high level to gates 

U6A and U6B. During a memory read operation, the control bus interface applies a high level R/W pulse to gate 

U6A and R/W to gate U6B. Gate U6A is enabled by U10A when either memory is selected and with gate U6D 

applies the DOE Data Out Enable signal to the data bus interface. The low level R/W pulse to U6B inhibits this 

gate. The output of gate U6B remains low and forces gates UIOB and U10C to continue holding the R1 R/W 

and R2 R/W signals high. The high level R1 R/W and R2 R/W signals instruct the enabled RAM memory block 

to perform a memory read operation. 

During a memory write operation, the control bus interface applies a low level R/W pulse to gate 

U6A and R/W to gate U6B. Gate U6A is now inhibited from generating a DOE signal. The high level R/W 

pulse to U6B enables this gate and gates U10B and 10C. Gates U10B and U10C decode their RAM/ROM 

switches and determine whether the selected RAM memory block is to perform a memory write operation. If 

the RAM/ROM switch to the selected RAM memory block (switch S5 for the RAM I memory block and switch 

S6 for the RAM 2 memory block) is in the ROM position, the low level from this switch inhibits its respective 

gate from going low. If, on the other hand, the RAM/ROM switch is in the RAM position, the cp2 pulse is 

coupled to U 1 OB and U 1 OC to generate a low going write pulse. This low level pulse instructs the enabled RAM 

memory block to perform a write operation. 

The RAM 1 and RAM 2 memory blocks consist of eight 1024 X 1 bit memory chips. The ten address 

bits AO through A9 and the output of its RAM select circuit determine when the MPU is addressing this memory 

block. The control logic determines whether data is to be written into or read from the selected RAM memory 

block. 

The data bus interface, consisting of U27 and U28, provides a two-way data transfer of data bits DO 

through D7 between the MPU and the 2K Static RAM Memory. These integrated circuits provide TTL 

compatible inputs and three-state outputs. When the MPU has selected one of the module's RAM memory 

blocks during a memory read operation, the data bus interface receives a high level DOE signal and is enabled 

to transfer data from the 2K Static RAM. At all other times, these outputs are in the high impedance state. 

The timing diagram of Figure 4-2.5.2-3 shows a Read operation of the memory system design in 

Figure 4-2.5.2-2 operating with the MPU's control lines and busses driving the memory board directly. The 

waveforms assume a delay of 20 nsec through the driver portion and 18 nsec through the receiver portion of the 

MC8T26. The control lines R/W, Address, and VMA are specified to be valid within 300 nsec after the leading 

edge of cp1 (TASR, TASC, and TVSC). The delay from the address bus of the MPU to the address inputs of the 

MCM6602 is composed of a receiver and a driver portion of a MC8T26 in series. This time totals 20 + 18 = 38 

4-64 



15 
~' i ----- -P~~l; 

R 12: ~ " : 14 

: V 'L: 
6 36~9~:~~~)o--~~~~!~1~1-----, 

~ _":. __ ~ J 

.. I 
I 

4 36~12++~~o--I"~>-II-i-: _'4.., 
.... ~ I ______ J 

15 r------.., 

+5

1
VOC 

T 

1 

0 ~~T ~:, 0: O':N 

14 16 2 6 4 13 

5 7 5 8 3 

1 

I 
D~~T 10 ~ ~:N 11,0~2UT 10 ~ ~:N I 

U12 01 U13 02 

14 16 :2 6 4 13 14 16 2 6 4 13 I O'~UT ~:5 ~ ~:N 1 
14 16 2' 6 4 13 

T 

[0 ~~T :,4 :3 ~:N I 
14 16 2 6 4 13 I 

D'~UT ~~6 :5 ~:N 
14 16 2 6 4 13 

12 10 9 11 

o OUT 0 IN 

U1706 

14 16 :2 6 4 13 

1 7 5 Io1l3 1 7 5 .ll3 7 5 5 .1...13 

4 ~ V3~ 2 

3 39~~~VX.-~~~~I~IL--------------------------------+--------+-----~H4~~~--++HH~++~--~HH~~~--4+++~4++_--_H~~4++_--_HH+~~H_--_HH4++~H_--_HHH~ 

2 UU~~7~~~~~~L~5---------------------------------~------_r---__H~~~~~~~---~~~---~~~r____T~~~~~~HT---~~~---~~ 
V ~ L~'-'--------------------------~------_;----++H++H~--_HH+~~--_+rH+H~~--rH+H~H_--~~+H~--_+H+rH~r_~+MH+~+_--~+r~ 

1 V~9~+~~Q--~~~~~14~------------------------------------------t_----------t_----_t~~rr++~----_t+i~~rH~-----hrrt+++~H-----1-rr++++~H-----~HH~~r.+_----~~Yrrr+t+-----++++~Yrr.t_--~~rr+i~~ 
V ~ 

.- ,!.5 _ ~4---'" 9 roo--- 7 3 

7 ~ " 5 r;=======~;:~ 0+..:..------------4 
5 33 ~...;-HV)~o-iT .. ~~>-I....;...,;.6 -.. ': o..u 1..--------""-1: B 

........ ~~BOW'4 1 V6»< 
M 4 ..t" 2 r-;_-_-_-_-_-_-_-'-:~~~ -----,+ 

T ~ 3 r-------=2+'----O 0 15 pt 
N 12 1. " .. T"L 

9 r:J." 11 34~...;-~V~~T .. ~~~-~1,0-~r+~r+· 

15 r-----' I PIO Vi I 

3571~ "'" 15 
: V 1~ :. 

p 4: r-t:l r--.... :2 
: V T~:3 
I I L _____ oJ 

~~~9~-----O O~7~--~ 10 00 
~Q 6
~ -0 540+ -"-------'

o LSB

o 0

g 0 -----
ADDITIONAL MEMORY

READY CI RCUITAY

"V10D
r--t_-----~r_------------------------------------t_----~8~~

15 ... - -- - --..,
9 ~U5,.... 11

J ~_+_L .. ;»-~~~X>-+..;...:..:,

"'-;:t '"

12 U108 11

.... --r..,'I-~-_-_--'----....Jr r;
I ~ CSl I I CS2 I

I '-;+ __ S~_.J_' ~-1I:.-M --~--I1l-J

'5 VDC T '5 VOC I Ii L-~::~:~U6)A-3~--------IJrrrl_'~:: V6)D~1~1 _________ ~I----------~

l~~~~~~~--~~~~~~~--~~--~~
~J, +f~ov +~2 +~3 ~4 +~5 ~6 ~7 f~ f;9 t~10 t~11 t~12
~~---.----~--~~--~~--~----~--~~--~-~JL~-~---L----.JL----~--..

4-65

T T
15 1 7 5 8 3

14 16 2 6 4 13

1

'4 15 2 6 4 13

U2405

DOUT DIN

12 10 9 11

U2506

DOUT DIN
12 10 9 11

1

*
-

-
r u2"7 - - - - - -,

141 :;p". h3 _ -;

I 11
121 ,..c:- 1

I V 1
I 1

ru; - - 1~ - - -l

1 ~ 1,3
1 ~ I I I
1 ,.,c I I 1

121 V / I ,,: ~ :,0
~--~:~--~~----~:------~~,----+-~~~J-~T:~~30 D5

1 I 91.c 1
,,: ~ 1

'0
1 v I

L-------------------~~--_+_K)C1~~~------~--~~------~~32

J ~ ~ : :
I V I I
1 I 1

~--------------------------------~:----~~--_+------~5~:--_+_+~o(r;~:.~~H
: 7: L ~ I:
I I" I

L-__ ~21~--~_K4~XJ~~3--------~I----+_+_----~I~-;;

~----------------------------________________________ ~·r:-CN~~-+--~: : :
1 1 2: ~:3 -L-__ ~~--~~----~------~..:..---_+_+~}_._:~~29 D1

: :.1 r "T:
1 I ' .. 1

L-__ ~5~1----~~~~J_~1~6 _________ ~ __ -_-~-~--------J----~31 Do
7:~ '" I

L..::: _____ J --

FIGURE 4-2.5.2-2 2K x 8 Memory System Schematic Diagram

cf>1

cf>2

R/W

MPU
Address Bus

VMA

Memory
Addresses

ffi or CE2

Memory
Output

~-------------------~yc--------------------~

0.3 V

~ ______ ~~--------------------------------~~----2.4V

~~ __ ~J-==------------------------------~~----2.4V

~~~~~~~~~--~------------------------------~~~2.4V 

-t------~~~--------------------------------~~~~2.0V 

60 ns 

~------TACC--------~ 

MPU Data ------tr----------+------------------~ Bus 

~ Data Not Valid 

MPU/2k X 8 Memory Read Cycle 

FIGURE 4-2.5.2-3 

nsec. At this point in time, the addresses on the memory devices are valid and the access time can begin. The 

access time of the MCM6602L-l is 500 nsec maximum, that is, data out of the RAMs during a read cycle is 

valid 500 nsec after the addresses are valid. The data encounters an MC8T26 driver delay of 20 nsec before 

reaching the MPU data bus. The data set up requirement of the MPU is 100 nsec before the falling edge of cJ>2. 
By using the above data, the margin in this system when operating at the maximum MPU clock period of 1000 

nsec can be calculated as follows (refer to Figure 4-2.5.2-3): 

tr 

TASR 

MC8T26 

TACC 

MC8T26 

TDSU 

TCYCLE 

4-67 

25 nsec 

300 nsec 

38 nsec 

500 nsec 

20 nsee 

100 nsee 

983 nsec 



Since this is 17 nsec less than the minimum MPU clock period of 1000 nsec, this MPU/memory 

system configuration has a margin of 17 nsec during a read cycle. The CE signals are. enabled by decoding the 

upper address lines, AI0-AI5, in gates U8 and U9. Since the addresses are valid during cf>1, the CE signals 

become the inversion of VMA when the correct addresses are decoded. The CE signals will be held low past the 

falling edge of cf>2 due to the holding effect of bus capacitance and the delay into the next cP1 for the MPU to set 

new addresses. 

The write cycle of this system may be analyzed in the same manner using the timing diagram shown 

in Figure 4-2.5.2-4. The control signals from the MPU (Addresses, VMA, and R/W) become valid within 300 

nsec after the leading. edge of cf> 1. The CE signals are delayed from the address and VMA valid points by a 

receiver and driver section of the MC8T26 and the delay of the MC7430 Nand gate. This delay is 18 + 20 + 22 

= 60 nsec. Assuming that the RAM/ROM switch is in the RAM position, the R/W pulse on the memory devices 

is cf>2 delayed by a receiver and driver of the MC8T26 plus the delay of U 10 (MC7400). This time is (18 + 20 + 
22) also 60 nsec producing a write pulse skewed from cf>2 as shown. The data hold requirement of 100 nsec for 

the MC6602 is met by extending Data Bus Enable (DBE) beyond the trailing edge of cf>2 to hold the data on the 

tjJ1 

tjJ2 

R!W 
0.8 V 

Address 2.0 V 
From MPU 0.8 V 

2.0 V 
VMA 

CIT or CE2 
(750 ns) 

R!W 

MPU Data Output 

14------------tcyc-----------..I 

Vee - 0.3 V 

2.0 V 

-t----=~~--------~~------------------~-----O.4V 

0.8 V 

60 ns "" 150 ns 

60 ns 

TASD 100 ns Min 

Memory Data Input 
2.0 v-J~--------"t--k;::----

-----------~---~~~ N~-----
0.8 V ----'i""'~-------___4~ 
~------ Teh ---........... 

DBE 2.4 V 

_ Data Not Valid 

FIGURE 4-2.5.2-4. MPU/2 k X 8 Memory Write Cycle 

4-68 



bus valid. Memories of this type vary in their data setup requirement (tDW) from 150 ns to 330 ns depending on 

manufacturer. The MCM6602L-l as well as the 2102 types have the 330 ns requirement. In order to meet this 

requirement the ~2 pulse width required can be calculated as follows (see Figure 4-2.5.2-4): 

~2 PW =TASD + 18 ns + t,ow - 60 ns. 

~2 PW = 200 + 18 + 330 - 60 = 488 ns. 

In many system designs, it may be cost effective to design this memory system with the MCM6602L 

which has an access time of 1 /LS. This slower memory can be handled using one of the two methods discussed 

in Section 4-2.5.1. The first method is to stretch ~2 every processor cycle to accommodate the slow memory as 

detailed in Figures 4-2.5. 1-4 and4-2.5.1-5. The other method is to use the Memory Ready concept. This can be 

accomplished as simply as the following: Assume that the clock circuitry used for the MPU is as shown in 

Figure 4-2.5.1-9. A low level on the MEMORY READY line will stretch ~2 for that cycle. The time constants 

of the UI-B monostable can be adjusted to provide the correct ~2 width during normal operation (470 nsec) and 

to provide the correct width (895 nsec for TACC = 1 /Lsec) when the MEMORY READY line is low indicating a 

slow memory access. The additional circuitry required in the 2K memory system of Figure 4-2.5.2-2 to 

implement MEMORY READY consists of one inverter. The output of UI0A goes high 360 nsec after the 

leading edge of ~ 1 if this memory is addressed. The inverse of this signal, called MEMORY READY, controls 

the clock circuit of Figure 4-2.5.1-9. These signals are shown in Figure 4-2.5.2-3. 

Normal Slow Memory 
Cycle Access r 1 }lS ·1 1--

1.425 }lS ·1 
MPU 1>1 J I 
MPU 1>2 

l 
~ J.--360 ns 

U10A Output 
Fig. 4-2.5.2-2 

Memory Ready 

FIGURE 4-2.5.2-5. 2 k X 8 Memory System with Memory Ready 

4-2.5.3 8K X 8 Non-Volatile RAM Deisgn Example 

Many system designs can be optimized by using the high bit density and low cost/bit offered by 

dynamic memories (i.e., those that store information on a capacitor which must periodically be recharged or 

refreshed). At this time, the 4K X 1 dynamic RAM is the most cost effective choice for large memory systems 

(~4K bytes). Because these memories are dynamic and require refreshing, the system designer must handle the 

4-69 



dynamic memory slightly differently than static memories. Refer to Section 4-2.5.1 for a discussion of 

techniques and clock circuitry used for interfacing the MPU with dynamic memories. 

This section describes the design of a 8192 byte Non-Volatile memory system for an MPU based 

system using dynamic 4K RAMs and CMOS control logic. This system was designed to be an add-on memory 

for the EXORciser, * a System Development Tool in the M6800 Microprocessor family. 

MEMORY DEVICE DESCRIPTION 

The memory device used in this system is the MCM6605L-1, a 4096 word X 1 bit, dynamic Random 

Access Memory (RAM). The dynamic characteristic of this memory device requires that refreshing of the 

memory cells be performed at periodic intervals in order to retain the stored data. This device was chosen for the 

following features: high bit density per chip and correspondingly low price per bit, standby mode with low 

power dissipation, TTL compatability of inputs and outputs, and speed characteristics compatible with 

microprocessors and the EXORciser. 

Figure 4-2.5.3-1 is a functional block diagram of the MCM6605L-1. The single external Chip 

Chip {]:<1>1 
Enable 6 <1>2 

<1>3 

rr==;:=====::;:::::;J 
Bit 

4095 

Bit 
3103 

Bit 
4064 

Bit 
3072 

A1 21o--------r~------------~ 

Column Decode 

A3 2o---------L,,--____________ -..-1 

Preset 3 0------41 

Data In 4 0------+1 

Bit 
3071 

Bit 
2079 

Bit 
3040 

Bit 
2048 

Data Control Cells 

A10A9A8 A7A6 A5 

20 19 18 1 7 16 1 5 

'" QI 

C 

...J 
QlN 
"'M 
c~ 
QI 

en ... 
CO 

'" QI 

C 

...J 
QlN 
"'C') 
c~ 
al en ... 

CO 

Row 
Decode 

And 
Bit 

Sense 
Line 

Select 

III 
QI 

.~ 

...J 
QlN 
IIIC') 
c~ 
QI 

en ... 
CO 

III 
QI 

.~ 

...J 
alN 
IIIC') 
c~ 
al 
en ... 
CO 

Bit 
2047 

Bit 
1055 

Bit 
2016 

Bit 
1024 

Column Decode 

Bit 
1023 

Bit 
31 

Bit 
992 

Bit 
o 

Chip 
__ 8O-----------~r_-----_+--------~ 
Select 

5 
Read/Write A 11 

FIGURE 4-2.5.3-1. MCM6605 4 k RAM Block Diagram 

*Trademark of Motorola, Inc. 

4-70 

AOA2A4 
1310 9 

V DD = Pin 22 

VSS = Pin 12 
V BB =Pin1 

VCC= Pin 11 



Enable clock starts an internal three phase clock generator which controls data handling and routing on the 

memory chip. The lower 5 address lines (Ao to A4) control the decoding of the 32 columns and the upper 7 

address lines control the decoding of the 128 rows within the memory chip. The Chip Select (CS) input is used 

for memory expansion and controls the I/O buffers: when CS is low the data input and output are connected to 

the memory data cells and when CS is high, the data input is disconnected and the data output is in the high 

impedance state. Refreshing is required every 2 ms and is accomplished by performing a write cycle with CS 

high on all 32 columns selected by Ao through A4. The read/write line controls the generation of the internal cP3 
signal which transfers data from the bit sense lines into storage. 

All inputs and outputs with the exception of the high level Chip Enable signal are TTL compatible 

and the outputs feature 3-state operation to facilitate wired-or operation. The Chip Enable signal has GND and 

+ 12V as logic levels. Power requirements are typically 330 mw per device in the active mode from + 12V, 

+ 5V, and - 5 volt power supplies and 2.6 mw in standby with refresh from the + 12 V and - 5 volt power 

supplies (the + 5V supply powers the output buffers and is not required during standby operation). 

Memory timing is outlined in Figure 4-2.5.3-2 and operates as follows for a read cycle (2a). The 

Chip Enable line is brought high after the correct addresses are set up, which starts the internal three phase clock 

and latches the addresses into an internal register. Chip Select must be brought low in order to connect the data 

input and output to the data cells and the Read/Write line must be brought high to inhibit the cP3 cycle which 

writes data into the storage cells. A write cycle (2b) occurs in exactly the same manner as a read cycle except 

that the R/W line is placed in the Write mode, which gates the input data onto the bit sense lines, and enables a 

cP3 cycle to write into the data cells. 

A write and a refresh cycle are the same with the exception of Chip Select, which is held high for a 

refresh cycle and low for a write cycle. 

The Read-Modify-Write cycle is a read followed by a write within the same CE cycle. CS is brought 

low shortly after the leading edge of CE and R/W is held high long enough for the Data Out to become valid. 

The R/W line can then be strobed low for a minimum write time to enter the Data In (which has been placed on 

the input) into the data cells. 
-----

By holding the Chip Select high during refresh, the input data is inhibited from modifying the bit 

sense lines and the original data is returned to the data cells during cp3 of the cycle. This refreshing action 

recharges the storage cells and must be done at least every two milliseconds if the memory is to retain the 

information. The fact that the data is stored on a capacitor in a dynamic memory (rather than an "ON" 

transistor in a static memory) requires that the capacitor be recharged periodically. This capacitive storage 

produces a low power standby mode of operation where only refreshing takes place, which is the foundation of 

this low current drain non-volatile memory design. The memory device typically dissipates 330 mw in the 

active mode but only 2.6 mw in the standby mode (refreshing only). 

MEMORY SYSTEM DESIGN REQUIREMENTS 

This memory system was designed with the following major design goals: 

First, non-volatility for a period of time in the range of 7 to 10 days from a reasonable sized battery. 

It is also desirable for the system to operate from one battery voltage during the standby mode to simplify the 

battery requirements. Second, the memory size was desired to be 8K bytes on a PC card easily expandable 

upward and addressable in 4K byte blocks. Third, the memory system must be able to interface with the 

MC6800 microprocessor which has a basic cycle time of llLsec. Fourth, the memory system controller must 

handle all refresh requirements in a manner as invisible as possible to microprocessor operation. 

4-71 



Address Stable Address 
1.2 V---

VIL 

VCEH -----+-~------'""\ 
VDD-2.0V----

Chip Enable 

Timing Shown for MCM6605L-1. ~ ~ ~ - Don't Care 

FIGURE 4-2.5.3-2a. Read Cycle Timing (Minimum Cycle) 

t-oI! .. >------tcyc(w) = 470 ns min ____ ~ 

r---+-------
I Stable Address 

Timing Shown for MCM6605L-1. 
~ - Don't Care 

FIGURE 4-2.5.3-2b. Write and Refresh Cycle Timing (Minimum Cycle) 

4-72 



Address I Stable Address 
1.2 V

VIL 
V 0 ns min~ 1--60 ns min 

CEH ~------------------------" 
VDD-2.0 V - - - ..l_ -

I 1

/..,...-----43o ns min----~ 
Chip Enable 

2.0 V---
VCEL I 

o ns min --+O>--~I4_'*_O ns min 
V I H .,................-.-"r""'!'"I'-T--.-~-IT--\. 

VIL ~~~I~~~~~------------------~~--~ .. ~~~~ Chip Select 

Read/Write 

V I H -r'I"""'r"I~~~~~rr""~ 

V I L ~.........., ............. I .......... -"-lo.~.....lI..,;"lo-"""';"""" 
I 1-=280 ns max --l:--______________ +_ _______ _ 

Data In 

2.0V--=---3- - =+-
Data Out - F I~ating -----Valid---I4--- Floating -

0.8V-i---- -
VOL - --Ft:;:300 ns max----l-------------- - - - - - --

Timing shown for MCM6605L-1. ES\ \ \\i -Don't Care 

FIGURE 4-2.5.3-2c. Read-Modify-Write Timing (Minimum Cycle) 

MEMORY SYSTEM DESCRIPTION 

A block diagram of the memory system is shown in Figure 4-2.5.3-3. This system can be split into 

three main sections as follows. The first section is comprised of the address buffers, Read/Write and Chip 

Select decoding logic. The second section consists of the data bus buffering and the memory array. The 

memory array consists of sixteen memory devices (4K words X 1 bit) organized into two rows of 4096 bytes 

each. The third section consists of the refresh and control logic for the memory system. This logic provides the 

timing of the refresh handshaking, request for refresh, generation of the refresh addresses, synchronization of 

the POWERF AIL signal, multiplexing of the external MEMORY CLOCK with the internal clock (used during 

standby), and generation of the - 5 volt supply on the board by a charge pump method. 

Figure 4-2.5.3-4 is a worst case timing diagram of the read and write cycles of the EXORciser and 

the 4K memory system. The timing is composed of two phases. During phase 1 (cpl) addresses are setup and 

during phase 2 (cp2) data is transferred. Figure 4~2.5.3-5 is a timing diagram of the memory system in standby 

showing refresh cycles only. This timing analysis will be referred to in the following discussions of the memory 

control circuitry. 

ADDRESS BUFFERS AND DECODING 

Figure 4-2.5.3-6 is a schematic of the address buffers, decoding logic, and refresh address 

mUltiplexer. Addres.S and data lines from the EXORciser are buffered from the capacitance of the memory array 

in order to provide a small load to the bus. Since the addresses are valid on the EX ORciser bus 300 nsec into cp 1, 

200 nsec is available to setup the address on the memories. The worst case input capacitance on the address 

4-73 



!II 
::l 

!Xl ... 
III 
'(3 
II: 
0 
X 
w 

r--------------------------------. 

BAO 

BA15 

R/W 

VMA 

Memory 
Clock 

Address Buffers and Decoding Logic Refresh and Power Fail Logic 

Address 
Buffers 

Buffers 

AO A4 

Refresh Addresses 

Memory Clock 

AO 

A4 

,6.5 

A11 

CSA 

CSB 

R/WA 

R/WB 

Refresh Addresses 

AO A4 

CMOS 
Refresh/Power Fail 

Logic 

To 
Memory 
Array CEA CEB 

Refresh 
Request 

Refresh 
Grant 

r----------------- __ L ___________ ~ 
I I 
I DO ... DoutO : 

I ... Dout7 I 
Data 8K x 8 Memory Array 

I Transceivers DinO 16 MCM6605L-1 I 
I 2 Rows x 8 Columns I 
: 07 Din7 I 
L ______________ ~~~~~~~~~ __________ ~ 

FIGURE 4-2.5.3-3. Non-Volatile Memory System Block Diagram 

lines of the MCM6605 is 5 pf/input. A system of 16 memory devices (SK bytes) presents a total capacitive load 

on the address lines of only 100 pf (20 pf stray capacitance). Since 200 nsec is available to set up the addresses 

on the memory devices, no high current buffers are required to drive the memories. For address lines A5 

through All the output of the MCST26 address receiver drives the address lines directly. AO through A4 must 

be multiplexed with the refresh addresses so that all 32 columns will be refreshed every 2 msec. Because of the 

requirement of low current drain in the standby mode, an MMSOC97* CMOS buffer with a 3-state output is 

used to meet the multiplexing requirement. The buffers have sufficient current drive capability to drive the 

address line's capacitance within 100 nsec. An open collector TTL gate (MC7406) is used to translate to + 12 

volt CMOS levels. AO through A4 are driven with GND and 12 volt logic levels so that + 5 volts is not required 

in the standby mode. 

The high order address lines (A12-A15) are used to decode one 4K block of memory out of the 16 

total possible blocks in the 65K address map. The addresses and their complements are routed through 

hexidecimal switches to MC7430 Nand gates in order to create a CS signal for each 4K bytes of memory. By 

rotating the hexidecimal switches (S3 and S4), all combinations of true and complement addresses can be 

routed to the Nand gates, thereby selecting one of the sixteen 4K blocks. VMA and REFA are also inputs to 

these Nand gates VMA is a Valid Memory Address signal on the bus indicating that the address lines are valid 

and REFA is a control signal indicating that a refresh cycle is taking place. During a refresh cycle REFA goes 
-- --

low forcing CSA and CSB high (a refresh cycle for the memory devices is a write cycle with the Chip Select 

*To be introduced as MC14503, third quarter 1975 

4-74 



Time (ns) o 200 400 600 800 1000 

4>1 'I - ----~------+-------~/ 
Memory Clock \. t 

(4)2) 

I 

1~.r------300ns+-----__ ~ 
--- 80ns --

EXORciser Address /"X k'X)(X~1 
andVMABus )() ~lX~~ 

100ns__ 1-
Memory Address Bus h ~ XXXXXXXX xxx~r 

120 ns...... t:::. 
Memory Chip Select <S( ~~~ 

~~-------350ns--------__ ~ 

, 

1200 

EXORciser R/W » ~ ~1\,-+-_~-+-__ ++ ______ + ______ ./JP~~X:M:::x::x"x~~~X~x~X:.c::X~~,~xX~IX.~X:wXCl)(~~~~ 
120 ns__ . ~'--

Memory R/W 
(Read Cycle) 

T ASO = 200 ns __ 

1~'-----280n5--~~~ 

-
EXORciser Data Bus .()( K)0(V)()()( XXXX'X)()(XXXx" X;<...~, 

(Write Cycle) .;<J~~K.XJ<....)\~p(! -x:XXX~ 
50n5_ ~ 

MemorylnputData x xx;<...XXXXX XXXXXXXX rx 
(Write Cycle) »« ~ fXXXXXXXiX~~x. 

I 

Notes: 

~:m 
~Invalid/ 

All timing measured from 50% points. 

FIGURE 4-2.5.3-4. EXORciser/4K Memory System Timing Diagram 

o 32/Js 64 /JS 

Refresh Clock 

I--- tOata Stable = 
210 ns mIn 

"RefreSh Address Counter Incremented 

______ n~ ____________ ~n~-------
CSA_ CSe "1" 

R/WA. R/We "0" ------------------------------------

FIGURE 4-2.5.3-5. Memory Timing in Standby Mode 

4-75 



L ______ J 

L_ 

r 

I 
L 

I 
11.2 

Y 
Refresh 

Addresses 

FIGURE 4-2.5.3-6: Address Buffers and Decoding Logic 

I I 
A3 A4 ) 

AO 

AT 

~ 

~ 

A4 
--, 

Ref 

I 
MC14503 ___ --l 

r To Memory 
Ref Array 

AS 

~ 

"A7 

AS 

AS 

Anl 

An 

--, 
I 

r---Ref 

I 
I 

_______ ---.1 

Ref 



BA12 

BA13 

BA14 

BA15 

R/W 

r- ---- .......... ---1 
I 1 

I I 
I I 
I I f- - -MC8T26 --, 

I I 
I I 
I I 

~ DE ~i -1 
L.:...;"-------t-o 5 v 

.-------------i MC7430 

~----H-------~r-}--

5V~ 

1 k I MC14503 l 

'~ 
3.3 k 

53 
AMP 53137-1 .~rl>t:i?>--:~~~ GSA 

~--------IU- ",V id?+ 
f L" : ~>--+:--+--,,3N\_3 k--o 12 V 

rl-+------I MC7430 

5V ~ 1 1 
~t-I-' r L:,::' I >--1 --+---. GS B 

ROM 
51 Write Inhibit A 

1/6- I 
MC7407 I 

I 
~ 

J 

I 
I 
I 

_....l 

Bat 

'--------------t--"'~ CA 

'-------r----~,=--.. CB 

12 k I MC14503 I 
1/2_MC7420

5 

V 12 V 1 k 1 ~ 
t 

~ 

• 
~Lt>>---~:-----.---++---~ 

I 

~ II.--::r ; 
1/6-MC74:7 t 4~>--+i----*",~R'WA 

1 ~ 3.3k 

i.~ : ~ ~ 4>>---~:-----, 
I 

; 

~ 

H 

I 
-0 

1/4~~~7~08 1 k 1 ~ti?t 

~
/2_MC7420 I 1 

R/WB r t- H >---'-___ - .... ~ 
~ - I I 

L 54 
I-I--i AMP 53137-1 

1/6-MC7407 1 1 
12k LL-

~-I~~~-'V : l : 

S2n\ ROM Write 1 6 I 
1 Inhibit B1/4_MC7408 ,L + _ J 
~ -

5~ pF 

.....--I"II-_Jo
5

"'. 1"'1-
k
-o 5 V IrLr ~;4-MC7400 

1% ..... ---1-..., 
T1 T2 

Write Inhibit Pulse 

FIGURE 4-2.5.3-6. Address Buffers and Decoding Logic 
(continued from preceding page) 

4-77 

3.3 k 

Bat 

J 



held high). The output of the MC7430 is translated to 12 volt CMOS levels with the open collector gates and 

buffered with the MM80C97 3-state buffer. The capacitive loading on each set of 3 paralleled drivers is 60 pf 

allowing Chip Select to be decoded and valid 120 nsec after addresses are valid on the data bus. During the 

standby mode (BAT = "I") the CMOS buffer is disabled allowing the 3.3K ohm resistors to pull CSA and 

CSB high for continuous refreshing. 
The Read/Write signal is received by an MC8T26 and then decoded in the following manner. A 

write inhibit feature is provided using switches S 1 and S2 for each 4K byte block of memory so that in a ROM 

simultation application, the memory can be protected from inadvertant writes due to programming or operator 

errors. The Ready-Modify-Write cycle of the MCM6605 is used in this application because it requires a shorter 

data valid time (TData Stable) than a normal write cycle (See Figure 4-2.5.3-2b and 4-2.5.3-2c). This feature is 

desirable because the EXORciser places valid data on the bus for the last 300 nsec of a Write cycle. In order to 

delay the write pulse to the memory array until the data is valid on the Data Inputs of the memory array, ~ write 

inhibit pulse is combined with the EXORciser's R!W signal in the MC7420 Nand gates. This write inhibit pulse 

is generated by the MC8602 monstable multivibrator triggered from the leading edge of the memory clock 

(MEM CLOCK) bus signal. The effect of this added delay can be seen from Figure 4-2.5 .3-4 when comparing 

the memory array's R/W line for a read and a write cycle. Note that for a write cycle, the R!W of the memory 

array is inhibited from dropping to the Write mode until memory input data is valid. 

The refresh control signal (REFA) is combined with the output of the MC7420 in a MC7408 AND 

gate in order to force a write signal on the memory array's R/W lines while in a refresh cycle. Translation and 

buffering is accomplished in a similar manner to that for the Chip Select signals. When in the standby mode 

(BAT = "1") the MM80C97 buffers are disabled allowing the 3.3K resistor to establish a zero level on the 

R/W line of the memory array for continuous refreshing. 

DATA BUFFERS AND MEMORY ARRAY 

The EXORciser data bus is bidirectional while the MCM6605 memory has separate data inputs and 

outputs. The MC8T26* data bus receiver/driver buffers the capacitance of the memory array (very low, about 

30 pf per data line) and combines the Data Input and Data Output of the memory array into one bidirectional bus 

as shown in Figure 4-2.5.3-7. The Data Out of the memory devices is inverted from the Data In requiring an 

extra inverter (MC7404) in the data path when working with a non-inverting bus (Le., the data is returned to the 

bus in the same sense it was received). 

During a memory write cycle, the data is valid on the data bus 200 nsec (T ASD) after the leading edge 

of cP2. With a 50 nsec delay through the bus translators, the data setup requirement of the memories (210 nsec) 

is easily met (See Figure 4-2.5.3-4). A memory read cycle requires a data setup time on the data bus of 120 

nsec. The access time of the memory from the leading edge of the CE signal plus the bus transceiver delay of 

305 nsec is compatible with this setup time. 

REFRESH AND CONTROL LOGIC 

The refresh control logic shown in Figure 4-2.5.3-8 handles the refreshing of the memory during 

both operating and standby modes. The timing is shown in Figure 4-2.5.3-9. 

The refresh timing is controlled by an astable multivibrator constructed with a MC3302 comparator. 

This device was chosen for its low current consumption (1.5 ma max) and single supply voltage operation, both 

*To be' introduced third quarter 1975 

4-78 



RE DE r------i I MC8T26 

1 I 
I 5V 

DO DinO 

DoutO 

5V 

0.1 Din1 

Dout 1 

5V 

02 Din2 

Dout2 

5V 

03 Din3 

1/6-MC7404 

Dout3 

EXORciser Bus 1 

:- - MC8T26--1 

I I 
5V I I 

04 Din4 

1/6-MC7404 

Dout4 

I 
I 10 k 

05 ) res [> ~5V Din5 : 1/6-MC7404 

Dout5 
10k 

06 ) ~ [> C--0 5V 

Din6 : 1/6-MC7404 

Dout6 

~ 
10k 

07 ) [> ~5V - :D;n7 
1/6-MC7404 

I 
Dout7 

L _____ --.J 

FIGURE 4-2.5.3-7. Data Buffers and Memory Array (Sheet 1 of 2) 

4-79 



~ 

00 
o 

R/WA CSA 

AO ... All 

R/WS CSs 

AO ... All 

CEA 

DinO 

CEs 

DinO 

AO ... All Din1 AO ... All Din2 

AO ... All Din1 AO ... All Din2 

AO ... All Din3 AO ... All Din4 AO ... All 

AO ... All Din3 AO ... All Din4 AO ... All 

FIGURE 4-2.5.3-7: Data Buffers and Memory Array 

(Sheet 2 of 2) 

Din5 AO ... All Din6 AO ... All Din7 

Din5 AO .. All Din6 Din7 



important for battery operation. The refresh requirement of 32 refresh cycles every 2msec is handled by 

stealing cycles from the processor. This cycle stealing results in a 1.6% slower program execution rate than the 

basic microprocessor clock frequency. During the refresh cycle, the clocks to the microprocessor are 

"stretched" during the cf>1 high and the cf>2 low times by 1 /Lsec as shown in Figure 4-2.5.3-9. During this 1 

/Lsec period, the memory executes a refresh cycle. In order to minimize the effects of memory refresh on 

microprocessor program execution the 32 refresh cycles are distributed over the 2 msec period, one occuring 

every 62.5 /Lsec. Refresh could be done in a burst of 32 cycles every 2 msec but this would cause a larger gap in 

program execution which in this case was undesirable. 

The MC3302 produces the 62.5 /Lsec signal to time the refresh requirement and also is used in the 

generation of the - 5 VDC supply required by the MCM6605 memory. Since these functions are required in the 

standby mode, which is powered by the battery, a CMOS buffer is used in a charge pump circuit to minimize 

current drain from the battery. This charge pump creates -5 VDC at 3 rna from the + 12 volt battery to satisfy 

the bias requirements of the memory devices. 

The REFRESH CLOCK is used to increment the address counter (MC14024) and to clock the 

refresh handshaking logic (MC14027). REFRESH REQUEST goes low on the leading edge of the REFRESH 

12 V 
100pF 221 k 1% 

r) 

12 \ 

100 k 

1% 
47.5 k 1% 

22 k 1!6MC14049 
0.022 J.lF 

Refresh Addresses 

__ ----A------... 
/ AO A 1 A2 A3 A4 " 

12 V 
lN4~48 i 

lN4148 

I~ 1 
100/lF 'T: 
10V L 

-5.1 V to ! 0 V •• 
MZ4625 

-=- Ref 1/2.MC14049 

01 02 03 04 05 J 0 1----1 J 0 1-----4I~__l 
______ ---.JVV\r--~-a C M C 14024 C 1 12·MC 14027- C 1/2-MC 14027 

100 k 

1% 

-=-

Refresh 
Clock 

R 

12 V 

1/6-MC7406 3.3 k 

Refresh Grant 

Bat ___________ ~ 

FIGUR E 4-2.5.3-8. Refresh Control Logic 

EXORciser Bus cj>1 

EXORciser Bus cj>2 

Occurs Every 64 /Jos 

K S R 6 

1/6-MC14049 1/6-MC7404 

Refresh Req uest --------~~~~~~~~~~~I~--------------

Refresh Grant 

Memory Clock 

tz2ZZ2l Don't Care 

FIGURE 4-2.5.3-9. Refresh Timing 

4-81 



CLOCK thus requesting a refresh cycle. Logic in the clock generation circuitry stretches the high portion of cf> 1 

and the low portion of cf>2 while sending back a REFRESH GRANT signal. This stretching of the cf> 1 signal 

delays program execution during this cycle. The leading edge of REFRESH GRANT starts the refresh cycle 

and cancels REFRESH REQUEST. The trailing edge of REFRESH GRANT returns the refresh logic to the 

normal state and the memory is ready for a memory access. The trailing edge of the REFRESH CLOCK then 

increments the refresh counter in preparation for the next refresh cycle. 

Decoding of the memory clock (CEA and CEB) and the circuitry to synchronize the POWERFAIL 

signal is shown in Figure 4-2.5.3-10 with the timing given in Figure 4-2.5.3-11. 

The memory device clock (CEA and CEB) during standby is generated by a monostable multivib

rator (MCI4528) and buffered from the memory array by three MM80C97 buffers in parallel. This clock is 

multiplexed with the MEMORY CLOCK by use of the 3-state feature of the MM80C97. The MEMORY 

CLOCK (used during normal operation) is translated to 12 volt levels by use a MC3460 clock driver. * 
Decoding of the CE signals (Le., only clocking the memory bank addressed) to conserve power is 

accomplished by internal logic within the MC3460. 

Since the POWERFAIL signal will occur asynchronously with both the MEM CLOCK and the 

refreshing operation (REF CLOCK), it is necessary to synchronize the POWERFAIL signal to the rest of the 

system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip flop is used 

as the basic synchronization device. The leading edge of the REFRESH CLOCK triggers a 3 JLsec monostable 

multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 nsec 

monostable which creates the CE pulse during standby operation. The 3 JLsec pretrigger signal is used to direct 

set half of the MC14027 flip-flop, the output of which then inhibits a change over from the standby to the 

operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the 

POWERFAIL signal change states just prior to or during a refresh cycle. The trailing edge of the 500 nsec 

monostable clears the MC14027 flip-flop enabling the second flip-flop in the package. The state of 

POWERFAIL and POWERFAIL is applied to the K and J inputs, respectively, of this second flip-flop and is 

synchronized by clocking with MEM CLOCK. 

The outputs of this flip-flop, labeled BAT and BAT, lock the system into the refresh mode and 

mUltiplexes in the internal clock for standby operation when BAT = "1". 

SYSTEM PERFORMANCE 

Figure 4-2.5.3-12 is a photograph of the breadboard of this dynamic memory system. This 

breadboard was interfaced with an EXORciser system and tested using a comprehensive memory test program 

written in-house. 

Figure 4-2.5.3-13 is a photograph of waveshapes associated with alternate reads and writes in one 

4K bank of the memory system. Included also is the simple MC6800 program used to generate these 

waveforms. This type of operation produces repetitive signals on the memory board in order to aid 

troubleshooting. Note the refresh cycle sandwiched in amongst the read and write cycles and that the decoding 

of the CE signals produces no clocks on CEA (accesses are to bank B), except during refresh. 

Figure 4-2.5.3-14 shows the printed circuit memory array used to interconnect the memories. The 

addresses are bused between the 4K memory chips in the horizontal direction. Data lines are bused in the 

vertical direction. The MCM6605 4K RAM has power and ground pins on the corners of the package allowing 

*To be introduced first quarter 1975 

4-82 



Refresh Clock 

Memory Clock 

~--~--~~--012V 

520 pF 

T1 T2 

1I2-MC14528 
3 ).lS 

12 V 

5.11 k 

1% 

Q 

s 
Q 

1/3-MC 14049 -= o 1/2-MC14027 

X~--=--1C 

r---~--~~---o12V 

82 pF 
5.11 k 

T1 T2 

Q~---------------------e 

112 MC14528 
500 ns 

12 V 

1/4-MC14001 

C 

s 
Bat 

Q 

1/2·MC14027 

MC14503 
r------. 
I I 

12 V K K Q~---+-------"'-
+12 R R 

1k 

1/6-MC7407 12 V 

1/4-MC3302 
22 k 

12 V 

100 k 1/4·MC3302 
22 k 

12 k 

IVIC3460 

---------------------------1 AS E L 

A 

---------------------1 REF S E L 

-----------------------1 BSEL 
BI-----I 

+ 5 V ___ --'-__ ...J 

FIGURE 4-2.5.3-10. Power Fail Logic and Chip Enable Driver 

4-83 

CEB 



o 1.0 J..Ls 2.0 J..Ls 3.0J..Ls 4.0J..Ls 
Refresh Clock 
(64 J..Ls Period) J 

3 J..Ls Monostable ~----------. 
(Refresh Pretrigger) ~ \~------

500 ns Monostable ---_________ ----i!\\-___ _ 

CE A or CE B r--\. 
(Standby) _____________ --', \~ __ _ 

Clock Input ® '--I 
Inhibit ®--.I \'----

~ Power Fail signal changes will not I 
be recognized during this time. ~ 

FIGURE 4-2.5.3-11. Power Up/Down Synchronization 

FIGURE 4.2.5.3-12. Memory System Breadboard 

wide, low impedance power and ground interconnects within the memory array. Decoupling capacitors were 

used as follows within the memory array: + 12 volt - one 0.1 p.J ceramic per package, +5 volt - one 0.01 J-Lf 

ceramic for every three packages, and -5 volt - one 0.01 J-Lf ceramic for every three packages. Figure 

4-2.5.3-15 is a photograph showing the ripple on the power supplies in the memory array caused by accesses to 

one 4K byte bank of memory as shwon in the photograph. The + 12 volt line supplies the most current to the 

array and is the one on which the most care in decoupling (wide PC lines and distributed capacitance) should be 

taken. Placement of the Vnn pin on the corner of the package gives the designer the option to do this easily. 

The dc power dissipation of this memory system is shown in Table 4-2.5.3-1. Of these current 

drains, the most critical to non-volatile operation is the current requirement in the Standby mode where the 

current would probably be supplied from a battery. A breakdown of the typical current required from + 12 volts 

to maintain the memory in the Standby mode is shown in Table 4-2.5.3-2. 

By using CMOS for the refresh logic and capacitance drivers, a dynamic memory, and alow current 

refresh oscillator; the standby current has been reduced to a level that can be supplied easily by a battery. Table 

3 is a brief list of various capacity 12 volt batteries that could be used to power a system of this type in the 

Standby mode. Support time runs from one-half to 35 days and can be made as long as desired if sufficient 

battery capacity is available. 

4-84 



> 
(3 
;; 
0 .... 

-5i 
~ "0 e "0 Q) ~ "0 ~ "0 

(0 co;: co co 

~ Q) ~ 
Q) Q) ~ Q) 

~ 
Q) 

a: a: a: a: a: 

CE B 

CS B 

R/WB 

5 J.Ls/Oiv 

M6800 Program to Generate Waveforms Shown 

Address Data Mnemonic Comment 

0000 B6 LOA #$55 Load data to be written (55) 

0001 55 

0002 B7 STA A $3000 Store data in address 300016 

0003 30 
0004 00 

0005 F6 LOA B $3000 Read data from address 300016 

0006 30 

0007 00 

0008 7E JMP $0002 Loop back 

0009 00 
OOOA 02 

FIGURE 4.2.5.3-13. Alternate Read and Write Memory Accesses 

Mode 

TABLE 4.2.5.3-1 8K x 8 Non-Volatile Memory System Power 
Requirements (l-MHz EXORciser Clock Rate) 

Current 

Power Supply* Typical Maximum 

+12 V** 100 mA 300mA 

Operating 

+5 V 600mA 860mA 

+12 V 14 mA 20mA 

Standby 

+5 V No +5 V Supply required 

*5 V supply is not listed because it is generated on the board 
from +12 V 

**8ecause memory is dynamic, the +12 V current requirement 
is dependent on rate of memory access. 

4-85 



+5'0:::v?illllllllllllii~~: Gnd ::'. 

00 00 00 00 

+12 V\ 
Gnd , 

eE30 

vss 
A30 

All 0 
elKO 

eE40 
A40 
A20 

• vee 0001 VOO 0001 

Data out/ 'Data In 

Bit 0 

o 
~Gnd~ 

o o 

1 

1 1 
VSS 0001 DO 01 DO 01 DO 01 0001 0001 

-/ \ 
Data Out Data In 

Bit 7 

FIGURE 4-2.5.3-14. Memory PC Board Array 

4-86 

vee 

OAI 
OA10 
OA9 
OA8 
OA7 
OA6 
OAS 
ORlW 
OAO 

4K x 8 

Bank A 

4K x 8 
Bank B 



Circuit Section Typical Current 

+12 V Current (VDD) 5mA 
Charge Pump 3mA 
Comparator 2mA 
Capacitance Drivers 4mA 
Total 14mA 

TABLE 4.2.5.3-2 Standby Mode Current Allocation 

Size 
Battery AH (LxWxH) Weight Support Time* --
Globe GC 12200 20 6.9" x 6.5" x 4.9" 16.75Ibs. 35 days (850 hrs) 
Globe GC 1245-1 4.5 6" x 2.5" x 4" 4.51 Ibs. 8 days (192 hrs) 
Globe GC 1215-1 1.5 7" x 1.3" x 2.6" 1.51 Ibs. 2.6 days (63.75 hrs) 
Burgess MP 202 0.6 3.4" x 1.4" x 2.3" 11.6 oz. 1.25 days (30 hrs) 
Burgess 12.0V 225 Bh 0.225 3.5" H x 1" Diam. 4.65 oz. .47 days (11.25 hrs) 

* Assumes 20 ma average current drain (14 ma for memory and 6 ma for powerfail detection 
circuitry) and a battery voltage range during discharge of from 13 to 11 volts. 

TABLE 4-2.5.3-3. Battery Characteristics 

CEB 
10V/Oiv 

+12 V Power Line 1 V/Oiv 

+5 V Power Line 1 V/Oiv 

-5 V Power Line 1V/Oiv 

5 ILs/Oiv 

FIGURE 4.2.5.3-15 Power Line Ripple 

4-87 



4-2.5.4 Design Considerations When Using Non-Family Memories with the MC6800 

The previous sections have discussed general interfacing with slow and dynamic memories and two 

design examples using the MCM6602 lK X 1 static RAM and the MCM6605 4K X 1 dynamic RAM.In this 

section, the general interface characteristics of the M6800 family will be discussed as well as methods for 

interfacing with various classes of memory devices. The categories of memories to be discussed are the 

following: Bipolar PROMS!ROMS, MOS PROMS!ROMS, Bipolar RAMS, and MOS RAMS. 

Table 4-2.5.4-1 lists the relevant characteristics of the M6800 family parts to be considered when 

interfacing with each other or with non-family parts. In most small systems, the limiting factor will be the data 

bus load exceeding 130 pf maximum capacitance and/or 1 TTL (7400) load. Depending on the mix of 

PIA/ACIA and memories, the fanout can be 7 to 10 family parts before buffering is required. 

BIPOLAR PROMS !ROMS 

The PROMS available in bipolar technology are constructed with nichrome or poly silicon links 

which can be "blown" or programmed in the field to provide a custom program for small quantity, quick turn 

around, requirements. In many cases, a pin for pin equivalent is available in a mask programmable ROM for 

large quantity usages of a known bit pattern. Common memory organizations available are 64 X 8, 256 X 4, 

512 X 4, and 512 X 8 from several manufacturers. Because these devices are constructed in bipolar TTL 

technology, their speed is much greater than required by the MPU. A typical device of this type will have a 

IDATA* 
DEVICE CIN COUT liN (3 st) I DATA (drive) 

MC6800 MPU 10 pf logic 12 pf logic -100Ma +130 f 
15 pf data 15 pf data 2.5Ma 10Ma 1.6 ma p 

MCM6810 RAM -1 OOMa + 1 30 f 
(128 X 8) 7.5 pf 15 pf 2.5Ma 10Ma 1.6 ma p 

MCM6605 RAM 
MCM6815 RAM -100Ma + 50 f 

(4K X 1) 5 pf 5 pf 10Ma 10Ma 2 ma p 

7 pf logic -100Ma +130 f 
MC6820 PIA 10 pf data 10 pf 2.5Ma 10Ma 1.6 ma p 

MCM6830 ROM -100Ma +130 f 
(1 K X 8) 7.5 pf 15 pf 2.5Ma 10Ma 1.6 ma p 

MCM6832 ROM -40Ma +30 f 
(2K X 8) 8 pf 10 pf 10Ma 10Ma 1.6 ma p 

MC6850 ACIA 7 pf logic -1 OOMa + 130 f 
10 pf data 10 pf 2.5Ma 10Ma 1.6 rna p 

*Current leakage on data bus in high impedance state is into the device. 

TABLE 4-2.5.4-1. MPU Family Interface Chart 

4-88 



maximum access time of 70 nsec from address valid while the MPU only requires 575 nsec access time when 

operating at full speed. Because of their programmability, these types of devices find use in system prototypes, 

bootstrap loaders, and system debug packages. Devices of these types are the MCM5003 PROM and its mask 

programmable equivalent, the MCM4003. 

Interfacing with these devices requires buffers for the MPU because each bipolar PROM/ROM is 

one unit TTL load. Since the MPU has TTL levels on all inputs and outputs, no level translation is necessary. 

Timing interface between the MPU operating at full speed and these TTL memories can be accomplished easily 

because the TTL memories are much faster. 

MOSPROMS/ROMS 

The mask programmable MOS ROMS are both P-channel and N-channel with the newer faster 

devices being N-channel. Memory organizations commonly available at lK X 8 and 2K X 8. Most of these 

ROMS require multiple power supplies with +12V, +5V, -3V, or +5V, -12V, being common. Current 

requirements on the non - 3 V supply voltages are in many cases low so that charge pump techniques can be 

used. The majority of these devices are TTL compatible on the inputs and outputs making MPU interfacing 

easy. Because of the MOS technology, these devices all present light loads on their inputs usually 10 /La leakage 

and 5-10 pf shunt capacitance and, therefore, can be interfaced without buffering up to 130 pf + 1 TTL load. 

Those parts with an access time of longer than 575 nsec will require usage of the slow memory techniques 

described in Section 4-2. 5.1 in order to operate with an MPU at a 1 MHz clock rate. These devices vary in speed 

from 350 nsec to 1800 nsec depending on manufacturer and process type. Devices of this type are the 

MCM6830 and the MCM6832. 

The PROMS available in MOS technology are electrically programmable and erasable by exposure 

to ultraviolet light. Device organizations available are 256 X 8 with 512 X 8 under development. Inputs and 

outputs are TTL compatible with the use of pull up resistors on the inputs and access times range from 500 nsec 

to 2.5 /Lsec. Input loading is on the order of 1-5 /La and 15 pf. A MPU system operating at full speed may require 

the slow memory techniques described in Section 4-2.5.1 to operate with the devices. 

DYNAMIC MOS RAMS 

These devices are available in P-channel in a 1K X 1 organization with the newer devices being 

N-channel and 4K X 1 organization. Their dynamic characteristics require that periodic refreshing of the 

memory take place. The number of refresh cycles varies from 16 to 64 every 1 or 2 ms. Several ways to handle 

this refresh requirement in the MPU system were described in Section 4-2.5. 1. The access time of these devices 

is usually less than 500 nsec resulting in easy timing interface with the MPU at full speed. Inputs and outputs of 

most of these devices are TTL compatible with input loading being typically 10 /La leakage and 5 pf shunt 

capacitance. These devices typically require a clock signal which can be derived from the cp2 MPU clock 

signal. A design of a memory system for the MPU using dynamic memories is detailed in Section 4-2.5.3. 

Devices of this type are the MCM6605 and the MCM6815. 

4-89 



STATIC MOS RAMS 

Static RAMS do not require refreshing and as such are simple to interface into a MPU system. In 

N-channel MOS technology, the common organizations are 128 X 8, 256 X 4, and 1024 X 1. The inputs and 

outputs are TTL level compatible with the input loading on the order of 10 /La and 5-10 pf Output drive 

capability typically is one TTL gate and 100 pf shunt capacitance. These devices operate from a single 5 volt 

power supply with access times between 200 and 1000 nsec. 

Example of this type of device are the MCM681 0 and the MCM6602. A design of a static memory 

design for the MPU using the MCM6602 is detailed in Section 4-2.5.2 

4-90 



CHAPTER 5 

5. PERIPHERAL CONTROL TECHNIQUES 

The MC6800's general I/O handling capability is described in detail in Chapter 3 of this manual. 

This Chapter further demonstrates the I/O characteristics of the M6800 system by applying them to a variety of 

specific peripheral control problems. The emphasis here is on control of the peripherals; system integration 

procedures are described in Chapter 6. 

The development of both hardware and software is described for representative peripherals in the 

following categories: 

(1) Input devices such as keyboards and label scanning wands; 

(2) Output devices such as visual displays and hard-copy printers; 

(3) Data interchange devices such as teletype terminals, tape cassettes, and floppy disks. Where 

appropriate, the possible hardware/software trade-offs and their effect on system efficiency and 

cost are discussed. However, the main objective was to minimize the external conventional 

circuit requirements by using the MC6820 PIA and the MC6850 ACIA family interface 

devices. The PIA and ACIA are described in detail in Sections 3-4.1 and3-4.2, respectively, of 

Chapter 3. 

5-1 DATA INPUT DEVICES 

5-1.1 KEYBOARDS FOR MANUAL ENTRY OF DATA 

Keyboards represent particularly good examples of the hardware/software tradeoffs that should be 

considered when configuring a system. They can be obtained from original equipment manufacturing (OEM) 

sources with widely varying amounts of electronics provided. 

At one extreme is the fully decodedl keyboard complete with multiple key rolloverprotection2 and a 

strobe signal for indicating that data is available. Use of these units with an MPU results in the simplest 

interface and also requires a minimum control program. 

At the opposite extreme is the keyboard with no electronics at all; only the terminals of the individual 

key switches are provided. With this type, the designer may choose to add a full complement of external 

electronics, do a partial decode, or let the MPU perform the complete task in software. 

Representative examples of each approach are described in the following paragraphs. In each case, 

the MC6820, Peripheral Interface Adapter (PIA), is used for interfacing to the MC6820 Microprocessor. 

5-1. 1.1 Decoded Keyboard for a POS Terminal 

A MICROS WITCH 26SW3-1 POS Keyboard was selected for use with the Transaction Terminal 

described in Chapter 6. A schematic representation of the key configuration is shown in Figure 5-1. 1. 1-1. The 

function keys CODE ENTRY, SUBTOTAL (+), SUBTOTAL (-), and CLEAR each provide a logic level out 

when depressed. The remaining keys are decoded, that is, closure generates a 6-bitcode word accompanied by 

1 Each switch closure is converted to a unique code word. 

2The first of near-simultaneous closures is selected. 

5-1 



I Gmwy I 8 I 
Code Entry 

I 
I SUb~tal I 

@] Tax 

EJ [J D D 0 B 
[] [] [J B 
[J [] 8 B 

EJ I I D 
Tol 

B + 
0 

FIGURE 5.1.1.1-1 POS Keyboard Configuration 

Key Function Key Number Code to PIA 

b7 b6 b5 b4 b3 b2 b1 bO 
0 43 0 0 0 0 0 0 0 0 
1 13 0 0 0 0 0 0 0 1 
2 14 0 0 0 0 0 0 1 0 
3 15 0 0 0 0 0 0 1 1 
4 23 0 0 0 0 0 1 0 0 
5 24 0 0 0 0 0 1 0 1 
6 25 0 0 0 0 0 1 1 0 
7 33 0 0 0 0 0 1 1 1 
8 34 0 0 0 0 1 0 0 0 
9 35 0 0 0 0 0 0 1 
. (Demical pt.) 45 0 0 0 0 0 1 0 

Grocery 1 0 0 0 0 0 0 0 1 
Dairy 11 0 0 0 0 0 0 1 0 

Meat/Coupon 21 0 0 0 0 0 0 1 1 
Produce/Bottles 31 0 0 0 0 0 1 0 0 
Hshld/Stamps 41 0 0 0 0 0 1 0 1 

Weight 3 0 0 0 0 0 0 0 
.No Tax 7 0 0 0 0 0 1 1 
Quantity 17 0 0 0 0 1 1 1 

Total 20 0 0 0 1 0 1 0 
Cash 30 0 0 0 1 1 ·1 1 

Check 40 0 0 1 0 0 1 1 

Code Entry 5 0 1 Will. be holding 
Subtotal (-) 10 1 0 data from 
Subtotal. (+) 37 1 1 previous entry 

Clear 50 [C2 interrupt] 
,".\ 0 0 0 1 1 0 0 0 

Strobe [C1 interrupt] 

1. Strobe .wiU be high while any key is closed 

FIGURE 5.1.1.1-2 Keyboard Coding/PIA Interface 

5-2 



a strobe pulse. The code generated by the keyboard is shown in Figures 5-1.1.1-2. That Figure also shows the 

interconnection to an MC6820 PIA as represented schematically in Figure 5-1.1.1-3. 

For system purposes, it was decided that any key closure should cause an interrupt via the PIA's CAl 

Input. The interrupt was generated by using a Quad Exclusive OR gate package to combine the four function 

key outputs and the STROBE signal. The CLEAR signal was also required as a separate interrupt and is, hence, 

applied to the CA2 Interrupt Input. The remaining three function outputs, CODE ENTRY, SUBTOTAL ( + ), 
and SUBTOTAL (-), were decoded by using two 2-input NAND gates applied to PA6 and PA7 of the PIA. 

Operation of the system executive program described in Chapter 6 is largely determined by data that 

is input through this keyboard. However, the control program for the actual capture of the data is relatively 

simple. When the MPU is ready to accept manually entered data, it polls the keyboard PIA interrupt flag bits 

until an input is detected. A Flowchart and an Assembly Listing of the relevant portion of the executive 

program3 are shown in Figures 5-1.1.1-4 and 5-1.1.1-5, respectively. 

After recognizing an interrupt, the MPU checks for a keyboard closure by testing flag bits 6 and 7 of 

the keyboard PIA's Control Register. These bits would have been set by transitions on CA.1 or CA2. If neither is 

set, the MPU branches to check for a Wand interrupt service request. If one is set, the MPU tests for a CLEAR 

closure (bit 6) and, if it is present, branches to the CLEAR service routine. If the CLEAR flag is not set, the 

MPU assumes bit 7 was set and proceeds with the keyboard service routine. 

This sequence is typical for encoded keyboards. Aside from the interrupt service housekeeping, 

capturing the data consists of nothing more than the MPU "reading" a PIA Data Register as it would any other 

memory location. 
3See Section 6-4.2.4 of Chapter 6 for the relationship to the remainder of the executive program. 

Microswitch 
265W3-l 
Keyboard PIA - Side A 

bl PAO 

b2 PAl 

b3 PA2 

b4 PA3 

b5 PA4 

b6 PA5 

PA6 

PA7 

"'- CA2 

.J" 
CAl 

+5 V -= 

FIGURE 5-1.1.1-3 Keyboard/PIA Hardware Interface 

5-3 



Go To Clear 
Key Processing 

No 

Get Keyboard 
Data From Keybaord 

PI A Data Register 

Turn Off Ready 
Light 

Go To Keyboard Data 
Processing Routine 

No 

FIGURE 5-1.1.1-4 Flow Chart for Keyboard Service Routine 

5-4 

No 

Go To Wand 
Data Processing 

Routine 



00072 81C3 01 
(I I) I) 7 4 Ale 4 (I F 
00076 Ale5 01 

::-::I<.SFTP riOP 
:EI 
t'~CP 
t-~OP 

LIlA E: 
OPR B 
.:: TFt E: 
eLI 

>::F'2DPA 
~~'f,F I) 

::-::P2DF.'A 

(I (I 07::: H 1 C~, I) 1 
00080 AlC? F~ COlO 
00090 FllCA CA FO 
00100 AICC F7 COlO 
:) (I 1 1 (I A 11~. F (IE 
00120 • kEYBOA~D PECUEST ? 
(I (I t -:: Ci A 1 D (I E: ...:' 
I) 0 1 4 (I h 1 D'::: ;:: 5 C I) 
I) (I 1 5 (I A 1 Ii c:; 2"? 1 '3 
o 0 1 6 (I A 1 It 7 '::' 5 4 (I 

I) (I 1 7' I) A 1 II '3 2 ? (I ? 
00180 AlDE ~~ 1° 
00190 RIDD F6 8008 
(I (12 ':i (; AlE (! c I) I)~: 

00210 AlE2 16 8008 XK1040 
00220 AIE5 F6 COlG XKI045 
(I ;) 2 3 U AlE ::: C 4 E: F=" 
00240 A1ER F7 COlO 
00250 FIlED ED 8203 

• 

LDA A '-::F' ::CF'A 
£: I T A ! ~ 'I; C 0 
EEO 
EIT A 
BEO 
LIlA A 
LIlA B 
E~'A 

LIiH A 
LD~ E 
Anr B 
:TA E: 
-' :~: F.~ 

:.<~:: 1 065 
~~$4 U 
:.::r 1 04 (i 
!~ :1; 1 ':' 
:.:: F'::~ II J; A 
::<~:: 1045 
>-::P·;:DF.:A 
,:·:;P2IFA 
~~ 'I; BF 
;:'::P2r:;;;:'A 
>::Kt< \' ! ~i 

00260 
00270 
002:=:0 

• 1).IAt-iD~·EF') I CE F:EOUE:::T? 

• 
00290 AIFO £:6 COlO XK1065 
(I 0 :~: 1 (I A 1 F.:;: 2 E C E 
00320 AIF5 F6 COlO 
(I (1:;::3 0 A 1 F ::: C 4 E: F 
00340 AIFA F7 COlO 
00350 AIFD BD B60C 
00360 8200 7E AIC3 

lDA E 
AnD B 
S.TA B 
,j:: p 
.-,r·lF 

:<F'2DPA 
>:: ~: .. S· F T F' 
><F'2D~'A 
~~$EF 

>::F'2D;:;:A 
>< ~'.: l).i H t 1 II 
>:L.:S:FTF 

TURN ON READY lIGHT 
:.ET PA-E. 

ENABLE INTERRUPTS 

READ r .. E\'f;OAFD P I A COr-iTPDL 
,::HECK CRA?, CPA':' 
I F no f:='EO'-:E·:. T, CHECK IdAr-iD 
CHECK FOR CLEAR KEY 
IF NC~ CONTINUE kYBD SERVIC 
I F 'i E ::: !' LOA It C L E H F.: COIl E 
CLEPP I t-1 TEf:;~PUF'T 

LOAD K\'E:D ItATA.··· CLEAF.: H1TEF.:P 
TURN OF="F READY LIGHT 
elf:;: F'A-6 

GO TO KYBD RDUTINE!'ACCA=DAT 

IS: I,'JAnn (jr-~ :~:F'ACE, E:7= 0';
I r t'HJT LCOF BACt<. 
TURN OFF READY LIGHT 
CLF~ PFt-6 

DTHERWI2E!' GO TO WAND ROUTI 

FIGURE 5-1.1.1-5 Keyboard Service Assembly Listing 

5-5 



CBl 

10 kn 

PBO 

10 kn 

PBl FIGURE 5-1.1.2-1: Keyboard/PIA Interface 

<! 
0:: 
0 
I- 10 kn 

PB2 

10 kn 

PB3 

PB4 PB5 PB6 PB7 

" 
, 

TO PIA 

5-1.1.2 Non Encoded Keyboard 

An example of capturing data from a keyboard with no external electronics is shown in Figure 

5 -1 .1.2-1 where half of a PIA being used to interface with a sixteen function keyboard connected in a matrix 

configuration. The row lines of the matrix are connected to PBO through PB3, the column lines to PB4 through 

PB7. A suitable keyboard control Flowchart is shown in Figure 5-1.1.2-2. The corresponding Assembly 

Listing is shown in Figure 5-1.1.2-4. 

An initialization sequence uses the Data Direction Register, DDR, to establish the Row lines 

(PBO-PB3) as outputs and the Column lines (PB4-PB7) as inputs. In addition, ones are written into the 

Column section and zeros are written into the Row section, leading to the situation shown in Figure 5 -1.1 .2-4. 

Any key closure will now couple a Row zero through the key switch, causing one of the Column 

lines to go low and generate a CB 1 interrupt via the 4-input NAND gate. A typical case (K6 closed) is illustrated 

in Figure 5-1.1.2-5. 

The programmable features of the PIA can be used to generate a simple program for capturing the 

data. Refer to the Flow Chart and Assembly Listing of Figures 5-1.1.2-2 and 5-1.1.2-3, respectively as 

additional aids to understanding. The MPU, as its first step in servicing the keyboard, reads Peripheral Interface 

Register B (PIRB), thus clearing the interrupt (b7 of Control Register B) and storing the current contents of 

PIRB in accumulator A. Note that because of the initial conditions, the word stored in ACCA must be one of the 

four4 shown in Figure 5-1.1.2-6 depending on which column the closure was in. 

The MPU, using the DDR as in the Initialization sequence, next reverses the I/O relationship of the 

column and row lines, that is, PBO-PB3 are established as inputs and PB4-PB7 as outputs (see Figure 

4This assumes only one key was closed. Multiple key closures will be discussed in a later paragraph. 

5-6 



KSETUP 

Establish Row lines 
(PBO-PB3) as Outputs, 

Column lines (PB4-
PB7) as Inputs. Write 
initial pattern ($FO) 

into PIRB (KBRDPR) 

Yes 

Store key count in 
Number buffer 

Re-initialize Row/ 
Column I/O: PBO-PB3 
=Outputs; PB4-PB7= 

I nputs. Write ones 
into Col. Sect., zeros 

into Row Section. 

KBOARD 

Fetch data from 
KBRDPR; Reverse 
Column/Row I/O 
(PBO-PB3=1 nputs, 
PB4-PB 7=Outputs) 

Load row section of 
data word with ones 

and write back 
into KBRDPR 

Fetch closure data 
from KBRDPR; Set 

Index Reg. to Starting 
Addr of lookup table. 

Increment key count 
and move to next 

table location. 
Check for end of 

table. 

Perform BDREAD 
Subroutine 

FIGURE 5-1.1.2-2 Keyboard Control Flow Chart 

5-7 

No 



00001 
00010 
(I (I 0;:: 0 
00030 
00040 
OOO~5(1 

00070 

+THI~ PROGRAM CPUSES TH~ MC6800 M~:ROPROCE2S0R 
+TJ CA!::'TU~:E ~::'E\' CLD:S:UF.'E:S: O~ ~ 16 ~<:"'I' I<E .... 'BOPF'D 
+AND PLACE THE BINARY EQUIV~LENT I~ A EUFFE~ 
+N~~ED NBRBUF. THE B SIDE C~ AN MC6820 PIA 
+rs USED TO ENTER THE BATR. 

OPT t'1 
o 0 (1 :::~ (I l) 1 I) I) 
00090 
00100 
00t10 

0100 
01 (13 

(11 Or:, 

.B6 :~: (I OA ~:::\' .F:OFiP 
!~:6 04 
F7 ~~: (t 0;::: 
CIS FO 

00130 010A F7 ROOg 
~)Ot40 010.0 ,=.i= 
I) (I 1 5 I) (I 1 (I t:: ~:.: Fi 0 t= 

00160 0110 B7 800A 
00170 0113 BS 800A 
00180 0116 FE 0143 
I) I) 1 '3 i) ,) 1 1 9 8 1 :) U 
o 02 (I (I '~I i 1 B 2? (1 '3 
I) (I;:: 1 0 I) 11 II 'S C 
(I 1)2::: (I (I! 1 E (I ':; 

00230 011~ 3C 0152 
(I (I c' 4- (I I) 1 ,:: .::: ;::.:. r- 5 

LIII=i A 
LDA A 
:::;:TA B 
LItA B 
:S:TA B 
CL~' B 
OFA A 
:S:TA A 
LIlA A 
LD>:; 

Inc B 
I t·{:< 
:::F'>:' 
p ~,~ ~:: 

00250 0124 8D lB aSR 
002~0 0126 ?7 ~o ~TA~H STR ~ 

00270 0128 8D 07 B~R 

00280 012A [6 03 LDA £ 
00290 Gt2C ~7 3009 2T8 B 
00300 0130 ~p K~XIT PTI 

VBFDPP 
~~l 04 
~::' f; I? II C~' 

~~~t; OF 
~::':BP DPP
!<B~'I!F'~'

~:::TRBLE
f ••• ' ",

STA'~'H

~ ~ T f; L E t'1 I:
LDOi-:::UF
B.Dr.:""Ef~D
~'~.F.:~. BUt=-
~::::~:ETI_'F

~~J; (!=:
~<BP:)CP

OO?::~o 01..31. (:6 (14 ~::'S!::TJJP LIIA:1:: :;$04
OO~30 0133 F? 80n~ STR B KBRDC~

00:::;4 (I (11.::6 ':'6 01= LDA B .:~:J; (iF
00?50 0138 1=7 ~00~ STR B KBF.'DDR
I) (I? 6 (I 0 1. :~; P C ~ F (1 L.D A B ~ ~ $ F (!
00370 013D ~(800S STA B KBRDCP
00380 0148 33 PTS

~ERD THE pr~ PERIPH REG.
LOAD ReeB wrTH 00000100
SELECT DRTA DIP PEG
SELECT PBO-?B3 AS INPUTS AN
+PB4-~~7 A~ OUTPUTS.

LOAD .B n-.E:;:: JI=" ACTA 1 • .1 I TH O(4~

WRITE BRCV INTO PERIPH REG
FETCH CLD2U~E DATA.
POINT TO TB_ $TPT ADDR
Di4T':::' _. (,UPF:=''::t'~T TAl.:'~"E I,/AU)E?
.'y'E:::: ~ 1::;0 PrJ T DATH I i"~ .PJ..II=FEP
+r'K1 ~ AII'· ... ncE t·i.E:P ':·Odt'.ff A~'iD

+MDVE TO NEXT fRBLE LOCATIO
.S:EA;'(·H CDt'1':'L ETF::";:-

.NC~GO TO LJQKUP~CCNT SR(~
+YE~~GD TO B~D~EA~ PTN

f3IJ i:;:'E - I!'i I T I ;~L L::E
Et'~API_E f'i>"T=';_[I:~::U~'E I t-rTFP T

•
;;~I:TUPt'~ T~_j t'1.=: J h Ppof;;:;:~~r'1.

l It COr'~ rpol_ .:;;~E(; !'.nH PH ~TEF.'r·i
.TO 2ELECT DIRECTION ~EG.

SELECT PBG-~~3 AS CUTPUT~
·.Hr·~D F'P4-F'I: 7 f!'S' I t-iFU r:s:
l.dF' I TF..: 1 1111,1 CI (. I.'; F'ATTEF't'1 I t'~TIJ
.PEF. I PH!~~:Ai.. ~iEI= I:S TEP .
PETUPt'1 TO tFH t,~ F'F'[iI:';PAr,i

I) I) 4 I) (: I) 1 4 1 ? "Cr E E
(I I) 4 1 (i' n 1 4 :::~ E ~

(1144 Ill::

BDPEAD :BP~

~<TABLE Fer:
.. ::: ::. E TtlF' It U;"1 t'1"Y :P ft~'F." AE' ~·PiJI~PRr-·

I) 145 :BE
(114'::, ?E
014";::- ED
(114::: III!
(I 14'~ BD
014A 7I1
014B EB

0(1420 014C DB
014£1 BE:
014':: ?!:
014F E7
0150 D7
0151 E:7

00430 015c' ??
00440 800;~:

o 04'::i 0 300~

004~,O 800A
00470 OOFO
004;::0

FCB

TBLEr'HI FC'E~

VBPDCP EOU
~:::BRDnp EOU
KB~'DP~' fOU
t'~BRE!UF EOU

Et'HI

$EE~~IIE~$2E,17E~tED~£D~~1BL~i7D,$EB

'1:77
"1: ;:~ n (I :=~
:I;~:: (10':;'
'f;~:: I) OR
$OOFO

FIGURE 5-1.1.2-3: Keyboard Control Assembly Listing

5-8

«
a:
o
I-

«
a:
o
I-

CBl = 0

PBO ~11-4~--+---4~-+---4~--+---4
o

PBl >-~~--+---4~~+---4~--+----4
o

PB2>-~~-~--4~--+---4~~~--~
o

PB3>-"~~~-~~-~----~--~---4
o

1
PB4
\

1
PBS

TO PIA

1
PB6

FIGURE 5-1.1.2-4: Initial PIA I/O Configuration

CBl

PBl >-~~--~--~~~~---.~~~-~
o

1
PB4
\

PBS

.....
TO PIA

o
PB6

FIGURE 5-1.1.2-5: Result of Key Closure

5-9

1
PB7

10 kn

,

PB7 ,

OR

OR

OR

PBO
1

PBl
o

PB2

PB3

b7 b6 b5 b4 b3 b2 b1 bO

1 1 100 000

1 1 o 1 o o o

1 o 1 1 o o o

o 1 1 1 o o o

FIGURE 5-1.1.2-6: Contents of Accumulator A

1
PB4 ,

1
PB5

CBl

TO PIA

o
PBG

FIGURE 5-1.1.2-7: I/O Conditions Reversed

o

o

o

1
PB7 ,

5-1.1.2-7). ACCB is used in order to avoid disturbing the contents of ACCA. The ORAA instruction is then

used to replace the row bit positions with ones (see Figure 5-1.1.2-8) and the resulting word is written back into

PIRB.

The time required for the MPU to perform the steps just described is very short compared to typical

minimum switch closure times. Therefore, the switch is still closed and the conditions are as shown in Figure

5-1. 1.2-7. The column zero that was preserved and written back into PIRB is coupled through the still closed

switch and applies a low signal to a row input now established as an input. PIRB is immediately re-read back

into ACCA by the MPU. For a single key closure, the word thus captured must be one of the sixteen stored in

memory locations 0143 to 0152 in the Assembly Listing of Figure 5-1.1.2-3. The first four values are also

illustrated in Figure 5-1.1.2-9.

The MPU sequentially compares the contents of ACCA to the lookup table (stored in ROM)

containing the words until a match is obtained. ACCB is incremented following each comparison; when the

match occurs, a binary number corresponding to the key number is stored in ACCB and is available for transfer

to a buffer location in RAM.

If a match is obtained, the MPU stores the key count, re-initializes the PIA, and returns from the

service routine interrupt. If no match is obtained, it is assumed that the data is bad and a Bad Read subroutine is

called. Since only data corresponding to valid single key closures is stored in the lookup table, this approach

automatically takes care of both multiple key closures and inadvertent noise.

The specific action to be taken following a bad read is not shown since it depends on the particular

application. In many practical designs, affirmative action such as an audible approval tone is taken following

the entry of good data. The Bad Read subroutine in this case would merely disable the approval sequence. A

different routine would be used in designs requiring positive indication (blinking light, tone, etc.) of bad data.

In either case, the Bad Read sequence should end with a return from subroutine instruction, RTS, so that the

PIA will be properly re-initialized.

Many mechanical switches exhibit contact bounce when they are initially closed. A bad read will

result if the MPU reads PIRB during one of the bounce intervals. This problem can be avoided by inserting a

suitable delay routine (see Section 2-2 for examples) as the initial steps of the keyboard service routine. The

duration of the bounce varies with switch design but is normally in the range of one millisecond or less. The

keyboard manufacturer should be able to provide specific information.

The extension of this procedure to larger keyboards is straight forward. For instance, a sixty-four

key matrix could be implemented using both halves of a PIA and similar programming techniques.

b7 b6 b5 b4 b3 b2 b1 bO

ACCA I 1 I 0 I 1 I 1 I 0 I 0 I 0 I 0 I
CONSTANT = OFI 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I
ORA #OF 1 I 0 I 1 I 1 I 1 I 1 I 1 I 1 I

FIGURE 5-1.1.2-8: Generation of Output Word

5-11

ACCA

~ KO
to
~ K1
0..

~ K2
o
o K3
-J •

b7 b6 b5 b4 b3 b2 b1 bO

1 1 1 0 1 1 1 0

1 1 0 1 1 1 1 0

1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 0

FIGURE 5-1.1.2-9: Lookup Table

5-1.2 SCANNING WAND FOR CAPTURING DATA FROM PRINTED SYMBOLS

The use of scanning techniques to retrieve information from machine readable labels, badges, credit

cards, etc., is gaining acceptance in a wide variety of business machine applications. This is due in large part to

the development and acceptance of industry-wide standards. The simultaneous growth of systems based on

microprocessors will give additional impetus to this trend.

Few tasks are as made-to-order for an MPU as the conversion of scanned data to a usable format. The

specifications for both magnetic and optical recording formats were designed to allow for either mechanical or

manual capture techniques. In addition, it was desirable for the labels to be humanly readable and verifiable in

case of equipment failure. The net result is that emphasis is given to the human aspects of the problem rather

than simplification of the electronics involved.

5-1.2.1 Universal Product Code (UP C) Symbol

The grocery industry's Universal Product Code (UPC) symbol is an excellent example of the genre.

Labels similar to the example shown in Figure 5-1.2.1-1 are beginning to appear on virtually every kind of retail

grocery product. They are intended to facilitate the use of automatic check stand equipment and are the result of

an industry-wide effort to improve productivity in the grocery industry!. The symbol is optimized for ease of

printing, reading, and manually checking results. The symbol is designed to minimize the cost of marking by

the manufacturers and their suppliers. The symbol size is infinitely variable to accommodate the ranges in

quality achievable by various printing processes. It can be uniformly magnified or reduced from the nominal

size without significantly affecting the degree to which it can be scanned. An example of the human orientation

is indicated by the error check calculation described in Section 5-1.2.5. The error check is an involved addition,

multiplication, and modulo-ten reduction, a formidable task for conventional digital IC's, but relatively simple

for people (and microprocessors).

A suitable control method depends on both the characteristics of the symbol and the scanning

technique that is used. The symbol is designed for use with either fixed position scanners (label passes by on a

conveyor belt) or handheld wands. The" wandable" approach will, in general, be more difficult to implement

since allowance must be made for variable human scanning techniques. The control program described in this

section is suitable for either but was developed specifically for use with handheld wands.

A 10-digit numbering system was adopted by the grocery industry for product identification. Each

participating supplier is issued a 5-digit manufacturer's identification number. The remaining 5 digits are

assigned to generic product categories, that is, tomato soup, canned peas, tissue paper, etc. , each have specific

numbers regardless of brand name. This 10-digit number2 is combined with error checking features and

encoded into a symbol similar to that shown in Figure 5-1.2.1-2.

The standard symbol consists of a series of parallel light and dark bars of different widths. The

symbol will be referred to as the' 'bar code" to distinguish it from the" UPC code" that it represents. The basic

characteristics of the bar code are summarized in Figures 5-1.2.1-2 and 5-1.2.1-3 and the following list of

features from the UPC specification:

1 Information concerning the UPC symbol described in this Section is from the upe Symbol Specification obtained from: Distribution
Number Bank, 1725 K Street N. W., Washington, D.C. (Telephone- (202)833-1134), Administrator of the Universal Product Code
and UPC Symbol for the Uniform Grocery Product Code Council.

2 Although the symbol is primarily designed for these 1 O-digit codes, it also includes growth capacity for longer codes to facilitate future
compatibility in other distribution industries.

5-12

... rder.
~dr payable

.• n good only in
•• ates. Allow 4 to 6

... ,ivery. Offer void where
.... (1. restricted or license re-

.•• red. Offer expires ~June 30. 1975.

heck or
'or:
leenex®
Is from
s.

leenex®
Delsey® 0

.V·CLARK CORP .• NEENAH. WIS. 54956 MADE IN U.S.A. All RIGHTS RESERVED.

FIGURE 5-1.2.1-1 UPC Symbol from Box of Kleenex1 Tissues
Registered trademark of Kimberly-Clark Corp., Neenah, Wis.

Right 5 Characters of Code

Right·Hand
Left 5 Characters of COde~Tall Center ~ .r 1 Bar Modulo

Pattern
Number System (01010) Check
Character Character

~'d S" .,,"'" (101)

Number System I

I
I
I

I

I
I

I Right Light Margin
I Minimum 7 Modules Wide

~/
I

I
I
I
I
I
I
I
I
I ;;;;;j~ j!~~12 345 67890

\

~ Characters Per
OCR·B Font

~

11-Character r4\ 10"\. Regular

Number
System:

H Or N
National Health· R D National

4

Number System
Character Format

3 3

H N

NDC Code ~ Or W [D Or U UPC Code

Related Items Code I C Drug Code
Digit Co rrespond:..~

ead Di i ing to L g t
if NDC Grows to
6·Digit Labeler
Code

R D
I C

FIGURE 5-1.2.1-2: UPC Standard Symbol

5-13

0

Light Modu

7 Modules
2 Bars/2 Spaces

The Above
Character
Represents a
Left-Hand "6"
Which is
Encoded 0101111

7 Modules
2 Bars/2 Spaces

The Above
Character
Represents a
Left-Hand "0"
Which is
Encoded 0001101

FIGURE 5-1.2.1-3: UPC Character Structure

• Series of light and dark parallel bars (30 dark and 29 light for any 10-character code) with a light

margin on each side.

• Overall shape is rectangular.

• Each character or digit of a code is represented by 2 dark bars and 2 light spaces.

• Each character is made up of 7 data elements; a data element hereinafter will be called a
"module. "

• A module may be dark or light.

• A bar may be made up of 1, 2, 3, or 4 dark modules, as shown in Figure 5-1.2.1-3.

• Each character is independent.

• The symbol also includes two characters beyond the 10 needed to encode the UPC.

One character, a modulo check character (see Section 5-1.2.5 for details) is embedded in the

right-most position of the symbol to insure a high level of reading reliability. (See Figure

5-1.2.1-2.)

Another character, embedded in the left-most position of the symbol, shows which number

system a particular symbol encodes. Concurrent number sets are used to accommodate such

things as meat and produce without the need to set aside code numbers in the UPC.

5-14

• The symbol prevents tampering. Unauthorized addition of lines is readily detectable by scanning

devices. In the same way, poor printing will not result in scanning devices reading a wrong

number. This is facilitated by multiple error-detecting features which allow scanner designers to

build equipment to automatically detect and reject a very poorly printed symbol or one that has

been tampered with.

• The symbol also incorporates and presents the code number in a human-readable form.

The nominal dimensions of a typical symbol (as printed on a product) are shown in Figure 5-1.2.1-4.

The dark and light bars are built up from nominal O.OI30-inch modules, however, some of the characters

involve undersize dark bars and oversize light spaces. There are 95 modules in the symbol itself and 18 modules

in the white marginal guard bands.

Starting at the left side of the symbol, it is encoded first with" guard bars", then a number system

character (' '0" in the figure) followed by five UPC characters on the left side of the center' 'guard bars. " To the

right of the center bars is the remaining five UPC characters followed by a modulo ten check character. Finally,

the same guard bar pattern is repeated on the right-hand side.

y

rimllll
,---

I
I

l--b
: I

I
1

~.
I' X

.039
1
~

I

I

<t.

i 1.469 f--- ----~---~~-~~-, ----------------~-------'~'-----------

NOTES

ITl

~
(6X) ',0910 MAY VARY!.0005 FROM X-Xl TOLERANCES APPLY
(6X) .0910 MAY VARY! .0005 FROM Y-Y) TO ARTWORK ONLY

NUMBERS ARE OCR-B

FIGURE 5-1.2.1-4: Nominal Dimensions of Printed UPC Symbol

5-15

o
o
~

o
N

3

On the left-to-right basis, each character on the left side of the center bars begins with a light space

and ends with a dark bar; characters to the right of the center bars begin with a dark bar and end with a light

space. Dark modules represent 1 's while light modules represent O's. The number of dark modules per

character on the left side is always three or five; the number of dark modules is always two or four for right-hand

characters. Encoding is identical for all similar characters on a given side of the symbol, whether it is a number

system character, UPC Character, or check character. The first two bars at either end encode the guard bar

pattern, 101. The guard bars in the center encode as 01010. The corresponding encodation for the characters is

summarized in Figure 5-1.2.1-5.

Since the UPC number encoded in the symbol does not include price information, the primary

objective is to recover the 10-digit number and store it in RAM where it can be used by a price lookup routine.

As is usually the case in MPU -based systems, stripping of the extraneous information, performing error checks

and recovering the data can be accomplished in a variety of ways. A software oriented approach was selected in

this case; external hardware processing is held to a minimum.

Decimal
Value

o
1
2
3
4
5
6
7
8
9

Left
Characters

(Odd Parity - 0)

0001101
0011001
0010011
0111101
0100011
0110001
0101111
0111011
0110111
0001011

Right
Characters

(Even Parity - E)

1110010
1100110
1101100
1000010
0011100
0001110
1010000
1000100
1001000
1110100

FIGURE 5.1.2.1-5 Encoding For UPC Characters

5-1.2.2 Hardware Requirements

For the wand used in this application, the data is captured by using a photo-cell to detect the variation

in reflectivity as a light source as passed across the light (high reflectivity) and dark (low reflectivity) areas on

the symbol. Circuitry suitable for recovering the resulting analog signal is shown in Figure 5-1.2.2-1. Two

MC 1747 Dual Operational Amplifiers are used to amplify and condition the photo-cell output. The conditioned

output provides a TTL level logic " 1" while the wand is scanning black and a logic' '0" while scanning white.

This is all the external hardware that is required; the MPU can perform all additional processing.

5-16

+12 V

10 k

...---...... -------1-<: 1 k

-5
100 k

6.8 k

-= -=

r
I

-=

, Clip on Photo-cell
Assembly Port No.4
Spec. Unknown

10 k

-5
39051

FIGURE 5-1.2.2-1 UPC Wand Signal Conditioning Circuitry

5-17

5-1.2.3 Data Recovery Technique

The output of the conditioning circuitry is effectively an asynchronous waveform with a widely

variable and unknown data rate. An initial decision must be made as to what synchronization techniques will be

used and what range of scanning rates can be expected. Lacking more specific information, it was deemed

reasonable to expect rates from one-half inch per second to fifty inches per second.

Having a uniform constant pattern at the beginning and middle of each scan suggests that data

recovery could be accomplished as follows: (1) Assume that the data rate is constant; (2) use the known initial

guard bar pattern to establish a sampling rate; (3) use that rate to sample the data at the expected midpoint of

each module for the next six characters; (4) use the middle guard bar to update the sampling rate; (5) sample the

last six characters at the expected module midpoints.

A second data recovery method that does not require a synchronization technique could also be used:

(1) Again assume a reasonably constant data rate during the scan; (2) measure and store in memory the time

between transitions for an entire scan; (3) calculate the total time and divide it by the known number of modules

per symbol (95) to determine an "average" module time; (4) use this and.a comparison of "bar widths" (time

between adjacent transitions) to one another; (5) use ratios established by (4) to determine bit patterns for each

character.

An analysis of the expected rate variations, symbol printing tolerances, and computing complexity

indicated that either of these two methods would lead tomarginal results. A major difficulty lies in the way the

module patterns for the individual characters are specified (see Figure 5-1. 2 .3-1). It is importantto note thatthe

dimensional specifications for each character are referenced to the edge of the pattern nearest the middle of the

symbol. This means that left-hand characters are specified from their right edge and the right-hand characters

are specified from their left edge. In addition, a printing tolerance (see Figure 5-1.2.3-2) is specified that

swamps the tolerances shown in Figure 5-1.2.3-1. For example, the artwork tolerance of ±0.0002 inches is lost

in the tolerance of 0.013 ± 00397 inches that is permitted for printing a nominal module width. The net result is

that legitimate symbols can have both undersize and oversize bars. This is illustrated in Figure 5-1.2.3-3, where

a worst case situation for a left-hand "zero" is shown.

There, the right-hand black bar could be only 0.010 inches wide and still be in tolerance. Since the

specification requires that the combination of the right -hand bar and the adjacent white bar be 0.0260 ± 0.0002

inches, this implies that the white bar could be 0.016 inches wide and still be in tolerance. Variations of this

magnitude were observed when actual symbols on a variety of products were examined.

When the allowable dimensional variations across an entire symbol are considered, neither of the

two methods proposed would give reliable results. The procedure finally selected incorporates features from

both methods.

5-1.2.4 WAND/MPU Interface

Obtaining a record of the time between transitions is the first step in capturing the data. This raises

the question of how the waveform recovered by the wand is to be entered into the MPU system. Since it is a

5-18

I LEFT RIGHT I

I II 0 1111
! III III:
~ ~

~ I I II
.~ .~650

I I
I I

.0520 .0780

I I I I I
I I
I I : I. I •• :

'~I.~ot Uk : I I:
.0390 .0520

I I

.0640 ~0790
I. I

I
I

I : 1' 12 •• 1

~oi5~j~ ~l ~
\0 .0520 _ L0390

I I I

.0640 _

I
I

1 •• 3

~
.o~lo »1

~_ ~0780
I I
I I

.0910 REF I .0910 REF ill

LEFT

: •• 4

.0Jlkl
:I'

.0650
--I

.07801

I I

RIGHT .. :
~
j,.L~o

I I
I

.0650 ,
I
I

I :
II I

.1113b .1
5 •• '

II '
.052

1
0

I
.0780

I
I

: I

l.loll!o

~
I

.Oh90
II

I
.0780
I
I
I
I
I

II. 6 II :

~~ I
.0780

I
I
I
I
I
I

1.1 7

.0Holl
~~ .03'90

I'

.0910 REF ill

11.02:60

1.0
1

390
I

I I

tb!2~
11 .. 6520

I I
I

.0640

REF ill

LEFT

: •• 8

.04Jl1 1

~~I
.052b

I'
.07901

I

: .1
.0; 6Jlj
~03~011

.052~ .1

I
9 •• 1

11.!0~90
II.b520
~

I
.0650

I

NOTE

m
~

TYPICAL WIDTH OF ONE CHARACTER
ARTWORK TOLERANCES ± .0002

.0910 REF ill I : .0910 REF ill

II
LEFT~ I "11
EDGE 'l .~

: ~
: .0390~1
I
~MIN

LEFT GUARD

II I
.0130 ,Ill VI RIGHT ~ EOGE

1 •. 0260 I

~ :
I
.130 - MIN

RIGHT GUARD

~
START OF ADJACENT
CHARACTERS

1II1

~~i I I
.0130 I I

I II:
.02601 ~ Ii .0390' ,

I I

I I I I .0130
I

.0650 : I
CENTER PATTERN

FIGURE 5-1.2.3-·1: Dimensioning for Standard Symbol Characters

Module Width Magnification Total Bar-Width Tolerance
(Thousandths of an Inch) Factor (Thousandths of an Inch)

11 .85 ±2
12 .92 ±3
13 1.00 ± 3.97
14 1.08 ±4.4
15 1.15 ± 4.9
16 1.23 ±5.4
17 1.30 ± 5.8
18 1.38 ± 6.3
19 1.46 ± 6.8
20 1.54 ± 7.2
21 1.62 ± 7.7
22 1.69 ± 8.2
23 1.77 ± 8.6
24 1.84 ± 9.1
25 1.92 ± 9.6

FIGURE 5.1.2.3-2 UPC Symbol Printing Tolerances

14----------------Nominal Character Width: .091" ----------------;-.t

Nominal MOdule
Width: .013"

3

14---- .026" ± .002"----II~

(Approximately 1 00 x Nominal Size)

FIGURE 5-1.2.3·3 Worst Case Printing Tolerances for "Lefthand 0".

5·20

serial stream and there are no handshaking requirements, only a single PIA input to the MPU is involved. The

data can be introduced either through an interrupt line[CA(B)1,CA(B)2] or one of the data lines, PA(B)O

-PA(B)7. Input through a data line was selected based on the system flow shown in Figure 5-1.1.4-1. The

wand is assumed to be one of the two manual input devices (the other is a keyboard) to a transaction terminal.

The terminal? s executive program enters ;i polling loop when it is willing to accept data3 • This approach

assumes that both devices will not be in use at the same time, hence, there is no need to handle the incoming data

on an interrupt driven basis.

3The relationship of the wand routines to system flow is duscussed in greater detail in Section 6-4.2.4.

Power On ,
System
Start Up

Initial ization

t
New - Transaction - Initial ization ,
New - Item - Initialization ,

_J Keyboard/ \ Wand

Load \
Wand

J Transaction
Poll

Data On
Cassette i KYBD ,r ..

Keyboard Wand
Decode Interpreter

11

FGO(Fail Safe

.~
Interlock

GO ,.
-Process - Disk UPC

Data Lookup
Continue -Entry -

Item Entry I
Complete

Transaction Entry

Complete

FIGURE 5-1.2.4-1: Transaction Terminal Flow Diagram

5-21

Initialization

Item
Entry

5-1.2.5 Data Recovery Control Program

3 The encoded wavefore enters the MPU via the seventh bit, PB7, on the B side of the Wand PIA.

Selecting bit 7, the sign bit, provides the simplest means of testing to see if the current status of the waveform is

one or zero.

Recovery of the UPC data consists of the following steps:

(1) Initialization - XKIWND - (Figures 5-1.2.5-1 and 5-1.2.5-2) Clears the various memory

locations that will be used for buffers and data storage. This routine is entered each time a UPC

Code is to be read.

No

No

Get Starting Address of
Memory block $00-$75

I nto I ndex Register

Use Indexed Addressing
to clear current location.

Test for finished

Move to starting Address
of next block to be cleared

($102-$122)

Use Indexed Addressing
to clear current location.

Test for finished

FIGURE 5-1.2.5-1 Flow Chart for XKIWNDlnitialization Routine

5-22

00010
000;::0

01) 0.:: 1

00040
00050
00060
00070
000:::0

001 00
00110
0Ol;~O

00130
0014 1:1

nAt'1 1.1.1 V I 1.1.1 t·i II
:B5EB Of:::G $B5EB

:B5EF.: CE (lOOD LIt>-=: ~~$ on GET ·S:T~'Tt·~I::; FlDDP OF BUFFEP

:B5EE 6F 00 1,.'CLP.t:L CLI-? ::-:: ClEAj;' CIJPF.:E,··1T LOCAT I or·i
B5FO o!::: I t·1::-=: t·10'·/E TO t'~E>;: r LDeAT IO~·1
:B5F1 !:::C 0076 I::F'::-=: ~~~I;7E, F I t'i t :~:HED?
:B5F4 2E~ F'-"=' Bi·~t: tlJClPBl j'-10 COt-iTUE u r'ES ,GC t·i::·::T :ELK '-'

, n

B5F6 CE 01 OE: I_It::-=: .~~~I; 1 02 GET ·S:T~~T ADD~: OF tt~:~T BLDCV

B5F'3 6F 00 !..JCLP:B2 ClF.: >:: CLEAF.: CUPPEr·iT LOCAT I Ot·~
B5FB f l ':' .. "-' I t·i::-:: t'10 '",'E TO N::<T lOCAT I Ot"i
"E:5FC ac 012-:; ;::·F'>=: ~~$1 i::3 F I t'i I :S:HED?
B5~F 2Et F'-' t:[Bt-iE tdCLPB;:: r'iC , COt'~T I t'iU,: :~·EAPCH I t·iG

B601 :::9 j;:TS '-('E:S: !I F:E TUI:;::t·i TO E::·::ECUT I '·lE

FIGURE 5-1.2.5-2: XKIWND Assembly Listing

(2) Data Recovery - YKWAND - (Figure 5-1.2.5-3 and 5-1.2.5-4) This routine is entered from

the executive's Keyboard/Wand Interrogation loop. The Interrogation loop continually tests bit

7 of XP4DRB, the PIA Data Register until a "zero" is encountered. The zero is assumed to

result from reading the high reflectivity white space caused by the wand passing across the white

guard band at the edge of a symbol. The wand output will normally be high at other times. For

example, the wand just laying on a counter is equivalent to reading' 'black" or some other low

reflectivity surface. The objective of YKW AND is to measure the time between transitions and

store the results in RAM memory.

(3) Data Processing - WSORT - (Figures 5-1.2.5-5 and 5-1.2.5-6) The objective ofWSORT is

to reduce the timing data captured during YKW AND to set up UPC characters in binary format.

There are several additional routines associated with recovering the data: WERCHK tests the data to

see if it is a valid UPC number by performing an error check based on the check character included in the

symbol; (2) WBCDPK converts the data into packed BCD (two digits per byte), the format required for the

price look-up routine; (3) WBADRD, the error processing routine, may be called for a variety of reasons during

execution of YKWAND, WSORT, WCDTST, or WP ACK. Each of these routines include validation tests and

will call WBADRD if a bad read occurs. The action to be taken following a bad read depends on the particular

application and may be performed by either the MPU or the human operator. Therefore, no specific WBADRD

routine is included in this description. The system described in Chapter 6 generates an audible" approval" tone

for "good data." In this case, the WBADRD routine could be nothing more than a deletion of the approval

tone, indicating that either another scan or manual entry is required.

Details of the YKWAND routine are shown in the Flow Chart and Assembly Listing of Figures

5-1.2.5-3 and 5-1.2.5-4, respectively. Following entry from the Keyboard/Wand Interrogation Loop, bit 7 of

the PIA Register (XP4DRB) is again tested to insure that the data is still low. If the entry was caused by a short

5-23

VI

N
~

Increment
Timer.

WBDRLP

YKWAND

Enter from
I nterrogation Loop

Yes

Yes (Reading White)

Start Timer

No Yes

Increment
Storage Buff. Addr.

Incr. Bar Count
Set "From Black"

I ncr. Space Count
Reset "From Black"

Store Time per
Storage Buffer

Address.

WSTRGE

Figure 5-1.2.5-3 Flow Chart for YKWAND Routine

Start Timer.

Yes

WHITLP

Increment
Timer.

00010
00010
00010
00020
000:3 I) B60C
00040
00050
00060

nAr'1 >::KI.,.lAt·~D

OPT LIST
• r'iAt'1E: >::KI).lAt·~D
• PEI",I: 1. 2 1.3 74

ope; $B60C
•
•••••••••••••••••••• WAND ROUTINE ••••••••••••••
•

00080 •
00090 B60C 7E B610 XKWAND JMP
00095 B60F 39 XKIWND RTS
o Oc~8 (I
00290
0030r
00:31
00:32
0033
0034
0035
0036
00370
003::: I)
003::: 1
003::;:2
00:;::::3
00:::::::4
00:;:'30
00400
o 04c~ 0
004:30
00440
00460
00470
004::;: (I
004'30
00500
00510
00520
00530

E:61 (I

B613
B61E.
B61 ':;.
B61C
B61F
:E:E.22

B624
H62?
B62A

E:62C
B62F
B6:;: 1
E:E.:~:2

7F
7F
?F
?F
?F
FE.
2B

CE
F6
2B

~::C
-:,.::-......
08
20

01 06
01 04
01 05
01 14
01 15
COl 0
30

0000
COlO
OS

FFOO
-:. ~-:, L- __ 1

F'-;:' '-'

•
•
•
•
•
•
• •
•
•
.... ·KI.IJAr·iD elR

•
t..JBDRLP

•
•
•

eLF.:
CLF.~

eLF.:
ClR
LDA B
Bt'1 I

LD>::
LDA B
BP1 I

:S:ET

CP::<
BEO
I t'i::-::
BF.:A

Et-iTF.:\' PO I r-1T:S:
NO INITIALIZATION

THIS PART OF THE ROUTINE IS THE
DATA GATHERING SECT. OF XKWAND.
IT READS THE UPC CODED LABEL
AS 60 BLACK AND WHITE BARS AND
STORES THE SCANNING TIME OF EACH
BAR OR SPACE IN LOCATIONS $00-$?5

1.I.lBPC~iT

I.I"FLAG
1.1) :S: P C ~~ T
I.,J:S:E:FAIt
I . .JSBFAD+ 1
;:'::P2D~:A

!..JBAD

~~$OOOO

::'::P2DF.:A
I.I"BLKLP

t'1 A >:: I t'1 U t'1

~~$FF 0 0
t,JBAII

I.I.lBIIPLP

L I r'iE lOI .. .! ~ SPACE?
t'iO: EF.: F.: OF.:

· E:S:
LINE HIGH~ BAR?
'r'ES: TO T I 1'1 I t'H3 BAF.: LOOP

T I r'1E ALLO!.,.lEII Ot~ :B 0 F.~ It E F.~

t·~O : GUAF.~It E:At-iIl DELAY
TOO LDt'H:i Dt'i GUAPD BAt1D:

LOOP BACK

EF.:F.~

FIGURE 5-1.2.5-4: YKWAND Assembly Listing (Sheet 1 of 2)

5-25

00540 •
00550 B634 CE 0000 !.dBLKLP LD::-:; ~~$OOOO BLACK BA~~ TIt'lIt'H3 LOOP
00560 E:E.:::7 F6 COl (I 1,t.lBLI<Ll LIlA B ::<P2.DRA L 1 t'iE LOhJ, :S:PACE?
(105:::0 B63A 2A OF BPL 1 • .JHS1 \'E:S: : Et'1D LOOP
o 05'j (I :863C :B6 (11 C1E, LDA A I,IJBPCNT t'10
00600 E:63F :::: 1 lE Ct'lF' A ~~$1 E HAP COUt'iT = 30?
00610 BEAl .-.-, c.. 4E BEO I.I.I:S:ORT ··f'E:S: : Et'iD SCAt-~
00620 •
00630 '* :S:ET t'lA>:: I MUt'l T I,..lE ALLOI,.jEII Ot'i BLK BAF.:
00640 •
00650 £:643 :::1:: OB2';' CP;:.:: ~~$ OE:2'j NO, T I NEF.~ = 4::-:;U?
00660 .B646 2'{ OC BEG! 1 .. .tBAD 'ES
00670 B64::: 08 I t'i::-:: t'iO
00680 B64'j 20 EC BPA I.I.lBLKL 1 LOOP BACK
0069t"l •
00"70 B64:B 7C 01 Ot. I.I.lH:S: 1 I t'1C 1.1.1 B F.: e t'i T Inc BAR COU,..iT
00'('1 B64E 7C 0104 INC I.I.lFLAG SET " FF.:O,..l :BLACI<" FLAG
00"72 B651 7E F.:675 .Jr'lF' 1).1 :S: T F.: G E
no?:::: •

074 B654 :;::F 1.I.lBAD Sl.a.I I
0751. •
0760 B655 CE 0000 I.IJH I TLP LD::-:: ~~$OOOO I ... IHITE BAF.: TIt'lItH3 LOOP
0770 B65::: F6 COlO 1.I.lH I TL 1 LDA B ;:-:;P2DF.:A L I t'iE HIGH, BAR?
0790 ,B65E: 2E: OF Bt'l I 1 .. .IH:5:2 'r'E~S: : Et'iD LOOP
0:::00 B65I1 B6 01 05 LIlA A 1 ... 1 S F' C t'i T t'iO
0::: 10 B660 :=:1 lE Ct'lF A ~~$lE SPACE COUt-1T = 30?
0:::20 B662 ·:·'7 I_I FO BEG! 1.I.lBAD · ... 'E:S: , TOO r'lAt'i\' :S:F'ACES: ERF.~O

(10:::3 (I •
00:::40 • :S:ET r'lA;:':; I t'1U,..1 T I~1E ALLOI.I.IED Ot·~ I.a.lHITE BAF.~
I) 0::::5 n •
00:::6 £:664 ::!C 1400 CP::< ~~$1400 NO, T I ~1EF.:=7>::U?
00:::7 B667 .-., c.. EE: BEG! 1 .. ,1 BAn ·ES
00:::::: B669 0::: It·,,::-=: NO
00:::9 B66A 20 EC BF.~A I.aJHITL1
oo·~o •
0091 E:66C ?C 0105 1..,IHS2 I t·~C I .. .I:S:PC"'~T I t'iC :~:PACE COUt-iT
0092 B66F 7F 0104 CLF.~ I .. JFLAG PE:S:ET " FF.~O"'1 BLACK" FLAG
00'33 B672 7E B675 .-'NP I .. ./:S:TF.:GE
n0940 •

0950 E:E.75 FF 0102 1 ... I:S:TRGE :::T>:: 1 ... IItUrlBF LOAIt A AtiIt B
09';:,0 E:E.?:::: FE 0114 LIt;:.:: 1.I.lSE:FAIt I ... IITH COt'iTEtiTS OF
0970 B6?E: B6 0102 LDA A 1 .. .IItUt'l:E:F I tiItE;:':: F.~EG. (T I t'lEF.~)
09:::0 B67E F6 0103 LItA B 1 .. .IItUrlE:F + 1
0'j'30 B681 A'? 00 :S:TA A0.1

1000 E:E.::::~: E7 01 :~:TA B $1, ::,:: S:TDF.:E T II"1ER I ti STORAGE BUFF
1020 E:E.:::5 08 I ~i>:: I riCREI"lEtiT STOF.~AGE

./1030 E:E.:::E. 08 In::-=: BUFFEF.~ AItDF.~ES::S:

01040 BE.!:!? FF 0114 :S:T::-:: 1 .. .ISE:FAIt
01050 E:EI:=:A 7It 0104 T:S:T I.~FLAG TEST FLAt::;
01060 BE-SIt 27 A5 BEG! I .. .IE:LKLP .JU,..lP TO CORF.~ECT
01070 E:6:::F 20 C4 BF.:A I .. .IHITLP TI,.,11,..iG LOOP

FIGURE 5-1.2.5-4: YKWAND Assembly Listing (Sheet 2 of 2)

5-26

VI

N
-...l

WODDBR

Yes

Shift a Zero
into WCHBUF

AddWMODTM
to WTSAMP.

Shift a One
into WCHBUF

Shift a One
into WCHBUF

Addr. 1st Group of
4. Reset WF612.

Set Addr (WSBFAD=06).
Initialize WCBFAD.

WEVNBR

Load Bar
with Mod. time

Shift a Zero
into WCHBUF

Set WF712
Set WSBFAD

FIGURE 5-1.2.5-5 Flow Chart for WSORT Routine

Set 4 Bar End*
Values (WBEN D)

Determine WMODTM,
1st WTSAMP.

* End #1 = T me for Bar 1;
End #2 = T me for 1 st 2 Bars;
End #3 = T me for 1 st 3 Bars;
End #4 = T me for all 4 Bars;

Yes

Addr. Next Char. Buff;
Incr. Char. Count;

Addr. Next Group of 4;

01:~:20 •
01330 •
01340 •
01350 • • :S:ECT IOt-i "'_IJSOF.:T" •
01360 •
01370 • THIS PA~:T OF THE POUT I ~iE U:~:E:S:

013:::0 • THE DATA I ~i ~:A~1 $00-$75 At-iD

01390 • DEC IPHEF.::S: IT I ~iTD 12 7-BIT

01400 • E: I t-i A F.~ 1.,.loPDS t,.IHICH AF.:E CODED

01410 • A:S: Ot-iE OF THE UPC CHAF.:ACTEF.:

01420 • CODES At'iD LOADED It-iTO I ... I:S:TGBF

(1430 • A 12 B'r'TE BUFFEF.:

1440 •
1450 B691 CE 0006 1.1.i :~: 0 F.~ T LD>:: ~~E. INIT DATA TO :S:TAF.:T

1451 B6'34 FF 0114 :s:r::-:; I.IJ:S:BFAD AFTEF.: GUAF.:It F.:F.IF.: :s:
1470 E:E.'3(' 7F 0104 CLF.: 1.1.IF712 ~:E:S:ET FLAG 7-12

1480 B6'31A CE 0116 LD::-=: ~~I.,J:S:TGBF I ~i IT CHAF.:ACTEF.: BUFFEF.:

J 14'3 0 B6'3D FF 0102 ST::< 1.,.lCBFAD ADDF.:ES:S:
015:3 -, B6AO 7F 0106 eLF.: I.dCHPCT CLEAF.: CHAF.:ACTEP COUr-iT

0154 •
0155 B6A:::: FE 1 14 I.I.lSPTLP LD>:: I.,.I:S:BFAD :S:ET 1 .. .I:BEnD~~ VALUE:S:

0156 B6A6 AE. 0 LItA A >::
0157 B6AS E6 1 LIlA B $1 , ::<
0.15::: B6AA I'-:=' '1 lOS STA A /. • ./BEt"iD 1
015'3u B6AD F7 109 :S:TA E: I.a.iBEt-iD 1 + 1
01600 B6E:O EB 1":' - '-' ADD B ~I; ::;: , ;:.:;
01610 B6B2 A9)2 ADC A $2, >::
01620 B6B4 E'-:=' '1 010A STA A I .. JBEt·iD2
01630 E:E,:B7 F7 C110£; :::TA B I .. JBEnD2+ 1
(11 E.40 BE.:BA EE: 05 AnD B ~I;5, ::-::
(11650 B6BC A'3 04 AIIC A $4, >::

1660 B6BE I'-:=' 'I 010C 'S:TA A 1.I'!£:Et"iD3
1670 B6Cl F7 01 OD :~:TA B i.dBEt"iD3+ 1
1680 B6C4 EB 07 ADD B ~t; or, >::
16'30 B6C6 A'3 OE. ADe A $6, >-::

1700 B6C::: E'::-'I 01 OE STA A I.rJBEnD4
1710 B6CB F7 010F :S:TA B 1.,.IBEt-iD4+ 1

'-'1720 •
I) 17:3 0 B6CE '37 DE. STA A ;:':;KDi·/t·iD :S:ET DIVIDEND
01740 B6DO D7 D? '::TA F.' .' ;:-:; K It 1",1 ~1 D + 1

01750 B6It2 :::6 0"7 LIlA A ~~$ 07
I) 17E, (I B6It4 97 It5 STA A ::-::KD\l:::F.: :~:ET D I 1.,,1 I :S: 0 F.:

01770 :B6DE. BD BA53 J:~:P ;:·:;KD I VD II 1 1
,.,1 I DE B..,.' "('

01 7:::: 0 .BE-D'3 D6 D'3 LIlA B >::KOUDT+ 1 F.~ECD,·.,IE~: A t·~ :S: 1.,.1 E F.:
01 7'30 B6DB 7F 0110 CLP 1.I.it·10DT ~1 LOAD r'1DDULE T I t'lE BUF.
01:::00 B6DE F-:" .. 01 11 -~:TA B I.,Jr·lDDTt·1+ 1
01::::10 B6El 4F elF.: A D I I ••• ! I DE E"'" ' , 2
(11 :::2 (I B6EE~ 56 ~:DF.: B
01::::30 E:6E3 B? 01 12 :~:TA A I.lJTSA~lP LOAD SAt·1P. T I t'lE BUF.
01840 B6E6 F? 01 1-:' '-' :S:TA B I.lJT:~:A,",1P+ 1 1 .. .11 TH I r-1 I AL 1.,.IALUE

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 1 of 3)

5-28

01::::50
01::::60
01::;:70
01::;:80
01890 B6E9 B6 0113
01900 B6EC 44
01910 B6ED BE 0113
01920 B6FO B? 0107

•
• • •

ADJUSTMENT TEST: IS ONE OF THE
BARS DR SPACES TOO NARROW?

LDA A
LSF.: A
ADD A
:S:TA A

I.I.ITSAMP+ 1

WTSAMP+l CALCULATE 3/4 OF MODULE T
W34MOD STORE FOR USE

01930 •
01940 B6F3 FE 0114
01950 B6F6 FE. 0111
01960 B6F9 B6 0107
01970
019:::: (I
01':;'90
02000
02020 B6FC 6D 00
020::::0 B6FE 26 0::::
02040 B700 Al 01
02050
0206 -,
0207
020:::
020'3
0210
0211

B702 25 04
B704 E7 01
B706 20 '3B
B70!:: ErD 02
B?OA 26 0:::
BlOC Al 0:3
B70E 25 04

02120 B710 E7 03
02130 B712 20 8F
OE~140 B714 6D 04
02150 B716 26 08
02160 B718 Al 05
02170 B71A 25 04
02180 B71C E7 05
021'30 B71E 20 83
02200 B720 6D 06
02210 B722 26 0'3
02220 B724 Al 07
022:::: I) B72E, 25 05
02240 B728 E7 07
02250 B?2A ?E B6A3

•

LII>-=:
LIlA B
LIlA A

1 .. .1 :S: E: F A II
1).I~1DIITM+ 1
1.,.134t'10D

• IF ANY BAR IS TOO NARROW,THE NOMINAL
• MDIIULE WIIITH IS USEII TO REPLACE IT,
• THIS ALLOWS FOR MORE ACCURATE I1ATA PROC.

TST X CHECK FIRST BAR
E:t'1E 1.1.IC~lP 1
Ct'1P A $1 , >::
BCS 1 •• .ICt·lP 1
:S: TAB :I; 1 , >::
BRA 1 •• ,1SF.:TLP

WCMPI TST $2,X CHECK SECOND BAR
Bt'~E 1 .. .IC~lP2
C~1P A $3, ::-:;
BC:S: I .. JCt'lP2
STA B '1;3.,;:'<
BF.:A I..JSF.:TLP

WCMP2 TST $4,X CHECK THIRD EAR
Bt-1E I..JCt'1P::::
Ct'lP A $5, ::<
BCS I .. JCt'lP:;:
:S:TA B $5, ::<
BRA I..JSRTLP

WCMP3 TST $6,X CHECK FOURTH :E:AF.:
Bt'~E I .. .I0IlDEF.:
cr'lF' A $7, >::
Be'S: I ... IODIIBR
STA B $7, ::<
.Jt'lP I..ISF.:TLP

•
•

Oc~26 0
02270
02280
022'30
0230lj
02310
02320
02330
OC~::::4 0
02350
02::::60
02370
02380

B72D FE 0102 WODDBR LIIX 1. • .lCBFAII LOAD I t-H3 LOOP 1
B730 68 00 ASL
B732 ?D 0104 TST
B?:;:5 27 1 (I
.B737 6C 00
£:?::;::'3 E: I) oe

•

BEl]
I r-iC
:BF.~R

B73B FE 0102 WEVNBR LDX
B73E 68 00 ASL
B740 ?D 0104 TST
B743 26 02 BNE

0;::39 (I B?45 6C (10 Inc

1 .. .IF712
1. • .lH:S::::

i ... IH:S:S

1.I.lCBFAD

i..JF712
i.,JH::::::=:

LOADING LOOF' 2

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 2 of 3)

5-29

02400 •
02410 B747 B6 0112 I ... IHSS LIlA A I .. JTSAt'1P UPDATE S:At'lP. TIME
02420 E:74A F6 o 11 :~: LDA B I .•. ITS:AMP+ 1
024:30 B74I1 FE 0111 ADD E I.~MoIITM+l

02440 B750 E'3 0110 ADC A 1 ... I~loDTM
02450 E:75:3 E·..., . (0112 STA A 1 .•. ITSAt'lP
02460 £:756 F7 0113 :S:TA B 1..,IT:S:Af"lP+ 1
02470 •
02480 E:759 E:E. 0112 LIlA A 1.s.lT:S:Af'olP F IRS:T TES:T
024'30 E:75C F6 01 1'::' '-' LIlA B 1. • .ITSAt·lP+ 1
02500 E:75F Bl 010::: C:I"lP A I,.,IE:EtiII 1
02510 E:762 25 C9 BC:S: 1 .. .IoDIIE:F.: IF TSA~lP <E~iD 1
02520 E:7E.4 26 05 E:t'iE 1, •• IHS'3 IF TSAI"lP> EtiIt 1
025:30 E:7E,6 Fl 010'3 CI"1P E: 1.',IE:ENIll + 1
02540 B769 25 C2 BCS 1,.,10 II II E:F.: IF TSA~lP <EtiIl 1
02550 B76E: :B 1 010A 1, • .IH:5:9 Cr'lP A 1, • .IE:EtiII2
02560 B?6E 25 CE: BC:~: I.a.lE\,lt'iE:f;:: IF TSAt1P <Et.,II2
02570 :B770 26 05 Bt'iE I,..IHSl (I IF TSAMP> EtiD2
025::::0 E:772 Fl 01 OB CI"lP E: 1, • .IBEti Iii.:: + 1
025'30 E:775 25 C4 BCS I..JEVtiE:f;:: IF TSAMP <EtiIl2
02600 E:777 H1 010C 1..,IHS10 Cf"1P A I,..IBEt'i.D:3
02610 :B77A 25 E: 1 BCS I .. JO II DE:f;:: IF TSAI"'P <Et'iIl:~:
02620 E:77C 26 05 Ht-iE 1. • .IHSl 1 IF TSAt'1P> Et'iIl::::
02630 B77E Fl 01 QII CI"lP B I..JBEtiIl::::+ 1
02640 E:7:31 .-.c:: .::.._1 AA BC:S: 1. • .I0IlDE:f;:: IF TSAMP <Ef'iIr3
02650 E:·?:=::~: :B1 010E I,IJHS 11 Ct'lP A 1,I.lBEtiIl4
02660 E:'7:=:E. 25 £::3 BCS 1,IJE\ltiE:P IF TSAf'o'P <EtiIl4
02670 E··..,·-··-· II· .: •• =, 26 05 Bt'~E 1,I.lH:S:13 IF T:S:At'lP> END4
02680 E:7:::A F1 010F Ct'1P .B I.dBEt'iD4+ 1
02690 B?:::II 25 Ae BC:S: 1.1.1 E I.,.' t'i E: P IF TSAt'1P <Et~n4
02700 •
02710 B78F 7C 0103 1,I,IH:::::l:.:: I t,~C l,dCBFAD+ 1 ADItf;:~E:S::S: t'1E:>::T CHAF.~ • BUF.
02720 E:7 132 7C 0106 I t'iC I.t.lCHPCT I t'iC • CHAf;:~ • COU~iT

027:30 B?95 Bt==. 0115 LItA A 1..J:S:BFRIt+ 1 AIInPE:S::S: t'iE::-::T GF.~OUP OF
'02740 £:7'3::: :::E! OS AnI! A ~~~I; (I ::! FDUF.: STFU3E. BUF.
02750 B?9A £.-;:0 'I 0115 STA A l,dS:BFAD+ 1
02760 •
02?70 B79D B6 0106 LIlA A I.,'!CHPCT

~

027:::0 B7AO :::1 06 C~1P A ~~$O6 BEG I t'it'i I t'iG ? TH CHAP. "7·
027'30 B7A2 26 0::: B~iE 1 .. .IH:S:14 t'iO
02800 f:7A4 7C 0104 Inc 1.I.lF712 ""·E:S:, SET FLAG FOF.: 7-12
02810 B7A7 ::!E. 40 LIlA A ~~$4 0 SKIP o ","E F.: GUAF.:D HAPS
02:::20 B7A"::! 1:",7 " 011 :' :S:TA A 1,I.lSBFAD+ 1
Ci2::::~: •
0284 B7Ae B6 0106 1,I.lH:S:14 LItA A 1.,.lCHPCT
02:::5 E:?AF 81 oe cr'1P A ~~$OC FIt'1ISHED 12 TH CHAf;::. ?
02:::6 B7B1 2? 0:3 BEG! I..JHS15 · E:S:
02:::7 E:7E;3 ?E B6A3 Jt'lP 1.1,1 :S: F.: T L P t'iO, LOOP E:ACJ<
028::: E:7B6 20 00 I.IJHS 15 BF.:A 1.,.lPACK GO TO PACK I ~1G S:ECT.
02:::'30 •
02'300 •

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 3 of 3)

5-30

"noise" pulse on the data line, the program causes the MPU to exit to the bad read routine, WBADRD. If the

line is still low , indicating that the wand is passing over a white space, the MPU enters a delay loop, WBDRLP,

to wait for the expected first white-to-black transition.

Exit from the loop occurs when the first black guard bar is encountered or after too much time has

passed for the white space to be a symbol border. The count loaded into the Index Register determines a number

of passes through the 23 microsecond waiting loop and hence the maximum time that will be spent on white

before exiting to the bad read routine. The required time is derived from the slowest allowed scan rate and the

nominal dimensions of the symbol. A minimum scan rate of one-half inches per second was deemed reasonable

for this application. The nominal module width of 0.013 inches yields a time per module, tm, width of 0.13

inches/o.5 inches per second = 0.026 seconds at the slowest scan rate. The white guard bar is specified to be at

least eleven modules wide, hence, the waiting time should be at least (.026) (11) = 0.286 seconds. The

program causes the MPU to wait approximately 1.5 seconds before exiting in order to allow for operator

variance at the beginning of a scan.

The next section of the program is used to determine the elapsed time between transitions during a

scan. The first low-to-high (white-to-black) transition following the white border cuases the MPU to enter the

Black Bar Timing Loop, WBLKLP. The symbol consists of 30 black bars and 30 white bars (the last white bar

is the white border at the end of a scan). The program alternates between WBLKLP and a similar White Bar

Timing Loop, WHITLP. The elapsed times are stored in sixty memory locations for later use by the WSORT

processing routine. The Index Register and a 35 microsecond timing loop are used to measure the elapsed time

until the next transition.

The WBLKLP loop will cause an exit to the bad read routine if the elapsed time becomes greater than

what is anticipated for the maximum black bar width of 4 modules at the slowest scan rate. This is monitored by

comparing the number of passes through the 35 microsecond loop to $OB9B, corresponding to (.026) (4) =

O. 104 seconds.

When the subsequent black-to-white transition occurs, the current bar count, WBRCNT, is in

creased by one, a flag indicating' 'From Black" is set, and the current time between transitions is stored. Since

the count in the Index Register may be as large as $OB9A, two bytes or storage are required for each timeout

(maximum single byte storage is $FF). The storage segment of the program, WSTRGE, is entered from both

the Black Bar Timing Loop and the White Bar Timing Loop and causes the current elapsed time to be stored in

the appropriate buffer.

The time to be stored (current contents of the Index Register) is temporarily placed in RAM locations

WDUMBF and WDUMBF+ 1. The current storage buffer address, WSBFAD, points to the storage address

and is loaded into the Index Register. The indexed addressing mode is used to retrieve the time from WDUMBF

and WDUMBF + 1 and store it in the proper storage buffer location. The Index Register is advanced to the next

storage address and placed in WSBFAD for use during the next storage cycle. Control is returned to the proper

timing loop by testing the "From Black" flag.

The White Bar Timing Loop, WHITLP, functions similarly to WBLKLP except that it measures the

time between black-to-white and white-to-black transitions. If a white bar count of 30 is encountered, the

program exits to WBADRD since a black bar count of 30 should have been reached on the previous pass

through WBLKLP. A time in excess of seven module units. corresponding to the maximum anticipated for a

white (right-hand) border, will also cause an exit to WBADRD. The white bar count is increased by one and the

"From Black" flag is cleared prior to branching to WSTRGE.

The WSORT section of the program recovers the 12 UPC characters by operating on the black and

5-31

white timing measurements that were captured and stored as the wand scanned the symbol. The process is based

on the following assumption: since the nominal width of a given character within the symbol is only 0.091

inches, the per character scan rate should be very nearly constant. The format of the black bar - white bar

pattern is specified. Each of the 12 UPC characters are known to consist of7 modules encoded as 2 white and 2

black bars. The WSORT procedure uses these facts to generate a sampling procedure for recovering the data.

The bar times (from the storage buffer) for each character are used to compute a total time for that

character. This time is then divided by seven to obtain an "average time per module." Due to the allowable

variations in the symbol, each module should be sampled within ± 10% of its midpoint for reliable results.

Therefore, the average module width is used to generate a series of sampling times that occur near the expected

center of each character's seven modules. The sample times then used to test the bar times and determine the

bit pattern of the character.

A Flow Chart and an Assembly Listing of the WSORT program are shown in Figures 5-1.2.5-5 and

5-1.2.5-6, respectively. The recovery process is best explained with the aid of a representative example.

Assume that the times recorded in memory locations $0006 through $OOOD of the storage buffer are as follows:

Memory Location Contents

$0006 $ 00

$0007 $ 29

$0008 $ 00

$0009 $ C6

$OOOA $ 00

$OOOB $ IE

$OOOC $ 00

$OOOD $ 30

These locations contain the timing information for the first character to be scanned following the 101 guard bar

pattern (the guard bar data is in locations $0000 through $0005 and is not used in this sequence). Note that for

this example the even positions, $0006, $0008, etc., all contain zero. This simply indicates that none of the

times between transitions were long enough to require the second byte of storage. From the data, the bar pattern

times are:

or:

$29

41

C6

198

IE

30

30

48

(Hexadecimal)

(Decimal)

After an initialization sequence, the program starting at WSRTLP, establishes the Bar End values by

computing accumulative totals and storing them in buffers as:

WBENDI

41

WBEND2

239

WBEND3

269

WBEND4

317 (Decimal)

The total, 317 in this case, is then divided by seven to obtain an average module time (the division is performed

by a subroutine located elsewhere in system memory). The result, 45, is stored in buffer WMODTM and the

first sampling time, one-half of WMODTM, is obtained as WTSAMP = 22. The MPU next performs a

sequence to determine if any of the bars are too narrow for accurate data recovery. The procedure assumes that

5-32

each bar must be at least three-quarters of the nominal calculated width of 45 or %(45) = 33:

41 > 33

198 > 33

30 < 33

48 > 33

If all the bars are greater than % of the nominal bar width, the program branches to the next main

sequence, WODDBR. If, as in the case of the third bar in this example, some of the bars are undersize, they are

replaced with the nominal value and the checking procedure is repeated until all bars are at least the nominal

width. For example, this leads to:

41 198

with new values:

(45)

30

WBEND1: 41

WBEND2:239

WBEND3:284

WBEND4:332

WMODTM: 47

WTSAMP: 23

%(WMODTM): 33

48

and the test is now satisfied by all four bars.

By repeatedly increasing the initial sample time by WMODTM, a set of sampling times are

generated that can be compared to the Bar End values in order to determine which bars are currently being

sampled. For the example:

23 < WBEND = 41; therefore, in 1st Bar.

41 < 23 + 47 = 70) < WBEND2 = 239; }
41 < 70 + 47 = 117 < 239;

therefore, in 2nd Bar.
41 < 164 < 239;

41 < 211 < 239;

239 < 258 < WBEND3 = 284; therefore, in 3rd Bar.

284 < 305 < WBEND4 = 332; therefore, in 4th Bar.

332 < 352; therefore, beyond last Bar.

Since the symbol and code are defined such that the first module of a character (scanning from either

direction) is a zero, the result of this sequence indicated that the upe code for this character is 0111101 , or from

Figure 5-1.2.1-5, the decimal value is "3." Note that it was assumed that the code was a left-hand character

implying a left-to-right sweep since the character was recovered immediately followed the initial guard bar

pattern. The program as shown in Figure 5-1.2.5-6 is for left-to-right scans only. A simple parity check is

adequate to determine whether left or right hand characters are being read since each side has opposite parity.

The data for all 12 characters is recovered in this fashion and stored in consecutive RAM buffer

5-33

locations. At this point, the data is still encoded in the UPC format of Figure 5-1.2.1-5. The UPC code follows

no simple algorithm and, hence, must be converted to weighted binary before error check calculations can be

made.

The Flow Chart and Assembly Listing for WCNVRT, a suitable conversion routine, is shown in

Figures 5-1.2.5-7 and 5-1.2.5-8, respectively. The conversion routine uses a table look-up procedure. Code

words corresponding to each of the ten UPC characters is stored in a permanent table in ROM (see Figure

5-1.2.5-9). The MPU tests each recovered data byte against the values in the table until a match is obtained.

When this occurs, the current UPC data is replaced with its weighted binary equivalent. Since the desired

equivalent is weighted binary, it can be generated by using accumulator B as a counter that tracks with the UPC

look-up table position. When a match results, the value that is to be substituted is then available in the B

accumulator. Note that while there are two sets of codes, left-hand and right-hand, for the UPC characters, only

one table is required. This is due to one's complement relationship of the two sets. The look-up table contains

the left-hand set. If the MPU tests a given data byte against all ten left-hand words without obtaining a match, it

then complements each bit of the UPC data and goes through the look-up table again. If no match is obtained

after a second pass, the program causes an exit to WBADRD. When all twelve characters have bee.n

successfully converted, the MPU proceeds to the next sequence, an error calculation to determine if the data

represents a valid UPC number.

The Error Check Character included in the symbol was originally obtained by applying the

following steps to the UPC number:

Step 1. Starting at the left, sum up all the characters in the odd positions (that is, first on the left, third from

the left, etc.), starting with the number system character.

Step 2. Multiply the sum obtained in Step 1 by 3.

Step 3. Again starting at the left, sum all the characters in the even positions.

Step 4. Add the product of Step 2 to the sum of Step 3.

Step 5. The modulo-1 0 check character value is the smallest number which when added to the sum of Step 4

produces a multiple of 10.

The error check routine, WERCHK, applies this algorithm to the first eleven digits of the recovered

data and checks the result against the recovered check character. The Flow Chart and Assembly Listing are

shown in Figures 5-1.2.5-10 and 5-1.2.5-11, respectively.

The error check is performed by duplicating the steps taken during the original generation of the

check character and comparing the result to the recovered check character. The modulo-1 0 result for Step 5 is

obtained by repeated subtraction of 10 until the result is less than or equal to zero. If no match is obtained the

program exits to WBADRD. If the test is satisfied, the program proceeds to the last step in the sequence,

placement of the 10-:digit UPC number in five bytes. of RAM as packed BCD characters.

The Flow Chart and Assembly Listing for the packing routine, WBCDPK, are shown in Figures

5-1.2.5-12 and 5-1.2.5-13, respectively. The packing order is indicated in Figure 5-1.2.5-9.

5-1.2 PRINTER CONTROL

A great many different printers are in use; they range from the slow but economical devices for

5-34

Complement Current
UPC Char., Set 2nd

Pass Flag, go thru
Table Again.

UPC Characters are in WSTGBF

WPACK

Put Starting Addr.
of WSTGBF into

WSBFAD CLR 2nd
Pass Flag

Load X with Current
addr. of Strg. Buff.

Load A with Current
UPC Character. Point

X at next Buff.
Location, Store in

WSBFAD.

ClrB (Char. Value).
Load X with Starting
Addr. of UPC Table.

Compare UPC Char.
I n A to Current

Table Value

Incr. Char. Value.
Move to next table
Location and Test

For Srch W/O Match

Yes

Replace UPC Char.
with BCD Equiv.

Reduce Conversion
Count.

Figure 5-1.2.5-7 Flow Chart for WCNVRT UPC to BCD Conversion Routine

5-35

00010 t'tAt'1 h.lCt'~"lF.'T
OOO;~O E:7B7 OF.~C; ~1;E:7:E:'7

00040 B7:B7 CE 011E. i,IJ C 1'1 '.,.' F' T LIt::-=: ~~I,I.I·S:TG:BF GET :S:TAF.~T I ;"H3 ADDf;.'E:S::S: OF
00050 B7E:A FF 0114 :S:T::':: '.I.tSE:FAD STr;:GE BUFF I t'~TO BUF AIIDR :~ ..
OOO~,O B7BD :3E, OC LDA A ~~$ oe: LOAD I,I.iSPCt'iT '",IITH OF
00070 :B7:BF :E''7 'I 0112 STR A 1.,.I:5:PCtiT CHAPS . TO :BE: CO t·"I",1 E RT E It

000'30 B7C2 7F 0110 1.1.1 r'i ;:.:; T C H CLF.' 1.1.IFLAf:.i CLEAJ:;;' 2t'HI PFt:s::s: FLAG
0010:) :B7C5 AE. 00 LIlA A ::-:: I:;ET CURF.~Et·~T UPC CHAF.'ACTER
001 10 :B7C? 0:3 IN>:: PO I t'iT TO t'1E,~::T UPC LOCAT Ior'1
00120 B7C::: FF 0114 :S:T>:: !.I.ISBFAD ::H1D STORE I ;,.~ BUFFER

00140 B7CE: SF 1.,.IPASS2 CLR E: InITIALIZE .::HAR BCD i",'ALUE
001'50 :B7CC CE B7F1 LII;:':: ~~h.lPCTBL GET :S:TAh;~T i=!f!IIP OF '-'PC TAE:L

001? B7CF A1 00 I,.JCr'1PPE Ct'1P A >:: UPC CHAR t'1A TCH TF:LE CHAR?
001::: B7D1 E~E. oe BnE 1.1.1 t·~ ';.:: L 0 C t'iiJ ~ CDNT I ~iUC: :S:EAF.~CH

001'3 B7Ir3 FE 0114 LII:;':: b.lS:E:FAD GET CUPF.'Et~T ADIi~~ FF.'Ot'i BUF
OOi~O B7D6 E7 00 :~:TA. p ::~:: >·,·E.S ~ PEF'LAC~ UPC I,I,IITH BCD E
0021 E:7D:3 7A 0112 DEC I,..I:S:PC~~T F.~EnUCE COt·1""Ic.F.~S I on COUt'~T
0022C B7D:B 27 20 BEG! l.dIiCDPK IF DlJt'iE ~ E:;·::IT TO I.IJBCDP~:::
002:;:0 :E:7DD 20 E'-' .;,. E:F.'A i,I.lt"1>::TCH IF t'iOT ~ GET ~~E::':~T CHAf;,~

00250 B7DF 08 i,I,i t'i >:~ L 0 C I r·i::·:; r'10 '",'E TO r·~E::.;: T UPCTBL LOCATIO
002f,O B7EO 5C INC :B I t·~CF.~EA:S·E BCD CHAF.~ \·'ALUE
OOi~rO F.:71::1 !:::C :B7F 1, CP::-:; ~~I"IPCr:BL :S:EA~'CHED E,'fTIRE TABLE?
I) O;~:3 (I E:7E4 2E. E9 Bt'1E 1,1.1 C t'l P F.~ E ~~!J ~ COt'~T I t'1UE THRU TA:BLE
o O;~9 0 B7EE. 7D 0110 TST I.I.IFLAG 'lE:::;: !f SEE IF Dt·.j SECDt'~D PA:S':S:
00300 :B7E'3 ~~E. OE. BriE I"JBADPD

,-, ,:. PA'S~SE:S: 1).iT .-1 "'~D t'1TCH = BAnF.-
;) 0::: 1 (I B7EE: 4:::~ COr'1 A 1ST PA:S::S:~ COt'1PLEMEt'iT UPC CH
00320 B'?EC 7C 0110 rr'K: 1.I.lFLAr:; ~~:ET E'r'~D PASS: FLAG
00:::'30 B7EF i~O DFt .BRA 1. • .IPASS2 GO THPDUGH TABLE AGA I t·~
00::::40 B7Fl i,.JBA'DF.'D EOU ..
00.341 01 14 I.I.I:S:BFAD EG!U $0114
00:::42 01 1 i7., I.IJ'~:TGBF EOU $01. 16
00343 01 1'-' C, 1 .• ,iSPCt·1T EOU $01 .. ·-r

.i.c,

00:344 01 10 '-'-'FLAG EOU $01 .1 (I

o O:~:45 B7F1 1'3 I ... IPCTBL FeB $1'3 ~:f.;13 !' $16 ~ 'I; 0 1 ~$OE ~.I, 07 ~$C!::: ,$Oi.=2
B'7F2 1'-' '.,:,

B7F:::: If.
B?F4 01
B7F5 OE
B7F6 0'('
B7F7 OS
B7F::: o;~

00:346 B'7F'3 04 FeB $04 ,:f1R
.B7FA lA

FIGURE 5-1.2.5-8: WCNVRT Assembly Listing

5-36

YKWAND

WPCTBL

ROM

$7F(CLR)

$01

$3B(RTI)

$19

$13

$16

$01

$OE

$07

$08

$02

$04

$LA

$8610

$B __

$B __

$B __

WSBFAD

WSTGBF

WSTGBF+11

RAM

UPC#9 UPC#10

UPC#7 UPC#8

UPC#5 UPC#6

UPC#3 UPC#4

UPC#1 UPC#2 -----
#System Char.

UPC #1

UPC #2

UPC #3

UPC#4

UPC #5

UPC #6

UPC #7

UPC #8

UPC #9

UPC #10

Check Char.

-------- -

FIGURES 5-1.2.5-9 XKWAND Table and Buffer Memory Allocation.

5-37

$0000

$0004

$0114

$0116

$0121

No

No

Add Current Value
of WSTGBF to A.

I ncr. X twice.

Multiply Odd Sum
by 3. Get Strting

addr. of Even lacs.

Add Current Value of
WSTGBF to A. Incre

ment X twice

Test for Binary
Value less than 127

BCD Equivalents of UP Char. are in WSTGBF

Su btract 10. Test
for Result';;;;; Zero

Form Binary from
2's campi. and test

for match with
Check Character

FIGURE 5-1.2.5-10 Flowchart for WERCHK Error Check

5-38

No

0001C:
I) 0 O;~ 0 :B'7FE

nAt'1
OP':';

b.iEf:;'CHV
IF:?FE

(I I) 04 0 B ('FE 1::E (I 11~, t"c~'CH~::' i,_Ii>:: ~~I.r.l:::TGF.:F I:;ET :S:TPTt-1(= HDD~t IJF ODD
00050 ESOI 4F CLR A LOCATION:; ~LEAR A.

(10070 :p':' (I::: RE (10 1;.\ ~:TEF' 1 i:iIID A
I) (I o':~ n .E'~:: 04 l !:=~ It',>::
00090 8805 r~ INX

ADD FROM CU~PENT ODn LOCATI
M~VETD ME!T LOCATION

0010G BS06 8e 0122 CPX ~~1,1.!:~' fGBF + 1;:: ADDED HL.L enn LOCAT I Dt<:::
0011n POO? 26 ~7 BNE WSTEPl IF NO CD~T~~~;IF YES~GO 2TE

I) (I L:.(i P !:=: c :~' 1 6 11.i '~:, T E P;~ TAB "'1 U L T I F'L '/ :~: T .:: P 1 F.' E :::;' U L T
0013~ B80 r 1F: ABA BY THREE. L~AVE RESULT
00140 P80D 1B ABA IN ACCR
(I I) 1 SOB ::: (I F. eEl) 1 1 (L II .:-:: ~ ~ bJ s: T I:; ,E F + 1 '::.; E f E 1:/ E N :~: T R T ~--I (3 A I! L; ~~

0(11 (' (I "B::::11 A B (10 !d,::TEP3 ADD A :-: ADD FRor'1 CU~'REi--~T LDCAT I or-~
I it:-:, MDV~ TO NEXT LOCATION

00190 B814 08 INX
00200 B815 8e 0116 CPX ~=JSTGB~ ADDED ALL ~VEN LOCATIONS?
(1021 0 :r::S 1 ~:: ;=~6 F7 B!--iF.:: !.,.I:::TEP3 IF r-i!] ~ COr-iTt--! .lE; I F 'lE~' ~ GO '~::

00230 B81A 4D ~STEP4 TST A GREATER T~A~ 127 BINRRY?
00240 B81B 2R O~ BPl WMDD10 ND~ CONTINUE MODULO CALC.
(I I) 2 '5 (I B :=~ 1 It ::: (; 0 A
00260 B21F ~o F9

:~;:UB A "r 1. I)

:B!';:~A jt.l:~ TEF4
YES~ SUBTRA:T 10~CHECK
FOP :::T I LL ;-127

o O:~::: 0 B:::21 ;::: (\ 0,; !._!;"10D 1. U :~:UB ~1 ~; t (; :~:UB T~:ACT 1 (I
00290 B823 2E Fe Bsr WMODI0 KEEP SUBBIN3 UNTIL 0 OR
00300 £825 40 NEG A FORM BINARY FROM 2/S CDMPLE
00310 B326 11 Ol~l eMP A WSTSBF+l1 MATCH WITH CHK CHAR?
00320 B829 26 C6 BNE WBAD~D NO, GO BADP~~D; YE?~ CONTIN

FIGURE 5-1.2.5-11: WERCHK Assembly Listing

5-39

00001

I) n 0 1 0 :t::::i:'I~:: Or-
O (i O':~ 1..1 P:;;;:'D BF C'l 14
0(1 C :: f r::':::; ; . .l '::!7. I) 0 n·.;

i)o~)(n

00 n·:: r
OOO'~'!
0(11)

0011.
001E
(I n 1'-~'
001.4
0015
001.6
001.7
J (I 1 ::-::
0(11 ':j

E: ~~ :;;: .::J. ::~

~~ ~:~ :-:: '~ ,;1- ~:::!

t: :::: :? :=i .:.1 :~:
~;::::3'B 4:::
E;~;':!C A4 (11

E: e :;: F 0 ;::~
-~~; ~:; 4· 0 C ':
E:::~41 =::C 0121
:p ;::~ ,:l .::t :: l:, F I).
D'::!4~, BE C1114-
.F;:~:4'? Of::
S::!41=i .:.:'?

nH~J1

Or?G
'.Ii I: C D F i<'
~t; B ::; ;=~ i::

i).!,E:r:I'PV :':E I
. .::.T·~·
L.D:S:

!t,I :~. BF AD .::: A',,.' t: CUF!;~E t·~ r :~::F'

:; ~ I: (; 0 I) 4 P C I i'i T :S' n< ~~ r F' A C ~::. I t'iI:::; ! _I] C
LD::": ~;l.,J:S:T:::;EF:+ 1 :'3f:: .~: TFT;'i l:;:; AnDP IJ~:'- Uhr-'81~'

L.D~
!='i.::L
A·~:L.

A:~'L

A.::L

A

A
A
A
A

GET CiJPF'::::r'1'i ODD FeD CHPj:;:'
SHIFT ODD C~AP TO
uPp~p FDUP B I T:S: OF
CUP~-;:'i::t'~T L.OC ,=iT I 'Jr',!

ArH'
P·S.H
I f'i':.:;

A
A

1,X PACK CUQRENT EVEN CHAR
PUSH INTO PACKING LOCRTION
MQV~ TO NEXT ADDR

I n':.:; :BUFFE~' LtJ('A T IOr·{
CP;:< ~~;t.i:~:TGB;= + 11 PACK I ~.~(:; COt'iF'LETE?
Br'i1:: WPAVLP NO, CDNTINU~ PACKING
LD:S:
CL I
PTS

YES~ R~STOP; SP AND
RETU~N TO E/ECUTIVE

FIGURE 5-1.2.5-13: WBCDPK Assembly Listing

Save Old S.P. Point S.P.
at Packing location. Get

starting addr of unpacked
data into X.

Get current ODD BCD
Char. from WSTGBF and
move to leftmost 4 bits
of A. Pack EVEN Char.
into rightmost 4 bits of
A. Push A into Packing
Location. Move to next
ODD location and test

for finished

FIGURE 5-1.2.5-12 WBCDPK Flowchart for WBCDPK Packing Routine

540

printing out supermarket receipts, to the super-machines capable of printing 1200 132-character lines per

minute. The broadest common ground for printers and microprocessors appears to be in the medium to low

speed printing applications.

Medium performance is taken here to include auxiliary printers used with terminals or small

computing systems printing up to a maximum of 200 132-character lines/minute. The gamut of printers

spanning the medium to low speed range includes: electronic discharge printers, thermal printers, chain

printers, drum printers, matrix printers, serial printers, etc., with types and speed ranges available for almost

any conceivable application.

High performance microprocessors like the MC6800 provide an efficient means for controlling the

higher speed printers and in the lower speed applications, additional functions can be combined with the

controller function to produce a more cost-effective system.

Designing the microprocessor into the controlling system allows hardware (logic)/software (prog

ramming) tradeoffs to be made to satisfy the specific system requirements. For example, in the high speed

printers, additional logic might be required if the desired data transfer rate is to be met even though the MPU is

only used for printer control.

At the other end of the spectrum, using one of the newer high performance MPUs as a dedicated

controller for a slower printer amounts to gross overkill. More often the relationship is similar to that shown in

Figure 6-4. 1-1, a generalized diagram of an MPU based transaction terminal described in Chapter 6. In

applications of this type, the printer is merely one of several peripherals and its control is a relatively minor task

that involves a small percentage of the MPU's attention.

It is in applications such as this that the real value of an MPU shows. They permit the designer to

reduce a relatively complex system to a number of manageable tasks. Service routines are developed for the

various peripherals and a suitable executive control program then ties the system together.

In a typical case, there are several factors to be considered in the development of a peripheral control

routine. The device selected must, of course, satisfy the basic system requirements such as speed, reliability,

etc. Beyond that, some devices of the same class are more amenable to MPU control than others. Some of these

factors are illustrated in the following paragraphs where the development of hardware and software for a

representative low speed printer application is discussed.

5-41

5-2.1.1 SEIKO AN-IOIF Operating Characteristics

A SEIKO AN-I0IF printer was selected as the hard copy output device for the transaction terminal

design described in Chapter 6. The SEIKO AN-I0IF Printer employs a continually rotating print drum

mechanism using what is referred to as the flying printer technique. The printing principle of the mechanism is

indicated schematically in Figure 5-2.1.1-1.

The print drum and the ratchet shaft are geared together and rotate continuously in the direction

shown. During a non-print condition, the right end of the trigger lever is removed from the ratchet's pawl locus

by the downward force of the trigger lever spring. In the non-printing condition, the trigger magnet is not

actuated and the hammers are lifted upward to a neutral position by the hammer lever springs.

When actuated, the trigger magnet's actuating lever forces the opposite end of the trigger lever into

the locus of the ratchet pawl. During its next rotation, the pawl will engage the right end of the trigger lever

causing a downward motion to the right hand end of the hammer. The hammer thus strikes through the inked

ribbon and paper, causing the character then under the hammer to be printed.
Hammer Lever Spring

Trigger Magnet 1 ~ Trigger Lever Spring

Trigger Lever

Trigger Lever Guide

Paper

FIGURE 5-2.1.1-1 SEIKO AN-101F Printing Mechanism

Hammer

~--------~,nked Ribbon P,pe, V-- J:J-I //
Characters

'~!Ir---- Print Drum

FIGURE 5-2.1.1-2 Timing Signal Generation

Detecting Wheel T
---+--tt--Detecting Wheel R

.'~ Ferrite Ch ip

_____ Detecting Head R

TLO TP1

Timing Signal

Ratchet Shaft

\J Ferrite Chip

Reset Signal -----t---------
FIGURE 5-2.1.1-3 Timing Signals

5-42

Any of 42 characters (alphanumeric plus special characters *, $, " -, ., and /) may be printed in a

21-column format. Each column position has a complete character set spaced evenly around the drum. Because

of a 42: 1 gear ratio, the ratchet rotates 42 times for each complete drum rotation. Hence, each character of the

set is positioned under a print hammer once during every rotation of the drum.

From this brief description of the printer mechanisms characteristics, it is evident that the control

circuitry must actuate the hammers at just the right time if printing is to occur. Timing signals are generated

electromagnetically by means of detection heads and ferrite magnets associated with the ratchet shaft and drum

(See Figures 5-2.1.1-2 and 5-2.1.1-3).

Rotation of the ratchet shaft generates signals TP and TL for each of the 42 characters. TP provides

timing for energizing the trigger magnets, TL for de-energizing. A reset signal R is generated by each complete

rotation of the drum. The resulting waveform for a complete drum rotation is illustrated in Figure 5-2.1.4-1.

5-2.1.2 Printer Hardware/Software TradeofTs

It is at this point that a designer must start considering trade-offs in order to arrive at the most

effective design. A suitable peripheral device has been selected and its characteristics have been studied. In this

case, the manufacturer provides a suggested controller design that can be implemented (exclusive of Trigger

Magnet drive circuitry) with 16-20 SSI and MSI integrated circuits. If this approach is adopted, the MPU

merely monitors status and transfers data bytes to the controller at the proper time.

At the other extreme, the MPU could assume as much of the control function as possible and

eliminate all of the external conventional circuits. When overall system timing permits it, this is usually the

most cost effective approach.

There may be reason to adopt some intermediate approach. For example, a sixteen column format

was required for the application described here. The required information for identifying one of the sixteen

items can be handled by four encoded bits. The design could have been implemented using 4 PIA data lines and

external decode circuitry. However, it was decided to assign each column its own PIA data line, using up the

data capability of one PIA but requiring little external circuitry (See Figure 5-2.1.3-1). Had there been four

"spare" PIA lines elsewhere in the system, the alternate approach would have been given greater considera

tion.

As a further consideration in the trade-off area, note that while only 16 columns are used in this

design, the AN-IOIF has 21 columns available. If all 21 were to be used, the designer could decide between

using five more PIA lines as opposed to an external 5-bit shift register. Unless there happened to be 5 "spare"

PIA lines somewhere, the relative cost would probably dictate using the shift register.

Selection of a particular configuration is, of course, not made in pure hardware vacuum. Knowledge

concerning the MPU's capability to handle the control problem heavily influences the method that is finally

selected.

5-2.1.3 Printer I/O Configuration

As is generally the case with MPU based designs, there are numerous ways to solve a given problem.

The method to be discussed here was selected to satisfy three basic objectives: (1) Use minimum external

electronics; (2) Use the timing signals provided with no additional external processing other than pulse shaping;

(3) Minimize the time in which the MPU must be involved with printer control activity. The hardware

configuration selected is shown in Figure 5-2.1.3-1.

5-43

MC
P
6820
IA

CB1

CB2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PAO

PA1

PA2

PA3

PA4

PA5

PA6

PA7

CA2

CA1

1.2K 5K 1.6K
+5 0

_ AAA

V V 'III /W VV~

H:>- ~
4~

MC74452
~

L[>r[>r- u-
MC74452 ~t

4~

4~

4~
MC74452 H-

~.-

~
MC74452 ~--O

.- MC74452 r-O

~
4~

MC74452 ~~

. ~
~ MC74452 Ht

4~

~
MC74452 ~

"" '....,

Q 1/6 MC7404
I--- (4 Places)

'III ~,
1/4 MC3302 rc-s -:.!::-(2 Places)

620 :~
/
~~ -

+5

A
vvv 'III

5K

1.2K ~
>

~> 1.6K
.~ > • . >

~ -::i- _L-

0
+5 F

FIGURE 5-2.1.3-1: SEIKO Printer Circuit Requirements

544

- -
-.. -..
.. --..
---..

-.. ----... --
--.. ..
--
... -

.. -

Timing

> To Hammer
Magnets

Paper

Ribbon

Reset

As indicated in the earlier discussion of hardware/software trade-offs, each hammer driver is

controlled by one of the PIA's sixteen data lines. These lines are the outputs of Registers ORA and ORB in the

PIA which are regarded as memory locations by the MPU; hence, the MPU can enable the activation of a

particular column hammer by setting the appropriate bit position in the memory locations assigned to ORA and

ORB.

During initialization, CB2 is established as an output and is used by the MPU to strobe the enabled

hammer drivers at the proper time. At the end of a print cycle, the printer's paper and ribbon must be advanced.

This requires a 36 msec pulse which is generated by the control program and is applied through CA2 which is

also established as an output during initialization.

After being shaped and inverted by the MC3302 Comparators, the printer timing and reset pulses are

applied to the CB1 and CAl inputs, respectively. It is by means of these signals and the MC6800 interrupt

structure that the Printer' 'tells" the MPU it requires servicing. Part of the printer control program's function is

to establish suitable interrupt modes using tfie PIA Control Registers.

As an example, in the control sequence described below, negative transitions on the CB 1 timing

input during a print cycle must cause the MPU to service the printer. The MPU sets this up by writing bO= 1 and

b1 =0 into Control Register B during initialization. The subsequent timing transitions then cause the PIA to

issue an Interrupt Request to the MPU via the system IRQ line.

The MPU responds by interrupting its current activity (the MPU's internal registers are saved on a

"stack" so that the task may be resumed later) and fetches the starting address of an executive service routine

from a memory location permanently assigned to the Interrupt Request. The service routine directs the MPU to

"poll" its peripherals by testing the flag bits in the PIA Control Registers to see which one needs servicing.

Flag bit b7 of the printer PIA's Control Register was set by the same transition that caused the interrupt. When

the MPU finds this flag set, it jumps out of the polling routine to an appropriate printer control program.

5-2.1.4 Printer Control Program

The basic task, or algorithm, of the control program is to examine the text of the message to be

printed and make sure that the appropriate bits in the PIA's Output Registers, ORA and ORB, are set at the

proper time. The details of timing and program flow are shown in Figures 5-2.1.4-2 through 5-2.1.4-7.

Understanding of the operation is aided by regarding the time for one print drum rotation as

forty- two equal intervals, to through t41. With this in mind, note that all similar characters in the text are printed

simultaneously, i. e. , all 0' s are printed during tj), alII's during h, etc. For example, if the text requires the letter

C in columns 3 and 9 (as in Figure 5-2.1.4-1), column hammers 3 and 9 must be engaged during the time

interval t12 during which all C's are under the hammers.

Following each "TL" interrupt, the MPU examines the entire message to see if there are any

characters to be printed during the next time interval. The text to be printed may be either a "canned" message

stored in ROM or variable information generated by the executive program and stored in RAM. Messages are

stored in memory in 16-byte blocks with each memory position corresponding to a printer column position.

Prior to calling the printer, the executive program loads the starting address of the message to be printed into a

buffer. The printer routine then uses this address in conjunction with the MPU's indexed addressing mode to

locate the desired message; this technique permits using the same subroutine for all of the system printer

requirements.

5-45

Ul

.l::.
0\

III

ro
c::
C'l

U5
'-
Q)

E

Reset

Timing

M

2

U JJ Jf U
,....

""J
f-

o
....J
f-

,....
....J
f-

o ,.... N
(j) t""'- t- ~
....JJJJ
f- f- f- f-••• • •• •••

en
M
....J
f-

o

""J
f-

:;
....J
f-

o
....J
f-

:i
f-

I II II II II II II II J ~ I Ilffll II II II II II
L 1M N ~t:~2

c 3 A B 9 D E F G K H o p Q - .1 /1 0 1

----t t41 ,.-

R s

3 C ---------'n I I I I
4 R

5 0

6 P

I 7 R

~< 8 0 I I n~~I~I ____ --I
c::
E 9 C
::J
(5
U "10 E

11 S

12 S

13 0

14 R __________________________________ ~n~ ______ __
15

16

FIGURE 5-2.1.4-1 Print Cycle Timing: "Microproce~or"

00280
00:300 7C4C 7F 8009
00310 7C4F 7F 800B
00320 7C52 4F
00:330 7C53 4:3
00340 7C54 B7 8008
00350 7C57 B7 eOOA
00360 7C5A 86 3C
00:370 7C5C B7 800';'
00380 7C5F B7 BOOB
00390 7C62 B6 8008
00400 7C65 F6 SOOA
00410 7C6S 39

PKIPRT

Set PI A I nterface Reg's
as outputs. Disable hammer

strobe and paper ribbon
feed control lines. Set PIA

Interrupt Masks

RTS = Return from Subroutine
R = Reset Timing Pulse

(a)

•• INITIALIZE PRINTER PIA
PKIPRT CLR XPICRA

CLR ~-<P lCRB
CLR A
COM A
STA A XPIDRA :SET PIA DATA L~NES AS [JUT
:;TA A :~PIDFt:B

LDA A ~~$3C 3:ET PIA CDtiTRDL REGSTRS TO
:STA A XPICRA DISABLE OUTPUTS
STA A XPICRB At'~D SET INTRPT MASKS
LDA A :~P1DRA READ DATA RGSTRS TO CLEAR
LIlA B XP1DRB I NTRPTS ANII FLAGS
RTS

(b)

FIGURE 5-2.1.4-2: Initialization

5-47

A 42-byte Character File corresponding to the printer's character set is stored I in ROM in the same

sequence as it appears on the printer drum. As each TL interrupt is serviced, the Character File Pointer is

incremented pointing to the address of the next character on the drum.

The MPU then compares every character of the text to the current Character File character, keeping a

running column count as it does so. Each bit position in the PIA Output Registers is set or cleared depending on

whether or not the respective text characters matched the Character File ch~racters.

The flow charts and control programs that resulted are shown in Figures 5-2.1.4-2 through

5-2.1.4-6. The control problem was broken into four tasks: (1) Initialization; (2) Printer Enable; (3) Reset

Service Routine; (4) Print Service Routine.

The Initialization routine, PKIPRT2, defines the housekeeping tasks that are routinely taken care of

by the executive program during system power-up.

Referring to Figure 5-2. 1.4-2(b) , lines 300 and 310 clear CRA and CRB (XPICRA, XPICRB)

setting b2 = 0 so that DDRA and DDRB can be addressed. Lines 320-350 store ones in all of the DDR bits

defining the 16 data lines of ORA and ORB as outputs. Lines 360-380 load the control registers with the

hexadecimal (HEX) value 3C resulting in the control lines being defined as shown below:

CRA(B)
b7 b6 b5 b4 b3 b2 bi

0 0 1 1 1 1 0

3 C

bo = 0 IRQ interrupts are disabled.

bi = 0 CAl, CB 1 are established as negative edge sensitive inputs

b2 = lORA, ORB are now selected

bo

0

b3 = 1)
b4 = 11 CA2, CB2 are established as outputs which follow b3; they are now high.

b5 =

With CA2 and CB2 high, all the driver circuits are disabled since one input of each driver AND gate

is held low (see Figure 5-2.1.4-1). Note that CA2 and CB2 are inverted prior to reaching the AND gates.

Lines 390 and 400 are "dummy reads" of ORA and ORB which clear the IRQ flags that may have

been set and insure that the IRQA(B) lines are high, i.e., inactive. Line 410 returns control to the executive

program.

The Printer Enable routine, PKNTRL, is called by the executive program whenever a line of text is

to be printed (refer to Figure 5-2.1.4-3(b). Since the printer drum is continuously generating reset pulses at

CA 1, the IRQA flag will be set but the IRQA line will be inactive (it was disabled during initialization by setting

bo = 0). In order to insure that the next reset pulse starts the print cycle instead of the CA 1 interrupt enable, the

IRQA flag is cleared by a dummy read of ORA (XPICRA) prior to enabling CAl, lines 490-510.

The "printer done" flag (#$29) is cleared by another service routine before returning to the main

program. Subsequent interrupts generated by the printer will cause the line of text to be printed with further

control by the executive program unnecessary.

1 Both Character File data and message characters are stored in memory using ASCII code. Any convenient code could be used,
however, in this application, the ASCII message format is required by other peripherals in the system.

2 Labels appearing in the following discussion conform to a format adopted for the Transaction Terminal system: In complex systems, it
is advisable to sacrifice some mnemonic meaningfulness in favor of system documentation requirements.

548

00430
00440
00450
00460
00470
00490 7C69 B6 8008
OO~OO 7C6C 86 3D
00510 7C6E B7 8009
00520 7C71 86 29
00530 7C73 ED 6309
00540 7C76 39

PKNTRL

Clear previous
R Interrupts

Enable R Int
on next nega
tive transition

Reset Printer
Finished Flag

RTS = Return from Subroutine
R = Reset Timing Pulse

(a)

•• PRINT 16 CHARACTERS BEGINNING AT THE MEM ADD
•• STORED IN PVTXBF (C7,CS) ON ONE LINE
•• JSR PkNTRL TO START, INTRPTS WILL SYNC REMAININ
•• OPERATIONS. CB2: HAMMER ENABLE, CA2: PPR/RBN
•• FEED, CAl: RESET INTRPT, CS1: TIMING INTRPT ••
PKNTRL LDA A XPIDRA CLR PREY. RESET INTRPTS

LDA A ~$3D SET CAl TC INTRPT ON NEXT
STA A XPICRA NEG TRANSI OF RESET
LDA A ~~$29
JSR XKRSTF CLEAR PRINTER DONE FLAG
RTS RETURN - WAIT FOR START INT

(b)

FIGURE 5-2.1.4-3 Printer Enable

5-49

When the CAl input is triggered by the printer reset pulse, the MPU interrupt sequence directs

processing control to the PRNTIR routine (Figure 5-2.I.4-4(b)). Since the IRQ flag and line are active, they

must be disabled prior to exiting from the routine in order to allow further interrupts. Line 590 reads ORA

(XPIDRA) to accomplish this as the first instruction. Lines 600-620 test bI of CRA to determine whether the

CA 1 input was positive or negative edge sensitive:

(A) IfbI = 0, CAl was a negative transition and the program branches to PKSCNI. Lines 780 and

790 set CRA to 3C as was done in the initialization routine to mask or disable the CAl interrupt input. The

starting address of the printer character file, PCKFOO, 'is stored by lines 800-810 for use during the first scan

loop. Lines 820-840 clear the previous timing interrupts and set CRB to allow the next negative CB 1 transition

to interrupt the MPU. The RTI instruction at line 850 returns the MPU to the status that existed at the time the

interrupt occurred and program execution continues from there.

(B) If bI = 1, CAl was positive signalling the end of the printing cycle. The routine disables the

line, CAl, the hammer strobe and the interrupts CAl, CBI, CB2, with lines 630-640 by setting CRA(B) to

3C. The next two lines store 34 in CRA clearing b3 and making CA2 go low. A delay loop is then generated with

lines 670-720. Accumulators A and B are loaded with the values 48 and A6. Accumulator B is then

decremented (A6 times) to zero each time Accumulator A is decremented once. When Accumulator A is zero

(=36 ms), the program jumps out of the delay loop and stops the paper ribbon feed by loading CRA with 3C (b3

= 1) making CA2 go high. Note that the delay loop accumulator values depend on the system clock frequency;

here, 1 MHz.

The printer done flag (#$29) is then set by a jump to another service subroutine before returning to

the program flow where the interrupt occurred.

The printer timing signals are asynchronous with respect to the MPU clock. Hence, if the printer

interrupt is enabled immediately following an interrupt, it could take nearly two full print drum rotations or

approximately 1.5 seconds to print a line of text. This is a relatively long period in terms of MPU processing

time; if the printer required continuous control during this period, it would be impractical in many applications.

Fortunately, the printer signals may be used in an interrupt driven approach that will be clarified as more control

program is described.

The printer interrupt service routines are designed so that the MPU can resume other system tasks

shortly after each printer interrupt is serviced. The relationship between the printer signals and MPU activity is

shown in Figure 5 -2. 1.4-5. The approximate time in which the MPU is busy servicing the printer is indicated by

the cross-hatched area following each allowed interrupt. Using this interrupt driven approach involves the

MPU for less than 30 msec out of each 850 msec print cycle.

The majority of this time is used during the Print Service routine, PRNTIT (Figure 5-2.1.4-6).

Printer operation requires that the selected print hammers be engaged only during the time between TPn and

TLn (See Figure 5-2.1.4-1). The PRNTIT routine selects the hammers that are required during a given interval

and causes them to engage and disengage at the required times. Most of the processing time (approximately 0.6

msec following each TL pulse) is spent determining which hammers should be engaged during the next

interval.

Referring again to Figure 5-2. 1.4-5, TL4I will be the first CB 1 transition after PRNTIR has enabled

CB 1 to be negative edge sensitive. TL4I will cause the IRQB line to go low interrupting the MPU in the same

manner as before, except that this time the IRQB flag is set by CB 1. The interrupt sequence will jump to

PRNTIT (Figure 5-2.1.4-6) instead of PRNTIR.

5-50

560
570
590 7C77 :86 8008
600 7C7A B6 8009
610 7C7D 85 02
1:'20 7C7F 27 1F
6:30 7e81 C6 3C
640 7(:83 F7 800B
650 7(:86 86 :34
660 7C88 B7 8009
670 7e8B 86 48
6:30 7eSII C6 ~.~ .·c
6'30 7e8F 5A
700 7C90 26 FD
710 7C92 4A
720 7C9:3 26 F8
730 7e95 86 :3C
740 7e97 B7 8009
750 7C9A 0'" of:) 29
760 7C9C BD 6303
770 7C9F 3B
780 7CAO 86 3C
790 7CA2 B7 8009
:300 7CA5 CE 7EBS
810 7CAS DF D7
820 7CAA F6 SOOA
8:30 7CAD C6 3D
840 7CAF F7 SOOB
850 7CB2 3B

Disable Ham
mers. Mask TP/
TL Interrupts

Mask R I nter
rupt. Generate
ribbon/paper

feed. (CA2 low
for 36 ms)

Mask R I nter
rupt. I nitial

ize CF Pointer

Clear previous
timing inter
rupts. Enable

TP/TL Interrupt
on next nega
tive transition

RTI = Return from Interrupt
R = Reset Timing Pulse

(a).

•• INTRPT VECTORED HERE IF CAl INTRPT
•• SCAN TE>~T FOR FIRST CHAR DR MAKE PPR/RBN FEED
PRNTIR LDA A XPIDRA CLR INTRF'T AND FLAG

LDA A :X:PtC~:A TEST IF CAt POS OR tiEG
BIT A ~~$02 Il"iTRPT
BEQ PKSCN1 NEG, GO INT"L SCAN LOOP
LDA B ~;$3C TRUE, PPR/RBN FEED
STA B ~~:P1CRB DISABLE HAMMERS;INTRPT MASt<ED
LDA A ~;$34

STA A ::-:;P1CRA :~TART PP~~/RE:ti FEED;INTRPT M
LDA A ~:$4::: iIELA'r' LOOP = 36 MILL I :S:ECOtiD

PI<'TGOl LDA B ~;$'32 ~;C'y'CLES=ACCA ((ACCB;' :3+5)
F'KTG02 DEC B FOR A IMHZ CLOCI<

Bt'iE Pf<TG02 LET AeCA = $4:3
IIEC A ACCB = $AE,
Bl"iE PKTGOI LOOP
LDA A ~;$'3C STOP PPR/RBti FEED; 1 NTRF'T M~K I)
STA A :;.::P 1 CF.~A
LDA A ~;$2'3

.JSR :x:I<SETF SET PRINTER DONE FLAG 29
F.~T I RETIJ~:ti

PKSCt'il LIlA A ~~$:3C t1'SAJ(CAl INTRPT
:STA A ::-::P 1 CRA
LD:X: ~~PKCFOO Ir'lT"L CF POltiTER
STX PVXBFR
LDA B :X:PIDRB eLF:' PREV TIMltH; ItiTRPTS
LDA B ~;$:3II SET CBl TO ItiTRPT ON tiE)c:T
:STA B XP1CRB tiEI3 TIMINt:; PULSE
RTI f;.:ETIJRN

(b)

FIGURE 5-2.1.4-4 Reset Service

5-51

Vl

~
N

Re,et~ rl \ l 1 ll----, ~-
\ lr--J L4 /

Timing

o 0 5

ir--4A7?Til lK'- \ ~l n
- ~ II ~

: .. ::::: ~~ I 3 I ~
~ R>8.0 ms R>10.0 ms _I

1 PRINTIR active· Enables interrupt by TL41.
2 PRNTIT active

1 PRINTIR active - Enables interrupt by TL41.
2 PRNTIT active - Selects hammers to be engaged at PTO.
3 PRNTIT active - Enagages selected hammers.
4 PRNTIT active - Disengages hammers and selects hammers to be engaged at next TP.
5 PR INTI R active - Terminating the print cycle; then performs a paper/ribbon feed.

FIGURE 5-2.1.4-5 Printer Loading of MPU Activity

870

Clear Previous
R Interrupts
Unmask CA1

Print Charac
ters under ham
mers (CB2 low,

back high on
next TP/TL Int.)

PRNTIT

RTI = Return from Interrupt
R = Reset Timing Pulse

(a)

Store Character
File Pointer in
the I ndex Reg.

PKSCAN
(Figure 16)

•• INTRPT VECTORED HERE IF CBl INTRPT
880
900
910
920
9:30
940

•• PRINT CHAR UNDER HAMMERS DR SCAN TEXT
7CB3 F6 800A PRNTIT LDA B XP1DRB CLR INTRPT AND FLAG
7CB6 F6 800B LDA B XP1CRB TEST IF CBl IS A P~S
7CB9 C5 02 BIT B #$02 DR NEG INTRPT
7CBB 27 13 BEQ PKSCN2 NEG, GD SCAN

950 7CBD B6 8008
960 7CCO 86 3F
970 7CC2 B7 8009
980 7CC5 C6 25
990 7CC7 F7 SOOB

1000 7CCA D6 DA
1010 7CCC F7 aOOA
1020 7CCF 3B
1030 7CDO DE D7

• POSITIVE, PRINT
LDA A XP1DRA CLR PREV RESET INTRPT
LDA H ~~$:3F SET CA 1 TO I NTRPT ON NE>Cf
STA A XP1CRA POS TRANS DF RESET PULSE
LDA B ~~$25 PF:INT CHAR tUJW UtiDER HAM.~
STA B XP1CRB CB2 LOW, HI NEXT NEG CB
LDA B BF1DRB GET SIDE B OUTPUT INFO
STA B XP1DRB STORE IT AND START PRINT
RTI RETURN - WAIT FOR NEXT

PKSCN2 LDX PVXBFR LOAD CURRENT CF POINTER
(b)

FIGURE 5-2.1.4-6 Print Service

5-53

Again the first thing done is to clear the IRQB flag and the IRQ line by reading ORB (XP1DRB).

Then lines 910- 930 test b1 of CRB to determine whether the CB 1 input was positive or negative edge sensitive.

(A) If bl = 0, CB 1 was a negative transition and the program branches to PKSCN2 (line 1030)

which loads the index register with the current character file (CF) address pointer. The scan loop follows and

will be discussed later.

(B) Ifbl = 1, CB 1 was a positive transition, i.e., a TP timing pulse. This means that the hammers

must now be strobed. Before this is done, CAl is cleared and enabled (lines 950- 970) to allow the next positive

reset transition at CAl to signal the end of the print cycle. The hammer strobe is then armed to be set low on the

next write in ORB by storing #$25 in CRB (lines 980 and 990). This combination of b3, b4, and b5 also returns

CB2 high on the next CB 1 interrupt at TL. The 8 data bits set by the previous scan loop for the B side outputs are

then stored in ORB (lines 1000 and 1010) causing CB2 to go low. The strobe inputs on the driver AND gates go

high activating those hammers whose data lines have been set high.

Line 1020 returns control to the place the interrupt occurred. The scan loop, PSKCAN (Figure

5-1.2.4-7), is the actual data processing section of the program. The column counter (Accumulator B) is

cleared and the current character file character stored in the test buffer (lines 1410-1430). The next character

file character address is then stored (lines 1440-1450) for initializing the next loop. The first text character

address is loaded into the index register before starting the scanning process.

The first instruction in the actual loop (line 1470) compares the column count with #$10 (decimal

16) to see if the last text character has been checked. If it has, the program enables an interrupt by the next

positive timing pulse transition (lines 1490-1510) and returns control to the executive program. If the last

character has not been tested, the program branches to PVNXT1. Line 1520 loads accumulator A (ACCA) with

the text character corresponding to the present column counter value. This is then compared with the current

character file (CF) character (lines 1530 and 1540) with the carry bit being set if they match (line 1550), cleared

if they don't (line 1570). The carry is then saved by the TP A instruction so that it will not be destroyed by the

following test. Lines 1550 and 1600 determine which output register is to be operated on. If the column count is

;?;8, ORA; if <8, ORB. In either case the carry bit is restored by the TAP instruction (line 1610 for side B, 1640

for side A) before it is shifted into ORA or the ORB buffer, BFIDRB, using the ROL instructions on line 1620

for side B and line 1650 for side A, (since a write into ORB is required to activate CB2, the data is stored in c;t

buffer until time for hammer activation). Figure 5-2.1.4-8 is the schematic representation of the ROL

instruction. As the scan progresses, the bits are shifted from right to left. At the end of the loop, the bits

representing the character to be printed will be shifted into the position indicated in Figure 5-2.1.4-9. When the

shift has been completed, the column counter and text address pointers are incremented (lines 1660 and 1680),

then a branch is executed to the start of the loop.

The control operation just described might appear at first glance to be a slow and cumbersome

approach. However, it should be kept in mind that during an actual print operation, less than 4% (30 msec out of

850 msec) of the MPU's capability is used.

This combined with the fact that only twenty conventional integrated circuits are being replaced

seems to indicate that the control of printers of this class is a trivial task for high performance microprocessors.

The proper perspective in this situation is to remember that the MPU is controlling 7 -1 0 other peripheral

devices while also performing the executive function and that the control of the printer is accomplished with a

minimum of additional expense in hardware (200 bytes of ROM) and engineering development time.

5-54

Set PIA for
interrupt on
next positive
transition of

TL/TP

PKSCAN

Zero Column
counter. Store
CF character in

test buffer.

Increment CF
pointer. I ni
tializ·e text

char. pointer.

SIDE B

Shift Carry in
to side B Data

Buffer

CF = Character File

* $ I ndicates that a
hexadecimal number
follows.

Store text
char. in ACCA

Increment col
umn counter.

I ncrement text
char. pointer.

(ACCB+1)

SIDE A (ACCB ~ $08)*

Shift Carry in
to Side A Data

Register
ORA

FIGURE 5-2.1.4-7(a): PKSCAN Flow Chart

5-55

01 ::::'3 0
01410 E:'3 !:::: 5F
01420 B'3E:9 RE- 00
01430 B9f:E: :E'7 'I 012:~:
01440 B'3I:E OS
01450 B'3BF FF 0121
01460 B'3C2 FE 011F
01470 E:'3C5 C1 10
014:::0 B'3C7 2':, 06
014'30 B'3C'3 86 3F
01500 B'3CB I''''' 'I' COO.E:
01510 B9CE 3I:
01520 B'3CF A6 00
01530 B'3II1 H1 012:~:

01540 B9D4 26 03
01550 H'3I16 OIl
01560 H'3II? 20 01
01570 B'3II9 OC
015:::0 B9DA 07
01590 B9I1:B C1 0:::
01600 B9I/D 2C 06
01610 B'3I1F 06
01620 E:9EO 79 0124
016:30 B'3E3 20 04
01640 B9E5 06
01650 B'3E6 7'3 C008
01660 B'3E'3 5C
01670 B'3EA I)::::
01680 B'3EB 20 ItS

.#
AT

PRINTER COL

OUTPUT FORM

COLUMN COU

PIA OUTPUT L

TEXT BUFFER

NTER

INE

ADDR.

•• SCAt-., TE::-:~T FOP CUPPEt-iT CHAP At-iD SET OUTPUT L INE:~:
PK:S:CAt-~ CL~~ I: 2E~~O COLUI'1t-1 COUt-iTE~~

LIlA A >::
STA A PI·/CFI:F STO~~E CF CHAP I t·~ T:~:T ,BUF
I t·~::-::

sr::-:; p'·/;:'::BF~~ STORE t-iE;:';:T CF AIIIIPESS:
LII::-:; F I ... ' T::-:;BF GET TE::-:;T CHA~: AD"DPES-S:

PKCLOP Ct'1P B ~~$1 (I HA:S: LA:5:T TE::-:;T COLUt·1t·i
I:t'iE PI,lN::<T 1 BEEt.., TESTErl
LIlA A ~~$3F SET CI:1 TO !t,.,TPPT ON t-~E;:-:;T

STA A ::<P1CPB PDS: TPAt'iS' OF T I t'l I Nt:; PUL:S:E
J;~T I ..,.'ES: !I PETupr·.,

P\,IN>::T1 LIlA R ' ...• 'S:TOPE T····· CHAP In liCCA :0 ••

Ct'1P A P\·ICFHF DOES TE;:'::T f'lA rCH
Ht-iE p\,rr-i;:'::T2 CUP~~Et-iT CF CHA~~ACTEP
SEC \'E:S: !I :S:ET CAP~"l
BPA P'",'I"i;:'::T3

P'",'N::-::T2 CLC NO!' CLEAP CA~:P'·,.'
P I ".'N;:':: T3 TPA S:R".·'E CAF.~~~·.,.·

Ct'1P I: ~~ (J::i I.,.IHICH PIA :S: I liE?
BGE P\.'N::-::T 4
TAP SIDE E' • , . 13ET CAPF.:'.,.'
POL BF1DPB :S:HFT C It-iTO P/:::~~~T BUFFE~~
BPA p\,ln::<T7 C(]t'~T I nUE

P'·/~i;:'::T 4 TAP :S:IDE A: GET CA~~P'''''
~~DL ;:.:;p 1 Dr:~A SHFT ':: I t-~TO PIA oPR

P'",'I'i::-:;T? INC B I NCPEt'lEt'iT COLUt'1/'"-/ CTP
IN;:':: It-iCPE,..lENT TE;'::T PO I/'iTEP
BPA PJ<CLoP

FIGURE 5-2.1.4-7(b): PKSCAN Assembly Listing

ORA or ORB's BUFFER Carry

I I I I I I ~I~ -----1D~~ ---,
bO

FI,GURE 5-2.1.4-8: Roll Left Operation on PIA Registers

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

M I C R 0 P R 0 C E S S 0 R

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

PB7 PB6 PB5 PB4 PB3 PB2 PBl PBO PA7 PA6 PA5 PA4 PA3 PA2 PAl PAD

+0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 5-2.1.4-9: Printer Column/Text Buffer Relationship

5-56

5-2.2 BURROUGHS SELF-SCAN DISPLAY CONTROL

Interfacing displays such as the Burroughs Self-Scan Model SSD 1000-0061 Gas Discharge Display

(with memory) to the MC6800 MPU can be done using half of one PIA. The display has a sixteen position,

single row array with a 64 character repertoire.

Each character is entered in the right most position, and is shifted left upon entry of another

character. When the display has filled to sixteen characters, the left most position will be shifted off the display

as subsequent characters ate shifted into the right most position. The display is also equipped with a

"backspace" (effectively a right shift) and "clear" capability for flexible error correction. Additional

characteristics of the display are shown in Figure 5-2.2-1.

The PIA/DISPLAY Interface is shown in Figure 5-2.2-2. The' 'B" side of the PIA is used to connect

both control and data signals, leaving the "N' side available for another peripheral. During initialization, the

PBO throughPB7lines are established as outputs;CAlis an interrupt input and CB2 is a strobe output. Data can

be transferred from the MPU to the display using a single instruction, STAA PIADRB, where the data was in

accumulator A and the "B" Data Register address was equated to the label PIADRB during assembly. This

instruction transfers the next character to the display and simultaneously generates a "data present" pulse. The

MPU can then resume other tasks until it is interrupted by a "data taken" pulse from the display.

5-3.1 INTRODUCTION TO DATA COMMUNICATIONS

The following sections contain the hardware and software requirements for a teletype connected

directly to the ACIA and for a teletype connected to the ACIA through a pair of modems. The modems enable

data stored at a remote site to be transmitted over the telephone lines to an MPU system. Therefore, the only

major difference in the software required for the two systems is the modem control functions. For the software

examples, data from a teletype tape is stored into memory under MPU control. After the complete message is

stored in memory, the data is transferred to a Burroughs Self-scan Display for viewing purposes. The data
contained on the tape is stored by program control in memory locations that are specified by the address field on

the tape. Data received from the teletype is in the format shown in Figure 5-3.1-1, which is consistent to that

used in other MPU software packages. The records consist of a header record (SO), data record (S I), and an

end of file record (S9). A data record begins with an S 1 preamble, followed by the byte count in that

record, the beginning address to store data, the data and the checksum (one's complement of the summation of

8-bit bytes). Since an error could occur in the reception of the data, the data is repeated several times on tape and

an S8 is used to indicate the end of tape. Examples of the TTY/ACIA and MODEM/ACIA are shown in Figure

5-3.1-2.

5-3.1.1 TTY To ACIA Hardware

The hardware requirements to interface a teletype to the MPU system include the Asynchronous

Communications Interface Adapter (ACIA) and some form of voltage to current interface circuit or RS232C

type interface. The current interface circuits may vary to suit the particular teletype used within the data system.

Two of the most common methods of receiving data from a teletype are from a teletype keyboard or teletype

paper tape reader. Also, the paper tape reader can have either manual or automatic control. The automatic paper

tape reader turns on and off by internally decoding words received on the serial input line. A "DCl" Control

word turns the reader" on" while a "DC3" Control word turns the reader" off;" DC 1 and DC3 control words

5-57

INPUTS (Figures 3 and 5)

Data Input
Positive logic (a high is written into memory as "1 "). Data
may not be changed during the period in which the WRITE
cycle line is in the logic "1" state.

Data Present Pu Ise
A logica I "0" causes the I NPUT DATA to be written into
memory. Minimum pulse width is 1.0 us. This function is
triggered on the high·to·low transitional edge.

Clear Pulse
A 10Uicai "0" clears the memory. Minimum duration for
the SSD 1 000-0041 is 33 us. Minimum duration for the
SSD1000-0061 is 66 us.

Blank Disable
A lo~pc:al "1" blanks the display. This input does not affect
the memory portion of the system.

Back Space
A loqical "0" causes a left·to·right shift of one character.
MlIlllnum lJulse width is 1.0 us. This function is triggered on
the hiqhto low transitional edge.

OUTPUTS (Figure 3)

Write Cycle
A loqical "1" aplJears at this OlitlJut dllrinu the WRITE
CYCLE beuinning with the negative edge of the DATA
PR ESENT pu Ise anci enciing \~'ith the OAT A TAK EN pulse.

Data Taken
A 10~11cal "0" pulse occurs when INPUT DATA is written
into memory or when BACK SPACE occurs. New data may
be entered no less thal1 100 ns followin9 the low tohi9h
tl'ansit iOIl of the DATA T AK EN pulse.

REQUIRED DRIVE SIGNALS

BLANK
DISAB LE

DA TA INPUT

(SIX LINES)

CL EAR

DA TA PRESENT

REFRESH I---
MEMORY

1 I 1
CONTROL

CIRCUITRY

BA
(5S0100

CK SPACE
0-0061 ONLY) I

DATA TAKEN

WRITE CYCLE

I
CHARACTER
GENERATOR

BLOCK DIAGRAM

f---
DOT MATRIX

DISPLAY
DEVICE

I
3_ CATHODE

DRIVE

CLEAR I -----------f~

MEMOI'tY CYCLE TIME -I-- 1 -.I r-- 12 ~ CLEAR PANEL I

OATA ~ 1-13 I
:~S~~~K ~ ~~----
SPACE (5501000-0061 ONLY)

CHARACTER I r- 11--: r-- 1, -, CHARACTER 2

r~ '////,--//// --'////4,.;///1///////////////////1'//_

;b'////'--'////'--"/////4///////////////I/I//////,-

I

~
. ~ '////,-_/ ///_- '////4';/////////////////////////'

OATA
INPUTS

~,////'_-1///_--!///4,;1/////////1j////1///////'_

I ~'1///' __ '//// ___ ;;'l'//4,;/////////1111111111/111/'_
I

lb '11//, __ // / 11_-.-l///4Ji//////////I//I/!1///////_

OATATAKEN~

WRITE
CYCLE

~ : ~ /' Note: Occurs only
~ U L..L after Data Present.

_14 100n1MI,.

TIMING DIAGRAM

BINARY CHAR. BINARY CHAR.
INPUT INPUT

0 @ 32 (BLANK)

1 A 33 1

2 B 34 "

3 C 35 :#
4 0 36 $

5 E 37 'i-'.
6 F 38 &
7 G 39 /
8 H 40 c:
9 I 41)

10 J 42

11 K 43 +

12 L 44

13 M 45 -

14 N 46

15 0 47 I
16 P 48 ~
17 Q 49 1

18 R 50 2

19 S 51 3

20 T 52 4

21 U 53 5

22 V 54 6

23 W 55 7

24 X 56 8

25 't 57 9

26 z 58

27 I 59

28 " 60 <::
29) 61 =

30 l 62 ::>

31 } 63 1

TRUTH TABLE

FIGURE 5-2.2-1: Burroughs Self·Scan Display Characteristics

5-58

M
P
U > PIA

Pin 15 Pin C
PBO -..

Pin 16 Pin 3 _
PB1

Pin 17 Pin B _
PB2 --

Pin 18 Pin 2 _
PB3

Pin 19 Pin A_
PB4 --

Pin 20 Pin 1 -PB5 --
Pin 21

PB6 I Pin E _ Pin 22
PB7

I --
Pin 5 -..

Pin 23 Pin F
CB1 -

Pin 24 Pin 0 _
CB2 -

FIGURE 5-2.2-2: PIA/Burroughs Display Interface

5-59

B5 (1)

B4 (2)

B3 (4)

B2 (8)
Display

B1 (16)

BO (32)

Backspace

Clear

Data Taken

Data Present

Pin 4 Pin 10 Pin J Pin L

-'-

-12V +250V +5V

} Leader (Nulls)

00 (CR) Formatting for printer

Frame ~ (LF) readability; ignored
~ (NULL) by leader

1 53 S = Start-of-record
2 CC CC = Type of Record
3 } Byte Count (two frames =
4 Q) one byte)
5

Q.

T } ~
6

E Address/Size 0
7 (/) a Q)

8 E N .:,t.
u

~ * Q)

} 9 ... J::
C (,) Date

10
0 :J ,.... 0

1 x U
!tI ~
~ >-co

} - Checksum
N

Frames 3 through N are hexadecimal digits (in 7-bit ASCII) which are converted
to BCD. Two BCD digits are combined to make one 8-bit byte.

The checksum is the one's complement of the summation of 8-bit bytes.

CC ~ 30 CC = 31 CC = 39
Header Data End-of-File

Frame Record Record Record

1. Start-of-Record 2L S -2L S 2L S
2. Type of Record ~ 0 31 39 9
3. 31 31

16
30

0~ 4. Byte Cou nt
.2L

12
-1L -2L

5. 30 31 30
6. Address/Size 30 31 1100 30 0000
7. 30

0000
30 30

8. ~ -1SL .2L
9. 34 39

98
46 FC

10. Data
~

48-11
38 43

34 30
32

(Checksum)

~
44-0

32 ---
35

52-R
.-R- ffi A8 (Checksum)

48

N. Checksum
9E

Head of Record

FIGURE 5-3_1-1: Paper Tape Format

5-60

~ TTY MPU
TELETYPE Current ACIA SYSTEM

I-- Interface

I . . . I
PIA

I . . . I
I Burroughs Self Scan I

TTY to ACIA System

VI
6--

- TTY
TELETYPE Current MODEM

- Interface

FIGURE 5-3.1-2 TTY/ACIA and MODEM/ACIA Systems

MPU
System ACIA

MC1489A
r---------,

r---------:--D---i--------,
I I r--------i----D---:-------j
I MC1488 I I
L _________ ...J RS232C :

r------
4N33

-------, ,

I
20m A +5 +12

Rx Data

L
Tx Data ,

RS232

'

Common
r-1..L

R*

L_~ ______________ ~ ~

+5

-vJ 4N33

1.2 k
L

+12

, -=-

Serial In
I
I

-12 V~-I
Serial I,

Common
I
I
I
I ,

TTY

-12 V
Reader Common

r---------------------------,
, 4N33 +12 I
I I
I ,
I I
I ,
I I

~ ____________ ~I~~ I
I
I

I Relay Driver I L ___________________________ ~

FIGURE 5-3.1.1-1 MPU to TTY Interface

5-62

are teletype requirements. The manual paper tape reader requires an externally provided relay to turn the reader

on and off via the ACIA. For the system shown in Figure 5-3.1.1-1, the Request to Send (RTS) output of the

ACIA is used to control the relay; the RTS output is normally used for interfacing to a modem. There are

separate data lines for serial-in and serial-out data transfer from the teletype which connect to the transmit data

output and receive data input of the ACIA via the interface circuits. The current/voltage options for the serial-in

and serial-out data lines of the teletype are (1) 20 rna, (2) 60 rna, or (3) RS232C. Typical interface circuits for

options 1 and 3 are shown in Figure 5-3.1.1-1. The 4N33 optical coupler can provide the 20 rna requirement,

and the MC1488 and MC1489A line driver/receiver provide the RS232C specifications. Communication

between the teletype and other devices is accomplished with an asychronous data format. This format requires

that the data bits are preceded by a START bit (space) and followed by 1 or more STOP bits (mark). The

teletype requires a minimum of 1 ~ STOP bits for completion of mechanical operations within the teletype.

5-3.1.2 TTY To ACIA Software

The flow diagram and assembled program for the communications routine are shown in Figure

5-3.1.2-1 and 5-3.1.2-2 respectively. The shaded areas in these figures represent requirements for using a

modem and therefore would be deleted in a program that does not utilize a modem. Referring to the assembled

program and flow diagram, the internal power-on reset of the ACIA is released by master resetting the ACIA

via the control register. Then, the control register of the ACIA is set for word length, parity, etc. If at any time a

power-fail occurs, these two steps must be repeated to initialize the ACIA. Next, in lines 150-200 the PIA is

initialized to receive data from the MPU System and output this data to the Burroughs Self-Scan display.

Line 240 turns on the teletype by the control character" DC 1. " If a relay is being used to tum the

reader on instead of a control character, the R TS output of the A CIA could have been used to control the relay.

Line 260 initializes a memory location that stores error conditions from the data that is received.

Lines 280-370 ignores all data that is on the tape until an S 1, S9, or S8 indication is 'found. An S 1

indicates a data record as shown in Figure 5-3.1-1, and the following is performed on the data record in lines

400-590. The memory location for accumulating a checksum is cleared. Next, the number of bytes in the data

record (minus two for the byte count) is stored in memory. The next four bytes on the tape represent the

beginning address for the data and these four bytes are loaded into two consecutive addresses. Line 480 loads

the X register with the two consecutive addresses making a 16-bit address.

In lines 520- 590 the remaining data in the record is stored in consecutive addresses beginning at the

address specified on the tape. A byte count of zero indicates the end of the record and the checksum is checked

for a data error indication. The final checksum is generated by adding the accumulated checksum to the

checksum (1 's complement) at the end of the record and incrementing the total by one resulting in all zero's

with a carry. If the checksum does not equal zero, the error memory location is loaded with a one at line 580.

The remaining data records are handled as above until the end of file (S9) is read. Then, at line

600-620 the error memory location is checked for an error indication. If an error was stored in this location, the

routine looks for a duplicate of the message on the tape and processes data as before. If data is read into the MPU

without any errors the tape reader is turned off by a "DC3" control word at line 680. Again, if a teletype with a

relay is used, the RTS output of the ACIA could be used to turn off the relay. In lines 810-970 the data is

fetched from memory and displayed at a program controlled rate on the Burroughs self-scan display.

The input and output of characters through the ACIA is done by the subroutine contained in lines

980- 1300. Beginning at line 980, the status of the receiver data register is checked until a full condition exists.

5-63

Mast~r
Reset
ACIA

5-64

Load Accum B

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
(Sheet 1 of 4)

No

Yes

No

Yes

No

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program;
(Sheet 2 of 4)

5-65

Load Accum B

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
(Sheet 3 of 4)

5-66

Return to
Executive

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
(Sheet 4 of 4)

5-67

000'50 ~=:c: 00 eCl 00
00060· :::;::~ I) 1 ee1 1 (I
(lOt}70 :::('2::: F'I Ai::
000:3 (I :=:O2!~ PIAnI
000'30 o;~oo

001 00 .Et"iT~P

001 1 0 0200 ::;t=:t B::': CI< 140
(10 1 c~o Oc~ o;~ p-' ._1 (:::;:: (I 0
001 .30 Ot~ (:5 ::::i:, 149
001 40 (I~:' 07 'E'" 'I !::2Ci C!
00150 020A ;:::E, .=.'-:' i..-._'

001 60 020C ,,
c· .. ::: 02;:

00170 CI~OJ;:' !::~I FF
001::::0 OE~ 1 1 B? e (1:::2
00190 O~='l4 a6 ;~~c

OOl':~OO o~~ 16 e02J

00250 0222 B? 8201
(I O!~6 (I 0;::,::'5 :::~, u u CK;::54
00270 0227 B? 0328
C02::: 0 OE'c~A BEi 02C4 Ct<2E·j i
00::90 022D 81 52
00300 022F 26 ~9
00310 0231 ED 02C4
(11)'31:: I) l)2;:4 q 1 .39
I) I) .,:;: '=~: Ct C' ;:~ ,:;~, ;:~ ? .::; F
(10::;::4 (I =IE3;:; ::! 1 31
00350 023A 27 n8
00360 023C 81 38
(10:3 {O (!;=~3E ;~6 EA
I) !)'3;::: I) 0;::40 CEo 04
003'30 O.::4;::~ ':'0 :ii_

00410
(I 04,=~;)

004::n
004,4 i

(1045 :)
n C'4~. n
CI 0,-+ .., (I
(11)4;:. n

0;::47 E:D f!,~ (i!

J::'4t= ID (I'~ I) 1
(I.:? '5 l::~ f:? I)':~ '::~3

(; ;:: ':1 '5 B II IJ:: j-i 1

I) nSj~:' (I OE66 A? II (I

EOU
EOU
EG!U
EOU
O~'G

PDI"JEF.'
LItA A
:::TA "i
LIlA i=i
STA A
LIlA A
::TA A
LIlA A
STA A
LDA A
:~:TA A

L.IIA Fi
.::TA 1--1

-' .~:~.
Cl"lP A
Hr'·ir
J:S'!:;:'

$::::20 (I
CC 1 00+1
~I; !:: (I ~~ ::::
:1;;:: o;:~;~
$,~OO

on
~~:!;.E' 3
eel 00
~~'t;H9

eel 00
::~'f;;:: .3
F'IAC
~~$i="F

PlAT! I
~~'f.;;~C

PIAC

CeltO

'tr

l:r'iF' A ~~ '3
BEO Ck: 7 00
C r'1 r:':=1 ' • 1.
BE9 CK :~:::; c:
i:: 1'1 F' A ·r ~::

HriE Ct<26 n
L DR B ::~14

.BF~A '::K?4 I)

t·::·!,:,

SUB H
~'TA ;=t
J':'F
:::T ~ f=t
..J ~:~:'

:S:TA :;
LD',::

BEO

'~:k:.:::,:~: III

CI<'3nnn

Ct',. :,,: 1 0

C/.? '_." l

Ci< .=,.:: :.\.1

cv~:: :: -:::!..
C ~::' ~, ,- ri .. i
, =: ~:: '3 !:' 1. C
C~:::5:: I!

STA A,"

riCIACS
ACIADA

PIA

MASTER PESEr~RTS=O

IHITIALIZ£ ZEF'G

B\'TE f:,iJUr',j T
~~. F. A Ii .::. t=~. i~' A 1·1 ,:: ~

: T!J!:;:'E DATA

FIGURE 5-3.1.2-2 Assembled Data Comm Program (Sheet 1 of 3)

5-68

00530 026::: OS
00540 0269 20 F3
00550 026B 7C 0326 CK530
00560 026E 27 B~
005?0 O;~70 :::6 01
00580 0272 B7 0328
00590 0275 20 B3
00600 0277 B6 0328 CK700
00610 O~7A 27 02

I t-i;:':;
Br:'A Cr<4? 0
I r-~c CK:;:;:: 0 (I
BEO CI<'::I:,O
LD,=t A ~~l

S:TA A CK.3;::;~ I)

"BPA CK260
LDR A C~(3a2 C'
BEO CK?3 (I
BPA CK254

o Ot:,:~; (I Oc~?E (:6 (I I) CV 730 LDR:B ~~ I)

00640 0280 B6 8200 CK740 LDA A eCl00
00650 0283 47 ASR 8
00660 0284 47 ASP A
00670 0~85 24 F9 Bee Ci<"74 CI
00680 0287 86 93 LDA A ~~'I;9:::~

00690 0289 B7 8201 :::TA A cellO
00700 028C £6 8200 CK751
(10710 O!:::::F 4?

LIlA A ce1'OO
A:~:F.~ A

(1072 0 I) i=:"3 (I 4 ? ASh:' A
00730 0291 24 F9 Bee CV?51
00?40 0293 B7 8201 STA f~ CCI10
00750 0296 B6 8200 CK756 LDA A eCl00
(I 07~, 0 O!~-~9 4('
o (I? 7 (I 0;:: '3!4 ::1- 7

fiSF.' A
A:::~~ p

0031 1) (!c:Ai::: :_,1': (I!J (I;) :;::TA~'T LD::':: ~~$ 0
00820 02A5 C6 4~

00830 0287 8~ FF
(10;::4 C! CL~H'3 ,jp'

08850 02AA 26 ~D
o o~::t=, (I 02t=1C SA
00870 02AD 26 F8
o O':~::: {) O;~~AI= At:. (10
(I I)':::.~ Cl OE.'B 1 0::::
00900 02B2 21 EA
(I (19 1 0 e 2 E 4 c:~, 0 1

BEl:'; 1. LItFl f: ~~l4F

T I r'iE~~ LD~7i A ~::t;FF

Tlt'1El DEC A

DEC :B

i_DR H ::-:~

I r'1::<
C:j'1P A ::~t;t:P

F.: '"1 E r'1 ~ >< T
PT:::

(I (19:: (1 O;:::F.:7 H? e CiC~:~ nE><T :: TA t=I P I AD I
00940 02BA F6 S023 ~~!Tl LDA B PIAC
f) (1"3 =s c~ CI .:: F: r.~ ~=: ·4 ;:: I) i=t ;"i .~~ Of; ~ ~ 'II ::: :)
o O'~~, 0
00'??0 CI;:I,~: 1. 7E

p~.

47
Ck::;:: (I (I I)

BEG'
J ;'1;:~'
LDR A
F!S:~' Ft
Be-s:

r"-li:::::-::T 1
t: I=: 1'3 1
ee 1 (I C!

CHECK EPF'IJj:;:~

DC:;:

:BF

FIGURE 5-3.1.2-2 Assembled Data Comm Program (Sheet 2 of 3)

5-69

(i 105 (I 02II;:: 47
01060 O;::D3 4?
01 070 Oi~rl4 47
010::::0 02D5 47
dlo90 02D6 24 04
01100 02D8 C6 03
01110 02DA 20 A4
01120 02IIC 47
011:30 02IID 24 05
0114 (I 02IIF ::::E. O;~

01150 02El B7 0328
0111:.0 02E4 47
01170 02E5 24 05
01180 02E7 86 03
01190 02E9 B7 0328
01200 02EC B6 8201
01210 O;:::EF ;:::4 7F
01220 02~1 81 7F

CK2100 A:S:P A
A:S:F.~ A
ASP l=t
ASP A
Bee
LIlA B
E:I:;:~A

CK2170 ASF.: A
Bee
LIlA A
STA A

CI<"221 0 ASP A
Bee
LItA A
STA A

CKC:~25 0 L DR i~

At-~It A
Ct'1P A

CK2170
~~$::':

C~:::74 I)

CK::::,~:!:: (I

C~<2;::~, 0

CK:3::~~:: I)

cellO

01230 02F3 27 CF BEG CK2000
01240 02~5 F6 8200 CK2280 LDP B eCI00
01250 02F8 57 ASP B
(1126 (I OEF':;t :~7

o 1 i~~? 0 O~~:FA !~4 F'~

01280 02FC B7 8201
I) 1 ;:::'3 (I 02t=F SF
I) 1. :3 0 I) (I '3 0 (I ::: '?
o 1 :::: l. Ci ,:, ::: 0 1 :::: II ,:: t
(I 1 ,3;:: 0 0 ::: 0 ':;:: ;:: 1 J '3
o 1 3'] (I 0:-:: 0'5 ;~F OC~

01340 0307 80 07
I) 1 :35 (I 0::'; n'? 4:::
(113':, (I 030!=t 4::;
i) 1. ::: ? I) 03 ((,t: 4 e
(113:::: (I 030e .::\.:::;
01390 030D B7 08~B
01400 0310 8D p0
01410 0312 81 39
01420 0314 2F 02
014~O 0316 80 07
;) 1. 44 (I (I ::; 1 3 ':: 4 (I F
01450 (l31A F6 032B
o 1 4 i::, ("I IJ ';: 1 II 1 E
:] 1 4 ? (I 0 ::.; 1 E. 1 .:.
01480 031F FB 0326
01430 0322 F7 0326
(1150 j) ':':::'5 '~;3

I) 1 os 1 0 ':'; L::: Eo 0 1
o 1 5;~ 0 ':;:;.::~ -: (I 1.

I) 1 ::5:3 (I :;:' ::' :~: 0 1
Oi5·;:t.O 329 n 1
~) 1 5 'S (I :~~ :~ ;~ t.', 1
I) 1 5 ;;.:' 0 ~: 2 B C· t

BI:-C CK2;:::=: 0
:S: TFt Ace 1. 1 I)
elF E:
PT:S

CK::: (I 0 I) B:S,~:

CI-'1P A
BLE.
:::UH A

CK::: 041) 9'~:L A
A:S:L A
A:S:L R
F1:~:L !=i
:~:. fA A
'r:. :-,r, ..c, .,.:.rr:.

BLE

CK3040
.... -:t
~. r (

CV:;:::i5 (I
Ct:::;~ (I I) 0
::~$:3'3

CV:31:3 I)

L.DH B CV3;:;:~5 (I

!=tBi4
.TAB
ADD B C~::'3::: C 0
,S:TA F.: (:1<3;::; (I e

C!-:;:'::::::; 1 (I Pp1~:

I:' ~< :::: ;::! ,~~ n k~' ,'1 :B
Cl::'::;';::::: (I P1"'1I::
C~<3:::41) ~:!"1P

C 1<3 ::: ':' (I P "1_P

1

1
1
1
1

FIGURE 5-3.1.2-2 Assembled Data Comm Program
(Sheet 3 of 3)

5-70

FE

PE

LOAD CHAP

I Gt-irJPE PUBfJ.JTS

ECHIJ CH~F:'

A:S,::: I I TO HE,.<

':'HECK ~:Ut'1
'E:\'TECT
EF';;'O~~

::·::HI

Then the remaining status bits (framing, overrun, and parity error) are checked for an error condition on the

received character. If a framing error condition exists, indicating a possible loss of character synchronization,

the program is terminated. The fact that an overrun or parity error occurred is stored and the program continues

to receive characters. The character is loaded into the A-register of the MPU from the ACIA in line 1200. In

lines 1240 to 1280, the received character is transmitted back to the source. This is accomplished by checking

the status of the transmitter and when empty the character is loaded into the transmitter data register.

The characters stored on tape are in ASCII notation but represent hexadecimal numbers; the

alpha-numeric representation for 0-15 in hexadecimal is 0-9, A-F (10-15). Therefore, the eight bit ASCII

notation must be converted to a four bit binary number (0000- 1111). For the ASCII characters 0- 9, the four

least significant bits are equivalent to the binary representation 0000-1001. For the ASCII characters A - F,

subtracting 7 from the ASCII character results in the four least significant bits being equivalent to binary

representation 1010-1111. In lines 1310- 1490, ASCn characters are converted to four bit binary numbers and

then two 4-bit numbers are stored in an eight bit register.

5-3.1.3 ACIA to Modem HARDWARE

The MPU system can communicate over the telephone lines to a remote peripheral by utilizing a

modem and an ACIA as shown in Figure 5-3.1.3-1. The modem takes serial digital data and converts it to an

analog signal for transmission over the telephone lines. Incoming data in analog form from the remote modem

is converted to serial digital form by the on-site modem. The ACIA provides the MPU with the ability to control

the handshaking requirements of the modem. The first step requires that the Data Terminal Ready (DTR) input

be "low" to enable the modem to complete the handshaking. Response by the remote modem to the on-site

modem completes the handshaking and results in a "low" logic level from the Clear to Send (CTS) output of

the modem. After handshaking has been completed, the remote and on-site systems can transmit and receive

data. When communications is lost between the modems, the CTS output returns "high."

In the transmitter portion of the ACIA, the Transmitter Data Register Empty (TxDRE) flag and

associated interrupt (IRQ), are enabled when both the CTS and Transmitter Interrupt Enable (TIE) functions

are enabled. In the receiver portion of the ACIA, the Receiver Data Register Full (RxDRF) flag and associated
---- -----

interrupt (IRQ) are enabled when both the Data Carrier Detect (DCD) and Receiver Interrupt Enable (RIE)

functions are enabled; the low to high transition of the DCD input with RIE enabled generates an interrupt
---- ---- ---
(IRQ). Since the MC6860 modem does not have a Data Carrier Detect output, the DCD and CTS inputs of the

ACIA can be tied together which results in an interrupt (IRQ) being generated when communications is lost.

U sed separately, the DCD and CTS inputs of the ACIA allow the use of higher performance

modems. For example, a high-performance modem will transmit on one pair of wires and receive on another

pair referred to as a four-wire modem system. As in the low speed modem system, the MPU, via the ACIA,
-- ---

generates a DTR and after a time delay, the CTS output of the high-performance modem goes "low." The

transmitter can start transferring data immediately after CTS goes' 'low. " After the on-site modem receives the

carrier frequency from the remote modem, the DCD output goes' 'low" and data can be received. The transmit

and receive lines of the modem are completely independent of each other which, for example, allows

transmission to the remote site when the other line is down.

5-3.1.4 ACIA To Modem Software

The program used to receive data from a teletype with the addition of the modem control functions is

5-71

!!
C)
c:
J:I
m
U'1

t
~

Vt s: ~ "g
tv c:

0

J:I
CD
3
2-
CD
en
;:;:
CD

20
Clk.
Gen.

Enable
Logic

To ROM, RAM, DIA

MPU
XC 6800

E

BRG
MC14411

TxC RxC

ACIA
XC6850

IRQ

IMA

DAA

r--------;I R I

ONIDA

RTS I ~ DTR SH
Tx Data

MODEM
XC6860 ~ (An,we, ModeJ

Rx Data

i5CD CTB I OS ANS +

To ROM, RAM, PIA

used for the following explanation. The local modem is initially enabled by writing a control word into the

ACIA as shown in line 130. This control word sets the RTS output of the ACIA "low" and in turn enables the

Data Terminal Ready (DTR) input of the modem. In lines 210 to 230, the completion of the handshaking

between the remote and local modem (indicated by a "low" on the CTS bit) is checked until established. Also,

during the reception of characters the status of CTS is checked as shown in lines 1010 to 1020 to insure that the

program does not remain in an endless loop if the transmission lines go "down." At the end of the program the

modem is disabled in line 790 by writing a control word into the ACIA to set the RTS output "high." This

immediately terminates transmission from the modem.

To insure that the last character to be transmitted is received at the remote site, two' 'pad" characters

must be inserted between the last character and the control word (RTS = 1) as shown in lines 700-780. This

enables the last character to be completely transmitted prior to disabling the modem.

5-3.2 TAPE CASSETTE SUBSYSTEM

This section describes the design of an MPU based Tape Cassette Subsystem. The scope is limited to

the control of a single transport operated in a bit serial format.

The technique used may be extended to the control of multiple transports, however, this requires

some additional hardware (multiplexers for data lines and either an encoder to encode additional control and

status lines, or half of another PIA). A similar approach may be used when data is transferred in parallel format.

This will require additional data lines (8 lines instead of one). The additional data lines could be bidirectional

PIA lines, programmable to be outputs during write, inputs during read. Note also that if data is transferred in

parallel, the MPU can handle the faster data transfer rates resulting from use of more than one transport. In

multiple transport applications, the system will also require additional lines to monitor tape drive status signals

such as "READY" and' 'BUSY" that provide an indication of whehter the selected transport is available or

busy.

In a typical tape subsystem, many functions must be performed, however, only the following basic

routines are described in this section.

(1) Search to a given record.

(2) Stop in an interrecord gap.

(3) Write (Fwd).

(4) Read (Fwd).

(5) Write filemark.

5-73

5-3.2.1 HARDWARE DESCRIPTION

Tape Transport Description

The data recorded on the tape conforms to the A.N.S.1. "Specification For Information Inter

change" (X3Bl/579 - September 14, 1972). The data recording format is shown in Figure 5-3.2.1-1 below.

A block recording format is used with each data block consisting of: (A) a preamble (1 byte); (B) data (4-256

bytes) including the Cyclic Redundancy Check Character (2 bytes); and a (C) postamble (l byte).

The Tape Transport that was used has an adjustable capstan controlled Read/Write speed which was

set at 15 ips. The search speed was adjusted for an average speed of 100 ips. The pinch roller engagement time

is 30 msec (max). Disengagement time is 20 msec. The tape acceleration time is 20 msec to stabilized speed.

Speed stability is within the A.N.S.1. specifications. Photo-detectors are used for sensing End Of Tape (EOT)

and Beginning Of Tape (BOT). The transport is provided with both a Cassette-In-Place sensor and a

File-Protect sensor (also called a Write-Protect sensor). A single Read/Write head is used which is also used to

write gaps in erase polarity.

are:

Four control lines are provided for the control of tape motion and to select a given transport. These

(1) SELECT/NOT SELECT

(2) STOP/GO

(3) FORWARD/REVERSE

(4) SEARCH/REWIND or READ/WRITE SPEED

Since in the present subsystem only a single tape drive is used, the select line is not used. The interfaces

between the PIA, the tape drive, and the control electronics are shown in Figure 5-3.2.1-2.

c:
~
E
E
M
~
c:
~
E
E
M
~

\n'.'bIOCk Gap ®

Postamble

8 Bits

Track 2

~----~------~---

Track 1

~ Forward Tape Motion

NOTES:

1 Tape is shown with oxide side out.

o Tape is fully saturated in the erase direction
in the interblock gap and the initial gap.

Data Block

Data Portion Preamble

~nl'lal Gap ®

33mmMI~
(1.3 In. Min.) I

I

t~

@ The last 2 characters (16 bits) of the data
portion is the Cyclic Redundancy Check (CRC).

o Shown without phase flux reversals that may
exist between data bits.

E .S
E

FIGURE 5-3.2.1-1. Recording Format 800 BPI

5-74

PIA

CA1

CA2

PAO

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB1

CB2

P I A Interface

o hi) Clock (10 t

Strobe (rd , wrt handshake - hi to 10)

Read Data

CRC Error

Not in Syn

Ready = 1

Cassette in

Wrt Protec

Available =

~ 1

c=O

Place ~ 1

ted ~ 0

0

EOT-BOT Seen = 1

Write Data

Read = 1 Write = 0,

Erase = 1,

CRC Reset

Rd Enable = 0

= 1, CRC Enable = 0

Speed R D-WRT = 0, Search ~ 1

_Direction - Fwd = 1, Rev = 0

CRC Shift = 0, Wrt Data Enab. = 1

Motion Stop = 1, Go = 0

fl-Undfl (10 to hi) _Intrpt Dv

_Intrpt EO T-BOT Timeout (10 to hi)

------ _ReadY - : Cas. - - In - _Place - - Wrt. - Protect. Tape - Read/Write Drive - and --- Control - Avail.

Electronics --.. EOT/BOT --- .. ~ .~ . - -- - Data --- Speed --- Direction

-- Motion --

FIGURE 5-3.2.1-2. PIA, Tape Drive and Read/Write Control Electronics Interface

READ/WRITE Electronics Description

The data to be recorded on the tape is presented to the tape transport in Non-Return-to-Zero (NRZ)

format but is recorded in Phase Encoded (PE) format. The data conversion is performed by the logic shown in

Figure 5-3.2.1-3. The timing diagram for the conversion from NRZ toPE format is shown in Figure 5-3.2.1-4.

Write data (or CRC Data) is gated through a data selector to flip-flop FF1 which provides a one-bit

storage. This storage is necessary because in P.E. format, a phase transition is required whenever the next data

bit is the same as the current bit. The exclusive-OR gate compares the next bit with the current bit, and provides

a high level to FF2 at phase time whenever the two are equal. The 12KHz clock is low at data time, and provides

a high level to FF2 input at data time. Thus, FF2 always toggles at data time and also toggles at phase time if the

next data bit is the same as the current data bit.

The Write data is also sent through a Cyclic Redundancy Check Character Generator (MC8503

CRCC Generator). The CRCC is appended to the data block and the CRC data passes through the same circuitry

as the Write data for conversion to the P.E. format for recording. The timing for this operation is also detailed in

Figure 5-3.2.1-4. Both the preamble and the postamble are 8-bit patterns of alternating ones and zeros

(01010101-M.S. bit). (This can be used to establish the data rate during data recovery since there is a single

transition per bit). During the Write operation, the CRC Generator is enabled after the preamble data has been

written. The CRC Generator remains enabled throughout the data block. At the end of the data block, the CRC

Data is shifted out of the generator into the Write circuitry.

5-75

The read-write head is switched to carry the write current from FF2, via three-state gates enabled by

the Read-Write Line (PB1). The series resistors R adjust the write current to a nominal value of 4 rna.

During a Read operation (Ref. Figures 5-3.2.1-3 and 5-3.2.1-5), the write circuits are disabled, and

one end of the read head is switched to ground via a three-state gate. The other end passes the read signals onto

the read circuits which amplify and convert the read signals to logic levels in P.E. format. The P.E. read data

goes to the Phase Locked Loop data recovery circuit which decodes the data and clock signals. The P.E. data

also goes to a monostable multivibrator which is used to detect gaps during a search operation.

CB2

7---_---<

"'---""---i~-4-- Search (From Auto/
Man. Selector) "1"

,.----,~_+___4--- BOT

\\--...... --- EOT

From
Drive

PB7~~------4
}-----------+--..--------+--+----------------3~@ Stop/Go

Erase/~~~~~t
PB2e----~

CRC Shift
PB6 ~-------1

Write Data
PBO~~~~-~~~~~

Read/Write
PBl ~-----+-l

Read Data
PAO~~-------i~-----___4-_+_+----44_-~---------------+_---_r-------~

Rd/Wrt or Search/Rewind Speed
PB4~------------_4-_+_+-.~

CRC Enable
PB3

CRC Error
PAl

Fwd/Rev
PB5

Clock (Read/Write)
CAl

PA6
Available

Strobe
CA2

Overflow/Underflow
CBl

Not·in-Sync

SOl

SA
SDO

AZ

Cable Interconnects

(

Available from
Tape Drive

+v

Overflow/Underflow Error

Not-in-Sync

<~ Drive -L Ground

FIGURE 5-3.2.1-3: Read-Write Circuitry

5-76

~> To Tape Drive

Clock
24 kHz

Clock
12 k Hz

Erase

Strobe

CRC
Enable

Write Data
N.R.Z. (PBO)

FF #1
Output

FF #2
Output

(P.E. Data)

CRC
Shift

Recovered Clock

Strobe

CRC Enable

CRC Error

Read Data
(PAO)

------------~I I

~J 1111 If '1
I 0 1 0 1 I 0 1 0 I 0 _I
l--- Preamble -. Write Data ., ·~I· Postamble"l

I ""--CRC Data

---+-:"""""f~

LJ
~ Shift CRC

FIGURE 5-3.2.1-4. Write Operation Timing and Format Conversion

~------------------------------------~{rr--

1~ ________________________________ ~
"- CRC Reg. Reset

~r--J
I--- Preamble -1- Data

~ Check All Zeros
(No Error)

~ __ r~f-
o o

-\ ~ l---Postamble ~I

"-CRC Data

FIGURE 5-3.2.1-5. Read Operation Timing

5-77

The Read data goes to the PIA directly (PAO) while the recovered clock goes to the PIA (CAl) via

the clock selector circuit. The clock selector selects between the read and write clock during a read or write

operation. During a search operation, the gap-detector retriggerable single shot output is substituted for the

read-write clock.

During a Read operation, the CRC Generator is turned on after the preamble has been read and

remains on throughout the data block, including the appended CRC character. At the end of the CRC character

the CRC Error line is examined to see ifit is low (all zeros line out of the MC8503, CRC Generator). If the data

has been read correctly, the line will be low. (For additional details on the use of the CRCC Generator see the

Applications Section of the MC8503 Data Sheet.)

An UNDERFLOW-OVERFLOW Error interrupt is provided in order to abort the current operation

in the event of such an error. The interrupt signal is generated when the MPU fails to either write or read data

after every clock pulse during the write or read operation. The error flip-flop output should always be high. The

normal response to a clock pulse on the clock line (CAl) is to provide a strobe by reading the data and clearing

the flag set by the clock pulse.

Status Signals from Transport and Electronics

The tape transport contains two micros witches , one to sense the presence of a tape cassette in place,

and the other to see if the write protect tab is removed. If the tab is removed, the tape is "Write-protected" ,and

hardware logic disables the write circuitry (the three-state gates at the output of the write flip- flop are turned off,

and the clock to the write flip-flop is gated off.) These two signals are available at the PIA interface, and the

MPU checks them prior to issuing any "motion" commands.

The Available signal from the electronics and tape drive is essentially a ground-loop which checks

whether all of the cables interconnecting the PIA to the electronics and drive are in place. If a cable is

disconnected, the group loop is not completed and a high logic level will be present at the PIA interface.

The EaT/BOT sensor on the tape drive provides a transition when the EaT or BOT is seen. During a

Read or Write Operation, this transition triggers a single shot whose output appears at CB2 and P A 7 of the PIA

(Figure 5-3.2.1-6). The single-shot period is set to a time such that one complete record may be read or written.

If the single shot times out, then it will generate an interrupt to the MPU system via the PIA, and will stop the

tape transport. This hardware controlled stop is a safety feature, and prevents damage to the tape cassette if

there is system failure. Normally, the MPU examines the EaT/BOT line at the end of each record being read or

written. If the EaT/BOT transition has occurred, the MPU will stop the transport (and this will reset the

single-shot). During a Search Operation if EaT or BOT is seen an interrupt is generated to the PIA

immediately. Note that the EaT/BOT signal is used both as a status signal (on PA7) and as an interrupt signal

(CB2). This allows the MPU to read the EaT/BOT status before system operation is interrupted. If tape is at

Clear Leader, then PA7 will remain low when the speed select line (PB4) is at a Search Speed (high).

The Phase-Locked-Loop (PLL) Data Recovery circuit is shown in Figure 5-3.2.1-7. The first PE

transition after Read is enabled sets the First Bit Detector flip-flop, FF2. P.E. Data is clocked into a two bit shift

register (FF3 and FF4) by the PLL clock (Fout). Each time there is a transition on the P.E. data line, a pulse, one

VCM period in duration is generated from the exclusive OR gate tied to the outputs of the two bit shift register.

The VCM also clocks a window counter whose carry-out output (TC = 1 during count $F) generates the read

clock which clocks the Read Data to the PIA (P AO). The time during which the Q3 output of the counter is high

(count 8 through $F) is defined as the data window (or data time). If a P.E. transition occurs during the data

window, it is gated through to the Preset Enable (PE) input of the counter, and presets the counter to the middle

5-78

EOT or BOT

Clear Leader

+v

"1" o

EOT
BOT
From
Tape
Drive

0----1-----1 C

Hardware
Stop

Auto/Manual--------~
Switch

Manual {

Stop/Go

Speed Rd-Wrt/Search

Fwd/Rev

A Stop/Go
Xo ZOI-----4--------------~

X1
Speed (Rw-Search)

X2 Z11--__ ~~---------------

Auto { (PB7) - Stop/Go YO

From (PB4) Speed Rd-Wrt/Search Y1
PIA

(PB5) Fwd/Rev Y 2

Auto/Manual
Multiplexer

Di rection (Fwd/Rev)

DelaY 4
Inverters

xr------------~CB2

xr------------- PA 7

"1" 0

C

FIGURE 5-3.2.1-6. EOT/BOT Circuitry with Hardware Safety Feature

5-79

Start/Stop Signal
to Drive

(Stop = 1)

Read Ckts.
- - - -,....---------,- 1

Positive and
Negative Pulses

from Read -----~ C
Comparator

"1"---..... -~ 0

FF2
First Bit
Detector F.F.

Read
Enable

Wrt.
Osc.

(12 kHz)

C

I
I
I P.E. Data

I
I
I
I
I

-1

r-
I
I

I
I
I
I
I
I
I
I
I
I
L_

v

"1"

Read
"1" r-___ -.. ____________:D:.:a:.:t:::a...:.l...:.n ____ ~ NRZ

Read Data to
PIA (PAO)

"1"

cf>
Det.

MC9316 TC

"1"

Exclusive OR
Output

"1"

Read
Data
F.F.

Read Clock

To Clock Selector

----------- ..,

I
I
I
I
I
I
I

-Enable CRC
-Read

I "1"

I L _______ _

Not in Sync

Not-in-Sync
I Circuit

_____ ..J

---------------,
MC4024 F out = 16 x Data Rate (192 kHz)

VCM

Prescaler

Phase-locked-Loop

FIGURE 5-3.2.1-7: Phase Locked Loop
Data Recovery

5-80

of the data window (count of $C). The timing diagram in Figure 5-3.2.1-8 shows nominal system operation

after the preamble has been read and the system is in exact lock. If the P.E. transitions occur anywhere within

the "data window", the P.L.L. system will track them and adjust its output frequency accordingly. P.E.

transitions during window-counter counts of 0 to 7 will be gated off because the Q3 output will be low. Thus,

only the data transitions affect the P.L.L. system frequency. For additional details ofP.L.L. data recovery, see

Section 5.4 (Floppy Disk). Additional details on the design of the P.L.L. system are described in Motorola's

Phase Locked-Loop Systems Data Book and Application Note AN-535, "Phase Locked Loop Design Funda

mentals." These publications may be obtained by writing to the Literature Distribution Center, Motorola

Semiconductor Products, Inc., P. O. Box 20912, Phoenix, Arizona 85036.

The Not-In-Sync circuit checks to see if a data transition occurred during the data window. (The

circuit is enabled after the preamble has been read, and remains enabled throughout the data record via the

Enable CRC line.) If there is no P.E. transition within the "data window", the Not-In-Sync latch is set. The

Not-In-Sync signal is ORed with the Overflow/Underflow signal, and generates an interrupt to the PIA (on line

CB1).

An Auto/Manual multiplexer (see Figure 5-3.2.1-6) is used to allow tape motion operation either

under MPU or manual control. Manual operation is useful during program and system debugging.

A complete logic diagram of the tape-cassette Read-Write and Control circuitry that was used is

shown in Figure 5-3.2.1-9.

VCM Frequency

P.E. Data

Read Data in
to Rd. Data F.F.

r Data Transition r Phase Transition
I ~1--~--iLl ________ _

fa "1"

No Phase
If'Transition

"1" 5C "0"
Exclusive rlL... _____ r1, ________ r1, ______________________________ r-'L-

OR Output ~~~--_---1st Bit --MI£::: Preamble 1st Bit

~~~~~: IA I B 1 C 1 DIE I FlO 11 1213141516 17 I a I 91 A I B I C 1 DIE I Flo 11 12131 4 151 61 7 I al91 A I B I C I 

03 Output of 
£.Data Time , I I 

~Phase Time 
Window Counter t--- Data Window~ 

Preset I nput to 
--11 II r""1.-Window Counter 

Carry-Out 
Window Counter n n (Ref. Input 

to PLL) 

Prescaler 
Carry-Out n n (Feedback 

Input to PLL) 

Rd Data 
NRZ to PIA I .1_ I_ "1" "1" 

FIGURE 5-3.2.1-8. Read Data Recovery Timing (After Preamble, with Loop in Lock) 

5-81 



(PA7) .... ~-----------------, --D indicates signals to sheet 2 .-----(1) 

EaT .. _ ..... 1-'1 D-- indicates signals from sheet 2 
BOT ..... ---11-"'-

(2) 

,..------t-+---(3) 

(CB2) 
(4) 

(5) 

Man. 
(6) 

0 Auto/Manual (0'1) 
(7) 

Auto 
+5 (8) 

Stop/Go (1/0) 

(PB7) 

RW/S,ch 
(PB4) 

(9) 

(PB5) 

+5 

+5 

Fwd/Rev 

RW/srch 

Stop/Go 

(PB6) 

Wrt 
(PBO) 

Data 

Cas. Ad. Data 

(PAO) 

(PB1) 

+5 

(CAl) 

(PAl) 

Wrt. Protect 

(PA5) 

(PA6) 

(PB3) 

(CA2) 

(PB2) 

Overrun/Underflow 
(CB1) 

Not in Sync (1) 
(PA2) .. (12) 

FIGURE 5-3.2.1-9: Cassette Serial ReadIWrite and Control Logic (Sheet 1 of 3) 

5-82 



(1)--------------------------------------------------------------------------------, 

(2)--------------------------~~----------------------------~--~~ 

(3) -----------------------------=t----, 

(4) 

(5) 

(6) 

(7)----------------------------------~ 

(8)------------------------------------~ 

(9) 

(10) +-------+------, 

(11) --------------------.... 

(12) ----------------------..... 

+5 I o01
1'F 

47K 

"1" 

~--------~ Cassette Read Data 

FIGURE 5-3.2.1-9: Cassette Serial Read/Write and Control Logic (Sheet 2 of 3) 

5-83 



A 

B 

C 

D 

2K 

H 

D-- indicates signals frOfTl sheet 1 

indicates signals to sheet 1 

1K 36K 36K 

+24 

K 

+5 

270n 

FIGURE 5-3.2.1-9: Cassette Serial Read/Write and Control Logic (Sheet 3 of 3) 

5-84 



· Read 
Read/Write ...llr----------------------------------(PB1)--IIr Pinch Roller 

~ Disengages 
Stop Stop , 

M~~~~~~~~7) ---,L._G_O ........ ~_---------------------------0"""'"""! ... -:t=-+---Pinch Roller 
~f>'i Pinch Roller Engages r--<-r' ~ Disengage Time 

R~~~;fle ~ _ • 
Pinch Roller I _ ~ 

Engagement +~ I '(..!... Read Postamble 
Tape Accln. 

Time \.. 
Jt... Tape up to Speed Check for Data Accuracy \.. I CRCError(PA1) , 

CRC Enable -----~-I~L.I ___________________ ...I.--------
(PB3) I =-,} r-----' Data Recovery Circuits Synchronized 

Read ~ 
Preamble 

R(~~~ra-------.,iJIIDJJIDJI01Z7JOJJZDZDJII1ZTJlZfLZl£0.1I.IJl]lJ 
14 Valid Read Data .1 

to MPU 

Pinch Roller Engage/Disengage Time = 30 msec 
Tape Acceleration Time = 20 msec 

:. Tape up to Speed 50 msec after start motion command 

FIGURE 5-3.2.1-10. Read Operation Sequence Timing 

For MPU controlled operation, the Auto/Manual switch is placed in the Auto position. Tape Motion 

and Read/Write functions are then controlled via the PIA interface. For example, if it is desired that the tape be 

moved forward at Read/Write speed, the interface at the PIA must be set to: 

Data Reg. B 7 6 5 4 3 2 1 0 

0 X 1 0 X X X X 

GO FWD RD/WRT 

where X denotes a "don't care" condition 

e.g. 0 0 1 0 0 0 0 0 

If the binary word 00100000 is present at the interface, then the tape will move in a forward direction 

at Read/Write speed. Similarly if the binary word 00000000 is present at PBO-7, then the tape will move in a 

reverse direction at Read/Write Speed. 

Examples of other basic tape motion commands are shown below: 

Operation Required PIA Word Example HEX 

7 6 5 4 3 2 1 0 PB 7 6 5 4 3 2 1 0 EQUIV. 

STOP 1 X X X X X X X 1 0 0 0 0 0 0 0 80 

Motion-Fwd-RD. WRT .SPD. 0 X 1 0 X X X X 0 0 1 0 1 0 1 0 2A 

Motion-Rev-RD. WRT .SPD. 0 X 0 0 X X X X 0 0 0 0 1 0 1 0 OA 

Motion-Fwd-SEARCH SPD. 0 X 1 1 X X X X 0 0 1 1 1 0 1 0 3A 

Motion-Rev-SEARCH SPD. 0 X 0 1 X X X X 0 0 0 1 1 0 1 0 lA 

For a typical read operation, the MPU issues a sequence of commands to the circuitry via the PIA. 

The sequence may be depicted by the timing diagram of Figure 5-3.2.1-10. The tape motion command initiates 

motion in the forward direction at Read/Write Speed. The MPU then allows sufficient time for the pinch roller 

5-85 



to engage the capstan and for the tape to come up to stable Read/Write speed. The MPU next reads the preamble 

(by counting eight P.E. transitions) and then enables the CRC generator. It is assumed that by this time the 

P.L.L. read circuitry is in lock and has begun to successfully track the data rate variations. The MPU begins to 

transfer data in bit serial form to the Read/Write Data Buffer in the MPU system. If any read errors occur due to 

loss of synchronization in the P.L.L. circuits or due to overflow, the hardwired logic generates an interrupt to 

the MPU system via the PIA. 

In the description of the above sequence, only the PIA B side interface operation has been discussed. 

Typically, the MPU performs other operations, such as initializing the PIA so that it can communicate with the 

read/write and control electronics; checking to see if the tape drive is available for the desired operation; 

enabling the EaT/BOT and Read Error interrupts; and using an Interval Timer to generate the required delays 

for allowing the tape to come up to speed. These additional operational details are discussed within the software 

documentation. 

The Write operation sequence is illustrated in Figure 5-3.2.1-11. Tape motion is started in the Erase 

mode, and a start-gap is written. The Start-Gap duration is slightly longer than the total time it takes for pinch 

roller engagement and for the tape to come up to stable speed. The MPU then disables the Erase mode and 

enables write data to be gated to the P.E. write circuits. After the preamble word has been transferred, the CRC 

is enabled (so that it accumulates the checksum). The CR C remains enabled till the data from the MPU has been 

transferred. Next, the CRC is shifted out to the Write circuitry followed by the postamble word from the MPU. 

The MPU then issues a stop command and allows the stop-gap to be written by keeping the write current on until 

the tape stops. At this time, the tape drive is placed in a Read-Forward Mode (PBl = 1; PBS = I;PB7 = 1) ifno 

other records are to be written. 

Start, Stop, and Interblock Gaps 

An Interblock gap is defined as the distance between two successive blocks of data, and it is 

specified by the A.N.S.!. specification, referenced earlier, to have a nominal length of20.3 mm (0.8 in) with a 

minimum length of 17.8 mm (0.7 in) and a maximum length of 500 mm (19.7 in). Any gap in excess of 500 mm 

(19.7 in) is considered to be end of data. 

From a study of the tape drive specifications, a tape motion velocity profile may be generated (see 

Figure 5-3.2.1-12) and used to calculate Start, Stop, and Interblock gap lengths. With reference to Figure 8, 

note that tape motion begins 30 msec after the motion command is issued and reaches stable speed 20 msec 

Read 
Read/Write ::::1 Write 

:a~i~n ~L:"" _-G_O-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-...... -.:_-_---i-+-__ _ 
(PB7) j'" 

, Tape up 
Write Data 'II' !O Speed 

Ena~~CRCSh~t~: ~--------------------~~ 
(PB6) Startgap ~ Shift i4-- : 

Erased : CRC : l 
F;:~i l ... ;:;:r==== Tape I ; ~i-, --+-i .. --E-;:-~e-ed-
CRfp~~)ble, , :; Stopgap 

wr:~eB~ta IN\."\tffiSill~~~'Ds\'\'''~"\'~"\'\'~~~"lNN~~ ~\.\S-Jr-I -----
I... : Write Data :-----~ 
L- __ I MPU to Tape I CRC I I 
~ I ... ·I ... ~ 
Preamble Data ~ Postamble 

FIGURE 5-3.2.1-11. Write Operation Sequence 

5-86 



later. This is the Startgap delay. Since the tape is actually moving for only the last 20 msec of the start gap delay, 

the Physical Startgap corresponds to the length of tape moved during the Startgap delay. If desired, a longer 

Startgap may be written by continuing in Erase even after stable tape speed has been reached. Similarly, the 

Physical Stopgap is the length of tape moved after the Stop command and until tape motion actually stops. If 

desired, a longer Stop-Gap may be written by enabling Erase at the end of data, prior to issuing a Stop 

command. 

Two operations are performed at Search speed: (1) Rewinding tape; (2) Searching to a given record 

on tape. 

Typically, tape is rewound at Search speed until the BOT marker is seen and then moved forward at 

Read/Write speed to the Load Point. The Load Point (Figure 5-3.2.1-13) is the logical beginning of tape and 

establishes the reference point from which record counts are kept. The Load Point is located in the Initial Gap 

between the BOT marker hole and the first record to be written or read. 

Note that when rewinding tape to Load Point, the BOT marker is encountered twice, and this must 

be accounted for in the MPU control program for this operation. 

.. ~~ .. __ ----~ .. ---t2 

Pinch Roller 
Engage. Time 

(30 Msec) 

Tape 
Acceleration 

Time to 
90% Speed 

14---- Total Time to ---1 ... ..---
Stable Speed 

(20 Msec) 

Physical 
Startgap 

(Tape Motion) 

Approximate Length of Startgap = ~ axt~ + v2t2 + v2t3 

E~~t~f Stop Motion 

\/ Command 
TapeL 
Speed 

t4 = 20 Msec 
8 Msec 

14------1 ... _--..... -12 Msec 
Pinch Roller 

Disengage. 

Stable 
Read/Write 

Speed (15 ips) 

Time 

Tape 
Deceleration 

Time to 
90% Drop 
in Speed 

Time 

l.. ... ..------ Physical ------II~ I Stopgap 

where 
a = tape acceleration = v 1 /t1 

t1 = time of acceleration (8 Msec) 

Tape Motion 
Stops 

1 x(.9 x 15 iPS)x (8 x 10-3\ 2 
2 8 x 10-3 \ ) 

v 1 = tape speed at end of acceleration (13.5 ips) 

+ 15 ips x 1 2 x 10-3 

= 0.054 + 0.18 

= 0.23 inches 

Approximate Length of Stopgap = v2 x t4 + Startgap length (when t3 = 0) 

= 15 ips x 20 Msec + 0.23 

= 0.30 + 0.23 

= 0.53 inches 

I nterblock Gap Length = Startgap Length + Stopgap Length 

= 0.53 + 0.23 

= 0.76 inches 

t2 = time to final speed after acceleration (12 Msec) 

v2 = final speed = 15 ips 

[v1 = 90% v2] 

t3 = additional time after stable speed = 0 

t4 = pinch roller disengagement time = 20 Msec 

FIGURE 5-3.2.1-12: Start/Stop and Interblock Gaps Derived from the Tape Velocity Profile 

5-87 



To search to a given record, the MPU counts the interrecord gaps while moving the tape at Search 

Speed. Since the tape is moving at a much faster speed during Search, it is necessary to slow down the tape to a 

Read/Write speed prior to getting to the desired record to enable the tape to stop within the required Interrecord 

gap. For example, to read or write the 15th record, tape is moved at search speed until the 13th Inter-Record 

Gap (I.R.G.) and then switched to a Read/Write speed until the 14th I.R.G. is reached before a stop command 

is issued. (It may not be necessary to stop the tape in the I.R.G. prior to reading or writing the 15th record. The 

two operations may be performed sequentially without issuing the stop command.) 

5-3.2.2 SOFTWARE DESCRIPTION 

The Tape Cassette Subsystem uses a 256-byte Data Buffer for storage of Read and Write data and 20 

bytes of storage for flags and variables. The variables determine the direction and speed of tape motion, the 

number of records being written, and other similar directive commands to the subsystem. 

At Power-On, the Tape PIA is initialized so that the A-side is defined as inputs and the B-side is 

defined as outputs, and the tape is moved to the Load Point. An Interval Timer is used to generate the delays 

needed during tape operations. 

Move to Load Point 

When a tape cassette is inserted in the Drive, it may be at Clear Leader either on the BOT or EOT 

end, or it may be in the "Middle" of the tape between the BOT and EOT markers. A number of different 

schemes may be used to move the tape to the Load Point. The method used may be either completely automatic 

or require some operator intervention. The Rewind to Load Point operation described here assumes that the tape 

has, at some prior time, been advanced past the BOT marker and it is desired to rewind the tape to the Load 

Point. (This operation is distinguished from the Load Forward operation where the tape has been rewound to 

Clear Leader and needs to be moved forward to the Load Point. The Load Forward operation requires that the 

tape be moved forward until the BOT is seen and then advanced past the BOT to the Load Point. To enable the 

MPU to determine if the tape has been rewound to clear leader, where both EOT and BOT sensors will be 

triggered, it may be desirable to bring the EOT and BOT lines as separate inputs to the PIA interface. It is also 

possible to generate a Clear Leader status signal from the EOT and BOT sensors.) The flow chart for the System 

Integration of the Rewind to Load Point operation is shown in Figure 5-3.2.2-1. Additional details are shown in 

the Flow Chart and Assembly Listing of Figures 5-3.2.2-2 and 5-3.2.2-3, respectively. 

BOT 
Marker 
Hole 

LOAD POINT 

T 
...... --Initial Gap -I-

----1 ... ~ Forward 
Tape Motion 

Oxide Coated Tape 

I II I I I I I I I I I I I I I I I 

First -------.l 
Record~ 

'--- Second---l 

\ 
r- Record I 

First 
I nterrecord 
Gap (LR.G.) 

FIGURE 5-3.2.1-13. Load Point 

5-88 



EXECUTIVE PROGRAM 

Call Rewind to 
Load Point Subroutine 

("TKRELP") 

Arm Timer to 
I nterrupt if 
BOT is Not 

Sensed Soon 
Enough 

Arm Timer to 
Interrupt when 

Tape has Reached 
Load Point 

Adjust Stack 
Pointer to Return 

to Executive 

TAPE DRIVERS 

Arm Timer and Counter 
to I nterrupt if Rewind 

Takes too Long 

Timer Interrupt 
when Moving Forward 

to Load Point 

Set Rewind to 
Load Point 

Complete OP Flag 

FIGURE 5-3.2.2-1: System Integration of 
Rewind to Load Point 

5-89 

NO 



Write Routine 

The Write Routine consists of three subroutines, TKWRT1, TKWRT2, and TKWRT8. TKWRT1 is 

used to write the Startgap, TKWRT2 is used to write one complete record (Preamble, Data, CRCC, and 

Postamble), and TKWRT8 is used to write the Stopgap. If more than one record is to be written, tape motion is 

not stopped in the Interrecord Gaps. 

The Executive Program determines the ending address of the Data Buffer and stores the address in 

the end address buffer TKDATA. 

There are three possible sources of Interrupts during the execution of the Write program. They are: 

(1) Underflow Interrupt, (2) EOT Interrupt, and (3) Interval TimerInterrupt. The Underflow Interrupt occurs if 

the MPU does not provide the next Data Bit when it is requested by the Write Clock transition on the CAl 

Interrupt input to the PIA. The operation will then be aborted by the MPU. The EOT interrupt should not 

normally occur during the Write operation since the EOT single-shot period is set to a time greater than the 

length of one record. The hardware design is such than even if an EOT transition is seen on starting Write 

motion, there is enough time to complete that record before being interrupted by the EOT single-shot. The 

MPU, via the Executive Program, checks if EOT was seen and alerts the operator to insert a new tape cassette 

into the drive when necesary. If no Write Clock is present, then the Write Operation is aborted after a time 

slightly longer than the length of one record. This results in one record being erased. It may be desirable to set a 

shorter time period (e. g. , a time equal to two bit times or 166. 6 milliseconds) to abort the Write operation. The 

details of the Write Operation are shown in the Flow Charts of Figures 5-3.2.2-4 and 5-3.2.2-5 and in the 

accompanying Assembly Listing of Figure 5-3.2.2-6. 

Read Forward Routine 

The Read Forward Routine consists of four subroutines: TKRDOO,TKRD02, TKRD09, and 

TKRDST. TKRDOO is used to check tape status and to bring the tape up to speed if the status is good. The Tape 

Status check consists of checking for Tape Available, Ready, Cassette in Place, In Sync, EOT Seen, and CRCC 

Error. Whenever the tape is stopped, the hardware sets the In Sync and CRCC Error status bits to a good status. 

This allows a single Read Status Check subroutine, TKRDST, to be used both while the tape is stopped and 

while it is in motion. TKRD02 is the basic Read Routine which reads the Data portion of a record including the 

two bytes of CRCC. (Data is transferred to the Read Data Buffer in serial format). The CRCC is checked at the 

end of the Data portion, and appropriate operation codes are set to inform the Executive of the operation status. 

TKRD09 is used to stop the tape motion and store ending status. 

The details of the Read operation are described in the Flow Chart and Assembly Listing of Figures 

5-3.2.2-7 and 5-3.2.2-8, respectively. There are three possible sources of Interrupts during the execution of the 

Read program. They are: (1) Overflow Interrupt, (2) EOT Interrupt, and (3) Interval Timer Interrupt. The 

Overflow interrupt occurs if the MPU does not read the next Data Bit when its presence is indicated by the Read 

Clock transition on the CAl Interrupt input to the PIA. The operation will then be aborted by the Overflow 

Interrupt. The EOT interrupt should not normally occur during the Read operation since the EOT single-shot 

period is set to a time greater than the length of one record. This implies that even if an EOT transition is seen on 

starting Read motion, there is enough time to complete that record before being interrupted by the EOT 

single-shot. If no Read Clock is present, then the Read Operation is aborted after a time corresponding 

approximately to the length of one record. 

5-90 



Begin Rewind 
to Load Point 

Interval 
Timer 

Interrupt 
for 40 Sec 

Delay Routine 

Rewind Tape 
(Go Backward) 

at Search Speed 

Set I nterval Timer 
I nterrupt Vector for 

Delay Routine 

"TKRLP 1" 

Status Checked 
a. Available 
b. Cassette in Place 
c. Ready 

NO 

TKRLP 7 

Store OP Flag 

FIGURE 5-3.2.2-2: Move to Load Point Flow Chart (Sheet 1 of 2) 

5-91 



Move Forward 
to Load Point 

Arm for 0.99 Sec Delay 
and Set I nterval Timer 
Interrupt Vector for 
Error Abort Routine 

YES 

Arm for 1 Sec Delay 
and Arm I nterval Timer 

Interrupt Vector for 
Stop at Load Point 

I nterval Timer 

Stop at Load 
Point Routine 

I nterrupt when 
Moving Forward 

to Load Point 

RTS 

TKRLP 5 

Preload Rewind to 
Load Point Complete 

OP Code 

TKRLP 7 

Store OP Code 

FIGURE 5-3.2.2-2: Move to Load Point Flow Chart (Sheet 2 of 2) 

5-92 

NO 

Interval Timer 
I nterrupt for 

Load Point Delay 



00010 
00020 
OOO:~:O 

00040 
00060 

000:::0 
00090 
00100 
00110 
00120 

00140 
00150 
00160 
00170 
001:::0 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 

002:::0 
00290 
00:'::00 
00310 
00320 
003,:::0 
00340 
00::::50 
00::::60 
00370 
00:::::::0 
00390 
00400 

00420 
004:30 
00440 
00450 

00470 
00480 
00490 
00500 
00510 
00520 

r'Hit'1 TKPELP 
OPT :~: 

• REV 0.6 AS OF 1-2-75 
• 
•• REWIND TO LOAD-POINT SUBROUTINE •• INTRPT-DRIVEN •• 

• THIS SUBROUTINE MOVES THE TAPE FROM 
• BETWEEN THE BOT AND EDT MARKERS~ TO THE 
• LOAD- POINT. IT REWINDS THE TAPE AT SEARCH 
• SPEED TO THE BOT MARKER AND THEN MOVES 
• FORWARD PAST THE BOT MARKER TO THE LOAD-POINT. 

• THE INTERVAL TIMER IS USED TO ABORT 
• THE OPERATION IF NO BOT INTERRUPT IS SEEN 
• DURING THE TIME IT SHOULD TAKE TO REWIND 
• THE TAPE FROM EDT. THIS TIME IS APPROXIMATELY 
• 40 SECONDS (AT 100 I.P.S.). 
• NOTE THAT THE DRIVER PROGRAM MUST ENSURE 
• THAT THE INTERVAL TIMER IS AVAILABLE FOR 
• USE BY THIS SUBROUTINE. SINCE THE MAXIMUM 
• DELAY FROM THE INTERVAL TIMER IS 990 MSECS. 
• A DELAY COUNTER TVDLYC IS USED TO COUNT TO 
• THE REQUIRED DELAY TIME. THE INTERVAL TIMER IS 
• RESTARTED AND ALLOWED TO INTERRUPT THE MPU UNTIL 
• THE DELAY COUNT IS COMPLETE. 

• ERROR SUBROUTINES TO STOP INTERVAL TIMER 
• AND SET OPERATION STATUS FLAGS. 
• OPERATION STATUS FLAGS IN TVOPST 
• AS FOLLOI .• JS 
• 
• BIT 7 - 0 =COt'1PLETE ; 1 = I t-~CO"'lPLETE 
• BIT 6 - 0 =t·~O ERf;;' . . l=ERf;;'OR ~ 

• BIT c:-
,_I - 0 =E;AC~:::I .• JARD ; 1= FI .• JD D I f;;~CTt·~ . 

• BIT 4 - 0 =t-iO Ef;;~A:S:E ; l=E~~A·S.E 

• BIT :~: - 0 =RD-I"Jf;;~T :s:p l=:~:EARCH S:PII. 
• BIT 2 - 0 =t"i0 I.,.lf;;~ I TE ; 1=I.,JR I TE 
• BIT 1 - 0 =t"i0 REAII 1=READ 
• BIT 0 - 0 =STOP 1=GO 

• THE OPERATION STATUS CODES USED ARE 
• A:S: FOLLOI .•. IS: 
• 
• 
• REWIND TO B.O.T. IN PROGRESS 
• REWIND TO B.O.T. ABORT 
• MOVE FWD TO L.PT. IN PROGRESS 
• MOVE FWD TO B.O.T. ABORT 
• MOVE FWD TO L.PT. ABORT 
• REWIND TO LOAD PT. COMPLETE 

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 1 of 4) 

5-93 

10001001 
11001001 
10100001 
11100001 
11100000 
00100000 



00540 

00560 

005::::0 
005'30 
00600 
0061 I) 
00615 

00630 

00650 
0066'-
0067 
006::: 
0069 
0070 
0071 
0072 ) 
00730 
00740 
00770 

00790 
00::::00 
00:::: 1 0 
00:::20 
00::::30 
(10::::40 
00:::50 
00:::60 
008:::0 
00::::'30 
00'300 
00'310 
OO'j20 
00'330 
00940 
00'350 

00'370 
00980 
00'3'30 
01000 
01010 

01030 
01040 

010E.0 
01070 
01 0:3 (I 

001 0 

001 I) 

001 1 
0013 
0014 
0015 

0300 

0300 
OJ 02 
0304 
0306 
030'3 
030F: 
030D 
0:31 I) 

0312 
0314 
0317 
0319 
O:~:lC 

031E 
0:321 
0:324 

0001 
0002 
0001 
0001 
0002 

COl 0 
COl 1 
C012 
C013 
1 000 
1 001 
1 002 
1 003 
01 00 

C6 ::::'~ 
II7 1 I) 
::::6 OF 
E'-:=' 'I 1 001 
86 29 
97 14 
CE 0312 
DF 1 1 

C6 C'3 
E:D 0365 
26 44 
7A 0014 
27 :3F 

CE 019':;' 
FF COlO 
~:9 

D~~G $1 I) 

• VARIABLES USED BY THE ROUTINE 

T',/OP:S:T F.'t1B 
I ".·':S:Er;:~ ... ,' P,..lE: 
T ... ·'STAT P,..lB 
T ..... DL ..,.·C r;:~t'lE: 

T'·."S'·.":S:P RMB 

1 
2 
1 
1 
2 

OPERATION STATUS BUFF. 
INTRPT SERVICE ADDR. BUFF. 
TAPE STATUS BYTE BUFF. 
DELA''''' CDUt01TEP 
STACK POINTER STORE 

• CONSTANTS USED BY ROUTINE 

>::P2DRA EQU $C01 0 ITIMER PIA ADDR & CONTRL 
>::P2DF.~E: EOU $C01 1 
::<P2CRA EOU $C012 
::O:;P2CRE: EI)U $C013 
::-::P5DF.~A EQU $1 000 TAPE PIA ADDR & DATA 
>::P5DF.~E: EG!U $1 001 
::-::P5CF.~A EOU $1 002 
;:'::P5CRE: EI)U $1 003 
S1 Ot'lS EI)U 256 10 MILLISECOND CLOCK 

DF.~G $300 
• BEGIN REWIND TO LOAD POINT ROUTINE 

T~:::F.~ELP LDA B ~~\ 1 0 (I (11 001 OF'EF.~AT I Otoi IN PROGRES::S: 
STA E: TVOPST STORE OPERATION STATUS 
LDA A ~~~.~ 0 I) 0 01111 :S:PCH-Rlo • .It-iII cnTRL. I .• .ID. 
STA A XP5DPB REWIND AT SRCH. SPD. 
LDA A ~~41 :SET DELA .... · croiTR TO !' 
STA A TVDLYC COUNT 40 DELAY INTERVALS. 
LD>:: ~~ TKRLP 1 
~S:T::·:: I'·.·':S:ERV SET RETRN ADDR FOR ITIMER 

• SUBROUTINE TO CHECK IF DELAY COUNT IS COMPLETE 
• THIS SUBROUTINE IS INTERRUPT DRIVEN. 
• IF THE DELAY COUNT IS COMPLETE THEN THE 
• PROGRAM WILL CONTINUE WITH THE REST 
• OF THE LOAD-PO I NT F.~OUT I ~iE. I F THE IIELA· .... 
• IS NOT COMPLETE!' THE PROGRM WILL SET THE 
• SAME INTRPT SERVICE ADDRESS,PESTART 
• THE InTERVAL TIMER AND RETURN. 

TKRLP1 LIlA B ~~ ~o~ 11 0 0 1 0 0 1 ERROR I ~iCOMPLETE FLAG 
._ISR T~:::STAT CHI< • :STATUS 
BNE TI<RLP7 
IIEe T'·.·'IIL· .... C DECREMENT IIELAY COU~iTER 

BEG! TKF.~LP7 DELAV COUNT COMPLETE -;.-

• NOTE: SINCE THE INTRPT. SERVICE RTN. STOPS 
• THE TIMER, IT MUST BE RESTARTED EACH TIME 

TK~~LP2 LII~~: ~~:S: 1 OMS+$99 IIELAY,990 MSEC. 
ST::o:: ::0::P2DRA SET i. .::.: START I T I MEFt~ 
F.~TS ~~ETR"i FROM SUE:Ft~OUT I NE 

FIGURE 5-3.2.2-3. Move to Loodpoint Assembly Listing (Sheet 2 of 4) 

5-94 



01 1 00 
01 1 10 
01 120 
01 1:30 

01 150 
01 160 
01 165 
01 170 
01 180 
01 190 
01200 
01210 
01220 
01230 
01235 
01240 
01250 
01260 
01270 
012::::0 
01290 
01300 

01320 

01340 
01350 
01360 
01~:70 

01:3::::0 

01400 
01410 

0325 
0327 
032A 
0:~:2C 

032E 
0:330 
0332 
0335 
I]::::~::::=: 

033A 
033C 
03:~:D 

0340 
0:342 
0345 
0347 
034A 
034D 

034E 
0350 
0:35:~: 

0355 
0:~:57 

C6 2E 
F7 1001 
'3F 15 
C6 Al 
D7 10 
C6 04 
F7 1003 
CE 0359 
DF 11 
SD E·-' C-

OE 
BE. 1000 
2A FB 
CE O:34E 
DF 1 1 
CE 019'3 
FF COlO 
3B 

(:6 EO 
BII 0365 
2E, 08 
C6 20 
20 04 

014:30 (I~:59 C6 El 
014:35 0:35B 9E 15 

01450 

01470 0:35II D7 10 
01480 0:35F 86 EE 
01490 0:3E.l B7 1001 
01500 0:364 :39 

•• SUBRTN TO MOVE TO LOAD POINT AFTER 
• REWINDING TO BOT ••• 
• THE PROGRAM GETS TO THIS POINT FROM 
• A BOT I t'iTRPT • 

TKF.~LP~: LDA B ~~\001 0111 I) RD. FI.,JD. Ct-iTRL. 1 .. .II1 • 
:S:TA B ;:<P5DF.~B t'10VE FI.,.ID AT RD-t...IRT S:PEED 
STS TVS'",'SP SAVE S:TFiCK PO I t-iTE~~ 
LDA B ~~~.~ 1 01 0 (1001 t'10VE -FI.I.JD- I t~ PRDG. 
:S:TA B T","OP:S:T STORE OPEF.:AT I ON S:TATUS: 
lDA B ~~~.~ 0 0 0 0 0 1 (10 DISABLE TAPE I tiTRPTS • 
:S:TA B ;:':;P5CF.:B 
LD::-:; ~~TKF.:LP6 

ST::-:; I 1.,_' :S~ E f;;~ 1,.,1 SET F.:ETF.~N ADDF.: FOR ITIMEF.' 
B:S:F.: TI<F.:LP2 AF.:~1 T I MEF.: FOF.: 990 ,..lS 
ell CLEAF.: INTERRUPT MASK 

TKF.~LP4 LDA A ;:<P5DRA LOAD STATUS: '-'.I0RIt 
BPL Tt<F.:LP4 t'10"I,'E F 1 .•. 1 II UtiT I L BOT S:EEt~ 

lD::< ~~TKF.:lP5 

ST::< I ",I'SER'''I' SET RETF.~t-i ADDF.~ FOR I T I ~1EF.~ 
LII;:':; ~~s 1 OMS+$99 S:TARTGAP DELAV TO LIt.PT 
ST;:':: >::P2DRA S:ET I) 

',:.: :S:TAF.:T TIMER 
RTI F..'ETURN TO HOST PF.:OGRAM 

• STOP AT LOAD POINT SUBROUTINE 

T~:RLP5 LItA E: ~~~.~ 111 00000 PF.:ELOAIt EF.:R. CODE 
--'SF.: TI<:STAT CHK EtiD I t-iG STATUS 
BNE TKRlP7 
LDA B ~~~.~ 001 I) 0000 t'10'·,,'E TO LII. PT. DOt'iE 
E:F.~A TKF.~LP7 

• INTERVAL TIMER ERROR INTERRUPT ENTRY POINT 
• WHEN MOVING FORWARD TO B.O.T. 

TKRLP6 LDA B ~~~~ 111 0 (I 0 01 ERROF!: ON MOVE FORWARD. 
LDS TVSVSP RESTORE STACK POINTER 

• EXIT FROM INTERVAL TIMER INTERRUPT 

TKRLP7 S:TA B TVOPST STORE OPERATI[]N STATUS: 
LDA A ~~~.~ 111 0111 0 RD-FltJD-ST[]P CtiTRL. It.ID. 
STA A ::'~P5DRB STOP TAPE 
RTS F.:ETURN 

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 3 of 4) 

5-95 



01530 

01550 
01560 
01570 
015:::0 
01590 
01600 

0162(' 
01630 
01640 
01650 
01660 

I) 16::: (I 

0365 
036:~: 

(l36A 
036C 
036E 

.B6 1 000 
::::4 D::: 
::!i:: I':' '-' 
97 I':' '-' 
3'3 

:S:'lt1BOL TAE:LE 

I'·.·'.S:ER'·," 001 1 :S: 1 O~l:S: 
TKRLP3 0325 TJ<RLP4 
TKSTAT 0365 T".·'IIL'r'C 
>::P2CRA C012 ;:'::P2CF.:B 
;:':;P5CRB 1 00::: >::P5DF.:A 

•• STATUS CHECK SUBROUTINE •• 

• THIS SUBROUTINE CHECKS THE CURRENT STATUS 
• OF THE TAPE WHICH IS AVAILABLE AT PAO-PA? 
• THE STATUS IS COMPARED WITH THE EXPECTED 
• GOOD STATUS (AVAIL.,CAS. IN PLACE, RDY.) 
• AND THE RESULT OF THE COMPARISON IS SAVED 
• IN THE TAPE STATUS BUFFER TVSTAT. 

TJ<STAT LDA A 
Ar-~D A 
EOr;:: A 
STR A 
~:r:: 

01 00 TVRELP 
o::::::::n TKRLP5 
0014 T'·/OPST 
C013 ;:'::P2nRA 
1 000 ::·::P5DF.:B 

XP5DRA READ THE STATUS; CLR FLAGS 
~~\ 11 (111 0 (I 0 t'lA:S:K OUT U,..il.,.IAt·iTED E: ITS: 
~~\ 00(111 00(1 TAPE A'·lA I L F:II '.,.II1 
TVSTAT SAVE ERROR STATUS 

RETUr;::N 

0300 T~::RLP 1 0:312 T~<F.:LP2 0::.7: IE 
034E TKF.:LP6 0359 TKF.:LP7 035D 
001 0 T'·/STAT 0013 T I ••• ' :5: V :S: P 0015 
COl 0 ;:<P2IIF.:E: COl 1 ;:<P5CF.:A 1 002 
1 001 

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 4 of 4) 

5-96 



Stop Tape 
Alert Operator 

to Insert 
New Tape 

Call "TKWRT 1" 

Go to Error 
Processing 

"TKWRT 1" 
1. Check Tape Status 
2. Initiate Startgap (Erase) 
3. Initiate Startgap Timer 

1. Write One Record 
2. Check if More Records 

to Write 
3. I nitiate Stopgap 

Record Error Interrupt 

1. Stop Transport 
2. Set Record Error 

Abort Flag 

Stopgap Interrupt 

( 'TKWRST' ) 

1. Stop Tape if no More 
Records to Write 

FIGURE 5-3.2.2-4: System Integration of Write Routine 

5-97 



{ 

B 

Check 
Write 
Status 

1. Available 
2. Cas I n Place 
3. Write Protected 
4. EDT Seen 

TKDEL 1 

TKWRT 2 

TKWRST ) 
Check Tape 
Write Status 

TKSYN 1 

A 

Set Write in Progress 
DP Code. 

Enable MPU Interrupts. 
Set I nterval Timer 

to Abort if No 
Write Clock. 

Clear I nterrupt Flag. 
Preload Shifted Preamble. 

Enable Underflow 
Interrupt. 

Set Bit Counter to 7. 
Disable Erase. 

Write 
Startgap 

Synchronization 
to Write Clock 

FIGURE 5-3.2.2-5 Flow Chart of Write Routine (Sheet 1 of 2) 

5-98 

TKWRT 5 
r-------~ __ ------r_-----(1) 

(2) 

(3) 

(4) 



(1)---------------------------------------------------------------------------------------, 
(2)-----------------------------------------------------------------------------, 
(3)--------, 

TKWRT 6 

Preload Erase-Reset 
CRC-Go Word. 

Preload OP Code. 

NO 

Set Erase-Stop- Reset 
CRC Control Word. 

Set Operation Status Word. 
Disable Tape Error 

Interrupts. 

Preset Record 
Complete Flag. 

Stop Tape in Read. 
Disable Tape 

Interrupt. 

(4)--------------------------------------~ 

TKWRT 4 
...------~ 

Write 
CRCC 

Store in Current 
Word Buffer. 

Set Bit Counter to 8. 
Preload CRC Enable. 

FIGURE 5-3.2.2-5 Flow Chart of Write Routine (Sheet 2 of 2) 

5-99 

Write 
Loop 



00010 
00020 
000:30 
00040 
OOOE,O 

000:30 
00090 
00100 
00110 
00120 

00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
0025-
0026 
0027 
002:::: 
0029 
OO::'::Ot 
00310 
00320 
OO:~:30 

00350 
00360 
00370 
00::':80 
00390 
00400 

00420 
00430 
00440 
00450 

00470 
00480 
00490 
00500 
00510 
00520 

TKI.I.IF.~T 1 
• REV 0.13 AS OF 1-3-75 
• 

OPT S 
•• WRITE SUBROUTINE •• INTRPT-DRIVEN •• 

• THIS SUBROUTINE IS USED TO WRITE 
• VARIABLE LENGTH RECORDS. 
• EACH RECORD CONSISTS OF A 1-BYTE PREAMBLE, 
• FROM 4-256 BYTES OF DATA (WHICH INCLUDES. 
• A 2-BYTE CRCC, AND A 1-BYTE PDSTAMBLE. 

• THE STARTING ADDRESS OF THE DATA 
• BUFFER IS DEFINED BY TKDATA. THE 
• ENDING ADDRESS STORED IN TVDATA DEFINES 
• THE NUMBER OF BYTES IN THE NEXT RECORD. 
• THE ENDING ADDRESS IS DETERMINED AS 
• (TKDATA+TVDATL) WHERE TVDATL HOLDS 
• THE NUMBER OF WORDS IN THE NEXT RECORD. 
• THE TKWRTl PROGRAM MOVES DATA STORED 
• BETWEEN THE ADDRESSES TKDATA AND TVDATA. 
• A STARTGAP OF ERASED TAPE IS WRITTEN PRIOR 
• TO THE FIRST BIT OF PREAMBLE AND A STOPGAP 
• OF ERASED TAPE IS WRITTEN AT THE END OF THE 
• LAST BIT OF THE POSTAMBLE. DURING THE STOPGAP 
• THE WRITE CURRENT REMAINS ON UNTIL TAPE 
• MOTION HAS STOPPED. AN INTERVAL TIMER IS USED 
• FOR STARTGAP AND STOPGAP TIMING AND TO 
• ABORT THE WRITE OPERATION IF NO WRITE CLOCK 
• IS PRESENT. THE OPERATION IS ABORTED 
• AFTER A DURATION CORRESPONDING APPROX. 
• TO THE LENGTH OF ONE RECORD. 

• IF MORE THAN ONE RECORD IS TO BE WRITTEN 
• THE WRITE (ERASE) CURRENT IS TURNED ON 
• BUT A STOP COMMAND IS NOT ISSUED DURING 
• THE STOPGAP. THE STARTGAP OF THE NEXT 
• RECORD IS WRITTEN AS THE CONTINUATION 
• OF THE PRECEDING STOPGAP. 

• THE OPERATION STATUS CODES USED ARE 
• AS FOLLOWS (USE THE TABLE GIVEN IN THE 
• TKRELP ROUTINE FOR FURTHER DETAILS ON 
• ON THE OPERATION STATUS FLAGS): 

• E:AD TAPE STATUS 111 0 000 

• 1 • .1 F.: I TE EF.:ASE I r-~ PROG. 1011 101 

• EF.'A:S:E :S:TOP IN PROG. 1011 100 
• I .• .IRT. DATA CO~1PL . -STOP 0010 010 
• I.I.IRT . DATA cor'1PL . -ERASE -GO 0011 101 
• I .• '/RT. EF.:F.~ . -NO CLOC'O::: 1110 100 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 1 of 6) 

5-100 



00540 
00560 
00580 
005'30 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
o OE,::: 0 

00730 
00750 
00760 
00770 
007:::0 
007'30 
00800 
00810 
00:::20 
00::::30 
00:::60 
00:::70 
00880 
00890 
00'300 
00910 
00':;'20 
00930 
00940 
00'35 I) 
0096(1 
00970 
009::: 0 
00990 
01000 
01010 
01020 

1030 
1040 
1050 
1060 
107ft 
lO::: 

'-'109 
0110 
0111 
0112 
0113t 
01140 

0020 

0020 
0021 
0023 
0024 
0025 
0027 
0127 
0129 
012A 
012B 
012C 

0001 
0002 
0001 
0001 
0002 
0100 
0002 
0001 
0001 
0001 
0002 

C lO 
C 1 1 
':: 12 
C 1'-:' '-' 

1 00 
1 01 
1 02 
1 03 
0 00 

Df:::G $20 
• VARIABLES USED BY ROUTINE 
TVCRCF RMB 1 CRC ENABLED FLAG 
IVSERV RMB 2 INTRPT SERVICE ADDR. BUFF 
TVRECC RMB 1 RECORD COUNT FROM BOT 
TVSTAT RMB 1 STATUS BYTE 
TVDATL RMB 2 NO. OF WORDS IN RECORD 
TKDATA RMB 256 RD-WPT BUFFER 
TVLWA RMB 2 LAST WORD ADDR OF DATA BUFF 
TVCDAT RMB 1 CURRENT DATA-WORD BUFF 
TVOPST RMB 1 OPERATION STAT. BUFF. 
TORECC RMB 1 NO. OF RECORDS TO RD DR WRT 
TVDATA RMB 2 (TKDATA + TVDATL) ADDRESS 
• CONSTANTS USED BY ROUTINE 
XP2DRA EQU $COI0 ITIMER PIA ADDR & CONTRL 
XP2DRB EQU $C011 
;:':;P2Cf:::A EGJU 
;:'::F'2C~'E: EGiU 
>:;P5DRA EOU 
;:'::P5DRB EG!U 

$C012 
$C013 
:1;1000 
$1001 

XP5CRA EQU $1002 
XP5CRB EQU $1003 

TAPE TAPE PIA ADDR &DATA 

210MS EQU 256 10 MILLISECOND CLOCK 
••• PIA INTERFACE DEFINITION •••••••••••••••••••••• 
• 
• OUTPUTS- WRT DATA AND CONTROL 
• 
• PEO - WRITE DATA 
• PBI WRITE =0 ~ READ = 1 
• PB2 ERASE =1 ~ RD ENABLE =0 
• PB3 eRC RESET = 1 ~CRC ENABLE = 0 
• PB4 - •• SPEED •• RD-WRT = 0 ,SEARCH =1 
• PBS - •• DIRECTION •• FWD =1 ~REV =0 
• PB6 - CRC SHIFT = 0 ~WRT DATA ENABLE =1 
• PB7 - •• MOTION •• STOP = 1, GO = 0 
• 
• INPUTS -RD DATA AND STATUS 
• 
• PAO - READ DATA 
• PAl - CRC ERROR =1 
• PA2 - NOT IN SYNC = 0 
• PA3 - READ\' = 1 
• PA4 - CASSETTE IN PLACE = 1 
• PAS - ~RT PROTECTED = 0 
• PA6 - AVAILABLE = 0 
• PA7 - EDT-BOT SEEN = 1 

• 
• CAl - CLOCK (LOW TO HIGH) 
• CA2 - STROBE (RD WRT HANDSHAKE- HIGH TO LOW) 
• 
• CBl - .INTRPT. OVFL-UNDFL (LOW TO HIGH) 
• CB2 = .INTRPT* EDT-BOT TIMEOUT (LOW TO HIGH) 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 2 of 6) 

5-101 



01170 

01190 

01210 
01220 
o 12:~:O 
01240 
01250 
01260 
01270 

01290 

0131 0 
01320 
013:;:0 
01340 
01350 
o 13f, 0 
01370 

01390 

01410 
(I 14E: 0 

01440 

01460 
01470 
o 14~::: 0 
01490 
01500 
(/1510 

15E:0 
1530 
1540 
1550 
1560 

t 1570 
015:::0 
01590 
01600 
01 E, 1 0 
01620 
01630 
01,::'40 
01650 

0400 C6 EO 
0402 ED 04F2 
0405 26 16 
0407 C6 B5 
040':;' :=:E. f=F 
040B 97 20 
040It ::::6 6C: 

040F E'"? " 1 001 
0412 CE 0421 
0415 DF 21 
041 ? CE 01 05 
041A FF COl (I 
(141ft F"":' .. 012A 
0420 39 

0421 (IE 

0422 :::6 A4 
0424 E'"? " 012A 
04;=:7 CE 04E7 
042A DF E~ 1 

042C CE 0122 
042F FF COl (I 

••• WRITE START GAP (INTERVAL TIMER USED) 

• CHECK TAPE STATUS FOP WRITE 

TKI.t'/RT1 LDA E: ~~\111 00000 PRELOAD ERJ;~ .OF'CDnE 
I·:::·/;' TKI.'-'P:S:T CHEel< TAPE STAT. FOJ;:' I.I.IRT. 

E:t·~E TI<I.I.IPO 1 
LItA B ~~\1 011 0101 /.,./RT -ERASE IN PJ;~OG . 
LItA A ~~$FF 

·S:TA A T'",'CRCF SET CRC FLAG 
LDA A ~~\01101100 GD-FI.,.!D-EF.~AS:E Ct-iTRL. 1.,.IIt . 

• NOTE PBO=O FIRST PRAMBLE BIT PRESET. 

·S:TA A XP5DRB MOVE FWIt IN ERASE 
~ ~ T K 1.1./ P T 2 
IVSERV RTRN. ADDR FOR INTRPT. 

TKItEL 1 LIt::.:: 
:S:T::< 
LIt::.;; 
:S: T::< 

~~::: 1 Ot'l:::+$ 05 .S:TAPTGAP DELA''''' (5 I) r'1S) 

T~:::'.,.lR (I lS:TA :E: 
RT:S: 

XP2DPA SET & START ITIMER 
TVDPST ~TDRE OPERATION STATUS 

RETUPN FROM SUBROUTINE 

• WRITE DATA SUBROUTINE 

• MPU INTRPTS. APE ENABLED FOR POSSIBLE 
• EDT DR ERROR ABORT INTRPTS. 

• WRITE DATA SUBROUTINE 

T~JdPT2 CL I EriABL.E I r·iTRPTS TO t'1PU 
L D A Fi ~ ~ \ 1 0 1 (I (I 1 (I (I I.d ~: T - I t--f - P J;~ 0 G. 0 PC: 0 D E 
~TA A TVDPST STORE OPERATION STATUS 
LD;:':~ ~~T'<~~ECE :::ET PETRt·i FOP ~'ECDRD ERR ~ 

ST~ IVSERV NO CLOCKS. 
• SET TIMER TO ABORT OPERATION IF NO WRITE 
• CLOCK IS PRESENT. 

L D >:: ~ ~ .~: 1 (I j'1 ::. + $ 2 2 F~ E c. LEn G T H (2;~ I) r'1 :S· E C ) 
STX XP2DRA SET & START ITIMER 

•• WRITE PREAMBLE 
• NOTE THAT A SHIFTED PREAMBLE IS LOADED 
• Ir·~TO THE CUPRENT '.'-'ORD BUFFER SI~iCE 
• THERE IS A 1-BIT DELAY IN THE HARDWARE. 
• THE FIRST BIT OF THE PREAMBLE IS PRESET AND 
• THE BIT COUNTER IS SET TO 7 FOR THE 
• P~'EA"'1BLE. 
• EACH DATA BYTE TO BE WRITTEN IS TRANSFERRED 
• FROM THE DAT~ BUFFER INTO THE CURRENT WORn 
• BUFFER. 

0432 CE 0027 LDX ==TKDATA STARTING ADDR OF DRTA BU~F 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 3 of 6) 

5-102 



01660 04:35 0'3 DE::-=: ACCOU"'~T FOR PREAME:LE BYTE 
01670 • .s:·r'NCHF.~O"'i I ZAT I Oti TO I.,JPITE CLOCte:: 
016::::0 0436 FE. 1002 T~:::S:''''''''i 1 LIlA B >:;P5eF.~A 

01E.·~0 0439 2A FB BPL TKS· .... ,..~ 1 POLL FO~~ BIT REO 
0170~ • 
0171 043B FE. 1000 LIlA E: ;:':;PSIIRA CLP I ~iTF.~R FLAG 
0172 043E C6 c"c" 

._1._1 LIlA B ~~~.~ 0 1 01 (11 01 LOAII SHIFTED PREAMBLE 
017~: 0440 F7 0129 :S:TA E: T'·.·'CIIAT :S:TDRE I t'i CURF.~ENT 1.,.IOF.~I1 E:UFF. 
0174 0443 C6 OF LIlA B ~~~.~ 0 (I 0 01111 Ef'iAE:LE ur·iIIERFLDI.I.I I "'1TEf;,'f;,~ 
0175 0445 F7 1003 ::;:TA B ::<P5CRB 
0176 0448 C6 F9 LIlA B ~~ I)-? ::;:ET BIT Ct'iTR TO 7 I 
0177'- 044A :=:E. E.:::: LIlA A ~~~.~ 011 01 000 :S:ET EF.~A:S:E L It'~E PB2=O 
017::::0 044C E'7 'I 1001 :S:TA A >=~PSDRE: II I :S:A:E:LE EF.:A:S:E 
01790 044F 20 2::: BRA T 1< 1.1.1 F.: T 5 

01::::10 • :S:H 1FT C~~CC LOOP 
01820 04S1 ;::!E. 20 T~:::CRC:S: LIlA A ~~\OOl 00000 P~~ELDAII :S:H I FT c~~cc 

01830 0453 Fl 100c' TI<CF.:C3 C/"lP B ;:'::P5C~~A 

01840 0456 2E: FE: Br'll T~:::CRC:::: POLL FOR BIT REG!UE:S:T 
018S0 0458 E'7 'I 1001 ·S·TA A >:;P5I1RB E~iABLE :S:HIFT CRce 
01:::60 045B F5 1000 BIT B >:;PSIIPA CLF.~ If'iTRR FLAG 
01S70 04SE C6 Fl LIlA B ~~ 0-1 5 ·S:ET BIT cr·iTF.' FDF.~ 

.-, 
c~'c B'lTE c 

01::::::::0 0460 0:::: IN>:: I r'~c • '-'.III • cnT~~ • FOR PO:S:TAt'1BL 
01::::90 0461 F5 1002 TI<CRC4 BIT B ;:':;PSCRA 
01900 0464 2A FB BPL TVCF.'C4 POLL FOR BIT REOUE:S:T 
- 191 0 0466 FS 1000 E:IT E' . , >::P5DRA CLR I r'iTPR FLAG 
1920 0469 S(: Inc B I t"1CPEt'1Et-iT BIT cnTR 
19:::::0 046Ft 2E. FS Bt-1E TI<CRC4 C~~CC :S:H I FT DOt'iE ·7" 
1'340 04E,C S6 AA LDA A ~~\ 1 01 01 01 0 F'PELOAII POSTRMBLE E:\'TE 
1950 046E 20 02 f:PFt TKI.r.lPT4 
1'3160 • BA.~: I C !.I.IF.: I TE LOOP 
1'~70 • 

-,19::::0 0470 A6 00 T~:::I.I.IPT3 LItA A (; ~ >< GET nE::<T DATA I.IJDPD 
01'390 0472 E'7 'I 0129 T~:::I.,JPT4 :S:TA A TI",ICIIAT r'1D I,/E DATA TO CU~:REt'iT I.IID BUF 
02000 0475 C6 F':' '-' LDA B ~~ (1-::: :::ET BIT cnTP TO ::: BIT:S: 
02010 0477 S6 60 LDA A ~~\ (I 1 1 00000 1.r.lPT·-F I.r.lD -G 0 C~~TF.:L • 1.r.iD. 

02030 0479 F5 10 Of: T~:::I.I'/PT5 BIT E: ;:':;P5CPA 
02040 047C 2Ft FE: BPL TKI.,JPT5 POLL FOP BIT PEOUE:S:T 
OE: OS 0 CI4?E 46 POP A PUPGE OLD DATA BIT 
02060 047F -. .- 0129 F~O~~ TI",ICDAT :::H I FT NEt,J :1:: IT TO CA~'~:\' ... '::' 
02070 04:::2 49 POL F CAPF.:·"( TO DATA BIT PD·:: I T I Ot·~ 
020:::0 04::;:::: E'7 'I 1001 .S:T'=t A ;:'::F'SDF.~ B t·~E'-r.I BIT TO PIA 
02090 04:::6 FS 1 000 BIT B >::P5DPA elP I r'~TPp FLAG 
02100 04:::9 SC Inc E: I nCF.:Et·1E~iT BIT Ct-1T~~ 

0211 I) 04::::A 26 ED Bf""iE T~:::!.,JPT5 IF r'~OT DonE GET t·iE::·:;T BIT 
02120 04~=:C 08 I r'~\: I I'~C • Ir./D. ADDP. Cl~TP • 
02130 04:::D E:e 012C CP::-=: T",,IDATA CDr'1P. FOf;;~ END ADDP. 
02140 0490 26 DE Br-1E TV I.I./PT3 LFr::T I.dOF.'D --;:. 

02150 0492 7C 0020 Inc: T",·ICPCF CHAr'H;E CPC E~iABLED FLAG 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 4 of 6) 

5-103 



02160 0495 27 BA BEG! TI<CRC:S: 
02170 ••• r.,JRITE STOP GAP ( I NTEF.~VAL T It1ER US:ED) 
02180 0497 Fl 1002 TKS· ... ·N2 CMP E: ;:'::P5CF.~A 

02190 049A 2B FB B,..lI TJ<:S:",JN2 POLL FOR BIT F.~EG!'-'ES:T 
02200 049C F6 1000 LDA E: ::<P5DF.~A CHK :S:TATU:S: FOF.~ EDT/E:DT 
02210 049F D7 24 STA E: T'",'STAT S:AVE TAPE STATUS: 
02220 04Al 7A 012E: DEC TOF.~ECe DEeF.~EMENT RECDF.:II CDU~iTEF.' 
02230 04A4 26 oe BNE TKI.,JF.~T6 BRANCH TO t'iD-:S:TDP-ERASE 
02240 04A6 ::::A 8C ORA A ~~~.~ 1 0 I) 0 11 0 (I CLR.CRC-ERASE-STP I.I.lOPIJ 
02250 04AS eE. F.: 4 LDA E: ~~~.~ 1 011 01 00 ERASE-:S:TOP IN PF.~DG • 
02260 04AA FE 340(: LD::< $340(: SETUP CONTROL F.:EGS. TO 
02270 04AD FF 1002 S:T::< ;:'::P5CRA DISABLE EF.~F.~OR INTERF.~ 

02280 04BO 20 04 BF.~A TKI.I./F.:T7 BF.:ANCH TO :S:TOP-EF.~AS:E 

02290 04B2 9A oe T~::'I.,.lF.~T6 OF.:A A ~.~ 0 0 0 0 11 0 I) GO -EF.~AS:E -RE SET CF.~C 
02:~: 0 (I (l4B4 C6 B5 LDA B ~=\1 0110101 I.,.IF.:T -ERAS:E I r'i PROG. 
02:':::10 04E:6 E'7 'I 1001 T~:::I.,JF.'T7 S:TA A ::<P5DF.~E: 

02:~:20 04E:9 CE 04C8 LD::-:; ~~TKI.,.lRT:::: :5:ET It'iT~;rPT :S:EF.~' .. ,' ADIJR 
02:':::30 04BC DF 21 S:T::< I f.," ~S~ E ~~ '",1 

02:340 04E:E CE 0102 LD>:: ~~:S: 1 O~1:S:+$ 02 :5:TOPGAP DELA''''' 20 t'l:S:EC: • 
02.350 04C1 FF COlO :5:T::O:; ;:'·;P2DPA STAPT I t'~TVL TIMER 
02:3E.0 04C4 F7 012A :S:TA E' .. T'·.·'OPST STORE OPEF.~AT I O~" :S:TATU:S: 
02370 04C7 :~:r3t ~~T:S: F.:ETURt"i FF.~O"'l :S:UBF.'OUT I NE 
02400 • IF t'iO OTHER RECOF.'D'S: TO EE I .. .lR I TTE~i!l THEf"i 
02410 • TUI;;~N OFF I.I.IPITE C '-' P F.' E t'i T At'in F.'ESET FOR 
02420 • f:;:EAD-FI.I.lD. IF t'liJPE PECD~'n:s' TO :BE I •. IP I TTEf"i 
02430 • THEt·~ LEA\,IE I ... IJ~' I IE (Er;:~A:S:E ::. CUF.~PENT Ot"i 
02440 • At-iII PETU~:t'1 FOf;: THE NE::<T PECOPII. 
02460 04C:::: 7C 0023 T~::.'I • .I~:T:=: I t'iC T",·'PECC UPDATE ~:ECO~~D Ct·~TF.: FPO,..1 BOT 
02470 04CE: C6 '-Ie: 

-="-' LDA B ~~~.~ 001 101.01 PECD. C,..lPL • -EF.:ASE -GO 
024:::0 04CD E:6 012E: LDA A TO~:ECC CHK IF F.:ECOPlIS: DOt'~E 
02490 04[;0 26 1 1 E:t"iE Et'iI' 05 
02500 04I12 C6 22 LDA B ~~\ (101 00010 F.:ECIt • Ct1PL • -S TOP 
02510 04Ii4 ::':::6 EE LIlA A ~~$EE PPELDFtIt F.~DFf.,.lD STOP I .•. ID 
02520 04D6 p7 : . 1001 :::TA A >::PSDPE: :S:TDP TAPE IN PI; FI .• .ID 
025::::0 04I19 :=:E, 04 LDA Ft ~~$O4 

02540 04I!B F7 1003 STA E: ;:'::F'SCr;::E: DISABLE TAPE PIA I t-iTF=::F'TS • 
02550 04DE ::':::6 2(: LItA A ~~$2C 

025':.0 04EO E'-:=' 'I C013 'S:TA A >::P2CPF.: IiIAE:LE I t'i T I, .. ' L T I t'lEP I t'1TPPTS • 
02570 04E-'::: F7 012Ft E~fn 05 -S:TA B T·'.,'OPST :S:TOPE OPEPAT IOt'1 S:TATUS 
025::::0 04E6 :~:.~ PTS: PETUPN F F.: 0,..1 :S:UBPDUT I t"iE 
02590 • EPPOP ItiTPPT POUT It-iE 
02E. I) (I • 
02':.1 (I • 'S:ET EPPOP ABOF.:T FLAG :~.: PETUr;:'f"i TO E::·:;EC 
02E·20 04E7 96 EE TKPECE LItA A 'f;EE PF=:~ELOAD F.:EAD FI .• .iD COt·1TF.:OL 1...10 
02'::.]0 04E9 J3'7 '1 1001 :5:TA A ::<P5DPE: STOP TAPE 
02E.40 04EC ::::E. E4 LIlA A ::~\ 111 001 0 (I WPT.ERR.-INCOMPLETE 
02E.50 04EE :p7 

. '1 012A :5:TA A T'·.,'OPST SA· ... ·E rr'~ STATUS BUFF. 
02'::.60 04Fl 39 ~:TS PETupr'i FF.:0,..1 SUBPOUTINE 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 5 of 6) 

5-104 



02680 • WRITE STATUS CHECK SUBROUTINE 

02700 04F2 E:6 1000 T~<I.,JPST LDA A >::F'5D~:A PEAII TAPE :S:TATU:S: 
02710 04F5 ::::4 Fe Ar'~D A ~~~.~ 111 11100 t'lAS:I< UNI.,.lA~iTEn BIT:S: 
027;~0 04F7 ,= .. :. 

'_1'_' 1e EDP A ~~\ 00011100 COt'1PARE I.,.IITH GOOIJ STAT. 
02730 04F9 '~? ~4 '~:TA A T'",'STAT SA'",'E ERPOR STATUS 
02740 04FE: -;:':;. PTS PETRt-i F~:O~l SUE:~~OUT I ~iE 

0275 (! END 

S'r't'lBOL TABLE 

Et"1D05 04E3 I'",'SER'",' 0021 :::1 or'1:S' 01 00 T~::,CPC:::: 0453 TKCRC4 0461 
TKCRC:S: 0451 TKDATA 0027 TVDEL1 0412 T~:::RECE 04E7 Tf<S .... ·r-11 0436 
T K :5: \. ~~ C· 04'3'7 T~:::I."IR 0 1 041D TKI"JR:S'T 04F2 TKI.,.I~'T 1 0400 T~:::I.I.!~'T2 0421 
TK1.I.lPT3 0470 TKI,Ij~'T4 0472 TKI"JPT5 047'3 T~:::I".lRT6 04 BE' TKI.I.!~:T7 04'BE. 
TKI,I.lF.:TS 04C8 TO~:ECC 012B T1,.,'CDAT 0129 T',.,'CRCF 0020 T'",IDATA 012C 
T',,"DATL 0025 T'",'LI,dA 0127 T'",'DF'ST 012A T","F.'ECC 0023 T',/:S:TAT 0024 
>::P2CRA C012 >::P2CRE: C 01 :::: ':<P2DPA COl (I ::-<P2DRF.: COl 1 ;:':;P5CF.:A 1 002 
>::P5CRE: 1 003 ;:':;P5I

'
PA 1 000 >::F'5DPB 1 001 

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 6 of 6) 

5-105 



Set Abort I nterru pt 
Vector Address if 
No Read Clock 

Count 8 
Preamble 

Bits 

Enable Overflow Interrupt. 
Enable CRC Register. 

Set Bit Counter for 8 Bits. 

TKRD04 

Read 
Data 
Block 

FIGURE 5-3.2.2-7: Flow Chart of Read Routine (Sheet 1 of 2) 

5-106 

'-------(3) 

Read 
CRCC 



TKRD01 

111'-{ 'TKROST' ) 

(2) 

(3) 

Read 
Stopgap 

'TKRDST' ) -
Check Status 

and 
Bring Tape 

Up to Speed 

TKRD10 

FIGURE 5-3.2.2-7: Flow Chart of Read Routine (Sheet 2 of 2) 

5-107 

'TKRDST' 

Check 
Read 

Status 

1. Available 
2. Ready 
3. Cassette in Place 
4. In Sync 
5. CRC Error 
6. EOT /BOT Seen 

< TKROST' ) 

Stop 
Tape 



1 PAGE 1 

0001 0 
00020 
000-:::0 
00040 

00060 
00070 
00080 
000'30 
001 00 
0011 0 
00120 
00130 
00140 
00150 
00160 
00170 
001::::0 
001'30 
00200 
0021 (I 
00220 
0023C' 
o O~~4 0 
00250 
00260 
o Oe'7 0 
00280 
(I 02'~ (I 

00300 
(I O'~: 1 0 
00320 
(I O:~:30 

00340 
00350 
00360 
00370 
(103:::: 0 
00':::'3 I) 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
004:::0 
004'30 
00500 
0051 0 

NAr1 TKPEAII 
• PEV 0.07 AS OF 1-2-75 

OPT :S: 
• 
•• READ FORWARII SUBROUTINE •• 
• 
• THIS SUBPOUTINE IS USED TO PEAII FORWARD 
• ONE VARIABLE LENGTH PECORD. 
• THE STAPTING AIIIIRESS OF THE IIATA 
• BUFFER IS DEFINED BY TKDATA. THE 
• ENDING ADDPESS STORED IN TVDATA IIEFINES 
• THE NUMBER OF BYTES IN THE NEXT RECORD. 
• 
• AN INTERVAL TIMER IS USED TO GENERATE 
• THE STARTGAP AND STOPGAP DELAYS ANII TO 
• ABORT THE OPERATION IF NO REA II CLOCK IS 
• :S:EE~~ D","ER THE LENGTH OF A RECORII. 
• THE INTERVAL TIMER IS USED IN THE 
• FOLLOWING SEQUENCE: 
• A. 40 MSEC. TO ALLOW THE TAPE TO 
• COME UP TO SPEEII. 
• B. 300 MSEC. TO ABORT OPERATION 
• IF NO PEAII CLOCKS 
• C. 30 MSEC. TO ALLOW TAPE TO MOVE 
• INTO STOPGAP 
• 
• TAPE MOTION IS STARTED WITH THE 
• REAII CIRCUITS IIISABLED. WHEN THE TAPE 
• IS UP TO SPEEII (APPROXIMATELY 40 MSECS.) 
• THE READ CIRCUITS ARE ENABLED AND THE 
• MPU LOOKS FOR THE FIRST BIT TRANSITION. 
• THE FIRST BIT TRANSITION SWITCHES THE 
• REFERENCE INPUT OF THEP.L.L. FPOM THE 
• WRT. OSC. TO THE READ DATA AND THE P.L.L. 
• BEGINS TO TRACK THE READ DATA. THE 8 BITS 
• OF THE PREAMBLE ARE COUNTED AND USED FOR 
• BYTE ALIGNMENT. THE P.L.L. IS DESIGNED 
• TO LOCK TO THE DATA WITHIN THE PREAMBLE 
• BITS. CRCC ACCUMULATION IS STARTED WITH 
• THE FIRST DATA BIT. DATA IS TRANSFERRED 
• IN BIT SERIAL FORMAT AND ASSEMBLED INTO 
• BYTES IN THE DATA BUFFER. THE LAST TWO 
• BYTES OF THE DATA PORTION OF THE RECORD 
• ARE THE CRC BYTES. THESE ARE NOT SHIFTED 
• INTO THE DATA BUFFER BUT THEY ARE 
• ACCUMULATED IN THE CRCC GENERATOR. AT 
• THE END OF THE CQCC BYTES, THE eRC ERROR 
• LINE IS EXAMINED TO SEE IF THE DATA 
• WAS READ CORRECTLY. STATUS FLAGS ARE SET 
• AT THE END OF EACH OPERATION STEP BEFORE 

FIGURE 5-3.2.2-8. Read Routine Assembly Listing (Sheet 1 of 5) 

5-108 



1 PAGE 2 

00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
006:30 

00650 

00670 
I) 0':,::: 0 
006':;tO 
00700 
00710 
00720 
007:30 
00740 

00760 
00770 
007:=:0 

00:::00 

00:::20 
00:::::30 
00;::40 

0020 

0020 
0021 
002:3 
0024 
0025 
0027 
002;3 
002'3 

0400 
0400 

0001 
0002 
0001 
0001 
0002 
0001 
0001 
OOOi? 

0100 

0100 
efl0 
C 11 

00S50 C 12 
00860 e 13 
00870 
00:::::::0 

1 00 
1 01 

008'30 1002 
00'300 
00'31 0 

00'330 0600 

1003 
0100 

• RETURNING TO THE EXECUTIVE. 
• 
• THE OPERATION STATUS CODES USED ARE 
• AS FOLLOWS (USE THE TABLE GIVEN IN THE 
• TKRELP ROUTINE FOR FURTHER DETAILS ON 
• ON THE OPERATION STATUS FLAGS): 
• 
• MOVE FWD IN PROGRESS-(10100001) 
• READ FWD IN PROGRESS-(10100011) 
• READ ERROR INCOMPL. -(11100011) 
• RD. ERR. ENDG. STAT.-(11100010) 
• READ RECORD COMPL. -(00100010) 

DRG $20 

T'",'CRCF F.~ME: 1 eRC Et"iAE:LED FLAG 
I I·.·':S:E~~· .. ·J R,..1E: .=. It'~TRPT SER',/ ICE ADDR. I-

T',/RECC F.:ME: 1 F.'ECDRD COUNT FROM BOT 
TV:S:TAT RMB 1 STATUS B' .... TE 
T',/DATL F.~"'1B 2 I",IAR I ABLE LENGTH E:UFF 

BUFF 

T'",'CDAT ~a'lE: 1 CURRENT DATA-I.IJDPD BUFF 
T',.,'OPS:T F.·,..lE: 1 DPEF.~AT I Dt~ STAT . E:UFF. 
T'",'DATA R"'1B 2 (TKIIATA + T'",'DATL) ADIIF.'E:S::S: 

• DATA BUFFEF.: STORAGE 
DF.'G $400 

TKDATA RME: 256 PD-i.dPT BUFFEF.~ 

• CONSTANTS USED BY ROUTINE 

TVDATL EG!U 
>:;P2DRA EOU 
;:':;P2DRB EG!U 
;:<P2CF.:A EG!U 
>:;P2CRE: EG!U 
;:<P5DRA EG!U 
;:'::P5D~~B EG!U 
::<P5CRA EG!U 
;:-:;P5CRB EG!U 
:S: 1 Ot'1S EOU 

ORG 

$01 00 
$C01 0 
$C01 1 
$C012 
$C01:3 
$1 000 
$1 001 
$1 002 
$1 003 
256 

$600 

FIXED LENGTH BUFF 256 BYTES 
ITIMER PIA ADDR & CONTRL 

TAPE TAPE PIA ADDR &DATA 

10 MILLISECOND CLOCK 

FIGURE 5-3.2.2-8. Read Routine Assembly Listing (Sheet 2 of 5) 

5-109 



1 PAGE .-, 
..:;0 

00'350 • NO'·,·'E TAPE UP TO SPEED S:UBROIJT I NE 

00'370 0600 C6 E2 Tf(RIII) 0 LI'A E: ~~~,~ 111 (1001 0 EF.~RDR DP-CDIIE 
009S0 0602 BD 06E:2 J:S:R TKRIrS:T CHK. F.~EAD STATUS: 
00990 0605 2E. 17 BNE TKF.:I' 0 1 
01000 0607 CE 0621 LI';:':: ~~TKRn 02 :S:ET F.:D ENABLE F.:ETRt'i ADDR 
01010 060A DF 21 ST;:':: IV:S:EF.:V 
01020 OE.OC C6 oe LDA E: ~~~'~000(l11 00 
01 03 fI 060E F7 100:] :S:TA B ::,::P5Cr;t:B Et'iA:BLE EDT INTRPT. 
0104 OE.11 :=:E. 2E LDA A ~~~,~ 001 (1111 0 t1DVE -FI,',II' C~iTRL • I .. .ID. 
0105 OE,13 I''? 

" 1001 STA A >::P5r'F.~B :S:TAF.:T NO'·,·'ING UPTO :$:PEED 
0106 061E, C6 A1 LDA B ~~~~1 01 00001 t'10VE -FI,.,II' IN PROG. 
0107 0618 CE 0104 LD;:':: ~~:s: 1 Ot1S+$ 04 40 t1SEC UPTO 'S:PI' • DEL A .... ' 
010:::: 061E: FF COlO :S:T;:':: ::<P2DRA SET g.: STAF.:T ITINEr;t: • 
0109 061E D7 2:::: TKF.:D 0 1 STA B TVDP:S:T :S:TORE OPEF.~AT I D~i S:TATU:S: 
0110 0620 39 PT'S: 

01120 • PEAD DATA :S:UBF.:OUT I~iE 

01 140 0621 FE 1000 T~:::RD02 LI';:< XP5DRA CLR TAPE INTRPT. FLAGS 
01 150 0624 CE (lE-AE LD>:: ~~TKRIIAB :S:ET RI! AE:Or;t:T RET AIJIIF.:ES: 
01 160 0627 DF 21 :::T::-:; I '.,l:S:ER'·,·' 
01 170 0629 CE 0130 LD;:':: ~~:S: 1 or'lS+$:3 0 RECF.:D. LE~iG TH 3 (I (I t'l:5:EC. 
01 1::::0 062C FF COl 0 :S:T;:':; XP2DRA SET & START ITINER. 
01 190 • Et'~ABLE READ (LOOK FOR FIRST BIT) 
01200 062F ::::6 2A LDA A ~~~,~ 001 01 01 I) PEAD-FI.,.ID CNTF.'L. II,II;. 
01210 0631 E''? " 1 (i (I 1 STA A XP5DRB CONTINUE MOTION IN PD 
01220 0634 C6 A3 LDA E: ::~\ 1 01 I) (1011 RD-FI.I.1Ii H'i PF.:OG. 
012::::0 063E, D7 2::: :S:TA E' , ' TVDPST STORE OPERATION STATUS 
01240 06:::;:::;: C6 F8 LDA B ~~ (1-::: :SET BIT cnTR 
01250 063A CE 0400 LD;:':: ~~TVDATA LOAII F I PST 1".loRD AI;DF.:. 

01270 • READ PREAtofBLE 
012::::0 063I; F5 1002 Tf<F.:D 03 BIT B ::<P5CRA 
01290 0640 2A FE: E:PL TKPIIO:::: POLL FOP E:I T F.: EO 
01300 0642 F5 1000 BIT E: ::<P5r'~:A 
01':: 1 I) 0645 5C I r'~C B UPDATE BIT Ct·iTF.· 
01320 0646 26 F5 Bt"iE TKPDO:::: 

01340 • PEAD DATA 
01350 064::: C6 OF LDA B ~~\OOOO1111 ENAE:L O ..... EF.:FLO I t'~TPPT • 
01360 OE,4A F7 1003 STA B ;:':;P5CPB 
01:370 064D :::4 F7 AND A ~ ~ ~.~ 1 1 1 1 0 1 1 1 Et'~AE:LE CF.:C PEG 
013::::0 064F E''? 'I 1 001 '::TA A ;:':: P 5 II F.: E: 
01390 0652 C6 F'=' '-' LDA B ~~ 0-::;: :::ET E: IT Ct'~TP 

01400 0654 F5 1002 TVPII04 E:IT F.: ;:'::P5C~:A 

01410 0657 2A FE: E:PL TK F.: II 04 POLL FOP E:IT r;;:I' .... · PEG! 
01420 0659 BE, 1000 LIlA A ::<P5rlr;;~A GET NE::<T BIT 
01430 065(: 46 POP A :::H 1FT E:IT TO CAPr;:'·.,.. 

FIGURE 5-3.2.2-8. Read Routine Assembly Listing (Sheet 3 of 5) 

5-110 



1 PAGE 4 

01440 065D 6'~ 00 
01450 065F 5C 
01460 0660 26 F2 
01470 0662 CEo F:::: 
01480 0664 08 
01490 0665 8e 0029 

PDF.: 0 , ;:< 
INC B 
:E:t-iE TKF.~D 04 
LDA E: 
IN>;: 
cp;:.:; 

STOPE BIT IN DATABUFF. 
UPDATE 1:: I T Ct-~TR 

SET BIT Ct"iTP 
INCPEMENT WORD CNTR 

COMPARE LAST WD ADDR. 
01500 0668 26 EA ENE 

~~TI ... IDATA 
Tt<F.~D 04 
~~ 0-16 
;:'=;P5CF.:A 
TKPD05 
>::P5Dr;~A 

LAST 1",.lOF.~D --;-
01510 066A C6 FO LDA B SET BIT CNTP FOR CRC 
01520 066C F5 1002 TKPD05 BIT B 
01530 066F 2A FE EPL POLL FOP BIT PEQ 
01540 0671 B6 1000 LDA A CLP INTRPT. FLAG &PD STATUS 

UF'DATE E I T Ct"~TF.~ 01550 0674 5C INC B 
01560 0675 26 F5 ENE TKPD05 

01580 
01590 
fl1600 0677 C6 E3 

1610 0679 ED 06B2 
lE:20 06lC 26 09 
163 0 O~.?E C6 A3 
1640 0680 CE 069D 
165 0 06::::~: II? 2:::: 
1660 0685 20 05 

'-1670 0687 D7 28 
I) 1 E.:::: (I 
01690 0689 CE 06A6 
01700 068C DF 21 
01710 068E CE 0103 
01720 0691 FF COlO 
01730 0694 7C 0023 
01 74 0 0697 :::6 2E 
01750 
017E.O 
01770 0699 B? 1001 
01780 069C :~:9 

01800 
0181 0 

01:=:30 069D C6 E"-' .::. 
fl1840 069F BD 06E:2 

1850 06A2 26 02 
1860 06A4 C6 22 
1870 06A6 D? 2!=: 
1880 06A::: E:E. EE 
1890 06AA E'7 '1 1 001 

'-'1900 06AD 39 

• CHECK STATUS FOR AVAIL.,CAS. IN PLACE !I 

• PEADY, IN SYNC, AND CPC EPR. 
LDA B ~~\ 111 00 (I 11 PRELOAD ERF.~. OP CODE 
JSR TKPDST CHK. READ STATUS 
Bt"iE TKF:D 06 
LDA B 
LD::-:; 
:~:TA B 
BPA 

TKPII06 STA B 
• READ STOP 

LD;:':: 
TKRIr 07 ST::-=: 

~~~"~ 1 01 0 I) I) 11 PD-FI.,.lD- I t"i PF.~OG. 

~~TKRD 09 :~:ET I T I MEP PETRt-i. ADDP.
TVOPST STOPE OPERa STAT.
TVF.:D 07
TVOPST STORE OPERATION STATUS

GAP
~~ TKPD 1 I) SET I T I t'lER RETF.~N. ADDF.:.
I 1",1 :5: E F: I.,"

LD;:< ~~S 1 o t'lS:+$ 03 "3 I) t'lSEC :~:TOPGAP

STX XP2DRA SET & START ITIMER.
INC TVRECC INC. RECPD. COUNT FROM BOT
LDA Ii ~~\ (101 0111 (I t·1D '·lE -FI .. .lD-Ct-iTRL. D ..

• NOTE: RD DISABLED (PB2=1) RESETS
• 1ST BIT FLIP-FLOP.

STR A XP5DRB RESETS 1ST BIT FF
RTS RTRN FROM SUBRTN

• STOP TAPE IN INTERRECORD GAP
•

LDA E:
.J"~:p

Bt"iE
LDA B

T~:::pn 10 S:TA E:
LDA A
:~:TA A
RTS

~~\ 111 0 (I I) 1 (I RD-EF.:F.:. Et"iD. STAT.
TKRDST CHK ENDING STATUS
TKRDI0
~~~"~ I) 01 0 (101 0 F~EAD PECORD DOtiE 
TVOPST STOPE OPERATION STATUS 
~~~"~ 111 0111 (I RD~FI .. .lD-STDP CtiTPL. 1 .. .iIl. 
XP5DRB STOP TAPE

RETRN FROM SUBRTN

FIGURE 5-3.2.2-8. Read Routine Assembly Listing (Sheet 4 of 5)

5-111

1 PAGE c-
._I

01920

01940 OGRE C6 E2
01950 06BO 20 F4

(11'370
019:30
01'3'30
02000
02010
02020
02030
02040
02050

02070

02090
02100
02110
02120
021 ~:O
02140

S' t1!:Ol

I ',,"SEF.~V
TKF.:IIO 1
TJ<F.:II06
TKRIIST
TVOPST
;:':;P2IIRA
::-:;P5IIRB

06E:2 :B6 1000
06!:5 84 DE
OE,B7 :=:E: le
06B9 97 24
06!:!: ::::'3

TA!:lE

0021 s: 1 ONS
061E Tf<F.~II 02
06:::7 Tf<RD07
06B2 TVCIIAT
002::: T'\I'RECC
COlO ~-::P2DF.~!:

1001

• READ ABORT SUBROUTINE

Tf<RDA!: LIlA B ~~~.~ 111 00(11 0 F.~I1-A!:OF.~T-OPCDIIE

BRA TKRIII0 STOP TAPE IN RECDRD GAP

•• STATUS CHECK SUBROUTINE •••••

•
• THIS SUBROUTINE CHECKS THE CURRENT STATUS
• OF THE TAPE WHICH IS AVAILABLE AT PAO-PA7.
• THE STATUS IS COMPARED WITH THE EXPECTED
• GOOD STATUS (AVAIL.,CAS. IN PLACE,RDY.,
• IN SYNC,AND CRC ERR.) AND THE RESULT
• OF THE COMPARISON IS SAVEII IN THE TAPE
• STATUS BUFFER TVSTAT.

• CHECK TAPE STATUS SUBROUTINE

T~:::F.~D:S:T lIlA A ::-:;P5I1F.~A F.~EAn TAPE STATUS ; ClF.~ FLAG:S:
ANII A ~~~.~ 11 01111 0 NAS:KOUT UNI.,.IANTED BIT:S:
EOR A ~~~.~ 0 (I 0 111 00 TAPE AVAIL RIJ 1.,.lD
:S:TA A T',lS:TAT :S:AVE E F.~ F.~ 0 F.~ STATUS
RTS F.~ E T F.~ t'i FF.~OM SU!:F.:TN
Et"iD

0100 TKIIATA 0400 TKDATL 0100 Tf<F.:II (10 0600
0621 TKF.~D 0:3 06:3D TKF.:I104 OE,54 TKF.:I105 066C
OE,:::C TKF.:DO'3 06'3I1 T~::RD 1 (I 06A6 Tf<RDAB (l6AE
0027 T',/CF.:CF 0020 TI'/I1ATA 0029 T',/DATl 0025
002~: T',/S:TAT 0024 >:;P2CF.:A (:012 ;:'::P2CF.~B C01~:

C011 ::-::P5CF.~A 1002 ;:':;P 5C F.: I: 100:::: >:;P5IIJ;:~A 1000

FIGURE 5-3.2.2-8. Read Routine Assembly Listing (Sheet 5 of 5)

5-112

5-4.1 INTRODUCTION

The floppy disk is fast becoming an important storage media. The promise of low cost and direct

access has encouraged minicomputer users to select the floppy disk for mini-mass storage requirements. As

microprocessing systems enter the marketplace, proposed applications for the floppy disk broaden to include

the "less-than-mini" market. These new applications include:

• Program loaders for intelligent terminals and larger systems

• Key-to-disk keypunch replacement

• Price look-up and credit card verification files for POS systems

• Message buffers for communications systems.

In these applications, the floppy disk will contend with cassettes and paper tape. The attractiveness of floppy

disk over other means of mass storage rests in:

• Cost per bit of usable storage

• Cost of the floppy disk subsystem

• Reliability and maintainability

• Ease of media handling and transportability

• Compatibility of recorded data with other systems, large or small.

The purpose of this section is to show techniques for controlling a floppy disk with the MC6800

microprocessor. Because the floppy disk data rates lie at the extreme high end of the MC6800's data handling

capability, this section also serves to demonstrate optimization techniques that can be used in applications other

than the floppy disk.

The floppy disk itself (often referred to as a diskette) is a removable magnetic storage media which is

permanently contained in a paper envelope. The diskette drive is a low cost peripheral which performs the

electro-mechanical and read/write functions necessary to record and recover data on the diskette. Reprints from

the reference manuals for the CALCOMP 140, Orbis Syst~ms Model 74 and Shugart SA 900 floppy disk drives

are appended to this section. Familiarity with floppy disk terminology, operations and specifications will be of

value in understanding the design techniques illustrated in this section.

Data is recorded serially on the floppy disk. Due to the high serial data rates, it is necessary to use

auxiliary logic for the serial/parallel conversion, data recovery, and data error checking when interfacing the

floppy disk to the M6800 system. The hardware which performs this function is usually called aformatter. The

formatter also serves as a buffer between the M6800 system and the disk (Figure 5-4.1-1).

,-----------------.
I FLOPPY DISK CONTROLLER :

I I
I M6800 I

MICROPROCESSING FORMATTER I SYSTEM

I L _____ _

,
I

________ J

FIGURE 5-4.1-1. M6800/FIoppy Disk Subsystem

5-113

DISKETTE
DRIVE

The purpose of the M6800 system and the formatter is to control the diskette drive. Therefore, the

combination of the M6800 SYSTEM and FORMATTER blocks in Figure 5-4.1-1 is referred to as the Floppy

Disk Controller. As used here, the term "controller" includes not only the system hardware, but also those

microprocessing system programs which directly or indirectly control the diskette drive. The program routines

for the floppy disk are often referred to as floppy disk drivers or control modules. A more complete diagram of

the controller is depicted in Figure 5-4.1-2.

5-4.2

Initialize

Seek

Control Modules

I
I

wr'~lte __________ ~I __
Read

System
Memory

Interval
Timer

To Other
System

Elements

MPU

Floppy Disk
Formatter

FIGURE 5-4.1-2. Floppy Disk System

OVERALL CONSIDERATIONS

Diskette
Drive

The content of the blocks shown in Figure 5-4.1-2 is the subject of this section. However, before

describing the system, it is of interest to discuss the tradeoffs involved in microprocessor-based floppy disk

controllers. The decision to design a floppy disk controller using the M6800 system depends upon:

5-114

Exec
Memory

Exec
MPU

To Other
Exec System

Elements

Shared R/W
Memory

Control/
Command PIA

Control
MPU

To Other
Control System

Elements

FIGURE 5-4.2-2. Multiple MPU System

5-115

Control
Memory

Floppy Disk
Formatter

Disk

(1) The way the disk system will be used in the overall system;

(2) The cost difference between the alternative design methods (such as hardwired logic); and,

(3) Both the short term and long term goals with respect to the use of the disk subsystem.

Due to the high data rates of the floppy disk, the microprocessor is, in effect, busy 100% of the time

during data handling. This means no other microprocessor peripherals can be serviced while in a disk read or

write operation. This is true provided that the transfer of data is controlled by the microprocessor and not via

some type of Direct Memory Access (DMA) hardware.

Since no other peripherals can be serviced, interrupts generated by the other system elements must

be disabled during disk read or wri te operations. Allowances must be made in the system design to permit 100%

system dedication to floppy disk during read and write operations. This can be accomplished in three ways:

(1) If feasible, design the system such that other peripherals will not need service during floppy disk

data transfer time. An example of this is a serial task system where each system task is executed

in sequence with no overlap (Figure 5-4.2-1).

(2) Dedicate a microprocessor to handle peripherals which never interfere with disk operations and

assign the disk to that microprocessor. This microprocessor would then be a peripheral control

processor which is subservient to an executive processor (Figure 5-4.2-2). The executive

processor could be another micro, a mini or even a large processor.

(3) Dedicate a microprocessor to the disk subsystem.

Alternatives (1) and (2) can represent significant cost savings over a hardwired logic disk controller

because the M6800 hardware is shared by the other system peripherals. In alternative (3) the cost of the M6800

parts is directly attributable to the disk system. A dedicated full capability floppy disk subsystem would require

a minimum of the MC6800 MPU, lK of program storage (usually ROM), 256 bytes of RAM, two PIA's for

formatter interface, one half a PIA for the interval timer, one half a PIA for interface to the external world,

system clock logic, and approximately 40 SSI and MSI IC's for the formatter. This is compared to approxi

mately 180 SSI and MSI IC's in a hardwired logic design of the controller plus the interface in the executive

processor system. Depending on the system design goals, it is possible that the dedicated MPU based design

can be more expensive than hardwired logic. Of course, the MPU based design is much more flexible and can

be programmed to have a higher level of "intelligence" than its hardwired logic counterpart. If the system has a

potential to grow (long term consideration), or if there is a need to design a flexible floppy disk system, a

dedicated MPU based design would be a wise decision.

The design described here is limited to non-DMA design, that is, all data transfer is under program

control via the MPU. The design discussion will cover methods of R!W head electro-mechanical control (seek

operation), write, read, and a specific application called UPC lookUp. In this manual, the various routines have

not been completely integrated as an operating system, that is, the discussion does not completely link the

routines together nor does it include error or malfunction processing.

Single diskette drive formatter logic is described in this section. Expansion of the subsystem to

multiple drive control is dependent on the specific floppy disk drive's interface. For example, the Shugart SA

900 interface is designed for "radial" interconnection (Figure 5-4.2-3). In the "radial" interface, all

interconnections are dedicated to specific drives.

The CAL-CaMP 140 interface is designed for "daisy chain" interconnection (Figure 5-4.2-4). In

5-116

Formatter

Formatter

J To/F,om
Drives

I
SA900

Orbis 74

FIGURE 5-4.2-3. Radial Interface

~} To/From
r-- Drives
r--

CC140
Orbis 74

CC140
Orbis 74

SA900
Orbis 74

I
} ...)

•••

FIGURE 5-4.2-4. Daisy Chain Interface

SA900
Orbis 74

CC140
Orbis 74

the "daisy chain" configuration, some of the lines are shared and some are dedicated while the Orbis 74 allows

for either configuration.

Each type of interface has its advantages. The' 'radial" interface isolates (buffers) each drive but the

"daisy chain" interface requires less system hardware.

The single drive formatter described in this section is designed to interface to either the Shugart SA

900 ("radial") or the CALCOMP 140 ("Daisy chain") interface. The Orbis 74 will operate in both modes. On

earlier Model 74's a minor modification must be made to generate the ERASE GATE signal. Because more

than one model of diskette drive can be connected certain interface signals are controlled which may not be

required by one or the other diskette drive.

The IBM 3740 recording format has been chosen for this design description. Appendix 5-4.D is a

description of the recording formats commonly used in floppy disk applications. (Courtesy of Shugart

Associates) .

The limited scope of this Section is not intended to imply that the MC6800 can not be used in other

floppy disk applications. The techniques are general enough to aid the systems designer in most floppy disk

applications.

5-117

Initialize
System

Display Entry

Process Entry

YES

Floppy Disk
Write Operation

NO

NO

FIGURE 5-4.2-1. Example of a Serial Task System

5-118

5-4.3 SYSTEM HARDWARE/SOFTWARE INTERFACE

Figure 5-4.3-1 is a functional block diagram which shows all the signal lines between the floppy disk

system and the PIAs. Note that two PIA's are used to control the disk system. The following is a brief

description of the signals. More detailed descriptions from a programming view follow the brief descriptions.

PIA # 1 is used primarily as a data buffer. Peripheral Register A is the WRITE CLOCK buffer

register for write operations and the READ DATA gate for read operations. Peripheral Register B is the WRITE

DATA buffer for write operations and is used as a status signal gate for read operations. The four read status

signals which are routed to PIA # 1, Peripheral Port Bare:

PBO + 1ST BIT

PB3 - CRC=OO

PB6 - INDEX CLOCK MARK

PB7 - ID/DATA MARK

NOTE: The + signifies the signal is active in the high logic level when the - signifies low logic level is active.

PIA # 1 peripheral ports A & B are used as both inputs (read operation) and outputs (write operation). Because

all data field write operations must be preceded by a read ID field operation, the Direction Registers must be

restored to all "D's" in preparation for a read operation.

CAl and CA2 of PIA # 1 are used to synchronize the timing of the program to the data rate during

read or write operations. CA 1 is a service request line. In the read operation a positive transition of the CA 1 line

indicates that a complete 8-bit byte has been assembled and is present at the A port. In the write operation a

positive transition of CAl means that the clock and data patterns in Peripheral Registers A & B have been

moved to the external parallel-to-serial shift registers and the Peripheral Registers can now be updated.

Data synchronization is controlled by polling for Interrupt Flag # 1. An active transition of the CA 1

line causes Interrupt Flag # 1 of Control Register A to be set to a "1". It takes the MPU a minimum of 8 cycles

to recognize that the flag has been set (if the PIA is located in the extended address range $0100 to $FFFF).

After the flag is recognized by the MPU, write or read data is transferred to or from the PIA. At a 1 MHz MPU

clock rate, there is a minimum 8 microseconds delay between recognition of the service request and servicing

the PIA.

The BYTE READY/BYTE REQUEST CAl signal is one bit period in duration. It goes low at the

beginning of the last serial bit time of a byte, then returns high at the beginning of the next serial byte (Figure

5-4.3-2). Due to the 8 microsecond program delay, the interrupt flag could be set at the beginning of the last bit

period even though the data won't be ready until the end of that period. This lookahead technique can provide

additional processing time in critical timing areas of the program.

Serial
Bit Period

PIA #1-CA1
(Byte Ready /

I 6 I 7

I
~

I

Byte Request)

Set PIA #1)
Interrupt
Flag 1 A

I 4> I
I
1'4'-4 p,S (Nominal)

I

L Read OP - Transfer Byte to
Read Buffer

Write OP - Transfer Byte to
Shift Register

FIGURE 5-4.3-2. Byte Ready/Request Interface

5-119

4> I

LJ

I
)

CAl
-Byte Request, Byte Ready - +R/W Handshake

CA2 -
PAO - +Wrt Clk, Read Data, Bit 0

PAl - ~
+ Wrt Clk, Read Data, Bit 1 ..

PA2 -- +Wrt Clk, Read Data, Bit 2

PA3 - +Wrt Clk, Read Data, Bit 3 ..
PA4 - +Wrt Clk, Read Data, Bit 4

PA5 - +Wrt Clk, Read Data, Bit 5 Read/ ..
+Wrt Clk, Read Data, Bit 6 Write

PA6 .. &

PIA

+Wrt Clk, Read Data, Bit 7 Error

#1
PA7 ..

Detect

PB7 - - +Wrt Data Bit 0, -I D/Data Clk Mark Circuitry
-~-

PB6 - - +Wrt Data Bit 1, -Index Clock Mark

PB5 - +Wrt Data Bit 2

PB4 - +Wrt Data Bit 3

PB3 .- ~
+Wrt Data Bit 4, -CRC = 00

PB2 - +Wrt Data Bit 5

- +Wrt Data Bit 6 Serial PBl
+Wrt Data Bit 7, +lst Bit Write Data -PBO .. ~sedal +Above Trk 43 J Read Os CB2 ..

(
CBl

f

ta

) _ +Index
CBl

CB2
_ +R/W Error

PBO
_ +Not in Sync

PBl
+Disk Sys Inoperable -

PB2
+Underflow

PB3
+Wrt Protected -

PB4 - +Forward Direction

PB5 ~
-Head Load

-Ready Diskette - Drive PB6 - +Index
PB7 ..

#2
+Track 00

PIA

PA7
+Read Enable

PA6 -
PA5 - -File Inop Reset .. . -Disk Select
PA4

-Shift Crc
PA3 ...
PA2 - -Enable Crc ..
PA1 .. -Enable Wrt

PAO .. -Write Gate

CA2
-Step ..

CAl
-Ready t'

(-)

J FIGURE 5-4.3·'. Floppy Disk Functional Interface

5·120

The CA2line is the MPU's response to the disk system indicating that the service request at CAl has

been accepted. It is used to signal overrun errors for the read operation and underflow errors for the write

operation. The CA1/CA2 operation of PIA #1 is a handshake mode of operation in which CA2 is set high on an

active transition of CAl and returned low by a MPU read instruction (LDA, BIT, etc).

CB2 of PIA #1 is a control signal called "ABOVE TRK 43" that is used only in write operations.

When recording data on a diskette track greater than 43, this line is raised high. This signal is used by the

CALCOMP 140 and Orbis 74 to control the write current amplitude on inner tracks in order to reduce the effects

of a phenomena called "bit shift." 1

PIA #2 is used as a control, status and interrupt interface. The control signals are:

PAO WRITE GATE

PAl ENABLE WRITE

PA2 ENABLE CRC

PA3 SHIFT CRC

PA4 DISK SELECT (CALCOMP 140 ONLY)

PAS FILE INOP RESET

PA6 + READ ENABLE

PB4 + FORWARD DIRECTION

PBS HEAD LOAD

CA2 STEP

The status signals are:

PA7 + TRACK 00

PBO + NOT IN SYNC

PB1 + DISK SYSTEM INOPERABLE

PB2 + UNDERFLOW/OVERRUN

PB3 + WRITE PROTECTED

PB6 READY

PB7 + INDEX

The interrupt signals are:

CAl READY

CB1 + INDEX

CB2 + R/W ERROR

The use of the control, status and interrupt signals is described with the appropriate operation.

The following is a general summary of PIA Control Register and Peripheral Register assignments in

the floppy disk programs as seen by the operating programs. Refer to Section 3-4 of Chapter 3 for additional

information on PIA operation.

lThe bit density of the diskette increases as the radius of the track location decreases. This means that the magnetic flux reversal ofthe bit
being written affects the bit that had just been written. The magnetic field generated by the R!W head is approximately proportional to
the amount of current in the head. The ABO VE TRK 43 signal causes less current to pass through the R!W head thereby reducing the
intensity of the magnetic field. This signal is not used by the Shugart SA 900 Diskette Drive.

5-121

FPICRA -PIA #1, Control Register A; Address $8082;

b7 bo

I I I I I I 10101
Describes CAl operation. CAl is the input signal BYTE REQUEST for Write Operations and BYTE

READY for Read Operations. Interrupt Flag #1 (Bit 7, FPICRA) is set to a "1" by a high-to-Iow

transition of the BYTE REQUEST/BYTE READY signal. Interrupts to the MPU from Interrupt Flag #1

are disabled.

b7 bo

I I 111010 I I I I
Describes CA2 operation during data transfer programs. CA2 is the output signal R!W HANDSHAKE.

When BYTE REQUEST/BYTE READY (CAl) makes a high-to-Iow transition, CA2 responds with a

low-to-high transition. The CA2 output is restored low by a Read Peripheral Register A (DPlPRA)

instruction such as:

LDAA FPlPRA

or BITB FPlPRA.

During data transfer, the program must execute a Read FPlPRA instruction before the next BYTE

REQUEST/BYTE READY high-to-Iow transition at CAlor an Underflow (WRITE OP)/Overrun

(READ OP) error latch will be set.

b7 bo

I \ 11\1\ 0 \ \ I I
Describes CA2 operation when not transferring data. This Control Register bit configuration holds R!W
Handshake (CA2) low when not transferring data to prevent the UNDERFLOW/OVERRUN latch from

being set.

FPIPRA - PIA # 1, Peripheral Register A; Address $8080;

Write Operation:

b7 bo

I ~~ItE :C~O~~ \
o < P A > 7, Write Clock Buffer;

For a Write Operation, these PIA lines are defined as outputs. Peripheral Register A stores the clock

pattern to be recorded on disk.

Read Operation:

b7 bo

I I ~E1D:D~T~ I I
o < PA > 7, Read Data;

For a read operation, these lines are defined as inputs. The PIA lines PO-P7 are the parallel read data lines.

5-122

FPIPRB - PIA # 1, Peripheral Register B; Address $8081

Write Operation:

b7 bo

I I WR~T$ PATA I
o < PB > 7, Write Data Buffer;

For a write operation, these lines are defined as outputs. Peripheral Register B stores the data pattern to be

recorded on disk.

Read Operation:

b7 bo

I OJ 0 I I 101 I 11/
For a read operation, these lines are defined as inputs.

PBO, + 1ST BIT;

b7 bo

I I I I I I I 111
1 ST BIT is a read status signal which latches when a " 1" data bit has been detected in the serial read data.

The 1ST BIT latch is enabled and cleared by the ENABLE CRC control signal.

b7 bo

I I I I \01 I I I
PB3, -CRC = 00;

CRC = 00 is a Read Data validity error check. CRC = 00 goes low for one byte period after a record has

been read if there were no read errors detected.

b7 bo

I 101 I I I I I I
PB6, -INDEX CLOCK MARK;

INDEX CLOCK MARK goes low for one byte time during a read operation when the serial data stream

contains $D7 in the clock bits. This unique pattern is recorded 46 bytes after the INDEX signal and is

referred to as "Soft Index."

b7 bo

/01 1 1 1 1 1 1 I
PB7, - ID/DATA CLOCK MARK;

ID/DATA CLOCK MARK goes low for one byte time during a read operation when the special clock

pattern $C7 is detected. When this signal occurs, it means the next BYTE READY signal (CAl) is for the

first data byte of the record.

PI CRB - PIA # 1, Control Register B; Address $8083;

b7 bo

I I 111111 I I I I
CB2 is used as an output to generate the ABOVE TRACK 43 control signal. When the disk track address

is greater than 43, the CB2 line is set high.

b7 bo

I I 1111101 I I I
When the track address is less than 43, CB2 is restored low. During a write operation, the ABOVE

TRACK 43 signal controls the write current amplitude.

5-123

b7 bo

I I I I I 11 I I I
Select PIA # 1 Peripheral Register B;

b7 bo

I I I I I 101 I I
Select PIA # 1 Direction Register B

FP2CRA - PIA #2, Control Register A; Address $8042

b7 bo

I I I I I I 10111
CAl is programmed to generate an MPU interrupt when the diskette drive goes from a Not Ready to

Ready status during initialization.

b7 bo

I I I I I I 11111
When in a data transfer operation CAl is programmed to generate an MPU Error Interrupt when the drive

goes Not Ready.

b7 bo

I I I I I I 11101
When not in a data transfer operation, the Ready Interrupt is disabled.

b7 bo

I I 11/ 0 111 I I 1
CA2 is the output control signal STEP. During a seek operation, the R!W Head is moved one track by

pulsing the STEP signal (CA2). When in the seek operation, the step pulse is generated by reading PIA #2

Peripheral Register A (FP2PRA).

b7 bo

I I 1111 11 I I 1 I
When not in the seek operation, the STEP signal is held high.

b7 bo

I I I I I 111 I I
Select PIA #2 Peripheral Register A;

b7 bo

I I I I I 1 0 1 I I

Select PIA #2 Direction Register A;

FP2PRA - PIA #2, Peripheral Register A; Address $8040;

b7 bo

I I I I 1 I I 101
PAO, -WRITE GATE, (output);

WRITE GATE turns the diskette drive's write current on.

b7 bo

I I I I I I 101 I
PAl, -< ENABLE WRITE (output);

ENABLE WRITE switches the formatter hardware to write mode.

5-124

b7 bo

I 1 1 I I 101 I I
PA2, -ENABLE CRC (output);

Write Operation:

ENABLE CRC gates the Polynomial CRC Generator on. ENABLE CRC is set low during the byte time in

which the address mark is moved to the write buffer.

Read Operation:

When ENABLE CRC is set low, the read operation begins. The CRC Polynomial Generator is gated on

automatically at 1st bit time. Raising ENABLE CRC high resets the Formatter read circuits.

b7 bo

I \ \ \ \0 \ I I I
PA3, -SHIFT CRC (output);

SHIFT CRC is used during write operation. SHIFT CRC is set low the byte time after the last data byte is

moved to the write buffer. This causes the accumulated CRC bytes to be appended to the serial write data

stream. SHIFT CRC must be held low for two byte times.

b7 bo

I 1 I 101 I I 1 I
P A4, - DISK SELECT (output);

DISK SELECT enables the diskett drive's interface.

b7 bo

I 1 10/ I I 1 I I

PAS, -FILE INOPERABLE RESET (output);

FILE INOPERABLE RESET clears any latched error conditions. If the error condition is "hard", i.e.,

present at time of reset, the error latch will not reset.

b7 bo

I 111 I I I I I I
PA6, +READ ENABLE (output);

READ ENABLE enables the NOT IN SYNC error latch to be set in the event serial read data

synchronization is lost. READ ENABLE is raised high during a read operation after the desired address

mark is recognized by the program.

b7 bo

111 I I I I I I I
PA 7, + TRACK 00 (input);

TRACK 00 is a diskette drive status signal which goes high when the R!W head is at Track 00.

FP2PRB - PIA #2, Peripheral Register B; Address $8041;

b7 bo

I I I I I I I 111
PBO, +NOT IN SYNC (input);

NOT IN SYNC is an error latch signal which is set when a zero bit is detected in the clock pattern being

read. The NOT IN SYNC error latch cannot be set when READ ENABLE is low.

5-125

b7 bo

I I I I I I 111 I
PBl, +DISK SYSTEM INOPERABLE (input);

DISK SYSTEM INOPERABLE is the logical OR of FILE INOPERABLE from the diskette drive and

ENABLE WRITE if the drive WRITE PROTECTED status is active. This signal is an error latch output

which means that the disk system is unsafe to use.

Note: Unsafe in this context means recorded data may be destroyed.

b7 bo

I I I I I 11 I I I
PB2, +UNDERFLOW/OVERRUN (input);

UNDERFLOW/OVERRUN is an error latch which is set when the microprocessing system did not

respond to the disk system BYTE REQUEST/BYTE READY in time. This indicates that data has been

lost. The PIA #1 CAl & CA2 handshake mode of operation govern the timing of this error condition.

b7 bo

I I I I I II I I I
PB3, + WRITE PROTECTED (input);

WRITE PROTECTED is a diskette dri ve status signal which indicates that a write operation should not be

attempted. An error condition will result if ENABLE WRITE or WRITE GATE is made active while the

drive is write protected.

b7 bo

I I I 111 I I I I
PB4, +FORWARD DIRECTION (output);

When high, FORWARD DIRECTION will cause the R/W head to move toward the center (increasing

track address) of the disk with a step pulse. When low, the R/W head will move away (toward TRACK 00)

from the hub with a step pulse.

b7 bo

I I 101 I I I I I
PB5, - HEAD LOAD (output).

When low, the R/W head contacts the diskette recording surface.

b7 bo

I 101 I I I I I I
PB6, -READY (input).

READY is a diskette drive status signal which indicates that the drive is ready to be operated.

b7 bo

11 I I I I I I I I
PB6, +INDEX (input).

INDEX is a pulse of approximately 450 microseconds in duration which occurs once every revolution

(167 milliseconds). INDEX indicates the beginning of a track.

5-126

FP2CRB - PIA #2, Control Register B. Address $8043.
b7 bo

I 1 1 1 I I 11111
During write data operations, the leading edge of INDEX implies a WRITE ERROR.

b7 bo

I I I I I I 11'0 I
During the format write operation, the leading edge of INDEX is the initial timing reference. The INDEX

interrupt is disabled in the format write and when not in a data write operation.

b7 bo

I I 10 101 II I I I
R/W ERROR interrupt is enabled during data transfer operation. R/W ERROR is the

logical OR of NOT IN SYNC, DISK SYSTEM INOPERABLE and UNDERFLOW/OVERRUN. During

data transfer operations, a low to high transition on CB2 generates an MPU interrupt. The interrupt

program then aborts the data transfer operation.
b7 bo

I I 1010101 I I I
When not in a data transfer operation, the interrupt is disabled.

b7 bo

I I I I I 11 I I I
Select PIA #2 Peripheral Register B.

b7 bo

I I I I I (0 I I I
Select PIA #2 Direction Register B.

5-127

5-4.4 DISK PROGRAM ROUTINE LINKING CONTROL

The programs listed in this section operate under a supervisory (host) program. In order to enable the

host program to determine the operational status of the floppy disk, three bytes of RAM storage are maintained

by the floppy disk drivers.

The first byte, called FVDELT, defines how far away the R!W head is from the desired track

location (Table 5-4.4-1).

TRACK DELTA CODES

oxxxxxxx HEAD NOT ON DESIRED TRACK

00000000 HEAD SETTLING ON DESIRED TRACK

11111 1 1 1 SEEK NOT IN PROGRESS (I.E., COMPLETED OR ABORTED)

TABLE 5-4.4-1. 'FVDEL T' Ram Location

The second byte (Figure 5-4.4-2) is the overall ending status of the last disk operation executed.

Operation status is stored in RAM location FVABOR. The codes are used by the executive and error processing

routines to determine the major state of the disk system. FVABOR is also tested in the interrupt poll routine to

determine if an interrupt occurred during a floppy disk Read or Write operation. If an interrupt occurs during

floppy disk read or write, the normal interrupt poll is not executed. Instead a special disk interrupt routine is

executed that aborts the disk routine that was interrupted.

FVABOR

00010000
01010000
00010010
00010001
01010010
00010010
01111111
10001000
01001000
01101000
00001010
10000100
01000100
01100100
00000110
10001100
01001100
01101100
00001110

OPERATION CODE

SEEK IN PROGRESS
SEEK ABORTED
SEEK COMPLETED
RESTORE IN PROGRESS
RESTORE ABORTED
RESTORE COMPLETED
SEEK VERIFY ABORT
READ IN PROGRESS
READ ABORT BY PROGRAM
READ ABORT BY INTERRUPT
READ COMPLETE
WRITE IN PROGRESS
WRITE ABORT BY PROGRAM
WRITE ABORT BY INTERRUPT
WRITE COMPLETE
WRITE FORMAT IN PROGRESS
WRITE FORMAT ABORT BY PROGRAM
WRITE FORMAT ABORT BY INTERRUPT
WRITE FORMAT COMPLETE

TABLE 5-4.4-2. 'FVABOR' Ram Location

5-128

The third byte is the error status code. Any bit set to a "1" in this code indicates a disk system

malfunction has occurred. When a disk subsystem error is detected, an error code which describes the cause of

the error is stored in RAM location FVSTAT. (Table 5-4.4-3).

BIT
POSITION

BITO

MEANING

READ OPERATION - NOT IN SYNC
IN A READ OPERATION IINOT IN SYNC" MEANS THE DATA RECOVERY
CIRCUITS ARE NOT SYNCHRONIZED TO THE SERIAL DATA.

BIT 1 DISK SYSTEM INOPERABLE

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

THIS SIGNAL IS AN OR OF THE FOLLOWING ERROR CONDITIONS.

OVERRUN/UNDERFLOW

WRITE OPERATION - WRITE PROTECTED

READ OPERATION - CRC NOT EQUAL TO 00

NOT HEAD LOAD

NOT READY

WRITE OPERATION - INDEX

TABLE 5-4.4-3. 'FVSTAT' Ram Location

5-4.5 SEEK AND RESTORE OPERATIONS

The floppy disk records data on 77 circular tracks numbered 00 - 76. In order to access a certain

record, the R/W head must first be locked in position at the track which contains that record. The operation

which performs the head movement function is called a seek operation. For the floppy disk, a seek is executed

by stepping the head one track at a time. The timing between steps is controlled from an interval timer.

The restore operation is similar to the seek operation. The main difference between seek and restore

is that a restore operation always moves the R/W head to track 00. After the seek operation has completed, the

only way to verify that the proper track has been accessed is to read the track address of the ID field. When track

00 is accessed, the diskette drive generates a TRACK 00 status signal from an electrical/mechanical sensor. The

restore operation is completed when the TRACK 00 signal goes active.

Figure 5-4.5-1 is a partial system flow chart which shows how the floppy disk seek routines might

integrate into the system program. Referring to the flow chart, entry into the disk routines is controlled by a host

program - sometimes referred to as an executive program.

The seek function is divided into two parts, the SEEK INITIALIZATION routine and the INTER

RUPT DRIVEN SEEK routine.

The SEEK INITIALIZATION routine is entered by the host program. The routine calculates the

number of tracks and direction the head must move, sets up the disk control signals, and generates the first

interval timer interrupt to begin head movement.

5-129

'FKSEEK'
I nterrupt Driven

Seek Routine

Steps the
R/W head
a single
track

Power On or
System Restart

Initialize
System

Execute Other
System Task

NO

Sets the seek
direction and
calculates num
ber of tracks

Execute Disk
Operation

FIGURE 5-4.5-1. Typical Host/Floppy Disk Program Interaction

5-130

Head movement from track to track is controlled by the INTERRUPT DRIVEN SEEK program

routine. This routine is interrupt driven by the interval timer. Because the actual seek is interrupt driven, the

host program is free to execute other routines while the seek is in progress. The interval timer is set to 9.9

milliseconds for each step of the seek. However, the interrupt poll plus additional processing time causes the

time between steps to be closer to 10 milliseconds. When the seek is completed, a seek complete indicator flag

is set. It is the responsibility of the host program to test this flag before advancing to a disk read or write

operation.

For seek and restore control, the MC6800 interfaces to the diskette drive via a PIA as shown in

Figure 5-4.5-2. The two control signals DIRECTION and STEP govern head movement from track to track

The diskette drive specifications also require that the HEAD LOAD signal be active and WRITE GATE signal

be inactive during head movement. The status signal, TRACK 00, is active when the head is located at the

outermost track.

The STEP signal clocks a three bit left/right rotating shift register. The DIRECTION signal controls

the direction of bit rotation in the shift register. The outputs of the shift register enable DC current through two

of three windings of a three-phase stepper motor (Figure 5-4.5-2). The repetition rate of the STEP pulse is

determined by the minimum time it takes the motor to rotate one-third of a tum.

The seek and restore operations are further clarified by the flow charts of Figures 5-4.5-3 & 5-4.5-4.

The Assembly Listings are included as Figures 5-4.5-5 & 5-4.5-6.

A review of the seek initialization routine shows that the current track memory location

"FVCTRK" is stored in positive binary notation for a forward seek and negative notation for a reverse seek.

Then in the interrupt driven seek routine "FVCTRK" is incremented to update the current track location.

One of the primary reasons to use floppy disk as a storage media instead of another type of media

such as tape cassette is improved data access time. By definition, access time include:

(a) seek-time - the time for the R!W head positioner to move from its present location to the newly

specified location (10 milliseconds/track);

(b) settle time - the time for the positioner to settle onto the new track (10 milliseconds from last

step pulse); and

(c) latency time - the time required for the diskette to rotate to the desired position (83.3

milliseconds , average).

The diskette spins at the fixed rate of 167 milliseconds per revolution. On the average, the data will be one half

of a revolution - 83.3 milliseconds - away from the head. This is known as average latency time. While there

is no way to decrease latency time of a disk system, there are ways to improve overall seek time.

Consider a system in which a single record must be accessed from a large number of records. An

example of this type of system is a grocery store price lookup in a point-of-sale terminal. The lookup begins

when a commodity with the UPC bar code imprinted on it is scanned. Then the resultant numerical UPC code is

decoded to the floppy disk track number where the price data is recorded. A seek operation then moves the R/W

head to that track.

The seek portion of data access time is the number of tracks times approximately 10 milliseconds.

Accessing the track where the price information is located can be considered to be a random access seek. If the

head were initially located at a central track in the price lookup area, then the average and maximum seek times

would be minimized. This means that after each price lookup operation, a seek back to the central track would

be initiated. Since a seek is interrupt driven, the operation is essentially transparent to the host program.

Further, returning the head to a central track can be considered a low priority operation. If the host program

5-131

PIA #2 Formatter

CA2-.... I--+-..-..4

P A 0-...-+--0::

PB7 ""-_-+---1

PB6-_-+---i

PB4 t-_-+---i
Line

Drivers and
Receivers

Diskette Drive

-Step

-Track 00

-Write Gate

-Head Load

-Direction

Rotating Shift
Register

-Direction -------i L/R

Clk

-Head load

Light from Track 00 < Sensor

~~T,a'kOO

+24 V

FIGURE 5·4.5·2. Seek/Restore Interface

5·132

RESTORE
OPERATION

ENTRY

FKRSTR

Find Magnitude
of Current Track

FKSP04

Store Current Track
Location in

Signed Binary
- = Reverse Seek
+ = Forward Seek

Clear Disk Error
Latches (if Set)
and Select Disk

SEEK
OPERATION

ENTRY

FKSKIN

The current track ("FVCTRK")
- is the current location of the R/W

head.

_ Current track ("FVCTRK") is a signed binary number.
The magnitude is the positive value of the number.

Target track ("FVTRKA") is the track number where
- the R/W head is to be moved to.

Make Delta
Positive

(Negate Delta)

Make Current
Track Negative

(Negate "FVCTRK")

Error latches are set override.
- I f any "hard" errors are pres

ent the latches will not clear.

The step pulse will be gener
- ated automatically by PIA #2

when FP2 PRA is read.

YES

Set I nterval Timer
for

I mmediate Interrupt

FKSP05

Clear System
I nterrupt Mask

Return to
Host Program

FIGURE 5-4.5·3. 'FKSKIN' Flow

5-133

I n the system for wh ich th is
routine was designed a busy
interval timer means that an
interrupt will occur. The in-

- terrupt poll is designed such
that the seek operation will
be serviced each interval timer
interrupt.

A zero time interval is started.
_ This will cause an interrupt

after the interrupt mask is
cleared.

FKSEEK

Restart Interval
Timer for 9.9 ms

Time Out

Return to
I nterrupt Poll

Interval
Timer

~lnterruPt

This is an interrupt routine.
The routine is called when the
interval timer interrupts the
system. The interval timer is
stopped by the interrupt poll
routine.

_ Good status is 00
in "FVSTAT"

~

FKSK04

The restore is complete. An
extra step was issued. This
step pulse nullifies the extra ,-___ --''--____ ,
step.

Set Restore
Complete Flag

FIGURE 5-4.5-4. 'FKSEEK' Flow

5-134

Return to
I nterrupt Poll

82878

82898
82188
92119
82128
82138
82148
92158
92169
82178
82189
82198
82298

82228
92238
82248
82258

82279
82289
92299
82388
82318
82328
82338
82348
82358

FLDIS1(

* SEEK/RESTORE PREPARATION ROUTIHE

* THIS ROUTIHE PREPARES THE DISKETTE DRIVE
* AND RA" LOCATIONS FOR A SEEK OR RESTORE
* OPERATION. FOR A RESTORE OPERATIOH THE CURRENT
* TRACK ADDRESS (MFYCTRK a

) IS PRESET TO 83 AND
* THE TARGET TRACK AJDRESS (-FVTRKA·) IS
* CLEARED TO 89. FOR A SEEK OPERATION THE
* CURRENT TRACK VALUE IS DETERMINED BY THE LAST
* SEEK OR RESTORE OPERATION. THE TRACK DELTA
* (-FYDElTR) IS CALCULATED BY SUBTRACTING THE
* CURRENT TRACk FRO" THE TARGET TRACK AND
* CONVERTING THE SIGNED BINARY RESULT TO A
* POSITIVE BINARY HU"BER.

* THE DIRECTION OF THE SEEK IS DETER"INED BY
* SIGH OF THE TRACK DELTA BEFORE IT IS CONYERTED
* TO A POSITIVE BINARY HU"BER. IF THE SIGH IS
* NEGATIVE THE SEEK IS REVERSE (TOWARD TRK 88).

* TO INITIATE THE INTERRUPT DRIVEN SEEK ROUTINE
* A DU""V INTERVAL TI"ER INTERRUPT IS GENERATED
* IF THE Tl"ER 15 HOT BUSY. IF THE TI"ER IS
* BUSY IT IS ASSU"ED THAT THE INTERRUPT WILL
* OCCUR WHEN THE TIMER RUNS OUT, SO A DU"''''Y
* INTERVAL TIMER INTERRUPT IS HOT GENERATED.
* THUS INTERFERENCE WITH CONCURRENT OPERATIONS
* USIHG THE TI"ER IS ElI"IHATED, 1. E. THE SEEK
* WILL HOT BEGIN UNTIL THE TIMER IS AYAIL4BLE.

TABLE 5-4.5-5. Seek/Restore Preparation Routine (Sheet 1 of 3)

5-135

FlDISK

92388

82488 5861 8F
82419 5862 7F 9894
82429 5865 C6 33
92438 5867 86 11
92449 5859 28 85

92469

82488 5858 SF
82498 58se D6 83
92588 586E 86 18
92518 5978 97 99
92528 5872 5D
82~38 5873 2A 81
82548 5975 S8

82368
82579
82388

8 2 6 .. 8 8 3 87 6 '6 84
92618 5078 18
82628 5879 2A 97
82638 5878 48
82648 587e 58

82668
82678

82698 587D 97 82
82788 S87F 4F
82718 5888 28 84
82728 5882 97 82
82738 5884 86 18
82748 5886 87 8841
82758 5889 D7 83
82768 5888 8D 15
82778 588D 86 24
82788 588F 87 8842
82799 5892 86 8818
82888 5895 85 87
82818 5897 26 88
82828 5899 SA 85
82838 5898 B7 8818
82848 589E 7F 8811
82858 S8AI 8£
92868 S8A2 39

* RESTORE OPERATION ENTRY = "FKRSTR-

FKRSTR SEI
CLR
LDA 8
LDA A
BRA

"ASK SYSTEM INTERRUPTS
FYTRKA TARGET TRACK = 88
183 PRELOAD ARTIFICIAL CURR TRK
'~89818801 PRELOAD RESTORE OP CODE
FKSP81

* SEEK OPERATION ENTRY = -FKSKIN"

FKSKIH SEI
LDA B
LDA A

F!(SP81 STA A
TST B
BPL
NEG B

MASK SYSTEM IHTERRUPTS
FYCTRK FETCH CURRENT TRACK
1%09019998 PRELOAD SEEK O? CODE
FVABOR STORE OP CODE

FKSP82 BRANCH IF ·FYCTR~u POSITIYE
"AKE -FYCTRK- POSITIVE

* SINCE -DYCTRK" IS IN SIGHED BINARY FOR"AT IT
* I S :~ E C E S SA R Y Toe 0 N V E R TIT TOP 0 SIT I V E BE FOR E
* CALCULATING THE TRACK DELTA.

FKSP82 LDA A FYTRKA
SBA

FETCH TARGET TRACK
CALCULATE TRACK DELTA
BRANCH IF DELTA POSITIVE
HAKE DELTA POSITIVE
NEGATE CURRENT TRK ADDR.

8PL FKSP03
HEG A
NEe 8

* MFYCTRK M IS A NEGATIYE BINARY NU"BER IF THE
* SEEK IS REVERSE

STA A
ClR A
BRA

FKSP83 STA A
lDA A

FKSP84 STA A
STA 8
BSR
lDA A
STA A
lDA A
BIT A
SHE
ORA A
STA A
ClR

FKSP85 ell
RTS

FYDElT STORE TRACK DELTA
PRELOAD REVERSE DIRECTION

FKSP94
FVDELT STORE TRACK DELTA
'~88018880 PRELOAD FORWARD DIRECT.
FP2PRB SET DISK DIRECTION
FYCTRK STORE CURRENT TRK ADDRESS
FKERST RESET DISK ERROR LATCHES
1%88188198
FP2CRA EHABLE STEP PULSE
FP3PRA FETCH TI"ER STATUS
'~88889111 "ASK NON-TI"ER STATUS
FKSP85 BRANCH IF TIMER BUSY
'C1US
FP3PRA
FP3PRB

-START INTERYAL TIMER
-FOR I""EDIATE INTERRUPT
CLEAR SYSTEM INTERRUPT "ASK
RETURN TO HOST PROGRAM

TABLE 5-4.5-5. Seek/Restore Preparation Routine (Sheet 2 of 3)

5-136

82898
82918

FLDISK

* THIS ROUTINE RESETS THE DISKETTE DRIVE
* ERROR LATCHES AND SELECTS THE DRIYE.

82921 S8A3 86 IF FKERST
82938 58A5 87 8848

lDA A
STA A
LIA A
STA A
CPX

1%88881111
FP2PRA RESET ERROR LATCHES

82948 S8A8 86 2F
02958 58AA 87 8948
92968 59AD Be 8849

82988
82999
83998

83828 5888 39

1%88181111
FP2PRA RE"OYE RESET & SELECT
FP2PRA CLEAR ERROR INTERRUPT

* THE ·CPX- INSTRUCTIOH PERFOR"S A DU""Y READ
* TO -FP2PRA & FP2PRS- TO CLEAR THE PIA
* INTERRUPT FLAGS.

RTS

TABLE 5·4.5·5. Seek/Restore Preparation Routine (Sheet 3 of 3)

5·137

DRIVE
FLAGS

89588

88688
89618
88628
88639
89648
88658
98668
88678
8868e
98698
88788
88718
98728
88738
88748
88758

e8778
99788
88798
88S88
88818
88828
88838
09848
88858

99878
98888
89898
88988
88918
88928
88938
88948
88958
88968
89978

FLDISK

*IHTERRUPT DRIYEN SEEK/RESTORE ROUTINE

* THIS ROUTINE EXECUTES A ONE TRACK STEP OF
• A SEEK OR RESTORE SEQUENCE. THE DISKETTE
* DRIVE MOYES THE HEAD ONE TRACK POSITION
* EACH TIME THE STEP SIGNAL IS PULSED.
* ENTRY INTO THIS ROUTINE IS GOVERNED BY
• INTERRUPTS FROtt THE INTERVAL TIMER. THE
• TIHER IS PRESET TO 9.9 HILLISECOHDS FOR
* EACH STEP. THE HUMBER OF TRACKS THE HEAD
* "UST "OVE FOR A SEEK OPERATION IS STORED
* IN RA" LOCATION wFYDElT.· FOR A RESTORE
* OPERATION "FYDELT w IS PRESET TO 83 TO INSURE
• THAT THE MAXIMUM HU"BER OF TRACKS (77) CAN
* BE STEPPED. WHEN THE SEEK OR RESTORE IS
* CO"PLETED OR ABORTED RFYDELT u IS SET TO
* ALL ONES. WHILE THE SEEK I S IN PROGRESS
* BIT 7 OF "FYDELTw IS ZERO.

* RA" LOCATION -FYCTRK- CONTAIHS THE CURRENT
* TRACK ADDRESS OF THE HEAD. THE VALUE
* uFYCTRK w IS IN SIGNED BINARY FOR"AT.
* IF THE SEEK DIRECTION IS FORWARD
* (FRO" TRACK 80) uFYCTRK· IS A POSITIVE
* BIHARY HUMBER, I.E. BIT 7 IS ZERO. IF
* THE SEEK DIRECTION IS REVERSE (TOWARD
* TRACK 88) "FVCTRK· IS A NEGATIYE BIHARY
* HUMBER, 1. E. BIT 7 IS A ONE.

* DISK STATUS IS CHECKED EACH STEP. IF
* THE STATUS IS GOOD AND THE SEEK OR
* RESTORE IS HOT CO"PLETE THE INTERYAL TIMER
* IS RESTARTED TO Tl"E OUT THE HEXT STEP.
* AN EXCEPTION TO THE ABOVE IS IF SEEK
* COMPLETE IS DETECTED ("FVDELT u BIT 7=1)
* DURING A RESTORE OPERATION THE TI"ER IS NOT
• RESTARTED AND THE RESTORE OPERATIOH IS
* ABORTED. IF SEEK CO"PLETE, RESTO~E COMPLETE
* OR A STATUS ERROR IS DETECTED THE TI"ER
* IS HOT RESTARTED.

TABLE 5-4.5-6. Interrupt Driven Seek/Restore Routine (Sheet 1 of 4)

5-138

88998
81988
81811
81928
81838
81848
81858

FlDISI(

* AN OPERATION/ABORT FLAG IS "AIHTAIHED
* IN RA" LOCATIOH -FYABOR- AS FOLLOWS:
* 118t81eX SEEK/RESTORE IH PROGRESS
* 8181818X SEEK/RESTORE ABORTED
* 8e81881X SEEK/RESTORE CO"PLETE
* X=8 SEEK OPERATIOH
* X=l RESTORE OPERATION

TABLE 5-4.5-6. Interrupt Driven Seek/Restore Routine (Sheet 2 of 4)

5-139

FLDISK

818a8 5888 96 88
81898 5882 46
81188 5883 C6 62
81118 5885 F4 8841
81128 5888 D7 81
81138 S88A 26 16

81158
81168
81178
81188

81288 588C 7A 8882
81218 588F 28 l'
81228 5811 7C 8883
81238 5814 86 8848

81238
81268
81278

81298 3817 24 82
81388 5819 28 ID

81328
81338

81338 5818 CE 8363
81368 S8tE FF a818
81378 5821 39

81398

81418 5822 86 58
81428 5824 C6 FF
81438 5826 D7 82
81448 5828 28 82

FKSEEk LDA A FYABOR FETCH OP CODE
ROR A IF RESTORE op, CARRY=1
LDA B '~81188818 SET STATUS "ASk
AND 8 FP2PRB FETCH "ASKED STATUS
STA B FYSTAT STORE ERROR STATUS
SHE FKSK82 BRANCH IF ERROR

* ERROR STATUS CHECKED:

* BIT 1 = DISK SYSTE" INOPERABLE

* BIT 5 = NOT HEAD LOAD

* BIT 6 = NOT READY

DEC FYDELT DECRE"EHT TRK DELTA
B"I FKSK84 BRANCH IF SEEK CO"PLETE
I He FYCTRK UPDATE CURRENT TRK
LDA A FP2PRA FETCH COHTROL WORD

* READING THE DISK CONTROL WORD FP2PRA

* AUTO"ATICALLY GENERATES THE STEP
* PULSE.

BCC F kS K 01 BRANCH IF NOT RESTORE OP
B"I FKSK87 BRAHCH IF TRK 80

• RESTORE OPERATION IS CO"PLETE
* WHEN TRACK 88 IS DETECTED.

FKSK81 L DX IS188US+99
5TX FP3PRA REARM TIMER FOR 9.9"8
RTS RETURN TO INTERRUPT POLL

* ERROR DETECTED IN STATUS

FKSK82 LDR A
FKSK83 LDR 8

STA 8
BRA

1~81818888 PRELOAD SEEK A90RT FLAG
I$FF
FYDELT RESTORE TRK DELTA
FKSK05 CO TO EXIT PREPARATION

TABLE 5·4.5·6. Interrupt Driven Seek/Restore Routine (Sheet 3 of 4)

5·140

FLDISI(

81478 * SEEK CO"PLETE DETECTED

81498 S82A 86 12 FKSK84 LDA A '~89818818 PRELOAD SEEK CO"PL FLAG
81588 582C C6 3C FKSK85 LDA B 1%88111188
81518 582E F7 8842 STA B FP2CRA DISABLE STEP PULSE
81528 5831 24 82 Bec FKSK86 BRAHCH IF HOT RESTORE
81538 5933 86 51 lDA A l~elele8el PRELOAD RESTORE ABORT

81558 * RESTORE OP IH PROGRESS IS INDICATED WHEN
81568 * THE CARRY BIT IS SET. BECAUSE THE TRACK
81578 * DELTA IS SET TO A HIGH YALUE (83) PRIOR
81588 * TO BEGINHING A RESTORE OPERATION AN ERROR
81598 * IS l"PLIED IF SEEK CO"PLETE IS DETECTED.
81688 * BEFORE TRACK 88 STATUS IS SENSED.
81618 * ALSO THIS PATH IS TAKEN IF DISK STATUS IS
81628 1ft BAD DURING A RESTORE OPERATIOH.

81648 383~ 97 88 FKSK86 STA A FYABOR SET OP/ABORT FLAG WORD
81658 5037 39 RTS RETURH TO INTERRUPT POLL

81678 * RESTORE OPERATION CO"PLETE

01699 5838 86 18 FKSK87 LDA A '~88818118

81799 593A 87 8841 STA A FP2PRB SET FORWARD DIRECTION
81719 583D 96 8848 LDA A FP2PRA GENERATE STEP PULSE

81738 * THE FORWARD STEP IS USED TO RESTORE THE HEAD
81748 * STEPPER MOTOR TO TRACK 00 PHASE.

81758 5848 IC eLC CLEAR RESTORE OP FLAG
91779 5941 7F 8983 CLR FYCTRk SET CURRENT TRk TO 9a
81789 5844 86 13 LDA A l~e0019911 RESTORE COMPLETE FLAG
81798 5846 28 DC BRA FkSk03 GO TO RESTORE EXIT PREP

TABLE 5-4.5-6. Interrupt Driven Seek/Restore Routine (Sheet 4 of 4)

5-141

EXAMPLE: SEEK FORWARD

CURRENT TRACK = 33
TARGET TRACK = 36

"FVCTRK" = 0010 0001
"FVTRKA" = 0010 0100
"FVDE L T" = 0000 0011

VALUE AFTER INTERRUPT SERVICE

INTERRUPT

DUMMY #1
#2
#3
#4

EXAMPLE: SEEK BACKWARD

CURRENT TRACK = 33
TARGET TRACK = 29

IIFVCTRK"

0010 0010
0010 0011
0010 0100
0010 0100

"FVDEL T"

0000 0010
0000 0001
0000 0000
1111 1111

II F V CT R K" = 11 01 1111
"FVTRKA" = 0001 1101
"FVDEL T" = 0000 0100

VALUE AFTER INTERRUPT SERVICE

INTERRUPT IIFVCTRK" "FVDEL T"

DUMMY #1 1110 0000 0000 0011
#2 1110 0001 0000 0010
#3 1110 0010 0000 0001
#4 1110 0011 0000 0000
#5 1110 0011 1111 1111

1110 0011 NEGATED = 0001 1101 = 29

TABLE 5-4.5-7. Seek Examples

5-142

must call or execute a critical time dependent operation during the return seek, the interval timer interrupt can

be masked off at the PIA. This would prevent interference from the seek operation.

In some systems, it is desirable to issue a new seek before the last seek has completed. For example,

a new price lookup may be issued while the head is returning to the central track. To account for this possibility,

the SEEK INITIALIZATION routine masks system interrupts to take control of the RAM locations used by

FKSEEK. (NOTE: In some systems, it may be more desirable to disable the interval timer interrupt and allow

other system interrupts.) Also, before generating the first interval timer interrupt, it is determined whether or

not the timer is being used. If the timer is busy, control is immediately returned to the host program and the seek

is deferred. This extra processing insures that interval timer operation is not interfered with whether the timer is

being used for the last step of the former seek operation or for some other purpose.

The safety circuits in the diskette drive should prevent destruction of data during head movement.

Therefore, checking the disk status during seek may be considered unnecessary in some systems. If an error is

detected by the FKSEEK routine, the seek operation aborts and an appropriate error flag is stored in RAM.

5-4.6 READ OPERATION

An IBM 3740 compatible floppy disk system records data at 250 K bits/second or 4 microseconds/

bit. Because the serial data rate is too high for the MC6800 MPU to handle directly, a hardware/software

tradeoff must be made.

Since the MC6800 is an 8-bit parallel processor, its reasonable to see if a program can be written to

handle the data in 8 bit bytes. In order to do this the worst case byte data rate must be determined. The nominal

data rate is 250 + 8 = 31.25 K bytes/second or 32 microseconds/byte.

Conceivably, the system could record (write) data with the disk running at one rotational speed

tolerance, then try to read the data back with the diskette at the other tolerance extreme. This difference

represents the worst case tolerance of the floppy disk read rate. Both the microprocessor program and the data

recovery circuits must be capable of operating within the maximin extremes.

The worst case speed tolerances can be derived by assuming a 2.5% speed variation from nominal,

both upward and downward. Then the worst case data rate extremes can be calculated as:

MAX

31.25(1 + .025) = 32.85KB
(1 - .025)

= 30.44JLs/B

MIN

31._25_(_1 _-_'_0_25_) = 29. 73KB
(1 + .025)

= 33.74JLs/B

The above MAX/MIN read data rates account only for a ± 2.5% diskette speed variation. Other factors must

also be considered. Variations in the microprocessor clock rate, MPU clock cycle stealing for dynamic memory

refresh, and the disk write oscillator frequency variations are other factors which affect the systems ability to

successfully read data.

The frequency deviations of the MPU clock and the write oscillator can be minimized by using stable

oscillators. However, if cycle stealing is necessary to refresh dynamic memory the time lost for refresh must be

accounted for in the programs which control the transfer of data.

For purposes of this design description, the ± 2.5% speed variation is conservative enough to

account for small frequency deviations in the MPU clock and write oscillator. A complete analysis of the

system including memory refresh time can be made using the techniques outlined in Section 2-3. The memory

5-143

refresh can be treated mathematically as secondary peripheral service requests which must be serviced in an

interlaced manner with floppy disk service requests. The analysis of the floppy disk service programs may be

all that is necessary if the "time available" figure from the analysis ensures that there is sufficient time to

refresh the memory. The data transfer routines in this section were analyzed using a one microsecond out of 50

(worst case) RAM memory refresh cycle.

Other important design requirements due to the worst case read data rate are data capture time and

the ability of the data recovery system to remain locked to the bit data rate through the missing clocks of address

marks. This requirement is further discussed in Section 5-4.6.2, Data Recovery.

In summary, the key to writing the read programs and designing the read circuits is to work within

the framework of the worst case specifications of the entire system. The hardware and software development

can not be treated separately if the optimum system is to be designed. The analytical tools techniques of Section

2-3 can be used to find the best hardware/software tradeoffs and prove the feasibility of the final design before it

is committed to hardware. An example of the analysis is shown for the write operation in Section 5-4.7, Write

Operation.

5-4.6.1 The Read Operation Interface

Figure 5-4.6.1-1 is a block diagram which shows the major formatter functions used in a read

operation.

When ENABLE WRITE is not active, the formatter circuits are in the Read mode of operation.

When WRITE GATE is not active to the selected diskette, the drive SERIAL READ DATA is present. The

SERIAL READ DATA signal contains both clock and data information. This signal is routed to the Data and

Clock Recovery block of Figure 5-4.6.1-1. The outputs of the recovery block are separated serial NRZ data, a

clock that is synchronized to the data and serial NRZ clock information, and another clock that is synchronized

to the recovered clock pattern. To prevent confusion with the term" clock" the synchronizing clock signals are

referred to as DATA TIME and CLOCK TIME. The data recovery system is described in Section 5-4.6.2.

The Read Data Logic block (Figure 5.4.6.3-1) contains the serial to parallel shift register, a read data

buffer register, the bit counter (used to determine the byte boundaries) and the CRC polynomial generator (used

for detection of read errors). Detailed description of the Read Data Logic is in section 5.4.6.3.

The Read Clock Logic block of Figure 5-4.6.1-1 contains the clock shift register and the decode of

the clock portion of the data, deleted data, ID and index address marks as shown in Figure 5-4.6.1-2. Another

signal developed in this block is called IN SYNC. Since the clock pattern is all "1' s" except during an address

mark the first position of the clock shift register in Figure 5-4.6.1-2 should be high except at mark time.

Therefore, once an address mark has been detected, a low out of the first shift register position means the data

recovery system is not locked to the data rate. When this signal goes low during the data portion of an ID or Data

Field the system is said· to be not in sync.

The IN SYNC signal is routed to the Error Detect Logic block (Figure 5-4.6.1-3). This block

contains error latches which when set generate an interrupt to the M6800 system.

The NOT IN SYNC latch is set when the IN SYNC signal goes low (as previously discussed) if the

ENABLE READ signal from PIA #2 is high. The Read routine raises ENABLE READ after an address mark is

detected.

The OVERRUN/UNDERFLOW latch is set when the Read routine does not respond to the last

BYTE READY service request before new data overruns the data in the read buffer register. This operation was

discussed in section 5-4.3.

5-144

(

J

PIA #1

l
)

I
J

PIA #2

(

J

CAl
-Byte Ready

-- +R/W Handshake
CA2 _

PAO

PAl

PA2

PA3

PA4

'A'!i;"":i:!!:\:":;~

Read ~
PA5

PA6

PA7

PB7

+ID/Data
Clk Mk

+Index Clk Mk
PB6 ~ __ ~~--------~--~

PB5

PB4

+Data Out

+Data Time -~

Data
&

Clock
Recovery

Clock Out

Clock
Logic

-B7 Time

+In Sync

-CRC = 00 PB3 ~ ___ -----------r--~

PB2

PBl

Read
Clock
Logic

__ 4------------C-IO-C-k-T-im--err~r-~------~~

PBO

CB2

CBl

-- +1 st Bit

-B7 Time ---11-0

+ Sync'd Enable CRC L~-----------.
~ ~----~

CBl

CB2
__ +R/W Error -

PBO __ +Not in Sync -
PBl +Overrun

+File Inoperable --~

Error
Detect -

--

r- +Disk Sys Inop
PB2 M----~~~~--~-------4-4--+----------------------+~r---~----------------~J

PB3 L.-. __ +-~--<)
PB4 ~ ____ +s_e_r_ia_I_R __ ea_d __ D_a_t_a ____ -+ ______ -r-<~~ -
PB5 ~1_~_-~H~e~a~d_L_o~a_d __________ 4-4-___ a-~~ ________________ +-____ ~ __ "J~~

-Ready -"" V--
PB6 ~ __ ~----~--------~----+-4------------U~

PB7

PA7
PA6 --"" +Read Enable

-: -File Inop Reset
PA5 ~~_------~------~----+-+------UI ~

-Disk Select v
PA4 ~~~--------------+-----+-+-----------~

PA3
.. -Enable Crc ~

PA2 ~--~-+a 4>
.. -Enable Wrt PAl _

PAO

CA2

CAl
-Ready

FIGURE 5·4.6.1-1. Read Operation Interface

5-145

Diskette
Drive

1

+EnableVVrt---,

+Clock Out --------1 D

+Clock Time -----------1 C

-87 Time

Clock
Shift Register

FIGURE 5-4_6.1-2. Read Clock Logic

+87 Tim e ------------1----------------4 CI k

+R/VV Handshake----------+------,--~

+Sync'd Enable Crc---...r--.

+F i Ie Inoperable ---+--------f-+---------------------.
+ E nab Ie VV rt - ... ---------t---t-.,

+VV rt Protected ------------t---t----f

+lnSync

+ E nab Ie Read _______ -+_-+---1

+F ile Inoperable

Reset

FIGURE 5-4.6.1-3. Error Detect Logic

5-146

-Data/l D Clk Mark

-Index Clk Mark

+In Sync

+Overrun
or

Underflow

Xl....-.------- +DiskSys
Inoperable

+ R/VV Error

>-------+---------+Not in Sync

The third error latch is OR'd with the diskette drive status signal FILE INOPERABLE (see appendix

5.4.B). The output signal is called DISK SYS INOPERABLE. Further discussion of this latch will be found in

section 5-4.7.3, Write Operation Formatter Error Detect Logic.

Although the error programs are not included in this Manual, one observation of diagnostic aids is

appropriate at this time. Many of the floppy disk system detectable malfunctions are of a "snowball" nature.

That is, one malfunction causes the next. The error detect logic of Figure 5-4.6.1-3 inhibits secondary error

trapping by blocking the set mechanisms of the error latches after anyone of the error latches or FILE

INOPERABLE goes active. This means that diagnostic programs would be able to detect the original cause of

the malfunction.

5-4.6.2 Data Recovery

The data recovery system of Figure 5-4.6.2-1 is designed to generate a synchronized clock from the

diskette drive's raw digitized data. Other goals of the design shown in Figure 5-4.6.2-1 are:

(1) Separate and recover both clock and data bits from the serial data stream.

(2) Generate a continuous clock even when clocks are missing, i.e., address marks.

(3) Track the long term changes in data rate but not the short term data rate changes.

The MC4044/4024 Phase Lock Loop (PLL) is the heart of the data recovery system.In this system the MC4024

Voltage Controlled Multivibrator (VCM) is phase and frequency locked to 16 times the data rate. Each record

is preceded by a preamble of all zero's which the PLL uses to lock to the data rate. Mathematical analysis of the

PLL system is not treated in this section, however, equations for the 4044/4024 PLL system are treated in

Motorola's Phase-Locked Loop Systems Data Book and Application NoteAN-535,Phase-LockedLoopDesign

Fundamentals. These publications may be obtained by writing to the Literature Distribution Center, Motorola

Semiconductor Products Inc., P. O. Box 20912, Phoenix, Arizona 85036.

Figure 5-4.6.2-2 is a timing diagram of the data recovery system shown in Figure 5-4.6.2-1. This

timing diagram is idealized for illustrative purposes. Raw digitized read data enters the system as a series of

pulses. Each pulse toggles a flip-flop, forming the signal READ DATA -;- 2. The output of the divide by two

flip/flop is clocked into a two bit shift register by the MC4024 VCM's frequency output. Each time the divide

by two flip/flop output switches, a pulse one VCM period in duration is generated from the exclusive OR gate

tied to the output of the two bit shift register. Thus each pulse of serial read data generates a single pulse of one

VCM period in duration.

The VCM frequency also clocks a counter called the window counter. When the VCM is locked to

the serial data rate, the decoded output of the window counter generates a waveform called DATA TIME which

is nominally high 10/16ths of a bit cell (count "6" to count "F")l. When thePLL system is in lock the clock bit

occurs between count "6" and count "F". When DATA TIME is high, the pulse generated by the exclusive

OR presets the window counter to "B." If the VCM is in perfect lock with the data as in Figure 5-4.6.2-2, the

window counter is being advanced to "B" at the time of the exclusive OR pulse. If the V CM is running slower

than the data rate, the window counter will be at a count less than "B." Or if the V CM is running faster than the

window counter the count will be greater than "B." These cases are shown in Figures 5-4.6.2-3 and 5-4.6.2-4,

respectively. Due to presetting of the window counter to "B" when DATA TIME is high, the data window

(when DATA TIME is low) tracks the preceding clock bit. Likewise the R input to the MC4044 phase detector

tracks the preceding clock bit.

1 Hexadecimal notation is used in reference to the window counter. The counter has a range 0-15 in decimal which corresponds to 0-Fin
hexadecimal.

5-147

D

Serial Read Data C

"'" "'" "'" "'" "'"
"'" CEP PE PO P' P2 P3

"'" CET MC93'6 TC
Prescaler

QO Q, Q2 Q3

R

V
3

, k

"'"
"'"

+5 V -'V'V'I.,---,

.051J.F 90 pf

4

MC
4044

2 , i

Phase-Lock Loop

FIGURE 5-4.6.2-1. Floppy Disk IBM 3740 Format
Data and Clock Recovery

5-148

CET

+Data
Out

+ Clk
Out

+R
Clk
Time

"'" "'" "0" "'"

PO

MC93'6
Window Center

TC

'-------- +R
Data
Time

VCM Freq.

+Read Data .-J Clk Bit 1 Bit Clk Bit 1 Bit r-------: ,- 1S1t -L
1-4 Address Mark 1st Bit Cell .1 Missing CIOCk-.J

+R ead Data -7- 2
J-------l I

+EX OR Out --.n n n n n'----_
Window
Counter 19\A\BIC\OIEIFloI1121314\516\7Ia\g\A\B\clo\E\FloI112\3141516\7Is\gIAIBlc\oIE\FloI1\21314151

+Reference ____ ~n n n~ ____ __
Clock (R)

Vl +Oata Out
____ -1,--- ------- -L-J L-J

.
~
\D +R Data Time '---__ --',------- --- 1 _____ -----'

+Oata Shift
Register QA

+Clk Out
..J -- 11--_________ _

+R Clk Time

+Clk Shift
Register QA

+1 st Bit

Bit Counter 4 Counter Cleared _I_ Bit 0 ~14 Bit 1 •

FIGURE 5-4.6.2-2: Data and Clock Recovery Timing

VI
I
VI
o

VCM Frequency

Read Data

EX OR Out

Window Counter

Data Time

VCM Frequency

Read Data

EX OR Data

Window Counter

Data Time

I" VCM Frequency too Slow -----------.. .,j t- VCM Frequency Increases

J U_ - -- ------"I r - - - - - - - - l :- - - - - - - - - -1

~ r--, ~ r--, , I , ,

/ B / C / D / ElF /0/1/213 14 15/6 17 I alB 1 C I DIE IF 10111213141516/

-4-- Clock Window .. 1_____ Data Window ~.. Clock Window .. 1 ___ Data Window ~.r-

NOTE: The change in VCM Frequency is exaggerated for purposes of illustration.

FIGURE 5.4.6.2-3. VCM Frequency Slower than Data Rate

I.. VCM Frequency too Fast "I" VCM Frequency Decreases ~

F------, i - - - - - - - - -1 ~ - - - - - - - - -,
~ r-, hl r--'

,.--------------------------------~I ~I ______________________________ ~. ! !

IBIciDIEIFl0111213141516171al91AIBIcioIBIciDIEIFI 011 121314 1516/71

-4-Clock Window 1-4- Data Window ~ I... Clock Window .. I.. Data Window .. I

NOTE: The change in VCM Frequency is exaggerated for purposes of illustration.

FIGURE 5.4.6.2-4. VCM Frequency Faster than Data Rate

The PLL reference frequency (R input to MC4044) is the carry out of the window counter. The

reference frequency of the system is beat against the VCM frequency divided by sixteen which is applied to the

MC4044 V input. When the VCM frequency is too slow the window counter carry out occurs before the VCM

-+- 16 carry out. This results in a "pump up" error voltage signal which causes the voltage at the V CM input to

rise and the VCM frequency to increase. Likewise, when the VCM frequency is too fast a "pump down" error

voltage causes the frequency to decrease.

The "pump up" and "pump down" error voltages are filtered before being applied to the VCM

input. The filter is designed to reduce the effects of the error voltage and gain long term stability. This results in

a data recovery system tradeoff - long term stability causes long "capture time."

Long term stability is required to enable the system to remain in the lock frequency range when clock

bits are missing, i.e., during address marks. When a missing clock is encountered in the serial data stream, the

window counter is not preset to "B" when DATA TIME is high. Thus the window counter is not corrected.

During this time the window counter acts like a flywheel generating the R input to the MC4044 from the carry

out signal. The PLL system tends to drift upward in frequency. But, because the active filter was designed with

a low leakage the increase in frequency is kept within lock range. The system in Figure 5-4.6.2-1 is designed to

drift through three consecutive missing clock bits.

The tradeoff for long term stability is a longer capture time. Capture time refers to the amount of time

it takes thePLL system to lock to the data rate from an out of lock condition. Figure 5-4.6.2-5 is a representation

of the system response for worst case out of lock condition. The figure is a plot of the voltage input to the

MC4024 VCM. At 4.1 volts the VCM output is at the nominal data frequency. Above 4.1 volts the VCM

5.0

4.8

4.6

en
~ 4.4
o
>

4.2

4.1

4.0

o 100 200 300 400 500 600

NOTE: "Grass" pulses are pump up/pump
down error voltages.

700

FIGURE 5-4.6.2-5. PLL Response - Worst Case Capture Time

5-151

1000

frequency is higher than nominal and below 4.1 volts the frequency is lower than nominal. Figure 5-4.6.2-6 is a

plot of VCM frequency versus voltage input.

The design goal for the floppy disk was to insure that the capture time did not exceed six bytes. For

the worst case read data rate, six byte times is approximately 180 /-LS (assuming 30 /-Ls/byte worst case). Six byte

times was chosen because it is the minimum write gate turn on time prior to a data record field.

Once the VCM is locked to the data rate, the window counter's 10/16 decode is used as a bit clock. In

Figure 5-4.6.2-1, each pulse out of the exclusive OR when DATA TIME is high presets the clock out flip/flop.

When DATA TIME is low, the pulse presets the data out flip/flop. On the rising edge of DATA TIME the

content of the data out flip/flop is moved into the data shift register. The content of the clock out flip/flop is

moved into the clock shift register on the falling edge of DATA TIME.

The data recovery signal is not gated on or off. During write the serial read data from the drive

contains no data pulses. Therefore, the MC4024 VCM frequency tends to rise to approximately 6 MHZ. It is

not necessary to get a nominal frequency into the R input of the MC4044 phase detector to keep the frequency

down, but the designer should be aware of the 6 MHZ signal presence during write to ensure that noise is not

picked up in the system.

VIN VS. FOUT
5.0~------------~-----------------T-----------------r----------------~----------------.-----------------~--------------.-------~

C = 62 PF

4.5~------~---------+--------~---------~--------~--------+---~~--r-----~

4.0r-------~---------+--------~----~=-~--------4_--------+_--------~----4

(i)
I-
-l 3.5 0
~
z
>

3.0
2

+5V

2.5 r--------+---------+---------t----------f

2.0 ~ __________ ~ ________ ~ ______________ ~ ______________ ~ ______________ ~ ______________ ~ __________ ~ ______ ~

2.0 MHZ 2.7 3.0 3.5 4.0 4.5 5.0 5.55 6.0

FREQUENCY

FIGURE 5-4.6.2-6 MC4024 Voltage vs. Frequency for Floppy Disk Data Recovery

5-152

5-4.6.3 Read Data Logic

Figure 5-4.6.3-1 is a logic diagram of the read data logic. Figure 5-4.6.3-2 is a timing diagram

which shows the signal timing relationship when a read operation is begun.

The data recovery circuits are always active. When WRITE GATE is not active to the selected drive,

SERIAL READ DATA is fed to the data recovery circuits. When the recovery circuits are locked to the

incoming data, a clock called R DATA TIME which has a nominal period of 4 microseconds is fed to the Read

Data Logic.

A read operation is begun when the program activates the signal ENABLE eRe (PA2 of PIA #2).

ENABLE eRe removes the reset to the 1ST BIT latch and the bit counter control flip/flop. The 1ST BIT latch

sets when the first" 1" bit occurs on the DATA OUT line. The DATA OUT line goes high when a "1" bit is

present. The bit counter control flip/flop is set at R DATA TIME after the first" 1" bit is present on the DATA

OUT line.

The Me8503 eRe polynomial generator is enabled when the 1ST BIT latch is set. The read error

polynomial check begins to accumulate on the next R DATA TIME clock. The polynomial accumulates

throughout the read operation. The routine keeps track of the number of bytes transferred and, at the end of the

record, checks the eRe = 00 status. The eRe = 00 status signal is stable for one byte period (approx. 32

microseconds). Description of the eRe polynomial generator and its application to floppy disk may be found in

the Me8503 data sheet and Appendix 5-4.D of this section of the applications manual.

The bit counter is held cleared until after the first "1" bit is clocked into the data shift register.

Subsequent clocks then clock the bit counter. The bit counter is an eight bit counter which generates a pulse one

bit period in duration once every eight bits.

The value of the count when the pulse is generated is 7 . If ENABLE eRe was asserted during a gap

the first" 1" bit on DATA OUT is the first bit of an address mark byte. Then count 7 of the bit counter occurs at

bit 7 time (B7 TIME) of each data byte. At the end of B7 TIME the parallel data is transferred from the shift

register to a read data buffer register. The output of the read data buffer register is routed to PAO-PA 7 of PIA

1. Data is moved into the M6800 system by executing an LDA instruction from Peripheral Register A of PIA

#1.

B7 TIME is also BYTE READY time for a read operation. The leading edge of BYTE READY sets

an interrupt flag in PIA # 1 to indicate to the program that the read buffer has new data.

If ENABLE eRe was not asserted during a gap (i.e., in a record field) the first "1" bit will still set

the 1ST BIT latch and start the bit counter as before. However, the first byte transferred to the read buffer

register and the clock pattern decode (see Figure 5-4.6.1-2) will not indicate the presence of an address mark. In

that case the program will remove ENABLE eRe to restore the Read Data Logic and then reassert ENABLE

eRe to search for an address mark again. This process is repeated until the desired address mark is found or the

read operation is aborted.

5-153

+Clk Time

"....,

Clk

roo--

,.-- J

CLK

+Enable Crc

~;-

+Data Out

+ Data Time

+Enable Wr t

l

~-.-
Synchronous

-;-8 J
Clk Qo Q1 Q2 SR 01 0 9

I J
SOl

(; CLK
8503 "1"-X

\)-
"1"-Y AZ,

,r-Z Q8

- -b I -

0 Data
Shift Register

C
QA QB QC QD QE QF QGQH

I

o~
DA DB DC DO

-X DE

Tri-State - CLK Register -

~ ~ OE

QAQB QC QD

- -

1
(PIA #1 PRAO-7

FIGURE 5-4.6.3-1. Read Data Logic (Read Shift Register,
Read Buffer, Bit Counter and CRC Check)

5-154

J
DA

DE

CLK

OE

QA

d=~ +1 st Bit

~~ r-- -CRC = 0

fr~
-{>r{)o-- -Byte Ready

B7 Time

DB DC DO

Tri-State
Register

QB QC QD

VI
......
VI
VI

+R Data Time

-Enable Crc

+Data Out

+Data Shift
Register QA

+Clk Out

+Clk Sh ift
Register Q A

(+In Sync)

+1 st Bit

Bit Counter

-Byte Ready

+RIW Handshake

-ID/Data Clk Mark

+Read Enable

~
I

~
JlJlJ---1

~ II L-

J - 1 ___ _

r--J
~ Counter Cleared .1 o 2 1 3 4 5 1 6 I 7 o 1 2 3 1 4 5 I 6 7

LJ LJ

I

FIGURE 5-4.6.3-2. Start Read Timing

5-4.6.4 Read Operation Program Routine

The read operation is controlled by the routine listed in Figure 5-4.6.4-1. A flow chart of the

program routine is shown in Figure 5-4.6.4-2. This routine is used to execute a general read operation of an ID

or Data record. By "a general read operation" it is meant that the routine obtains the data from the diskette and

stores the data in RAM. Other "non-general" types of read operations would perform more specific tasks than

that stated above. An example of a "tailored" read operation is the UPC Lookup operation which is the subject

of section 5-4.8.

A detailed explanation of the operation is included with the program listing. The following is an

explanation of some of the less straight-forward characteristics of the read program.

The read program of Figure 5-4.6.4-1 can be used to execute either an ID field or data field read

operation. The differences between an ID and data field read operation:

(1) The number of bytes in the field

a. ID field = 7 bytes

b. Data field (fixed format) = 131 bytes

(2) The data portion of the address mark

a. ID field = $FE

b. Data field = $FB

(3) The time interval over which the read operation should be completed.

These three differences are accounted for by requiring the following RAM locations to be initialized

to desired values prior to execution of the read routine:

(1) Byte counter = "FVBCNT"

a. ID field, "FVBCNT" = 256-4

b. Data field, "FVBCNT" = 256-128

(2) Address mark = "FVDMRK"

a. ID field, "FVDMRK" = $FE

b. Data field, "FVDMRK" = $FB

(3) Interval time = "FVTIME"

The value of FVTIME is dependent on the host system requirements.

Note that the byte counter, "FVBCNT," is shown as a number subtracted from 256. "256-4" is

decimal notation of an 8-bit negative binary number which has the magnitude of 4.

First, the magnitude is the number of bytes between the address mark and the first CRC byte (see

Appendix 5-4.D), i.e., the usable data portion of the physical record. The read program of Figure 5-4.6.4-1

does not use the byte counter for keeping track of the address mark byte and the two CRC bytes.

Second, the number of bytes is represented as a negative binary number to take advantage of

MC6800 MPU characteristics. In eight bit signed binary numbers a negative value from -1 to -128 has the

characteristic that the high order bit position (bit 7) is a "1" . Because the maximum byte count for the usable

data portion of the data field is 128, the byte counter will have a "1" in bit 7 throughout the data transfer.

"FVBCNT" is the initial byte count which is loaded into accumulator B prior to entering the basic read loop of

the read program. Then accumulator B is incremented each time a byte of data is transferred. When

accumulator B rolls over to all zeros the basic read loop is exited.

5-156

86619

86628
86638

86658
86668
86678
86689
86699
16719
86718
86728
86739

86758
86768
86778
86788
86798
86888
86818
86828
86838
86848
86858

86878
86889
86899
86'88
86'18
86928
86938

8'959
86968
8"78
8'988
86'98

87818
87029
87838
87848
87958
87868
87878
17888
87898
87188

FLDISK

* FLOPPY DISK READ ROUTINE

* THIS ROUTINE READS AND STORES ONE ID OR ONE
* DATA RECORD.

* THE READ DATA RATE IS GOYERNED PRI"ARILY BY
• THE ROTATIONAL SPEED OF THE DISKETTE. THE
• WORST CASE READ DATA RATE IS DETER"INED BY
* ALLOWING FOR THE AC£U"ULATION OF THE
* ROTATIONAL SPEED ERROR DURING THE WRITE
* OPERATION PLUS THE SPEED ERROR DURING THE READ
* OPERATION. THE DESIGN CRITERION OF THIS ROUTINE
* IS TO OPERATE AT "AX/"IH DATA RATES OF,
* 29.75 TO 34.25 "ICROSECOHDS/BYTE

* SYNCHRONIZATION OF PROGRA" Tl"IHG TO THE READ
• DATA RATE IS ACCOHPLISHED BY WAITING UNTIL BYTE
* READY OCCURS. BYTE READY IS RECOGNIZED BY THE
• PROGRA" WHEN THE CAt INPUT TO PIA 11 "AKES A
• HIGH TO LOW TRANSITION AND SETS BIT 7 OF
* CONTROL REGISTER A (IHTERR FLAG 11) TO A ONE.
• THE INTERRUPT fLAG IS POLLED FOR BY THE PROGRA".
* AFTER BVTE READY IS RECOGNIZED THE DATA IS
• FETCHED FRO" THE PIA. "OVING THE DATA FRO"
• THE PIA TO THE "PU AUTO"ATICALLY CLEARS THE
• INTERRUPT FLAG.

• THE INTERYAL TI"ER IS USED TO ABORT THE READ
• OPERATION IF THE READ IS NOT CO"PlETED BEFORE
• THE TIKE SPECIFIED IN "FYTI"E- IS EXHAUSTED.
* OTHER ERROR INTERRUPTS IHCLUDE:
• A. SYSTE" INOPERABLE
• 8. OYERRUN
* C. NOT READY

• DATA IS STACKED INTO A BUFFER AREA
• SPECIFIED BY THE CONTENTS OF uFYDADR.· WHEN
• THE READ OPERATION IS CO"PLETE THE ADDRESS OF
• THE LAST DATA BYTE IS TRANSFERRED TO THE INDEX
* REGISTER.

* ACCU"ULATOR B IS USED AS THE DATA BYTE COUNTER
• IN THE READ ROUTINE. THE INITIAL BVTE COUNT
• I1UST BE STORED IN "FYBCHT.· THIS YALUE IS
• REQUIRED TO BE IN NEGATIYE BINARY FOR"AT.
* USING THE 18" 3748 FOR"ATI THE DATA RECORD IS
• 128 BYTES. THEREFORE THE BYTE COUNTER WILL HAYE
• A • 1" IN BIT 7 THROUGHOUT DATA TRANSFER. THE "I-
• IN BIT 7 EHABLES ACCUI1ULATOR B TO BE USED AS A
* BIT TEST MASK FOR BVTE READY AS WELL AS A BYTE
* COUNTER.

TABLE 5-4.6.4·1. Floppy Disk Read Routine (Sheet 1 of 5)

5-157

87128
87138
87148
87158
87168
87178

FLDISJ(

• AN OPERATION/ABORT FLAG IS MAINTAINED IN RAM
• LOCATION "FVASOR a AS FOLLOWS:
• 1888188e READ OPERATION IH PROGRESS
• 918818ge READ OPERATION ABORTED BY PROGRAM
• 81181889 READ OPERATION ABORTED BY INTERRUPT
• 88881819 READ OPERATION COMPLETE

TABLE 5-4.6.4-1. Floppy Disk Read Routine (Sheet 2 of 5)

5-158

FlDISK

87288 51E5 86 88
87218 51£7 97 88
87228 51E9 8D S8Al

87248
87258
87268
87278

87299 StEC 86 ES
87388 51E£ 84 8841
87318 51F1 26 74

87338
87348
87358
87368
87378
87389

87At81 ~lF3 9F IS
87419 SlFS 9E 07
87429 51F7 C£ lFIE
87At31 51FA FF 8842
87448 SlFD DE 89
87458 51FF FF 8810
87461 5282 CE 3E16
87478 5285 D6 8S
87489 5287 86 24
87498 5289 87 a082

FKREAD LDA A
STA A
JSR

1~lee81888 -PRESET READ IN
FVABOR ----PROGRESS OP CODE
FKERST

* "FkERST- IS A DISK SYSTE" ERROR LATCH RESET
* SUBROUTIHE. THIS ROUTINE ALSO SELECTS THE
* DISKETTE DRIVE AND CLEARS PIA 12 ERROR
* INTERRUPT FLAGS.

LDt. A
AHD A
BHE

'~1118e118 SET ERROR SiATUS MASK
FP2PRB FETCH "ASKED STATUS
FKRD89 BRANCH IF ERROR

• ERROR STATUS CHECKED
* Bli 8 = HOT IH SYNC
* BIT 1 = DISK SYSTE" IHOPERABLE
* BIT 2 s OVERRUN
* BIT ~ = HOT HEAD LOADED
* BIT 6 = HOT READY

FVSVSP SAVE STACK POIHTER
FVDADR POIHT TO DATA STACK
1$3FIE
FP2CRA ENABLE ERROR IHTERRUPTS
FVTI"E FETCH TIKER VARIABLE
FP3PRA START IHTERYAL TI"ER
.3E16 PRELOAD DISABLE INTERRUPTS
FYBCHT LOAD BYTE COUNTER
'%88189188
FP1CRA ENABLE R/W HANDSHAKE

87588 528C 86 29 FKRD81
87519 528E F5 8888

STS
LDS
LDX
STX
LDX
STX
LDX
LIA B
LDA A
STA A
Lift A
BIT B
STA A

'~8elelel1 PRELOAD ENABLE CRt
FPIPRA CLR BYTE RDY IHTERR FLAC

87528 5211 87 8848 FP2PRA ENABLE CRC

87548
87558
87569

* FOR A READ OPERATION -EHABLE CRC· AR"S THE
* READ CIRCUITS TO SYNCHRONIZE TO THE FIRST
* H1 8 DATA BIT DETECTED.

87588 5214 96 85
87598 5216 76 8881 FKRD82
87688 5219 24 F8
87618 5218 F5 8882 FKRD83
87629 521E 2A FS
87638 5228 81 8888
87648 5223 26 85
87658 5225 F5 8881
87668 5228 2A 87
87678 S22A 86 2F FKRD84
87688 522C 87 8848
87698 522F 28 DB

LDA A
ROR
Bee
BIT B
BPL
C"P A
BHE
BIT B
BPL
LDA A
STA A
BRA

FVDMRk
FPIPRB
FKRD82
FPICRA
FKRD83
FPIPRA
FKRD84
FPIPRB

PRELOAD DATA "ARK
"OYE 1ST BIT TO CARRY
WAIT UNTIL 1ST BIT

WAIT FOR BYTE READY
CO"PARE "ARK PATTERN
BRANCH IF HOT "ARK

FKRD85 BRANCH IF ID/DATA
1%88181111
FP2PRA DROP EHABLE CRC
FKRD81 DO AGAIH,LOOK FOR 1ST BIT

TABLE 5-4.6.4-1. Floppy Disk Read Routine (Sheet 3 of 5)

5-159

FLDISK

87718 5231 86 68 FKRD85 LDA A 1%81181811
87728 5233 87 8848 STA A FP2PRA RAISE READ EHABLE

87748
877S8
87768
87778
87788
87798

87818
87828

• ·RE~D EH~BLE· EHABLES THE HOT IN SYNC
• ERROR DETECTION LOGIC. KNOT IN SYNC" IS A
• LATCHED ERROR SIGNAL WHICH IS SET WHEN THE
• CLOCK RECOYERY CIRCUITS DO NOT
• DETECT A MIM BIT AT CLOCK TIME AND MREAD
• ENABLE - IS SET.

• THE FOLLOWING SERIES OF INSTRUCTIONS IS THE
• BASIC READ LOOP

87848 '236 F~ 8882 FKRD86
878S8 5239 2A F8

BIT B
BPL
LDA A
PSH A
INC B
BNE

FPICRA
F KR D86
FP1PRA

WAIT FOR BYTE READY
87868 5238 86 8888
87878 523E 36
87888 523F 5C
87898 5248 26 F4 FKRD86

GET DATA & CLR INTERR FLAG
STORE DATA
UPDATE BYTE COUNTER
LOOP UNTIL LAST BYTE

87'18 5242 Fl 8882 FKRD87 C"P 8 FP1CRA
87928 5245 28 F9 B"I FKRD07 WAIT FOR 1ST CRC BYTE RDY

87'48
87'S8
87968
87978

87998 5247 F5 8888
88888 ~24A 86 2F
88818 524C C6 88
88828 524E Fl 8882
88838 5251 28 FB
88848 5253 F4 8881
88858 5256 87 8848
88868 5259 FF 8842
88878 525C 7F 8818
88888 525F 86 34
88898 5261 87 8882
88188 5264 38
88118 5263 9E 89

• ACCU"ULATOR S IS 88 AT THIS TI"E. THE ·C"PB·
• AND "S"I- INSTRUCTIONS TEST THE BVTE READY
• INTERRUPT FLAG (FP1CRA, BIT 7). IF THE FLAG IS
• A ""8· THE PROGRA" LOOPS BACk TO RFKRD87. It

SIT B
LDA A
LDA S

FKRD8S C"P 8
B"I
AND B
STA A
STX
ClR
lDA A
STA A
TSX
lDS

FP1PRA CLEAR INTERRUPT FLAG
'%88181111 PRELOAD STOP READ
1%89881888 LOAD TST CRC MASk
FPICRA
FKRD88 WAIT FOR 2ND CRC BYTE
FP1PRB FETCH CRC STATUS
FP2PRA STOP READ
FP2CRA DISABLE INTERRUPTS
FP3PRA STOP INTERYAL TI"ER
1%88118188
FP1CRA TURN OFF R/W HANDSHAKE

XFER DATA POINTER TO INDEX
FYSYSP RESTORE STACK POINTER

TABLE 5-4.6.4-1. Floppy Disk Read Routine (Sheet 4 of 5)

5-160

FLDISK

98138 5267 D7 81
98148 5269 27 92
88158 5268 C6 42
88168 526D C8 8A
88178 526F D7 89

88199
88288
98218
88229
88238

88258
88269
88279
88288
88298
88398

88328 527 1 J 9

FKRD89 STA B
BEQ
LDA B

FKRD18 EOR B
STA B

FYSTAT STORE ERROR STATUS
FKRD18 SKIP IF NO READ ERROR
1%81888818 SET OP CODE "ODIFIER
1%88881818 GENERATE ENDING OP CODE
FYABOR STORE OP/ABORT CODE

* THE OP/ABORT CODE IS GENERATED FRO" THE
* YALUE OF ACCU"UlATOR B. I F ANY ERROR
* STATUS I S PRESENT B I S NON ZERO. IN THAT CASE
* THE OP CODE "ODIFIER IS SET. IF NO ERROR STATUS
* EXISTS ACCU"ULATOR S IS ZERO. THEN:

* ERROR HO ERROR

* -------- ---- .. ----
* B = 81888819 88898898

* EOR B • 88881919 88881819

*
_ .. _---_ - .. -- ... ---

* CODE = 81881888 88881818

RTS RETURN TO HOST PROGRA"

TABLE 5-4.6.4-1. Floppy Disk Read Routine (Sheet 5 of 5)

5-161

The above is one use of accumulator B. Because accumulator B has a "1" in bit 7 throughout data

transfer it can also be used as a bit test mask for the BYTE READY interrupt flag. Just prior to new data being

available the BYTE READY signal sets bit 7 of PIA # 1 control register A. To synchronize the program timing

to the read data rate the following instruction sequence is used:

FKRD5 BIT B FPICRA

BPL FKRD5

The BIT B instruction is an AND operation which affects only the condition code register bits. Since

bit 7 of accumulator B is a "1" , the sign bit (Bit N) of the condition code register is "1" if the BYTE READY

interrupt flag is set and a "0" if the flag is not set. The BPL instruction will cause the program to loop until

BYTE READY occurs.

This programming technique enables accumulator B to serve double duty - byte counter and

interrupt flag test mask. Using this technique results in time savings during program execution. In contrast,

another way to perform the same interrupt mask test is as follows:

FKRD5 TST FPICRA

BMI FKRD5

Although this instruction sequence performs the same task as the prior sequence in the same number of control

memory bytes, it takes two MPU cycles longer to execute. This means there would be two less cycles of time

available at the beginning and the end of the basic read loop to do necessary housekeeping tasks.

The interval timer is used to abort a read operation if the program should hang up in an infinite loop

due to hardware malfunction. When searching for a specific data record, the ID field must first be read to

determine where the R/W head is relative to the desired data sector. In this case, the interval timer could be

programmed to abort the read operation after the worst case time between any two ID Fields has elapsed. Or the

timer could be set up to abort the operation after one revolution of the diskette. The choice of how to use an

interval timer or even not to use a timer at all depends upon total system requirements.

If a variable interval timer is used, the abort time for a read data field operation after the proper sector

has been located is the maximum time it should take to fully execute the read routine. Allowing for 17 bytes of

prerecord gap plus 131 bytes of data field and interval timer accuracy, the timer should be initialized to:

17 + 131 = 148 byte times

or 148 bytes x 33.74 p,s/BYTE(MAX) + 1.0 ms = 5.1 ms

In the floppy disk routine, the data is stored in RAM using the PSH instruction. The stack pointer

must be set up prior to executing the read program. One cautionary note should be made:

Because an error interrupt can occur any time the PIA interrupts are enabled, an additional seven

bytes of storage must be allotted for the data storage area. This ensures that if an interrupt occurs

there will be no over write of RAM data.

Figure 5-4.6.4-3 is a system flow chart which shows how the read program routine integrates into a

typical M6800 system. The labels used are:

FKSKIN - Seek Initialization Routine

FKSEEK - Interrupt Driven Seek Routine

FKREAD - Read Routine

FKWRIT - Write Routine

5-162

Note that FKREAD is called by the supervisor in both floppy disk read and write operations. In Figure

5-4.6.4-3 all read and write operations are said to be sector oriented. That is, a read or write data operation

begins only after the desired sector has been located. FKREAD is used to read ID records prior to reading or

writing the data record. To determine if the desired sector has been located after a sector read operation, the data

is pulled from the stack and compared against the desired track and sector address. If the track address does not

match, it is assumed that a seek error has occurred. If the sector address does not match, the read ID is repeated

until the proper sector is located.

Because the orientation of the R/W head is not known at the beginning of the sector search the worst

case is assumed. That is, it is conceivable that one full diskette rotation is required before the desired sector is

located. Prior to the first read ID record the interval timer variable is set to 180 milliseconds. Then after each ID

record, is passed 6 milliseconds is subtracted from the interval timer variable. If there are no hardware

malfunctions, 30 ID records will have been read before an interval timer interrupt aborts the search ID

operation.

Each time a CRC error is encountered a read error counter is incremented. This information is used

in error processing to determine if a retry should be attempted.

Note that if an error interrupt occurs, the program is not returned to by a RTI instruction. This is

typical of time critical operations. Once a timing is lost due to a malfunction, the error processing routines

determine what must be done to recover from the situation.

5-4.7 WRITE OPERATION

An IBM 3740 compatible floppy disk system records data at 250 K bits/second or 4 microseconds/

bit. As in the read operation, the serial data rate is too fast for the MC6800 system to handle. So the formatter

logic performs the function of converting the 8-bit parallel write data to serial data to be recorded on the

diskette.

The write data rate is not subject to the rotational speed variations of the diskette since it is controlled

by a fixed write oscillator (1.0 MHz). Therefore, the variations in write data rate are a function of oscillator

frequency specifications.

Because the write frequency range is small, the MC6800 system clock frequency specifications must

also be considered in calculating program timing requirements for the write operation. One way to minimize

variations is to use the MC6800 1.0 MHz oscillator as the floppy disk system's write oscillator. In this case

theMC6800 system and floppy disk system are synchronized and the net frequency error for a write operation is

zero. Then all timing can be calculated in MC6800 cycles where 32 cycles is equal to one byte. The total system

is synchronous as long as there is no cycle stealing from the MPU as is the case when dynamic RAM is used in

system memory. In a synchronous system, the write program can be optimized by taking advantage of the fact

that all timing can be calculated in terms of cycles. This case will not be documented in this Section.

The more general case is when the write oscillator is separate from the MC6800 system clock or

when the oscillators are common but dynamic RAM memory refresh steals MPU cycles. These are examples of

asynchronous control of the floppy disk. The programs and hardware described in this section are designed to

operate under these conditions.

Three factors affect program timing:

(1) Write Data Rate

(2) MC6800 Clock Rate

(3) Memory Refresh Rate

5-163

Address Read Data
Storage with
Stack Pointer

Good status results in a 00
- ~ta~us byte. A non-zero byte

indicates an error condition.

The stack pointer is saved as a
- return entry pointer after read

complete or aborted.

Read data will be stored by
"stacking."

Error interrupts include:
1. R/Werror

a. Disk system inoperable
b. Overflow
c. Not in sync

2. Not ready

For IBM 3740 fixed format:
1. I D record = 4 bytes
2. Data record = 128 bytes

R/W handshake is enabled by
programming PIA #1 CA 1 and

-CA2 to operate in handshake
mode. (I.E. CA2 set high by an
active transition of CA 1 and
set low by a read peripheral
register A.) CA 1 is the byte
ready signal. CA 1 and CA2 are
used in conjunction to generate
an overrun error if the MPU
read is too late.

"Enable CRC" enables the
- - serial to parallel logic in the

formatter.

1st bit is set when the first "1"
- - data bit is detected after

"Enable CRC."

Clear Byte Ready
Interrupt Flag

Move Data Byte
to MPU and Clear

Byte Ready
I nterrupt Flag

FIGURE 5-4.6.4-2: Read Routine Flow Chart (Sheet 1 of 2)

5-164

- 1
I

Thi.s resets the serial to parallel
logic because the beginning of
the record was not found yet.

"Read enable" the in sync
error logic on. Until the de
sired address mark is detected
it cannot be assumed that the
data recovery circuits are
locked to the serial data.

Basic Read Loop

Clock Through

Two CRC Bytes

Stop Read
Drop Enable

eRC

Move Data Pointer
to Index Reg

FIGURE 5-4.6.4-2: Read Routine Flow Chart (Sheet 2 of 2)

5-165

If CRC = 00 bit 4 of the
- error status byte will be

a 1 bit.

Set Read Abort
OP Code

Return to
Host Program

Floppy Disk System
Read or Write

Operation

Determine Record
Track Address and

Sector Address

"FKSKIN"

/

t
/

/

NO

Executive processing can in
clude setting up the write
buffer and initializing RAM
memory locations for a read
I D record.

Data to be written is stored in
buffer area.
NOTE: Data can be moved to

write buffer area dup
ing interrupt driven
cell.

Store track address in "FVTRKA"
Store sector address in "FVSECT"

"FKSKIN" subroutine prepares
the drive for an interrupt driven
seek routine. "FKSK I Nil gener
ates the first interrupt.

YES

Each step of the seek operation
is called by an interval timer
interrupt. The interrupt rou
tine steps the head one track
and restarts the interval timer.
When the seek is completed or
aborts the interval timer is not
restarted.

Program loops until "FKSEEK"
sets seek complete or abort seek.

NO

Go to Error
Processing

Call "FKREAD"

YES

NO

~
,.,.

0,.

NO

Error interrupt generated by
interval timer, index or disk
error detection logic.

FIGURE 5-4.6.4-3: System Integration of Floppy Disk Routines

(Sheet 1 of 2)

5-166

Return to
Executive
Processing

Go to Error
Processing

Call "FKREAD"

YES

Track
Address

Match

/ ,
/'

/

"FK READ" is used to locate
____ /' the desired ID sector, i.e., read

I D record.

~
,.,. Error interrupt is generated by

0,. interval time out or disk error
detection logic.

CRC
Error

YES

NO

Increment CRC
Error Counter Go to Error

Processing

NO

The number of CRC read
errors are accumulated for
error processing.

Sector NO
Address >----..r
Match

YES

NO

Subtract 6 Ms
From Timer

Variable
The interval timer is set each
time "FKREAD" is executed.

Call "FKWRIT"
Error interrupt generated by

- interval timer, index or disk
Read
OP

~~ ________________ ~ YES

Write
Complete
~

,. error detection logic.

"0,.

NO

YES

Return to
Executive
Processing

FIGURE 5-4.6.4-3: System Integration of Floppy Disk Routines (Sheet 2 of 2)

5-167

Go to Error
Processing

(1) Assume that the floppy disk write oscillator is accurate to 0.1 %. Then the worst case write data

rate extends over:

31.968JLs/BYTE ~ WRITE RATE ~ 32.032JLs/BYTE

(2) Assume that the MC6800 write oscillator is also accurate to 0.1 %. Then the worst case MC6800

clock rate extends over:

0.999JLs/cycle ~ CLOCK RATE ~ 1.001JLs/cycle

(3) Finally assume the dynamic memory refresh steals one clock cycle out of 50 (for a memory with

32 cycle refresh this corresponds to a memory refresh rate of 32 x 50 = 1.6 ms at a 1JLs clock

rate). Dynamic memory refresh is discussed is Section 4-2.5.1 of this manual.

The memory refresh and write rate can be treated as a two service request system for purposes of

calculations. Explanation of this type of calculation is the subject of Section 2-3.

In the maximum worst case memory refresh uses 1.001JLs out of 50.05JLs.

Let T20 = 49.95JLs

T21 = . 999JLs

For the floppy disk

T10 = 31.968JLs

From Section 2-3.

TIl T21 __ + __ ~ 1

T10 T20

TIl 1 NOTE: .999 1.001 1 --+ -~ 1 = ----
31.968 50 49.95 50.05 50

TIl ~ 31.328JLs

at 1.001p.s/MPU Cycle

31.328
1.001 ~ 31.297 ~PU cycles/byte

This means that the write data processing must not exceed 31 MPU cycles per byte.

The preceding analysis shows the effect of system specifications on the floppy disk write program.

The write data loop section of the program must not exceed 31 cycles.

Suppose, however, the dynamic refresh rate requirement was one out of 32 MC6800 clocks for a

5-168

memory with 64 cycles refresh this corresponds to a refresh rate of32 x 64 = 2.048 ms at a 1J.Ls clock rate. The

analysis in this case shows:

TIl ~ 30.969

or in terms of MPU cycles:

30.93 MPU cycles/byte

This means that, given these specifications, a write data loop of30 cycles is maximum. In this case a

31 cycle write data loop can not be guaranteed to work.

The final case to be considered is:

(a) The write oscillator is derived from the 1 MHz MPU clock

(b) The dynamic refresh is one out of 32 MPU cycles (worst case).

In this case the data rate tolerance is the same as the MPU clock tolerance. If the clock tolerance is 1.0% then the

write data rate range is:

31.68J.Ls/Byte ~ WRITE RATE ~32.32J.Ls/Byte

From section 2-3.

TIl 1
-+-= 1
32 32

TIl = 31.3 MPU cycles

Because the clock sources are common the tolerances are cancelling. The resultant maximum

execution time can be written in MPU cycles.

Other requirements outlined in Section 2-3, must also be met to ensure successful operation. As in

the case of the Read Operation in Section 5-4.6, the key to programming and designing the data handling

hardware is to work within the framework of the worst case specifications of the system - both the MPU and

the floppy disk, as well as any other system components (Le. dynamic memory).

5-4.7.1 The Write Operation Interface

Figure 5-4.7.1-1 is a block diagram which shows the major formatter functions used in a write

operation.

In a write operation, PIA # 1 is programmed as an output port. Both the clock pattern and data

pattern are supplied by the MC6800 system.

Before beginning the write operation, the ABOVE TRK 43 signal is set or cleared by the program. If

the program determines that the track location is greater than 43 the signal is raised high. ABOVE TRK 43 is

used by some models of diskette drives to control the write current on inner tracks.

A write operation is begun by making ENABLE WRT active to the formatter. This signal conditions

the formatter circuits to begin accepting data and clock information from PIA #1. the ENABLE WRT signal

also permits the BYTE REQUEST to pulse the CAl input of PIA #1 once every eight bit times.

5-169

(

I
-Byte R equ est

CA1 r-
CA2 --..

...
PAO -.. +R/W Handshake
PA1 ---..
PA2 -..
PA3 ---..) r\r~!~;~; :"~:,
PA4 -.. r:'
PA5 ~ ';

PA6 -- ,;;,' ~ -.
.• , •. ""Xl;...':2;,. •• ·~

PA7 ~~
PIA #1 PB7 -- ... A -- '\',t:>: ::'~ PB6 -- Write

Logic +Serial Write
PB5 -- Data --.. ;
PB4 ~,...~ - H

) r----+ PB3 ~
PB2 ~

~
C)

PB1 ~
PBO ~ ...

+Above Trk
CB2 -

43
CB1 ~

l ~

: - Error
Detect f-- -.I -+1 ndex

CB1
- +R/W Error

~ /

CB2

r~
!-)

~

PBO -
+Disk Sys Inop I- -

PB1 . 'j -
PB2

+Underflow + F lie I noperab Ie

PB3
- +Wrt Protected - --- '"'''J ..

PB4
~

H>o~ PB5
-Head Load

~{>o-- -Ready
PB6 -- "J DISKETT +Index
PB7 r"-', - DRIVE

E

PIA #2
PA7

1
PA6

PA5
-File Inop Reset .,., ." .. --..-
-Disk Select V~~ V~ PA4 -

~
l,/"" -Shift Crc

PA3 --
~

PA2
-Enable Crc -.. -Enable Wrt -PA1 -- "V" -Write Gate (

PAO -)

CA2

CA1
-Ready --(

.)

FIGURE 5-4.7.1-1. Write Operation Interface

5-170

Serial data is gated into the diskette drive when WRITE GATE is made active.

In a write operation, a gap of all zeros is written in accordance with the IBM 3740 format. Then an

address mark is written with a special clock pattern. The address mark is followed by 128 bytes of data (data

field) or a 4 bytes of data. (lD field) and 2 CRC bytes.

ENABLE CRC is made active by the program at address mark time.

After the last byte of data has been transferred by the program, the SHIFT CRe is made active.

SHIFT eRe is dropped two byte times after it is raised. This causes the 2 byte CRC code to be appended to the

data record.

One byte time after the 2nd CRC byte, all the write control lines are dropped. The sequence diagram

of the write control signals is shown in Figure 5-4.7.1-2.

Gap

I I I
- Enable Wrt ----,L. ___ ---.,;I~ _____________ _+: -~It__

I I
I I - Write Gate

I I
I

n I
I I

- Enable CRC

----------------------------------~lUl ~I---------- Shift CRC I I

FIGURE 5-4.7.1-2. Write Control Signal Sequence

Other control signals required to be active for a write operation are DISK SELECT (required for

some models of Diskette Drives) and HEAD LOAD.

The FILE INOP reset is used to clear any error conditions detected by the logic.

The operation of CA 1 & CA2 of PIA # 1 (BYTE REQUEST & R/W HANDSHAKE) is described in

Section 5-4.3.

The status signals which describe the operating condition of the floppy disk system during the write

operation are also described in Section 5-4.3.

5-4.7.2 Formatter Write Logic

The formatter's write logic is shown in Figure 5-4.7.2-1. Timing diagrams for the beginning and

ending of a write operation are shown in Figures 5-4.7.2-2 and 5-4.7.2-3.

ENABLE WRT enables the write logic by removing the reset to the bit counter, enabling the parallel

load to the clock and data shift registers, and removing the reset to the serial data flip/flop. The write oscillator

advances the bit counter and shifts the shift registers every 4/Ls. At bit counter 7 time the shift registers are

loaded with PIA # 1 data. Note that the clock shift register and data shift register are 1800 out of phase. The data

shift register is loaded on the trailing edge of bit 7 time (or leading edge of bit 0 time) and the clock shift register

is loaded in the middle of bit 7 time.

5-171

VI . ..--
-....J
tv

r---

+Shift Crc 10

~p-----+-------

+EnableCrc---r---,
Bit Counter

r--I Clk

Synchronous

-;'-8

Clr 00 01 02
\

+Enable Wrt •

"1'~

r-tSr-P 'I
1

SR 01 09

Clk f§
SOI

SOO 1-1 --+--+--.....

"1" X MC8503
"1" Y

Z Clr 08

oD
-L

(PIA #1 PRS 0-7 ?
6 I I I I I I I ~

PA PB Pc Po PE PF PGPH PE

~ I IClk
Data Shift Reg

1MHz ffi0 2 r-t:~ Crystal 0 p--
Oscillator

I I rClk

Clock Sh;ft R~ QH I r-Pt4-
(PIA #1 PRA 0-7)

~ I I I I I I I I
PE P A PB Pc Po PE PF PG PH

L---~-----------ByteRequest

FIGURE 5-4.7.2-1. Floppy Disk Write Logic

eo

Serial I II
Data F~O I

r~
+Serial

Write
Data

~
-.l
W

+500 kHz

+250 kHz

-Enable Wrt

Bit Count

-Byte Request

-Enable Cre

-8503 SR Input

+Clk SR QH

+Data SR QH

+Serial Data F/F {Q}

-Serial Write Data

-Enable Wrt

Bit Count

-Byte Request

-Enable Cre

+Shift Cre

-8503 SR Input

+Clk SR QH

+Data SR QH

+Serial Data F IF {Q}

-Serial Write Data

-4-0 ~ 1 I 2 I 3 I 4 I 5 1 6 I 7 I 0 I 1 I 2 I 4 I 5 1 6 1 7 I o I 2 I 3 1 4 I
L.-J (~ LJ

~ I r--

--'----,-

FIGURE 5·4.7.2-2. Beginning Write Data Timing

4 51 6 1 7 1 0 1 1 1 2 \31415161710 \1 1213141516171011\

LJ L.-J LJ

---.J

CDCDCIDIC

Record ' __ Appended Cre _I" Post-
Amble

FIGURE 5-4.7.2-3. Append CRC Timing

Serial data in digital frequency modulation format is generated by the serial data flip/flop and a NOR

gate. The flop/flop is clocked at twice the bit rate. The serial clock and data patterns are moved into the flip/flop

on alternate half bit cells. The resulting serial data output is gated by the 2x bit rate clock to develop a digital

frequency modulated serial data stream.

After the program moves the address byte into PIA # 1, the ENABLE CRC is made active. Then at

the trailing edge of the next bit 7 time the MC8503 Polynomial Generator is enabled. A CRC check polynomial

is generated until the SHIFT CRC signal is activated by the program. At the trailing edge of bit 7 time the

accumulated CRC character is serially gated into the serial data flip/flop in place of the data pattern. 16 bits of

CRe are appended to the end of the data before the program drops SHIFT CRC.

One byte time after the CRC pattern is recorded the program drops ENABLE WRT. and WRITE

GATE.

5-4.7.3 Formatter Error Detect Logic

The Error Detect Logic in Figure 5-4.7.3-1 traps logical malfunctions which could occur in the

diskette drive or formatter logic. When an error condition is trapped, an interrupt (R/W ERROR) is made active

+B7Time---------;----------~

+R /W Handsh ake -----t-----4:--,

+Sync'd Enable Crc----r--.

+F ile I noperable-+-----+--+--------.

+ E nabla W rt ---'.-------+~I'-I

+Wrt Protected -----+--+---1

+In Sync

+Enable Read-----+--+---I

+F ile Inoperable

Reset

FIGURE 5-4.7.3-1. Error Detect Logic

5-174

+Overrun
or

Underflow

X)---------- +Disk Sys
Inoperable

+R/W Error

>-----t-----+Not in Sync

to the MC6800 system via PIA #2. The trapped conditions are:

(1) OVERRUN/UNDERFLOW

(2) DISK SYSTEM INOPERABLE

(3) NOT IN SYNC

The OVERRUN/UNDERFLOW flip/flop is set when the write program does not respond to the last

BYTE REQUEST service request before the next BYTE REQUEST (Le. the data is not refreshed in PIA #1).

This operation is discussed in section 5-4.3.

The DISK SYSTEM INOPERABLE signal is active when the diskette drive status signal FILE

INOPERABLE (See appendix 5-4.A, 5-4.B & 5-4.C) or when WRITE ENABLE and WRITE PROTECTED

set the error latch in Figure 5-4.7.3-1.

The Error Detect Logic is designed such that when any error condition is detected the R/W ERROR

signal inhibits the setting of other error latches. Thus, the original cause of the failure is preserved for diagnostic

purposes.

When an error condition is detected, the drive control signal WRITE GATE is disabled to prevent

any further loss of data.

5-4.7.4 Write Operation Program Routine

The write operation is controlled by the routine listed in Figure 5-4.7.4-1. A flow chart of the

program is shown in Figure 5-4.7.4-2. This routine is used only to execute a write data record field. The index

address mark and ID record fields are written under control of a special program called Format Write. Deleted

data address marks are also written under control of the Format Write routine. The Format Write routine is not

shown in this Manual.

A detailed explanation of the operation is included with the program listing. As in the case of the

read operation, error interrupts abort the write operation. The error recovery routines are not included in this

Section. The following is an explanation of some of the unique characteristics of the write program.

Index Error - The IBM 3740 format is such that the index pulse should not be detected until after

the 26th record is recorded. Therefore, if index is encountered, the write operation is aborted by an index

interrupt.

Basic Write Loop - In Section 5-4.7 the timing considerations of the write operation were

described. The following is the write data loop:

CYCLES

FKWRD06 LDAA FKDATA,X 5

FKWR07 BITB FP1CRA 4

BPL FKWR07 4

STAA FP1PRB 5

BIT B FP1PRA 4

DEX 4

BNE FKWR06 4

30 Cycles

5-175

88378
88388
883"
88488

88428
88438
88448
88458
88468

88488
88498
88588
88518
88528
88538
88548
88558
88568
88578
885S8
88598
88688

88628
88638
88648
88658
88668

88688
88698
88789
88719
88728

88749
88758
88768
88778

FlDISK

* FLOPPY DISK WRITE DATA ROUTINE

• THIS ROUTIHE OBTAINS BYTE PARALLEL DATA FRO~
• RA" STORAGE AND "OYES·THE DATA TO THE DISK
• FOR"ATTER. DATA IS THEN WRITTEN ON THE DISKETTE
• IN SERIAL.

• A CRVSTAL OSCILLATOR IS USED TO GENERATE THE
• WRITE FREQUENCY. THEREFORE, THE WRI TE DATA
* RATE WILL DEYIATE ONLY SLIGHTLV. THIS ROUTIHE
• WILL OPERATE WITH AS "UCH AS + OR - 5%
• FREQUENCY DEYIATION.

• DATA IS "OYED FRO" ME"ORY USIHG INDEXED "ODE
• ADDRESSING. THIS ROUTINE USES THE INDEX REGISTER
• AS BOTH A "E"ORV ADDRESS REGISTER AND AS A
• BYTE COUNTER. BECAUSE OF THE TIMIHG REQUIREMENTS
• OF THE FLOPPY DISK THE INDEX REGISTER IS TESTED
* FOR ZERO TO DETERftINE THE END OF THE DATA
• TtANSFER. TESTING FOR ZERO PLACES ADDRESSING
• CONSTRAINTS ON THE LOCATION OF THE WRITE DATA
• STORAGE AREA. THE HIGHEST ADDRESS OF THIS AREA
* IS DETER"INED BY ADDING THE "A~I"U" OFFSET
* YALUE TO THE DATA LENGTH:
• "AX ADDRESS = 255 (OFFSET) + 128 (DATA)
• = 383

• THE INTERYAL TIMER IS ARftED TO INTERRUPT THE
• SYSTEM AFTER 4.6 "ILLISECONDS. THIS INSURES
• THAT IF THERE IS A HARDWARE "AlFUHCTION THE
• ONLY RECORD AFFECTED IS THAT ONE WHICH WAS TO
• BE WRITTEN.

• OTHER
• A.

* B.

* C.
• D.

ERROR INTERRUPTS INCLUDE:
SYSTE" INOPERABLE
UNDERFLOW
INDEX
HOT READY

• THE -ABOYE TRK 43- SIGNAL IS SET TO A -1- OR
* -8- PRIOR TO BEGINNING THE DATA TRANSFER. THE
* RA" LOCATION -FVTRKA- IS USED TO DETER"INE THE
• PRESENT LOCATION OF THE HEAD.

TABLE 5-4.7.4-1. Floppy Disk Write Data Routine (Sheet 1 of 5)

5-176

88798
88888
88818
88828
88838
88848
88858
88868
88878
88888
88898

88918
88928

88948
88958
88968
88978
88988
88998

FLDISK

* SYNCHRONIZATION OF THE WRITE DATA RATE TO THE
* PROGRA" IS ACCO"PLISHED BY WAITING UNTIL A BYTE
* REQUEST OCCURS. THIS WAIT LOOP CONSISTS OF
* TESTING BIT 7 OF PIA 11 CONTROL REGISTER A
* AND LOOPING BACK TO TEST THE BIT AGAIN IF IT
* HAD BEEN -8.- AFTER R -1- BIT IS DETECTED
* A DATA BYTE IS "OYED TO THE PIA. AFTER
* THE BYTE HAS BEEN "DYED A DU""Y READ CLEARS
• THE INTERRUPT FLAG. FAILURE TO EXECUTE THE
* DU""Y READ BEFORE THE NEXT BYTE REQUEST WILL
* CAUSE AN UNDERFLOW ERROR SIGNAL TO LATCH.

• WHEN THE WRITE ROUTINE IS COKPLETED OR ABORTED
* THE PIAJS ARE RETURNED TO READ "ODE.

• AM OPERATION/ABORT FLAG IS "AIHTAINED IN RAK
• LOCATION -FYABOR- AS FOLLOWS:
* 18888188 WRITE OPERATION IN PROGRESS
• 81888188 WRITE OPERATION ABORTED BY PROGRAK
* 81188188 WRITE OPERATION ABORTED BY INTERRUPT
• 88888118 WRITE OPERATION CO"PLETE

TABLE 5-4.7.4-1. Floppy Disk Write Data Routine (Sheet 2 of 5)

5-177

FlDISI(

89828 5272 86 EF
89838 5274 84 8841
89848 5277 97 81
89858 5279 27 85

89878
89888
89898
99188
99118
89128
89138
89148

89168 5278 86 44
89178 527D 97 88
89188 527F 39

89288 5288 9F 88
89218 5282 86 84
89228 5284 97 88
89238 5286 CE FF88
89248 5289 FF a989

89268
89278
89288

89388 528C 86 AD
89318 528E 87 8848

89338
89348
89358
89368
89379
89388
89398
89488

89428 5291 CE 3838
89438 5294 FF 8882
89448 5297 CE FFFF
89458 529A FF 8888

FICWRIT lDA A
AND A
STA A
BEQ

1%11181111 SET STATUS "ASK
FP2PRB FETCH "ASKED STATUS
FVSTAT STORE ERROR STATUS
FKWR81 BRANCH IF STATUS GOOD

• ERROR STATUS CHECKED:
• BIT 8 = HOT IN SYNC
• BIT 1 = DISK SYSTE" INOPERABLE
* BIT 2 = UNDERFLOW
• BIT 3 = WRITE PROTECTED
• BIT 5 = HOT HEAD LOADED
• BIT 6 = NOT READY
• BIT 7 = INDEX

LDA A
STA A
RTS

FKWR81 STS
LDA A
STA A
L DX
STX

1%81880198
FYABOR STORE ABORT CODE

RETURN TO HOST PROGRAM

FYSYSP SAVE STACK POINTER
'''18888188
FYABOR STORE WRITE OP CODE
I.FFee
FPIPRA "OYE GAP PATTERN TO PIA

• -FF w IS "OYED TO FPIPRA AND M99" IS MOYED TO
• FPIPRB. -FF- IS THE GAP CLOCK PATTERN AND
* -88- IS THE GAP DATA PATTERN.

LDA A 1%18181181
STA A FPZPRA ENABLE WRITE

• -EHABLE WRITER GATES THE FOR"ATTER WRITE
* CIRCUITS ON. BECAUSE -WRITE GATER IS OFF THE
• SERIAL DATA IS NOT TRANSFERRED TO THE DRIVE.
• ALSO, THE READ STATUS SIGNALS WHICH ARE ROUTED
* TO PIA 11 ARE SWITCHED TO A HIGH IMPEDANCE
* STATE BV uENABlE WRITE- IN PREPARATION TO
• CHANGING THE PIA 11 I/O LINES FROM INPUTS TO
• OUTPUTS.

LDX
STX
LDX
STX

1$3838
FPICRA
'$FFFF
FPIPRA

SELECT DIRECTION REGS

DEFINE PIA 11 LINES OUTPUTS

TABLE 5-4.7.4-1. Floppy Disk Write Data Routine (Sheet 3 of 5)

5-178

FlDISI(

89478 529D C6 34
89488 S29F 86 29
89498 52Al 91 84
89588 52A3 22 82
89518 S2A5 86 23
89528 52A7 88 13 FKWR82
89538 52A9 87 8883

LDA B
LDft A
C"P A
BHI
LDA A
EOR A
STA A

1%88118188 PRELOAD FP1CRA CONTROL
143
FYTRKA TEST TRK ADIR > 43
FkWR82 BRANCH IF > 43
143-8
1~11818811 FOR" TRK) 43 COHTR WOR
FPICRB SET ABOVE TRK 43

89558
89568

* THE TRk > 43 CONTROL WORD IS GENERATED FRO" THE
* VALUE 43 AS FOLLOWS:

99589
89598
99688
99619
89628
99638

*
*
*
*
* •

43 =
EORI

FPICR8

TRK) 43

88181811
88818111

88111188

43-8 =
TRK =/(43

88188811
88818111

88118188

89658
89668
99670

* IF THE TRACK IS GREATER THAN 43 THE CB2 SIGNAL
* OF PIA 11 IS SET TO A HIGH. ALSO PERIPHERAL
* REGISTER 8 IS S£LECTED BY BIT 2.

89698 52AC F7 8882
89788 S2AF C6 F9
89718 5281 86 24
89728 5283 CE 832E
89738 5286 FF a818
99748 5289 CE C7FB
89758 52BC 7A S848

STA B
lDA B
lDA A
L DX
STX
LDX
DEC

FP1CRA SELECT PERIPHERAL REG A
'256-5 SET BYTE COUHTER = 5
'%88188188 PRELOAD R/W HANDSHAKE
IS188US+46
FP3PRA AR" Tl"ER FOR 4.6 "S
'$C7FB PRELOAD ADDRESS "ARK
FP2PRA SET WRITE GATE

89778
89780

* SERIAL WRITE DATA IS CATED IHTO THE DRIVE AT
* THIS TI"E.

99888 528F F5 8888
99818 52C2 87 8982
89828 52C5 86 AS
89838 52C7 F5 8882 FKWR83
99848 52CA 2A F9
89838 52CC F5 a888
89868 52CF 5C
89878 52D8 26 F5
89888 52D2 Fl 8882 FKWR84
89898 52D5 28 F9
89988 52D7 FF 8888
89918 52DA 87 8848
89928 52DD F5 a988
99939 52E8 86 FF
89948 52E2 F6 817F
99958 52E5 CE se7F
89968 52£8 85 8882 FKWR85
89978 52E8 2A FS
99988 52ED 87 8888

BIT B
STA A
lDA A
BIT B
8PL
81T B
INC B
SHE
C"P B
8"1
STX
STA A
8IT 8
LDA A
LDA 8
LDX
BIT A
BPL
STA A

FPIPRA elR BYTE REQUEST
FPICRA SET R/W HAHDSHAKE
'~18181888 PRELOAD ENABLE CRe
FPICRA
FKWR83
FPIPRA

FKWR83
FPICRA

WAIT FOR BYTE REQUEST
CLR INTERRUPT FLAC
UPDATE BYTE COUHTER
LOOP UNTIL lAST GAP BYTE

FKWR84 WAIT FOR BYTE REQUEST
FPIPRA "OYE ADDR "ARK TO PIA
FP2PRA ENABLE C.C
FPIPRA CLEAR INTERRUPT FLAG
I$FF PRELOAD ClK PATTERN
FKDATA+128 GET 1ST DATA BYTE
1127 LOAD BYTE COUNTER
FPICRA
FKWR85
FPIPRA

WAIT FOR BYTE REQUEST
"OYE elK PATTERN TO PIA

TABLE 5-4.7.4-1. Floppy Disk Write Data Routine (Sheet 4 of 5)

5-179

FLDISK

89"8 52F8 F7 8881
18888 52F3 FS 8888
18819 52F6 C6 A8

STA 8
BIT 8
LDA B

FPIPRB "OYE 1ST BYTE TO PIA
FPIPRA . CLR INTERRUPT FLAG
1%10188098 PRELOAD SHIFT CRC

18838
19848

• THE FOLLOWING SERIES OF INSTRUCTIONS IS THE
• BASIC WRITE LOOP.

19869
18878
19888
19898
18188
18119
19128

52F8 A6 FF FKWR86
52FA F5 8882 FKWR97
52FD 2A FS
52FF B7 S8S1
5382 F5 8980
5385 89
5386 26 F8

19148 5388 F7 8849
191~8 5388 F~ 8082 FKWF.98
19169 538£ 2A Fe
18178 5318 FS 8880
18188 5313 7F 8881
18198 3316 86 AD
18288 5318 C6 A8
19218 531A FS 8082 FKWR09
18228 531D 2A FS
19230 531F F5 8889
18248 5322 F7 8848
19259 5325 CE 3E16
19269 :5328 C6 AF
19270 532A F5 8882 FKWR19
19288 532D 2A F9
19298 :532F FF 8042
18390 5332 CE 3038
18318 5335 FF 8882
18328 5338 87 8848

LDA A
BIT B
BPL
STA A
BIT B
DEX
SNE

STA B
BIT B
BPL
BIT B
CLR
LDA A
LDA B
BIT B
BPL
BIT B
STA B
L DX
LDA B
BIT B
BPL
STX
LDX
STX
STA A

FKDATA,X
FPICRA
FKWR97
FPIPRB
FPIPRA

FKWR86

FP2PRA
FPICRA

FETCH NEXT DATA BYTE

WAIT FOR BYTE REQUEST
"OYE DATA TO PIA
CLR INTERRUPT FLAG
DECREMENT BYTE COUNTER
LOOP UNTIL LAST BYTE

SHIFT CRC

FKWR08 POLL FOR 1ST CRe BYTE
FPIPRA CLR INTERRUPT FLAG
FPIPRS "OYE M90 u TO DATA PIA
'%10191191 PRELOAD DROP WRITE GATE
1~101910e0 PRELOAD STOP SHIFT CRe
FPICRA
FKWR99 POLL FOR 2ND CRe BYTE
FPIPRA CLR INTERRUPT FLAG
FP2PRA STOP SHIFT CRC
1$3E16 PRELOAD DISABLE INTERRUPTS
1~191el111 PRELOAD STOP WRITE
FPICRA
FI<WR19
FP2CRA
1$3930
FPICRA
FP2PRA

POLL FOR LAST BYTE REQUEST
DISABLE INTERRUPTS
-GATE R/W HANDSHAKE OFF
- AND SELECT DIRECT. REG.
DROP WRITE GATE

19348
19358
18368
18378

• MWRITE CATER IS DROPPED 30 TO 38 MICROSECONDS
* AFTER THE LAST BYTE REQUEST. THIS ENSURES THAT
* THE LAST eRe BYTE HAS PASSED THE TRIMMER ERASE
* COIL IN THE R/W HEAD.

19399 5338 7F S018
19489 S3lE CE 9808
10410 5341 FF 8088
19429 5344 CE 3434
19439 5347 FF 8082
13440 534A F7 8940

10469

18488 S34D 86 95

19498 534F 97 88
18588 5351 39
10528

CLR
LDX
STX
LDX
STX
STA B

FP3PRA
18
FPIPRA
1$3434
FPICRA
FP2PRA

STOP INTERVAL TIMER

CHANGE PIA 11 TO INPUTS

RESELECT PERIPHERAL REG.
DROP EHABLE WRITE

* PIA II IS HOW IN READ MODE.

LDA A 1%80000118

STA A FYABOR
RTS
END

SET WRITE COMPLETE FLAG
RETURN TO HOST PROGRAH

TABLE 5-4.7.4-1. Floppy Disk Write Data Routine (Sheet 5 of 5)

5-180

Note that under the system specifications described in Section 5-4.7 the above instruction series is

guaranteed to operate within system timing requirements.

Note that in the write loop, the index register is used as a data storage pointer.

Because of this, restrictions are placed on the storage location of the recovered data. The data must

be stored in the memory address range 0-383. This is due to the fact that if an address greater than 383 were used

a CPX instruction would have to be added to the loop as in the following example:

CYCLES

FKWR06 LDAA FKDATA,X 5

FKWR07 BITB FPICRA 4

BPL FKWR07 4

STAA FPIPRB 5

BITB FPIPRA 4

DEX 4

CPX #FKLADR+l 3

BNE FKWR06 4

33 Cycles

Clearly, 33 cycles at 1.0ILs/cycle will not transfer 32lLs/byte data. The example program will not

work.

The upper storage address of 383 is calculated by adding the maximum value of index offset (255) to

the number of bytes to be transferred (128). Using the maximum offset, the write data would be stored in

addresses 256 through 383 inclusive. Because this address range does not interfere with the direct addressing

range this technique of storage should be acceptable in nearly all floppy disk applications.

If the minimum index offset (0) is used, the storage address range would be 1-128 inclusive. Note

that this routine does not permit address 0 to be used for floppy disk write data storage.

An alternate method of fetching write data uses a data stack and the PUL instruction. This method of

data fetching is not acceptable in most floppy disk applications because if an error interrupt did occur during the

write operation, up to seven bytes of write data storage would be overwritten by the interrupt's stacking of the

MPU registers. In the read operation, stacking is an acceptable method of storing data and saves considerable

time in the read loop (See the read operation program listing).

When a write operation is either completed or aborted, the PIA's should be restored to the pre-read

condition. This serves two purposes. It protects the data on the diskette in that a multiple malfunction would be

required to inadvertly turn on write current. In addition, the preparatory steps required to begin a read operation

are reduced.

The integration of this write routine with a typical host program is described in section 5-4.6.4-3.

5-4.8 SPECIAL OPERATIONS - UPC LOOKUP

One of the main advantages of direct MC6800 control of the floppy disk system is the' 'higher level

of intelligence" attainable with special applications programs. In this section the special application - UPC

Lookup will be discussed.

UPC means Universal Product Code. This is the bar code used on the labels of many grocery store

commodities to identify the product for electronic point of sale terminals. In present systems a scanner is used to

5-181

"FKWRIT"

Move Gap Pattern
to PIA #1

Peripheral Registers

Program P I A #1
PRA and PRB Lines

as Outputs

Return to
Host Program

The stack pointer is saved as a
return entry pointer in the
event an error interrupt occurs.

The gap pattern is "'0" data
bits and "1" clock bits.

"Enable write" gates the for
matter write circuits on. Also
the read status buffers and
read buffer registers are set to
the high impedance state so
that PIA #1 PRA and PRB
lines can be used as outputs.

The track address is stored in
location "FVTRKA."

FKWR02

FIGURE 5-4.7.4-2 Write Flow (Sheet 1 of 2)

5-182

This value should be adjusted
upward to ensure that the gap
between the preceding 10
record and the data record is
16 to 17 bytes (512-544/J.s).
Also the minimum number of
gap bytes recorded by this
routine is 5.

An interval timer interrupt will
occur in 4.6 ms. This is suffi
cient time to complete a data
field write operation before
the next 10 record is
encountered.

"Write gate" turns on the
diskette drive write circuits.

Write gap pat
tern loop
NOTE: One
more gap byte
must be written
after exit from
this loop.

Last Gap Byte

The index register is used to
address the write data storage
and count the number of bytes
transferred.

Address Mark Byte

Basic Write Loop

The next two bytes to be
written are shifted from the
CRC generator.

Append two bytes
of CRC to data
record.

Program P I A #1
PRA and PRB Lines

as Inputs

Return to
Host Program

FIGURE 5-4.7.4-2 Write Flow (Sheet 2 Of 2)

5-183

The direction register is se
__ lected in preparation to re

store P I A #1 to read mode
of operation.

"Enable write" must remain
active until PIA #1 PRA and
PRB lines are programmed
to be inputs.

read the UPC Code. Then the code is transferred via the terminal communication facilities to a remote computer

system. Price and descriptive information is obtained from mass storage and then transmitted back to the POS

terminal. From that point the transaction for that commodity is continued as though the information was keyed

into the terminal manually.

There are many potential problems in this system, the greatest of which is that if the remote system is

down, all of the terminals are down with respect to UPC lookup. Many proposals have been made to localize the

UPC lookup storage by using floppy disk systems at the terminal. But the cost has been prohibitive because

DMA and large amounts of RAM storage are required.

The UPC lookup may be thought of as a read-only process. That is, it is not necessary that the local

terminals have the ability to record data on the floppy disk. The UPC files can be recorded at a central location

such as a grocery chain central headquarters or in the' 'backroom" of the store itself. Because ths diskettes are

highly portable they can be delivered with new grocery shipments. By limiting the terminal to a read-only

floppy disk system there is an immediate cost saving in the floppy disk hardware.

If DMA is not required to recover the data in a microprocessor based terminal further hardware

savings are realized. But these savings are even greater due to the "intelligence level" of the floppy disk

control programs.

Assume that the data on the floppy disk is in IBM 3740 format. This means that each data record

field is 128 bytes. But the UPC record does not require 128 bytes. Assume that 18 bytes are required for each

UPC record. Then seven UPC records could be stored in each data record field. The ideal situation, in this case,

is that only 18 bytes of RAM is required for UPC data storage. This can be achieved because of the

micro-processor's ability to perform a logical or "key" search. A UPC record can be "keyed" by the UPC

code itself. The resulting track format is shown in Figure 5-4.8-1.

Figure 5-4.8-2 is a system level flow chart which shows how a UPC lookup could be integrated in a

POS system. Figure 5-4.8-3 is the assembled program listing with commentary for a UPC lookup task. Figure

5-4.8.4 is a flow chart of the read and search portion of the UPC lookup program routines.

The FKSRCH program not only performs the search for UPC data but also gathers diagnostic

information which can be used to determine if error recovery attempts should be made.

Note in the FKLKUP that a simple decode of the two low order bytes of the UPC code is used to

determine the track address of the desired data. The UPC characters in this example system are single bytes with

decimal values 0 through 9. The track address is calculated by finding the decimal value of the two low order

characters (0-99) and dividing by 2. Then 8 is added to the result in order to determine a track address 8 through

57 inclusive.

This is a simple track address decode which provides even distribution of the UPC records

throughout the 50 UPC tracks if it can be assumed that the UPC codes are consecutively assigned by the grocery

product packagers. In actual practice this will seldom be the case and a more complex track decode would be

required. The track assignment decode may vary from day to day. Therefore it may be required for the track

decode to be recorded on the diskette at a central location. Then the program would be moved into RAM

memory during the POS system initialization.

In summary, a task such as UPC lookup can be made feasible at the local level using techniques

similar to those documented in this manual. But the UPC task is just one of many applications of a non-DMA

approach toward floppy disk. The UPC is just a specific case of the more general logical or keyed search. The

main advantage of direct MPU control of the floppy disk is that the programs can be tailored to the specific task

requirements.

5-184

VI
I

00
VI

~ f

.... I ndex Address
Mark

Data Record
Field #1

UPC Price Lookup

50 tracks
Track No.'s 8-57
26 data record fields/track
2 header bytes/data record field
7 UPC records/data record field
18 bytes/UPC record

10 bytes of UPC characters
4 bytes of price information

Data Record
Field #2

Data Track
Addr Addr
Mark

1 Byte 1 Byte

2 bytes of product identification
2 bytes of miscellaneous information

UPC
Record

#1

1 Byte 18 Bytes

f ~~-----

Data Record Field #26

Data Record Field N

UPC UPC

~c Record Record Record
#2 #N #7

18 Bytes 18 Bytes 18 Bytes

UPC Code Price 10 I Misc

10 Bytes 4 Bytes 2 Bytes 2 Bytes

FIGURE 5·4.8-1. UPC Track Format

CRC

2 Bytes

Executive Processing Price L~ok up Processing

Interrupt _
see\<. SteP __ ---

Search for
upe Match and

Store Data
if Match

Arm Timer for
Interrupt to

Execute Next
Step

FIGURE 5-4.8-2. UPC Lookup Program Integration

5-186

Return

NOTE: Return to next
instruction of
interrupted
program

81828

81848
81858
81868
81879
81888
81898

FlDlSK

81910 5848 D6 17
81928 584A 96 16
81938 584C 27 95
81'49 S84E CB 8A
81950 5858 4A
81969 5951 26 FS
81978 5853 54
81988 5854 Cl 31
81999 5856 23 85
82089 5858 86 49
92818 585A 97 98
82828 S8SC 39
82838 585D D7 84
82840 S8SF 28 8A

* UPC LOOKUP PREPARATION ROUTINE

• THIS ROUTINE CALCULATES ONE OF 39 TRACKS
* FRO" THE LEAST SIGNIFICANT TWO DECIMAL
* CHARACTERS OF THE upe CODE. THE RESULTANT
* TRACK 15 THEN STORED IN "FYTRKA M AND THE
* THE SEEK PREPARATION ROUTINE IS BRANCHED TO.
• TRACKS 8 THROUGH 57 CONTAIN THE UPC DRTA.

FKlKUP LDA B
LDA A
BEQ

FKlU81 ADD B
DEC A
BHE

FKLU82 LSR B
C"P B
BLS
LDA A
STA A
RTS

FKLU83 STA B
BRA

FYUPC+t8
FYUPC+9
FKlU02
119

F Kl U 01

149
FKLU93

GET LSC OF upe CODE
GET 2ND LSC OF upe CODE

BRANCH IF 2ND CHAR = 8
CONYERT DECI"AL-BINARV

LOOP UNTIL CONVERSION COMPL
DIVIDE RESULT BY 2
TEST RESULT "AGNITUDE
BRANCH IF TRK ADDR GOOD

'~010eeee0
FYABOR SET LOOKUP ABORT CODE

RETURN TO EXEC PROGRAM
FYTRKA STORE TRACK ADDRESS
FKSKIN GO TO SEEK PREP

TABLE 5-4_8-3. UPC Search Routine (Sheet 1 of 10)

5-187

83848

83868
83879

83898
83188
83119
83129
83139
13148
83158
83160
83179
831S0
83199
83288

83228
83238
83248
83z~e

83268

83288
83298
83389
83310
83329

83349
83359
13360

13lS9
83399
83489
13418
83429
83438
83449
83458
83468
83479
83488
83498
83589

FlDISK

• UPC SEARCH ROUTINE

• THIS ROUTINE SEARCHS FOR THE DESIRED UPC DATA
• AND WHEN FOUND STORES THE DATA.

• THE DATA ON FLOPPY DISK IS RECORDED IN IBM 374 Q

• FIXED FORMAT. THE FOLLOIJIHG IS A BREAKDOWN
• OF THE upe RECORD STORAGE~

* UPC ASSIGNED lRACt(S - 8-57

• NO. OF ASSIGNED TF:ACKS - 50

• DATA RE COR D FIELDS PER TRACK ::: 26

* TOTAL BYTES PER DATA F 1 El D -, 128

* 8YTES PfR FIFLD HfADF~ ::: 2

* BYTES PER UP C RECORD ::: 1 8

* upe RECORDS PER DATA flt:lD :: 7

* upe RECORDS PER TRACK ::: 182

* TOTAL AYAILABlE upe RECORDS ::: 9188

• lHE FOLLOWING IS A BREAKDOWN OF THE UPC RECORD:
• upe CODE ::: 18 BYTES
• PRICE ::: 4 BYTES
• "ESSAGE ADDR ::: 2 BYTES
* "ISCElLANEOUS= 2 BYTfS

* EACH DATA RECORD FIELD COHTAIKS 7 UPC RECORDS.
* THE FIRSl TWO BYTES OF THE DATA RECORD FIELD
* CONTAIN HEADER IHFORMATIOH. THE FIRST 8YTE
* IS THE TRACK ADDRESS AND THE SECOND BYTE IS
• THE SECTOR ADDRESS.

• EACH upe RECORD CONSISTS OF A 10 BYTE upe CODE
* WHICH SERVES AS A "KEY" TO 8 BYTES OF PR1CE
• AND DESCRIPTIVE INFORMATION.

• A upe SEARCH IS BEGUN BY READING THE FIRST
* DATA ADDRESS "ARK WHICH OCCURS. THEN THE
• F JRSl DATA BVTE IS COMPARED WITH THE TR~CK
* ADDRESS (UFYTRKA"). THE NEXT BYTE IS READ
• AND STORED IN uFVFlC2. a THEN THE FIRST 19 BYTES
• OF EACH 18 BYTE upe RECORD IS COKPARED AGAINST
• THE DESIRED UPC CHARACTERS. IF A "ATCH IS FOUND
• THE NEXT 8 BYTES ARE STACKED IN "EMORY. IF NO
• "ATCH IS FOUND IN ONE OF THE SEVEN UPC RECORDS
* THE OPERATION REPEAlS FOR THE NEXT DATA RECORD
* FJELD. HOWEVER .. ONCE THE Fl~:ST Ir'HTA REcCt~Ir FIELD
• IS READ WITHOUT A CRe ERROR THE SECTOR ADDRESS
* (·fVFLG2 M

) LOCATION IN MEMORY IS NOT CHANGED.

TABLE 5-4.8-3. UPC Search Routine (Sheet 2 of 10)

5-188

83538
83549
83558
83568
83578
83588

83688
83618

83638
83648
8365e
83668
83679
83689
83699

83718
83728
83738
93748
83759
83768

83789
83798
8388e

83829
83830
83848
83850
83868
83879
83888
83899
83988
83929

83938
83949
83959
83969

FLDISI(

• THIS PROCESS CONTINUES FOR 2 REVOLUTI0HS OF THE
• DISKETTE COYERNED BY A 348"S INTERYAL TI"ER
• SETlING. IF THE DATA CANNOT BE FOUND IH TWO
• REVOLUTIONS ERROR FLAGS ARE SET AS A RESULT
• OF AN INTERYAL TJ"ER INTERRUPT AND THE UPC
* SEARCH OPERATION IS ABORTED.

• FLAG BYTES ARE USED TO DIRECT THE PROGRA" FLOW.
• DEFINITIONS OF THE FLAG BYTES ARE AS FOLLOWS:

• ·FYFLGl"
* FLAG 1 IS SET IF THE FIRST HEADER BYTE DOES HOT
• "ATCN THE DESIRED TRACK ADDRESS (IIFYTRKAM).
* THE FLAC IS RESET IF A CRe ERROR OCCURS AFTER
* READINC THE DATH RECORD fIELD. IF HO CRe ERROR
* OCCURS AND FLAt 1 IS SETI A SEEK ERROR FLAG
* IS SET AND THE upe SEARCH IS ABORTED.

* wFYFLG2"
* FLAG 2 IS SET BY STORING THE 2ND HEADER BYTE
* IN LOCATION uFYFLC2. II THE FLAG IS SET ONLY ONCE
* DURING THE 1ST ERROR FREE READ OF A D~lA RECORD
* FIELD. IF THE FLAG IS SET IT "EAHS THAT A TRACK
* "ATCH WAS FOUND.

* IIFYFLG3·
• FLAG 3 "EAHS THE upe SEARCH WAS SUCCESSFUL.
* IF A CRC ERROR OCCURS FLAG 3 IS CLEARED.

* IIFYFLG4"
* FLAC 4 IS A CRe ERROR COUNTER. IF THE FIRST
• 5 DATA FIELDS HAVE CRe ERRORS THE READ ERROR
* IS CONSIDERED TO BE HON-RECOVERABlE. IF ANY
• OF THE FIRST FIYE DATA FIELDS READ HAYE NO
• CRC ERRORS, ANY SUBSEQUENT CRC ERRORS INCRE"ENT
• FLAC 4. ONCE A DATA RECORD FIELD HAS BEEN READ
• WITHOUT ERROR FURTHER ERRORS ARE CONSIDERED TO
• BE RECOYERABLE UNTIL THE INTERYAl TI"ER ABORTS
* THE SEARCH OPERATION.

* ·FYFLG5·
• FLAG 5 IS A COUNTER WHICH INDICATES THE NU"BER
• OF DATA FIELDS PASSED WlTHOUT A upe "A1CH AND
* HO upe ERRORS.

TABLE 5-4.8-3. UPC Search Routine (Sheet 3 of 10)

5-189

83988
83998
84888
84818

84838
84849
94859
84868
84879
848S8

FLDISK

• AN OPERATION/ABORT FLAG IS MAINTAINED FOR
• PURPOSES OF COMMUNICATION WITH THE HOST PROGRAM.
• THE OPERATlON/ABORT FLAG IS STORED IN RAM
• LOCATION RFYABOR R AS FOLLOWS:

• 18811880 UPC SEARCH IN PROGRESS
• 91811080 upe SEARCH ABORTED BY PROGRAM
• 811118e0 upe SEARCH ABORTED 8\(IHTERRUPT
• 88111019 UPC RECORD NOT FOUND

* 88811010 UPC SEARCH COMPLETE
• 81111111 SE EK YERIFY ERROR

TABLE 5-4.8-3. UPC Search Routine (Sheet 4 of 10)

5-190

FLDISK

84188 5881 8D F8
84118 5883 4F
84128 5884 C6 67
84138 5896 F4 8841
84148 5889 27 83
841~8 588B 7E 51DE

84178
84189
84198
84288
84218
84228

84248 58BE 86 98
84258 sece 97 88
84268 58C2 9F 88
84279 SeC4 CE 3F1E
84288 SeC? FF 8042
84298 58CA CE 9122
84388 SSCD FF 8910
84318 50D0 CE F97F
84329 58D3 86 88
84338 saBS 97 86
84348 58D7 9E 87
84358 58D9 D6 94
84368 S8DB 86 24
84378 58DD B7 8882
84388 S8ES 86 29
84398 50E2 F5 8989
84488 58ES B7 8040

84420

84449 58E8 86 81

FKSRCH BSR
ClR A
LDA B
AHD B
BEQ
J"P

F KE R ST CLEAR ERROR LATCHES

1%81188111 SET ERROR STATUS "ASK
FP2PRB FETCH "ASKED STATUS
FKSR81 SKIP IF STATUS GOOD
FKSR26 BAD STATUS/EXIT

* THE FOLLOWING ERROR STATUS IS CHECKED:
• 8IT 6 - HOT READY
• BIT 5 - HEAD NOT LOADED
• BIT 2 - OYERRUN
• 81T 1 - DISK SYSTE" IHOP£RABlE
• 8IT 8 - NOT IN SYNC

FKSR81 LDR A
STA A
STS
LDX
STX
lDX
STX

FKSR82 LDX
LDA A
SlR A
LDS
LDA 8
LDA A
STA A

FKSR83 LDA A
BIT 8
STA A

1~18811888

FYABOR STORE OP CODE
FVSVSP SAVE STACK POINTER
1$3F1E
FP2CRA ENABLE ERROR INTERRUPTS
1518"S+34 lOAD 348"5 TI"EOUT
FP3PRA START INTERVAL TIM~R

ISF87F PRELOAD DA1A "ARK "A1CH
1256-128
FY8CHT STORE FIELD BYTE CNTR
FYDADR POINT TO DATA STACK
FYTRKA PRELOAD TRACK ADDRESS
1%98188188
FP1CRA ENABLE R/W HANDSHAKE
1~88te1811 PRELOAD ENABLE CRe
FPIPRA CLR BYTE READY IHTERR FLAG
FP2PRA ENABLE CRe

• THE DISK SYSTE" IS HOW AR"ED FOR DATA RECOVERY

1%80888881 PRELOAD 1ST BIT "ASK
84458 S9EA 85 8881 FKSR84
84468 S8ED 27 FS

LDA A
BIT A
BEQ

FP1PRB
FKSR84 WAIT FOR 1ST BIT
FPICRA 84479 58EF 81 8882 FKSR85

84488 S8F2 28 Fa
C"P A
B" I
CPX

FKSR85 WAIT FOR BYTE READY
84498 58F4 Be 8888
84588 58F? 27 97
84519 58F9 86 2F
84529 S8FB 87 8948
84538 S9FE 20 E0

84558
84568

BEQ
LDA A
STA A
BRA

FPIPRA CO"PARE FOR DATA "ARK
FKSR86
1%99181111
FP2PRA DROP ENABLE CRe
FKSR03 DO ACAIH,LOOK FOR 1ST BIT

* THE PROGRA" WILL RESTART THE READ OPERATION
• UNTIL A DATA ADDRESS "ARK IS FOUND.

TABLE 5-4.8-3. UPC Search Routine (Sheet 5 of 10)

5-191

84599
84688

FLDISK

• THE DATA ADDRESS "ARK HAS BEEN FOUND.
• BEGIN READING DATA.

84628 5188 86 68 FkSR86
84638 5182 87 8848

LDA A
STA A
C"P A
Bes
SUB B
BEQ

1%81181811
FP2PRA RAISE READ ENABLE

84648 5195 81 8882 FKSR87
84659 5188 25 Fa

FP1CRA
F KS R 87
FP1PRA
FKSR12

WAIT FOR BYTE READY
CO"PARE TRACK ADDR
BRANCH IF CORRECT TRACK

84668 519A Fe 8988
84678 518D 27 42

84698
84789
84718
84728
84738
84748
84758

84778 518F D7 17
84788 5111 C6 81

84888
84818
84829

• THE 1ST DATA BYTE OF THE DATA RECORD FIELD IS
• THE TRACK ADDRESS. IF THE WRONG TRACK ADDRESS
* HAS BEEN READ IT IS A POSSIBLE SEEk ERROR.
* BECAUSE IT IS NOT YET KNOWN THAT THE RECOVERED
• DATA IS VALID FLAG 7 IS SET WHICH WILL 8E
• TESTED IF THERE IS HO CRe ERROR AT THE END OF
• THE DATA RECORD FIELD.

STA B FYFLGl SAVE TRK ERROR DELTA
LDA 8 1256-127

• THE FOLLOWING INSTRUCTION SEQUENCE SKIPS OVER
• THE HU"BER OF BYTES INDICATED IN ACCUMULATOR B
• IN NECATIYE BINARV FOR"AT.

84848 5113 F5 8882 FKSR88 BIT B FPICRA
FKSR08
FPIPRA

84858 5116 2A F8 8Pl
84868 5118 F5 8889 BIT B
84878 5118 5C INC B
84888 5l1C 26 FS BNE F KS R 08

WAIT FOR BYTE READY
CLR IHTERR FLAG
DECRE"ENT BYTE COUHTER
LOOP UNTIL LAST BYTE

84988 * CRt PROCESSING.

84929
84938
84948
84958
84968
84978
84988
84999
85889
85919
85929
85939
85848

511E
5121
5123
5126
5128
512A
512D

Fl 8882 FKSR89
28 F8
FS 8888
86
C6
Ft
2B

2!='
88
8882 FKSR19
F8
S081
8840
34
8882

512F F4
5132 87
5135 86
5137 B7
513A SD
5138 27 5E

C"P B
8"1
BIT B
LDA A
LDA B
C"P B
B"I
AND B
STA A
LDA A
STA A
TST 8
BEQ

FPICRA
FKSR89 WAIT FOR 1ST CRe BYTE
FPIPRA CLR INTERR FLRG
1~88181111 PRELOAD STOP READ
'~89081898 PRELOAD TST eRe "ASK
FPICRA
FKSR18 WAIT FOR 2ND CRC BYTE
FPIPRB FETCH CRe STATUS
FP2PRA STOP READ
l~e9110180

FPICRA TURN OFF R/W HANDSHAKE

FKSR28 BRANCH IF CRC =08

TABLE 5·4.8·3. UPC Search Routine (Sheet 6 of 10)

5·192

FlIISK

85878

85898
85188
85119
85129

85148 513D 7C e81A
85159 5149 7D 9918
85169 5143 26 83
85179 5145 86 95
85189 5147 91 1A
85199 5149 23 4A

85218

* CRC ERROR DETECTED

• CRC ERRORS ARE COUNTED TO DETER"IHE IF READ
* ERRORS ARE RECOYERABLE OR NOT. THI S
• IHFOR"ATIOH IS ALSO USEFUL IN DIAGNOSING
• DISK SYSTE" "ALFUHCTIOHS.

IHC F 'IF L G4 IHCRE"EHT CRe ERR eHTR
TST FYFLC5
BHE FKSR92 IF FLC 5,READ HEXT RECORD
LDR A 15
C"P A FYfLG4
BLS FKSR19 BRANCH IF CRe ERRORS (= 5

• HORHAL EXIT ENTRY POINT

85238 5148 7F 8910 FKSR11 CLR
85249 514E 7E 51D5 J"P

FP3PRA
FKSR25

STOP INTERYAL TI"ER
GO TO EHDING PROCESSING

TABLE 5-4.8-3. UPC Search Routine (Sheet 7 of 10)

5-193

8~2S8

8~278

8~288

8~388

e~318

85329
85338
85348
85358
85368

85388
85398
8~488

85418

8=S438
85448
85458

8~478

85488
85499
85588
85518
85528
85538
85548

85569
85570

85598
85688
85618
85628
85638
85648
85658
85668

85688

85788
85718
85728
85738
95748

5151
'153
5156
5158
5158
515D
515F

5161
5164
5166
5169
5168
516E
5170
5171

5173
5175
5178
517A
517D
517£
517F
5181

5183
5185
5188
S18A
518D

FlDISK

D7 19
F1 S882
28 FS
86 80S9
D1 18
26 82
97 18

CE geeA
A6 FF
F6 8082
2A F8
81 8888
26 4C
89
26 F1

C6 86
F5 8882
2A F9
86 8888
36
SA
28 F4
D7 19

D6 85
F5 8882
2A FB
96 8889
36

* READ THE 2ND HEADER BYTE.
* THE 1ST HEADER BYTE HAS BEEN READ AND "ATCHES
* THE TRACK ADDRESS. CONT IHUE READI HG.

FKSR12 STA B F YF l G3 CLEAR FLAG 3
FKSR13 C"P 8 FPICRA

8"1 FkSR13 WAIT FOR 2ND HEADER BYTE
LDA A FPIPRA FETCH SECTOR ADDR
CI'IP B F YF L G2
SHE FKSR14 BRANCH IF NOT 1ST SECTOR
STA A FYFLG2 SET FLAG 2

* IF FLAG 2 IS ALREADY SET DO HOT OYERWRITE.

* FLAG 2 CONTAINS THE SECTOR ADDRESS OF THE 1 ST

* DATA RECORD FIELD RECOVERED WITHOUT A CRC

* ERROR.

* THE FOLLOWING SERIES OF INSTRUCTIONS ATTE"PTS

* TO "ATCH THE 1ST 10 BYTES OF THE UPC RECORD
* WITH THE DESIRED UPC CODE.

FKSR14 lDX .18 LOAD "ATCH POINTER
FKSR1S LDA A FIO'TCH, X GET 1ST UPC CHAR
FKSR16 lDt. B FPICRA

BPl FKSR16 WAIT FOR BYTE READY
C"P A FPIPRA
8HE FKSR23 BRANCH IF NOT UPC "ATCH
DEX DECREMENT "ATCH POINTER
BHE FKSR15 LOOP FOR 10 BYTE MATCH

* THE UPC MATCH WAS SUCCESFUL. STACK THE NEXT
* 8 BYTES OF upe DATA.

LDA B 1127+7 SET BYTE COUNTER TO 7
FKSR17 BIT B FPICRA

BPl FKSR17 WAIT FOR BYTE READY
lDA A FPtPRA FETCH DATA FROM DISK
PSH A STACK DATA
DEC B DECREMENT DATA BYTE CHTR
8"1 FKSR17 LOOP FOR 7 BYTES
STA 8 FYFLG3 SET FLAG 3

* FLAG 3 IHDICATES THE UPC SEARCH WAS SUCCESSFUL.

LDA B FYBCHT LOAD FIELD BYTE CHT
FKSR18 BIT B FPICRA

BPl FKSR18 WAIT FOR BYTE READY
LDA A FPIPRA FETCH LAST DATA BYTE
PSH A

TABLE 5-4.8-3. UPC Search Routine (Sheet 8 of 10)

5-194

85768
8~779

FlDISI<

85799 518E CB 12
05888 5198 27 ac
85819 5192 7E 5113

85838
85848
85838
85869

85898 5195 4F
85989 5196 97 18
85919 5198 7E seD0

85948

85968 5198 C6 80
85978 SI9D 86 27
85989 519f 7D ee17
85998 51A2 26 A7

86818
86828

86848 51A4 7D 8819
86858 51A? 27 95
86868 51R9 86 42
86878 SlAB 7£ 5148

86898

* UPC "A1CH WAS SUCCESSFUL.
* PREP~RE TO SKIP RE"f.lIHIHG BYTES, IF ANY.

118
FI<SR89
FI<SR88

ADJUST FIELD BYTE CHT
IF LAST BYTE, DO CRC CHK
IF HOT L~ST BYTE, SKIP OUT

* A CRe ERROR HAS BEEN DETECTED BUT IT IS
* ASSUMED TO BE A RECOYERABLE ERROR.
* CLEAR FLAG 2 AND READ THE NEXT DATA RECORD
* FIELD.

FKSR19 CLR A
STft A
J"P

FYFlG2
FKSR02

CLEAR FLAG 2
READ NEXT RECORD

• CRC = 88, END OF DATA RECORD FIELD.

FKSR28 LDA B
LDA A
TST
SHE

1%10088808 PRELOAD SEEK ERROR FLAG
.~e0180111 FORM SEEK ERR OP CODE
FYfLGl
FI<SR 11 IF FLAG I, ABORT

* FLAG 1 WAS SET IF THE TRACK ADDRESS DESIRED DID
* DID HOT "~TCH WITH THE FIRST HEADER BYTE.

FYfLG3
FI<SR21 SKIP IF NOT FLAG 3
1%81888818 FOR" OP CODE "ASK
FKSRll EXIT LOOKUP ROUTINE

* FLAG 3 WAS SET IF THE UPC "~TCH WAS SUCCESSFUL.

86118 S1AE 7C e818 FKSR21 INC
86129 51Bl 7E sene J"P

FYFLG5
FKSR92

SET FLAG 5
READ NEXT RECORD

86148
86158

* FLAG' IS INCRE"EHTED EACH Tl"E A DATA FlELD IS
* READ WITHOUT ERROR, BUT HO UPC "ATCH WAS FOUND.

TABLE 5-4.8-3. UPC Search Routine (Sheet 9 of 10)

5-195

86188
86198
86288

86228
86238
86248
86258

86279

86298

86319
86328
86338

8'3~8
86368
86378
86388
86398
86488
86418
86428
86438
86448

86468

86488
86498
86588
86518

86538

86558
86568
86578
86588

FlDISK

5184 F6 8882
5187 2A F9
S189 F5 S988
SlSC 89

51BD 26 F5

S18F D6 95
StC1 86 Fa
51C3 85 8882
stC6 2A F9
SICS 85 89S9
51ce 4C
stte 26 F5
SitE CB 12
31D8 26 8F
51D2 7E 511E

S1D5 CE JEl6
51D8 FF 8842
51DB 38
5lDe 9E 89

SIDE D7 81
51E8 88 58
51E2 97 88
51E4 39

* THE FOLLOWING SERIES OF IHSTRUCTIONS SKIPS OYER
* THE RE"AIHIHC UPC BYTES WHEN A upe "ATCH WAS
* HOT "ADE.

FICSR22 LDA S FPICRA
8PL FKSR22 WAIT FOR BYTE READY
BIT B FPIPRA CLR IHTERR FLAG

FKSR23 DEX DECREMENT POINTER

* MFkSR23- IS THE ENTRY IHTO THIS LOOP

BNE FKSR22 LOOP TILL POINTER EXHAUSTED

* THE FOLLOWING SERIES SKIPS OVER THE 8 BYTES OF
• UPC DATA. IF THERE ARE SUBSEQUENT upe RECORDS

* A UPC "ATCH WILL BE ATTEMPTED AGAIN.

LDA B F VB C NT GET FIELD BYTE CNTR
LDA A '256-8 LOAD BYTE CNTR

FKSR24 BIT A FPICRA
8PL FKSR24 WAIT FOR BYTE READY
BIT A FPIPRA CLR IHTERR FLAG
I Ne A UPDATE BVTE COUNTER
SHE FKSR24 LOOP FOR 8 BVTES
ADD B 118 ADJUST FIELD BYTE CNTER
SHE FJ(SR14 BRHCH IF HOT END OF FIELD
J"P FI<SRe9 GO TO CRe PROCESS

* ENDING PROCESSING

FJ(SR25 L DX '$3E16
ST)(FP2CRA DISABLE ERROR INTERRUPTS
TS)(PHT TO DATA WITH INDEX REG
LDS FYSVSP RESTORE STACK POIHTER

* EXIT SEQUENCE ENTRY POINT IF STATUS ERROR

FJ(SR26 STA 9 FYSTAT STORE ERROR STATUS
EOR A 1%81811889 FORM OP/ABORT CODE
STA A FYABOR STORE OP/ABORT CODE
RTS RETURH TO EXEC PROGRAM

TABLE 5-4.8-3. UPC Search Routine (Sheet 10 of 10)

5-196

FKSR01
YES

Store Search OP Code
Save Stack Pointer for

Return Addr. Ptr.
Enable Error Interrupts

Arm Interval Timer
for 2 Diskette

Rotations (340 Ms)

FKSR02

Set Field Counter = 128
Point to Data Stack

Enable R/W Handshake

FKSR03

Clear Byte Ready
Interrupt Flag

Enable CRe to Begin
the Read Operation

NOTE: Flag 1 contains the track
error difference in signed binary
format.

NOTE: Flag 2 is initially set to zero.
Flag 2 will contain the sector address of
of the first data field encountered after
the UPC search begins.

Fetch Byte from Disk
Stack Byte

Decrement Byte Cntr

Fetch Byte from Disk
Stack Byte

Subtract 18 from
Record Field Byte

Counter to Account
for 18 Bytes Passed

YES

The UPC Characters
Have Been Spaced Over

Preload Field
Byte Counter

Set Byte Cntr = 8

FIGURE 5-4.8-4. UPC Search Program Flow Chart

5-197

Fetch CRC Status
Disable CRC. Stop Read

Turn Off R/W Handshake

5-4.9 INTEGRATED READ/WRITE LOGIC

Up to this point the discussion of the read and write logic has been treated separately. In the case of

the UPC Lookup, it was shown that there are applications where the write controls are not needed. But the more

typical requirement is a design capable of controlling both read and write operations. Figures 5-4.9-1, 5-4.9-2

and 5-4.9-3 are logic diagrams for a floppy disk formatter which is capable of controlling both read and write

operations.

The combined read and write logic is just a marriage of the hardware that has been discussed in

preceeding sections. Refer to the appropriate Sections for additional detail.

5-198

"{l
i--'

\0
\0

+

-Index Clk

-ID/Data C

+Enable Cr

+Oata Out

+Enable Wr

+Clk Shift
RegO H

+Data Time

3hift CRC

Mark

Ik Mark ~

:

t

1 MHz
Write
Osc

r--

0

- C ~ ==L-> ----

-
J

~ C

r-;-t>--

-

.,.. -
...I,,-,~

Y
J

"1"

"1 ;; CEP Synchronous

- CET Binary

~ f-- CLK Counter

CLR 00010203

I 1Ql1

.~

I
- ~

r-
- +2 H- +2

- '--

..
~ ! I

"'" J-u I

SR 01 09 "'"-
SOl

D--0
Clk SOO

~--l-
8503

1- X P-Gener.
C

1- y
AZ

9 *z CLR 08

* I ,--C

-{>- -
0 1 2 3 4 5 6 7

PIA#1 PRB 0-7)

y' -CRC = 00 .1. I

rl---J 1 1
r +1 st Bit

0A DB DC 000EOF DG 0H J Load

I
-Load St

rt Clk 8-Bit Shift Register j3=>- Registel

-R/W Dc
K °AOBOCOD Time

l I

ift

ta

I~- DE °A DB DC 0D ;J °AOBDCOD DE

- CLK Tri-~tate -:;:-
CLK Tri-State

Register Register - ---.-d OE °AOBOCOD ~ OE

I~-
OA OBOC OD

These lines also
used in R/W clk
logic (Figure 5-4.9-2) I I

PIA #1 PRA 0-7
)

~ 0 1 2 3 4 5 6 7
--.!

CJ
- 67 Time

-Byte Reque stl
r-- Byte Ready

- D

L 1;- ,... +Serial

] pWrite
r Data

FIGURE 5-4.9-1. Combined ReadIWrite Data Logic

+Read Data Sit 7

6

5
4

3

2

o

-Load Shift
Register

+Clk Out

-RAN Data
Time

-S7 Time

+Enable Wrt

-
T

J

Clk

La K

o 234567

PIA #1 PRA 0-7

A
Load DADS DC DO DEDFDG 0 H

8-Sit Shift Register

QAQSQCQDQEQFQGQH

~

Lj

y~
~~~~ 

...--- C 
~ 

~ ~t--IP ~ 

0 r--
~ 

C 
'---

+Clk Shift 
Reg QH 

-Data/I 0 
Clk Mark 

-Index 

+In Sync 

FIGURE 5-4.9-2. Combined Read/Write Clock Logic 

+S7 Time -------+--------; Clk 

+RAN Handshake------~--~--~ 

+Sync'd Enable Crc---'---' 

+F ile I noperable-4------4--~-----------......, 

+E nable Wrt - ..... ------+-+_. 

+Wrt Protected ------~-+___1 

+lnSync 

+E nable Read -------4--+___1 

+F i Ie Inoperable 

Reset 

FIGURE 5-4.9-3. Error Detect Logic 

5-200 

+Overrun 
or 

Underflow 

+Disk Sys x.-.------- I noperable 

+RAN Error 

'>-----t------+Not in Sync 



APPENDIX 5-4.A 
SHUGART ASSOCIATES 

SA900/901 
Diskette Storage Drive 

SPECIFICATION SUMMARY 

Performance Specifications 

Capacity (Unformatted) 

Data Transfer Rate 

Access Time 

Average Access Time 

Rotational Speed 

Average Latency 

Recording Mode 

Media Characteristics 

Cartridge Required 

Physical Sectors 

Index 

Tracks 

Density 

Additional Features for SA900/901 

50 Hz - 100 VAC, single phase 

60 Hz - 208/230 VAC, single phase 

50 Hz - 208/230 VAC, single phase 

Write Protect (SA901 only) 
-12 or -15V option to replace -5V input 

Chassis Slide 

10%" High Front Plate for use with 

Chassis SI i de 

5.25" x 11" Front Plate 

5.25" x 10" Front Plate 

READ ERROR RATE 

1 x 109 bits read/soft error (nominal) 

1 x 1012 bits read/hard error (nominal) 

Per Disk 
Per Track 

Track to Track 
Settling Time 

SA900 
SA901 

SA900 
SA901 

Recording 

Track 

3. 1 megabits 
41 kilobits 

250 kilobits/second 

10 MS 
10 MS 

260MS 

360 RPM 

83 MS 

Frequency Modu lation 

SA 100 or I BM "Diskette" 
SA101 

o 
32 

77 

3200 bpi (approx. inside 
track) 

48TPI 

SEEK ERROR RATE 

1 seek error in 106 seeks 

5-201 



FIGURE 5-4.A-2. Loading SA900/901 

5-202 



SA900/901 
DISKETTE STORAGE DRIVE 

FUNCTIONAL CHARACTERISTICS 

GENERAL OPERATION 

The SA900/901 Diskette Drive consists of read/write and control electronics, drive mechanism, 

read/write head, track positioning mechanism, and the removable Diskette. These components perform the 

following functions: 

• Interpret and generate control signals. 

• Move read/write head to the selected track. 

• Read and write data. 

The relationship and interface signals for the internal functions of the SA900/901 are shown in 

Figures 5-4.A-3 and 5-4.A-4 respectively. 

The Head Positioning Actuator positions the read/write head to the desired track on the Diskette. 

The Head Load Actuator loads the Diskette against the read/write head and data may then be recorded or read 

from the Diskette. 

SEP DATA 

SEP CLOCK 
4 

UNSEP READ OATA 

WRITE DATA 

WRITE GATE 

FILE INOPERABLE 

FILE INOPERABLE RESET. 

STEP 

DIRECTION SELECT 

HEAD LOAD 

INDEX 

TRACK 00 

READ 
LOGIC 

WRITE 
AND 

SAFETY 
LOGIC 

~-----r-' 

READ SIGNAL I 

WRITE SIGNAL 

I 
I 
I 
I 
I 
I 
I 

POWER ON 
RESET 

HEAD LOADED I 

CONTROL 
LOGIC 

~ 
HEAD LOAD ACTUATOR 

LIGHT EMITTING DIODE 

LIGHT EMITTING DIODE 

INDEX 

1>3 

FIGURE 5-4.A-3 SA900 Functional Diagram, One Sector Hole 

5-203 

LIGHT 
_____ EMITTING 

~ DIODE 

HEAD 
POSITION 

ACTUAT~ 



SEP DATA 

SEP CLOCK 

UNSEP READ DAT.A 

WRITE DATA 

WRITE GATE 

FILE INOPERABLE 

FILE INOPERABLE RESET .. 

WRITE PROTECT 

STEP 

DIRECTION SELECT 

HEAD LOAD 

SECTOR 

INDEX 

TRACK 00 

READ 
LOGIC 

WRITE 
AND 

SAFETY 
LOGIC 

POWER ON 
RESET 

CONTROL 
LOGIC 

LIGHT EMITTING DIODE 

WRITE HEAD 

HEAD LOADED 

HEAD LOAD ACTUATOR 

.. 
1/>3 

LIGHT EMITTING DIODE 

LIGHT EMITTING DIODE 

FIGURE 5·4.A·4 SA901 Functional Diagram, 32 Sector Holes 

The electronics are packaged on one PCB. The PCB contains: 

(1) Index Detector Circuits (Sector/Index for 901). 

(2) Head Position Actuator Driver 

(3) Head Load Actuator Driver 

(4) Read/Write Amplifier and Transition Detector 

(5) Data/Clock Separation Circuits 

(6) Safety Sensing Circuits 

(7) Write Protect (SA901 only) 

LIGHT 
EMITTING 
DIODE 

An electrical stepping motor (Head Position Actuator) and lead screw positions the read/write head. 

The stepping motor rotates the lead screw clockwise or counterclockwise in 15° increments. A 15° rotation of 

the lead screw moves the read/write head one track position. The using system increments the stepping motor to 

the desired track. 

The Diskette drive motor rotates the spindle at 360 rpm through a belt-drive system. 50 or 60 Hz 

power is accommodated by changing the drive pulley. A registration hub, centered on the face of the spindle, 

positions the Diskette. A -clamp that moves in conjunction with the latch handle fixes the Diskette to the 

registration hub. 

The read/write head is in direct contact with the Diskette. The head surface has been designed to 

obtain maximum signal transfer to and from the magnetic surface of the Diskette with minimum head/Diskette 

wear. 

5·204 



The SA900/90l head is a single element read/write head with straddle erase elements to provide 

erased areas between data tracks. Thus normal tolerance between media and drives will not degrade the signal 

to noise ration and insures Diskette interchangeability. 

The read/write head is mounted on a carriage which is located on the Head Position Actuator lead 

screw. (See Figure 5-4.A-5) The Diskette is held in a plane perpendicular to the read/write head by a platen 

located on the base casting. This precise registration assures perfect compliance with the read/write head. The 

Diskette is loaded against the head with a load pad actuated by the head load solenoid. 

LOAD 
SPRING 

HEAD POSITIONING 
LEAD SCREW 

SOLENOID + 
'ENEA~ + 

~ RETURN 
SPRING 

~i::::''''''''''''"-''''[==::=~:::J'''''-- BAI L 

\ 
DISK 

READ/WRITE HEAD 

FIGURE 5-4.A-5 Head Load and Carriage Assembly 

DISKETTE 

The recording media used in the SA900 Diskette Storage Drive is a Mylar* disk enclosed in a plastic 

envelope. The characteristics of the disk and envelope are: 

Disk Diameter 

Envelope Size 

Rotational Speed 

Rotational Period 

Average Latency 

Number of Tracks 

Bit Density Inside Track 

7.875 inches 

8 inches x 8 inches 

360 RPM 

166.67 ms 

83.33 ms 

77 

3200 bpi approx. 

The SAlOO Diskette media is IBM compatible and can be used in the SA900 or the IBM 3740 Data 

Entry System. (See Figure 5-4.A-6A) 

The SAlOl Diskette is used with the SA901 and differs from the SAlOO in that there are 32 sector 

holes and a file protect hole. (See Figure 5-4.A-6B) 

*Trademark of Dupont Corp. 

5-205 



S.O" 

Index 
Access 
Hole 

/ 
/ 

/ 
/ 
I 
I 
\ 
\ 
\ 

"-
'" 

,..-------..... 
./' ............. 

"-
"-

" /' ......... ......----- t 
Plastic 

Envelope 

\ 
\ 

Read/Write 
Head Opening 

Opening For 
Drive Hub 

Index 
Hole 

Track 76 

FIGURE 5·4.A·6A SA100 Diskette and Cartridge Layout 

I ndex Sector 
Access 

( 

File Protect 
Hole 

0 

) 0 0 
0 

0 

1.5" Dia. 
,---->.,----.,..;,_+_ Registration 

Opening 

0 

0 

0 
0 

o@ 
o 0 

0 00 0 0 

FIGURE 5·4.A·6B SA101 Diskette and Cartridge Layout 

5-206 



SA900/901 
DISKETTE STORAGE DRIVE 

ELECTRICAL INTERFACE 

The interface of the SA900/90 1 Diskette drive can be divided into two categories: Signal and Power. 

The following sections provide the electrical definition for each line. 

SIGNAL INTERFACE 

The signal interface consists of the lines required to control the SA900/90l Diskette Storage drive 

and transfer data to and from the unit. All lines in the signal interface are digital in nature and either provide 

signals to the drive (input) or provide signals to the user (output). 

Input 

There are six (6) input signal lines to the SA900/90l Diskette Storage drive; each line has the 

following input specifications. 

Yin OV - .4 V = logical zero = true 

Yin 2.5V -5.5V = logical one = false 

Input Impedance = l50n 

DIRECTION SELECT 

This interface signal defines the direction of motion of the R/W head when the Step line is pulsed. 

An open circuit or logical one level defines the direction as out, and if a pulse is applied to the Step line the R/W 

head will move away from the center of the disk. Conversely, if this input is shorted to ground or a logical zero 

level is applied the direction of motion is defined as in and if a pulse is applied to the Step line the R!W head will 

move towards the center of the disk. 

STEP 

This interface line is a control signal which causes the R/W head to move with the direction of 

motion defined by the Direction Select line. The access motion is initiated on each logical zero to logical one 

transition of this signal. The timing restrictions on this signal are shown in Figure 5-4.A-13. 

LOAD HEAD 

This interface line performs two functions on all machines at or above E. C. level 45 . (The EC level 

can be found in the rear upper corner of the PCB.) One function is to remove the 24 volts from the stepper motor 

which will allow the motor to run cooler. This means to either step, read or write. The head load line must be a 

logical 0 level. This function can be crippled by cutting a trace on the PCB. Then 24 volts will be applied to the 

stepper at all times. This trace has been labeled "R" for easy identification. 

5-207 



DISKETTE DRIVE 

HOST SYSTEM P1 
" STEP 

L6 
X -

" '-' 01 RECTION SELECT 
R6 

X - L15 

R15 '-' "FILE INOPERABLE .. 
L9 - X 

" '-' FILE I NOPE RAB LE R ES~ 
R9 

X 
L4 

'-' " WRITE PROTECT (SA90n 
R4 .. 
L21 X 

,.... '-' INDEX 
R21 .. L5 

X R5 '-' ,.... TRACK ZERO - L12 
A R12 

.- ,.... '-' SECTOR (SA901) 
L14 - X R14 'V 

,....HEAD LOAD .. L18 
X -

• 
" "" WR ITE GATE 

R18 
... L7 

X -- -- R7 

~' -b ~ UNSEPARATED READ DATA .- r\ L16 - U U R16 - r\. r\ SEPARATED DATA 
L17 

V lJ R17 

- r\ r\ SEPARATED CLOCK 

U U 
L19 

R19 
r, r\ WRITE DATA ... 
U U 

L10 

R10 

,.... +24 VDC ... R2, L2 X +24 VDC RETURN 
-

,.... '-' -5 OR -12 OR -15 VDC --: 
R3, L3 

Y ,.... +5 VDC - R20, L20 

A X LOGIC GROUND - R 11, L 11 

'V '-' - R1, L 1, R22, L22 

FRAME GROUND ... P4 

110 VAC .. -
110 VAC -

e () 
DENOTES FRAME GROUND DENOTES SHI ELDED CABLE DENOTES TWISTED PAl R 

FIGURE 5-4.A-7 Standard Interface Lines 

5-208 



It also is a control signal to an actuator that allows the disk to be moved into contact with the R!W 

head. An open circuit or logical one deactivates the head load actuator and causes a bail to lift the pressure pad 

from the disk, which removes the load from the disk and R!W head. A logical zero level on this signal activates 

the head load actuator and allows the pressure pad to bring the disk into contact with the R!W head with the 

proper contact pressure. 

FILE INOPERABLE RESET 

This interface line provides a direct reset on the File Inoperable latch. The inactive level for this 

signal is a logical one. The File Inoperable condition is reset with a logical zero level applied to this line. Note: 

Under no circumstances should the drive be operated with this signal at a constant logical zero level since all 

data safety circuitry will be defeated. 

WRITE GATE 

Write Gate is an interface line which controls the writing of data on the disk. A logical one level on 

this interface line turns off the current source to the write drivers along with the current sinks for the write 

current. A logical zero level on this line enables the write current source and current sinks, and disables the 

stepping circuitry. 

WRITE DATA 

This interface line provides the data to be written on the disk and each transition from the logical one 

level to logical zero level causes the current through the R!W head to be reversed. Input impedance for Write 

Data = lOOn. 

Output 

There are six (6) output signal lines from the SA900 Disk Storage drive, and eight (8) from the 

SA90l. Each line has the following output specifications: 

Vout = OV - .4 V logical zero = true 

Each output line appears as an open circuit (transistor in cut-oft) for the logical one level. (False) 

Maximum sink current = 100 rna. 

TRACK 00 

The Track 00 interface signal indicates when the R!W head is positioned at track zero (the outer most 

data track) and the access circuitry is driving current through phase one of the stepping motor. This signal is at a 

logical one level when the R!W head is not at track zero and is at a logical zero level when the R!W head is at 

track zero. 

FILE INOPERABLE 

File Inoperable is the output of the data safety circuitry and is at a logical zero level when a condition 

5-209 



which jeopardizes data integrity has occured. Logically the signal is defined as follows: 

File Inoperable = (Write Gate. Write I Sense) 

INDEX 

+ (Write Gate . Write I Sense) 

+ (Write Gate . Head Load) 

+ (Write Gate . Write Data) 

+ (Write Gate . Door Closed) 

This interface signal is provided by the disk drive once each revolution (166.67 ms) to indicate the 

beginning of the track. Normally, this signal is a logical one level and makes the transition to the logical zero 

level for a period of 1.7 ms (.4 ms SA091) once each revolution. The timing of this signal is shown in Figure 

5-4.A-8. 

Index ___ .---n ... _________________ ....... n ... _________ _ 
166.7 ms 

FIGURE 5-4.A-8 Index Timing 

SECTOR (SA901 ONLY) 

t..- 1.7ms ± .2ms (900) I .4ms ± .2ms (901) 

This interface signal is provided by the disk drive 32 times each revolution. Normally, this signal is a 

logical one level and makes the transition to the logical zero level for a period of .4 ms 32 times each revolution. 

The timing of this signal is shown in Figure 5-4.A-9. 

Sector -----n~-.---n __ -n ... --n ... --J-f, Jt-,----n---n ... ---

Index -------------+--...... 
2.605ms 
Nominal ~ 

5.21 ms Nominal 

~,-----~r-l ... --__ J 

166.7ms 

FIGURE 5-4.A-9 Index/Sector Timing 

WRITE PROTECT (SA901 ONLY) 

This interface signal is provided by the disk drive to allow the user an indication when a write 

protected diskette is inserted in the SA901. The signal is a logical one level when the diskette is not protected 

and a logical zero when it is protected. 

5-210 



SEPARATED DATA 

Separated Data is the interface line over which read data is sent to the using system. The frequency 

modulated signal written on the disk is demodulated by the drive electronics and the data pulses are sent to the 

using system over this interface line. Normally, this signal is a logical one level and each data bit recorded on 

the disc causes a transition to the logical zero level for 200 ns. The timing for this signal is shown in Figure 

5-4.A-15. 

SEPARATED CLOCK 

The Separated Clock interface line provides the using system the clock bits recorded on the disk in 

frequency modulation recording. The levels and timing are identical to the Separated Data line except that a 

separated clock pulse occurs each 4 fJ-s. 

UNSEPARATED READ DATA 

The Unseparated Read Data interface line provides raw data (clock and data bits together) to the 

using system that requires it. The levels and timing for this signal are shown in Figure 5-4. A -15. 

POWER INTERFACE 

The SA900/901 Diskette Storage Drive requires both AC and DC power for operation; the AC 

power is used for the drive motor while the DC power is used for the electronics and stepping motor. The power 

requirements are defined in the following sections. 

AC Power 

110 ± 10% VAC @ .75A 

50/60 ± .5 Hz single phase 

DC Power 

+5 ± 0.25 VDC @ 1.5A max. 50 mV ripple 

- 5 ± 0.25 VCD @ .20A max. 50 mV ripple 

+24 ± 1.20 VCD @ 2.0A max. 

100 mV ripple 

DC POWER OPTIONS (- 5 VDC Replacement) 

-12 ± .6 VDC @ .20A max. 50 mV ripple 

(cut trace "L") 

-15 ± .75 VDC @ .20A max. 50 mV ripple 

(cut trace "L" and "M") 

INTERFACE CIRCUITRY 

Shugart Associates provides interface circuitry to connect the SA900/901 with the host system via 

lines with 150 ohms characteristic impedance. The drivers and receivers are divided into two categories -

5-211 



those lines carrying data and those lines carrying control information. 

The following two sections describe the circuitry recommended for interfacing the SA900/901 with 

the host system. 

Figure 5-4.A-10 shows the interface circuitry for the Read Data, Separated Data, Separated Clock, 

and Write Data interface lines. 

+5V 

+5V 
Zo = 100n I 

510n 

510n 

Max. 20 Feet 

Data Interface Circu itry 

FIGURE 5-4.A-10 Data Line Driver/Receiver Combination 

Data Line Driver 

The line drivers for these interface signals must be capable of sinking 110 rna in the logical true state 

with the maximum voltage in this state no greater than .3 volts with respect to logic ground. When the line 

driver is in the logical false state, the driver transistor is in cutoff and the voltage at the output of the driver 

should be no less than 3.0v with respect to logic ground. 

Control Line Driver 

The line driver for these signals consist of an open collector 2N2222A transistor. The driver must be 

able to sink a maximum of 37 rna. in the logical true state with a maximum voltage of .3 volts with respect to 

logic ground. When the line driver is in the logical false state the driver transistor is in cutoff and the collector 

cutoff current should be no greater than 10 nanoamperes. 

Data Line Receiver 

The line receiver for the four interface lines is basically a Schmitt trigger with the switching 

threshold at 1.7 volts to enhance the noise immunity on these signal lines . The signal line is terminated in lOOn 

(±5%) for use with 93 to lOOn coaxial cable. 

Figure 5-4.A-11 shows the interface circuitry for the control lines between the SA900/901 and the 

host system. 

5-212 



Typical Recommended Line Driver-Receiver Combination 
+5V 

20 = 150n 

7405 

Cable Max. 20 Ft. 

FIGURE 5-4.A-11 Control Signal Driver/Receiver Combination 

Control Line Receiver 

The line receiver consists of a standard 7400 family TTL gate with a termination resistor of 1500 

(± 5%) to + 5 volts. The input characteristics for this receiver are: 

Maximum logical state voltage = .8 v. 

Minimum logical false state voltage = 2.0 v. 

Note: These are measured at the input to the receiver. 

For a detailed discussion of IBM 3740 compatibility, the system designer should read Shugart 

Associates Guide to IBM 3740 Compatibility (Publication number SA 0001-2). 

TRACK ACCESSING 

Seeking the R!W head from one track to another is accomplished by selecting the desired direction 

utilizing the Direction Select interface line and then pulsing the Step line. Multiple track accessing is 

accomplished by repeated pulsing of the Step line until the desired track has been reached. Each pulse on the 

Step line will cause the R/W head to move on track either in or out depending on the Direction Select line. 

The head load line must be active (logical 0 level) in order to activate the stepper. When not 

Accessing, Reading or Writing it is not necessary to have power to the stepper; therefore, the head load line 

controls the 24 volts to the stepper motor which allows it to remain cooler. This function can be crippled by 

cutting a trace which has been provided on the PCB. This trace has been labeled' 'R" for easy identification. 

Figure 5-4.A-12 shows an SA901 recording format using sector recording. 

Step Out 

With the Direction Select line at a plus logic level (2.5V to 5.5V) a pulse on the Step line will cause 

the R!W head to move one track away from the center of the disk. The pulse(s) applied to the Step line and the 

Direction Select line must have the timing characteristics shown in Figure 5-4.A-13. 

5-213 



I 400}J.s I ~ ±200}J.s .-

1----1 
Sector ~ ~-------------------------------------------------------------

DC Power 

Clock I I DA 

tr-- Data Identifier 8 Bits 

Clock 

104 Bits 
(Min.) 

128 Bits 1056 Bits Max. _ Variable _ 
~ .515ms .... I .. ~ ... ---- 4.256ms ----------I~.lfoooII-~-F-i-II---i-.1 

5.21ms Nominal 

FIGURE 5-4.A-12 Sector Recording Format (SA 901 only) 

( r 
r-------------------------------4) J~---------------------------------------

~----------------_f( ~(--------------------------------) .J 
Load Head ------___________ -' 

~10}J.sMin 

Direction 
Select -------------------------,--. 

I~ ________________ ~r 

-~t1}J.sMin J 

100ms ____ 
Min 

r 
J 

1}J.s Min 

Step ------------------------..... 
~r _________ ~_ ~-----,Il~ ___ 

J 

10}J.sMin. ~ 

------i~ .. 1 ~ 10ms Min 

FIGURE 5-4.A-13 Track Access Timing 

5-214 



Step In 

With the Direction Select line at a minus logic level (OV to .4 V), a pulse on the Step line will cause 

the R/W head to move one track closer to the center of the disk. The pulse(s) applied to the Step line must have 

the timing characteristics shown in Figure 5-4.A-13. 

These timing specifications are required in order to guarantee that the R/W head position has 

stabilized prior to reading. 

READ OPERATION 

Reading data from the SA900/901 Diskette Storage drive is accomplished by activating the interface 

line, "Load Head" and "Write Gate" is not active. The timing relationships required to initiate a read 

sequence are shown in Figure 5-4.A-14. 

Once reading has commenced, the two interface lines, Separated Data and Separated Clock provide 

the read data. The timing of the read signals, Separated Data, and Separated Clock are shown in Figure 

5-4.A-15. 

WRITE OPERATION 

In order to write data on the SA900/901 Diskette Storage drive, certain timing relationships must be 

assured. These timing requirements are required to: 

r-______________________________________________ ~r ~r----------

J ) 

DC Power ----

r r 
~--------------------------------------~J J~---------

Load Head ----------... 

step ________________ ~r__l~ ______________________________ ~r ~r-----------
J J 

~ 10ms Min ... 

50ms Min .. 

100ms Min 

FIGURE 5-4.A-14 Read Initiate Timing 

5-215 



Clock Data Clock Data 

Read Data ____ n .. _____ .. n .. _____ ... n .. _____ ... n .. _____ _ 

Separated Data ____________ n .. _____________ n ... _____ _ 
....- 200 ns ± 50 ns 

Separated Clock ___ ....... n ... _____________ n .. ____________ _ 
~ 2.00J-Ls ----. 

± 200 ns 

1 .. 4----- 4.00J-Ls ± 400 ns ----... ~I 

FIGURE 5-4.A-15 Read Signal Timing 

(1 ) Avoid destroying data due to a hardware failure or the position of the R/W head has not 

stabilized. 

These timing requirements are defined inFigure 5-4.A-16. 

In order to ensure that a hardware failure or operator interference does not cause the unintentional 

loss of data, data safety circuitry is provided. If the data safety circuitry detects an undesirable condition within 

the drive a latch is set, writing is inhibited, and the signal File Inoperable is sent to the user. File Inoperable is 

defined by: 

File Inoperable = (Write Gate. Write I Sense) 

+ (Write Gate. Write I Sense) 

+ (Write Gate. Head Load) 

+ (Write Gate . Write Data) 

+ (Write Gate . Door Closed) 

POWER SEQUENCING 

Applying AC and DC power to the SA900/901 can be done in any sequence, however, once AC 

power has been applied, a 4 second delay must be introduced before any Read or Write operation is attempted. 

This delay is for stabilization of the Diskette rotational speed. Also, initial position of the R/W head with 

respect to data tracks is indeterminant immediately after application of DC power. In order to assure proper 

positioning of the R!W head prior to any read/write operation, a Step Out operation should be performed until 

the Track 00 indicator becomes active. 

The Load Head signal can be applied any time after DC power has been applied, however, the signal 

must be true for a minimum of 50 ms prior to a read or write operation. 

5-216 



til 

N 
>-' 

.......:J 

"T1 

G) 
C 
:xJ 
m 
U1 
J:. 

~ 
en 

~ 
; 
:l 
;:;: !. 
CD 

-I 
3' 
5' 
cc 

_

------------------------------------------~r ) 
I' 

.J 
DC Power ___ _ 

I' 
.J 

Head Load --------~----------~ 

.. 100ms Min ~ 

Step r 
J 

Write Data 

r-----fl' ( I I I r ~r ---..... , J J 
Write Gate ------+-----....;:...-___________ I-~ 

1,O~s Min ---.1 I~ 

~ 10msMin ~ 

50ms Min 

100ms Min· .. , 

*4 seconds if AC and DC power are applied at same time, 

2,OO~s 
± ,5% 

~ 4,OO~s ~ 
r--- ± ,5% 

~I 1....- 200ns ± 50ns 



SAFETY CIRCUITS 

• Safety Circuits check for component failures, using system operational errors, and operator 

errors. 

The safety circuit, File Inop, in the SA900/901 is designed to check for the following: 

(1) Write gate with no write current sense. 

(2) No write gate with write current sense. 

(3) Write gate without the head loaded. 

(4) Write gate with no write data. 

(5) Write gate with the door opened. 

Figure 5-4.A-17 shows the functional diagram of the File Inop circuit. It is the responsibility of the 

using system to test the -File Inop interface line. Upon detection of -File Inop, the using system should activate 

-File Inop Reset and retry the operation. 

When -File Inop becomes active, the SA900/901 will inhibit any further write operations until the 

fault is corrected, and File Inop Reset or Power on reset is presented. 

~ 

-Power on Reset 
A ..... 

-File Inop Reset 
I""" 

~ 

-Wrt Data Sense ~ 

-Write Gate ~ A '"'-
I""" 

V- --- L-o 
-HD Load & DR Clsd ~ ~ ..... 

~ -Filelnop 
A ~ J"'I OR r- - :/'-

'" ---- .... 
roo--

-0 

A I-
~ 

--
~ 

A ..... 
-Wrt Crnt Sense I""" 

V- -

FIGURE 5·4.A·17 File Inop Circuit 

5·218 



APPENDIX 5-4.B 
ORBIS MODEL 74 DISKETTE DRIVE 

(Courtesy Orbis Systems, Inc.) 

ORBIS MODEL 74 DISKETTE DRIVE 

5-4.B.l EQUIPMENT SPECIFICATIONS 

The equipment specifications for the Model 74 Diskette Drive are as follows: 

5-4.B.l.l ACCESSING TIME 

Average Latency 

Access Time 

Head Load Time 

5-4.B.1.2 RECORDING 

Mode 

Density (nominal) 

Data Transfer Rate 

Sectors (soft) 

Sectors (hard) 

5-4.B.1.3 DATA CAPACITY (Unformatted) 

Bits/Track 

Bytes/Track 

Bits/Byte 

Tracks/Disk 

Bits/Disk 

5-4.B.1.4 DISKETTE (IBM Compatible) 

Disks/Cartridge 

Useable Recording Surfaces/ 

Disk Cartridge 

Disk Surface Diameter 

Recording Diameters 

Disk Surface Coating 

Disk Rotational Speed 

83 mS 

6 mS track to track; 14 mS Settle 

16 mS/14mS Settle 

Double Frequency (Standard) 

1836 bpi (outer track) 

3268 bpi (inner track) 

250,000 Hz nominal 

IBM 3740 or equivalent 

Up to 32 

41,664 

5,208 

8 

77 

3,208,128 

1 (8 x 8 inches including envelope) 

1 or 2 

7.88 inches 

Track 76 (inner) 2.0290 inches nominal; 

Track 00 (outer) 3.6123 inches nominal 

Magnetic Oxide 

360 ± 9 rpm 

5-219 



5-4.B.l.5 READ/WRITEIERASE HEAD 

Head/Unit 

Track Width 

Track Spacing 

Erase to Read/Write Gap 

5-4.B .1.6 PHYSICAL (Approx.) 

Height 

Width 

Depth 

Weight 

5-4.B.1.7 ELECTRICAL 

Power Supply (Supplied by User) 

dc 

ac 

5.4.B.1.8 DATA INTEGRITY 

Soft Error Rate> 1 in 1010 Bits 

Hard Error Rate < 1 in 1012 Bits 

1 

.014 inch 

0.02083 inch (48 tracks per inch) 

.033 ± 0.003 inch 

4.53 inches 

9.01 inches 

14.12 inches 

15 lbs. 

+24 volts (± 5%) @ 1.5A 

+5 volts (± 5%) @ 0.75A 

-12 volts (± 5%) @ 0.10A (Early Machines Only) 

100 Vac ± 10% 50/60 Hz ± 0.5 Hz 

115 Vac ± 10% 60 Hz ± 0.5 Hz 

208/230 Vac ± 10% 60 Hz ± 0.5 Hz 

240 Vac ± 10% 50 Hz ± 0.5 Hz 

5-220 



THEORY OF OPERATION 

5-4.B.2 GENERAL 

The Model 74 consists of control and read/write electronics, diskette drive motor, read/write head, 

track access mechanism, and removable diskette cartridge. The basic functions of the Model 74 are: 

Receive and generate control signals 

Access the appropriate track 

Write or read data on command 

The functions of the Model 74 and the required interface signals to and from the using system are 

shown in Figure 5-4. B-1. The Read, Write, File Unsafe and Control Logic are the interface electronics between 

the host system and the drive. The stepping motor positions the read/write head to the desired track on the 

diskette. The head load solenoid loads the disk against the read/write head and data may then be recorded on or 

read from the diskette. Each of the logic blocks and signal names shown are later discussed under Logic and 

R/W Functional Descriptions. 

The electronic circuitry is packaged on one Printed Wiring Board (PWB). 

The PWB contains: 

(1) Index Transducer Circuit 

(2) Track Position Stepping Motor Circuits 

(3) Head Load Circuit 

(4) Read/Write Circuits 

(5) File Unsafe Sensing Circuits 

(6) Drive Selection Circuits 

The stepping motor and lead screw positions the read/write head. The stepping motor rotates the lead 

screw clockwise or counterclockwise in 15° increments. A 15° rotation of the moves the read/write head one 

track position. The host system steps the stepping motor to the desired track. Track verification is accomplished 

by checking track and/or sector address. 

The diskette drive motor rotates the spindle at 360 rpm through a belt-drive system. 50 or 60 Hz 

power is accommodated by means of a pulley change. A registration cone, centered on the face of the spindle, 

positions the diskette. A clamp (that closes with mechanical door linkage) fixes the diskette to the registration 

cone. 

The read/write head is in contact with the diskette when loaded. The head surface has been designed 

to obtain maximum signal transfer to and from the magnetic surface of the disk with minimum head/diskette 

wear. The tunnel erase DC erases the inter-track area to improve off track signal-to-noise ratio and permit 

diskette interchangeability from unit to unit. 

The read/write head is mounted on a carriage that is moved by the stepper motor drive shaft. Head 

load is achieved when the diskette is loaded against the rigidly mounted head by moving a load pad against the 

diskette with the solenoid actuated bail. Head to diskette compliance is achieved by restraining the diskette 

between the head and the load pad. 

5-221 



Read Data 

File Unsafe 
Reset 

File Unsafe 

Write Data 

Write Gate 

Erase Gate 

Step 

Direction 

Load Head 

Index 

Track 00 

Power 
On/Off 
Reset 

Low Current 

Ready 

(Option) 

Read 
Logic 

Write 
and 

Safety 
Logic 

Control 
Logic 

Read Head 

Write Head 

Head 
Loaded 

Head 

Load Actuator 

Head 

Step Actuator 

Track 00 

Index Pulses 

Track 00 
Sensor 

Diskette 
Spindle Motor 

Light Source Detector 

FIGURE 5-4.B-1 Model 74 Functional Block Diagram 

5-222 

Light 
Source 



FUNCTION DISKETTE DRIVE FUNCTION DISKETTE DRIVE 

CONNECTOR Jl CONNECTOR Jl 

DRIVE AD DR A 1 RETURN 26 
RETURN 2 -LOW CURRENT 27 
KEY 3 RETURN 28 
KEY 4 -STEP 29 

-READ DATA 5 RETURN 30 
RETURN 6 -IN (DIRECTION) 31 

-READY 7 RETURN 32 
RETURN 8 -LOAD HEAD 33 

-SECTOR* 9 RETURN 34 
RETURN 10 -SEP CLOCK* 35 

-INDEX 11 RETURN 36 
RETURN 12 -SEP DATA* 37 

-WRITE DATA 13 RETURN 38 
RETURN 14 DRIVE AD DR B 39 

-ERASE GATE (Early Machines Only) 15 RETURN 40 
RETURN 16 +5 VOLTS 41 

-WRITE GATE 17 +5 VOLTS 42 
RETURN 18 -12 VOLTS(Early Machines Only) 43 

-FILE UNSAFE 19 o VOLTS 44 
RETURN 20 +24 VOLT RETURN 45 

-FILE PROTECT* 21 +24 VOLT RETURN 46 
RETURN 22 +24 VOLT RETURN 47 

-TRACK 00 23 +24 VOLTS 48 
RETURN 24 +24 VOLTS 49 

-UNSAFE RESET 25 +24 VOLTS 50 

*Option Signals 

TABLE 5.4-B-3 Interface Pin Assignments 

5-4.B.2 INTERFACE DESCRIPTION 

The interface of the 74 is divided into two categories: Signal/Data Interface and Power Interface. 

The initial Power up and Read/Write Sequence are shown in Figures 5-4.B-3 and 5-4.B-4. 

5-4.B.4 SIGNAL AND DATA INTERFACE 

5-4.B.4.1 INPUT LINES 

There are nine low active TTL input lines to the 74: Direction, Step, Load Head, File Unsafe Reset, 

5-223 



Power (AC) 

Power (DC) 

Step 

Track 00 

Direction 

Head Load 

Step 

Read Stable 

Write Gate 

Write Data 

Index 

f.- 2 Sec -1 r- 1 O~"O 5m, 

U-----'$ S u 
6ms Min ~ 

--------------------------~ff~---

FIGURE 5-4.B-3 Power Up Sequence 

u 
_~ 6msMin 

0.45 ± 0.20 ms'" 

'-----------------1(( .... ----

u l 
I 

~I 
I 

U-----~)f'---

~ 30ms Min 

50ms Min 

~ 30msMin 

---1r-
---------------~LJ-------~) J 

~ 166.7ms 

"'Some drives may be 2.2 ± 0.3 ms 

FIGURE 5-4.B-4 ReadlWrite Sequence 

5-224 



Write Gate, Write Data, Drive Addr A, Drive Addr B, and Low Current. Each line has the following 

characteristics (refer to Figure 5-4.B-5): 

Logic 1 

Logic 0 

Input Impedance 

(1) Direction (-In) 

-Active - OV to O.4V 

-Inactive - +2.5V to +5.5V 

-220 ohms to +5V and 330 ohms to GND. 

This interface signal defines the direction of motion of the R/W head when the Step line is 

pulsed. A low active level on this line causes the Head Position Mechanism to move the 

read/write head towards the center of the disk when the Step line is pulsed. With the Direction 

line at an inactive level, a pulse on the Step line causes the Head Position Mechanism to move 

the read/write head away from the center of the disk. The state of Direction must not change 

until 200 nS after the leading edge of the Step pulse. 

(2) Step 

A low active level (10 J,LS min) on this line will cause the read/write head to be moved one track. 

The direction of movement is controlled by the Direction line. The state of Direction line is 

sampled 100 ± 30 nsec after the leading edge of step. Access timing relationships conform to 

Figure 5-4.B-3. 

(3) Load Head 

A low active level on this line causes the storage element to be placed in close proximity to the 

read/write head for data recording or retrieval. Load Head may be activated at any time after 

power has been applied; however, this line must be activated at least 50 mS prior to a read or 

write operation. During periods of no data transfer this line should be deactivated to provide for 

maximum storage element and head life. 

(4) File Unsafe Reset 

A low active level (200 nS minimum) on this line resets the File Unsafe Latch, providing the 

capability of a write retry operation without the need for operator intervention. 

(5) Write Gate 

A low active level on this line enables the write current source, and disables the stepping 

circuitry (see Section 4.5.2 for further clarification). 

(6) Write Data 

This interface line provides the data to be written on the disk. Each transition to a low active 

level on this line causes write current through the write coils to be reversed. A 200nS wide pulse 

is required for each flux reversal to be written. 

(7) Erase Gate 

The Erase Gate input controls the DC Current through the erase element to provide tunnel erase while writing 

on the disk. A low active level on this line turns on constant current to the erase head. (Refer to Figure 5-4.B-6 

for timing considerations.) 

5-225 



7438 

7438 

Diskette 
Drive 

Output 

Recommended 
Host System 

Driver 

+5V 

4700 ohms 

330 ohms 

-------4f 

+5V 

4700 ohms 

330 ohms 

FIGURE 5·4.8·5 Interface Driver and Receiver 

5-226 

+5V 

220 ohms 

Recommended 
Host System 

Receiver 

+5V 

220 ohms 

Diskette 
Drive 

Receiver 



(8) Low Current 

A low active level on this line is recommended for writing on tracks 44 through 76. This input is 

used to lower the write current which consequently improves the read output resolution of the 

inner tracks. 

(9) Drive Addr A & B 

The interface lines may be used to define one of 4 drives to be selected in the following manner: 

Drive Address 

B A 

0 0 Drive 0 o = Inactive 

0 1 Drive 1 1 = Active 

1 0 Drive 2 

1 1 Drive 3 

5-4.B.4.2 OUTPUT LINES 

There are five output lines from the 74: Index, Track 00, File Unsafe, Read Data, and Ready. Each 

line has the following characteristics (refer to Figure 5-4.B-5): 

Active 

Inactive 

Maximum Sink 

(1) Index 

o to O.4V 

4700 ohms to +5V 

47 rnA 

This interface signal is provided by the disk drive once each revolution (166.7 mS) to indicate 

the beginning of the track. This signal makes a transition to a low active level for a period of 0.45 

± 0.20 mS* (Refer to Figure 5-4.B-4). 

(2) Track 00 

A low active level on this line indicates that the read/write head is positioned at track 00. The 

signal is valid 10 mS after the last Step command. 

(3) File Unsafe 

A low active level on this line indicates that a condition which may jeopardize data integrity has 

occurred. File Unsafe may be reset by activating the File Unsafe Reset line. (See WRITE 

MODE for list of File Unsafe conditions.) 

(4) Read Data 

Data is output to the host system in the same form as write data from the host system. Each flux 

reversal sensed on the storage element will result in a transition to a low active level for a 200 nS 

period on this line. 

(5) Ready 

A low active level on this line indicates that a diskette is loaded and rotating in the drive and that 

the front door is closed. 

*Some drives may be 2.2 ± 0.3 mS. 

5-227 



APPENDIX 5-4.C 
CAL COMP 140 DISKETTE DRIVE 
(Courtesy Cal Comp Corporation) 

Century Data 
A DIVISION OF 

5-4.C.1 DESCRIPTION 

The Century Data Model 140 Floppy Disk Drive is a high speed, random access, disk storage unit 

which utilizes a flexible disk cartridge as the storage unit which utilizes a flexible disk cartridge as the storage 

medium. Up to 3.20 million bits of data may be stored on the single recording surface of the flexible disk. When 

utilizing the IBM 3740 data format, 1.94 million bits of data may be recorded. The Model 140 Floppy Disk 

Drive features 48 tracks-per-inch and 3200 bits-per-inch technologies to provide media interchangeability with 

the IBM 3740 series of data recording equipment. 

The Model 140 contains features and options whereby a systems designer may incorporate the 

Model 140 into his data storage system with a minimum of effort. Among these are a positive pressurized media 

chamber, precise media registration, write protect capability, sector outputs, and a choice of data outputs. 

Figure 5-4. C-1 shows the size and composition of the floppy disk cartridge. 

I ~.t---------8"-------+---~ 

Sealed --/--
Protective ____ 

Jacket 
/' 

/ Liner 

/ 

/ 
/ 

f \ 
8" I 
\ I 

\ Spindle/Hub / 

....... ,'------------------~MeLd~inaa:::t 1. Cds 140 Cartridge =--
.06"~~~~~$~~~~~$~~ 
T Side View 

FIGURE 5-4.C-1 Floppy Disk Cartridge 

5-228 



The disk drive comprises a read/write head positioning system, data decoder, and I/O gated control 

and status circuits. Drive voltage is obtained from the host system, as well as, +24 and +5 vdc voltage 

requirements. 

I/O interface signals are routed between the controller and disk drive(s) in a radial or daisy-chain 

fashion via standard paddle board connectors. 

In multiple disk drive applications, each drive is individually selectable. Availability status of a disk 

drive for on-line operations bypasses the addressing circuits; thereby, permitting ready status to be monitored 

on a status interrupt basis. 

5-4.C.2 PHYSICAL AND ELECTRICAL CHARACTERISTICS 

Tables 5-4.C-2, 5-4.C-3 and 5-4.C-4 provide the physical and electrical characteristics and Table 

5-4.C-5 gives the pertinent specifications. 

Height 

Width 

Depth 

Weight 

8.40 inches 

4.90 inches 

15.75 inches including connector 

18 pounds 

TABLE 5-4.C-2 Physical Characteristics 

AC Power 50Hz+0.5Hz 100vac ±10%, single phase 

208 vac ± 10%, single phase 

220vac ±10%, single phase 

240 vac ± 10%, single phase 

60Hz+0.5Hz 100 vac ± 10%, single phase 

115 vac ± 10%, single phase 

208 vac ± 10%, single phase 

230 vac ± 10%, single phase 

DC Power +5 vdc ±2% at 1.5 amperes 

+24 vdc ±5% at 1.0 amperes 

TABLE 5-4.C-3 Power Requirements 

Temperature 

Relative Humidity 

Heat Dissipation 

60°F to 100°F with maximum gradient of 20°F/hour 

20% to 80%, 78°F maximum wet bulb 

540 BTU/hour 

TABLE 5-4.C-4 Operating Environment 

5-229 



Storage Capacity 

Unformatted 

Per Disk 

Per Track 

Formatted (IBM 3740) 

Per Disk 

Per Track 

Sector 

Number of Tracks 

Recommended Coding Technique 

Bit Transfer Rate 

Positioning Mechanism 

Head Stabilization Time 

Head Load Time 

Rotational Speed 

Motor Start Time (To Ready) 

3,208,128 Bits 

41,664 Bits 

1,943,552 Bits 

1,943,552 Bits 

26,624 Bits 

1,024 Bits 

77 

Double Frequency (PM) 

250,000 bits/sec, nominal 

Stepper Motor, electrical detent 

10 milliseconds 

16 milliseconds 

360 RPM ± 2.5% (167 millisecond/revolution) 

2 seconds maximum 

TABLE 5-4.C-5 Specifications 

5-230 



6-5.C.3 INPUT/OUTPUT SIGNALS 

A list of input and output signals, and characteristics, is provided in Tables S-4.C-S and S-4.C-6, 

respectively. 

Signal Name Definition 

SELECT/ A unique signal used to enable communication between a disk drive and its 
controller. This line must be low (OV) to be active. 

WRITE ENABLE/ Enable recording of data on the flexible disk. This line must be low (OV) to be 
active. When this line is high (+ SV), reading from the flexible disk is enabled. 

WRITE DATA/ This line carries low active (OV) pulses representing data to be recorded on the 
flexible disk. Write current reverses direction on the trailing edge of each pulse. 
Pulses must be 0.2 to 1.S microseconds wide with a maximum repetition rate of 
2.0 microseconds. 

ABOVE TRACK 43/ This line is used to control write current amplitude, guaranteeing IBM 3740 
media interchangeability. This line must be high (+SV) when recording on 
tracks 0 through 43, and low (OV) when recording on tracks 44 through 76. 
ABOVE TRACK 43 must be stabilized 10 microseconds before activating 
WRITE ENABLE. 

STEP/ This line is used in conjunction with DIRECTION and is used to cause the 
read/write head to be moved from track to track. A low pulse (OV) of 2 
microseconds to 4 milliseconds causes the head to move one track in the 
direction specified by the DIRECTION line. Maximum step rate is 167 steps per 
second (6 milliseconds per step). 

DIRECTION This line is used in conjunction with STEP to cause the read/write head to be 
moved from track to track. When this line is high (+ SV), direction is IN (higher 
numbered tracks). When this line is low (OV), direction is OUT (lower num-
bered tracks). This line must be stable 100 nanoseconds minimum before 
activating STEP and remain in the appropriate state for the duration of the step 
period. 

HEAD LOAD/ This line is used to move the flexible disk against the read/write head for data 
recording or retrieval. This line must be low (OV) to be active. A 16 millisecond 
delay is required after activating this line prior to commencing data transfers to 
allow for media loading. 

PLO SYNC/ A low level (OV) pulse 12 microseconds wide will cause the PLO data separator 
to sync to preamble O's for data tracking. 

TABLE 5-4.C-6 140 Disk Drive Output Signals 

5-231 



Signal Name Definition 

READ DATA This line transmits read data to the controller. Exact line definition and timing 
characteristics depend on the data separator present within the drive. When no 
data separator is present within the drive, this line has no function. 

With Standard This line is a NRZ data line with the one-shot separator. The level of the line 
One-Shot Separator represents data. A one bit is represented by a low (OV) level, and a zero bit is 

represented by a high ( + 5 V) level. The READ CLOCK line is used to clock data 
into the controller. 

Read DATA This line outputs data pulses with the PLO separator. A one bit is represented 
(Continued) by an 800 nanosecond low (OV) level pulse. A zero bit is represented by the 
With Optional PLO absence of a pulse. The READ CLOCK line is used to clock data into the 
Data Separator controller. 

READ CLOCK/ Exact meaning and timing characteristics of this line depend on the data 
separator used within the drive. 

With No When no data separator is used within the drive, this line outputs unseparated 
Data Separator data (clocks and data). This output is provided for the systems designer who 

desires to use his own encoding scheme or provide data separation in the 
controller. This output may be used to enable detection of IBM 3720-type 
address marks by the controller. A modified one-shot decoder with a missing 
pulse detector will allow detection of 3740 address marks. Each flux reversal 
read from the disk is output as a 300 ± 100 nanosecond wide low (OV) pulse. 

With One-Shot This line will output 300 ± 100 nanosecond wide low (OV) pulses representing 
Separator separated clocks. The trailing edge of these pulses are used to strobe the READ 

DATA line into the controller. 

With PLO SeparatOl This line will output 800 nonosecond wide low (OV) pulses representing sepa-
rated clocks. These pulses occur simultaneously with pulses occurring on the 
READ DATA line. 

INDEX/ The leading edge of a 450 microsecond wide low (OV) pulse on this line 
represents the beginning of track. This pulse occurs once per revolution of the 
flexible disk. 

TRACK 00/ When this line is low (OV), the read/write head is positioned over track 00. This 
line is intended as a head position reference. When this line is active, the stepper 
motor drive circuits are inhibited from further outward movement. 

READY A low level (OV) on this line indicates that the flexible disk is up to speed. This 
line is not gated by SELECT and is thus a unique line. This line serves as an 
interrupt to the controller and is particularly useful during flexible disk changes. 

SECTOR/ Low level (OV) pulses on this line represent sector marks. Sector pulses are 1 
millisecond wide. 

WRITE A low level (OV) on this line indicates that a write enable tab is not present on the 
PROTECTED/ flexible disk in the drive, thus no writing may take place. 

TABLE 5-4.C-6 140 Disk Drive Output Signals 

5-232 



5-4.C.4 INTERFACE REQUIREMENTS 

Table 5-4. C-7 gives the interface logic levels and the I/O cable specifications. 

Specifications Characteristics 

Logic Levels 
High +5.5V to +2.2V 
Low +0.4 V to O.OV 

Signal Cable 
Length 20 feet maximum 
Type Twisted pairs (40 pair) 
Conductor Size No. 24 or No. 26 AWG 
Twists per foot 30 

TABLE 5-4.C-7 

5-4.C.5 FUNCTIONAL DESCRIPTION 

The disk drive is a mass memory device featuring a floppy disk and contact recording. The 250 kHz 

transfer rate provides a high speed interchange of data between the disk drive and a host controller. The disk 

drive(s) may be connected in a radial or daisy-chained configuration with individual selection and status 

monitoring. 

The disk drive requires operator intervention in loading and unloading the floppy disk, after which 

the controller remotely operates the unit. Low-voltage, control signals, drive motor power, and write data are 

supplied by the controller, while the disk drive responds with operating status and read data. 

The disk drive (Figure 5-4.C-8) comprises the following functional circuits and mechanisms: 

• Drive mechanism • Power-on/ready logic 

• Head load mechanism • Read/Write head positioning logic 

• Positioning mechanism • Read/write logic 

• Head load mechanism 

Drive Mechanism 

The drive system provides rotational disk movement using a single-phase motor selected to match 

primary power of the controller system (see Figure 5-4.C-9). Various drive motors are available that 

accommodate primary power ranging between 100 and 240 vac at 50 or 60 Hz. The disk diive attains ready 

status within two seconds of primary power application. 
The drive motor also provides positive pressurization by an impeller (squirrel cage) fan mechani-

cally connected to one end of the rotor shaft. 
Rotation of the disk is provided by a belt and pulley connected to the other side of the motor. The 

drive pulley and drive belt are selected for either 50 or 60Hz input power. Floppy disk rotational speed is 360 

rpm. The disk is engaged with the drive by the spindle mechanism centering cone. 

5-233 



VI 

N 
w 
+::0 

Host 
System 

r-----------

I 
I 
I 
I 
I 
I 
I 
I 
L 

Centering Cone 

<''-

Read, Write, 
Positioning 

and 
Ready Logic 

THE CDS 140 

/'" 

'" 

Disk 
Drive 
Motor 

Cooling Fan 

FIGURE 5-4.C-8 The CDS 140 

Disk 

/ 
/ 

/' 

/ 
/ 

--1 

,> 

Solenoid Drive 
Head Load 

Actuator 

Head Read/Write 
I ./ Assef!lblY 
./ Carnage 

I ./ Lead Screw 

I 
i 
! 
I 
I 
I 
I 
I 

Head Position Actuator 

~ I~~· 

I 
I 
I 

_.J 

View Showing Helix Drive 

Century I)ata 
8G.8$~G 



Impeller-----j~ 

Spindle Drive 
~-- Pulley 

......... ,...----- Drive Belt 

FIGURE 5-4.C-9 Drive Mechanism 

5-4.C.5.1 Spindle Mechanism 

The spindle mechanism consists of a centering-cone and a load plate. In the unload position, the load 

plate is pivoted upwards creating an aperture through which the floppy disk is inserted. In this position, the 

centering-cone disengages the disk from the drive mechanism. 

To load a disk, the operator inserts the floppy disk then presses down on the load handle which 

latches the load plate in the operating mode. The centering-cone is mechanically linked to the load plate and is 

activated at the same time (see Figure 5-4.C-IO). 

The centering cone is an open splined device that performs two functions: (1) engages disk media 

and drive mechanism and (2) positions the disk media in the correct track alignment. 

As the load plate is pivoted to the load position, the centering-cone enters the floppy disk center. At 

approximately 80 mils from full-down position, a centering cone expander is automatically activated. This 

device then expands the centering -cone which grips the inner diameter of the disk media in the correct track 

alignment. 

Track 00 (home) position serves as the disk drive reference track. This position is sensed by a 

photo-transducer which generates track 00 status. This status is sent to the controller for initial track 

positioning. All track addressing is relative. The controller generates step pulses to position the carriage from 

the current track to a new track. 

5-4.C.5.2 Positioning Mechanism 

The positioning mechanism comprises a carriage assembly and a bi-directional stepper motor (see 

Figure 5-4.C-ll). The stepper motor rotational movements are converted to linear motion by the rotor helix 

drive. 

The read/write head mount rides in the grooved helix shaft and is held in horizontal alignmep.t by the 

way. When the stepper motor is pulsed, the helix drive rotates clockwise or counterclockwise moving the 

mount in or out. 

The stepper motor includes four pair of quadrature windings. In detent, current flows in one winding 

and maintains the rotor in electro-magnetic detent. For positioning one or more step pulses are sequentially 

applied to quadrature windings, causing an imbalance in the electro-magnetic field. The stepper motor, 

consequently, revolves through detent positions until the step pulses are halted. The rotor then locks in that 

5-235 



Read/Write 
Head 

Front 
Bearing 
Mount 

-1---: Expander Spring 
-,----- Centering Cone 

I 
Centering Cone 

Expander 

L--___ Centering Cone 

Spindle Drive 
Hub 

Spindle Drive 
Pulley 

5 4 C-10 Centering Cone a FIGURE -. nd Drive Hub 

Stri ker Stop 

. Mechanism E 5-4 C-" Positioning FIGUR . 

5-236 

Helix Drive 

Track 00 
Transducer 

Head Load 
Arm 



position. The sequence in which the stepper motor quadrature windings are pulsed dictates rotational direction 

and, subsequently, higher or lower track addressing from a relative position. 

5-4. C. 5.3 Head Load Mechanism 

The head load mechanism is basically a relay driver and a solenoid. When activated by HEAD 

LOAD/, the spring-loaded head load pad is released and rests in parallel alignment with the floppy disk surface. 

Part of the casting provides the lower alignment dimensional surface while the head load solenoid bar provides 

the upper alignment surface. 

In the load position the read/write head tang rides between these two alignment surfaces and 

maintains the read/write head in contact with the disk surface. 

The load pad is located behind the read/write head and holds the floppy disk flat against the lower 

alignment block. 

To minimize disk surface and read/write head wear, the head load signal is gated with SELECT. In 

the deselect or idle mode, head loading is automatically disabled. The head load command requires a 16 

millisecond execution time. 

5-4.C.5.4 Power-On/Ready Logic 

Initially the controller applies ac drive motor power which, in turn, initializes the ready circuit (see 

Figure 5-4.C-12). Rotational speed is measured by comparing index repetition rate to a ramp signal. When 60 

Select 

Primary 
Power 

Write Data 

Write Enable 

Above Trk 43 

Step Pulses 

Select 

--------~ Direction 
Control t--S_te...;.p ___ ~ 

Direction S and Pulses ________ .... equencer 

Select 

Stepper 
Motor 
Drivers 

Carriage 
Assembly 

Differ, 
ential 
Ampl 

FIGURE 5-4.C-12 Model 140 Functional Block Diagram 

5-237 

4-Bit 
Counter 

Read 
Decode 

Network 

Index 

Pulses 

Ready 

Status 

Read 

Clock 

Read 

Data 

TrkOO 

Status 



percent rotational speed is attained, the ramp level is less than index pulse timing. This condition is detected by 

a differential amplifier whose output is applied to the parallel load input of a 4-stage counter. 

Prior to attaining speed, the 4-stage counter is held in the cleared state and maintains a not ready 

status output. Once speed is increased to the operational level, the parallel load signal is inhibited and the 

counter is incremented by index. At a 12-count, the decoded output inhibits further index counting and switches 

the ready line to a low or disk drive ready status. 

Ready status is not gated SELECT, allowing the controller to monitor this condition through a status 

interrupt feature. The controller may elect to issue track addressing while waiting ready status. The positioning 

system operates independently of the disk drive mechanism. 

5-4.C.5.5 Read/Write Head Positioning Circuits 

The read/write head positioning logic responds to STEP/pulses and the DIRECTION signal from the 

controller. The number of step pulses designates track position. DIRECTION provides the step pulse sequence; 

thereby, signifying a clockwise or a counter-clockwise decode. 

The rotational decode is applied to Darlington drivers connected to the stepper motor quadrature 

windings. The 2-bit decode successively enables one winding at a time, causing the read/write head to traverse 

one track position. 

Track 00 is optically detected by a photo-diode transducer. This position is attained by the controller 

issuing a step-out command followed by approximately 100 stepping pulses. The positioning system responds, 

by moving the read/write head to track 00, developing track 00 status, and inhibiting any further outward 

movement. 

5-4.C.5.6 Read/Write Logic 

The read/write logic incorporates a single read/write head to record and retrieve data. Data is 

recorded wide by the write circuit, then confined to 0.012-inch track width by the tunnel erase coil (see Figure 

5-4.C-13). 

I \ \ \ 
t 

After 
Erase t 

Written Data 

FIGURE 5-4.C-13 Tunnel Erase 

Each bit (clock or data) produces a flux change that is concentrated on a small area of the recording 

surface. Flux pattern polarity is alternated for successive bits through the use of dual write coils, wound 

anti-phase fashion. This technique assists data recovery during a read operation. 

Flux transitions are detected by the read coils as the head passes over data. The analog output of the 

read coils is applied to a differential amplifier for pre-amplification. Data is recovered from the bipolar signal 

by a crossover detector whose output is linearily shaped then coupled to a read decode network. 

5-238 



5-4.D 

APPENDIX 5-4.0 
RECORDING FORMATS 

(COURTESY SHUGART ASSOCIATES) 

Recording Format 

5-4.d.1 The format of the data recorded on the Diskette is totally a function of the host system. Data is 

recorded on the diskette using frequency modulation as the recording mode, i.e. , each data bit recorded on the 

diskette has an associated clock bit recorded with it. Data written on and read back from the diskette takes the 

form as shown in Figure 5-4.D-1. The binary data pattern shown represents a 101. 

5-4.d.2 Bit Cell 

As shown in Figure 5-4.D-2, the clock bits and data bits (if present) are interleaved. By definition, a 

Bit Cell is the period between the leading edge of one clock bit and the leading edge of the next clock bit. 

Clock Bits 

Data Bits 
!----BitCell-----\ 

FIGURE 5-4.0-1 Data Pattern FIGURE 5-4.0-2 Bit Cell 

5-4.d.3 Byte 

A Byte, when referring to serial data (being written onto or read from the disc drive), is defined as 

eight (8) consecutive bit cells. The most significant bit cell is defined as bit cell 0 and the least significant bit cell 

is defined as bit cell 7. When reference is made to a specific data bit (i.e., data bit 3), it is with respect to the 

corresponding bit cell (bit cell 3). 

During a write operation, bit cell 0 of each byte is transferred to the disc drive first with bit cell 7 

being transferred last. Correspondingly, the most significant byte of data is transferred to the disc first and the 

least significant byte is transferred last. 

When data is being read back from the drive, bit cell 0 of each byte will be transferred first with bit 

cell 7 last. As with reading, the most significant byte will be transferred first from the drive to the user. 

Figure 5-4.D-3 illustrates the relationship of the bits within a byte and Figure 5-4.D-4 illustrates the 

relationship of the bytes for read and write data. 

5-239 



f 
Bit Cell 0 of Byte 0 is 
First Data to be Sent 
to the Drive When 

Writing and From the 
Drive When Reading 

CDC D C 

FIGURE 5-4.0-3 Byte 

C CDC CDC 

f 
Bit Cell 7 of Byte 17 is 
Last Data to be Sent to 
the Drive When Writing 

and From the Drive 
When Reading 

CDC 

Bit Cell 0 Bi1 Cell 1 i ;i1 cell; ;i1 cell; I ;It Cell: I ;i1 cell; I ;i1 cell; Bi1 Cell 7 Bit Cell 0 

MSB LSB 

~------------------------Byte------------------------~.~I 

Binary Representation of 

Data Bits 

Clock Bits 

Hexadecimal 
Representation 

of 

Data Bits 

Clock Bits 

5-4.D.4 Tracks 

o o o o 

FIGURE 5-4.0-4 Data Bytes 

The SA900/90l is capable of recording up to 77 tracks of data. The tracks are numbered 0-76. Each 

track is made available to the R/W Head by accessing the head with a stepper motor and carriage assembly. 

Track accessing will be covered in Section 5.5. 

Basic Track Characteristics: 

Number of bits/track 

Index Pulse Width 

Index/Sector Pulse Width 

(SA901 only) 

5-4.D.5 Track Format 

41,300 bits 

1.7 ± .5 ms 

.4 ± .2 ms 

Tracks may be formatted in numerous ways and are dependent on the using system. The SA900/90l 

use index and sector recording formats respectively. 

5-4.D.5.l Index Recording Format 

In this Format, the using system may record one long record or several smaller records. Each track is 

started by a physical index pulse and then each record is preceded by a unique recorded identifier. This type of 

recording is called soft sectoring. Figure 5-4.D-5 shows a typical Index Recording Format. 

5-240 



r 
Physical Index ~ 

ss Mark 
46 Bytes 1 Index Addre Nom'""' r 

Gap 1 Gap 2 1 Data Gap 4 Post ID ID teo." Pre Index Index Record Gap 
Record 320 Bytes 32 "'1 17 26 Bytes Bytes 

VI 

~ 4 

ID Track Sector 
Address Address Zeroes Address 

Mark 

Data Field 
Record 

#1 

Zeroes 

Gap 3 
Data ID Data Field 

Record Gap 2 Record Gap 
#2 #2 33 Bytes 

6 

CRC CRC 
Byte 2 Byte 2 

ID 
Gap 3 Record 

#3 

Data or 
Deleted Data 

Address 
Mark 

Gap 2 
J Data Field 

Record 
#3 

I 

128 Bytes of User 
Data 

ID I I Data Field 
Record Gap 2 Record I Gap 4 

#26 #26 

CRC 
Byte 1 

CRC 
Byte 1 

I_'B,,~I~_ 
Write Turn-Off 
For Update of 

Previous Data Field 

FIGURE 5-4.0-5 Track Format 



5-4.D.5.2 Sector Recording Format 

In this Format, the using system may record up to 32 sectors (records) per track. Each track is started 

by a physical index pulse and each sector is started by a physical sector pulse. This type of recording is called 

hard sectoring. Figure 5-4.D-6 shows a typical Sector Recording Format. 

5-4.D.6 Typical Track Index Format 

Figure 5-4.D-7 shows a track Format, which is IBM compatible, using Index Recording Format 

with soft sectoring. 

5-4.d.6.1 Gaps (Ref. Figure 5-4.D-7) 

Each field on a track is separated from adjacent fields by a number of bytes containing no data bits. 

These areas are referred to as gaps and are provided to allow the updating of one field without affecting adjacent 

fields. As can be seen from Figure 5-4.D-7, there are four different types of gaps on each track. 

Index 

~ 1.7 + 5ms ---.j 
--.J 

Clock L Data 

Lr-- Data Identifier 8 Bits 

_ 128 Bits. __ ' .... __ 
~ .515 --,.~ 40K Bits Max 161.2ms 

.... -=----------- 166.6ms Nominal 

Clock 

Variable 
-----III.~I~ Fill ... 

4.9ms (Min) 

FIGURE 5·4.0·6 Index Recording Format 

.4 ± .2ms 

I... -I 
Sector ~ 1L.-. ____________________ --' 

Clock I I Data Clock 

104 Bits 
(Min.) l 

Data Identifier 8 Bits 

...... 128 Bits...... 1056 Bits Max. _____ .... ~ ..... _-V-a-ri-a-bl-e_l-.. 1 
.515ms 4.256ms Fill -

I .. ~ __ -------- 5.21 ms Nominal --------'---~ .. ~I 

FIGURE 5-4.0·7 Sector Recording Format 

5·242 

L 

L 



Gap 1 Post-Index Gap 

This gap is defined as the 32 bytes between Index Address Mark and the ID Address Mark for Sector 

one (excluding the address mark bytes.) This gap is always 32 bytes in length and is not affected by any 

updating process. 

Gap 2 ID Gap 

The seventeen bytes between the ID Field and the Data Field is defined as Gap 2 (ID Gap). This gap 

may vary in size slightly after the Data Field has been updated. 

Gap 3 Data Gap 

The thirty-three bytes between the Data Field and the next ID Field is defined as Gap 3 (Data Gap). 

As with the ID Gap, the Data Gap may vary slightly in length after the adjacent Data Field has been updated. 

Gap 4 Pre-Index Gap 

The three hundred and twenty bytes between the last Data Field on a track and the Index Address 

Mark is defined as Gap 4 (pre-Index Gap). Initially, this gap is nominally 320 bytes in length; however, due to 

write frequency tolerances and disc speed tolerances this gap may vary slightly in length. Also, after the data 

field of record 26 has been updated, this gap may again change slightly in length. 

5-4.D.6.2 Address Marks 

Address Marks are unique bit patterns one byte in length which are used in this typical recording 

format to identify the beginning of ID and Data Fields and to synchronize the deserializing circuitry with the 

first byte of each field. Address Mark bytes are unique from all other data bytes in that certain bit cells do not 

contain a clock bit (all other data bytes have clock bits in every bit cell). There are four different types of 

Address Marks used. Each of these used to identify different types of fields. 

Index Address Mark 

The Index Address Mark is located at the beginning of each track and is a fixed number of bytes in 

front of the first record. The bit configuration for the Index Address Mark is shown in Figure 5-4.D-8. 

ID Address Mark 

The ID Address Mark byte is located at the beginning of each ID Field on the diskette. The bit 

configuration for this Address Mark is shown in Figure 5-4.D-9. 

Data Address Mark 

The Data Address Mark is located at the beginning of each nondeleted Data Field on the diskette. 

The bit configuration for this Address Mark is shown in Figure 5-4.D-IO. 

5-243 



.. .. 
Bit Cell 0 Bit Cell 1 Bit Cell 2 Bit Cell 3 Bit Cell 4 Bit Cell 5 Bit Cell 6 Bit Cell 7 Bit Cell 0 

Binary Representation of 

Data Bits 

Clock Bits 

Hexadecimal 
Representation of 

Data Bits 

Clock Bits 

C C D C D 

I ndex Address Mark Byte 

o o 

FIGURE 5-4.0-8 Index Address Mark 

D D D C D C D C 

! ... Bt-i-t-C-e-II--t7 .... B .... i-t-C-e-II"""'O ....... ·B-it-C-e-II--'-t4-B-it-C-e-1i-2·1:" cell: :" Cell ~I:;, cell: I:;, cell: :" Cell : 

'------------- I D Address Mark Byte ------------..j 

Binary Representation of" 

Data Bits 

Clock Bits 

Hexadecimal 

Representation of 

Data Bits 

Clock Bits 

Deleted Data Address Mark 

o 

o 

FIGURE 5-4.0-9 10 Address Mark 

... 

C C 

Bit Cell 0 

The Deleted Data Address Mark byte is located at the beginning of each deleted Data Field on the 

diskette. The bit configuration for this Address Mark is shown in Figure 5-4.D-l1. 

5-244 



5-4.D.6.3 CRC 

Each field written on the diskette is appended with two Cyclic Redundancy Check (CRC) bytes. 

These two CRC bytes are generated from a cyclic permutation of the data bits starting with bit zero of the 

address mark and ending with bit seven of the last byte within a field (excluding the CR C bytes). When a field is 

read back from a diskette, the data bits (from bit zero of the address mark to bit seven of the second CRC byte) 

are divided by the same generator polynomial. A non-zero remainder indicates an error within the data read 

back from the drive while a remainder of zero indicates the data has been read back correctly from the disk. 

C C D C D D D D C CDC D C 

Bit Cell 7 Bit CeliO 

\-.---------- Data Address Mark Byte ----------__ 1 

Binary Representations of 

Data Bits 

Clock Bits 

Hexadecimal 
Representation of 

Data Bits 

Clock Bits 

C C D C 

o 

D 

o 

o o 

7 

FIGURE 5-4.0-10 Data Address Mark 

D D D C C C C 

Bit Cell 7 

· -~ . .. -H 
Bit Cell 01 Bit Cell 1\ Bit Cell 2 Bit Cell 31 Bit Cell 41 Bit Cell 5 Bh Cell 61:;, cell: Bit Cell a 

14---------- Deleted Data Address Mark Byte ----------.1 

Binary Representation of 

Data Bits 

Clock Bits 

Hexadecimal 

Representation of 

Data Bits 

Clock Bits 

o o o 

o o o 

7 

FIGURE 5-4.0-11 Deleted Data Address Mark 

5-245 

C 

C 



APPENDIX 5-4.E FLOPPY DISK PROGRAM LISTINGS 

FLDISI( 

88818 
88821 
88838 

88858 

88878 a8el ORC 8 
88888 8888 9881 FYABOR R"B 1 OP/ABORT CODE 
88898 8881 8881 FYSTAT R"B 1 ERROR STATUS WORD 
88188 8882 8881 FYDELT R"B 1 TRACK DELTA 
98118 0883 8881 FYCTRK R"B 1 CURRENT TRACK ADDRESS 
80128 e8e4 0881 FYTRKA R"B 1 TARGET TRACK ADDRESS 
88138 9885 9881 FVD"RK R"B 1 ID/DATA "ARK PATTERH 
88148 9886 8881 FY8CHT R"B 1 BYTE COUNTER 
88158 9887 8882 FYDADR R"B 2 READ DATA STACK ADDRESS 
89168 9899 9882 FYTI"E R"B 2 VARIABLE INTERYAL TIME 
88178 0888 8882 FVSVSP R"B 2 TEMP STACK PTR STORAGE 
88188 88BD Be8A FYUPC R"B 18 UPC STORAGE AREA 
88198 9817 8881 FYFLGl R"B 1 FLAG 1 
S8288 9818 9881 FV"'F LG Z R"B 1 FLAG 2 
88218 981' 0881 FYFLG3 R"B 1 FLAG 3 
00229 aelA 9881 FYFlG4 R"B 1 FLAG 4 
88238 8818 9881 FYFLG5 R"B 1 FLAG 5 

882S8 08FF FKDATA EQU 2~5 INDEX OFFSET FOR DATA STORE 
88268 88FF FK"TCH EQU FKDATA 

88288 8888 FPIPRA EQU $8880 PIA ADDRESSES 
882'8 8881 FPIPRB EQU $8881 
88388 8882 FP1CRA EQU $8882 
88318 8883 FP1CRB EGU $8883 
88320 8048 FP2PRA EQU $8840 
88338 8841 FP2PRB EGU $8841 
88348 8842 FP2CRA EQU $8842 
88358 8843 FP2CRB EGU $8843 
88368 8819 FP3PRA EQU $8810 
88379 8911 FP3PRB EQU $ 8811 

5-246 



FLDISK 

99398 * INTERVAL T I "ER 8-81T PRESCAlE CONSTANTS 

99418 9885 C1US EQU 5 1 "ICROSECOHD CLOCK 
88428 8884 C18US EQU 4 18 MICROSECOND CLOCK 
88438 9883 C198US EQU 3 188 "ICROSECOHD CLOCK 
88448 eee2 Cl"S EQU 2 1 "ILLISECOHD CLOCK 
90458 98el Cl9ns EQU 1 19 MILLISECOND CLOCK 

88478 * t HTERVAL TInER 16-81T PRESCALE CONSTAHTS 

88498 8588 SlUS EQU 1288 1 "ICROSECOHD CLOCK 
98588 8499 S18US EGU 1824 18 MICROSECOHD CLOCK 
88518 8388 S 18 au S EQU 768 188 "ICROSECOHD CLOCK 
98529 8288 SII1S EQU 512 1 "IlLISECOHD CLOCK 
98538 9188 S19"S EQU 256 18 MILLISECOND CLOCK 
89540 5888 ORC $5888 

5-247 



88:588 

88688 
88618 
88628 
88638 
88648 
88658 
88668 
'8678 
88688 
81698 
88788 
88718 
88728 
88738 
8874. 
88758 

• 8778 
88788 
88798 
88888 
88818 
88828 
.8838 
88848 
98858 

88878 
88888 
88898 
98988 
88918 
88928 
88938 
8894. 
88958 
88968 
88978 

FLDISK 

.INTERRUPT DRIVEN SEEK/RESTORE ROUTINE 

* THIS ROUTINE EXECUTES A ONE TRACK STEP OF 
• A SEEK OR RESTORE SEQUENCE. THE DISKETTE 
* DRIVE "OVES THE HEAD ONE TRACK POSITION 
* EACH TIME THE STEP SIGNAL IS PULSED. 
* ENTRY INTO THIS ROUTINE IS GOVERNED BV 
* 1 NTERRUPTS FROM THE 1 NTERYAL T I "ER. THE 
* TI"ER IS PRESET TO 9.9 "ILLISECONDS FOR 
• EACH STEP. THE HU"BER OF TRACKS THE HEAD 
* "UST "OYE FOR A SEEK OPERATION IS STORED 
• IN RA" LOCATION -FYDELT.- FOR A RESTORE 
* OPERATION ·FYDELT· IS PRESET TO 83 TO INSURE 
• THAT THE "AXIMU" HUMBER OF TRACKS (77) CAN 
• BE STEPPED. WHEN THE SEEK OR RESTORE IS 
• CO"PlETED OR ABORTED -FVDELT· IS SET TO 
• ALL OHES. WHILE THE SEEK IS IN PROGRESS 
* BIT 7 OF -FYDELT- IS ZERO . 

• RAM LOCATION ·FVCTRK- COHTAIHS THE CURR£HT 
• TRACK ADDRESS OF THE HEAD. THE VALUE 
• ·FYCTRK· IS IN SIGHED BINARY FOR"AT. 
• IF THE SEEk DIRECTIOH IS FORWARD 
* (FRO" TRACK 88) -FYCTRK- IS A POSITIYE 
• BIHARY HU"BER, I.E. BIT 7 IS ZERO. IF 
• THE SEEK DIRECTION IS REYERSE (TOWARD 
* TRRCK 88) "FYCTRK- IS R NEGATIYE BINARY 
* H UK BE R, l. E. BIT 7 I SAO HE. 

* DISK STATUS I S CHECKED EACH STEP. IF 
* THE STATUS IS GOOD AND THE SEEK OR 
* RESTORE IS HOT CO"PLETE THE INTERYAL TI"ER 
• IS RESTARTED TO TI"E OUT THE NEXT STEP. 
• AN EXCEPTION TO THE ABOYE IS IF SEEK 
* CO"PLETE IS DETECTED (PFYDELT d BIT 7=1) 
* DURING A RESTORE OPERATION THE TIMER IS HOT 
• RESTARTED AND TUE RESTORE OPERATION IS 
* ABO R TED. I F SEE K CO" P LET E , RES T O~ E CO f1 P LET E 
* OR A STATUS ERROR IS DETECTED THE Tl"ER' 
• IS NOT RESTARTED. 

5-248 



8e998 
81888 
81818 
81828 
81938 
81848 
81858 

FlDISK 

* AM OPERATIOH/ABORT FLAG IS "AIHTAINED 
* IN RAM LOCATION -FYABOR- AS FOLLOWS: 
• 8881888X SEEK/RESTORE IH PROGRESS 
• 8181888X SEEK/RESTORE ABORTED 
• 8881881X SEEK/RESTORE CO"PLETE 
• X=8 SEEK OPERATION 
• X=l RESTORE OPERATION 

5-249 



FLDISK 

81888 5888 96 89 
81898 5892 46 
81188 5893 eli 62 
81119 5885 F4 8841 
81129 5888 D7 81 
81138 saBA 26 16 

81158 
81168 
81178 
81188 

81288 5e8e 7A 9892 
81219 selF 28 19 
81228 5811 7C 8883 
81238 5814 96 8948 

81259 
81268 
81278 

81298 5917 24 82 
81388 5919 28 ID 

81328 
81338 

81358 5818 CE 8363 
81368 selE FF 8818 
81379 5821 39 

81398 

81418 5822 86 58 
81428 5824 C6 FF' 
9 1 43 8 582 6 D 7 8·2 
81440 5928 29 02 

Ff(SEEK lDA A FYABOR FETCH OP CODE 
ROR A IF RESTORE OP, CARRY=1 
LDA 8 '~81188818 SET STATUS "ASK 
AND 8 FP2PRB FETCH HASKED STATUS 
STA B FYSTAT STORE ERROR STATUS 
SHE FKSK02 BRANCH IF ERROR 

* ERROR STATUS CHECKED: 

* BIT 1 = DISK SYSTE" INOPERABLE 

* BIT 5 = NOT HEAD LOAD 

* BIT 6 = NOT READY 

DEC FVDELT DECREMENT TRK DELTA 
B"I FKSK04 BRAHCH IF SEEK COMPLETE 
1 Ne F YC T RK UPDATE CURREHT TRK 
LDA A FP2PRA FETCH CONTROL WORD 

* READING THE DISK CONTROL WORD FP2PRA 

* AUTOMATICALLY GENERATES THE STEP 
* PULSE. 

Bce FKSK01 BRANCH IF NOT RESTORE OP 
B"I FKSK87 BRANCH IF TRK 80 

* RESTORE OPERATION IS COMPLETE 
* WHEN TRACK 08 IS DETECTED. 

FKSK81 L DX IS188US+99 
STX FP3PRA REARM TIMER FOR 9.9"5 
RTS RETURN TO INTERRUPT POLL 

* ERROR DETECTED IN STATUS 

FKSK82 LDA A 
FKSK83 LDA 8 

STA B 
BRA 

1~818188e8 PRELOAD SEEK A90RT FLAG 
I$FF 
FYDELT RESTORE TRK DELTA 
FKSK0S GO TO EXIT PREPARATION 

5-250 



FLDISK 

81478 

81498 S82A 86 12 
01588 582C C6 3C 
91519 592£ F7 8842 
01528 5831 24 82 
01538 5933 86 31 

81558 
01568 
81570 
81588 
81598 
81688 
81618 
81628 

81648 383~ 97 88 
81650 5837 39 

81678 

01698 
81798 
81718 

81739 
81740 

81768 
91779 
81789 
81798 

01829 

01848 
81858 
91868 
81878 
81888 
81899 

5938 
583A 
S03D 

S849 
5841 
5844 
5846 

86 18 
87 8841 
96 8848 

8C 
7F 9993 
86 13 
28 DC 

* SEEK CO"PLETE DETECTED 

FKSK84 LIft A 
FKSK85 lDIl B 

STA B 
Bec 
LDA A 

1%88818818 PRELOAD SEEK CO"PL FLAG 
1%88111188 
FP2CRA DISABLE STEP PULSE 
FKSK86 BRAHCH IF NOT RESTORE 
1~81918881 PRELOAD RESTORE ABORT 

* RESTORE OP IN PROGRESS IS IHDICATED WHEN 
* THE CARRY BIT IS SET. BECAUSE THE TRACK 
* DELTA IS SET TO A HIGH VALUE (83) PRIOR 
* TO BEGINNING A RESTORE OPERATION AH ERROR 
* IS l"PLIED IF SEEK CO"PLETE IS DETECTED. 
* BEFORE TRACK 88 STATUS IS SEHSED. 
* ALSO THIS PATH IS TAKEN IF DISK STATUS IS 
* BAD DURING A RESTORE OPERATION. 

FKSK86 STA A FYABOR 
RTS 

SET OP/ABORT FLAG WORD 
RETURH TO INTERRUPT POLL 

* RESTORE OPERATION COMPLETE 

FKSK87 LDA A 1~88818888 

STA A FP2PRB SET FORWARD DIRECTION 
LDA A FP2PRA GENERATE STEP PULSE 

* THE FORWARD STEP IS USED TO RESTORE THE HEAD 
* STEPPER MOTOR TO TRACK 88 PHASE. 

CLC CLEAR RESTORE OP FLAG 
ClR FYCTRK SET CURREHT TRK TO 88 
lDA A 1%88018811 RESTORE CO"PLETE FLAG 
BRA FKSK83 GO TO RESTORE EXIT PREP 

* UPC LOOKUP PREPARATION ROUTINE 

* THIS ROUTINE CALCULATES ONE OF 58 TRACKS 
* FRO" THE lEAST SIGNIFICANT TWO DECIMAL 
* CHARACTERS OF THE upe CODE. THE RESULTANT 
* TRACK IS THEN STORED IN "FVTRKA" AND THE 
* THE SEEK PREPARATION ROUTINE IS BRANCHED TO . 
• TRACKS 8 THROUGH 57 CONTAIN THE upe DATA. 

5-251 



81910 
81928 
81938 
81940 
81950 
81969 
81978 
81988 
81999 
82009 
82018 
82828 
82938 
82948 

82878 

82890 
82188 
82119 
82128 
82138 
82148 
92158 
02169 
82178 
82188 
82198 
82288 

92228 
92239 
92249 
82258 

82278 
82289 
02298 
82388 
82318 
92328 
82338 
82348 
82358 

:5848 
S84A 
584C 
584E 
sese 
5951 
5053 
50S4 
5856 
5858 
~85A 

sesc 
50SD 
585F 

FlDISK 

D6 17 
96 16 
27 85 
CB 8A 
4A 
26 FS 
54 
Cl 31 
23 85 
86 49 
97 88 
39 
D7 84 
28 SA 

FKlKUP LDA B FYUPC+10 GET LSC OF UPC CODE 
LDA A FYUPC+9 GET 2ND LSC OF upe CODE 
BEQ F Kl U 92 BRANCH IF 2HD CHAR = 9 

FKLUet ADD B 119 CONYERT DECIMAL-BINARV 
DEC A 
BHE F KL U 01 LOOP UNTIL CONVERSION COMPL 

FKlU82 LSR B DIYIDE RESULT BY 2 
C"P B 149 TEST RESULT MAGNITUDE 
BLS FKlU93 BRAHCH IF TRK ADDR GOOD 
LDA A '%01008080 
STA A FYABOR SET LOOKUP ABORT CODE 
RTS RETURN TO EXEC PROGRAM 

FKLU83 STA B FYTRKA STORE TRACK ADDRESS 
BRA FKSKIN GO TO SEEK PREP 

* SEEK/RESTORE PREPARATION ROUTINE 

* THIS ROUTIHE PREPARES THE DISKETTE DRIYE 
* AND RA" LOCATIONS FOR A SEEK OR RESTORE 
* OPERATION. FOR A RESTORE OPERATIOH THE CURRENT 
* TRACK ADDRESS ("FYCTRK a

) IS PRESET TO 83 AND 
* THE TARGET TRACK ADDRESS (aFVTRKAa) IS 
* CLEARED TO 89. FOR A SEEK OPERATION THE 
* CURRENT TRACK V~LUE IS DETERMINED BY THE LAST 
* SEEK OR RESTORE OPERATION. THE TRACK DELTA 
* (RFYDElTR) IS CALCULATED BY SUBTRACTING THE 
* CURRENT TRACK FRO" THE TARGET TRACK AND 
* CONYERTING THE SIGHED BINARY RESULT TO A 
* POSITIVE BINARY NU"BER. 

* THE DIRECTIOH OF THE SEEK IS DETERJ1IHED BY 
* SIGH OF THE TRACK DELTA BEFORE IT IS CONVERTED 
* TO A POSITIVE BINARY HU"BER. IF THE SIGH IS 
* NEGATIYE THE SEEK IS REVERSE (TOWARD TRK 88). 

* TO INITIATE THE IHTERRUPT DRIVEN SEEK RJUTIHE 
* A DUn"V INTERVAL TIMER INTERRUPT IS GENERATED 
* If THE TI"ER IS HOT BUSY. If THE TI"ER IS 
* BUSY IT IS ASSU~ED THAT THE INTERRUPT WILL 
* ace U R WHEN THE T I MER R U H SOU T I SO A D U ,.. 11 Y 
* INTERVAL TI"ER INTERRUPT IS NOT GENERATED. 
* THUS IHTERFERENCE WITH CONCURRENT OPERATIONS 
* USING THE TI"ER IS ELI"INATED, 1. E. THE SEEK 
* WILL HOT BEGIN UHTILTHE TIMER IS AVAILABLE. 

5-252 



FLDISI( 

92388 

82488 5861 SF 
82419 5852 7F 9894 
82428 5855 C6 33 
92439 5957 86 11 
82448 5859 28 95 

92468 

82488 5958 8F 
82498 58se D6 83 
92588 585E 86 18 
82519 5878 97 99 
82528 5872 5D 
82'38 5873 2A 81 
82548 5875 58 

82~68 

82578 
82588 

82698 5876 96 84 
82619 5978 19 
82628 5879 2A 87 
82638 5878 48 
82649 587e 58 

82668 
82678 

82698 587D 97 82 
82788 S87F 4F 
82718 588e 28 94 
82728 5882 97 82 
82738 5884 86 18 
82748 5886 87 8841 
82758 5889 D7 83 
92768 5888 8D 15 
82778 598D 86 24 
82788 588F 87 8842 
82798 5892 86 8819 
92889 5895 85 87 
82818 5897 26 88 
82828 5899 8A 85 
82838 5898 87 8918 
82848 589E 7F 8811 
82859 58Al 8E 
92868 S9A2 39 

* RESTORE OPERATION ENTRY = MFKRSTR a 

FKRSTR SEI 
CLR 
LDA B 
LDA A 
BR~ 

"ASK SYSTEM INTERRUPTS 
FYTRKA TARGET TRACK = 88 
183 PRELOAD ARTIFICIAL CURR TRK 
1~90018801 PRELOAD RESTORE OP CODE 
FKSP81 

* SEEK OPERATIOH EHTRY = -FKSKIH" 

FKSKIN SEI 
LDA B 
LDR A 

F!<SP81 STA A 
TST B 
8Pl 
HEG B 

"ASK SYSTEM INTERRUPTS 
FVCTRK FETCH CURRENT TRACK 
1%89818898 PRELOAD SEEK O? CODE 
FYABOR STORE OP CODE 

FKSP82 BRANCH IF -fYCTRK u POSITIVE 
"AKE aFYCTRK- POSITIVE 

* SINCE -DVCTRK- IS IN SIGNED BINARY fOR"Al IT 
* IS :~£CESSARY TO COHVERT IT TO POSITIVE BEFORE 
* CALCULATIHG THE TRACK DELTA. 

FKSP82 LDA A FYTRKA 
SBA 

FETCH TARGET TRACK 
CALCULATE TRACK DELTA 
BRANCH IF DELTA POSITIVE 
"AKE DELTA POSITIVE 
HEGATE CURRENT TRk ADDR. 

8PL FKSP0J 
NEG A 
HEG B 

* RFYCTRK· IS A NEGATIYE BINARY HUMBER IF THE 
* SEEK IS REYERSE 

STA A 
ClR A 
BRA 

F!<SP83 STA A 
LDA A 

FKSP84 STA A 
STA 8 
8SR 
LDA A 
STA A 
LDA A 
BIT A 
BHE 
ORA A 
STA A 
CLR 

FKSP95 ClI 
RTS 

FYDElT STORE TRACK DELTA 
PRELOAD REVERSE DIRECTION 

FKSP84 
FYDELT STORE TRACK DELTA 
1%88818888 PRELOAD FORWARD DIRECT. 
FP2PRB SET DISK DIRECTION 
FYCTRK STORE CURRENT TRK ADDRESS 
FKERST RESET DISK ERROR LATCHES 
1~88188188 

FP2CRA EHABLE STEP PULSE 
FP3PRA FETCH TI"ER STATUS 
'~88888111 "ASK NON-TI"ER STATUS 
FKSP85 BRANCH IF TIMER BUSY 
IC1US 
FP3PRA 
FP3PRB 

5-253 

-START INTERYAL TIMER 
-FOR I""EDIATE INTERRUPT 
CLEAR SYSTEM INTERRUPT "ASK 
RETURH TO HOST PROGRAM 



82899 
82988 

82928 
82938 
82948 
92958 
92968 

82988 
82998 
83988 

SIAl 
seA5 
S8A8 
S8AA 
seAD 

FLDISK 

86 8F 
87 8848 
86 2F 
87 8848 
Be 8848 

83828 5889 39 

* THIS ROUT I HE RESETS THE DISKETTE DRIYE 
* ERROR LATCHES AND SELECTS THE DRIVE. 

FKERST lDA A 1"98881111 
STA A FP2PRA RESET ERROR LATCHES 
LDA A 1"88181111 
STA A FP2PRA REMOVE RESET & SELECT 
CPX FP2PRA CLEAR ERROR INTERRUPT 

* THE ·CPX· IHSTRUCTION PERFORMS A DUM"Y READ 
* TO -FP2PRA & FP2PRS- TO CLEAR THE PIA 
* INTERRUPT FLAGS. 

RTS 

5-254 

DRIVE 
FLAGS 



83848 

83868 
83878 

83898 
83188 
8311 e 
83128 
83139 
83148 
831S8 
83168 
83178 
83189 
83198 
83298 

83228 
83238 
83248 
8J2Se 
83268 

83288 
83298 
83388 
83318 
83329 

83349 
833S9 
83369 

83388 
83398 
83489 
83418 
83428 
83438 
83448 
83458 
83468 
83478 
83488 
83498 
83589 

FlDISJ( 

• UPC SE~RCH ROUTINE 

• THIS ROUTINE SEARCHS FOR THE DESIRED UPC DATA 
• AND WHEN FOUKD STORES THE DATA. 

,. THE DATA ON flOPPY DISK IS RECORDED IN IBM 3749 ,. FIXED FORMAT. THE FOLLOWING IS A BREAkDOWN 

• OF THE upe RE CO R D STORAGE~ 

* upe ASSIGNED lRACKS ::;: 8-57 

* NO. OF ASSIGHED TRACKS ::; 50 

* DATA RECORD FIELDS PER TRACK ::; 26 

* TOTAL BYTES PER DA1A F 1 El D 
_. 

128 ,. BYTES PER FIFLD HEADER = 2 

* BYTES PER upe RECORD :: 1 8 ,. UPC RECORDS PER DATA f 1 i::L D = 7 

* UPC RECORDS PER TRACk = 182 

* TOTAL AYAILABLE upe RECORDS :: 9198 

• lHE FOLLOWING IS A BREAKDOWN Of THE UPC RECORD: 
• upe CODE = 18 BYTES 
• PRICE = 4 BYlES 
* "ESSAGE ADDR :: 2 BYTES 
,. "ISCElLANEOUS= 2 BYTES 

• EACH DATA RECORD FIELD COHlAIKS 7 UPC RECORDS. 
* THE FIRSl TWO BYlES OF THE DATA RECORD fIELD 
• CONTAIN HEADERIHFOR"ATIOH. THE FIRST BYTE 
* IS THE TRACK ADDRESS AND THE SECOHD BYTE IS 
* THE SECTOR ADDRESS. 

* EACH UPC RECORD CONSISTS OF A 10 BYTE upe CODE 
• WHICH SERVES AS A "KEY" TO 8 BYTES OF PRlCE 
* AND DESCRIPTIVE IHFOR"ATION. 

• A UPC SEARCH IS BEGUN BY READING THE fIRST 
,. D A T A ADD RES S "ARK W H I C HO C CUR S . THEN THE 
* FIRST DATA BYTE IS COMPARED WITH THE TRACK 
* ADDRESS ("FYTRKA"). THE HEXT BYTE IS READ 
* AND STORED IN wFYFLG2. D THEN lHE FIRST 19 BYTES 
• OF EACH 18 BYTE uPC RECORD IS COMPARED AGAINST 
• THE DESIRED UPC CHARACTERS. IF A "ATCH IS FOUND 
,. THE NEXT 8 BYTES ARE STACKED IN "EMORY. IF NO 
,. "ATCH IS fOUND IN ONE OF THE SEVEN UPC RECORDS 
• THE OPERATION REPEATS fOR THE NEXT DATA RECORD 
* FIELD. HOWE"IER: ONCE THE FIRST DATA RECORIt FIELD 
,. IS READ WITHOUT A CRC ERROR THE SECTOR ADDRESS 
* (-FVFlG2") LOCATION IN "EKORY IS HOT CHANGED. 

5-255 



83538 
83548 
83558 
83568 
83578 
83588 

83688 
836i8 

83638 
83648 
83658 
83668 
83678 
83689 
83698 

83718 
83728 
83738 
83748 
83758 
8376' 

83788 
83798 
83888 

8382'8 
83838 
83848 
838S8 
83868 
83878 
83888 
83898 
83988 
83918 

83938 
83948 
83958 
83968 

FLDJSk 

• THIS PROCESS CONTINUES FOR 2 REYOLUTIONS OF THE 
• DISkETTE GOYERNED BY A 348"S INTERVAL TI"ER 
• SETTING. IF THE DATA CANNOT BE FOUND IN TWO 
• REVOLUTIONS ERROR FLAGS ARE SET AS A RESULT 
• OF AN INTERYAl TIMER INTERRUPT AND THE upe 
• SEARCH OPERATION IS ABORTED. 

• FLAG BYTES ARE USED TO DIRECT THE PROGRA" FLOW. 
• DEFINITIONS OF THE FLAG BYTES ARE AS FOLlOWS~ 

• ·FYFLC1-
• FLAG t IS SET IF THE FIRST HEADER BYTE DOES NOT 
• "ATCH THE DESIRED TRACK ADDRESS (-FY1RKAD). 
• THE FLAC IS RESET IF A CRC ERROR OCCURS AFTER 
* READING THE DATA RECORD FIELD. IF NO CRe ERROR 
* OCCURS AMD FLAC 1 IS SETI A SEEK ERROR FLAG 
* IS SET AND THE UPC SEARCH IS ABORTED. 

• -FYFlG2· 
• FLAG 2 IS SET BY STORING THE 2ND HEADER BVTE 
• IN LOCATION DFYFLG2. - THE FLAG IS SET ONLY ONCE 
• DURIHG THE 1ST ERROR FREE READ OF A D~'A RECORD 
,. FIELD. IF THE FLAC IS SET IT "EANS THAT A TRACK 
• "A1CH WAS FOUND. 

• ·FYFLG3-
,. FLAG 3 "EANS THE UPC SEARCH WAS SUCCESSFUL. 
• IF A CRC ERROR OCCURS FLAG 3 IS CLEARED. 

,. ItFYFlG41t 
* FLAG 4 IS A CRC ERROR COUNTER. IF THE FIRST 
• 5 DATA FIELDS HAYE CRC ERRORS THE READ ERROR 
• 18 CONSIDERED TO BE NOH-RECOYERABLE. IF ANY 
• OF THE FIRST FIYE DATA FIELDS READ HAYE NO 
,. CRC ERRORSI ANY SUBSEQUENT CRC ERRORS IHCRE"EHT 
• FLAG 4. ONCE A DATA RECORD FJELD HAS BEEN READ 
* WITHOUT ERROR FURTHER ERRORS ARE CONSIDERED TO 
• BE RECOYERABLE UNTIL THE INTERYAL TI"ER ABORTS 
,. THE SEARCH OPERATION. 

* ·FYFLCS· 
* FLAG SIS A COUNTER WHICH INDICATES THE NU"BER 
* OF DATA FIELDS PASSED WITHOUT A upe ·"ATCH AND 
* NO upe ERRORS. 

5-256 



83988 
83998 
84888 
84818 

84838 
84948 
84858 
84869 
84978 
84988 

FLDISI( 

• AN OPERATION/ABORT FLAG IS MAINTAINED FJR 
• PURPOSES OF COMMUNICATION WITH THE HOST PROGRAM. 
• THE OPERATIOH/ABORT FLAG IS STOR~D IN RAM 
• LOCATION -FYABOR R AS FOLLO~S: 

• • 
• 
* 
* 
* 

18811888 
81811880 
81111 ee e 
88111918 
88811810 
81111111 

UPC SEARCH IN PROGRESS 
upe SEARCH ABORTED BY PROGRAM 
UPC SEARCH ABORTED BY INTERRUPT 
upe RECORD HOT FOUND 
UPC SEARCH COMPLETE 
SEEK VERIFY ERROR 

5-257 



FLDISI( 

84188 5891 8D F8 
84118 5883 4F 
84128 5884 C6 67 
84138 5886 F4 8841 
84149 5889 27 83 
84158 S8SB 7E 51DE 

94178 
84189 
84198 
84288 
94218 
84228 

84249 
84258 
84269 
84278 
84288 
84298 
843eS 
84318 
84329 
84330 
84348 
84358 
84368 
84378 
8438S 
84390 
84499 

84420 

588E 
secs 
S8C2 
seC4 

86 98 
97 ae 
9F as 
CE 3F1E 
FF 8842 sec 7 

5eCA CE 9122 
sele 
FS7F 
88 

58CD 
50D0 
S8D3 
58D5 
58D7 
58D9 
58D8 
58DD 
58E8 
30E2 
seES 

FF 
CE 
86 
97 
9E 
D6 
86 
B7 
86 
F5 
87 

86 
87 
a4 
24 
8882 
29 
8989 
8040 

84449 S8ES 86 81 

FKSRCH BSR 
CLR A 
LDA B 
AND 8 
BEQ 
J"P 

F KE R ST CLEAR ERROR LATCHES 

1%81189111 SET ERROR STATUS "ASK 
FP2PRB FETCH "ASKED STATUS 
FKSR81 SKIP IF STATUS GOOD 
FKSR26 BAD STATUSJEXIT 

* THE FOLLOWING ERROR STATUS IS CHECKED: 
* 8IT 6 -. NOT READY 
* BIT 5 - HEAD NOT LOADED 
* BIT 2 - OVERRUN 
* BIT 1 - DISK SYSTE" INOPERABLE 
* BIT a - NOT IN SYNC 

FKSR81 lDA A 
STA A 
STS 
lDX 
STX 
l DX 
STX 

FKSR02 LDX 
LDA A 
STA A 
LDS 
LDA B 
lDA A 
STA A 

FKSR83 LDA A 
BIT 8 
STA A 

1%199118a9 
FYABOR STORE OP CODE 
FVSYSP SAVE STACK POINTER 
1$3FIE 
FP2CRA EKABLE ERROR IHTERRUPTS 
IS18"8+34 LOAD 348"S TI"EOUT 
FP3PRA START INTERYAL TIM~R 

I$F87F PRELOAD DA1A "ARK "ATCH 
'256-128 
FY8CHT STORE FIELD BYTE CHTR 
FYDADR POINT TO DATA STACK 
FYTRKA PRELOAD TRACK ADDRESS 
'%99189106 
FPICRA ENABLE R/W HAHDSHAKE 
'%89181911 PRELOAD ENABLE CRC 
FPIPRA CLR BYTE READY IHTERR FLAG 
FP2PRA ENABLE CRC 

* THE DISK SYSTE" IS HOW AR"ED FOR DATA RECOVERY 

1%89090981 PRELOAD 1ST BIT "ASK 
84~5e 58EA 85 8981 FKSR84 
94469 seED 27 FS 

LDA A 
BIT A 
BEQ 

FPIPRB 
FKSR04 WAIT FOR 1ST BIT 

84479 58EF 81 8982 FKSR85 
84489 58F2 28 F9 
84499 S8F4 Be 89S9 
84509 58F7 27 07 
84519 58F9 86 2~ 

94529 S0FB B7 8948 
84539 saFE 20 e0 

C"P A 
B"I 
CPX 
BEQ 
LDA A 
STA A 
BRA 

FP1CRA 
FKSR05 WAIT FOR BYTE READY 
FP1PRA COMPARE FOR DATA "ARK 
F KS R 86 
1%98181111 
FP2PRA DROP ENABLE CRC 
FKSR93 DO AGAIH,LOOk FOR 1ST BIT 

84559 
84568 

* THE PROGRAM WILL RESTART THE READ OPERATION 
* UNTIL A DATA ADDRESS "ARK IS FOUND. 

5-258 



84598 
84688 

FL DI SK 

• THE DATA ADDRESS "ARK HAS BEEH FOUHD. 
• BEGIN READING DATA. 

84628 5188 86 69 FKSR86 
84G38 5182 87 8848 

LDA A 
STA A 
C"P A 
Bes 
SUB B 
BEQ 

1%81181811 
FP2PRA RAISE 
FPICRA 

READ EHABLE 
84648 5185 81 8882 FKSR87 
84659 5188 25 F8 FKSR87 

FP1PRA 
FKSR12 

WAIT FOR BYTE READY 
CO"PARE TRACK ADDR 
BRANCH IF CORRECT TRACK 

84668 518A Fe 8888 
84679 518D 27 42 

84698 
84788 
84718 
84728 
84731 
84748 
847~9 

84778 511F D7 17 
84789 5111 C6 81 

84888 
84819 
84828 

• THE 1ST DATA BYTE OF THE DATA RECORD FIELD IS 
• THE TRACK ADDRESS. IF THE WRONG TRACK ADDRESS 
• HAS BEEN READ IT IS A POSSIBLE SEEK ERROR. 
• BECAUSE IT IS HOT YET KNOWN THAT THE RECOYERED 
• DATA IS YALID FLAG 7 IS SET WHICH WILL BE 
• TESTED IF THERE IS NO CRC ERROR AT THE END OF 
• THE DATA RECORD FIELD. 

STA B FYFLGI SAVE TRK ERROR DELTA 
LDA B 1256-127 

• THE FOLLOWING INSTRUCTION SEQUENCE SKIPS OYER 
• THE HU"BER OF BYTES INDICATED IN ACCUMULATOR B 
• IN NEGATIVE BINARY FOR"AT. 

84848 5113 F5 8882 FKSR88 BIT B FPICRA 
F KS R 08 
FPIPRA 

848S1 5116 2A FB BPl 
84868 5118 F5 8880 BIT B 
84878 511B 5C INC B 
84888 5llC 26 F5 BHE FKSR08 

WAIT FOR BYTE READY 
ClR I HTERR FLAG 
DECRE"EHT BYTE COUNTER 
LOOP UNTIL LAST BYTE 

84989 • CRC PROCESSING. 

84928 511E 
84938 5121 
84949 5123 
84958 512' 
84968 5128 
84978 512A 
84989 512D 
84998 S12F 
85889 5132 
85818 3135 
85828 5137 
85838 513A 
8S148 5138 

Ft 8882 FKSR89 
28 F9 
F5 8888 
8' 2f" 
CG 98 
Ft 8882 FKSR19 
28 F9 
F4 8881 
B7 8848 
86 34 
87 8882 
5D 
27 5£ 

C"P B 
8"1 
BIT B 
LDA A 
LDA B 
C"P B 
B"1 
AND B 
STA A 
LDA A 
STA A 
1ST B 
BEQ 

FPICRA 
FKSR99 WAIT FOR 1ST CRC BYTE 
FPIPRA CLR IHTERR FLAG 
'%89181111 PRELOAD STOP READ 
'~888818ge PRELOAD TST CRe "ASK 
FPICRA 
FKSR18 WAIT FOR 2ND CRC BYTE 
FPIPRB FETCH CRe STATUS 
FP2PRA STOP READ 
1%89118188 
FPICRA TURN OFF_R/W HANDSHAKE 

FKSR28 BRANCH IF CRC =08 

5-259 



FlDISK 

85878 * CRC ERROR DETECTED 

85898 • CRC ERRORS ARE COUNTED TO DETER"INE IF READ 
85188 • ERRORS ARE RECOYERABLE OR HOT. THIS 
85118 • J NFOR"AT ION IS ALSO USEFUL IN DIAGNOSING 
85128 • DISK SYSTE" "ALFUHCT I OHS. 

85148 513D 7C 811A INC F YF L G4 IHCRE"EHT CRC ERR CNTR 
85158 5148 7D 8818 TST FYFLGS 
85168 5143 26 8S BNE FKSR92 IF FLC 5,READ NEXT RECORD 
85178 5145 86 95 LDA A .5 
85188 5147 91 lA C"P A FYFlG4 
85198 5149 23 4A BLS FKSR19 BRANCH IF CRC ERRORS (= 5 

85218 • HOR"Al EXIT ENTRY POINT 

85238 5148 7F a818 FKSR11 CLR FPJPRA STOP INTERVAL TI"ER 
85248 514E 7E 51B5 ""P FKSR25 GO TO ENDING PROCESSING 

5-260 



e:JZ68 
e:J271 
8S288 

IS388 
IS311 
85328 
85338 
85348 
85338 
85368 

85388 
85398 
IS488 
85418 

85438 
85448 
8S458 

8:J478 
8S488 
IS498 
8S588 
15S18 
8S528 
85538 
85548 

85568 
15578 

85598 
85688 
85618 
85628 
85638 
85648 
85658 
85668 

85688 

8~788 

85718 
85728 
85738 
85748 

5151 

'1'3 
5156 
5158 
5158 
515D 
515F 

5161 
5164 
5166 
5169 
5168 
516E 
5178 
5171 

5173 
5175 
5178 
517A 
517D 
S17E 
517F 
5181 

5183 
5185 
5188 
518A 
518D 

FlDISK 

D7 19 
Fl a882 
2B F8 
86 8089 
Dl 18 
26 82 
97 18 

CE Be8A 
A6 FF 
F6 8882 
2A FB 
81 8888 
26 4C 
89 
26 Fl 

C6 85 
F5 8882 
2A FB 
96 8888 
36 
SA 
2B F4 
D7 19 

D6 8S 
F5 8882 
2A FB 
86 8888 
36 

III READ THE 2ND HEADER BYTE. 
III THE 1ST HEADER BYTE HAS BEEN READ AND "ATCHES 
* THE TRACK ADDRESS. CONTINUE READING. 

FKSR12 STA B FYFLG3 CLEAR FLAG 3 
FKSR13 C"P 8 FPtCRA 

B"1 FI(SR13 YAIT FOR 2ND HEADER BYTE 
LDA A FP1PRA FETCH SECTOR ADDR 
C"P B FYFLG2 
8HE FkSR14 BRANCH IF HOT 1ST SECTOR 
STA A FYFLG2 SET FLAG 2 

III IF FLAG 2 IS ALREADY SET DO HOT OYERWRITE. 
III FLAG 2 CONTAINS THE SECTOR ADDRESS OF THE 1ST 
* DATA RECORD FIELD RECOYERED WITHOUT ACRe 
* ERROR. 

III THE FOLLOWINC SERIES OF INSTRUCTIONS ATTE"PTS 
III TO "ATCH THE 1ST 19 BYTES OF THE upe RECORD 
III WITH THE DESIRED UPC CODE. 

FKSR14 L DX .18 LOAD "ATCH POINTER 
FKSR15 LDA A FKltTCH,X GET 1ST UPC CHAR 
FKSR16 LDA B FPICRA 

BPL FKSR16 WAIT FOR BYTE READY 
CftP A FPIPRA 
BHE FKSR23 BRANCH IF NOT upe "ATCH 
DEX DECRE"EHT "ATCH POINTER 
BHE FI(SR15 LOOP FOR 10 BYTE "ATCH 

* THE UPC "ATCH WAS SUCCESFUL. STACK THE NEXT 
* 8 BYTES OF UPC DATA. 

LDA 8 1127+7 SET BYTE COUNTER TO 7 
FKSR17 BIT 8 FPICRA 

8PL FICSR17 WAIT FOR BYTE READY 
LDA A FP1PRA FETCH DATA FRO" DISI( 
PSH A STACK DATA 
DEC 8 DECRE"EHT DATA BYTE CNTR 
B"I FKSR17 LOOP FOR 7 BYTES 
STA B FYFLG3 SET FLAG 3 

* FLAG 3 INDICATES THE UPC SEARCH WAS SUCCESSFUL. 

LDA B FY8CHT LOAD FIELD BYTE CNT 
FKSR18 BIT 8 FPICRA 

BPl FICSR18 WAIT FOR BYTE READY 
LDA A FP1PRA FETCH LAST DATA BYTE 
PSH A 

5-261 



85768 
83778 

FLDISI( 

85798 518E CB 12 
85888 5198 27 ae 
85818 5192 7E 5113 

85838 
85848 
85838 
85868 

85898 5195 4F 
85998 5196 97 18 
85918 3198 7E 50D0 

83948 

83968 5198 C6 88 
83979 519D 86 27 
83988 519F 7D e817 
85998 51A2 26 A7 

86818 
86828 

86848 51A4 7D 8819 
86858 SIA7 27 85 
86868 51A9 86 42 
86878 SlAB 7£ 514B 

86898 

86118 SIRE 7C 881B 
86128 51B1 7E seDe 

86148 
86159 

• UPC "ATCH WAS SUCCESSFUL. 
* PREPARE TO SI( IP RE"A I HI HG BVTES, IF AMY. 

ADJUST FIELD BYTE tHT 118 
FKSRI9 
FleSRa8 

IF LAST BYTE, DO CRC CHK 
IF NOT LAST BVTE, SKIP OUT 

• A CRe ERROR HAS BEEN DETECTED BUT IT IS 
* ASSU"ED TO BE A RECOYERABLE ERROR. 
* CLEAR FLAG 2 AND READ THE NEXT DATA RECORD 
• FIELD. 

FKSR19 elR A 
STA A 
J"P 

• CRC = 18 I 

FYFLG2 
FKSR92 

CLEAR FLAG 2 
READ HEXT RECORD 

END OF DATA RECORD FIELD. 

FKSR28 LDA B 1%18888888 PRELOAD SEEK .ERROR FLAG 
LDA A '~80189111 FOR" SEEK ERR OP CODE 
TST F YF L G 1 
BHE FKSRll IF FLAG 11 ABORT 

* FLAG 1 WAS SET IF THE TRACK ADDRESS DESIRED DID 
• DID HOT "ATCH WITH THE FIRST HEADER BVTE. 

TST FYFlG3 
BEQ FKSR21 SKIP IF NOT FLAG 3 
LDA A 1%81888818 FOR" OP CODE "ASK 
J"P FKSRll EXIT LOOKUP ROUTINE 

* FLAG 3 WAS SET IF THE UPC "ATCH WAS SUCCESSFUL. 

FKSR21 INC FYFLG5 SET FLAG 5 
J"P FKSR82 READ HE)(T RECORD 

• FLAG 5 IS IHCRE"EHTED EACH Tl"E A DATA FIELD IS 
• READ WITHOUT ERROR, BUT HO upe "ATtH WAS FOUND. 

5-262 



FlDISI( 

86188 * THE FOLLOWING SERIES OF IH$TRUCTIOHS SKIPS OYER 
86198 * THE RE"~IHING UPC BYTES WHEN A upe "ATCH WAS 
86288 * NOT "ADE. 

86228 51S. F6 8882 FKSR22 LD~ S FPICR~ 
86238 5187 2A F9 8Pl FKSR22 WAIT FOR BYTE READY 
86248 5189 F5 S8S8 BIT B FPIPRA CLR IHTERR FLAG 
86258 SlBC 89 F1<SR23 DEX DECRE"EHT POINTER 

86219 * -FKSR23- IS THE ENTRV INTO THIS LOOP 

86299 51BD 26 f5 BHE FKSR22 LOOP TILL POINTER EXHAUSTED 

86319 * THE FOLLOWING SERIES SKIPS OYER THE 8 BYTES OF 
86328 • UPC DATA. IF THERE ARE SUBSEQUENT UPC RECORDS 
86338 • A UPC "ATCH WILL BE ATTE"PTED AGAIN. 

863~8 518F D6 8S LDA B FYBCNT GET FIELD BYTE CHTR 
86368 StCI S6 Fa LDA A 1256-8 LOAD BYTE CNTR 
86379 S1C3 85 8882 FKSR24 BIT A FP1CRA 
86388 S1C6 2A F9 BPl FKSR24 WAIT FOR BYTE READY 
86398 SICS 85 S888 BIT A FPIPRA CLR IHTERR FLAG 
86488 51ce 4C I Ne A UPDATE BYTE COUHTER 
86419 stcC 26 F5 BNE FKSR24 LOOP FOR 8 BYTES 
86429 SICE CB 12 ADD B 118 ADJUST FIELD BYTE CNTER 
86438 31D8 26 SF SHE FKSR14 BRNCH IF HOT END OF FIELD 
86448 51D2 7E ~11E J"P FKSR09 GO TO CRC PROCESS 

86468 • EHDING PROCESSING 

86489 S1D5 CE 3E16 FKSR25 L DX '$3E16 
86498 51D8 FF 8842 S T)( FP2CRA DISABLE ERROR INTERRUPTS 
86588 51D8 38 T SX PHT TO DATA WITH IHDEX REG 
86518 51DC 9E 88 LDS FYSVSP RESTORE STACK POINTER 

86539 * EXIT SEQUENCE ENTRV POIHT IF STATUS ERROR 

86558 51DE D7 81 FKSR26 ST~ B FYSTAT STORE ERROR STATUS 
86568 51£8 88 58 EOR A '%81811889 FOR" OP/ABORT CODE 
86579 S1£2 97 88 STA A FYABOR STORE OP/ABORT CODE 
86588 51£4 39 RTS RETURN TO EXEC PROGRAM 

5-263 



86688 

86628 
86638 

86658 
86668 
86678 
86688 
86698 
86788 
86718 
86728 
86738 

86758 
86768 
86778 
86788 
86798 
86888 
86818 
86828 
86838 
86848 
86859 

86878 
86888 
86898 
86988 
86918 
86929 
86939 

86959 
86968 
86979 
86989 
86999 

87818 
87829 
87838 
87848 
87858 
87868 
87878 
87889 
87898 
87188 

FlDISk 

• FLOPPV DISK READ ROUTINE 

• THIS ROUTINE READS AND STORES ONE ID OR ONE 
• DATA RECORD. 

* THE READ DATA RATE IS GOVERNED PRI"ARILY BY 
• THE ROTATIONAL SPEED OF THE DISkETTE. THE 
• WORST CASE READ DATA RATE IS DETER"IHED BV 
* ALLOWING FOR THE AC£U"ULATIOH OF THE 
• ROTATIONAL SPEED ERROR DURING THE WRITE 
* OPERATION PLUS THE SPEED ERROR DURING THE READ 
• OPERATION. THE DESIGN CRITERION OF THIS ROUTINE 
• IS TO OPERATE AT "AX/"IH DATA RATES OF: 
• 29.75 TO 34.25 "ICROSECOHDS/BVTE 

* SYNCHRONIZATION OF PROGRA" Tl"I"G TO THE READ 
• DATA RATE IS ACCO"PLISHED BV WAITING UNTIL BVTE 
* READY OCCURS. BYTE READY IS RECOGNIZED BY THE 
* PROGRA" WHEN THE CAl INPUT TO PIA 11 "AKES A 
* HIGH TO LOW TRANSITION AHD SETS BIT 7 OF 
* CONTROL REGISTER A (IHTERR FLAG II) TO A ONE. 
* THE INTERRUPT FLAG IS POLLED FOR BY THE PROGRA". 
• AFTER BYTE READY IS RECOGNIZED THE DATA IS 
* FETCHED FRO" THE PIA. "OVIHG THE DATA FRO" 
* THE PIA TO THE "PU AUTO"ATICALLY CLEARS THE 
* INTERRUPT FLAG. 

• THE INTERYAL TI"ER IS USED TO ABORT THE READ 
* OPERATION IF THE READ IS NOT COMPLETED BEFORE 
* THE TI"E SPECIFIED IN -FYTIHE- IS EXHAUSTED. 
* OTHER ERROR INTERRUPTS INCLUDE: 
* A. SYSTEM INOPERABLE 
* B. OYERRUN 
* C. NOT READY 

* DATA IS STACKED INTO A BUFFER AREA 
* SPECIFIED BY THE CONTENTS OF -FYDADR.· WHEN 
* THE READ OPERATION IS CO"PLETE THE ADDRESS OF 
• THE LAST DATA BYTE IS TRANSFERRED TO THE INDEX 
• REGISTER. 

• ACCU"ULATOR B IS USED AS THE DATA BYTE COUNTER 
* IN THE READ ROUTINE. THE INITIAL BYTE COUNT 
* "UST BE STORED IN "FYBCNT.· THIS YALUE IS 
* REQUIRED TO BE IN NEGATIYE BINARY FOR"AT. 
• USING THE IB" 3748 FOR"AT, THE DATA RECORD IS 
* 128 BYTES. THEREFORE THE BYTE COUNTER WI LL HAYE 
* A 81- IN BIT 7 THROUGHOUT DATA TRANSFER. THE -1-
• IN BIT 7 ENABLES ACCU"ULATOR B TO BE USED AS A 
* BIT TEST MRSK FOR BVTE READY AS WELL AS A BYTE 
• COUNTER. 

5-264 



87128 
87138 
87148 
871S8 
87168 
87178 

FLDISI( 

• AN OPERATION/ABORT FLAG IS MAINTAINED IH RA" 
• LOCATION "FVASOR a AS FOLLOWS: 
• 18881890 READ OPERATION IN PROGRESS 
• 91981880 READ OPERATION ABORTED BY PROGRAM 
• 81181089 READ OPERATION ABORTED BY INTERRUPT 
• 88881818 READ OPERATION COMPLETE 

5-265 



FlDISK 

97298 51E5 86 88 
97218 51E7 97 98 
97228 51E9 BD 39AJ 

97248 
87258 
87268 
97279 

97299 S1EC 86 ES 
87388 51EE 84 8941 
87318 51Ft 26 74 

87338 
87340 
97358 
87368 
87378 
87389 

87488 ~lF3 9F 8S 
87418 SlF5 9E 07 
97429 51F7 CE 3FIE 
87438 51FA FF 8842 
97448 51FD DE 89 
87459 51FF FF 8919 
87468 5282 CE 3E16 
87479 5285 D6 85 
87488 5287 86 24 
87498 5299 B7 a982 

FKREAD LDA A 
STA A 
JSR 

1%18881888 -PRESET READ IN 
FVABOR ----PROGRESS OP CODE 
FKERST 

* HFKERSTa IS A DISK SYSTEM ERROR LATCH RESET 
* SUBROUTINE. THIS ROUTINE ALSO SELECTS THE 
* DISKETTE DRIVE AND CLEARS PIA 12 ERROR 
* INTERRUPT FLAGS. 

LDA A 
AND A 
BNE 

'~11188118 SET ERROR STATUS "ASK 
FP2PRB FETCH MASKED STATUS 
FKRD89 BRANCH IF ERROR 

* ERROR STATUS CHECKED 
* BIT e = NOT IH SYHC 
* BIT 1 = DISK SYSTEM INOPERABLE 
* BIT 2 s OVERRUN 
* BIT 3 = HOT HEAD LOADED 
* BIT 6 = HOT READY 

STS 
LDS 
L DX 
S TX 
LDX 
S TX 

FVSVSP SAVE STACK POIHTER 
FYDADR POINT TO DATA STACK 
I$JFIE 
FP2CRA EHABLE ERROR INTERRUPTS 
FYTIME FETCH TIMER YARIABLE 
FPJPRA START INTERYAL TIMER 
13E16 PRELOAD DISABLE INTERRUPTS 
FYBCHT LOAD BYTE COUNTER 
'''99189189 
FPICRA ENABLE R/W HANDSHAkE 

e7sea 528C 86 28 FKRD81 
87519 529E F5 8889 

L DX 
LDA B 
LDA A 
STA A 
LDA A 
BIT B 
STA A 

'~8e181elt PRELOAD ENABLE CRt 
FPIPRA CLR BYTE RDY IHTERR FLAG 

97529 5211 87 8949 

87548 
87559 
87569 

87588 5214 96 85 
97598 5216 76 8881 
87688 5219 24 F9 
87618 521B F5 8882 
87629 521E 2A FS 
87638 5229 81 8888 
87648 5223 26 85 
87659 5225 FS 8881 
87668 5228 2A 87 
87678 S22A 86 2F 
87689 522C B7 8848 
87699 522F 28 DB 

FP~PRA ENABLE CRC 

* FOR A READ OPERATION -EHABLE CRe· AR"S THE 
* READ CIRCUITS TO SYNCHRONIZE TO THE FIRST 
* "l a DATA BIT DETECTED. 

LDA A 
FKRD82 ROR 

BCC 
FKRD83 BIT B 

BPL 
C"P A 
BHE 
BIT B 
BPL 

FKRD84 LDA A 
STA A 
BRA 

FYDMRK 
FPIPRB 
FKRD82 
FP1CRA 
FKRD83 
FP1PRA 
FkRD84 
FPIPRB 

PRELOAD DATA "ARK 
"aVE 1ST BIT TO CARRY 
WAIT UNTIL 1ST BIT 

WAIT FOR BYTE READV 
CO"PARE "ARK PATTERN 
BRANCH IF NOT "ARK 

FKRD85 BRANCH IF ID/DATA 
1%88181111 
FP2PRA DROP EHABLE CRe 
FKRD81 DO AGAIH,LOOK FOR 1ST BIT 

5-266 



FlDISJ( 

87718 5231 86 69 FKRD85 LDA A '~81181811 

87728 5233 87 8848 STA A FP2PRA RAISE READ ENABLE 

87748 
877~8 

87768 
87778 
87789 
87798 

87818 
87829 

* -READ ENABLE- ENABLES THE HOT IH SYNC 
* ERROR DETECTION lOGIC. "HOT IH SYNC" IS A 
* LATCHED ERROR SIGNAL WHICH IS SET WHEN THE 
* CLOCK RECOVERY CIRCUITS DO HOT 
* DETECT A "1M BIT AT CLOCK TIME AND "READ 
* ENABLE- IS SET. 

* THE FOLLOWING SERIES OF INSTRUCTIONS IS THE 
* BASIC READ LOOP 

87848 
87859 
87869 
87878 
87888 
87898 

3236 F5 8882 FKRD86 
5239 2A FB 

BIT B 
BPL 
LDA A 
PSH A 
IHC B 
BNE 

FPICRA 
FKRD06 
FP1PRA 

WAIT FOR BYTE READY 
5238 86 S8S9 
523E 36 
523F 5C 
5249 26 F4 FKRD86 

GET DATA & CLR INTERR FLAG 
STORE DATA 
UPDATE BYTE COUNTER 
LOOP UNTIL LAST BYTE 

87918 3242 Fl a8a2 FKRD87 C"P B FPICRA 
87928 5245 2B FS B"I FKRD87 WAIT FOR 1ST CRe BYTE RDY 

87948 
87958 
87968 
87978 

87998 5247 F5 8888 
88888 524A 86 2F 
88818 524C C6 98 
88829 524E Fl 8882 
88838 5251 28 FB 
88848 5253 F4 S881 
88858 5256 87 8848 
88868 5259 FF 8842 
88878 525C 7F 8819 
88888 525F 86 34 
88898 5261 87 8882 
88188 5264 38 
88118 5265 9E 89 

* ACCU"ULATOR B IS 88 AT THIS TI"E. THE "C"PB" 
* AND -B"I- INSTRUCTIOHS TEST THE BYTE READY 
* INTERRUPT FLAG (FPICRA, BIT 7). IF THE FLAG IS 
* A • "gil THE PROGRAM LOOPS BACK TO "FKRD07. H 

BIT B 
LDA A 
LDA B 

FKRD8S C"P 8 
8"1 
AND B 
STA A 
ST)( 
CLR 
LDA A 
STA A 
TS)( 
LDS 

FP1PRA CLEAk INTERRUPT FLAG 
1~88181111 PRELOAD STOP READ 
'~889818e8 LOAD TST CRC MASK 
FP1CRA 
FKRD8e YAIT FOR 2ND CRC BYTE 
FP1PRB FETCH CRC STATUS 
FP2PRA STOP READ 
FP2CRA DISABLE INTERRUPTS 
FP3PRA STOP IHTERVAL TIMER 
1~88118198 

FP1CRA TURH OFF R/W HANDSHAKE 
)(FER DATA POIHTER TO INDEX 

FYSYSP RESTORE STACK POINTER 

5-267 



FLDISI( 

88138 5267 D7 81 
88148 5269 27 82 
881S8 3268 C6 42 
88168 526D C8 81l 
88178 526F D7 88 

88199 
88288 
88218 
88229 
88238 

88258 
88269 
88278 
88288 
88298 
88388 

88328 5271 39 

FKRD89 STA B 
BEQ 
LIA 8 

FKRD18 EOR 8 
STA 8 

FYSTAT STORE ERROR STATUS 
FKRD18 SKIP IF NO READ ERROR 
'%81888818 SET OP CODE "ODIFIER 
'~88881818 GENERATE ENDING OP CODE 
FYABOR STORE OP/ABORT CODE 

• THE OP/ABORT CODE IS GENERATED FRO" THE 
• YALUE OF ACCU"UlATOR B. IF ANY ERROR 
• STATUS IS PRESENT 8 IS NON ZERO. IN THAT CASE 
• THE OP CODE "ODIFIER IS SET. IF NO ERROR STATUS 
* EXISTS ACCUftULATOR S IS ZERO. THEN: 

• ERROR NO ERROR 

* -------- ----------
* B :I 81888818 88888888 

* EOR B • 88881918 88811818 
• -------' .. -------~ 

• CODE :I 81881888 88881818 

RTS RETURN TO HOST PROG"RAN 

5-268 



183:58 

88378 
88388 
883'. 
88488 

88428 
88438 
88448 
88458 
88468 

88488 
88498 
88S88 
88518 
88528 
18Sle 
88548 
88558 
88569 
88~7e 

88~88 
88598 
88688 

88628 
88638 
88648 
88658 
88668 

88688 
88698 
88788 
88718 
88729 

88749 
88759 
88768 
88778 

FLI! SK 

* FLOPPY DISK WRITE DATA ROUTINE 

* THIS ROUTINE OBTAIHS BYTE PARALLEL DATA FROM 
* RA" STORAGE AND "OYES THE DATA TO THE DISK 
• FOR"ATTER. DATA IS THEN WRITTEN ON THE DISKETTE 
* IN SERIAL. 

• A CRYSTAL OSCILLATOR IS USED TO GENERATE THE 
* WRITE FREQUENCY. THEREFORE, THE WRITE DATA 
* RATE WILL DEYIATE ONLY SLIGHTLV. THIS ROUTINE 
• WILL OPERATE WITH AS MUCH AS + OR - 5~ 
* FREQUENCY DEYIATION. 

* DATA IS "OYED fRO" "E"ORY USIHG INDEXED "ODE 
* ADDRESSING. THIS ROUTINE USES THE INDEX REGISTER 
• AS BOTH A "E"ORY ADDRESS REGISTER AND AS A 
• BYTE COUNTER. BECAUSE OF THE TIMING REQUIREMENTS 
• OF THE fLOPPY DISK THE IHDEX REGISTER IS TESTED 
• FOR ZERO TO DETER"IHE THE END OF THE DATA 
• TtANSFER. TESTING FOR ZERO PLACES ADDRESSIHG 
* CONSTRAINTS ON THE LOCATION OF THE WRITE DATA 
* STORAGE AREA.' THE HIGHEST ADDRESS OF THIS AREA 
• IS DETER"INED BY ADDING THE "AXI"U" OFFSET 
* VALUE TO THE DATA LENGTH: 
* "AX ADDRESS = 255 (OFFSET) + 128 (DATA) 

* = 383 

• THE INTERVAL TIMER IS AR"ED TO INTERRUPT THE 
* SYSTEM AFTER 4.6 MILLISECONDS. THIS INSURES 
* THAT IF THERE IS A HARDWARE MALFUNCTION THE 
• ONLY RECORD AFFECTED IS THAT ONE WHICH WAS TO 
• BE WRITTEN. 

• OTHER 
• A. 

* B. 

* C. 
• D. 

ERROR INTERRUPTS INCLUDE: 
SYSTE" INOPERABLE 
UNDERFLOW 
INDEX 
NOT READY 

• THE -ABOVE TRK 43 8 SIGHAL IS SET TO A "1- OR 
* -e- PRIOR TO BEGINNING THE DATA TRRNSFER. THE 
• RA" LOCATION NFVTRKAN IS USED TO DETER"IHE THE 
• PRESENT LOCATION OF THE HEAD. 

5-269 



88798 
98888 
98818 
88828 
98838 
98848 
98858 
98868 
98878 
88888 
88898 

98918 
88928 

88948 
88958 
88968 
88978 
98989 
88998 

FLDISK 

* SYNCHRONIZATION OF THE WRITE DATA RATE TO THE 
* PROGRA" IS ACCO"PLISHED BY WAITING UNTIL A BYTE 
* REQUEST OCCURS. THIS WAIT LOOP CONSISTS OF 
* TESTING BIT 7 OF PIA 11 CONTROL REGISTER A 
* AND LOOPING BACK TO TEST THE BIT AGAIN IF IT 
* HAD BEEN -8.- AFTER A -1- BIT IS DETECTED 
* A DATA BYTE IS "OYED TO THE PIA. AFTER 
* THE BYTE HAS BEEN "OYED A DU""Y READ CLEARS 
* THE INTERRUPT FLAG. FAILURE TO EXECUTE THE 
* DU""Y READ BEFORE THE NEXT BYTE REQUEST WILL 
* CAUSE AN UNDERFLOW ERROR SICNAl TO LATCH. 

* WHEN THE WRITE ROUTINE IS CO"PLETED OR ABORTED 
* THE PIA'S ARE RETURNED TO READ "ODE. 

• AM OPERATION/ABORT FLAG IS "AINTAINED IN RA" 
* LOCATION -FYABOR- AS FOLLOWS: 
• 18888188 WRITE OPERATION IN PROGRESS 
* 81888188 WRITE OPERATION ABORTED BY PROGRA" 
* 81188188 WRITE OPERATION ABORTED BY INTERRUPT 
* 88888118 WRITE OPERATION CO"PlETE 

5-270 



FlDISI( 

89328 5272 86 EF 
89838 5274 B4 8841 
89848 5277 97 81 
89858 5279 27 95 

89879 
89888 
89898 
89188 
89118 
89128 
89138 
89148 

89169 527B 86 44 
89178 527D 97 88 
89188 527F 39 

89288 5288 9F 8S 
89218 5282 86 84 
89228 5284 97 8e 
89238 5286 CE FF8e 
89248 5289 FF a8S0 

89268 
89278 
89288 

89388 528C 86 AD 
89318 528£ 87 8848 

89338 
89348 
89359 
89368 
89378 
89388 
89398 
89488 

89428 5291 CE 3838 
89438 5294 FF S882 
89448 5297 CE FFFF 
89458 529A FF 8888 

FKWRIT LDA A 
AND ~ 

STA A 
BEQ 

1%11181111 SET STATUS "ASK 
FP2PRB FETCH "ASKED STATUS 
FYSTAT STORE ERROR STATUS 
FKWR81 BRANCH IF STATUS GOOD 

* ERROR STATUS CHECKED: 
* BIT 8 = HOT IH SYNC 
* BIT 1 = DISK SYSTE" INOPERABLE 
* BIT 2 = UNDERFLOW 
* BIT 3 = WRITE PROTECTED 
* BIT 5 = HOT HEAD LOADED 
* BIT 6 = HOT READY 
* BIT 7 = IHDEX 

LDA A 
STA A 
RTS 

FKWR81 STS 
LDA A 
STA A 
LDX 
STX 

l~ele80100 

FYABOR STORE ABORT CODE 
RETURN TO HOST PROGRAM 

FYSVSP SAVE STACK POINTER 
'%19888188 
FYABOR STORE WRITE OP CODE 
Iff F0e 
FP1PRA "OYE GAP PATTERN TO PIA 

* MFr- IS "OYED TO FPtPRA AND "88" IS MOYED TO 
• FPIPRB. -FF- IS THE GAP CLOCK PATTERN AND 
* -88- IS THE GAP DATA PATTERN. 

LDA A 1%19191101 
STA A FP2PRA EHABLE WRITE 

* -ENABLE WRITE- GATES THE FORMATTER WRITE 
* CIRCUITS ON. BECAUSE ·WRITE GATEn IS OFF THE 
* SERIAL DATA IS NOT TRANSFERRED TO THE DRIYE. 
* ~LSO, THE READ STATUS SIGNALS WHICH ARE ROUTED 
* TO PIA 11 ARE SWITCHED TO A HIGH I"PEDA~CE 
* STATE BY "EHABLE WRITE· IN PREPARATION TO 
* CHANGING THE PIA 11 I/O LINES FRO" INPUTS TO 
* OUTPUTS. 

L DX 
STX 
L DX 
STX 

'$3838 
FPICRA 
'$FFFF 
FPIPRA 

5-271 

SELECT DIRECTION REGS 

DEFIHE PIA 11 LINES OUTPUTS 



FLDISi( 

89478 529D C6 34 
89488 S29F 86 29 
89498 S2A 1 91 84 
89588 52A3 22 82 
89518 S2AS 86 23 
89528 S2A7 88 13 FKWR82 
89538 52A9 97 S883 

lDA S 
lDA A 
C"P A 
BHI 
LDft A 
EOR A 
STA A 

1%88118188 PRELOAD FPICRA CONTROL 
.43 
FYTRKA TEST TRK ADDR > 43 
FKWR82 BRANCH IF ) 43 
'43-8 
'~88918811 FOR" TRK ) 43 CONTR WOR 
FPICRB SET ABOYE TRK 43 

89558 
89568 

* THE TRK > 43 CONTROL WORD IS GEHERATED FRO" THE 
* VALUE 43 AS FOLLOWS: 

89589 
89598 
99688 
99618 
89629 
89638 

* 
* 
* 
* 
* 
* 

43 = 
EOR. 

FPICRB 

TRK > 43 

88181811 
88818111 

88111188 

43-8 = 
TRIC =/( 43 

88198811 
88818111 

88118188 

89659 
89668 
89678 

* IF THE TRACK IS GREATER THAN 43 THE CB2 SIGNAL 
* OF PIA 11 IS SET TO A HIGH. ALSO PERIPHERAL 
* REGISTER B IS S£LECTED BY BIT 2. 

89698 52AC F7 8982 
89798 S2AF C6 F9 
89719 5281 86 24 
89728 5283 CE 832E 
99739 5286 FF 8819 
89748 5289 CE C7FB 
89758 S2SC 7A 8848 

STA B 
LDA 8 
LDA A 
l DX 
STX 
lDX 
DEC 

FP1CRA SELECT PERIPHERAL REG A 
'256-5 SET BYTE COUNTER ~ 5 
'%89188188 PRELOAD R/W HANDSHAkE 
.S18eUS+46 
FP3PRA AR" TI"ER FOR 4.6 "5 
'$C7FB PRELOAD ADDRESS "ARK 
FP2PRA SET WRITE CATE 

89778 
897S8 

* SERIAL WRITE DATA IS GATED INTO THE DRIVE AT 
* THIS TIME. 

89888 52BF F5 a8S8 
89818 52C2 87 S982 
89828 52C5 86 AS 
89838 52C7 F5 S882 FKWR83 
89848 52CA 2ft FS 
89858 52CC F5 8888 
89868 S2CF 5C 
89878 52D8 26 F5 
89888 52D2 Fl 8882 FKWR84 
89898 52D5 28 F9 
89988 52D7 FF S888 
99918 52DA 87 8840 
89928 52DD F5 8888 
89938 S2E8 86 FF 
89948 52E2 F6 817F 
99958 52E5 CE 887F 
89968 52E8 B5 8882 FKWR85 
89978 52E8 2A F8 
89988 52ED B7 8888 

BIT B 
STA A 
LDA A 
BIT B 
BPl 
BIT B 
IHC 8 
BHE 
C"P B 
8MI 
STX 
STA A 
BIT S 
LDft A 
lDA B 
L DX 
BIT A 
BPl 
STA A 

FPIPRA CLR BYTE REQUEST 
FPICRA SET R/W HANDSHAKE 
1~18181888 PRELOAD ENABLE CRe 
FPICRA 
FKWR93 
FPIPRA 

FKWR83 
FPICRA 

WAIT FOR BYTE REQUEST 
CLR INTERRUPT FLAG 
UPDATE BYTE COUNTER 
LOOP UNTIL LAST GAP BYTE 

FKWR84 WAIT FOR BYTE REQUEST 
FPIPRA "OYE ADDR "ARK TO PIA 
FP2PRA ENABLE CRC 
FPIPRA CLEAR INTERRUPT FLAG 
I$FF PRELOAD CLK PATTERN 
FKDATA+128 GET 1ST DATA BYTE 
1127 LOAD BYTE COUNTER 
FPICRA 
FKWR85 
FPIPRA 

5-272 

WAIT FOR BYTE REQUEST 
"OYE elK PATTERN TO PIA 



FLDISK 

89'98 52F8 F7 8881 
18888 52F3 F5 8888 
18819 52F6 C6 AS 

STA 8 
BIT 8 
LDA B 

FPIPRB "OYE 1ST BYTE TO PIA 
FPIPRA CLR INTERRUPT FLAG 
'~1018800e PRELOAD SHIFT CRe 

18838 
18848 

* THE FOLLOWING SERIES OF INSTRUCTIONS IS THE 
* BASIC WRITE LOOP. 

18869 52F8 A6 F~ FKWR86 
18879 S2FA F5 S982 FKWR97 
18888 52FD 2A FS 
18898 52FF 87 8881 
18188 5382 F5 8980 
18119 5385 89 
19129 5386 26 F8 

19149 5388 F7 8849 
191~8 539S F~ 8082 FKWF.88 
18168 538£ 2A FS 
18178 5318 F5 8889 
19188 5313 7F 8881 
19198 3316 86 AD 
18288 5318 C6 AS 
18210 S31A F5 8082 FKWR89 
19228 531D 2A FS 
18230 531F F5 8989 
18248 5322 F7 8948 
18258 5325 CE 3E16 
IB269 5328 C6 AF 
18278 532A F5 8882 FKWR19 
18288 532D 2A FS 
18298 S32F FF 8942 
18388 5332 CE 3030 
18318 5335 FF 8982 
18328 5338 87 8848 

LDA A 
BIT B 
BPL 
STA A 
BIT B 
DEX 
BHE 

STA B 
BIT B 
BPL 
BIT B 
CLR 
LDA A 
LDA B 
BIT B 
BPL 
BIT B 
STA S 
L DX 
LDA B 
BIT B 
BPL 
STX 
LDX 
STX 
STA A 

FKDATA,X 
FPICRA 
FKWR97 
FPIPRB 
FPIPRA 

FKWR86 

FP2PRA 
FPICRA 

FETCH NEXT DATA BVTE 

WAIT FOR BYTE REQUEST 
"'OYE DATA TO PIA 
CLR INTERRUPT FLAG 
DECRE"EHT BYTE COUNTER 
LOOP UNTIL LAST BYTE 

SHIFT CRe 

FKWR08 POLL FOR 1ST CRe BYTE 
FPIPRA CLR INTERRUPT FLAG 
FPIPRB "OYE M00" TO DATA PIA 
l~le181181 PRELOAD DROP WRITE GATE 
'~10101ge0 PRELOAD STOP SHIFT CRe 
FPICRA 
FKWR99 POLL FOR 2ND CRe BYTE 
FPIPRA CLR INTERRUPT FLAG 
FP2PRA STOP SHIFT CRC 
1$3E16 PRELOAD DISABLE INTERRUPTS 
'~le181111 PRELOAD STOP WRITE 
FPICRA 
FKWR19 
FP2CRA 
'$3830 
FPICRA 
FP2PRA 

POLL FOR LAST BYTE REQUEST 
DISABLE IHTERRUPTS 
-GATE R/W HANDSHAKE OFF 
- AND SELECT DIRECT. REG. 
DROP WRITE GATE 

18348 
18358 
18369 
18378 

• MYRITE GATE- IS DROPPED 38 TO 38 "ICROSECOHDS 

19398 5338 7F 8819 
19488 S33E CE 0808 
10410 5341 FF S0S0 
18428 5344 CE 3434 
10438 5347 FF S082 
10440 534A F7 8048 

10469 

1e489 534D 86 05 

• AFTER THE LAST BYTE REQUEST. THIS ENSURES THAT 
• THE LAST CRC BYTE HAS PASSED THE TRIMMER ERASE 
* COIL IN THE R/W HEAD. 

CLR 
lDX 
STX 
LDX 
STX 
STA B 

FP3PRA 
10 
FP1PRA 
1$3434 
FPICRA 
FP2PRA 

STOP INTERVAL TI"ER 

CHANGE PIA 11 TO INPUTS 

RESELECT PERIPHERAL REG. 
DROP ENABLE WRITE 

* PIA 11 IS HOW IH READ MODE. 

lDA A 1%88809118 

5-273 



FlDISI( 

18498 534F 97 88 STA A FYA80R SET WRITE COMPLETE FLAG 
10589 5351 39 RTS RETURN TO HOST PROGRA" 
10529 END 

SYMBOL TABLE 

C198US eeel ClaMS 0801 Claus 8994 CIHS 0902 CIUS 0005 
FKDATA 80F!= FKERST 50A3 FKLKUP 5848 FI<lU01 584E FKlU02 5853 
FKLU93 595D FKI1TCH 98FF FKRD81 52ae FKRD02 5216 FKRD03 5218 
FKRD04 522r.4 FKRDBS 5231 F!<RD86 5236 FKRD0? 5242 FKRD08 524E 
FKRD03 S267 F!<RD10 52SD F!<READ 51E5 FKRSTR 5061 FKSEEl< 508e 
F K SI( 91 5013 F~SK02 5322 Fi<SK03 5024 FKSK04 502A FKSK05 582C 
FKSK85 5835 FKSK87 5838 FKSKIH 5868 F'KSP81 5970 FKSP02 5976 
FKS?03 3882 Fl<S?04 5886 FKSP85 seA 1 FKSR01 seSE FKSR02 58D8 
FKS:<03 S0f.3 FKS~04 S0EA FKSR05 50EF FKSR06 5100 F KS R 07 5105 
FKSR03 51 13 Fl<S~@9 51 1 E F!<SR10 512A FKSR11 5148 FKSR12 5151 
FKSR13 5153 FKS~14 5161 FKSR15 5164 FKSR16 5166 FKSR17 5175 
FKSR18 5185 FKS~19 5195 FKSR29 5198 FKSR21 51AE FKSR22 5184 
FKSR23 518C FKS~24 51C3 FKSR25 51D5 FKSR26 51DE FKSRCH 5881 
F K WR 91 5280 FKWR02 52A7 FKJ.dR8J 52C7 FKWR84 52D2 FKWR05 52E8 
FKtdR0S 52F3 F!(W~a7 52FA FKWR8S 5388 FKtJR09 531A FKIJR19 532A 
FKWRIT 5272 FPICRA 8982 F?lCRB S083 FPIPRA 8980 FPIPRB 8881 
FP2CRA 8042 FP2CRB 8843 FP2PRA 8048 FP2PRB 8041 FP3PRA 8818 
FP3PRS 8811 FYASOR 8888 FYBCHT 0086 FVCTRK 8983 FVDADR 8e8? 
FVDELT 0802 FVDMRK 000~ FYFLGl 0017 FYFLG2 8018 FVFLG3 0819 
FVFLG4 0al~ FV!=LG5 001 B F\lS1AT 0001 FVSVSP 8ees FVTIME 8809 
FVTRKA 0004 FVU?C e0eD S130US 0300 S10MS 0180 S18US 8408 
51"S 0288 S1US 8588 

5-274 



CHAPTER 6 

6. SYSTEM DESIGN TECHNIQUES 

6-1 INTRODUCTION 

Development of a microprocessor based system is similar in most respects to the design of conven

tional SSI/MSI systems. Both approaches must include the steps shown in Figure 6-1-1: specification, system 

flow charts, hardware design, and test and debug. However, the MPU based design adds another dimension. As 

indicated in Figure 6-1-2, the designer also has the option of software to consider and must decide whether each 

task is best done using the conventional approach or the software approach. 

The additional decisions should not be construed as an additional burden; they are in fact the key to 

developing the most cost effective system. Study of the system specification will often provide indications as to 

the best approach. In addition to the MPU and its associated memory and interface devices, three additional 

elements are present in a typical system design: (1) the actual peipheral equipment that is dictated by the system 

specification; (2) any conventional electronics required to control the peripherals; (3) the "intelligence" that 

enables the MPU to perform the required control and data processing functions. 

In an MPU based design, "intelligence" refers to the control program, a sequence of instructions that 

will guide the MPU through the various operations it must perform. During development, the designer uses the 

MC6800's predefined instruction set to prepare a control program that will satisfy the system requirements. The 

program, usually called" software" at this point, is then stored in read-only memory that can be accessed by the 

MPU during operation, thus becoming the system's intelligence. Once in memory, the program is often called 

"firmware," however, it is common to find the terms software and firmware used interchangeably in this 

context. 

When peripherals satisfying the system requirement have been selected, the designer can begin to 

consider tradeoffs that will result in the most cost effective program. The presence of the MPU and control 

program in the system provides the designer with tradeoff opportunities not available in conventional·designs. 

The remainder of this Chapter explores many of the considerations involved by describing the system 

development for a representative microprocessor system. 

FIGURE 6-1-1: Conventional Design Cycle FIGURE 6-1-2: MPU-8ased Design Cycle 

6-1 



6-2 TRANSACTION TERMINAL DEFINITION 

System integration considerations are best demonstrated by applying them to a specific problem. The 

design of an MPU based Point-of-Sale (PaS) Transaction Terminal suitable for use in retail food stores will 

demonstrate typical system integration procedures. 

The minimum requirement for such a Terminal is that it must perform all the functions currently 

performed by mechanical registers in the cash transaction supermarket checkout environment. The two primary 

requirements are that it must be simple to operate and capable of reliable stand-alone operation. Beyond this, a 

number of other highly desirable features are possible using an MPU based system: 

(1) Data entry can be either through conventional keyboard or by electronic scanning oflabels on the 

products. The grocery industry has recently adopted a Universal Product Code (UPC) that will 

eventually be used industry wide. A modern terminal must include the capability to process this 

code; since the code provides manufacturer and product identification rather than price informa

tion, the Terminal should have an on-board price look-up capability. Fortunately, this is within 

the capability of a relatively inexpensive floppy-disk unit. 

(2) The Terminal can control auxiliary devices such as Electronic scales, change making machines, 

and stamp dispensers. Electronic control and data signals make possible a modular design; if 

desired for aesthetic and/or operator comfort reasons, remote location can be used for the visual 

display, scales, keyboard, etc. 

(3) Data for use in inventory control and transaction accounting can be accumulated on a machine 

readable (magnetic tape, for example) medium for later use by the store's management. The MPU 

can also provide the capability of real time interrogation as to volume of business , cash balances, 

etc. 

(4) The Terminal should automatically calculate stich things as the total price after entry of the weight 

and price per unit weight, total price of mUltiple items upon entry of a unit price and number of 

items, and Sales Tax due on a transaction. 

(5) Addition of a communications channel, while not necessary to the basic function, provides 

several advantages. Communication channels between the Terminals and a central control point 

can be used to update price look-up files, transfer transaction data, and perform on line 

interrogation from a remote location. The communications channel also permits automated 

remote authorization for cashing checks. 

(6) The MPU can also monitor operator procedures and its own peripheral devices with little increase 

in system cost. Incorrect procedures or equipment malfunctions can be indicated by means of 

warning lights or diagnostic messages via the display system. 

An MPU oriented block diagram of a pas terminal incorporating man y of the features just described is 

shown in Figure 6-4.1-1. In addition to the MPU electronics, the Terminal includes the following functions: 

(1) A scanning wand for optical reading of labels bearing the Universal Product Code. 

(2) A 16-character display for visually indicating entry data. 

6-2 



(3) A printer suitable for providing a printed paper record of the transaction details. 

(4) A cassette tape system for capturing data in a machine readable format. 

(5) A floppy-disk system for use in automatic price look-up. 

(6) A communications channel for data interchange between the Terminal and a central controller. 

(7) A keyboard for manual entry of data. 

A functional description of each of the peripheral devices is included in Chapter 5. However, since the 

keyboard plays a large role in operating procedures, a partial explanation of its features and operating characteris

tics is included here. The data entry keyboard is shown schematically in Figure 6-2-2. ItinCludes eleven keys for 

entering numerical data (digits 0-9 plus decimal point) and fifteen function keys. 

The seemingly simple task of totaling the price of individual items and receiving the dollar amount due 

is complicated by the wide variety of activities included in a typical supermarket transaction. For instance, bulk 

produce items must be weighed and the price calculated; most items are taxable, however, some may not be. 

Currently most non-produce items have the price indicated on the package; the future trend is toward incorporat

ing the Universal Product Code supplemented by in-house numerical codes. In addition to cash, the customer may 

offer checks, stamps, coupons, and refundable items such as bottles in payment. The Terminal design must 

include methods for handling all these possibilities and yet keep the operating procedures simple. 

The numeric and decimal point keys are used to manually enter numerical data for the following 

categories: price in dollars and cents, weight in pounds, number of identical items (for simplifying multiple item 

entry), and numerical codes, either UPC or in-house. 

The operating procedures selected assume that a numeric entry is the first step in manual data entry. 

The type of data is then specified by an appropriate function key. An entry representing the number of identical 

items is identified by closing the Quantity key; closure of the Weight key following a numeric entry indicates that 

the data is a weight in pounds. Up to eight product categories are identified by following a numeric price entry with 

the appropriate Category key. 

I Gwce,y I EJ I 
Code Entry 

I I SUb~tal I 
@] Tax 

B [J [J [] 

0 B 
D GJ 8 B 
[J D G B a I I D 

Tot 

EJ + 
0 

FIGURE 6-2-1: POS Keyboard Configuration 

6-3 



The operator may enter price and weight data in either order; similarly, in multiple item entries either 

the quantity or the price may be entered first. Data entry procedures are explained further in the following 

description of the action taken by the Terminal for various combinations of inputs. 

The simplest item entry consists of numerical price followed by a product category. Closure of the 

Subtotal Plus key then indicates the end of the item entry sequence. The Terminal responds by updating the 

current running total and displaying and printing the item entry data. Note: This is performed automatically when 

the Terminal is in the code entry mode i.e., no Subtotal Plus is required. 

The next entry mode in order of complexity is a price/category accompanied by a quantity entry. The 

Quantity key permits entry of multiple items with a single price entry and may be used with either price or UPC 

data entry. A numeric/quantity entry either before or after a price/category entry causes the Terminal to calculate 

and print/display the total price of multiple entries after the Subtotal Plus completes the entry sequence. 

The Terminal interprets a price/category entry accompanied by a numeric/weight entry as price per 

pound and weight in pounds. The Terminal accepts up to four digits plus the decimal point for weight entries and 

automatically calculates/displays/prints the total item price. 

Closure of the Code Entry Key alerts the Terminal that the next item entry will be UPC numerical data. 

Entry may then be made either by label scanner or keyboard. The Terminal will respond to each valid data entry by 

first displaying and printing the price and then sounding an audible" Approval" tone. The Terminal automati

cally recognizes a valid data entry, hence no closure of Subtotal Plus is required during UPC entry. Multiple item 

UPC entry is accomplished by means of a numeric/quantity entry prior to the code entry. The UPC entry mode is 

cancelled by a Code Entry key closure following the last UPC entry. Visual display of the last item price continues 

until another entry is made. 

Five keys are provided for indicating merchandise categories: Grocery, Dairy, Meat, Produce, and 

Household. Three of the keys serve the dual purpose of indicating one of the three refund categories, Coupons. 

Bottles, or Stamps. As indicated earlier, the category entry is made immediately after price has been entered. If 

Subtotal Minus is used to conclude an item entry concerning the three dual purpose keys, the appropriate 

refundable category is assigned by the Terminal. 

Closure of the Subtotal Minus key indicates that the preceeding numeric entry is to be deducted from 

the current total. The calculate/display/print format is determined by the data entry immediately preceeding 

closure of the Subtotal Minus key. If the entry was an unqualified numeric, the Terminal subtracts that amount 

from the current transaction total and displays/prints the amount entered and a minus sign. If the numeric entry is 

followed by one of the categories, Coupon. Bottles, or Stamps the Terminal subtracts the amount and 

displays/prints category, price, and minus sign. The unqualified numeric deduction allows operator correction of 

erroneously entered data. Partially entered data (prior to a subtotal closure) is erased by a Clear key closure. 

Closure of the Total key indicates the end of a transaction entry sequence. Used immediately following 

Subtotal Plus/Minus entry, it causes the current transaction total to be printed and displayed. A second closure of 

the Total key following display/print causes the terminal to first calculate and print the tax due on the transaction 

and then display/print the new total including tax. The No Tax key is used just prior to sub totaling an entry upon 

which no tax is to be included. The Terminal keeps track of such entries and deletes them from the tax calculations. 

At this point, several transaction conclusion alternatives are possible :(a) Numeric entry of amount of 

cash tendered followed by closure of the Cash key causes the Terminal to display/print the amount of cash entered. 

A Clear key closure will now calculate and display/print the change due, release the cash drawer, and dispense 

change and/or stamps via dispensing machines, if used. (b) Numeric entry of the amount tendered by check 

6-4 



followed by a Check key closure causes the Terminal to display/print amount of the check entered. If the check is 

to be accepted without authorization, closure of the Clear key now calculates and displays/prints the change due, 

releases the cash drawer, and dispenses change and/on stamps. If the Terminal is to be used for obtaining check 

cashing authorization, up to a nine digit I.D. number followed by a Code Entry closure may be used prior to 

entering the amount tendered. This sequence causes the terminal to obtain authorization or rejection via the 

communications channel. The result is displayed/printed and audible" Approval" or "Disapproval" is sound

ed. If, after a rejection, the check is to be accepted anyway (after personal authorization by the store manager, for 

example) a numeric/Check entry followed by a closure of the Clear key allows the transaction to be concluded as 

above. If, after rejection, the transaction is to be converted to cash, numeric entry of the cash tendered followed by 

closure of the Cash key concludes the transaction as in (a) above. 

The keys can be used in combination to perform several additional functions. Transactions may be 

voided at any time. If the current transaction has not yet been totaled, the Total key must be closed momentarily to 

form a total. Sequential closure of Subtotal Minus, Cash, Total, then voids the transaction. If the total is currently 

displayed and the tax calculated, the same sequence voids the transaction, i.e., sequential closure of Subtotal 

Minus, Cash, Total. Tax is not permanently recorded internally until one of the valid transaction completion 

routines has been carried out. The voiding of a transaction is printed on the register tape. 

The contents of the Terminal may be modified by using coded entries. Codes are available for adding 

or removing cash and for cashing checks. A numerical entry followed by a Code Entry closure causes the 

Terminal to respond by displaying" Add Cash," "Remove Cash," or "Cash Check," depending on the code 

selected. The operator may then enter the amount involved and close the total key. The Terminal will 

automatically make the appropriate adjustments to running balances. Modification of the contents should be done 

between normal transactions. 

The Code Entry key also provides a means of interrogating and instructing the Terminal through the 

keyboard. A numeric entry followed by a Code Entry closure can be used to (a) Display/print current transaction 

count number and total dollar sales for the current work shift, (b) Display/print current transaction count number 

and total check balance, (c) Display/print current transaction number and cash balance in drawer, or (d) Print 

transaction count number, operator I. D. number, total sales for the work shift, total cash and check balances, and 

the difference if any, between sales and receipts. During this operation only a difference between sales and 

receipts are displayed. 

The interrogation mode, i.e., numeric/Code Entry is also used for entering new operator I.D. and 

ini tiaIizing at the beginning of an operator shift and causing a Terminal controlled cassette tape data dump through 

the communications channel. 

6-5 



6-3 HARDWARE/SOFTWARE TRADEOFFS 

Once the system requirements are defined, the designer must almost immediately begin making 

decisions to establish whether a hardware or a software approach will be used for each sub-task. 

The tradeoff possibilities can be explored by considering some of the overall design goals. For 

example, if a high volume production run is anticipated, a logical goal is to minimize hardware costs since each 

dollar of cost is amplified by the unit count. In such cases, every attempt should be made to eliminate external 

control hardware by "loading up" the MPU since control programs in memory are generally more economical 

than generating the same function with conventional logic circuits. 

At the opposite extreme are relatively complex systems (with attendent high engineering development 

costs) that will be produced in limited quantity. In this case, minimizing development cost may be the more 

important criteria. In typical MPU systems, the peripherals can be obtained from OEM suppliers with varying 

amounts of the control and drive circuitry provided. Using peripherals with conventional control and drive 

electronics will simplify the tasks that must be performed by the MPU and will result in a shorter, more 

economical development cycle. 

Typical applications fall somewhere between these two extremes. There will usually be three 

approaches to consider: the older conventional method, the new programmed method, and a judicious blend of 

both. 

The primary goal using an MPU based design should be to replace as much hardware as possible with a 

control program that causes the MPU to duplicate the hardware process. This capability is the primary motivation 

for using an MPU in the first place. In many cases, this approach can be carried to the extreme of eliminating 

everything except the family devices (MPU, Memory , Interface) and the peripherals themselves. However, in 

most systems, there are tasks that, if done in hardware, can significantly reduce memory requirements and/or 

improve the data throughput rate. For this reason, selection of the configuration should not be based on simplistic 

hardware/software tradeoffs. 

The first task of the system designer is to become familiar with the MPU' s characteristics . Knowledge 

concerning the MPU' s ability to handle various aspects of the problem will heavily influence the methods that are 

finally adopted. Such factors as operating speed, the number of working registers and how they can be used, 

available control features, I/O techniques, addressing modes, and the instruction set will all influence each stage 

of the development. 

The remainder of this section illustrates by example some of the steps involved in reducing a system 

specification to individual software and hardware tasks. The various options are discussed in context with the 

Transaction Terminal described in the previous section. 

6-3.1 MEMORY REFERENCE 1/0 VS DMA I/O 

Memory reference or software 1/ 0 refers to the technique of transferring data to and from memory via 

the MPU and a PIA. For example, to load memory from a peripheral device, the data flow would be to (1) the PIA, 

to (2) the MPU, to (3) the memory. This is typically accomplished in software by a LDAA (PIA to MPU) 

instruction addressing the proper PIA followed by a ST AA (MPU to Memory) instruction addressing the desired 

memory location. 

D MA, or direct memory access, is a technique by which peripheral data transfer to and from memory is 

accomplished directly utilizing special DMA hardware. This implies that a DMA transfer is transparent to the 

6-6 



MPU, thus costing no software. However, it does affect system operation; the DMA circuitry must disable the 

MPU and generate the desired data, address and control signals required to transfer data directly to memory. 

DMA is discussed in detail in Chapter 4, however, it is worth reviewing here the reasons for disabling the MPU 

prior to a DMA transfer. During non-DMA operation, the MPU is driving the system busses and control lines. 

When DMA is required, the DMA hardware is responsible for driving the busses and some of the control lines, 

therefore, to avoid contention the DMA must "disable" the MPU. 

Any of the methods described in Chapter 4 may be used; the cycle stealing method of Section 4-2.2.2 is 

particularly useful when the DMA transfer requires a quick response. The transfer may begin within 500 nsec 

after setting the required MPU control lines. This technique is limited to an access of 5 ILsec duration because of 

the MPU refresh requirements. 

In the POS system, likely candidates for DMA transfer were the floppy disk and cassette peripherals. 

However, analysis indicated that neither of these peripherals required DMA hardware. (See Section 2-3 for the 

analysis.) The floppy disk requires a nominal transfer rate of approximately 31.25 kbytes/sec. The 6800 MPU, 

utilizing the PIA, can accommodate this transfer rate using software techniques. The cassette transfer rate is even 

slower, approximately 1.5 kbytes/sec. Even though the data block is long (256 bytes), suggesting DMA usage, 

the byte rate is very slow compared with the MPU' s software capability. As a result, DMA hardware was deemed 

unnecessary for the defined system. The floppy disk data rate approaches the minimum cycle time that software 

alone can transfer data from peripheral to MPU. Any peripherals requiring transfer cycle time less than 25 

ILsec/byte will require DMA techniques. 

6-3.2 SOFTWARE VS HARDWARE PERIPHERAL SERVICE PRIORITIZING 

Either software or hardware techniques can be used to establish the priority by which peripherals will 

be serviced. In the software appf(~ach, the MPU polls the peripheral devices to determine which peripheral needs 

service. The priority of peripherals with respect to one another is, therefore, determined by the order in which the 

software performs the poll. Hardware prioritizing uses external hardware to generate the service requests. 

The advantages and disadvantages of both methods are discussed in Section 3-3. Several hardware 

prioritizing methods are described in Section 4-2.1. In general, hardware techniques are faster, but the software 

approach eliminates the need for external circuitry. 

In keeping with the goal of minimizing external hardware wherever possible and because software 

polling was found to be adequate, no hardware prioritizing was done on the POS design. 

An example of software prioritizing methods was used in the case of the floppy disk. The interrupt 

must be serviced as quickly as possible once itoccurs. In suchacase, theMPU can ignore all other service requests 

and go into a programmed waiting loop until the device asks for service. When the disk is transmitting data to the 

MPU, the MPU repeatedly asks the disk if data is coming and responds immediately to a request for service. 

6-3.3 SOFTWARE VS HARDWARE TIMER 

In most systems, the MPU must occasionally perform a time out requirement before continuing with 

the program. Software can be used to generate the delay in a straightforward fashion by loading a register and 

decrementing it to zero and then allowing the program to continue. The amount of delay is determined by the value 

loaded into the register. Other software timing techniques are described in Section 2-3. 

Hardware time delays may be generated using any of the conventional methods such as one-shots, 

shift registers, counters, etc. Programmable counters are particularly useful in MPU systems; they can be parallel 

6-7 



loaded from the MPU and decremented to zero similarly to the MPU' s internal registers. In this case, however, the 

zero count is used to generate an interrupt that tells the MPU the timeout is complete. The hardware approach is 

useful in two situations: (1) When another useful task can be performed by the MPU while a timeout is taking 

place; (2) When two or more simultaneous but independent delays or timeouts are required for proper system 

operation. 

In the case of the POS terminal design, a hardware timer was incorporat'ed for both purposes. It is used 

as a matter of efficiency by several of the peripheral subroutines and as a matter of necessity by the disk control 

routine. The timer used is described in detail in Section 4-2.4. 

6-3.4 DISPLAY WITH OR WITHOUT EXTERNAL MEMORY 

In general, the hardware/software considerations for specific peripherals are covered in their respec

tive Sections of Chapter 5. (See, for example, Section 5-2.1.2 of the Printer description.) The display circuitry, 

however, has a direct bearing on overall system efficiency. A Burroughs SSD 1000-0060 16 Character Selfscan 

alphanumeric display panel was selected for the POS design. Data entry is by character from right to left with all 

displayed characters shifted one position to the left for each new entry. A display such as this raises the question as 

to whether a display with its own external memory storage should be selected. 

The Burroughs SSDIOOO-0060 Selfscan with memory is straightforward to use with the Motorola 

M6800 family (see Figure 5-2.2-1). To display a character, the MPU need only store the character code into the 

PIA interfacing with the display. The PIA then transmits the data and controls to the display. Each character 

displayed is stored in the display hardw~re thereby' 'freezing" the display until the MPU loads a new character. 

The 16 character Burroughs Selfscan without memory has essentially the same hardware interface but 

requires software for memory refresh. The program must establish a 16-byte character buffer in the system 

memory and periodically (approximately every .4 msec) refresh each character. The display program loads the 

display by storing the character codes into system memory and sequentially transferring each of the 16 memory 

words into the display at the desired refresh rate. 

The decision whether to use the more expensive display with memory versus additional programming 

requirements is influenced by the refresh time burdens placed on the executive control program. As usual, the 

objective is to eliminate hardware suggesting that the display without memory be used, however, the display 

operation should be examined in context with other system timing requirements. The display requires a new data 

word every 420 JLsec; this relatively slow data rate is well within the MPU's data transfer capability. A more 

restrictive requirement is that once the MPU is requested to display a word it has nominally 120 /Lsec to load the 

character into the display. From the standpoint of the MPU alone, the character could be loaded well within the 

required 120 JLsec but a conflict arises when there are other subsystem routines demanding uninterrupted 

services. The POS terminal design uses two routines that require uninterrupted service; both the disk and wand 

operations require dedicated service. As a result, there is a high probability that the display will require refresh 

while the MPU is locking out all interrupts. If the display is momentarity ignored, the result is not catastrophic, but 

will cause a visual flicker in the display. Prior to actual program development, the designer has only limited 

knowledge concerning the number and duration of possible contention problems. As the contention increases, the 

visual quality of the display degenerates. For this reason, the decision was made to use the display with external 

memory and not risk sacrificing display quality. 

As a general rule, hardware/software tradeoff decisions should be made as early as possible during 

system development. However, situations often arise in which the pros and cons of each method are initially well 

6-8 



balanced. In these circumstances, the final selection can be made later when the problem is better defined. A great 

advantage of the MPU approach is that design changes are easily incorporated. For example, if the anticipated 

contention problem discussed in connection with the display does not arise during development, it is a simple 

matter to modify the display program and switch to the unit without external memory. 

An exhaustive discussion of hardware/software tradeoffs is potentially unlimited. It has been the 

intent here to evoke an awareness of the alternatives without trying to categorize all the possibilities that may 

arise. Each application will present different problems; the important point is that MPU based designs offer the 

designer a wide variety of options to chose from. 

6-9 



6-4 TRANSACTION TERMINAL HARDWARE AND SOFTWARE 

6-4-1 HARDWARE CONFIGURATION 

The final hardware design of the Transaction Terminal was influenced by several considerations in 

addition to satisfying the specified system requirements. The design differs from a normal protytype in two 

respects: (1) There was no anticipated follow-on production requirements; (2) The Terminal was to be packaged 

in a portable configuration. The objectives were to verify the system design described in earlier sections of this 

manual and provide a portable demonstration vehicle for the M6800 Microprocessor family. A block<diagram of 

the hardware configuration is shown in Figure 6-4.1-1. 

Due to the once-only nature of the design, generation of mask-programmed MC6830 ROMs for the 

program was not economically feasible. An available 8K RAM/ROMl memory board was selected instead. This 

technique of placing control programs in battery-backed RAM instead of ROM is also useful during the field test 

phase of systems whose operational environment cannot be well defined during development. The system can be 

easily modified during operational tests, then converted to mask programmable ROM prior to volume produc

tion. 

The demonstration features where enhanced by including a limited diagnostic capability. This was 

provided by including an MC6830 ROM containing the MIKbugTM diagnostic program2
• This firmware would 

also be useful during field evaluation programs since it includes such features as memory change, register 

display, memory dump, etc. It also provides a convenient method of loading the Transaction Terminal control 

program into the 8K memory via an RS232 interface to terminals such as the TI Silent 7003 • 

The bulk of the hardware was partitioned into three printed circuit boards as shown in Figure 6-4.1-2. 

Because of weight restrictions imposed by the portability requirement, it was necessary to place the tape cassette, 

the floppy disk, and their associated conventional circuitry in a separate package. The cassette and disk interface 

to the remainder of the system through a cable and two PIAs located on the board designated as "I/O Card" in 

Figure 6-4.1-2. The I/O Card (see the Schematic Diagram of Figure 6-4.1-3) also contains the MIKbugTM PIA 

and terminal interface circuitry, the Restart and Powerfail circuitry, and the ACIA/MODEM telephone com

munications circuitry. 

The remainder of the system hardware is located on the "MPU/Control Card." In additiop. to the 

MPU, this board contains: 

(1) The MIKbugTM ROM. 

(2) Four MC6810 128 X 8 RAMs providing 512 bytes of random access memory used for shared 

scratchpad and temporary storage by the various subroutines. 

(3) MPU cP1 and cP2 clock circuitry and memory refresh and clock circuits. 

(4) Three PIAs and the interface circuitry associated with the printer, keyboard, display, interval 

timer, UPC scanning wand, and miscellaneous controls and indicators. 

(5) Various other timing and control signals for enabling the bus extender and family devices. 

lThis memory board was developed for use with Motorola's EXORciseITM system development aid. The memory configuration is 
described in Section 4-2.5.3 of this manual. 

2MIKbugTM was developed for use in Motorola's MPU Evaluation Module. The principle features of MIKbugTM and the Evaluation 
Module are described briefly in Section 7-3 and in detail in the MPU Evaluation Module Users Guide. I 

3Registered Trademark of the Texas Instruments Corporation. 

6-10 



TTY or ~ 

RS232C 
(Silent 700) ....-

Diskette 

Shugart ~ 
SA/gOO 

or 
Century 

Data 
~ 140 

Conrac 
~ 

Cas-10 
Tape 

Cassette 
~ 

Clock 
Circu itry 

RAM 

4-MC6810 RAM 
512 Sytesof 

Direct & Scratch 
(AOOO-SF F F) 

8K RAM Soard 
Non-Volatile 
Memory For 

PRGM Storage 
and RAM 

~ 

TTY/ 
RS232C 
Interface 
Circuits 

~ 

~ 

Floppy 
Disk 

& ~ 
Tape 

Cassette 
Data 

Recovery ...-. & 
Formater 
Circuitry 

~ 

PIA-O 
(8004 .A 
8007) / 
Mikbug I\l TTY/ 

RS232C 

PIA-4 
(8040 / 8043) 
Disk/ ~ 
Cass 

PIA-5 
(8080 /I 
8083) ~ Disk/ 
Cass 

MPU 
MC6800 

...----!) 

~ 
ACIA 

MC6850 

vi (8200 
8201) 

~ 
PIA-1 
(COOS 

/ COOS) 
V Printer 

PIA-2 
(C010 

~ C013) 

/ Timer 
v & 

Misc. 

PIA-3 

-1\ (C020 
C023) 

~ Key/ 
Display 

FIGURE 6·4.1·1: Transaction Terminal Block Diagram 

6-11 

Control 
Circu itry 

ROM 

MC6830 
Mikbug ROM 
(EOOO-E3F F) 

Load, Memory Chng, 
Execute Target Prgm. 

~ 
Modem ~ Telephone 
Circuit Network 

~ ~ Printer 
Interface 

Seiko Circu itry 
Drivers Printer 

& 
Condo ~ 

~ 

~ Interval 
Timer ........ Circuitry 

f4-- UPC Code Scanner 
and Misc. Controls 

and Indicators 

~ 

f4-- f4-Keyboard 
Decoding Micro Switch 

Circu itry Keyboard 

f4-- f.4-

r---. 
Surough's 

Self-Scan D isp lay 

f-t-



8K Non-Volatile MPU/Control Card 
RAM/ROM 

1. MPU 
Card 

2. Mikbug ROM 
2-4K Blocks 3. 512-bytes RAM 
of Memory 4. Clock Circu it 

5. Memory Control Circu its 
6. Other Control Circu its 
7. Buss Extenders 
8. Printer Interface Circuits 
9. Printer PIA 

10. Interval Timer 

Battery 11. Timer PIA 

+12 V 12. Keyboard Circuit 
13. Key/Display PIA. 

- + 

Gnd 

( 

cr- +12 (BAT) ,----- Gnd 

q - +5 .- +5 

Data Add Control Data Add Control 

'L /',. />. fI ~ /'). 

FIGURE 6-4.1-2: Control Circuitry Configuration 

I/O Card 

1. DSK/CAS PI 
2. Mikbug PIA and 

I nterface Circuit 
3. RES Circu it 
4. Power Fail Circuit for 

Non-Volatile Memory 
5.ACIA 
6. Modem 

+12 -12 

,----- Gnd 

r-- +5 

Data Add Control 

~ ~ ~ 

-

'--- -12 V 

+5 V 

+12 V 

Gnd 



~ 
o 
u 

" ~ m 

~ 

~ 
a 
" > 

o 
" C1 

" " m 

2K 

+5 

+12 NC +5 

- -, 
~~ : 
3 I _J 

lN4001 

820 

N4001 
lW 

-12 

~tf'l~ -
7400 

+5 

1 
2K J Decode 

BIT RATE ADJUST 91K 
r-r- Set VDD Jutput 

r- t- t- Reset Mono / I 
50~;----,'[ ..... ¥."'.J-l.-HH-1ln. asc. Inh'l( 10K 

a ~6::-:2~0-Pf:-1" t---t-+-1--1 a utl 

510.11 +12 +5 
NC 

------- :1 

" 1 
"" I 

I 
J 

1.lKl1lLf 

lW -12 ~ __ __ 

ic - -- i -= 
L ___ .J 

Out2 D t--
,... 8-Bypass C I-

'-f- Clk Inh B I-< 
.- r- v SS A 1-1-1----. 

MC1453S 

T 

-!-

- "SS 

PAO 

Y,MC1489~ -
-
-

1<> MC1488 -
~ -

-r.: -, PA7 
1 I PBO L-n 1<> MC1489 -

PB2 

+12 4.3K -
5 6NC +5

1 
~ 0---, -

:-----,~~i y ~ = 
~ PB6 

I 1 '-- PB7 

I 4N33 12 ~ CB2 

PIAO 

(8004-8007) 

Sl 1 tss 
s2" L RXD 

Bit Rate Gener. +1

5 

"' • ...------..., 15K 

- VOD H"-W'v----, 
- Rate Sel I------+.....;~:':'C~ 

- ~ CRX Rate Sell------+---o--C~ 

-- CTX 

- MHz-l...-
""--- RTS ACIA 

- ~ TXD 

4800 

Crystal Ell ,8432T 

f- c:::::J 

~ T 
15M - MC6850 

CTS~ 

ocol-
DO t-----. 
Dl~ 

D2~ 

D3 t----.. 
D4~ 
D5~ 

DSj----., 

D71";;;:;--.. 

r--

----
MC14411 

r
r
f-

VMA A15 t---

S4 

~ IRO 

~ 
CS<p 

CS2 

~ 
CSl 
RS 

- ,r VDO 
S3 

+5 

r-LV_S_S ____ 1_1_0~-----,...--~--~+---. 

'V 

Data 

Address 

Control 

f-- .... IWVSS CA1~ 
I-- PAO CA2 -
t-- PAl IRclA :J. 
!tio PA2 IROB 

Al 
RSO At" f.-' PA3 RS<p 

AO 
RSl -'-'-'-~ PA4 RSl 

R'ES- f-~ -
PA5 PIA 4 RES 

DO ----oJ PA6 DO ~ 

Dl ----oJ PA7 
(8040-8043) 01 ~ 

02 ----oJ PBO D2 f---" 
D3 ----oJ PBl D3 f---" 
04 --J PB2 D4 f---" 
05 ~ PB3 05 f---" 
OS f----' PB4 OS f---" 
07 ~ PB5 07 ~ 

E PB6 E 

CSl P87 CSl 
1 A13l A13 \ 

CS2 A2 .---- C81 CS2 
A6 ~ CSO t--- , ,--- CB2 CSO 

\ R/W R/W 

(8200-

8201) 

E~ 
R/Wh 

- ·VSS 

PAO 

PAl 

PA2 

PA3 

PA4 

PA5 

PAS 

PA7 

PBO 

PBl 

PB2 

PB3 

PB4 

PB5 

PBS 

P87 

.---- CBl 

r- CB2 

c 
0 
E 

~ E ~ 

-g 
; (9 

r VOO A15'VMA A15 VMA r VDO 

+5 

4
L - - - - - - -J 510.11, ~----=I 

VDD 

150.11 1<>MC1489 L-~::::::::::::::::~--------~;-+-+-~~---------------------------i-t-t-t-t-r~--
%W 

0 0. 

U ~ 

'" '" .~ 

~ C/J 

>- >-l- I-
l- I-

~ C1 '" 
0 -= (fj 

~ ~ ~ 
M M M 
<:' '" <;" 
C/J cb C/J 
0:: 0:: 0:: 

~ 
o 
U 

" & 
0:: 

>
l
I-

6-13 

PIA 4 

- '" al CIl 
UU 

1<> MC3001 

</>1 <Pl 

PIA 5 

ro ~ 
U U 

~,----------------------------------,,------------------------------------~I 
To Disk/Cassette 

Electronics 

+5 

+5 (c!l\ Carrier 
'\.p on Lamp 

Modem MC6860 , I 
... I·vss RX Data ~ 

.... 1- TX DATA CTS I---
1- RXBRK ESDI-

- ANS PHONE SWHf-f- +5 

... ill DTRf-f-f- I -12 ~f 
,...f- ESS R'i'N'D ~ 2 K 4.,! , 

r-----+-+-l T_H RES D ET TST t- SE"LFTST 7 3 i I 
10K 

1,0/Jf 
.... f- TX BRK RX CARl... + 

1- BRK REL t-4 RX RATE MLM311 8 6 2 

r--5;-...,....-+t--+It--l-~~G~;~AR MOde~vt-'-- 5 l/Jf ~ 
+ K~ , VDD XTAL'~' .1 +12' 75K 

lOOK L-+-_2_K::~~:~~~~~~~~~~~~~~~~ __ -+ ___ 2_K~it, _y, Y,MMCCl144558;~~12K 
~ 't--..... -e-, 

"OK, OOO.,;T '" 1:' 
~---------------t----rW~'~~ lK-

100KJ+ 

Data 

CA1W 

CA2 f--
IRCA h 
IROB 

Al 
RS<p 

AO 
RS1 

PIA 5 RES 

(8080-8083) 
DO ~ 

01 ~ 

02 ~ 

03 ~ 

04 ~ 

05 ~ 

06 ~ 

07 ----;j;2 
E 

CSl 
A13 \. 

CS2 
CS¢ 

A7 , 
R/W 

A15'VMA 

Data Buss Address Buss 

~ 
~ 
4: 

Control 

"!4 MC3001 

rP VMA 

A14 

~ 
'" 

• I y, MC1458 

+12 

VMA·A15 

:( 
+ 

,§~U.~r~~f of 

:( 

~ 
Control Buss 

'~ 
t= 
I 

" ~ 
0 
U 
u 
.~ 

8 
:t 
0 
I-

15 

26. 
K 

-12 

1.0ILf 

~ 
'iii 

u Ii! 
~ 0:: 

8 I 
4: " E ! ~ U 

lOOK 

175.11 

30,9K 

c 

'" '" Z 

'" 'i (9 
+ + I 

I I I I 

FIGURE 6-4.1-3: I/O Control Card Schematic Diagram 





The schematic diagram for the MPU /Control Card is shown in Figure 6-4. 1-4. The circuitry associated 

with the individual peripheral devices is described in detail in their respective sections of Chapter 5. This section 

will describe the remaining circuitry including the MIKbug PIA circuit (a feature of the M6800 Evaluation 

Module), the clock and control circuits, the BUS EXTENDERS, RES and powerfail circuits, and the ACIA and 

Modem. 

The MIKbug PIA interfaces either teletype (TTY) or RS-232 type devices to the Transaction Terminal 

(see Figure 6-4.1-5) for purposes of loading programs into RAM or for debugging. The TTY interface is an 

optically isolated 20 rna current loop. By selecting the appropriate SI position, either the TTY or the RS232 

interface will be enabled, thus allowing the selected interface to function. Paper tape reader control is also 

provided. The BIT RATE oscillator is used to shift the data in and out of the PIA at the frequency required by the 

interface selected, i.e., 10 cps for the TTY and 30 cps for the RS232, etc. The oscillator must be adjusted to the 

frequency required for the desired data transfer rate. 

+5 V 

AO 36 

A135 

A224 

A823 

A522 

0033 

0132 

0231 

0330 

0429 

0628 

0627 

0726 

R/W 21 

VMA ·</>2 25 

Reset 34 

20 

PIA 
(8004) 

PAO 

U26 

2 

R20 
510 

+5 V 

r 
I 
I 
I 

+5 V NC +12 V 

R21 +12 V 

2200 1 

1N4001 

-12 V 

CR1 
1 N4001 

R24 
320 
1W 

-12 V 
R25 
1100 

1W 

C5 

I·1J..LF 

6 U29Bt-

4

--...-
5i ~ --I 
L _ _ _ _ ~ L-_-.J....:..l-....--'VV'I---C:Y 

3 
.---~U30P------------------------------------;--~ 

S1 

8 
~~~-~U29C~---------------------------------v 

+5V NC +12V
6 5 -

Q---A./IItv-V CC I ---I
I I
I ~ I R26

, 150 1

P3

15 Serial
Output

Serial
12

Common

13 Serial
Input

3
RS-232C
Output

2
RS-232C
Input

RS-232C
Sig Gnd

R22
510 I 14 1/2W 11 Reader

D---"''''''-....:....L----J_ U22 4A3~ _ _""'--.J'-------..JVVlr----c
13

B it Rate Adjust

91K

C4
620 pF R23

50K

FIGURE 6-4.1-5: MIKBUGTM PIA and TTV/RS-232 Circuitry

6-17

Control

10 Reader
Control
Return

Since the 8K memory, 3 PIAs, and the ACIA are located" outside" the bus extenders, some address

decoding for the data bus receivers is required in order to prevent contention for control of the data bus. The system

memory map is shown in Figure 6-4. 1-6. The allocation with respect to address decoding and location with

respect to the bus extender is shown in Figure 6-4.1-7.

Note that all "external" memory has A15 and A14 at logic one and zero levels, respectively. By

Exclusive ORing A15 and A14 and combining them as shown in Figure 6-4.1-8 with R!W and (VMA· cp2),the

data bus receivers are enabled only when devices off the MPU card are addressed, that is, when:

R/W· (VMA· cp2)· (A15 + A14) = O. The data bus drivers are enabled whenever R/W (VMA· cp2) = O. The

address bus drivers are controlled by the TSC line which is grounded for normal operation and the address bus

receivers are disabled at all times. VMA is ANDed with A15 to enable the PIAs via their CS 1 inputs. This insures

that the address on the bus is valid before the PIA is enabled.

The remaining control circuitry on the MPU card includes the MEMORY refresh control signals and

the G/H sync circuit. The memory circuit is described in detail in Section 4-1.5.3 of Chapter 4.

Control lines are provided to the output connector so that future functions such as DMA may be

implemented. These include G/H, BA and TSC. Other controls brought out for system operation are REFRESH

REQUEST, REFRESH GRANT, IRQ, NMI, RES, cp1, cp2 (memory clock), VMA, R!W, and an off board

address decode input (A15 E9 AI4).

Since the R/Wline is a tri-state output, a tri -state buffer must be used to drive the system. An MC8T26

(Figure 6-4 .1-9) was used since it will provide the inversion necessary for the data bus extender driver control line

and provides the tri-state output capability required.

Many considerations go into the memory mapping of a system. As the system design is developed and

as programs are written, changes will invariably be required in the memory allocation due to programs that are

longer than anticipated, more I/O requirements, system partitioning changes, etc.

As an example, the original transaction terminal memory allocation had all PIAs defined from

$8008-8083 as follows:
PIA-O $8004-8007

PIA-1 $8008-800B

PIA-2 $8010-8013

PIA-3 $8020-8023

PIA-4 $8040-8053

PIA-5 $8080-8083

In order to simplify the address decoding for memory location outside the bus extenders, PIAs 1, 2,

and 3 were moved to locations C008-C023:

PIA -1 C008-COOB

PIA-2 C010-C013

PIA-3 C020-C023

This allowed the same address decoding scheme at the devices (see Figure 6-4.1-7) while allowing

simple "inside" /"outside" decoding for the data bus extender receivers. Figure 6-4.1-7 shows the address

decoding scheme used for the Transaction Terminal. Shading of the address line indicates that the line is tied to

either a device enable (E or E) or a chip select (CSx or CSx) line. A 1 indicates the line is tied to a true input (CSx or

E) a zero indicates the line is tied to a not true input (CSx or E).

6-18

of Bytes

1 K Bytes

4 Bytes

4 Bytes

4 Bytes

8K Bytes

4 Bytes

4 Bytes

4 Bytes

5K Bytes

Address
Range

E3FF

EOOO

C023

C020

C013

C010

COOB

C008

BFFF

AOOO

8083
8080

8043
8040

8007
8004

OIFF

0000

Name

Mikbug
ROM

PIA-3

PIA-2

PIA-1

Block-2

4K

RAM/ROM

Block-1

4K
RAM/ROM

PIA-5

PIA-4

PIA-O

Function

Mikbug Program
Firmware

K eyb oa rd/D isp lay
Interface

I nterval Timer/Misc.
Interface

Printer Interface

Program Storage

RAM Storage

RAM Buffers

Mikbug Program RAM

Disk/Cassette Interface

Disk/Cassette Interface

Mikbug TTY/RS232

Interface

Direct RAM and Shared
RAM Scratch Pad Memory

~xxxx xxxxxxxxxx

::ixxxx xxxxxxxox>.::

en
W
2:
:::i
~
W
0::
o
o
<t
~OOOO OOOXOOO x x

en enw
w(!I

~~
~o::

o 0 0 0 0 0 0 0 x x

o 0 0 000 0 0 x x

N
~ ~
o 0
o 0
(3 (3

FIGURE 6-4.1-6: Transaction Terminal Memory Map

6-19

o

+

•

•
~
oc
>

CD

"0
(Il

:0
to
C

UJ

en
UJ
I
o
Z

en
.9-
J:
U

~
Ol
.S
"0
o o
(Il

o
en
en
~
"0
"0
«

<Ii
Qi
"0
C
l!l
x

UJ

'" '" ::l
CD
(Il

"0
'iii
c

R/W

A14

A15 P
R/W.VMA.cp2.(A15 + A14)

-----\ ____ p ___ ~~~~~~~~~~ _----- Data Buss Receiver ~ • Enable Inputs

0- Enbles

1 - 'Disables

FIGURE 6-4.1-8: Bus Extender Enable/Disable

TSC

TSC

MPU

R/W .----('Ji

R/W

FIGURE 6-4.1-9: MC8T26, Partial Schematic

6-20

For this demonstration version of the terminal, the RES and powerfail detect circuit for the non

volatile memory are switches with contact bounce suppression circuitry. The RES (restart or reset) is a push

button switch used to initialize and restart the system at power on and if the system malfunctions. The power fail

detect function is switched prior to AC power off so that the memory refresh circuitry will operate from the battery

during transportation of the demonstration terminal.

6-4.2 TRANSACTION TERMINAL SOFTWARE DEVELOPMENT

6-4.2. 1 Software Background Preparation

The first stage of the software development is to define the tasks required of the system software.

Section 6-2 describes the POS terminal requirements and provides the specification from which to work. The

keyboard data entry procedure becomes a large portion of the main (executive) program and serves as a logical

starting point from which to begin generating the system flow charts.

Table 6-4.2. 1-1 summarizes the actions that would need to be taken for each keyboard or wand entry.

The table categorizes each entry procedure indicating what action will be required of the executive program and

peripheral. The left hand column shows how the entry is made; the middle column shows what is occurring in the

peripherals; and the right hand column shows what action the program must take. The function of the table is to

organize the necessary house-keeping requirements as items are entered and delineate some of the data

~C~I~T
CAT. ID~BZC

DEDUCTION

MOVE AMOUNT ~IN PRICE

B8~B2P

DISPLAY CATAGORY

'B2c ~-oiSP L;:V-

2

MOVE OED ~IN OED.

----o'E D I[)~B2'<:

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 1 of 15)

6-21

manipulation that will be required of the program. Such a table also helps the designer visualize the operation for

each item entry and becomes a first pass at a set of low level flow charts. No attempt is made yet to weave them

together into a common flow.

Notice that item entry is double buffered. As each new item is entered (In) it is immediately displayed.

The program stores both the present (In -1) item information (i. e., price, category, quantity, etc.). Upon

completion of a current item entry (subtotal plus): (1) pertinent data ofln-1 is outputted to the printer, (2) a new

partial product is calculated, and (3) In is shifted into In-I. Using this procedure, operator errors may be

"cleared" on the current item entry without affecting the printout hard copy.

The next step in program development is an outgrowth of Table 6-4.2.1-1, still focusing on the

keyboard operation. The entry procedure of Table 6-4.2. 1-1 is translated into a flow diagram for each key on the

transaction terminal keyboard. These diagrams, shown in Figure 6-4.2.1-1, merely summarize housekeeping

requirements in another format and show the flow of data between defined memory buffers, test of programmable

flags, and interaction with peripherals. There is a separate flow diagram for each key or group of keys on the

keyboard (see Figure 6-2-2 for a representation of the transaction keyboard). For example, all numeric entries are

grouped into a single "number" flow. The only other groupings are the product category keys (i.e., grocery,

dairy, meat/coupon, produce/bottles, and household/stamps). These two groups combined with the remaining

transaction keys result in the thirteen distinct flow diagrams contained within Figure 6-4.2. 1-1 and the buffer and

flag assignments of Tables 6-4.2.1-2 and 6-4.2.1-3, respectively.

6-22

CHECK

LOAD CHECK 8UFFER
88-+816

CALCULATE CHANGE
813-816 -+820

PRINT FINAL TOTAL
813 -+PRINTER

o

CASH

LOAD CASH 8UFFER
88 -+814

CALCULATE CHANGE
813 - 814-+820

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 2 of 15)

6-23

CLRBSP

CLRASP

CLRBSP

CLRBSP

CLRBSP

CLRACC

CLRATI

IF CLEAR LBP RETURN

cisP DEL

DISPLAY "*DEL" WITHOUT
CLEARING THE DISPLAY

SET F18 CLEAR DISPLAY ON NEXT ENTRY
SET F30 "CLEAR" PUSHED LAST

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 3 of 15)

6-24

CLRBSP

CLRACE

CLRNUM

CLRASM

E.P.

E.P.

E.P.

CLR NUM

CLEAR F2, NO, ENTRY
F3, QUANTITY
F5, WEIGHT
F16, NO TAX

CLEAR B9, NO. COUNT
RESTORE B8 POINTER TO

TOP OF B8

CLEAR F30 SINCE
NOT TESTED OR CLEARED
BEFORE SUBTOTAL PLUS

CLR F3, QUANTITY UPC

CLEAR F13 ADD CASH
F14 REMOVE CASH
F15 CASH A CHECK

10 UPC #'S ENTERED

CLR ASP

E.P.

E.P.

E.P.

E.P.

E.P.

CLEAR Fll CASH ENT
F12 CHECKENT
F22 A.T. NOT

PRINTED

CLRATl

CLEAR F8' TOTAL #1

CLEAR Fl, TOTAL TWICE

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 4 of 15)

6-25

CODE ENABLE

o

AUTHORIZATION

INTERNEGATION
XSACTION VOID

EXIT UPC MODE

ENTER UPC MODE

SET F3, F 18

"ENABLE WAND"

RESET F3

DISABLE WAND

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 5 of 15)

6-26

FUTURE
CODE WORDS

CHECK

AUTHORIZATION

XACTION

VOID

ADD CASH

TO REGISTER

REMOVE CASH

CASH

CHECK

LOOK UP CHECK
ADDR BY NAME

PRINT/DISPLAY
"ADD CASH"

PRINT /DISPLAY
"REMOVE CASH"

0
Z
I-
Ul ...

CODE WORD

7
6

5
4
3
2
1

==> TAX % CHANGE
==> ENTER OPERATOR ID.
==> CASH CHECK
==> REMOVE CASH FROM REG
==> ADD CASH TO REGISTER
==> TRANSACTION VOID

==> CHECK AUTHORIZATION

==>

SET F14

DISPLAY
NO CAN DO

SET F15

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 6 of 15)

6-27

LOAD TEMP SUFFER -- -- --
ACCA-+88

INCREMENT NO. COUNT
>---..... +--

89 + 1 -+89

YES

RESET NO. COUNT

RESET 89

XFER UPC CODE INTO IN UPC

GO TO UPC
(1M = 1)

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 7 of 15)

6-28

SUBMINUS

PRINT PRETAX TOTAL
B2~PRINTER

PRINT TAXABLE TOTAL
B27 -+PRINTER

PRINT TAX
B12-+PRINTER

PRINT W!TAX TOTAL
B11 -+PRINTER

CLEAR SUBTOTAL
0-+B3

JUMP SUBTOTAL +

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 8 of 15)

6-29

SUBTOTAL <±)

o

1 WGHT

1 QUANT

(XKSQNT)

CALCULATE ITEM SUM
B2P X B2W -+B25

CALCULATE ITEM SUM
B2P X B2Q -+B2S

DISPLA Y SUM & CAT
B2S & B2C -+DISPLAY

.... 1---+ __ F ROM WAN
(F4 = 1)

... ~-------------l.oIIII~-------- FROM WAN
'" (F4 = 0)

ADD IN-1 TO PARTIAL PRODUCT
B1P+B3-+B3

RESET F30

SET F17

XKFG03

~I-------------- F ROM TOTAL

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 9 of 15)

6-30

o

(XKFG21) 1

In-'

WGHT

iO

(XPRINT)

LOAD In-1 SUM/CRTEG
BIS, BIC -+PRINT BUFFER

START In-1 PRINT
B25-+PRINTER

In-1

NO TAX

PRINT In-1 PRICE
B1 P, "EA-" -+PRINTER

LOAD In-1 SUM/CATEG
BIS, BIC -+PRINT BUFFER

LOAD CASSETTE RAM WD 7,6
BIQ -+B4-WD 7,6

PRI NT In-1 PRICE/LB
BIP, "/LB-" -+PRINTER

LOAD In-1 PRICE, CATEG
BIP, BIC -+PRINT-BUFFER

LOAD CASSETTE RAM WD 7,6,0
BIW -+B4 - WD 7,6

XXXXXXI X -+B4 - WOO

UPDATE NO TAX BUFFER
B1P + B10-+B10

LOAD "NT" IN PRINT BUFF

LOAD CASSETTE RAM WD 5,4,3,2,',0
B1 U -+B4 - WD 5,4,3,2,1
XXXXXXXI -+B4 - WOO

>-----------------------~ GO TO "TOTAL"

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 10 of 15)

6-31

INCREMENT CASSETTE BUFFER CNT
B19 + 1 ---+B19

(XKXFER)

TRANSFER In ---+In-.1
B2P---+BIP
B2C---+BIC

(XKFGRS)

RESET FLAGS
2,4,5,16

SET F18

QUANT

1 WEGHT

TRANSFER In ---+In-1
B2Q ---+B1Q

SET 20

TRANSFER In ---+In-1
B2W ---+B1W

SET 21

TRANSFER In ---+In-1
B2U ---+BIV

(XKX325)

TRANSFER In ---+In-1
32B ---+B 15

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 11 of 15)

6-32

o

o

o

ADD CASH

TO REGISTER

REMOVE CASH

FROM REGISTER

CASH

CHECK

DISPLAY
"SORRY"

ADD CASH TO TOTAL CASH

B8 + B15 -+B15

PRINT/DISPLAY

"CASH +"

SET F18
RESET F13

SUBT CASH FROM TOTAL CASH

B15-B18-+B15 L-__________ ~----------~

PRINT/DISPLAY
"CASH -"

SET F18
RESET F14

o

ADD CHECK TO CHECK TOTAL

B8 + B17 -+B17

PRINT/DISPLAY
"NO. CHECK"

SET F18
RESET F15

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 12 of 15)

6-33

ENTER
SUBPLUS

o

o

PRINT PRETX TOTAL
B28 -+PRINTER

PRINT TAXABLE SUBTOTAL
B27 -+PRINTER

PRINT TAX
B12 -+PRINTER

PRINT W/TAX TOTAL
B11-+PRINTER

COMPUTE FINAL TOTAL
B11-B3-+B13

DISPLAY FINAL TOTAL
B13-+DISPLAY

SET F18
SET F22

FIRST

TOTAL

SET F31
SET F8
SET F18

o XKSENT TO

DISPLAY SUBTOTAL
B3 -+DISPLA Y

SAVE SUBTOTAL
B3 -*328

COMPUTE TAX
B28-B 1 0 -+B27

B27 X B18-+B12

COMPUTE W/TAX TOT
B 1 7 + B 28 = B 1 1

DISPLAY W/TAX TOTAL
B11 -+DISPLAY

SUBPLUS

XKDSPR FROM
SUBPLUS

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 13 of 15)

6-34

QUANTITY

SET F4

XFER QUANTITY INTO IN QNT - --.--
B8~B2Q

DISPLAY "EA"

RESET NO. COUNT

B9~O

SET F5

XFER WEIGHT INTO IN WGT

B8~2W

DISPLAY"#"

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 14 of 15)

NOTAX

DECIMAL PT

DO ASAP

FIGURE 6-4.2.1-1: Flow for Key Entry Data (Sheet 15 of 15)

6-35

Jrable 6-4.2.1-1
TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 1 of 9)

Keyboard

STANDARD ENTRY

#5

CATEGORY

SUB +

NO TAX ENTRY

Peripheral Action

reset display

display #

5

display #*cat*

51 4 1

display #*cat*

51 4 11

print In-l

Executive Program Action

load temp buffer

load In category

load In price

add In - 1 to partial product

load In -1 into cassette buffer

move In to In-l

NO TAX depress key prior to SUB + set "no tax" flag

(standard entry) or 10#s (UPC entry)

SUB +
10# (UPC)

STANDARD/QUANTITY ENTRY

OPTION 1:

#s

CATEGORY

QUANTITY

SUB +

OPTION 2:

reset display

display #

display #*cat*

51 4 1

display # *cat*#

51 4 11

display #*cat*#ea*

51 4 112 1

display #*

51 4 11

print In-l

reset display

display #

6-36

load temp buffer

load In category

load In price

load temp buffer

load In quantity

compute In total

add In - 1 to partial product

load In - 1 into cassette buffer

move In to In-l

load temp buffer

Table 6-4.2.1-1
TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 2 of 9)

Keyboard

QUANTITY

#s

CATEGORY

SUB +

STANDARD/WGT ENTRY

OPTION 1:

#s

CATEGORY

#s

WEIGHT

SUB +

OPTION 2:

#s

WEIGHT

Peripheral Action

display #ea *

12 1

display #ea*#

12 15

display #ea*#*cat*

12 151 4 1

display # *cat*

51 4 11

print In-l

approval tone

reset display

display #

display # *cat*

51 4 1

display #*cat*#

51 4 14

display #*cat*##

51

display #*cat*

51 4 11

print In-l

reset display

display #

4

display ##

41

6-37

Executive Program Action

load In quantity

load temp buffer

load In category

load In price

compute In total

add In - 1 to partial product

load In - 1 into cassette buffer

move In to In-l

load temp buffer

load In category

load In price

load temp buffer

load In weight

compute In total

add In - 1 to partial product

load In - 1 into cassette buffer

move In to In-l

load temp buffer

load In weight

1rable 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 3 of 9)

Keyboard

#s

CATEGORY

SUB +

KYBD UPC ENTRY

CODE ENTRY

#s

10#s

WAND UPC ENTRY

CODE ENTRY

WAND INPUT

Peripheral Action

display ###

415

display ###*cat*

4151 4 1

display #*cat*

51 4 11

print In-l

reset display

display UPC*ENTR Y

315

turn on UPC light

reset display

display #

10

go to disk routine

reset display

display #*cat*

51 5 11

print In-l

reset display

display UPC*ENTRY

315

turn on UPC light

go to disk routine

reset display

display #*cat*

print In-l

6-38

Executive Program Action

load temp buffer

load In category

load In price

compute In total

add In - 1 to partial product

load In - 1 into cassette buffer

move In to In-l

enable wand

load tump buffer

load In UPC

add In - 1 to partial product

load In -1 into cassette buffer

move In to In-l

reset # count

enable

load In UPC

add In - 1 to partial product

load In -1 into cassette buffer

move In to In-l

llable 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 4 of 9)

Keyboard Peripheral Action

KYBD UPC/QUANT ENTRY

#s

QUANTITY

#s

10#s

reset display

display #

display #ea*

12 1

display #ea*#

12 110

reset display

display #*cat*

51 5 11

WAND UPC/QUANT ENTRY (in UPC mode)

QUANTITY

WAND

EXIT UPC MODE

reset display

display #

display #ea*

12 1

reset display

display #*cat*

51 5 11

Executive Program Action

load temp buffer

increment # count

reset # count

load In quantity

load temp buffer

increment # count

load In UPC; compute In total

add In - 1 to partial product

reset # count

load In - 1 into cassette buffer

move In to In-l

load temp buffer

increment # count

load In quantity

reset # count

load In UPC; compute In total

add In - 1 to partial product

reset # count

load In - 1 into cassette buffer

move In to In-l

(#) operator may not exit the UPC mode subsequent to depressing a # key

CODE ENTRY

TRANSACTION TOTAL

SUB +

reset display

display UPC DISABLE

disable upe light

disable wand

display #*cat*

51 4 11
print In-l

6-39

update buffers

Table 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 5 of 9)

Keyboard

TOTAL

TOTAL

CASH ENTRY

CASH

DECIMAL POINT

Peripheral Action

reset display

display #*PRETAX*TOT

51 6 1

print In-l

print # PRETAX TOTAL

reset display

display #*TOTAL

51

print tax/deductions

print # TOTAL

reset display

display #

display #CA

5 2

display #CA *#CHG

5 215 3

print cash

print change

open register drawer

CHECK ENTRY - no authorization

CHECK

DECIMAL POINT

reset display

display #

display #CK

5 2

display #CK*#CHG

5 215 3

print check

print change

open register drawer

DEDUCTION ENTRY - (between 1st and 2nd total)

reset display

display #

640

Executive Program Action

add In - 1 to partial product

load In-l into cassette buffer

xxxx tax

compute post tax total

store tax/total on casette buffer

load temp buffer

load cash buffer

calculate change

reset flags and buffers

store on cassette tape

update register cash ~uffer

load temp buffer

load check buffer

update register check buffer

calculate change

store on cassette tape

reset flags and buffers

load temp buffer

Table 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 6 of 9)

Keyboard

CATEGORY

SUB -

Peripheral Action

display #*DED*

41 4 1

display #*DED*

41 4 11

MULTIPLE DEDUCTION ENTRY

OPTION 1:

QUANTITY

CATEGORY

SUB -

reset display

display #

display #ea *

12 1

display #ea*#

12 15

display #ea*#*DED*

12 151 4 1

reset display

display #*DED*

51 4 11

MULTIPLE DEDUCTION ENTRY

OPTION 2:

CATEGORY

QUANTITY

SUB -

reset display

display #

display #*DED*

41 4 1

display #*DED*#

41 4 11

display #*DED*#ea*

51 4 112 1

reset display

display #*DED*

51 4 11

6-41

Executive Program Action

load deduct

load deduct price

load deduct buffer

load temp buffer

load In quantity

load temp buffer

load deduct

load deduct price

calculate mult price

load deduct buffer

load temp buffer

load deduct

load deduct price

load temp

load In category

calculate multiple price

load deduct buffer

Table 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 7 of 9)

Keyboard Peripheral Action

CHECK ENTRY - with authorization/approval

(Olnnn)

CODE ENTRY

CHECK

DECIMAL POINT

reset display

display #

display ENTER *CHECK* AMNT

51514

reset display

display #

display #CK

display #CK*#CHG

52 15 3
print check

print change

open register drawer

CHECK ENTRY - with authorization (override disapproval)

(Olnnn)

CODE ENTRY

CHECK

DECIMAL POINT

reset display

display #

display #*SORRY

1 5

reset display

display #

display #CK

5 2

display #CK*#CHG

5 215 3
print check

print change

open register drawer

CASH ENTRY - subsequent to check disapproval

#(Olnnn)

CODE ENTRY

reset display

display #

display #*SORRY

1 5

642

Executive Program Action

load temp buffer

look up check

load temp buffer

load check buffer

update register check buffer

calculate change

load cassette

reset flags and buffers

load temp buffer

look up check

load temp buffer

load check buffer

update register check buffer

calculate change

load cassette

reset flags and buffers

load temp buffer

look up check

Table 6-4.2.1-1

TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 8 of 9)

Keyboard

CASH

DECIMAL POINT

TRANSACTION VOID

Peripheral Action

reset display

display #

display #CA

5 2

display #CA *#CHG

5 215 3
print cash

print change

open register

Executive Program Action

load temp buffer

load cash buffer

update cash buffer

calculate change due

load cassette

reset flags and buffers

(02) reset display load temp buffer

display #

CODE ENTRY display "TRANSACTION VOID" reset transaction buffer and flags

DELETE PRESENT ENTRY

#,CAT,WT,QTY,NO TAX Same as a "standard" entry

CLEAR reset display

DELETE PREVIOUS ENTRY

delete previous item:

SUB +

CLEAR

Same as a "standard" entry

display DEL#*cat* *DEL

6 51 4 111 3

DELETE PREVIOUS DEDUCTION

SUB -

CLEAR

DELETE CASH ENTRY

CASH

CLEAR

Same as "deduction" entry

display #*DED* *DEL

41 4 111 3

Same as "cash" entry

display #CA *DEL

52 1 3

643

reset In buffers and flags

update deduct total

reset cash buffer

1l:able 6-4.2.1-1
TRANSACTION TERMINAL KEYBOARD/WAND ENTRY (Sheet 9 of 9)

Keyboard

DELETE CHECK ENTRY

CHECK

CLEAR

Peripheral Action

Same as "check" entry

display #CK*DEL

52 1 3

ADD CASH - (between transactions)

#s (03nn)

CODE ENTRY

#s

TOTAL

display #

reset display

print/display "add cash"

reset display

display #

print/display #*CASH +

REMOVE CASH - (between transactions)

#s (04nn)

CODE ENTRY

#s

TOTAL

display #

reset display

print/display "remove cash"

reset display

display #

print/display #*CASH-

CASH CHECK - (between transactions)

#s

CODE ENTRY

#s

TOTAL

extra heads & titles

reset display

display #

reset display

print/ display "cash check"

reset display

display #

print/display #*CHECK

644

Executive Program Action

reset check buffer

load temp buffer

load temp buffer

update register cash buffer

load temp buffer

load temp buffer

update register cash buffer

load temp buffer

load temp buffer

Jrable 6-4.2.1-2

TRANSACTION TERMINAL KEYBOARD BUFFERS

Buffer Number Description

In-l CATEGORY POINTER

In-l PRICE

In-l QUANTITY

In-l WEIGHT

BIC

BIP

BIQ

BIW

BIS

BIU

B2P

B2Q

B2W

B2S

B2C

In-l SUM (IF QUANTITY/WEIGHT ENTRY)

In-l UPC CODE

In PRICE

In QUANTITY

In WEIGHT

In SUM (IF QUANTITY/WEIGHT ENTRY)

In CATEGORY POINTER

B2U In UPC CODE

B3 TRANSACTION/DEDUCTION PARTIAL PRODUCT

B4 CASSETTE RAM BUFFER

B5 TRANSACTION NUMBER

B8 TEMPORARY BUFFER (UNPACKED BCD)

B9 UPC KEYBOARD NUMBER COUNT

BI0 TRANSACTION NONTAX SUMMATION (PRICE SUMMATION)

B 11 POST TAX TOTAL

Bt2 TRANSACTION TAX

B13 DEDUCTION TOTAL

B14 SINGLE TRANSACTION CASH

B15 TOTAL CASH IN REGISTER

B16 SINGLE TRANSACTION CHECK

B17 TOTAL CHECKS IN REGISTER

B18 TAX PERCENT

B19 CASSETTE BUFFER COUNT

B20 TRANSACTION CHANGE

B22 TOTAL DOLLAR SALES

B23 OPERATOR IDENTIFICATION NUMBER

B24 LOOKUP KEY SUBROUTINE MSP ADDRESSES (line 1140)

B25 PRINTER BUFFER

B26 DISPLAY BUFFER

B27 TAXABLE TOTAL

B28 PRETAX TOTAL

6-45

Table 6-4.2.1-3

TRANSACTION TERMINAL KEYBOARD flAGS

Flag
(Sheet 1 of 2)

No. Description Set Reset Test

FI "TOTAL" KEY DEPRESSED TOTAL INITIALIZE (SU ,BT) SUBTOTAL -

TWICE

F2 NUMBER ENTRY NUMBER INITIALIZE (SU,BT,BI) CLEAR

CLEAR CODE ENTRY

CODE ENTRY

SUBTOTAL +

F3 UPC ENTRY MODE CODE ENTRY INITIALIZE (SU) CODE ENTRY

QUANTITY CODE ENTRY NUMBER

WEIGHT SUBTOTAL +

F4 In MULTIPLE ITEM ENTRY QUANTITY INITIALIZE (SU ,BT ,BI) SUBTOTAL +
CLEAR SUBTOTAL -

SUBTOTAL +

F5 In WEIGHT ENTRY WEIGHT INITIALIZE (SU ,BT ,BI) SUBTOTAL +
CLEAR

SUBTOTAL +

F6 INVALID CHECK CODE ENTRY INITIALIZE (SU) CHECK

CLEAR CLEAR

CODE ENTRY

TOTAL

F7 ITEM DELETION SUBTOTAL - INITIALIZE (SU ,BT) SUBTOTAL +
SUBTOTAL + TOTAL

F8 "TOTAL" KEY DEPRESSED TOTAL INITIALIZE (SU) CATEGORY

ONCE TOTAL NUMBER

SUBTOTAL +
SUBTOTAL -

TOTAL

F9 In-l UPC ENTRY SUBTOTAL + INITIALIZE (SU) SUBTOTAL +

FlO DEDUCTION ENTRY SUBTOTAL - INITIALIZE (SU) SUBTOTAL -

CATEGORY TOTAL

FII CASH ENTRY CASH INITIALIZE (SU) CLEAR

SUBTOTAL -

Fl2 CHECK ENTRY CHECK INITIALIZE (SU ,BT) CLEAR

SUBTOTAL - SUBTOTAL -

6-46

Jrable 6-4.2.1-3

TRANSACTION TERMINAL KEYBOARD FLAGS

Flag

No. Description

F13 ADD CASH TO REGISTER

F14 REMOVE CASH FROM

REGISTER

F15 CASH A CHECK

F16 In NO TAX FLAG

F17 In-l HAS BEEN LOADED

F18 DISPLAY IS FULL

F19 In-l NO TAX FLAG

F20 In-I MULTIPLE ITEM

ENTRY

F21 In-I WEIGHT ENTRY

F22 FINAL TOTAL MUST

POINT

F29 PRINTER FINISHED

F30 CLEAR LAST PUSHED

F31 PRETAX TOTAL MUST

PRINTED

(Sheet 2 of 2)

Set Reset

CODE ENTRY INITIALIZE (SU)

TOTAL

CODE ENTRY INITIALIZE (SU)

TOTAL

CODE ENTRY INITIALIZE (SU)

TOTAL

NO TAX INITIALIZE (SU ,BT ,BI)

CLEAR

SUBTOTAL +

SUBTOTAL + INITIALIZE (SU ,BT)

INITIALIZE INITIALIZE (SU)

(BT,BI)

CLEAR

CODE ENTRY

SUBTOTAL +
SUBTOTAL -

TOTAL

SUBTOTAL + INITIALIZE (SU ,BT)

SUBTOTAL + INITIALIZE (SU ,BT)

SUBTOTAL + INITIALIZE (SU ,BT)

TOTAL CASH/CHECK

BE PRINTED

PRINT ROUTINE PRINT ROUTINE

CLEAR

TOTAL

6-47

TOTAL

SUBTOTAL -

Jrest

TOTAL

TOTAL

TOTAL

SUBTOTAL +

SUBTOTAL +

NUMBER

SUBTOTAL +

SUBTOTAL +

SUBTOTAL +

DECIMAL

SUBTOTAL +
TOTAL

6-4.2.2 Development of Macro Flow Diagram

The groundwork has been laid. The transaction terminal specification has been translated into a

detailed set of flow charts that describe the action required when a given key is depressed. At this point, the

development consists of 13 independent flow diagrams. A high level program may now be defined to interweave

all programs into an operating system.

The macro flow of the executive program is shown in Figure 6-4.2.2-1. The flow diagram has two

basic elements: initialization and item entry. The initialization is further broken down into three elements. The

first, system startup, initializes the entire system from a power on condition. The other two initialization routines

are entered between items and transactions.

The item entry procedure indicated in Figure 6-4.2.2-1 becomes the basis for the entire terminal

operation. The terminal has two methods of data entry: the keyboard or an electronic scan of encoded labels on the

products (wand). The executive program is organized so that both the keyboard and wand are serviced on a polling

basis. Immediately after initialization, the MPU begins a software poll of the keyboard and wand, looping until

service is requested.

If the keyboard requests service, the MPU begins to decode the input data to determine which key has

been depressed (keyboard decode). This data is then checked to determine if the key is allowed and the data is

processed. This check is accomplished by a Failsafe Interlock routine that protects the executive program from

processing data as a result of an operator error.

Data from the keyboard may be either standard price/category or ten numbers to represent the

universal product code (see Section 5-1.2 for a description of the UP C) . If the entry is standard, the executive will

process the data as required. If the data is the result of a UPC entry, the executive will first access the floppy disk to

obtain price/category information. Upon data retrieval from the disk, the executive will then process data.

If the wand requests service, the executive jumps to the wand interpreter routine. Here the stream of 0' s

and 1 's read optic all y from a label is converted into ten UPC numbers. The UPC numbers are then used by the disk

program to access the associated price/category information (similar to a disk lookup as a result of 10 UPC

numbers entered from the keyboard). Once the information is retrieved from the disk, the executive program

begins normal processing of data.

As seen in Figure 6-4.2.2-1, the executive program returns to the polling loop until all necessary data

to enter an item is entered from the keyboard. If the item is a standard keyboard entry, the" subtotal +" key

terminates the item. If the item is a keyboard UPC entry (10 numbers), the tenth key depressed initiates disk

lookup and item processing. The item entry is automatically considered complete at the tenth number entry and

the" subtotal + " terminator is not required. All wand entries are also considered complete item entries. Once the

item entry is completed, the MPU then reinitializes for either a new item or transaction. If the transaction is

complete, the MPU also accesses the cassette and saves the transaction data on tape.

The preceding discussion of Figure 6-4.2.2-1 is intended to review the high level flow of the

transaction terminal executive program without regard to detail. The following sections will examine the macro

flow in greater detail to demonstrate the developmental process and, in some instances, show the final objective

- the source code itself.

648

Load
Transaction

Data On
Cassette

h

Power On ,
System
Start Up

Initialization

t
New - Transaction - Initial ization ,
New - Item - Initialization ,

_J Keyboard/ \ Wand --, Wand
I Poll

, KYBD

"
Keyboard Wand

Decode Interpreter

11

~GOC Fail Safe
Interlock

U
GO ,.

-Process - Disk UPC
Data Lookup

Continue -Entry -
Item Entry I
Complete

Transaction Entry

Complete

FIGURE 6-4.2.2-1: Transaction Terminal Flow Diagram

6-49

Initialization

Item
Entry

6-4.2.3 Technique of Executive Program Organization

Development of the executive program requires organized bookkeeping from the beginning. In the

flow diagrams of Figure 6-4.2. 1-1 , the tabulation of buffers and flags are just a first pass at the requirements of the

executive program. Recognizing that growth is inevitable, program management techniques must be developed

to organize the program formation.

A desirable management technique is to partition the potentially extensive program into shorter

controllable units. The program "blocks" of Figure 6-4.2.2-1 are, for example, identified as separate sub

routines. As the program grows, the content of and number of subroutines often continually changes. Then with

this procedure, only related subroutines need to be updated and reassembled as alterations are made.

Individual subroutines must often reference labels used in other subroutines and/or the executive

program. Housekeeping is simplified by organizing the labels used to identify subroutine entry points, PIA

registers, RAM buffer/scratchpad, and fixed constants in ROM into an index or cross reference file. The label file

for this sytem, XLABEL, is shown as Figure 6-4.2.3-1. It defines a list of constant memory locations or addresses

that the various subroutines may reference during assembly. This eliminates the need for maintaining individual

label files with each routine as it is developed. It also insures that duplicate label naming will not later complicate

debugging since the Assembler will flag such errors during program development. Note that the listing provides

visibility as to the actual memory addresses represented by the lables. This is useful when looking for a place to

"insert" additional buffer locations and/or I/O devices if the system should be expanded.

The specific location of RAM, ROM, and I/O addresses is determined by the actual hardware

configuration (see Section 6-4.1 for a description of the hardware system). The locations shown in the label file

are assigned in accordance with the hardware. For example, the printer PIA is located in memory starting at C008

(HEX). The statement ORG C008 defines the memory address which the subsequent labels will begin filling.

Therefore, the labels on lines 110 -130 will be assigned the following values:

XP1DRA = C008

XP1CRA C009

XP1DRB = COOA

XP1CRB COOB

In this fashion, the four address labels used in the routines to communicate with the printer have been identified in

the software to match the hardware wiring. Should the hardware design require moving the PIA to a different

memory area, the software can be modified accordingly by simply changing the ORG statement in Table

6-4.2.3 -1, line 90.

RAM memory is the second category of lables defined in Figure 6-4.2.3-1. Similarly to the PIA

address labels, the RAM labels are prefaced by an ORG statement to define where the memory block begins.

Subsequent labels are then assigned a portion of memory as defined by the associated RMB (Reserve Memory

Byte) assembler directive.

General purpose constants used by executive subroutines are also categorized in the ROM memory

section of the listing ofFigure6-4.2.3-1. Examples seen in Figure 6-4.2.3-1 define such items as the ASCII code

for the alpha-numeric characters, canned display messages, and program masks.

6-50

00010
00020
00025
000:30
00060
00070
00080
000'30
00100
00110
00120
00130
00140
00150
00160
00170
00180
00200
00210
00220
002:30
00240
00250
00260
00270
00280
002'30
OO:~:OO

(10:310
00:320
003:30
00340
00:350
I) 0:~:6 0
00:370
003::::0
00390
00400
00410
00420
004:~:0

00440
00450
00460
00470
00480
00490
00500
00510
00520
005:30
00540

C008
C008
CO 0'3
COOA
COOB
COlO
COlO
C011
C012
C01:3
C020
C020
C021
C022
C02:3
8(140
8040
~::: 041
8042
804:3
8080
80::::0
::::081
::::(1:=:2
808:3

0000

0000
OOOA
OOOB

OOBO

0080
008A

008I1

0001
J) 00 1
0001
0001

0001
0001
0001
0001

0001
0001
0001
0001

0001
0001
0001
0001

0001
0001
0001
0001

0000

0000
0200
OOOA
0001
0001
OOBO

0000
0000
00:::0
OOOA
000:3
008A
008C
0005

•

NAM
OPT
OPT

t~AME:

>::LABEL
t~G

NS
:"~LABEL

••
••••• PIA ADDRESSES •••••••••••••••••••••••

••
ORG $C008 PRINTER

::·::P 1 IIRA ~:MB 1
::-::P 1 CRA ~:f\1B 1
:=-=:P 1 IIRB FH1B 1
:"::P 1 eRB ~:MB 1

ORt::; $C010 INTERVAL TIMER
~-::P2IIRA F::MB 1 PA-7 WAND INPUl
>::P2DF::B RMB 1 PA-6 LIGHT OUTPUT l=ACTIV
::·::P2CRA Ft:f\1B 1 CA-2 BUZZER CONTROL
::·::P2C~:B F.:MB 1 CAl SPAF.:E

ORG $C020 KE·iE:OARII .. ···II I SPLA')"
::·::P~:IIRA F.:MB 1
:"::P:3CF.:A Rt'1:B 1
::.:: P:3 II F.: B RMB 1
::-:: FI:3 ':: ~~ B F.:MB 1

OF.:G $8040 D I :s:I< CASSETTE
>::P4DF.:A F.:f\1:B 1
::-:;P4DRE: Ft:MB 1
>::P4CF.:A F.:I"1B 1
::·:;P 4 C F.: E: F.:MB 1

OF.:G $8080 D I SI<.····CASSETTE
::<P5I1F.:A F.: ME: 1
::-::P5II~:B F.:f\1B 1
::·::P5CRA R 1"1 E: 1
::-::P5CRE: F.:MB 1
••
•••••• RAM MEMORY BUFFERS . • •••••••••••••••••••

••
STARTO EQU $0000

OF.:G :STAF.:T 0
XI<MIBA EQU STARTO BOTTOM OF MEMORY
XKMITA EQU STARTO+512 TOP OF MEMORY
XVMB2U RMB 10 I/N UPC UNPACKED NUMBER
DVABOR RMB 1 DISK OPERATIONS FLAG
DVDELT RMB 1 DISK SEEK STATUS FLAG
STARTl EQU $0080

OF.:G STAF.:T 1
::-::KF1.lJAM EG!U
TEMPt EG!U
::-:;KFh.IAL EG!U

F.:t'lE:
;:'::Tl"'lF'LR F.:1"1:E:
::·::VSAV1 EG!U
::-::VSAV2 EI~U

~{rMPLC F.:MB

STAF.:T 1.····256
::-:;KFI"IAM.256
STAF.:T 1-TEMP 1
10

FLAG WORD BUFFER-10 WOR

3 MULTIPLIER
XTMPLR XKLDDR BUFFER
XTMPLR+2 XI<LDIIR BUFFER
5 MULTIPLICAII

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 1 of 6)

6-51

00550 00'32 0008
00560 OO'3A (1002
00570 OO'3A
00580 OO'3C 0002
005'30 OOSC
00600 00S'3
00E.I0 0091
00E.20 OO'3E 0001
00E.:30 OO'3F 0002
00640 OOAl 0002
o OE.5 0 OOA:3 0001
00660 00A4 0001
00670 00A5 0001
f06S0 00A6 0001

0690 00A7 0001
0691 OOA8 0004
0700 00A7
0-;::'10 OOAe 0005

.10720 OOBl 0005
o O?:~: I) OOBE· 0005
00740 OO:E:B - 0 O:~:
00750 OOBE 005
00760 OOC:3 005
00770 00C8 004
007"80 ooce 011
00790 OOIID .1010

0791 OOED 0005
07'32 OOF2 000:3
0800
0:::: 10 0100
0820 0100 000'3

IJ 08:3 0 010'3 0001
00840 010A 0002
00::::50 01 oe 0001
00860 010D n002
00870 01 OF 02
00880 0111 02
00890 011:3 02
00'300 0115 04
o 0'3 1 0 0 11 '3 (I 1
00920 011A .I .102
009:~:O 011C 0002
00940 011E 0001
00950
0·0'360 011 F 0 I) 02
00'370 0121 0002
00'3:::0 012:~: 0001
00'390 0124 0001
01000 0125 0002
01010 0125
01020 0127 0001
010:30 0127

::·::TPROD ~:MB

::-::VMPL~: RMB
::·::VAIIDP EQU
>::VPROD RMB
::-::I<:I"lPLC EG!U
::-::Kl"lPLR EQU
::-::KRSL T EI;!U
::.:: K II V S~: ~: 1"1 B
::·::KIt' .. ,'ND RMB
::·::KG!UOT ~:MB

::·::KDSPL RMB
:;.~VFLI:; 1 ~:MB

::-::'·lFLG2 ~:MB

::·:: FLG:3 ~:MB

::·::VFLI:;4 RMB
~:"'lE:

:;.~VKBTP EG!U
;:'::VI"lE:2P ~:MB

::·::VI"lB 1 P F.:I"lB
:;.::' ... IME:2S RMB
::·:: ... ·'MB21.a.1 ~:MB
::-::I MB27 RMB
;:·::Vt'lB3 F.:t-1B
::.::1 ••• 1 M E: 7 ~:t-l B
;:-:;VI"1E:26 F.:I"lB
:;.::I· ... MB25 ~:l"lB

::-:: t-1B 1 S F.:ME:
;:O::Vt'lB 11,,1 Rt-1B
•• E;:·::TENDEII

ORG
F.:,..lB

::-:;VTPE:8 ~:I"lE:

;:.::I· ... ,..lB 1 C F.:MB
::·::VMK"'~C Rt-1B
::-:;Vt'lSGP F.:ME:
;:'::VMB8P F.:t'lB
::·::Vt'lB2C F.:ME:
:;'::".·'TEI"lP ~:ME:

::-:: ... ·'t'lE:6 F.: t1 E:
::·:: ,..lE:2G! F.:I"lB
;:-:;Vt'lSTK F.:ME:
IlyISER RME:
p~:eNTR F.:ME:

•
P T::-::E:F RMB
P ' ..• ' >:: E: F F.: F.: 1"1 B
PVCFE:F F.:t'1B
BF 1 D~:E: RMB
1.I.lCBFAIi F.:MB
'.JDur·lBF EG!U
I ... IFLAG F.: 1"1 B
1.I.lF712 EG!U

2
::·::VMPLR
2
::·::TMPLC-l
;:'::TMPLR-l
::-~TPROIt-l

1
2
2
1
1
1
1
1
4
::-~""'FLG4
5
c::-
,_I

c::-
._I

5
c::-._'
4
17
16

c::-
._I

F.:AM ••
256

1
2
1
2
2 .-.
Co

2
4
1
2
2
1

2
2
1
1
2
t,.ICBFAD
1
t .. IFLAG

F.:ESUL T
MULTIPLIER POINTER (M)
POINTER FOR XKADD AItD RROUT
RESULT POINTER (P)

CALCULATE POINTER OFFSETS

DI ISOR UNSIGNED HEX NUMBE
II I V I ItEt·iD
G!UOTIEtiT
LEFT DISPLACEMENT OF REMAIN
DEFINE GENERAL PURPOSE
BUFFERS: •

AVAILABLE FOR USE

I/ti PF.:ICE
I.····N-l PF::ICE
I.····ti :S:UI"1
I .····ti I}.IE I GHT
TA::·::ABLE TOTAL
PART PROD;100,10,1,.1,.Ol
I/N DEDUCTION AMOUNT
D I SPLA· ... · E:UFFER
F'F.: I tiTE~: E:UFFER
1./ (ti-l) SU,..1
I.···· (t·i-l) I.,.IE I GHT

ADItRESSES 256 OR ABO E ••

STACK KEYBOARD BUFFER-I0 WO
TOP OF KYBD STACK
I/N-l CATEGORY POINTER
KEYBOARD NUMBER COUNT
DISPLAY MESSAGE POINTER
E:UFFE~: ::: PO I tiTEr;.:
I/N CATEGORY POINTER
2·BYTE TEMP STORAGE
I/N DEDUCT DESCRIPTION
G!UAtiT I T'l
TEMP STACK POINTER BUFFER
SERVICE ROUTINE STARTING AD
PAPER RIBBON FEED TIME
COUt·iTEF.:
PRINTER BUFFER POINTER
CHARACTER FILE ADDRESS
CHARACTER FILE BUFFER
PRINTER DATA REGISTER
CHARACTER BUFFER ADDRESS
DU,..l1"l'"!"' BUFFER
BAF.:.····SPACE FLAI:;
7-12 FLAG

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 2 of 6)

6-52

01040
01050
01060
01070
01080
010'30
01100
01110
01120
011:30
01140
01150
01160
01161
01162
01163
01164
01165
01170
011:=:0
011'30
01200
0121 P
01220
01230
01240
01250
01260
01270
012:3 0
012'30
01:;:00
01:310
01320
013:3 I)
I) 1 :~:4 (I
01 :35 0
01:~:E,0

01370
01 :3:3 0
01:3'30
01400
01410
01420
014:30
01450
01460
01470
014:30
014'30
01500
01510

0128
012'3

012A
012B
012D
012F
01:31
013:3
01:35
01:37
01:3'3
0145
014A
014B
0150
0155
015A

A043

A043
A046

A1C:3

A2C:~:

A2C6
A2C'3

A:~::~:'3

A3:;:C

A5:~:'3

A5:~:C

A53F
A542
A545

A645
A648
A64B
AE.4E
A651
AE::~:E.

A845
A846
A'345
A'346
AB85

0001
0001
012'3
0001
0002
0002
0002
0002
0002
0002
0002
OOOC
0005
0001
0005
0005
0005
0005

0003
017D

01 00

000:3
000:3
OO?O

0003
01FD

0003
0003
0003
0003
01 00

000:3
000:3
0003
0003
01E5
OOOF
3'3
OOFF
:~:'3

02:3F
0040

1. •. ISPCt~T RME
1 ... IE:~~Ct~T ~~MB
I ... ICH~~CT EG!U
1 .. .l:34MOII ~~MB

1 .• JE:ENIll ~~MB

1 ... IBEND2 ~:t-1B

1 ••. IBEtiD3 ~~"'1:B
1 .•. 1 E: E t~ D4 ~~MB

1. .. lt·10DTM ~~I"1:E:

t...ITSAMP ~:ME
b.ISE:FAD ~:t-1:B

I .• .ISTGE:F ~:M:E:

;:'::VME:l0 ~~I"1:B
>:: ',.,' ~1 E: 1 G! ~:t-1B
::-::'a.,'t-1E:2E: Rt-lE:
::·::Vt-1E: 12 ~:MB
::.:: '",' ~1 E: 1 1 ~~MB
::·::V,..lB 13 ~~1"1:E:

1
1
I .. JE:~~CtiT
1 .-. c.
2
2
2
2
2
.-. c.
1'-' . c.
a:::-
._I

1
5
5
c-
'-'
c-
'-'

:~~PACE COUtiT
BA~: COUt'iT
CHA~:ACTER COUtiT
3/4 MODULE COUNT TIME
1 .•• IBEt·~D ::~ E:UFFEF.:S

~10DULE T I t1E
:S:A~lPLE T I ~lE
STORAGE BUFFER ADDRESS
WAND STORAGE BUFFER
t'iO TA::·:: E:UFFE~~
I (t'~-l) G!UAtiT I TV .
PF.:ETA::-:: TOTAL

AFTEF.: TA::·:: TOTAL
F I tiAL TOTAL

••
••••• LINKING SUBROUTINES ••••••••••••••••••

••
O~~G $A043

• XKINIT - 3 ROUTINES
XKBGIN RMB 3 ~MP SFTP
XKTEND RMB 381 PUL,PUL,JMP XKBGIN
• XKYBRD - INCLUDES POLL AND KEUBOARD DECODE
XKSFTP RMB 256 JMP SFTP
.XKFLAG - 3 SUBROUTINES - RTS
::·::KTSTF ~~"'1E: :3
::<KSETF ~:ME: 3
XKRSTF RMB 112
.XKPRIC - 2 ROUTINES
XKDECP RME 3 JMP XKNUMB
XKNUMB RME 50'3 RTS
.XKCATY - 5 SUBROUTINES -RTS
>::KGF.:OC F.~"'1E :3
::-::KDA I~: Rt-1:B :~:

>::Kt'1TCP F.:,..1I: :3
::<t<PF.:BO ~:t-1B 3
XKHSST RMB 256
• SUBPLUS - 5 ROUTINES
XKSUBP RMB 3 RTS
XKSENT RMB:3 ~MP
XKSQNT RMB' 3 JMP
XKENTR RMB 3 RTS
XKADD RMB 485 RTS
XKNTAX RMB 15
::<KSUBr'l ~~TS

F.:~lB
::·::KCODE F.:T:S:

F.~MB

::<t<OtiT·.... F.:,..1B

.-, C-C
C.._I._'

575
64

SUBTOTAL+ KEY ROUTINE
XKDSPR FROM/TO TOTAL
~KENTR ENTRY FROM WAND

ENTRY FROM WAND ROUTIN
UNPACKED ADD ROUTINE

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 3 of 6)

6-53

01520 AE:C5 :~:'3 ::.:: 1< I,.J 13 H T RT:S
01530 AE:C6 007F R~1E:

'- 1 .-.""? c. ..

01540 * TOTAL - 2 :5:UBF.:.OUT I tiES
01550 AC45 0003 ::·::KTDTL F.:I"1E: 'J

'-'
01560 AC48 01FD ::-:;KD:S:PF.: F.:ME: 509
01570 AE45 :3':" ::·::t<CHCf< F.:TS
015:30 AE46 OO:~:F F.:~1E: 63
015':" 0 AE85 :~:'3 ::·::I<CASH F.:TS
01600 AES6 00:3F F.:I"1E: 6:3
0161 I) AEC5 3'3 ::<KCLEF~ F.:T::=;:
01620 AEC6 OOFF F.:~1E:

.-, C"C"

'::"-"-'
o 16:~: 0 *::-::KSAFE - 15 SUBF.:OUT I tiES-F.:TS
01640 AFC5 000:3 PUSHCL F.:ME: -":-

'-'
01650 AFC8 000:3 PUSHNU F.: 1"1 E: ~-::.

'-'
01660 AFCB 0003 PUSHDP F.:MB .-,

.:.-

01670 AFCE 000:3 PUSHCA RME: :~:

016::;: 0 AFDl 000:3 PUSH:S:P F.:ME: :~:

016'30 AFD4 000:3 PU:SHS,..1 F.:ME: .-:.
'-'

01700 AFD7 000:3 PUSHCE R,..lB .-,
.;..

01710 AFItA 0003 PUSHti:X: F.:ME: ~::.

'-'
01720 AFIIIt 000:3 PUSHGJ.T F.:ME: :~:

01730 AFEO 000:3 PUSHI ... IT F.:MB 'J
'-'

01740 AFE:3 000:3 PUSH TO F.:MB .-:.
'-'

01?50 AFE6 000:3 PUSHCC F.:MB :~:

01760 AFE':" 000:3 GETSET RMB :~:

01770 AFEC 0620 FAt<ES:P RMB 156B
017::::0 * ::-:: K 1 ... IAti II - 2 S:UBROUT I tiES-RTS
017'30 E:60C :~:'3 ::·::KIAIA ti It F.:TS:
01800 B60D 0002 ~:MB 2
01B10 E:60F 3'3 ::<K I !. •. INII F.:TS
01820 E:610 02AF F.:,..lE: f.,C'7 _ •• ..} I

018:30 *DKDS:PL - :::: SUBF.:OUT I tiES-RTS:
01840 E:BE:F 0003 IlK I ti I T F.:I"1B :3
01B50 E:8C2 000:3 I1Ksn:s:p F.:MB :~:

01860 B:3C5 0054 DKltiTR RMB :=:4 RTI
01870 *PKPF.:NT - 4 S:UE:F.:OUT I NES:
018::;:0 B'319 000:3 PKIPRT F.:MB .:.

'-' RTS:
01::::90 B'31C 0003 PKtiTF.:L F.:I"lB .-, .=.. RTS:
01'300 B'31F 000:3 PF.:tiT I R F.:ME: :~: F.:T I
01910 B'322 000:3 PF.:NTIT F.:MB .-, .:.. RTI
01920 B'325 000:3 PPRRBN F.:I"1B .-,

,:} RTS:
01'3:30 B'328 000:3 PKLNFIt F.:ME: :3 RTS:
01'340 B92B 000:3 PI<LFMD F.:MB .-,

.j RTS:
01950 B92E 000:3 PKPHIIR RMB :3 RTS
01'360 B9:31 0122 F.:,..lB 290
01'370 BA5:3 0055 ::-~I<D IVD F.:MB CoC" ,_,._- RTS
01'380 BAA8 OOBO ::·::KRUPT F.:MB 12B RTI
01'3'30 BB2B 0064 ;·::t<I"lUL T RMB 100 RTS
01992 *It'iTlt1E - 1 SUBROUT I tiE
019'35 BB8C 00:32 IKINIT RMB 50 RTS
01'3'35 * FORI"lAT - 10 F::OUTINES
01':;"35 BBBE 000:3 :>~I<PRCII F.:MB

.-, .=., RTS

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 4 of 6)

6-54

01995
01':;'95
1"11995

1'3'36
1'3'36
1'3'36
1':;''36
1'3'36

1.12000
0201(1
0202
020::;::
0204
0205
0206
0207
020::: J

02090
02100
02110
02120
021:30
02140
02150
02160
021 "70
021::: 0
02190
02200
02210
02220
022:30
0224n
0225
0226
022"7
022::::
022'3
02:~:0

02:31
02::::21.
02:::::30
02:340
02:350
02:360
02:361
02:370
02:~:::: 0
02::::'30
02400
02410

BBCl
BBC4
BBC7
E:BCA
BE:CD
BBDO
BBD:;:
E:E:D6
BBD'3

E:EOO
BEOO

BE 0::::
BE22

BE::::2
BE42
E:E52
BEE.2

BE72

BE7E:
E:E::::2
E:E:3:~:

E:E8E:
E:E9c~

:E:E94
E:E'3E:
E:EA2
BEA5
BEAE:
BEE:2
E:EB6
BEBB
BEC2
BEC7
E:ECE:
E:EIIO
BED5
BED::::
BEliE:
BEE2
BEE'3

0003
000::::
0003
0003
0003
000:3
OOO:~:

000::::
00C8

01

OOBE
BEOO
0000

30
51

20
20
20
20

01
BE61
20
5E
04
20
0002
0'3
20
000::::
16
20
45
'-,e' e,._1

20
54
:~:E.

20
2F
000::::
4 q .'
20
20
64

::-=:KPPCP P,.,lB :;:
>::Kl"l:S:GD F.~I"1B ::::
;:'::Kl"l:S:GP F.~1"1B ::::
::<KASC F.~t·lB ::::
>::.::: I t·~ T P F.: ~1 E: :3
::<K I t'~TII Pl"lB ::::
>:: P F.: T 1.1.1 F.: 1"1 B :3
::<KBLKP F.~t"lB ::::
XKBLKD PI"1B 200
••
•••••• ROM MEMORY CONSTANTS ••••••••••••••••
••

OPG $BEOO
BEGIN FCB $01,$02,$04,$08,$10,$20,$40,$80
•• LOAD FLAG SERVICE MASK TABLE CONSTANTS
XKFMAM EQU BEGIN/256
TEMP2 EQU XKFMAM.256
XKFMAL EQU BEGIN-TEMP2
•• PRINTER CHARACTER FILE ••
PKCFOO FCC /012345678'3ABCDEFGHIJKLMNOP/

FCC AQRSTUVWXYZ.$,-./A
•• HEADER MESSAGE ••
XKHEAD F~r 16, WELCOME TO

FCC 16, THE MOTOROLA
FCC 16, GROCERY STORE
FCC 16, DATE 12/10/74

•• MULTIPLY LOOKUP TABLE ••
•• INTERLACED WITH DISPLAY CONSTANTS ••
XKTTAB FCB 1,2,::::,4,5,6,7,8,'3 TABLE ••
XKMTAB EQU XKTTAB-17 TABLE ADD OFFSET ••
XKDARY Frr / DARY A/

XKMSGL FCB S5E
FCB 4,6,8,$10,$12,$14,$16,$18 TABLE ••

>::KGF.:C··,,· FCC
F.:l"lB
FeB

;:'::KI"lEAT FCC
F.: 1"1 B
FCB

::·::KF'F.:OI! FCC
::-::KEA FCC

FCB
::·::KHSHII FCC
>::KTOAL FCC

FeB
>::f<EACH FCC
::·::KLE: FCC

F.:MB
FCE:

::·::KBOTT FCC
;:'::KSTf'lP FCC

FCB

..... GRC",,'
2 •• TWO SPARE CONSTANT BYTE
9,$12,$15,$18,$21,$24,$27 TABLE ••
..... t'lEAT
3 •• THPEE SPARE CONSTANT BY
$16,$20,$24,$28,$32,$36 TABLE ••
..... PF.:OIl
.····EA-·····.····

TAE:LE ••
..... H:S:HD
..... TOTAL.····
$36,$42,$48,$54
..... EA
A ... ··LB-·····A
:~: •• THREE SPARE CONSTANT BY

TAE:LE ••
..... E:OTT /
..... STMP
$64,$72 TAE:LE ••

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 5 of 6)

6·55

02420 E:EEB 20
024:::: (I E:EF:::: 2 (I
0244 (I E:EFA S 1
02445 BEFB 2A
02450 OOBE
024E, (I E:E (I 0
02470 0061
02480
024'30
02500
0251 (I
02520
025::::0
02540
02550
02560
025:::0
02600

2700

>::KF.:ED'l Fr:r:
;:'::KCOUP FCC

./ F.: EA D' ... '

..... COUP
$81 TABLE ++
/+ DEL·····

FeB
>::t<DEL Fr:r:
>::KL I ST EG!U
;:'::KLSTT EG!U
::<KLSTL EG!U
S256U:S: EG!U

XKMTAB/$100 CALCULATE MULTILPV TAB
XKLIST+$100 ADDRESSES
::< 1<~1 TAB - >::1< L :S: TT
$2700

+
+ FOLLOWING IS A FLOW OF "EXEC PROGRAM MOVEMENT:
+
+ SFT TO KVBD TO IDIOT TO KVBD TO BUTTON TO SFT
+
+

(.J:S:F.:) (.J:S:P) (F.:T:S:) (F.:TS)

+ SFT TO WAND TO DISK TO EXEC TO SUEP TO SFT
+ (JSP) (JMP) (JMP) (JMP) (PTS)
+ 16 - BIT TIMER PRESCALE CONSTANTS

Et'iD

FIGURE 6-4.2.3-1: XLABEL Assembly Listing (Sheet 6 of 6)

6-56

"Linking Subroutines" is the final section of the XLABEL program and is used to identify starting

addresses of subroutines. Each subroutine has a six character label as a "header" in the first instruction,

Interprogram jumps are then referenced by the header label. If, for example, the program desires to jump from the

XKSUBP program to the XKMULT program, the XLABEL will provide a link between the two by providing an

address for the assembler. Also note that the exit for each program is identified as an aid to program management.

PUSHSM is, for example, exited by a return from subroutine (RTS) instruction, implying that the program may

be called by either a branch to subroutine (BSR) or jump to subroutine (JSR) instruction.

In summary, management of labels of all subroutines are concentrated in the XLABEL program.

When all the subroutines are ultimately combined into a single executive program, the XLABEL program will no

longer be useful. However, XLABEL or some similar procedure is a useful method of linking undefined labels

during program development.

6-4.2.4 Description of Macro Flow Diagram Initialization

Initialization

The first task of the software is initialization. As shown in Figure 6-4.2.2-1, the initialization is

organized into three different elements; start-up, new transaction, and new item. The system start-up initializa

tion is entered from the MPU's power on sequence. The MPU obtains the starting address of the Initialization

sequence as described in Section 3 -2.3. For this system, the program counteris loaded with a value A043 to begin

the start-up initialization. The portion of the start-up sequence for initializing memory, PIAs and peripherals, is

shown in Figure 6-4.2.4-1.

Memory initialization first clears all scratch pad locations from 0000 to 01FF. This area of memory

will contain temporary flags and buffers for the executive program as items are entered into the terminal. The

remainder of the memory initialization presets flag 18 (lines 240 - 250) and establishes the top address of buffer 8

(lines 270 -280).

Initialization of the PIAs is the next step in the start up routine. This segment of the program loads the

control and data direction registers of the PIAs to define the characteristics of the interface. As an example, lines

490 - 500 load 06 into the keyboard control register. This defines the CA 1 control line of the PIA to be an input

which is active on a low-to-high transition but does not cause an interrupt to the MPU. As a result, a subsequent

rising edge from the keyboard strobe (CAl) will set an interrupt flag in the PIA.

A thorough understanding of the initialization routines requires a working knowledge of the PIA and

each peripheral device. The PIA operation and details of coding are described in Section 3-4.1. The detailed

description of PIA operation with their associated peripherals are in Chapter 5.

Table 6-4.2.4-1 shows initialization code for PIAs interfacing with the keyboard, display, interval

timer, and miscellaneous controls. Additional initialization of the PIAs is performed within the peripheral

subroutines referenced in lines 630 - 772. These subroutines set up both thePIAs and their peripheral for entry of

data into the terminal.

The remainder of the initialization routines shown in Figure 6-4.2.2-1 perform housekeeping

functions when entering new items or new transactions. When entering item information from the keyboard, i. e. ,

price, category ,quantity, etc., the entry is closed with a "subtotal +." The MPU will then process the item and

return to "new item initialization" to prepare for the next entry . When initializing for a new entry, the MPU resets

appropriate flags and buffers and begins to poll for the next entry.

After finishing a transaction, the MPU returns to the initialization routine to prepare for the next

transaction. At this point, a major portion of memory must be cleared before the MPU returns to the waiting loop

6-57

00010
00010
00010
00020

NAM ::-::KINITO
OPT LIST

• NAME: XKINIT
• REV: 2.0 01-31-75

00040 A043 ORG
00050 A043 7E A049 XKBGIN JMP
00060 A046 7E AOA7 XKTEND JMP

SA04:3
· ... ·KBGIN
· KTEI'iD

00070
00080
000'30
00100
00110
00120
00120
00121
001:30
00140
00150
00160
00170
001E:0
001'30
00200
00210
00240
00250
00260

A049
A04A
A04B
A04E
A051

A054
A057
A059
R05A
A05I1
A05F
A061

01
OF
8E
CE
FF

CE
6F
09
:=:(:
26
E:6
BII

01FF
BAA8
FFF8

0200
00

FFFF
F8
18
A2C6

00270 A064 CE 010~
00280 A067 FF 010F
00410
00420
004:30
00440
00450
00460
00470
004::::0
004'30
00500
00510
00520
005:30
00540
00550
00560
00570
00580
00590
00600
00610
00620

A06A
A06I1
A070
A071
A072
A074
A077

A07'3

7F C021
7F C020
4F
4·:' ._.
CEo 06
F7 C021
C6 2C

BIt E:8BF

••
•••• SYSTEM INITIALIZATION ••••••••
••
· t.~E:G I N NOP

SEI
LIIS
LDX

~~$OlFF

~~XI<RUPT

$FFF8
•
•
•

INITIALIZE MEMORY BUFFERS ••••••••••••••••

• INITIALIZE FLAGS AND BUFFERS •••••••••••••
LII>~ ~~>!.1<"1 I TA CLEAR MEMORY TOP AIIDRESS

::-::1< 0 1 9 0 CLR ::-:;
IIE::<
CP;X:
BtiE
LIlA A
.-'SR

•• I ti I T I AL I ZE

•

GET NEXT LOWER ADDRESS
~~;:·~I<M I BA-l SEE IF E:OTTOM ADDRESS CL
XK0190 LOOP UNTILL RANGE CLEARED
~~$18 SET FLAG 18
>!.KSETF

B8 ADDRESS POINTER

• INITIALIZE PIAS ••••••••••••••••••••••••••••••••
• INITIALIZE KEYBOARD PIA
•

CLR :>:;P:3CRA SET CRA=O
CL~: >::P:~:IIRA SET DATA DIRECTION
CL~: A
COl"l A
LDA E: ~~$06

S:TA B ::-::P:~:CF~A SET COtiTROL REG A=06
LIlA E: ~~$2C

•• ItilTIALIZE II ISPLA· PIA
JS~:

•
•• I t·iTERVAL
• PAO-PA5
• PBO-PE:7
• PA7
• PA6
• CA2
• CAl
• PA4,PA5

DKINIT

T I MER 1"1 I SC P I A
SCALE FACTOR
BINARY COUtiT
bJAND INPUT
LIGHT OUTPUT
BUZZER COl'iT~~OL
SPARE
tiOT USEABLE.····CAF.:II

REI~ISTER B = 00

PIN L 11"1 I TED

FIGURE 6-4.2.4-1: System Initialization Assembly Listing (Sheet 1 of 2)

6-58

00630 A07C BD BB8C
00740
00750 A07F BD B919
00760
00770 A082 01
00771 A08:3 01
00772 A (1:34 (11
00780
00790 A085 BD B60F
00800
00810 A088 BD AFE9
00811 A 08B 01
00812 A08C OE
00820 A08D CE BEEB
00830 A090 BD B8C2
00831 A093 C6 03
00832 A095 BD B928
00832 A098 CE BE32
008:~:2 A09B C6 04
00833 A09D BD B92E
00834 AOAO C6 02
00835 AOA2 BD B928
00840 AOA5 20 16

.JS~: I I< I ti I T
•• ItiITIALIZE PRINTER PIA

-JSF.: Pt< I PRT
• INITIALIZE DISI< AND CASETTE ••••••••••••••

tiOP
NOP
NOP

• INITIALIZE WAND ••••••••••••••••••••••••
.JSF.: ::-::K I WNII

.INITIALIZE FOR FAILSAFE ROUTINE •••••••••••••••••
.JSF.: GET:S:ET
NOP
CLI ENABLE INTERRUPTS
LD::-:: ~~>~I<REDV II I SPLAY F.:IIY MESSI::;.
.JSF.: D~:::SDSP

LDA B ~~::::

.-'SF.: Pt<LtiFII
LD::·:: ~~::-::t<HEAD

LDA B ~~4

.J:S:R F't(PHDR
LDA E: ~~2

.JSR Pt<ltiFD
E: F.: A ::·::KSFT

lOAD lINE FEED COUNT
GO L I tiE FEEII

GET HEADER PARAMETERS
GO PR I tiT HEADER

••
•••••••• NEW TRANSACTION INITIALIZATION ••••••••••
••
•
• •

••••• E:EEPEF.: •••••

00:::5 (I
00860
00870
00880
00880
00:::80
008::: 0
00880
00880
00880
00880

C012 yt<TEND LDA A AOA7 E:6
AOAA 16
AOAB 84 C7
AOAII E:A 28

XP2CRA GET BEEPER CONTROL REGISTEE
SAVE BEEPER OFF CNTRL BYTE

•
00880 AOAF B7 C012
00880 AOB2 B6 COlO
00881 AOB5 F7 C012
008'30 AOB::: :32
00900 AOB'3 :~:2

00910 AOBA 7E A043
00920 AOBD 7E A1C3 XKSFT
009:30

TAE:
At·iII A
ORA A

STR A
lDA A
:S:TA B
PUL A
PUL A
.Jt·lP
.Jt-1P
Et·iIl

~~~.~ 11 000111 ClF.: CtiTF.:L E: I TS 
~~~.~ 0 0 101 000 SET CtiTRL BITS TO TURti 

Ot·i BEEPEF.:
XP2CRA STORE CNTRL BYTE IN PIA
XP2DRA READ DATA REG TO FIRE BEEPE
;:'::P2CF.:A STOF.:E E:EEPER OFF CtiTF.:L B ·TE

::-::KE:I::; I t-i
;:'::KSFTP

CLR RTS FROM STACI<

LOOP BACK FOR NEXT CUSTOMER

FIGURE 6-4.2.4-1: System Initialization Assembly Listing (Sheet 2 of 2)

6-59

to await the next transaction. The only data saved during the transaction initialization are buffers containing

cumulative transaction information such as total sales, cash in register, and checks cashed.

Software Poll

The software poll for keyboard or wand service shown in Figure 6-4.2.2-1 is the central feature of the

executive program. When initialization is complete, the polling routine is entered to await new data from either

the wand or keyboard. At this point, the MPU goes into a software loop that inspects the keyboard and wandPIAs.

Figure 6-4.2.4-2 is an assembly listing of the software poll. The instructions on lines 80 -100 turn on a

"ready" light to indicate to the operator that the MPU is prepared to accept new data entry. The next instruction,

eLI, clears the interrupt mask in the MPU, thus enabling peripheral interrupts that may occur while polling. As a

result, peripherals such as the display or printer may continue to be serviced while in the polling routine. It should

be noted that the keyboard or wand is not allowed to interrupt the system. The" keyboard strobe" sets an interrupt

flag in the PIA control register but is programmed at initialization to disable an interrupt to the MPU. The wand

input is tied to a PIA data line and, therefore, is not able to generate interrupts to the MPU since only PIA control

inputs may generate inputs. While the keyboard and wand are primary input devices, they are under the control of

an operator who can re-enter the data if the MPU is temporarily busy with another task.

The MPU begins the actual polling by reading the keyboard PIA control register (line 130). Referring

to Figure 6-4.2.4-3 and 6-4.2.4-4, the keyboard interface may set either of two interrupt flags in the control

register. An important feature to point out is that the" clear" key signal is not encoded in the same manner as the

other keys - it has a separate control input to the PIA. For this reason, when a keyboard request does occur, the

MPU first checks the status of the' 'clear' , signal (line 160). If clear is active, a "clear" key code is loaded into the

accumulator for subsequent use by the keyboard decode routine. In this manner, the" clear" key shares the same

software path with all other keys. The MPU then turns off the "ready" light (lines 220 -240) and jumps to the

keyboard decode.

If a request for keyboard service does not exist, the MPU will inspect the status of the wand by

inspecting the wand data bit for a logic" 0" or' , 1. " If the data signal is at a logic" 0," the wand is assumed to be

reading a white band. The UPC level is surrounded by a white border, therefore, when the wand first sees white,

the MPU prepares for entry into the wand service routine. The MPU will turn off the' 'ready" light and exit the

software poll in preparation for accepting wand data. If the wand is not in use, the MPU will return to the beginning

of the software poll to repeat the cycle. The system remains in the software polling loop until either the keyboard or

wand make a request for service.

Keyboard Decode

Data from the keyboard is presented to the PIA interface in the format shown in Figure 6-4.2.4-4. Each

of the keys is encoded as an 8-bit word which the MPU decodes to determine which key has been depressed. The

8-bit word is brought in the MPU during the software poll and is saved in accumulator A. The' 'keyboard decode"

routine, Figure 6-4.24-5, then uses the data in accumulator A to determine the key in question. The decode

techniq1)e successively tests each of the eight bits working from the most significant bit (bit 7).

Ifbit 7 is 1, the MPU need only check bit 6 to determine whether this is a subtotal + or subtotal - . Ifbit

7 is 0, the MPU continues to decode by inspecting bit 6 for the" code enable" key. The process continues in this

manner until the key is identified.

The primary purpose of the decode routine is to determine which data processing routine to enter; but

the decode includes one other function - it is to provide entry into the "failsafe interlock" routine. Once the

decode routine determines the key to be serviced, it will first jump to the failsafe subroutine to determine if the key

6-60

00010
00010
00010
00020
000:30 A1C3
0005'3
00060
00061
00072
00074
00076
0007::::
00080
00090
00100
00110
00120
001:30
00140
00150
00160
00170
00180
00190
00200
00210
00220
002:30
00240
00250
00260
00270
00280
002'30
00310
00:~:20

00:3:30
00340
00::::50
00:360

A1C:3
A1C4
A1CS
A1C6
A1C7
A1CA
A1CC
A1CF

A1DO
A1D3
Al115
A1D7
Al119
A1DE:
A1DD
A1EO
A1E2
A1E5
AlE::::
A1EA
A1EII

A1FO
A1F3
A1F5
A1F8
A1FA
A1FII
A200

01
OF
01
01
F6
CA
F7
OE

B6
:=:5
27
85
.-.""?
C(

:::6
FE.
20
:E:6
F6
C4
F7
BD

BE.
2E:
FE.
C4
F7
BII
7E

COlO
FO
COlO

C021
CO
1'3
40
07
1'=' '-'
C020
0:3
C020
COlO
E:F
COlO
A20:3

COlO
CE
COlO
BF
COlO
B60C
A1C:3

t~At'l ::-::K'iBRD
OPT LIST

• t~A~1E: ~-~t<YBF.:D
• REV: 2.0 02-01-75

OF.:G $A 1 C3
••
••••• SOFTWARE POLL FOR SERVICE ••••••••••
••
::-::KSFTP NOP

SEI
t~OP

NOP
LDA
o F.: A
:S:TA
CLI

• KE·· .. ·E:OAF.:II
LIlA
BIT
BEG~

BIT
BEG!
LIlA
LDA
BF.:A

::<1< 1 040 LIlA
>::1< 1045 LIlA

At~II

STA
.JSF.:

•

B ;:'~P2DRA

B ~~$FO

B ::·::P2IIF.:A

F.:EG!UEST .~ ...

A ::':;P::::CRA
A ~~$CO

>::1< 1 065
A ~~$40

>::1<1040
A ~~$1 :::
B >::P:3DF.:A

::-:;1<1045
A ::<P:3DF.:A
B ::·::P2DF.:A
B ~~$BF

B >::P2DF.:A
>::1<1< I t·~

• I)_I A t-i D SEF.:V ICE F.:EG!UE:S:T?
•
>::1< 1 065 LIlA A ::-:;P2IIF.:A

Bt-l I ::<K:S:FTP
LDA B >::P2DF.:A
At'HI B ~~$BF

STA B >::P2DPA
--'SF.: >::KI)JAtiD
.Jt'lF' ;:.::t<:SFTP

TURN ON READY LIGHT
SET PA-6

ENABLE INTERRUPTS

READ KEYBOARD PIA CONTROL
CHECI< CRA?, CRAE.
IF NO PEQUEST, CHECI< WAND
CHECK FOR CLEAR KEY
IF NO, CONTINUE KYBD SERVIC
IF YES, LOAD CLEAR CODE
CLEAR I NTEF.:F.:UPT

LOAD KYBD DATA/CLEAR INTERR
TURN OFF READY LIGHT
ClF.: PA-E.

GO TO KYBD ROUTINE,ACCA=DAT

IS WAND ON SPACE, B7=0?
IF t-iOT LOOP E:ACI<
TURN OFF READY lIGHT
CLF.: PA-6

OTHERWISE, GO TO WAND ROUTI

FIGURE 6-4.2.4-2: Software Poll for Service Assembly Listing

6-61

Microswitch
265W3-1

Keyboard PIA - Side A

b1 PAO

b2 PA1

b3 PA2

b4 PA3

b5 PA4

b6 PA5

PA6

PA7

~
CA2

..r
CA1

+5 V -=

FIGURE 6-4.2.4-3 Keyboard/PIA Hardware Interface

6-62

Key Function Key Number Code to PIA

b7 b6 b5 b4 b3 b2 b1 bO
0 43 0 0 0 0 0 0 0 0
1 13 0 0 0 0 0 0 0 1
2 14 0 0 0 0 0 0 1 0
3 15 0 0 0 0 0 0 1 1
4 23 0 0 0 0 0 1 0 0
5 24 0 0 0 0 0 1 0 1
6 25 0 0 0 0 0 1 1 0
7 33 0 0 0 0 0 1 1 1
8 34 0 0 0 0 1 0 0 0
9 35 0 0 0 0 1 0 0 1
. (Demical pt.) 45 0 0 0 0 0 1 0

Grocery 1 0 0 0 0 0 0 0 1
Dairy 11 0 0 0 0 0 0 1 0

Meat/Coupon 21 0 0 0 0 0 0 1 1
Produce/Bottles 31 0 0 0 0 0 1 0 0
Hshld/Stamps 41 0 0 0 0 0 1 0 1

Weight 3 0 0 0 0 0 0 0
No Tax 7 0 0 0 0 0 1 1

Quantity 17 0 0 0 0 1 1 1
Total 20 0 0 0 1 0 1 0
Cash 30 0 0 0 1 1 1 1

Check 40 0 0 1 0 0 1 1

Code Entry 5 0 1 Will be holding
Subtotal (-) 10 1 0 data from
Subtotal (+) 37 1 1 previous entry

Clear 50 [C2 interrupt]
0 0 0 1 1 0 0 0

Strobe [C 1 interrupt]

1. Strobe will be high while any key is closed

FIGURE 6-4.2.4-4 Keyboard Coding/PIA Interface

6-63

in question is allowed at this point in a transaction. Referring back to Figure 6-4.2.4-5, there is a prescribed entry

procedure that the keyboard operator must follow. If the operator depresses a key that is disallowed at that point of

entry, the failsafe routine will ignore the key and return to the software poll to wait for another entry. This does not

mean that the operator must follow a rigid entry procedure. The intent is to prevent the executive routine from

operating on incomplete data. If, for example, the operator depresses three numbers after a decimal point, the

failsafe routine will ignore the third number, thereby preventing the executive routine from operating on this last

entry.

The failsafe routine categorizes all keys into 11 classes. When a key is depressed, the failsafe routine

then determines, on the basis of the state of the entry, which class of keys is allowed. The failsafe routine,

therefore, has 11 subroutines, each of which is entered from the keyboard decode routine shown in Figure

6-4.2.4-5. Notice the comments in Figure 6-4.2.4-5 which asks the question "allowed?" There are 11 such

comments throughout the listing, each of which identifies an entry into the failsafe routine. When the keyboard

routine determines which key has been depressed, it then jumps to the corresponding failsafe subroutine (1 of 11).

The failsafe routine will determine whether or not the entry is to be permitted. If allowed, the failsafe routine will

issue a return from subroutine thereby re-entering the decode routine. The decode return will continue execution

by jumping into the appropriate "data process" routine. If the key is not allowed, the failsafe routine will read

from the stack twice (to restore the stack pointer as a result of the JSR to the failsafe subroutine) and then jump to

the software poll.

6-4.2.4 Keyboard Interlock Program

As programs were developed for the keybaord and display, including rudimentary transaction

calculations, it became obvious that some sort of keyboard interlock was needed to prevent unwanted key input

sequences from hanging up program flow. A program, XKSAFE, was developed which allows only the desired

input sequences (defined in Table 6-4.2.1-1). A positive feedback audible approval tone or "beep' , is generated

when an allowed key is depressed.

Keys depressed out of sequence are ignored by the system and no "beep" is generated. The operator

may then enter a proper key without any corrections. If an erroneous allowed key is depressed, i.e., a wrong

number, etc., the CLEAR key will return the transaction to the start of the erroneous entry.

The program is a sequence of flag checking routines which dete~ines from the states of the tested

flags where the current operation is in an allowed transaction flow and then determines the set of keys allowable

for the next key entry. The flow is divided into four parts as shown in Figure 6-4.2.4-6:

(1) Initialization (Figure 6-4.2.4-7)

(2) Entry Routines (Figure 6.4.2.4-8)

(3) Main Processing (Figure 6-4.2.4-9)

(4) Defining Sections (Figure 6-4.2.4-10)

The Initialization subroutine is used at power on and before each new transaction. It simply sets and

clears the flags required for the start of a transaction (see Figure 6-4.2.4-7).

The entry routines are entered from the keyboard interrogation routine. Each section sets and clears

flags according to the key that has been depressed (see Figure 6-4.2.4-8).

The main body of the program follows the entry routines and determines the point where the

6-64

00:370
00:380
00:3"::10
00400
00410 A20:3 16
00420 A204 2A OF
00430 A206 5:3
00440 A207 2B 06
00450 A20"::l BD AFD4
00460 A20C 7E A:345
00470 A20F BD AFD1
00480 A212 7E A645
004'30
00500
00510
00520 A215 5:3
00530 A216 2A 06
00540 A21:3 BD AFD7
00550 A21B 7E A945
00560
00570
00580
00590
00600 A21E 58
00610 A21F 2A 33
00620 A221 5:::
00630 A222 2A 06
00640 A224 BD AFE6

AEE:5 00650 A227 7E
OOE,60 A22A 58
00670 A22B 2A OF
00680 A22D 58

2A 06
E:II AFE6
7E AE45

••
••••• KEYBOARD INTERROGATION •••••••••••••
••
•• SUBTOTAL + DR SUBTOTAL - ?
;:'::KK'y' I N TAB

BPL XK3045 IF NO, CONTINUE INTERROGATI
ASL B
BI"11
.JSR
Jl"lP

:X:~:::3 0:35 JSR
.Jr'lP

•

PUSHS:~l

::-::KSUE:~l

PUSHSP
::·::KSUBP

•• CODE ENTRY KEY ?
•
:;.~K3045 ASL B

BPL
JSF.: .
--IMP

• •
•• 13F.:OUP A ?
•
::·::K:3 OE.5

::·::~::30"::lO

ASL B
BPL
ASL B
BPL
JSR
JI"1P
AS:L B
BPL
ASL B
BPL
JS~:

PUSHCE
;:'::KCODE

:;.~K30·30

PUSHCC
>::KCASH

ALLOI..JEIr?
GO TO "SUB -" ROUTltiE c

ALLOI.a.lED?
GO TO "SUB+" ROUT I tiE

IF NO,CONTINUE INTERROGATIO
ALLOI.dED?
GO TO "CODE" ~:OUT I NE

IF NO,CONTINUE INTERROGATID

ALLOl.aJEII?
130 TO "CASH" "-ROUTINE

ALLOI.aJED?
00690
00700
00710
00720
007:~:0

00740

A22E
A2~:0

A23:3
A236 E:D AFE3 >::K:3115

Jl"lP
J:5:R

::-::K3115
PUSHCC
XKCHCK
PUSHTO
::·::KTOTL

130 TO "CHECK II ROUT I NE
ALLOIJJED?

7E AC45
A23C 58

00750 A23D 2A 06
00760 A23F BD AFDD
00770 A242 7E AB85
00780 A245 58
00790 A246 2A 06
00800 A248 BD AFDA
00810 A24B 7E A836
00820 A24E BD AFEO
00830 A251 7E ABC5

Jl"lP
::·::K:3120 ASL B

BPL
JSR
.JMP
A:5:L B
E:PL
JSR
.JMP
JSR
.Jl"lP

PUSHQT
:;.~KI~NTV

::-::.<:3155
PUSHN:X:
::.:: K ti TA :;.~
PUSHI..JT
>::K IGHT

130 TO "TOTAL" ROUT It-iE

ALLOWEII?
GO TO "QUANTIT') ROUTINE

ALLOWED?
GO TO "NO TAX" ROUTINE
ALLOWED?
GO TO "I..JEIGHT" ROUTINE

FIGURE 6-4.2.4-5: Keyboard Decode Assembly Listing (Sheet 1 of 2)

6-65

00::::40
00::::50
00::::60
00::::70 A254 5::::
00::::::::0 A255 2A 2C
00::::'30 A"257 5::::
00'300 A25:::: 2A 06
00910 A25A BD AFC5
00920 A25D 7E AEC5
(10'3:30 A260 II7 A7
0094n A262 BD AFCE

0'35 A265 D6 A7
096 A267 5::::
0'37 A26E: 2A OA
09:::: A26A 58
0'39 A26E: 5:::
100 A26C 2A 03

0101) A26E 7E A545
01020 A271 7E A542
010:30 A274 5::::
i 1040 A275 2A 0'3

1050 A277 5::::
1060 A27:3 2A 0:3
1070 A27A 7E A5:3F
108 A27D 7E A53C
10'3 A280 7E A5:39
11 0
111
112
11:3 A28:~: 81 OA

0114 A285 26 10

A2::::'3 BD A2C:3

•
•• GF.~DUP E:

•
::·::K:3165 ASL E:

E:PL
A:~:L B
BPL
.J:~:F.~

.J,..lP

>::K:3270

;:<K:31 '3 (I
PU:S:HCL
;:'::KCLEP

::<K31 '3 0 STA B
.-'SF.: PU:S:HCA
LDA B ::~:\,IKBTP

ASL B
BPL ::-:;1-<3225
ASL B
ASL E:
BPL ::<K3220
.Jr'lP ::<t<H:S:ST

XK3220 .JMP XKPRBO
>::K3225 ASL E:

BPL ;:'::K326 0
ASL E:
BPL ;:'::K::::255
.Jt'lP ::<K~lTCP

XK3255 .JMP XKDAIR
XK3260 JMP XKGROC

•
•• DECIMAL POINT?

•
;:'::K:~:27 0 Ct1P A ~~$ OA

E:f"~E ::·::K3:300
LDA A
JSF.~

0115l
01160
0117 n
0118
011'3
0120
i 121

A2:3C 27 03 BEQ
;:.::t<TSTF
tiDEf"iD 1
::<KTEf"iD
PU:~~HDP

::<KDECP

A2:3E 7E A046 JMP
A2'31 ED AFCB NOENDI JSR
A2'34 7E A339 JMP

•
122
12:3

•• t'iUt'lBER '('

•
124 A297 97 A7 XK3300
125(A299 :::1 00
1260 A29E: 27 07

(1270 A29I1 ::::6 73
012::::0 A29F ED A2C9
01290 A2A2 20 05
01300 A2A4 ::::6 73 XK3308
01310 A2A6 ED A2C6
01320 A2A9 ED AFC8 XK3311
01330 A2AC 96 A7
01340 A2AE 7E A33C
Ol:~:50

STA A
Ct'lP A
BEG!
LDA A
.JSF.:
BF.:A
LIlA A
.JSR
.-'SR
LDA A
.J~lP

END

::-:;VI<BTP
~~ 0 0

::-:: ~:: :~::3 1 1

::<KSETF
PUSHtiU
::<VKBTP
;:'::KtiUf\lB

IF NO, CONTINUE INTERPOGATI

ALLOt...JED?
GO TO .. CLEAF.:" ROUTE
:S:A'",IE f"iU~lE:EF.:

ALL o le.J EIr?
F.:E:S:TOF.~E nU,.1BEF.:

GO TO .. HDU:S:EHLD.····STAr-1P:S:" ROU
GO TO "PRODUCE .. ···E:DTTLES:.. F.:OU

GO TO .. MEAT.····COUPOti .. F.:OUTINE
GO TO .. DA I F.:'y' " F.:OUT I t'iE
GO TO If GF.:OCEF.:'y'" F.:OUT I f"iE

WAS LBP CASH OR CHECK?

IF f"iOT, COtiT I NUE
IF SO, INITIATE X-ACTION END
ALLOI.a.IEIr?
GO TO "DECIMAL POINT" F.:OUTI

SAVE KEYBOARD DATA
I S ~~ = 0

IF NOT,PESET FLAG 73

I F EQUAL, SET 7~:

ALLOI"JEIr?
RESTORE KEYBDAPD DATA
GO TO "NUMBER" ROUTINE

FIGURE 6-4.2.4-5: Keyboard Decode Assembly Listing (Sheet 2 of 2)

6-66

From
Exec.

F[gu,. 6-4.2.4-8 ~

Figure 6-4.2.4-9 ---------4

Figure 6-4.2.4-10 --------1

Enter Appropriate
Sect. when button

is pushed

Yes

Enter Main
Body of PGM.

p. A1-p. A6

Define New Set
of Allowed

Buttons

RTS To EXEC.

No

Overall Block Diagram

\ Flgu'. 6-4.2.4-12 Sheet 2

[

Service Routines]
Figure 6-4.2.4-11

[

Initialization

Figure 6-4.2.4-7]

FIGURE 6-4.2.4-6: XK Safe General Flow Diagram

6-67

Initialization

Reset 33,34,35,37-41

- Set No. Count = 0-
- Figure 6-4.2.4-11 Sheet 4

Set 50

} Set Total Count ~ 0

Reset 51,52

Reset 53,55,57,59

RTS

FIGURE 6-4_2.4-7: XKSafe Initialization Section Flow Chart

6-68

Sect. Entered
if

"CLEAR"
is

pushed

Reset 53,55

Set 44

Reset 55,56

Figure 6-4.2.4-11 Sheet 1

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 1 of 7)

6-69

Reset
-F 60-70-

Reset
-F 42-49-

o

Sect. Entered
if

"NUMBER"
is

pushed

-Reset F 42-49-

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 2 of 7)

6-70

Sect. Entered
if

"DEC. PT."
is

pushed

JSR
RST429

-Reset F 60-70-
-on p. C4-

-Reset F 42-49-

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 3 of 7)

6-71

Sect. Entered
if

"CATEGORY"
is

pushed

- Reset F60-70 -

- Reset F. 42-49 -

Sect. Entered
if

"SUB. PLUS"
is

. pushed

o

-Reset F. 42-49- Set 72

Set 43

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 4 of 7)

6-72

Sect. Entered
if

"SUB. MINUS"
is

pushed

-Reset F. 42-49-

Sect. Entered
if

"CODE ENTRY"
is

pushed

-Reset F. 42-49-

-Reset F. 60-70- JSR
RST429

Set 45

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 5 of 7)

6-73

Sect. Entered
if

"NO TAX"
is

pushed

-Reset F 42-49-

Sect. Entered
if

"QUANTITY"
is

pushed

-Reset F 60·70-

Reset 53

Set 56

-Reset F 42-49-

Set 46 Set 47

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 6 of 7)

6-74

Sect. Entered
if

"WEIGHT"
is

pushed

-Reset F 60-70-

Reset F 42-49-

Sect. Entered
if

"TOTAL"
is

pushed

Inc.
Total
Count

-Reset F. 42-49-

Set 48

o

Reset 50

Set 51

FIGURE 6-4.2.4-8: XKSafe Entry Point Flow Charts (Sheet 7 of 7)

6-75

Sect. Entered
if

"CASH" - or
"CHECK"

is
pushed

-Reset F. 60-70-

-Reset F.42-49-

o
To J Sheet 2

-Set 33,39-

FIGURE 6-4.2.4-9: XKSafe Main Processing Flow Chart (Sheet 1 of 5)

6-76

[From]
Sheet 1

-Set 36-

- Set 71,32-

FIGURE 6-4.2.4-9: XKSafe Main Processing Flow Chart (Sheet 2 of 5)

6-77

o

-Set 71, 36-

o

-Set 71,32,36-

-Set 71,32-

-Set 71,32,36,40- -Set 71-

o

-Set 71,32,34,37-

-Set 34,37-

FIGURE 6-4.2.4-9: XKSafe Main Processing Flow Chart (Sheet 3 of 5)

6-78

o

o

o

-Set 32-

FIGURE 6-4.2.4-9: XKSafe Main Processing Flow Chart (Sheet 4 of 5)

6-79

-Set 71,32,38-

FIGURE 6-4.2.4-9: XKSafe Main Processing Flow Chart (Sheet 5 of 5)

6-80

RTS

Set 32

Set 37 Set 33
Set 35

RTS

RTS

Set 34 RTS

RTS

FIGURE 6-4.2.4-10: XKSafe Defining Section

6-81

transaction flow is for the present entry by checking the appropriate flag. Once this is accomplished, it clears all

the BUTTON ALLOWED FLAGS before going to the appropriate defining section (see Figure 6-4.2.4-9).

The BUTTON ALLOWED FLAGS are then set by the defining sections as determined by how far the

transaction has progressed as defined in the main body oftheprogr am(seeFigure6-4.2A-I0). The service routine

flow is shown in Figure 6-4.2.4-11. Flags referred to in the flow charts are summarized in Figure 6-4.2.4-12.

From the flow charts and flag tables, the complexity and length of the program becomes obvious. The

assembled code occupies about 1.5K of memory, a significant portion of the system's program. A detailed

description of the program is not included since each terminal design would require a specialized interlock

program. The XKSAFE program is included as an example of microprocessor flexibility.

Wand Interpreter

The wand interpreter program translates the recovered UPC code into a binary word. The scanner

"sees" white and black bands on the UPC label and translates them into logic levels; a white band represents a

logic' '0" and a black band represents a logic" 1." These logic signals are then brought into the MPU via a PIA

data line. At this point, the Wand software takes over to convert the stream of l' sand 0' s into 10 BCD characters

stored into RAM.

Entry into the wand routine is always from the software poll. A green ready light will be turned on when

the program enters the software poll. At this time, the operator may scan the UPC labels to enter data. The wand

data line will be at a logic level 1 until the scanner first sees-the white border surrounding the actual label. This will

cause the data line to go to' '0" indicating to the MPU that a wand input has been initiated. At this time, the MPU

will exit the polling routine and enter the wand interpreter routine. The actual operation of the interpreter routine is

detailed in Section 5-1. 1. When the routine is completed and the UPC code is in memory, the wand routine jumps

directly to the "Disk UPC Lookup" to convert the UPC numbers into price/category information.

Disk upe Lookup

A floppy disk is included in the system to act as a lookup file for Universal Product Code information

The floppy disk is called upon for information when the keyboard enters UPC data or the wand scans a UPC label.

In either case, the disk UPC lookup program is entered to convert the 10 UPC numbers into price/category

information. Briefly, the UPC input becomes an address to the floppy disk. The data addressed by the UPC code

then contains the necessary price/category information. The lookup routine transfers the desired data into

memory while concurrently storing a status word, and then returns control to the executive routine. The executive

routine then checks the status word to determine if the floppy disk completed a valid read. If the read is invalid, the

MPU displays an error message and returns to the software poll. If the UPC lookup is valid, the program continues

execution by entering the' 'process data" routine.

The floppy disk routines are described in detail in Section 5-4.

Process Data

The' 'Process Data" routine is the workhorse of the executive program. Depending upon the entry

mode, this routine must maintain control of the majority of flags and buffers in the system. Program execution in

this routine is best described with reference to Figure 6-4.2. 1-1. Here the keyboard entries are categorized into 13

separate flow diagrams. These flow charts then become the nucleus of the processing program.

When data is entered from the keyboard, the MPU jumps to the keyboard decode routine to determine

which key has been depressed. If the entry passes the interlock test, the decode routine will then enter one of 13

subroutines to process the data. The word' 'processing" does not have a singular description in this context. If, for

6-82

examp Ie, the' 'no tax' , key is depressed, the processing consists only of setting flag 16 (refer to Figure 6-4.2. 1-1) .

At the other extreme, use of the "subtotal +" key causes the MPU to do extensive housekeeping since this key

completes an item entry. Therefore, the processing routine must calculate sums, issue data to the printer and

display, and update numerous flags and buffers. The flow for the' 'processing' , for each class of keyboard entry is

shown in Figure 6-4.2.2-1. After the data is processed, the executive will return to the polling routine and wait for

the next input.

When operating on UPC inputs, the disk UPC lookup routine is entered to translate the data into

price/category information. The lookup routine will store the resultant data into the same memory buffers as if the

entry was from the keyboard. The lookup routine them jumps to the processing routine at the subtotal + entry

point. The UPC entry continues execution in the subtotal + flow to complete the item entry processing.

When processing is completed, the routine exits to one of three areas of the executive program each of

which ultimately returns to the polling sequence to receive new data. An incomplete entry returns directly from

the processing routine to the poll. If, for example, the operator has entered only the price of an item the program

still requires a category key and subtotal +. The process routine continues to return directly to the software poll

until a "subtotal +" key is depressed. At this time, all item information is entered, and upon completion of

processing, the MPU will jump to the "new item initialization" to prepare the program for the next item entry. It

should be noted that each wand scan is considered to be a complete item entry. The disk lookup enters the subtotal

+ subroutine to process data and, therefore, exits to the new item initialization before returning to the poll. The

final exit from the processing routine is at completion of a transaction. When the decimal point key is depressed

subsequent to a cash or check entry, the transaction is over. At this time, the processing routine will store all

transaction data into a magnetic tape cassette. The cassette routine transfers price/category information stored in

memory to provide a daily summation stored on the cassette. At completion of the cassette transfer, the "new

transaction initialization" is entered to preset the executive program for a new entry. The cassette operation is

described in more detail in Section 5-3.

6-83

Beeper

Reset 71,32-41

Bring PB1
Low

To Start
Buzzer Hrdwre

-on p. A1-

Lead-In Sect.
of

Main Body
of

Program

Set 55

FIGURE 6-4.2.4-11: XKSafe Service Routine Flow Charts (Sheet 1 of 5)

6-84

Error
Sect.

FIGURE 6-4.2.4-11: XKSafe Service Routine Flow Charts (Sheet 2 of 5)

6-85

Subroutine For
Resetting the
Last Button
Pushed Flags
(42-49,72)

Reset 72

RTS

FIGURE 6-4.2.4-11: XKSafe Service Routine Flow Charts (Sheet 3 of 5)

6-86

Subroutine for
Resetting the

No. Count Flags
(Setting No. Count = 0)

FIGURE 6-4.2.4-11: XKSafe Service Routine Flow Charts (Sheet 4 of 5)

6-87

Inc B

Increment
Number
Count

Set Flag (ACCA)

FIGURE 6-4.2.4-11: XKSafe Service Routine Flow Charts (Sheet 5 of 5)

6-88

Button Allowed Flags Total Counter Flags

Flag No. ~ Flag No. Total Count

71 # 50 0

32 DP 51

33 CAT 52 2

34 0
35 e
36 CE No. Counter Flags
37 NTX
38 Q+Y Flag No. No. Count

39 WGHT 60 0
40 TOT 61

41 { Cash 62 2
Check 63 3

64 4

Last Button Pushed Flags
65 5
66 6

Flag No. Button 67 7

42 CAT 68 8

43 0 69 9

44 CE 70 10

45 NTX
46 Qty Other Flags

47 Wght Flag No. Func.
48 TOT 53 DP

{ Cash 54 CAT 49 Check
55 Qty-Wght A

72 e 56 Qty-Wght B

Special Flags
57 CE
58 Last Entry END

73 - Is # = 07 59 Zero

FIGURE 6-4.2.4-12: Flag Reference Summary

6-89

6-4.3 INTERRUPT CONTROL

There is another program flow, transparent to the flow of Figure 6-4.2.2-1, associated with the

transaction terminal. It is the program flow (See Figure 6-4. 3-1) required for servicing interrupts generated by the
-- ---

system peripherals. The IRQA and IRQB lines of all the peripheral PIA's are tied together and connected to the

IR Q input of the MPU. When a peripheral needs service, it issues an interrupt request for service through a PIA.

When the MPU recognizes that an interrupt request is present, it jumps to the interrupt polling program XKR UPT .

An assembly listing of the polling program is shown in Figure 6-4.3-2.

The addresses decoded for the IRQ vector in the Transaction Terminal are E3F8 and E3F9 in the

MIKBUG ROM. The MIKBUG IRQ service routine jumps to the address stored in RAM locations AOOO and

AOO 1. These memory locations were set to the interrupt polling routine's starting address when the Transaction

Terminal program was loaded.

The interrupt polling routine, XKR UPT , checks the appropriate PIA control registers for interrupt flag

bits and, in some cases, the interrupt request enable/disable bits as well. The IRQ enable/disable bits must be

checked on those peripherals which generate continuous interrupt requests that set the IRQA(B) flag bits but are

not allowed to generate an IRQ when the peripheral is not in use. The printer, for example, is continuously

generating timing signals and the IRQB 1 (CRB - b7) flag is periodically set to 1, however, the IRQB line is not

brought low except during a print cycle when the enable bit (CRB - bO) is set to 1. By first checking the flag bit

(CRB - b7) and, if it is set, checking the enable bit (CRB - bO) it can be determined if the printer has requested

service via the CB 1 line. See Section 5-2.1.4 for additional details.

Two subroutines are provided, one to check the IRQA(B) 1 flag and enable bit (IRQ 1FM) , the other to

check the IRQA(B)2 flag and its associated control bits (IRQ2FM). (See the code in Figure 6-4.3-1.)

IRQ1FM shifts the IRQ1 flag into the carry. If the carry is clear, indicating no interrupt, a return is

ini tiated. If the carry is set, indicating an interrupt request, the enable is tested by a BIT A instruction. If the enable

is clear, a return is executed; if the enable is set, aJMPX is executed. The index register (X) is settothe value of the

service routine starting address and ACCA loaded with the appropriate PIA control register prior to jumping to the

subroutine.

IRQ2FM shifts the IRQA(B)2 bit to the MSB (sign bit) position. If the byte is positive (b7 = 0,

IRQA(B)2 shifted = 0) a return is executed. Ifnegative(b7 = l)the byte is shifted left one more bit so thatthe CA2

(CB2) output control bit (CRA(B)-b5) is now in the MSB position. The routine executes a return if the bit is 1

indicating that CA2(CB2) is an output. If the bit = 0, the enable bit, CRA(B)-b3, (now ACCA-b5 after 2 shifts)

is tested. If the enable is clear, a return is executed; if the enable is set, a JMP X is executed where X is the service

routine address.

The interrupt polling sequence determines the peripheral priority structure. Assume, for example, that

an interval timer interrupt and a printer timing interrupt occur at the same time. The poll would jump to PRNTIT

which clears the IRQA(B) flag, removing its influence on the IRQ line to the MPU. The RTI following

completion of PRNTIT then clears the interrupt mask and allows the interval time interrupt to be recognized.

The first test in the poll checks for disk read/write operation. Since an interrupt generated when this

flag is set could be an overwrite error, the disk must stop writing as soon as possible. This flag will only be set

when the system is under control of the disk program so all other interrupts are masked and will be ignored. The

cassette and printer interrupts follow in the poll and use the subroutines described above. The display interrupt

is never masked, therefore, the poll only checks the control register flag bit.

6-90

Interrupt Rolling
Sequence

Intend

JSR to I nt. Timer
Service Routine

Yes

INPRFD

DKABRT Adjusts Sack
Then JMP

TKOVUN RTI

PRNTIT RTI

PRNTIR RTI

TKEOTE RTI

DKINTR RTI

Clear Interrupt
Get Service Routine

Add. and Save in Xreg;
Stop Interval Timer

Clear Service Routine
Address Buffer

FIGURE 6-4.3-1: Interrupt Control Flow Chart

6-91

Only the interval timer interrupt remains to be checked. Like the display, it is never masked and the

flag bitis tested. If the flag is dear, the interrupt was not generated by the system and is assumed to be noise and the

poll returns. If the IRQ line continues to be held low, the system will loop in the polling routine until some

corrective action is taken or the IRQ is allowed to go high.

If the interval timer flag is set, the routine stops the timer, clears the interrupt and flag, and then checks

the service address and jumps there if one is present. If there is no service routine address, the poll checks for a

printer line feed in progress. (The timer service routine also returns to this point.) If there is a line feed, the line feed

counter (PRCNTR) is decremented and checked for zero. If zero, the line feed is terminated, otherwise, the disk

status is checked for a seek as would be done if there was no line feed in progress. If a seek is in progress, a jump to

seek subroutine is initiated. The seek subroutine returns and another check of the disk status is made for a seek in

progress. If there is still a seek in progress, the routine ends. If not, a check is made for a line feed still in progress.

(Ifno seek was previously in progress, the routine branched here.) If not, the poll ends. If the line feed requires

more time, the interval timer is set for 10 ms and started before returning. This allows the printer line feed and disk

seek operation to simultaneously use the interval timer thus increasing the effectiveness (throughput) of the

system.

The NMI interrupt is used by the system to start the transaction terminal program. The line is tied to a

push button switch which, when depressed, will pull the line low generating an NMI interrupt at the MPU. The

NMI service routine in MIKBUG jumps to the address stored in locations A006 and A007. The locations are

loaded with the starting address of the transaction terminal initialization routine XKBGIN, A04A. Once the

program has been loaded into RAM, an NMI will start the transaction terminal program without the use of

MIKBUG "G" (execute user's program) function. Since the RAM is non-volatile and is battery backed up, the

system may be powered down and restarted by using the NMI interrupt.

6-92

o OCll (I

00010
01000
01020
0111 0 BAA::::
014:3 0
014'30
01500
01510
01520
01570
01580
015'30
01600
01E,10
01620
01660
n1670

16:30
lE,90
1"700
1700
1700

J1700
01710
017:30
01740
01760
01770
017:30
01 7'3!)
Cf1::::00
01'380
01'3'30
01','30
019'30
01,,'30
01990
01'3'30

E:AA8
:BAAB
BAAE
BAB1
BAB4
E:AE:7
BAE:A
BAE:II
BABF
BAC2
BAC5
BAC7
BACA
BAec
E:ACF
BAD2
BAD5
E:AD7
E:AD:3
BADB
E:ADE

BAEO

BE. COOB
CE E:'322
E:D E:AEI
B6 COO'3
CE B',lF
BII BAEI
E:6 C02:3
2A 03
7E E::3C5
BE. C013
2A I',
BE. COlO
::::4 40
B7 COlO
E:6 COli
FE 011C
27 FE
4F
E'"'? 'I 011C
E'-:O 'f o 11I1
AIl 00

:3B

019'30 BAEl :34 81
01','30 E:AE3 :::: 1 E: 1
019'30
01'3'31
019'31
01'3'31
019'31
019'31
019'31
019'31
01'3'31
019'31

BAE5
E:AE7
BAE8
BAE'3
BAEB

2E. 04
:32
.-.. -,
-:.oc.

6E 00
-:'Q ._' .-

t-iA~l ::-::Kf;.:UPT
OPT LI:S:T

• t-iA~l ::-:;Kr;.:UPT
• r;.:EI",1 1 .2

Or;.:G $BAA8
• THE INTERRUPT POLL CHECKS THE PIA CONTROL
• REGISTERS TO SEE WHICH PIA CAUSED THE
• INTERRUPT. IF MORE THAN ONE IS POSSIBLE
• THE PRIOROTY IS DETERMINED BY THE
• SEQUENCE OF THE POLL.
XKRUPT LDA A XP1CRB IF IRQBl FLG IS SET AND

LII::-:: ~~Pr;.:~iT I T THE I F.:G!B I r-iTF.:PT IS EtiABLED
JSR IRQ1FM JMP TO PRNTIT (PRINTER)
LDA A XP1CRA IF IRQAl FLG IS SET AND
LII::-:; ~~Pf;.:~iT I F.: THE I r;.:G!A I t-iTr;.:PT I :S: EtiABLEII
JSR IRQ1FM JMP TO PRNTIR (PRINTER)

INDSPL LDA A XP3CRB TEST IF DISPLAY FLAG SET
BPL INTIME NO,CHECK NEXT
JMP DKINTR YES JUMP TO DISPLAY ROUTINE

INTIME LDA A XP2CRB IS TIMER FLAG SET?
BPL INTEND NO:END
LDA A XP2DRA STOP INTERVAL TIMER
At-iD A ~~~-~ 01000000 E:'l CLEAR I r-il::; SCALE FACTO
STA A ::-:;P2DF.:A
LDA A ::-::P2Dr;.~E:

BEG!
eLF.: A

I \,IS E r;.: 1 ... 1

•
STA A I VSEF.:V
STA A I VSEF.:V+ 1

DUMMY READ TO CLEAR INTRPT
GET SERVICE ROUTINE ADDRESS
E:r;.:At-iCH Or-i SELF
I F ADD PF.:ESE~iT

CLEAR SERVICE ADDRESS

JSR X JUMP TO SERVICE SUBROUTINE
• INT. TIMER SERV. SUBROU. MUST END IN RTS
INTEND RTI RETURN
• SUBROUTINE TO TEST FOR CAl (eBl)
• INTERRUPTS BY CHECKING BOTH THE
• IRQ1 FLAG AND ITS IRQ ENABLE BIT.
• LDAA WITH THE PIA CNTRL REG ADDRESS
• LDX WITH THE INTERRUPT SERV. ADD.
• .JSR I RI~~ 1 FM
Ir;.:G!lFM AND A ~~$81

Cl"lP A ~~$81

•
BtiE IRG!END
PUL A
PUL A

MASK UNWANTED BITS
TEST IF ENABLED WITH

FLAG :S:ET
tiD Et-iD
IF SET ADJUST STACK
AND JUMP TO THE INTRPT

Jl"lP X SERVICE ROUTINE
IRQEND RTS RETURN TO POLL
• SUBROUTINE TO TEST FOR CA2 (CB2)
• INTERRUPTS BY CHECKING BOTH THE
• IRQ2 FLAG AND ITS ASSOCIATED
• COtiTF.:OL BITS

FIGURE 6-4.3-2: Interrupt Poll Assembly Listings (Sheet 1 of 2)

6-93

01'392 • LDAA I. • .IITH THE PIA Ct-~TF.~L PEG ADD
019'32 • LD>:: '-• .IITH THE I t-~TEF.~F.~UPT SEF.:V. ADD
01992 • J:S:P I F.:G!2F~1
I) 1'3'32 BAEC :=!4 ErE! I F.:G!2F~1 A~iD A ~~ ~J; Er ::: ~lA:S:K Ut-i I..J A t-i TED BITS
019'32 BAEE ::: 1 4:=: Ct'lP A ~~~1;4::: TE:S:T IF I t-~PUT, Et~ABLED , At-in
019'32 • I ~~TF.~PT FLAG :S:ET
(11'3'32 BAFO 26 F'3 BtiE I F~G!E~iD t-iO EtiII
01992 BAF2 :~:2 PUL A ·ES ADJU:S:T STACK At-iD
(11'3'32 BAF3 .: .. =. -_'L- PUL A -jUt'lP TO THE It-iTRPT
01'39:3 E:AF4 6E 00 .Jt·lP :;.:: S EF.: 1 ••• 1 I CE F.:OUT I t-~E

FIGURE 6-4.3-2: Interrupt Poll Assembly Listings (Sheet 2 of 2)

6-94

CHAPTER 7

7. SYSTEM DEVELOPMENT TASKS

The development of any system is, in a sense, like Figure 7 -1 where the desired end product is shown

as being analogous to the visible above-water portion of an iceberg. It is only this portion that contributes to the

ultimate success (or failure) of a project. Beneath the surface are the many necessary steps that must be

performed if the project is to be successful. Such tasks as design, prototyping, evaluation, documentation, etc.,

must be performed regardless of whether or not the design incorporates an MPU.

In one respect, using a microprocessor simplifies the effort. Major reasons for using an MPU are,

after all, to reduce the design cycle time and replace many conventional logic packages with a few LSI devices.

However, in order to benefit fully from the attendant reductions in evaluation time and manufacturing cost, the

additional tasks introduced by the use of the MPU must be handled efficiently.

The main additional task in an MPU -based system is generation of the control program that will

eventually serve as the system's "intelligence". This program, while generally referred to as "software"

throughout the development stage, will ultimately be stored in the system memory in most designs. This

MANUFACTURE

DESIGN/PROTYPE EVALUATE/DOCUMENT
TRAI N/MAI NT AI N

MPURELATEDTASK:CONTROLPROGRAM

CROSS ASSEMBLER

WATER LINE

EXORciserS INTERACTIVE SIMULATOR

COMPUTER GENERATED MEMORIES

TRAINING
TEST AND DIAGNOSTIC PROGRAMS

LIBRARY OF MPU ROUTINES

FIGURE 7-1: System Development: Like an Iceberg

7-1

Chapter briefly describes the design aids and products that Motorola provides for assistance in efficiently

performing this task. The principle items, as shown in the lower portion of the iceberg, are the Cross

Assembler, an Interactive Simulator, and an EXORciser.

The recommended procedure for developing and verifying a design using these aids is indicated in

the Flowchart of Figure 7-2. Briefly, the control program is written, assembled, simulated, and exercised. The

output of the process is system documentation and a tape suitable for generating appropriate memories. Each of

these steps are discussed in subsequent sections of this Chapter, however, greater detail can be obtained by

referring to the M6800 Programming Manual and the several manuals associated with the EXORciser.

7-1 ASSEMBLY OF THE CONTROL PROGRAM

While programs can be written in the MPU's language, that is, binary numbers, there is no easy way

for the programmer to remember the particular binary number that corresponds to a given operation. For this

reason, the MPU's instructions are assigned a three letter mnemonic symbol that suggests the definition of the

instruction. Normally, the program is written as a series of source statements using this symbolic language and

then translated into machine language. The translation can be done manually using an alphabetic listing of the

symbolic instruction set such as that shown in Table 7-1-1. More often, the translation is accomplished by

means of a special computer program. When the target program is assembled by the same microprocessor (or

computer) that it will run on, the program that performs the assembly is referred to simply as an Assembler. If,

as is often the case, the target program is assembled by some other computer, the process is referred to as

cross-assembly.

Motorola provides such a program, the M6800 Cross-Assembler, on severaP nationwide

timesharing services. This permits subscribers to the services to efficiently assemble their control programs as

indicated in Figure 7-2. The source program is entered via their in-house terminal and assembled. If necessary,

the host system's Edit package is available for incorporating corrections and changes. In addition to the

assembled output file, the Cross-Assembler provides other useful outputs. If the user is satisfied that the code as

assembled is correct, a punched paper tape that is compatible with Motorola's EXORciser and ROM

programming computer can be generated. The Cross-Assembler also provides a hard-copy output of the

Assembly Listing. For properly commented and formatted programs, this Listing is an important part of the

system documentation.

7-1.1 M6800 CROSS-ASSEMBLER SYNTAX

The syntax or language requirements for using the Motorola Assembler (and other support software)

falls into one of two categories: (a) Requirements for conversing with the host computers operating system; (2)

Requirements for conversing with the Motorola programs.

The first category varies from service to service. The documentation of the specific service being

used should be obtained and referred to when using the support software. Where references are made to the host

computers syntax in this Chapter, the General Electric procedures are shown. The emphasis in this Chapter is

IG .E. plus others to be announced later. The M6800 Cross-Assembler and the other special programs (Simulator, Build Virtual
Machine, Help) described in this Chapter are maintained by Motorola and are dynamic programs that are constantly being improved.
The descriptions in this Chapter reflect the status as of the time this Manual was printed. All changes are indicated in the Help program
and can be obtained at the actual time the programs are to be used.

7-2

PROCEDURE FOR DESIGNING
AND VERIFYING A SYSTEM USING

THE MOTOROLA MBIDD MICROCOMPUTER

ENTER INTO
TIME·SHARING
SYSTEM

(DESIGN VERIFICATION)

FLOWCHART
FUNCTIONS TO BE

PERFORMED

PUNCHED PAPER
TAPE

ENTER

'-_""OI!!§~~~~~I;,:NTO EXORciser

ASSEMBLY
LISTING

SIMULATION
LISTING

(FOR DOCUMENTATION PURPOSES)

FIGURE 7-2:

7-3

Mnemonic Addr. Hex Mnemonic Addr. Hex Mnemonic Addr. Hex Mnemonic Addr. Hex
Code Mode Code Code Mode Code Code Mode Code Code Mode Code

ADA Inherent 1B BMI Relative 2B INS Inherent 31 ROR Extended 76
ADC(A) Immediate 89 BNE Relative 26 INX Inherent 08 RTI Inherent 3B
ADC(A) Direct 99 BPL Relative 2A JMP Indexed 6E RTS . Inherent 39
ADC(A) Indexed A9 BRA Relative 20 JMP Extended 7E SBA Inherent 10
ADC(A) Extended B9 BSR Relative 8D JSR Indexed AD SBC(A) Immediate 82
ADC(B) Immediate C9 BVC Relative 28 JSR Extended BD SBC(A) Direct 92
ADC(B) Direct D9 BVS Relative 29 LDA(A) Immediate 86 SBC(A) Indexed A2
ADC(B) Indexed E9 CBA Inherent 11 LDA(A) Direct 96 SBC(A) Extended B2
ADC(B) Extended F9 CLC Inherent OC LDA(A) Indexed A6 SBC(B) Immediate C2
ADD(A) Immediate 8B CLI Inherent OE LDA(A) Extended BE SBC(B) Direct D2
ADD(A) Direct 9B CLR(A) 4F LDA(B) Immediate CE SBC(B) Indexed E2
ADD(A) Indexed AB CLR(B) SF LDA(B) Direct DE SBC(B) Extended F2
ADD(A) Extended BB CLR Indexed 6F LDA(B) Indexed EE SEC Inherent OD
ADD(B) Immediate CB CLR Extended 7F LDA(B) Extended FE SEI Inherent OF
ADD(B) Direct DB CLV Inherent OA LDS Immediate 8E SEV Inherent OB
ADD(B) Indexed EB

CMP(A) Immediate 81
LDS Direct 9E STA(A) Direct 97

ADD(B) Extended FB
CMP(A) Direct 91

LDS Indexed AE STA(A) Indexed A7
AND(A) Immediate 84

CMP(A) Indexed Al
LDS Extended BE STA(A) Extended B7

AND(A) Direct 94
CMP(A) Extended Bl

LDX Immediate CE STA(B) Direct D7
AND(A) Indexed A4

CMP(B) Immediate Cl
LDX Direct DE STA(B) Indexed E7 AND(A) Extended B4

CMP(B) Direct Dl
LDX Indexed EE STA(B) Extended F7 AND(B) Immediate C4

CMP(B) Indexed El
LDX Extended FE

STS Direct 9F AND(B) Direct D4
CMP(B) Extended Fl

LSR(A) 44
STS Indexed AF

AND(B) Indexed E4
COM(A) 43

LSR(B) 54
STS Extended BF

AND(B) Extended F4
COM(B) 53

LSR Indexed 64
STX Direct DF

ASL(A) 48
COM Indexed 63

LSR Extended 74 STX Indexed EF ASL(B) 58
COM Extended 73

NEG(A) 40
STX Extended FF

ASL Indexed 68
CPX Immediate 8C

NEG(B) 50 SUB(A) Immediate 80
ASL Extended 78 CPX Direct 9C

NEG Indexed 60 SUB(A) Direct 90
ASR(A) 47

CPX Indexed AC
NEG Extended 70 SUB(A) Indexed AO

ASR(B) 57
CPX Extended BC

NOP Inherent 02 SUB(A) Extended BO
ASR Indexed 67 DAA Inherent 19

ORA(A) Immediate 8A SUB (B) Immediate CO
ASR Extended 77 DEC(A) 4A ORA(A) Direct 9A SUB(B) Direct DO
BCC Relative 24 DEC(B) SA

ORA(A) Indexed AA SUB(B) Indexed EO BCS Relative 25 DEC Indexed 6A
ORA(A) Extended BA SUB (B) Extended FO

BEQ Relative 27 DEC Extended 7A
ORA(B) Immediate CA SWI Inherent 3F

BGE Relative 2C DES Inherent 34 ORA(B) Direct DA TAB Inherent 16
BGT Relative 2E DEX Inherent 09

ORA(B) Indexed EA TAP Inherent 06
BHI Relative 22 EOR(A) Immediate 88

ORA(B) Extended FA
PSH(A) 36 TBA Inherent 17 BIT(A) Immediate 85 EOR(A) Direct 98
PSH(B) 37 TPA Inherent 07 BIT(A) Direct 95 EOR(A) Indexed A8

BIT(A) Indexed AS EOR(A) Extended B8
PUL(A) 32 TST(A) 4D

BIT(A) Extended B5 EOR(B) Immediate C8
PUL(B) 33 TST(B) 5D

BIT(B) Immediate C5 EOR(B) Direct D8
ROL(A) 49 TST Indexed 6D

BIT(B) Direct D5 EOR(B) Indexed E8
ROL(B) 59 TST Extended 7D

I BIT(B) Indexed E5 EOR(B) Extended F9
ROL Indexed 69 TSX Inherent 30
ROL Extended 79 BIT(B) Extended F5 INC(A) 4C
ROR(A) 46 TXS Inherent 35

BLE Relative 2F INC(B) 5C
ROR(B) 56 WAI Inherent 3E

BLS Relative 23 INC Indexed 6C
ROR Indexed 66

BLT Relative 2D INC Extended 7C

TAB L E 7-1-1: Alphabetic Listing of I nstruction Mnemonics

7-4

on the language requirements of the Motorola programs. These requirements are constant and, except for minor

variations in format, do not vary from system to system.

The source program is nothing more than a list of instructions that the MPU is to execute during

system operation. All that is required is that the mnemonic instructions used by the programmer to write the

program be translated into bInary machine language acceptable to the MPU. However, if the Cross-Assembler

is to be used to perform the translation, the language and format described in the following paragraphs should

be used.

The source program is written in an assembler language consisting of the 72 executive instructions

and the assembly directives shown in Table 7-1.1-1. The assembly directives are useful in generating,

controlling, and documenting the source program. With the exceptions of FCB, FCC, and FDB, they do not

generate code. The characters recognized by the Assembler include A through Z of the alphabet, the integers cf>

through 9 , and the four arithmetic operators +, -, *, and /. In addition, the following special prefixes and

separating characters may be used:

(pounds sign) specifies the immediate mode of addressing.

$ (dollar sign) specifies a hexadecimal number.

@ (commercial at) specifies an octal number.

% percent) specifies a binary number.

apostrophe) specifies an ASCII literal character.

SPACE

Horizontal TAB

CR (carriage return)

(comma)

The character set is a subset of ASCII (American Standard Code for Information Interchange, 1968) and

includes the ASCII characters, 20 (SP) through 5F (+-). The ASCn code is shown in Table 7-1.1-2.

7-5

END - End of Program

The assembler directive" END" , if used, marks the end of a source program, and can be followed

only by a statement containing the assembler directive "MON" . The operator in the last statement

of a source program must be either "END" or "MON". If the program ends with a "MON"

directive, the use of "END" is optional. The "END" directive must not be written with a label, and

it does not have an operand.

EQU - Equate Symbol

The "EQU" directive is used to assign a value to a symbol. The "EQU" statement must contain a

label which is identical with the symbol being defined. The operand field may contain the numerical

value of the symbol (decimal, hexadecimal, octal, or binary). Alternatively, the operand field may

be another symbol or an expression which can be evaluated by the Assembler. The special symbol

"*,, which represents the program counter must not be used.

Examples of valid "EQU" statements:

Data Label Operator Operand

OA01 SUN EQU $A01

0003 AB EQU 3

OA01 AA EQU SUN

OA04 AC EQU AB+AA

OFC1 ABC EQU $FCI

If a symbol or an expression is used in the operand field, only one level of forward referencing will

assemble correctly. This reflects a two-pass characteristic of the assembly process. An illegal

example of two levels of forward referencing would be:

E

Y

C

EQU

EQU

EQU

y

C

5

This will not assemble correctly because E will not be assigned a numerical value at the end of pass

2. E and Yare both undefined throughout pass 1 and will be listed as such at the end of pass 1. E is

undefined throughout pass 2 and will cause an error message.

FCB - £orm ~onstant !!yte

The "FCB" directive may have one or more operands, separated by commas. An 8-bit unsigned

binary number, corresponding to the value of each operand is stored in a byte of the object program.

If there is more than one operand, they are stored in successive bytes. The operand field may contain

the actual value (decimal, hexadecimal, octal or binary) or be a symbol or an expression which can

be assigned a numerical value by the Assembler. An "FCB" directive followed by one or more void

operands separated by commas will store zeros for the void operands. An "FCB" directive may be

written with a label.

TABLE 7-1.1-1 Assembler Directives (Sheet 1 of 6)

7-6

Examples of valid "FCB" directives:

Location Data

0000 FF

0001 00

0002 OF

0003 17

0004 00

0005 E5

FCC - Form Constant Characters

Label

TOP

TAB

Operator

FCB

TCB

FCB

Operand

$9FF

,$F,23,

*+$EO

The "FCC" directive translates strings of characters into their 7-hit ASCII codes. Any of the

characters which correspond to ASCII hexadecimal codes 20 (SP) thru 5F (~) can be processed by

this directive. Either of the following formats may be used:

1. Count, comma, text. Where the count specifies how many ASCII characters to generate and the

text begins following the first comma of the operand. Should the count be longer than the text,

spaces will be inserted to fill the count. Maximum count is 255.

2. Text enclosed between identical delimiters, each being any single character. (If the delimiters are

numbers, the text must not begin with a comma.)

If the stringjn the operand consists of more than one character, the ASCII codes corresponding to

the successive characters are entered into successive bytes of memory.

An "FCC" directive may be written with a label.

Examples of valid "FCC" directives:

Location Data Label Operator Operand

OAOO 54 MSG1 FCC TEXT

OAOI 45

OA02 58

OA03 54

OA04 54 MSG1 FCC 9,TEXT

OA05 45

OA06 58

OA07 54

OA08 20

OA09 20

OAOA 20

OAOB 20

OAOC 20

TABLE 7-1.1-1 Assembler Directives (Sheet 2 of 6)

7-7

FDB - !'orm .Qouble Constant Byte

The "FDB" directive may have one or more operands separated by commas. The I-bit unsigned

binary number, corresponding to the value of each operand is stored in two bytes of the object

program. If there is more than one operand, they are stored in successive bytes. The operand field

may contain the actual value (decimal, hexadecimal, octal or binary) or be a symbol or an expression

which can be assigned a numerical value by the assembler. An "FDB" directive followed by one or

more void operands separated by commas will store zeros for the void operands.

An "FDB" directive may be written with a label.

Examples of valid "FDB" directives:

Location Data Label Operator Operand

0010 0002 TWO FDB 2

0012 0000 MASK FDB ,$F ,$EF ,,$AFF

0014 OOOF

0016 OOEF

0018 0000
OOlA OAFF

MON - Return to Console

The assembler directive "MON", if used, must be in the last statement of a source program. (See

assembler directive "END" above.) The "MON" directive instructs the assembler that the source

program just completed is the last to be assembled, and will return control to the user at the keyboard

of the terminal by printing the input request "READY".

The last statement of a source program must contain either" END" or" MON" . If the last statement

of the program has" END" as its operator, the Assembler will request another file upon completion

of assembly, by printing:

SI FILENAME

?

If the user does not wish to assemble another file he may type" .EOF" (Le. type a period followed

by an "END OF FILE" character). The assembler directive "MON" must not be written with a

label, and no operand is used.

NAM-Name

The' 'NAM" (or NAME) directive names the program, or provides the top of page heading text

meaningful to users of the assembly. The "NAM" directive must not be written with a label. The

"NAM" directive cannot distinguish the operand field from the comment field. Both the operand

field and the comment field are treated as continuous text.

TABLE 7-1.1-1 Assembler Directives (Sheet 3 of 6)

7-8

OPT - Option

The "OPT" directive is used to give the programmer optional control of the format of assembler

output. The "OPT" directive is not translated into machine code. No label may be used with the

"OPT" directive. The options are written in the operand field following the directive, and are

separated by commas.

The available options are:

Long Form

LIST

SLIST

NOLIST

SYMBOL

Short Form

L

SLIS

NOL

NL

SYMB

S

Selects listing of the assembly in long format (selected by default).

Selects listing of the assembly in an abbreviated form.

Suppresses the printing of the assembly listing.

Causes the symbol table to be printed (selected by default).

NOSYMBOL NOSYMB Suppresses the printing of the symbol table.

GENERATE

NOS

NS

GENE

G

Causes full printing of all code generated by FCC directive (selected

by default).

NOGENERATE NOGENE Causes only one line of listing to be generated by FCC directive.

ERROR

SERROR

NOERROR

PAGE

NOPAGE

TAB

NOTAB

NGENE

NOG

NG

E

SER

Selects printing of error messages in long format (selected by

default).

Selects printing of error messages in an abbreviated form.

NERROR Suppresses the printing of error messages.

NOE

NE

NPAGE

T

NOT

NT

Causes the listing to be page formatted and to have a heading on each

page (selected by default).

Causes the listing to be continuous without page formatting.

Causes horizontal formatting of the listing (selected by default).

Suppresses horizontal formatting of the listing.

TABLE 7-1.1-1 Assembler Directives (Sheet 4 of 6)

7-9

DB8

DB10

DB16

MEM

NOMEM

M

NOM

NM

Octal display base.

Decimal display base

Hexadecimal display base (selected by default).

Instructs the assembler to save the object program in a permanent

file.

Assembler does not save the object program (selected by default).

The assembler directive "ORG" defines the numerical address of the first byte of machine code

which results from the assembly of the immediately subsequent section of a source program. There

may be any number of "ORG" statements in a program. The "ORG" directive sets the program

counter to the value expressed in the operand field.

The operand field may contain the actual value (decimal, hexadecimal, octal or binary) to which the

program counter is to be set or may contain a symbol or an expression which can be assigned a

numerical value by the assembler. The special symbol" *" , which represents the program counter

must not be used.

The location counter is initialized before each assembly. If no "ORG" statement appears at the

beginning of the program, the location counter will begin as if an "ORG" zero had been entered.

Examples of valid "ORG" statements:

Location Data

(1) 0064

(2) AF23

(3)

1100

PAGE -Advance Paper to Top of Next Page

Label

(blank)

(blank)

BEGIN

(BLANK)

Operator

ORG

ORG

EQU
ORG

Operand

100

$AF23

$1100

BEGIN

The' 'PAGE" directive causes the Assembler to advance the paper to the top of the next page. The

PAGE directive does not appear on the program listing. No label or operand is used, and no machine

code results.

RMB -Reserve Memory ~ytes

The' 'RMB" directive causes the location counter to be increased by the value of the operand field.

This reserves a block of memory whose length is equal to the value of the operand field. The operand

field may contain the actual number (decimal, hexadecimal, octal or binary) equal to the number of

TABLE 7-1.1-1 Assembler Directives (Sheet 5 of 6)

7-10

bytes to be reserved or may be a symbol or an expression which can be assigned a numerical value by

the assembler.

The block of memory which is reserved by the "RMB" directive is unchanged by that directive.

The "RMB" directive may be written with a lable.

Examples of valid "RMB" directives follow:

Location Data Label

0100 00

0104 00 TABLE 1

0118 00 TABLE 2

SPC - Spa~e Lines

Operator

RMB

RMB

RMB

Operand

4

20

20

The "SPC" directive provides vertical spaces for formatting the program listing. It does not itself

appear in the listing. The number oflines to be left blank is stated by an operand in the operand field.

The operand would normally contain the actual number (decimal, hexadecimal, octal or binary)

equal to the number of lines to be left blank. A symbol or an expression is also allowed but must be

assigned a numerical value during assembly by means of an EQU statement.

TABLE 7-1.1-1 Assembler Directives (Sheet 6 of 6)

7-11

ASCII CHARACTER SET (7-BIT CODE)

M.S.
CHAR 0 1 2 3 4 5 6 7

L.S. 000 001 010 011 100 101 110 111
CHAR

0 NUL DLE SP 0 @ P 0000 P

1 SOH DC1 1 1 A Q 0001 a g

2 STX DC2 " 2 B R b 0010 r

3 ETX DC3 # 3 C S 0011 c s

8 BS CAN (8 H X h 1000 x

9 HT EM) 9 I Y 1001 Y

A LF SUB * J Z j 1010 z

B VT ESC + K k 1011

TABLE 7-1.1-2 ASCII Code

7-12

7-1.1.1 Line Numbers

When preparing a source program for entry via a timesharing terminal, each source statement is

normally assigned a line number. The line number is followed by a SPACE and the character position

immediately following that SPACE is then the first character position of the source statement. The line numbers

are usually assigned in multiples of a base so that additional statements can be inserted later, if necessary. For

example, numbering as 1, 5, 10, 15, 20, etc., leaves room for 4 statements to be added between each of the

original statements.

7 -1. 1.2 Field of the Source Statement

Each statement in the source program may have from one to four fields: a label, a mnemonic

operator (instruction), an operand, and a comment. Each statement must have at least the mnemonic operator

field. An operand mayor may not be required, depending on the nature of the instruction. The comment field is

optional at the programmer's convenience for describing and documenting the program.

The successive fields in a statement are normally separated by one or more spaces. An exception to

this rule occurs for instructions that use dual addressing in the operand field and for instructions that must

distinguish between the two accumulators. In these cases, A and Bare' 'operands' , but the space between them

and the operator may be omitted. This is commonly done, resulting in apparent four character mnemonics for

those instructions.

If the statement includes a label, it must begin in the first character position of the statement field. A

SPACE in the first position will indicate that no label is included with the statement. Note that if line numbers

are being used, there must be two or more spaces between the number and the operator when labels

are not used.

7 -1. 1. 3 Labels

Labels may be up to six characters long and use any alphanumeric combination of the character set

with the restriction that the first character be alphabetic. Three single character labels, A, B, and X, are

reserved for referring to accumulator A, accumulator B, and the Index Register, respectively. In general, labels

may correspond to either numerical values or memory locations. The use of symbolic references to memory

permits initial programming to be done without using specific absolute memory locations.

Labels are required for source statements that are the destination of jump and branch instructions.

(Such an instruction would have the same label as its operand.) Labels may be used with any executable

instruction at the option of the programmer.

A label is normally used with the assembly directives FCB, FCC, FDB, and RMB. A label must be

used with the directive EQU and will be equated to the symbol which the EQU statement is defining. Labels

must not be used with the other assembler directives. See Table 7-1. 1-1 for examples.

7-1.1.4 Operands

The operand field can contain numerical values, labels, or algebraic expressions that can be

evaluated by the Assembler. Such expressions can include the arithmetic operators + (addition), - (subtrac

tion), * (multiplication), or / (division).

The assembler evaluates expressions algebraically from left to right without parenthetical grouping,

7-13

with no heirarchy of precedence among the arithmetic operators. A fractional result, or intermediate result, if

obtained during the evaluation of an expression, will be truncated to an integer value. The use of expressions in

the source language does not imply any capability of the microprocessor to evaluate those expressions, since

the expressions are evaluated during assembly and not during execution of the machine language program.

7-1.1.5 Comments

Comments for improving understanding of the program can be included in source statements by

inserting a SPACE and then the comment after the operand. If the instruction does not require an operand,

everything following the insertion of one or more SPACEs after the operator will be treated as a comment.

Additional documentation information will appear on the assembler generated program listing if an

asterisk is used in the first character position of a statement. Everything following the asterisk is then converted

into a comment and does not affect the machine language generated by the assembler.

7-1.2 ACCESSING A TIMESHARE SERVICE

As indicated earlier, the details of accessing vary from service to service, however, the following

example based on the G .E. system serves to illustrate the procedure. It is assumed that a series of source

statements have been prepared and are to be entered into the host computer in preparation for assembly.

(1) Dial the telephone number assigned for computer access.

(2) When the network responds, enter HHHH on the keyboard so that the terminal's speed can be

determined.

(3) In each case, conclude entries with a carriage return. The computer acknowledges entries by

providing a line feed.

(4) Enter user number and password.

(5) If the computer requests additional identification, a code may be entered for additional

protection of the program. If this is unnecessary, enter a carriage return to bypass.

(6) Identify the system language that will be used by the Assembler. The Motorola

Cross-Assembler language is identified by entering: FIV.

(7) When the computer acknowledges a command, rather than merely the entry of information, it

responds with the word "READY" in addition to the usual line feed.

(8) After identifying the system, the user must specify whether an old or new file is to be used.

Therefore, the user must enter: OLD:xxxxxx where xxxxxx represents the name of the old 'file

that is to be changed, or NEW:xxxxxx where xxxxxx is the name of the new program.

(9) After the computer has responded "READY", the source statements may be entered, line by

line.

(10) The computer must be told to make a permanent record of the entires. This is done by giving

7-14

the command: SAVE. If this is not done, the computer will not recognize the name of the old

file if called for later; the program will have to be entered again.

(11) When the source program is ready to be assembled, the Assembler is called by entering: RUN

MPCASM

(12) If an assembled program is to be simulated, the Simulator may be called by entering: RUN

MPSSIM

(13) If the user wants to change the memory file form, address range, or name of the assembled

program or to link it to another memory file, the Build Virtual Machine program may be called

by entering: RUN MPBVM

(14) Build Virtual Machine can also be used to punch out a tape of the assembled program for

entering the EXORciser or to order ROM from Motorola.

7-1.3 ENTERING A SOURCE PROGRAM

Entry of a typical source program is illustrated in Figure 7 -1.3 -1. It is recommended that the input be

, 'saved" in the host computers permanent files following every few lines of code. This protects against loss due

to a system failure. This is shown in the example by the SAVE command entered following the source

statement numbered 200. Note that the command REP (replace) is used to "save" subsequent statements. This

is a characteristic of the G .E. system.

Figure 7-1.3-2 shows the results of listing a previously entered program. It is assumed that the

system is accessed at a later time after AAA was entered. Note that the file OLD AAA is called, i.e., AAA is

now an "old" file.

7-15

J~EI.I.I AAA

~:EAD\'

S ·:S: F 1 1
•••

1

PEAD\'
100 t-iAt'1 I TEt'12
11 (I OPT t'1Et'1
120 * ADDITION OF TWO MULTIPLE-PRECISION
130 * BINARY-CODED-DECIMAL NUMBERS.
140 *
150 NB EQU 8 SPECIFIES 8-BYTE OPERANDS.
160 *
170 * BEGIN SUBROUTINE.
1 ::: I) 0 R G $ 1 (I (I (I
190 BCD LDA B ~~t{B

2 I) (I LD::-=: ADDP LOADS DATA ADDRESS.

PEAD\'
21 0 CLC
;:::2 I)
230

nE>::T
AIte

LDA A NB-1~X START LOOP
A =·+t·fE!-l, ::<

240 DAA
250 STA
260 DE>::
270 DEC B
2:=:0 pnE NEXT END OF LOOP
2'30
:~:OO *
E1E

PEAD\'
310 *

PT"~: END OF BCD SUBROUTINE.

320 * BEGIN MAIN PROGRAM ..•...
330 * TEST OF SUBROUTINE BCD.
340 ORG ~1;11 00
350 LDS ~~$13F !t·n T I AL I ZE STCK pt·nR .
. 36 (I LD>:: ~::P LOA IrS: ADD~:E:S':S: OF P.
370 ST::< ADDR
3::::'0 .JS~' BCD
:3'30 nop
400 BRA +-1 EnD OF MAIn PROGRAM.

Jill::.

READ'"!,
41 (I +
4;~0 +
430 + ALLOCATE A DATA AREA IN
440 + READ-WRITE MEMORY.
450 ORI:; $0100
460 + (1) FOR THE SUBROUTInE.
47(1 ADDR Rt'1E: 2
4:::0 + (2) FOR THE t'1AIN P~:.oGRAt'1.
4'3 (I P ra'1E: t·U:
500 C! ~:t'1E: NE:
51 (I F!:ES F.:t1E: t'~E:

520 E~iD
5:::: 0 t'10t-i

.ESl:.

READ')"' NOTE: System Commands Entered by User are Underlined.

FIGURE 7-1.3-1: Entering the Source Program "AAA"

7-16

OLD AAA

~:EAD'''''

LIST -
AAA 1:::: 1 (lEST

1 00 r'iAt'l I TEt'12
11 (I OPT t'1E~1

01 24.····75

120 + ADDITION OF TWO MULTIPLE-PRECISION
130 + BINARY-CODED-DECIMAL NUMBERS.
14 +
15 NB EQU 8 SPECIFIES 8-BYTE OPERANDS.
16 +
17 + BEGIN SUBROUTINE.
1 ::: ORI:; $1 000
19 I BCD LDA B ~~t{B

20 LDX ADDR LOADS DATA ADDRESS.
21 CLC
22 NEXT LDA A NB-l,X START LOOP
23 ADC A 2+NB-1,X
24'- DAA
250 STA A 3+NB-1,X
260 DE::-=:
270 DEC B
280 BNE NEXT END OF LOOP
29 RTS END OF BCD SUBROUTINE.
::::0 +
31 +
32 + BEGIN MAIN PROGRAM ..•.•.
33 + TEST OF SUBROUTINE BCD.
:;:41) OF.~G $11 00
35 (I LDS ~~$1 :3F I t·~ I T I AL I ZE STCK PtiTR.
:360 LD>:: ~~P LOADS ADDF.~ESS OF P.
:370
:;:80
::::90
4'00
410 +
420 +

ST::·:: AD DR
.JSR BCD
t·~op

BF.~A +-1 END OF MAIN PROGRAM.

430 + ALLOCATE A DATA AREA IN
440 + READ-WRITE MEMORY.
45 (I OF.~I:; $ 0 1 00
460 + (1) FOR THE SUBROUTINE.
470 ADDR RI"1E: 2
480 • (2) FOR THE MAIN PROGRAM.
49 (I P F.:1"1B. r'iB
500 Q F.:MB tiE:
51 0 RES F.~MB t'iB
520 Et-iD
530 MDt·~

NOTE: System Commands Entered by User are Underlined.

FIGURE 7-1.3-2: listing of the Source Program "AAA"

7-17

7-1.4 ASSEMBLING A SOURCE PROGRAM

Prior to assembly, a source program must have been placed in memory accessible to the Assembler

(see previous section). When the Assembler is called, it will request that a source input file (SI) be specified.

This source input file will be the source program that was previously saved.

If a MEM option was included in the source program, the Assembler will also request that a memory

file (MF) be named. At this time, the user must specify a name for the file that is different from the source input

file name. The machine language code resulting from the assembly will be stored in that file.

After the assembly is completed, the Assembler prints out a listing of the code that was generated.

The OPT (Option) assembly directive may be included in the source program and allows the user to vary the

format of the Assembly Listing. If other options are not specified, the Assembler will automatically select the

fullest format (see the OPT directive in Table 7-1.1-1 for a list of the options). The long format for a

representative line from an Assembly Listing is shown in Figure 7-1.4-1.

A sample Assembly Listing for the program AAA is shown in Figure 7-1.4-2. A number of the

characteristics of source statements and the assembly process are illustrated:

(1) Instruction labels: BCD, NEXT.

(2) Assembler directives: NAM, OPT, EQU, ORO, RMB, END.

(3) Assembler directive labels: NB, ADDR, P, Q, RES.

NOTE: Diagram correct only if no format option specified.

00200 OOFF CE 00F2 EP, CALC LOX #BUFFER Step 1: Sum Odd Data Positions

Character 1 5 7 10 12 13 15 18 20 25 27 31 34 41 43 80 max
Position

1 Lcomment
OPERAND (or Effective Address)

Operator-Instruction or Directive Mnemonic

Label

Value of Operand or Effective Address

OP Code

Instruction Address

Statement Number

FIGURE 7·1.4·1: Fields of Assembly Listing

7·18

15=19EST 01 24.····75

MDTOROLA~SPD, INC. OWNS AND IS RESPONSIBLE FOR MPCASM
COPYRIGHT 1973 & 1974 BY MOTOROLA INC

MOTOROLA MPU CROSS ASSEMBLER, RELEASE 1.2

ENTER SI FILENAME
?AAA

ENTER MF FILENAME
?DEF456

DEFAULT MACHINE FILE 06/20/74.

PAGE 1 ITEM2 01/24/75 15:19.00

t·1At'1 I TEt'12
OPT ~1EM

• ADDITION OF TWO MULTIPLE-PRECISION
* BINARY-CODED-DECIMAL NUMBERS.
•

0008 t'~B EOU :=: SPECIFIES :::-E:')"TE
*
* BEGIN SUBROUT I tiE.

1000 DRG $1000
1000 C6 0:3 BCD LDA E: ~~tiB

OPERANDS:.

00100
00110
00120
OOl:~:O

00140
00150
00160
00170
00180
00190
00200
00210
00220
002:~:0

00240
00250
00260
00270
00280
00290

1002 FE 0100 LD:X: ADDF.: LOADS: DATA ADDF.~ES:S: •
1005 OC CLC
100E, A6 07 t"iE::-::T LDA A t'iE:-l , ::-:: START LOOP
100::: A9 OF ADC A 2*NB-l , ::.::
100A 1':'- IIAA
100B A7 17 STA A ~~:*t"iB-l , X
100D 0':'- IIE::'~

100E 5A DEC E:
100F 2E, F5 ENE t'iE:X:T E t'i II OF LOOP
1011 :~:9 F.:TS: END OF E:CD SUBF.~OUT I tiE.

NOTE: System Commands Entered by User are Underlined.

FIGURE 7-1.4-2: Assembly Listing for Sample Program "AAA" (Sheet 1 of 2)

7-19

00:300
00:::: 1 0
00:320
00:3:30
00::::40
00:350
00::::60
00:370
00:380
003'30
00400
00410
00420
004:30
00440
00450
00460
0047(1
0048
004'3
0050
0051
0052

1100
1100
110:3
110E.
110'3
110C
110D

0100

0100

0102
010A
0112

::::E 01:3F
CE 0102
FF 0100
BD 1000
02
20 FII

0002

000:::
0008
000:::

:S:'"I't'lBOL TABLE

NB 000:::: BCD
G! 010A RES

PROGRA,..1 STOP AT 0

U-SED 20.72 Ut-i I TS

•
•
• BEGIN MAIN PROGRAM ••••••
• TEST OF SUBROUTINE BCD.

OPt:;
LDS
LD::-::

$1100
::~$1 :3F INITIALIZE STCK PNTR.

LOAtiS ADDRESS OF P.
:S:T::~ ADDF.~

BCD .JSR
NDP
BF.~A +-1 END OF MAIN PROGRAM.

•
+
• ALLOCATE A DATA AREA IN
• READ-WRITE MEMORY.

ORG $0100
• (1) FOR THE S'-'BF.~OUT I t-iE •
ADDR R~lB 2

• (2) FOR THE talA I t-i PRDGF.~AM •
P RME: t-iE:
G! RI"lB t-iB
F.~ES ~~MB t-iB

Et-iD

1000 nE::-::T 100E. ADDP
0112

0100 P 0102

FIGURE 7-1.4-2: Assembly Listing for Sample Program "AAA" (Sheet 2 of 2)

7-20

(4) Comments in comment field and also on lines where an asterisk appeared in the first character

position of the source program.

(5) Instructions without labels, on lines in the source program where two spaces separated the line

number and operation mnemonic.

(6) Operands consisting of an expression to be evaluated by the Assembler: NB-l, 2* NB-1,

3* NB-1, *-1.

(7) Operands indicating immediate addressing: #NB, #$13F, #P, so that NB, which is equal to 8,

is loaded into accumulator B (line 190), $13F, a hexadecimal number, is loaded into the stack

pointer register (line 350), and the address labeled P, rather than its contents, is loaded into the

Index (X) register (line 360).

During the assembly of the source file, the Assembler may detect inconsistencies or deletions in the

usage of some symbols, labels, operation codes or directives that prevent it from continuing. Errors of this type

are printed out on the terminal, and it is up to the user to correct the referenced source statement before

attempting to reassemble. Other errors may be detected by the Assembler, such as undefined or doubly defined

symbols, out-of-range relative addressing or syntax that do not prevent the Assembler from continuing but

cause an incorrect assembly. These errors are identified at the end of the incorrect assembly. A list of typical

error messages that might be printed out are shown in Table 7 -1.4-1. If an error message not included in the list

should be encountered, the user can obtain additional information from the HELP program (see Section 7 -1. 6).

There are many additional errors that the Assembler cannot recognize, and the Assembly Listing

must be checked carefully to see that the addresses, operations and data that have been assembled are accessible

or executable and that the program can run to completion. For instance, note that in the sample program AAA

(Figure 7 -1.4-2), the operand of the instruction on Line 400 is: *-1. This is one of the three uses of the asterisk,

and, in this case, refers to the present value of the program counter. BRA *-1 is an instruction to branch to one

less than the present value of the program counter which causes the program to continue execution at the

preceding instruction located at 110C. Note that this instruction is a NOP and has no effect other than advancing

the program to the next instruction. During an examination of the Assembly Listing or during Simulation, it

would be seen that this is not a very useful pair of instructions; the program would hang up, continuously

repeating these two instructions.

It should be noted that an error-free assembly does not mean the program will perform the desired

function. A good assembly means only that the language of the M6800 system has been used properly.

Significant programs will usually still require some additional debugging.

7-1.5 SIMULATION

The M6800 Simulator is a special program that simulates the logical operation of the MC6800

Microprocessor. It is designed to execute object programs generated by the M6800 Cross-Assembler and is

useful for checking and debugging assembled programs prior to committing them to ROM "firmware".

7 -1.5. 1 Simulator Commands

The Simulator is normally controlled 1 by means of an interactive conversation with the operator via

lIt is also possible to simulate programs in a batch-processing mode. Refer to the M6800 Programming Manual for details.

7-21

8281

281 HAft DIRECTIVE ERROR
MESSAGE: ****ERROR 281

8282

"E~HING: THE SOURCE PROGRAM DOES HOT START WITH AHA" DIR
ECTIYE STATE"ENT OR THE HAM DIRECTIYE IS MISSIHG.

282 lA3El OR OPCODE ERROR
MESSAGE: *.*.ERROR 282

9283

"EAHING: THE LABEL OR OPCODE SYMBOL DOES HOT BEGIN WITH AN
ALPHABETIC CHARACTER.

283 ST~TE"EHT ERROR
MESSAGE: ****ERROR 283
MEANING: THE STATEMENT IS BLANK OR ONLY CONTAINS A LABEL.

9204

284 SYNTAX ERROR
MESSAGE: * ••• ERROR 284
"EANING: THE STATE"ENT IS SYNTACTICAllY INCORRECT.

0205

285 LA3EL ERROR
MESSAGE: ****ERROR 285
MEANING: THE STATEMENT LABEL DOES HOT END WITH A SPACE.

0286

285 REDEFINED SV"BOL
11 E S SAG F. : * * * *£ R R 0 R 286
"EAHIHG: THE SYMBOL HAS PREVIOUSLY BEEN DEFINED.

9207

287 UNDEFINED OPCODE

8288

MESSAGE: •• *.ERROR 287
MEANING: THE SYMBOL IN THE OPCODE FIELD IS HOT A VALID

OPCODE "NE"OHIC OR DIRECTIVE.

288 BRANCH ERROR
MESSAGE: •• **ERROR 288
"EANING: THE BRANCH COUNT IS BEVOND THE RELATIYE 8VTE~S

RANGE. THE ALLOWABLE RANGE IS:
(*+2) - 128 < D < <*+2> + 128
WHERE: * = ADDRESS OF THE FIRST BYTE OF THE

BRANCH INSTRUCTION
n = ADDRESS OF THE DESTINATION OF THE

BRANCH INSTRUCTION.

TABLE 7-1.4-1. Assembler Error Messages (Sheet 1 of 3)

7-22

8289

289 ILLEGAL ADDRESS "ODE
MESSAGE: ****ERROR 289

8218

"EAHIHG: THE "ODE OF ADDRESSING IS HOT ALLOWED WITH THE op
CODE TYPE.

210 BYTE OVERFLOW

8211

MESSAGE: ****ERROR 218
"E~HIHG: A CONSTANT CONYERTED TO A YALUE GREATER THAN 2~'

(DECI"AL).

211 UNDEFINED SYMBOL
MESSAGE: ****ERROR 211
ME~HIHG: THE SYMBOL DOES HOT APPEAR IN A LABEL FIELD.

8212

212 DIRECTIVE OPERAND ERROR
MESSAGE: ****ERROR 212
MEANING: SYNTAX ERROR IN THE OPERAND FIELD OF A DIRECTIYE.

8213

213 EQU DIRECTIVE SYNTAX ERROR
MESSAGE: ****ERROR 213

8214

ME~HING: THE STRUCTURE OF THE EQU DIRECTIVE IS SYNTACTI
CALLY INCORRECT OR IT HAS HO LABEL.

214 FC3 DIRECTIVE SYNTAX ERROR
MESSAGE: ****ERROR 214

8215

ME~NING: THE STRUCTURE OF THE FeB DIRECTIVE IS SVNTACTI
CALLY INCORRECT.

215 FDa DIRECTIVE SYNTAX ERROR
MESSAGE: ****ERROR 215

8216

MEANING: THE STRUCTURE OF THE FDB DIRECTIVE IS SYNTACTI
CALLY INCORRECT.

216 DIRECTIVE OPERAND ERROR
~ESSAGE: ****ERROR 216
MEAHING: THE DIRECTIVE/S OPERAND FIELD IS IN ERROR.

0217

217 OPT DIRECTIYE ERROR
HESSAGE: ****ERROR 217
MEANING: THE STRUCTURE OF THE OPT DIRECTIVE IS SYNTACTIC

ALLY INCORRECT OR THE OPTION IS UNDEFINED.

TABLE 7-1.4-1. Assembler Error Messages (Sheet 2 of 3)

7-23

8218

218 ADDRESSI~G ERROR
MESSAGE: ****ERROR 218

8228

MEANING: AN ADDRESS WAS GENERATED WHICH LIES OUTSIDE THE
LEGAL MEMORY BOUNDS OF THE VIRTUAL MACHINE FILE.
TO EXTEND THE LAST ADDRESS (LWA) OF THE MACHINE
(HF FILE); RUN THE MPBY" PROGRAM. ENTER "LW LWA"
WHERE LWA IS THE HEW LAST WORD ADDRESS. THE
SYSTEM WILL PROMPT THE USER FOR THE NAME OF THE
MF FILE.

228 PHASING ERROR

9221

MESSAGE: ****ERROR 220
~E~HING: THE VALUE OF THE P COUNTER DURING PASS 1 AND

PASS 2 FOR THE SAME INSTRUCTION IS DIFFEREHT.

221 - SYKBOL TABLE OVERFLOW
MESSAGE: ****ERROR 221

9222

ME~HING: THE SYMBOL TABLE HAS OYERFLOWED. THE HEW SYMBOL
WAS NOT STORED AND ALL REFERENCES TO IT WILL BE
FLAGGED AS AN ERROR.

222 - SYNTAX ERROR IN THE SYMBOL
MESSAGE: ****ERROR 222

8223

MEANING: THE SYMBOL WHICH USED AN OPERAND WAS REDEFINED OR
HAS AN ERROR IN IT'S DEFINITION. THIS ERROR IS ONLY
USED TO SHOW WHERE THE SYMBOL WAS USED.

223 - THE DIRECTIVE CANHOT HAVE A LABEL
MESSAGE: ****ERROR 223
MEANING: THE DIRECTIYE CANNOT BE LABELED. REMOVE THE LABEL.

0224

224 - ERRO~ 1 H

"ESSAGE:
MEANING:

USING THE OPTION DIRECTIVES OTAPE OR ME"ORY
***.ERROR 224 X~XXX
THE OTAPE=FILEHAKE OR MEMORY=FILENAME IS HOT THE
FILENA"E USED ON THE 1ST OCCURRENCE OF THE OPTION.
OR THE OPTION WAS TURH OFF (HOMEMORY) AND A FILE
NA"E WAS SPECIFIED.

TABLE 7·1.4·1. Assembler Error Messages (Sheet 3 of 3)

7-24

a timesharing terminal. Simulator requests for input may be responded to using any of the following typical

commands:

1. Format Control for Commands and Print-Out

IB2 Set input number base to BINARY

IB8 Set input number base to OCTAL

IB 10 Set input number base to DECIMAL

IB16 Set input number base to HEXADECIMAL

These commands are used to set the format control of the Simulator to the number

base of the user. Thereafter, the user enters commands with this base. There is a choice of binary

(IB2), octal (IB8), decimal (IBI0), or hexadecimal (IBI6).

DB8 Set display number base to OCTAL.

DBI0 Set display number base to DECIMAL.

DB16 Set display number base to HEXADECIMAL.

Notes: (i) The format of the above commands is invariable, and does not depend on

the current input number display base.

(ii) The display base command does not apply to the display of the number of

cycles of execution time, which is always shown as a 7 -digit decimal

number.

These commands select the number base that the simulator will use when it prints out

information for the user. There is a choice of octal (DB8), decimal (DBI0), or hexadecimal

(DB 16). The one exception is the print out of execution time cycles, which is always displayed in

decimal.

SD IOEPXABCST

This command selects the registers that will be displayed by the D command. It does

not cause them to be displayed. The user may select any or all of the following ten:

IA - instruction address

OC - Operation mnemonic code

EA - effective address

P - program counter

X - index register

A - accumulator A

B - accumulator B

C - condition codes

S - stack pointer

T - time

7-25

IA can also be addressed as I, OC as 0, and EA as E as in the command format line

above. The contents of all these registers are printed out by the Simulator as initial status when

the name of the memory file is entered. In addition, the first item of the initial status display is a

two letter code which informs the user of the input and display base being used. This code

consists of the letters, H (hexadecimal), D (decimal), 0 (octal), and B (binary). Binary can be

used as an input base, but not as a display base. The first letter is the input base and the second is

the display base.

Initial status display:

EA p x HH IA OC

0000 *** 0000* 0000 0000
A

00
B

00
C

000000
S

0000
T

0000000

In the above example, HH means that both the input and display base are

hexadecimal.

HRn

LM

NOLM

This command causes the Simulator Register Header to be displayed, at intervals of n

lines of print. The header has the same appearance as in the initial status display.

List each command before it is executed. Useful as a check and reminder after a string

of commands has been entered.

To not list command before execution. Normally used sometime after an LM

command has been entered when the echo listing is no longer desired.

2. Set Values

SM s ,no ,nl ,n2, ,nrn

Set memory location s to no, s + 1 to nl, s + 2 to n2, , s + m to nrn.

This command is used to load specified data into selected memory addresses. By

altering the machine code stored in particular addresses, the program instructions can be changed

or modified to improve the program. The contents of the selected memory addresses can be

checked with the Display Memory (DM) command. SM requires only the lowest memory

address in a continuous sequence. Each data value specified is automatically placed in the next

higher address. These data values are separated by commas.

SR Pnl,Xn2,An3,Bn4,Cns,Sn6

Set registers to the respective values represented by nl, n2, . . ., n6. Register codes

may be in any order and only the registers to be changed need be entered.

This command is used to load specified data into selected registers. It can also be used

to move the Simulator around in the program by resetting the program counter to a different

7-26

instruction and then doing a Trace or Run. After using the Set Register (SR) command, the

contents of those registers can be checked by using the Display D, command.

3. Display Values

DM s,n

Display memory starting at the memory location s and displaying n locations. Numerical

values will be displayed in the display number base selected by the DB command. The

numerical values are followed by ASCII literal interpretations of the 7 -bit codes from

hexadecimal value 20 through 5F.

The DM command displays up to sixteen memory locations per line of print. This is

shown by the following example, for which the input and display bases had been set previously to

hexadecimal (by simulator commands IB16 and DBI6):

?SM 18FO,00, 11 ,22,33,44,55,66,77 ,88,99,OAA,OBB,OCC,ODD,OEE,OFF

?DM 18FO, 10

18FOOO 11 22 33 44 55 6677 88 99 AA BB CC DD EE FF .. "3DU

Each line of memory display shows the numerical address of the first memory

location being displayed. This is followed by the numerical coding of the specified number of

successive memory locations. The numerical codes are followed by their corresponding ASCII

literal interpretations. For the ASCII literals, only bit positions ° through 6 are considered, bit

No.7 being ignored. Literals corresponding to seven bit codes 20 through 5F are printed, all

others are indicated by a period (.). As an example, note that the contents of the first two

locations, 00 and 11, are less than 20 and, hence, cause periods to be printed instead of ASCII

literals. The last 10 locations contain values greater than 5F and also display as periods.

D

DL

Display the registers selected with the SD command. Numerical values will be

displayed in the display number base selected by the DB command.

Display the last instruction previously executed.

4. Program Execution

Tn

. Trace n instructions, printing the selected registers after each instruction is executed.

Rn

Run n instructions without printing, and then print the selected registers.

The trace command traces the execution of successive instructions of the program.

The format of the trace is identical with that of the second line of the display of initial status, as

described above. The run command (Rn) also results in a printed line in the same format, but this

is printed after execution of the specified number of instructions.

7-27

The trace may also include register header lines, in the form described earlier. The

frequency of appearance of the register header line in the trace depends on the value set in by the

Display Register Header command (HRn).

The user may command either Trace mode or Run mode. The trace mode (T) is

selected for a number (n) of instructions specified by the user. The n instructions are then

executed, and the simulator displays the contents of selected registers after the execution of each

instruction. The trace is capable of showing the current status of all of the registers of the

programming model, the address and coding of the current instruction, the source language

mnemonic operator corresponding to the instruction, and the total time of execution in cycles.

The user has complete control of the content of the trace and by using a simulator

command (SD) is able to set the display so as to eliminate unwanted elements.

The Run mode (R), like the Trace, is selected for a number (n) of instructions

specified by the user. The successive instructions are executed without display by the simulator

until n instructions have been executed. The nth instruction is then displayed in the same format

as for the trace.

5. Repetition

RCn

RLn

Execute the next command n times. If the command RCn is the last command in a

line, the command which will be repeated is the first command in the next command

line.

A typical application could be for increment or decrement instructions which are part

of a counter subroutine. Repeating the instruction advances the counter.

Execute the remaining portion of the command line (to the right of the RLn command)

n times. If the command RLn is the last command in a line, it will have no effect. The

RLn command must not be included in the definition of a MACRO command.

6. Memory File Status

SS

RS

EX

Save the simulator status in the memory file. All register settings and selected options

are saved. The MACRO library and current MPU memory pages are not saved.

Useful fOL terminating an incomplete simulation that will be resumed later.

Restores status saved by SS command. The saved status is transferred from the

memory file back into the Simulator registers.

Exit from the simulator after saving the status as for the SS command, and also saving

the MACRO library, and all of memory including the current memory pages. Informs

host computer that present usage of Simulator is complete.

7-28

Numerical Substitution in the Commands

Where applicable, n, no, nl, nz, , nrn, and s are replaced by numbers when entering a

simulator command. The number so substituted will be interpreted as octal, decimal, or hexadecimal,

according to the input base set previously by a command IB2, IB8, IBIO, or IBI6.

Hexadecimal Input

When entering a hexadecimal number in a simulator command, the hexadecimal number must begin

with a digit from ° to 9. If the hexadecimal number would otherwise begin with A, B, C, D, E or F, a leading

zero must be used.

7-1.5.2 Operating the Simulator

After the host computer has been accessed as described in Section 7-1.2 (for the G.E. system), the

Simulator is called by the command RUN MPSSIM followed by a carriage return. Once accessed, the

Simulator will request a source input file. The user responds with the name of the desired memory file as

assigned during assembly of the original source program. The Simulator extracts control information, the

source language, and the machine code from the memory file. It then prints out the initial status of the

microprocessor registers and then requests a command by typing a question mark on the next line. Thereafter,

each time the Simulator prints a question mark, the user may respond by entering a Simulator command, a

Macro command, or a string of commands and/or Macros. A Macro (see Section 7-1.5.3) is itself a string of

Simulator commands which are performed in the order entered each time the Macro name is entered. Any

portion of a program may be simulated by setting the P (program) register to the address of the first instruction

and using the Trace or RUN commands to cause the Simulator to advance through the program.

If a single command is being entered, it is followed by typing a carriage return to put the command

into effect. More than one simulator command may be entered in reply to a simulator request. The multiple

commands are entered on a single line with a period (.) typed between the commands as a separator. The string

of commands is followed by a carriage return which puts the commands into effect in serial order from left to

right. The string of commands entered in a single line must not exceed 70 characters. The simulator will accept

minor variations of format in the entering of commands such as extra spaces inserted in a string of commands in

some instances.

The use of some of the Simulator commands is illustrated in the following examples:

Example I:

Assume that the user wishes to have the simulator perform as follows:

1. Save the simulator status in the memory file.

2. Set the display registers so as to display the program counter, and the accumulators A and B.

3, Display the registers as selected at (2).

4. Trace five instructions.

The commands to carry out this sequence may be entered on a single line, in response to a simulator command

request, as follows:

? SS.SD PAB.D.T5

7-29

Example II:

Assume that a one line command is to be entered to do the following:

1. Set the program counter to hexadecimal 1000, and register A to hexadecimal value AO.

2. Set four memory locations, beginning at hexadecimal address 5000, to the hexadecimal values 12,34,

CD, and EF.

3. Display the four memory locations set by the instruction (2).

4. Display the registers as previously selected.

5. Trace sixteen instructions.

Assuming that the input base (lB) has been set to hexadecimal, the commands required for the above sequence

may be entered on a single line as follows:

? SR PI000, AOAO.SM5000, 12,34,OCD,OEF.DM5000,4.D.TI0

In this example, there are some formatting details that should be noted:

(1) After the SR command, there is a space preceding the first designated register.

(2) There is no space between the register designation and the data value to be entered.

(3) The designated register and its data value is separated by a comma from the next one.

(4) When the data value is a hexadecimal digit greater than 9, a zero must precede it. (Data value

OAO into the A register, Data value OEF into memory address 5003)

(5) SM requires only the lowest memory address in a continuous sequence. Each data value

specified is automatically placed in the next highest address. These data values are separated by

commas.

(6) DM requires the number of memory addresses to be specified.

(D refers to the registers previously designated on the same line (P and A).

7 -1.5.3 Macro Commands

Macros are special user defined commands that cause the Simulator to carry out a string of normal

commands. By carefully defining a few macros that include all the repetitious commands, the time and effort of

reentering those commands each time they are required is saved. Instead,only the Macro is entered. The

Macros, once defined, can be saved in a Macro Library in memory for recall during later similar simulations.

Naming a MACRO Command

A Macro command may be named and defined in reply to any of the simulator command requests

(after the initial status display). The format for naming and defining a MACRO is as follows:

? Name [Definition]

The name may consist of from 1 to 4 alphabetic characters. The definition of the Macro command is

enclosed in brackets, followirig the name.

7·30

(Any combination of 1 to 4 letters may be used for the name even if it is identical with one of the

simulator commands. However, in such a case, the Macro takes precedence, so that the simulator command

which it displaces cannot then be used except within the definition of a Macro.)

The simplest type of Macro command consists of a series of constant simulator commands, which

are to be put into effect in the order written. The definition in this case consists of the corresponding string of

simulator commands, with a period (.) as a separator.

Calling a Constant Macro Command

A Macro command is put into effect exactly the same as any of the simulator commands. The name

of the Macro is typed as if it were a simulator command. The names of one or more Macros may be included in a

string of commands entered on a single line, in response to a simulator command request. The Macro names are

separated by periods (.) the same as for basic simulator commands. The Macro, or a string of commands

including one or more Macros, is put into effect by the carriage return. Examples:

Example I:

Assume that the one-line string of commands shown below is frequently required.

?SS.SD PAB.D.RS

To avoid repetitive typing, the Macro" AB" may be defined by typing the following in replay to a

simulator command request:

?AB[SS.SD PAB.D.RS]

The string of commands will be put into effect by calling the Macro AB followed by a carriage

return:

? AB

Example II:

To replace the sequence of simulator commands which could be typed:

? SR PIOOO,AOAO.SMSOOO,12,34,OCD,OEF

A Macro command, which may be named "CD", could be defined by entering as follows:

? CD[SR PIOOO,AOAO.SMSOOO,12,34,OCD,OEF]

Both of these Macros, AB and CD, having once been defined are retained by the Simulator for

further usage.

In some cases, the same Macro could be useful if only the memory addresses, registers, data content

or trace and run cycles requested by it were different. That is, the Macro command remains constant but the

relevant parameters are variable.

There are two ways to do this, called Parameter Substitution, and Text Substitution.

7-31

Parameter Substitution

Example 1:

Consider the sequence of simulator commands entered as follows:

? SM5000,OA2.RI5.D.DM5000,1

A constant Macro, say "EF", could be defined. This might be entered by:

? EF [SM5000,OA2.RI5.D.DM5000,1]

However, this can be replaced by a Macro in which the address and the numerical data can be

substituted at the time that the MACRO is called. To do this, the numbers are replaced by symbols, consisting

of the pound sign (#) followed by a serial number.

In place of the above constant Macro substitute a Macro with two numerical parameters denoted by

1 and #2. The Macro would be defined by:

? EF[SM#I,#2.RI5.D.DM#1,l]

The foregoing Macro with not more than two numerical parameters, may be called, in response to a simulator

command request, as follows:

? EF ,5000,OA2

The actual values 5000 and A2 are substituted for the parameters represented by #1 and #2. (This

format assumes that the input base (IB) has been set to hexadecimal.)

The Macro could also be called in a string of commands, as for example by:

? R20. T5.EF,5000,OA2. T5

Example 2:

Another set of Simulator commands might be:

? SM5000,12,34, OCD,OEF.R50.D.DM5000,OC

To provide for substitution of all of the numerical content, this could be replaced by a Macro defined

by:

? GH[SM#1,#2.R#3.D.DM#I,#4]

It should be noted that there are four 'substitutable parameters here. In this case, the Text Substitution mode

must be used to call the Macro since there are more than two parameters.

Text Substitution Validity

In text substitution, the parameters in the Macro represented by #1, #2, etc., are replaced by

specified text when the Macro is called. The text corresponding to each parameter is delineated by the colon (:)

and the semi-colon (;) in the calling command.

More generally, the text corresponding to any parameters may be any string comprising al

phanumeric symbols, spaces, and commas, subject to the following rule: when every text has been substituted

7-32

for the corresponding parameter, the result must be identical with a valid constant Macro command, consisting

of a sequence of simulator commands separated by periods.

Accordingly, the text substitution mode allows for substituting commands, as well as numerical

data, whenever a Macro command containing parameters is called.

and

For the example Macros, GH and EF defined previously, the Text Substitution call is as follows:

? GH:5000: 12,34, OCD,OEF:50:0C

? EF:5000:0A2

The Macro could also be called in a string of commands, as for example by:

? R20. T5.GH:5000: 12,34,OCD,OEF:50:0C;T5

? R20.T5.EF:5000:0A2;T5

Text Substitution of Simulator Commands

The general nature of the Text Substitution method requires only that a valid Macro result from the

substitution. For this reason, it is also feasible to replace an undefined symbol in the Macro with one or more

Simulator commands.

Example:

Consider again the Macro command GH and suppose that the user anticipates that he may need to

run or trace variable numbers of instructions between the SM and D commands. A Macro command could be

defined by:

? I1[SM#1,#2.#3.D.DM#1,#4l

The Macro command might be called by entering:

? 11:5000: 12,34,OCD,OEF:R10. T10.R30:0C;T5

The four substitutable parameters are replaced by text, as follows:

#1 - 5000

#2 - 12,34,OCD,OEF

#3 - R10.T10.R30

#4-0C

The semi-colon (;) denotes the close of the Macro command.

Restrictions in Defining a Macro Command

The line of typing including the name, brackets, and definition, must not exceed 70 characters.

When substitution of parameters or text takes place, a virtual Macro command is formed. The virtual

Macro command must not exceed 70 characters.

A Macro command must not be used within the definition of another Macro command.

The simulator command "RLn" must not be included in the definition of a Macro command.

7-33

To Delete a Macro Command

To delete one or more previously defined Macro commands named "Nam 1", "Nam 2", respond

to any simulator command request in the following format:

? MD,Nam I,Nam2, ... ,Nam N

For example, to delete previously defined Macro commands named AB ,EFG, JKLM, respond as

follows:

? MD,AB ,EFG ,JKLM

Macro Library Commands

MS Save the current Macro library in the memory file.

MR Read in the Macro library from the memory file. (Destroys the current library).

ML List the current Macro library and the number of characters remaining in the library for more Macro

storage.

MD,Naml,Nam2, ,NamN

Delete the Macro commands named "Naml", "Nam2" "NamN", from the Macro

library.

7 -1. 5.4 Sample Simulated Program

Figure 7-1.5.4-1 illustrates the print out by the Simulator of a sample program (see Section 7-1.4,

Figure 7 -1.4-2 for an Assembly Listing) which adds together two 8 byte binary coded decimal (bcd) numbers.

This program is saved in memory file "DEF456."

Explanation of Sample Simulation

Initital Status

The first two lines of printed output, shown after MF filename DEF456, are the dispiay of the initial

register status of the memory file. The case shown in the tables represents the first simulated execution of the

program "AAA" (see Section 7-1.5.4), following the assembly of the program. The initial status of the

memory file is such that the input and display bases are both hexadecimal, all possible registers will be

displayed, and all registers, including time, are set to zero.

If execution of the program contained in the specified memory file had been simulated previously,

the initial status might differ from that represented, both in format and in content.

Simulator Command Requests

Following the initial status display, the simulator prints the first simulator command request,

indicated by a question mark (?). In response to successive simulator command requests, the typed commands

and definitions described below have been entered.

Repetition of Commands and Input Base Definition

In the example shown, the operator has replied to the first simulator command request with a string

7-34

RUt~ ~lPSS 1M

~lPSS 1M 11:42EST

MOTOROLA SPD, INC. OWNS AND IS RESPONSIBLE FOR MPSSIM
COPYRIGHT 1973 & 1974 BY MOTOROLA INC

MOTOROLA MPU SIMULATOR, RELEASE 1.1

ENTER MF F I LEI"~AME
·-;:·DEF45E,

DEFAULT MACHINE FILE 06/20/74.
HH IA DC EA P X A E CST

0000 ••• 0000 0000 0000 00 00 000000 0000 0000000
?L~l. IE16

L~1.

IB 16.
?SETP[LM.SD IOEPXABCST.IB16.DB16.HR5.SR Pll00,TO]

SETP[LM.SD IOEPXABCST.IBI6.DB16.HR5.SR Pll00,TO]
?S;:-:; [St'l 01 02, ~~ 1]

S>:: [St'l 01 02, ~~ lJ
?:s:' [St'l 01 OA, ~~ 1]

:S:'r' [SM 01 OA, ~~ 1]
?ZSUM[SM 0112,0,0,0,0,0,0,0,0]

ZSUM[SM 0112,0,0,0,0,0,0,0,0]
?DMEM[NDLM.DM 0102,8.DM 010A,8.DM 0112,8.LM]

DMEM[NDLM.DM 0102,8.DM 010A,8.DM 0112,8.LM]
?ML

t'1L.
MACRO LIBRARY LISTING

SETP [LM.SD IDEPXABCST.IBI6.DB16.HR5.SR PltOO,TO]
:S:;:o:: [St'l 01 02, ~~ 1]
S:'.... [St'1 01 OA, ~~ 1]
ZSUM [SM 0112,0,0,0,0,0,0,0,0]
DMEM [NDLM.DM 0102,8.DM 010A,8.DM 0112,8.LM]

1056 REMAINING CHARACTERS

NOTE: User I nput Underlined.

FIGURE 7-1.5-4-1: Simulation of "AAA" (Sheet 1 of 3)

7-35

'?:S:ETP -
SETP; L~l.

SETP; SD IDEPXABCST.
SETP; IB 16.
SETP; lIB 16.
SETP; HR 5.
SETP; SR Pll00,TO.

SY:92,58,14,70,36,74,1S,52; SM 010A,92,58,14,70,36,74,1S,52.
?1..i!::!!:1

ZSUM; SM 0112,0,0,0,0,0,0,0,0.
?D~lEt'l. D

Dt'1EM; tiDLM.
0102 13 IC''"'!'

"_II" '30 24 ~,=-_'1_' 0'3 7C" , ... ' :31 .1 ... 1.$ ••• 1
010A q":' 5:3 14 70 :~:E, 74 lS 1:""-' .::-:: •• 6 •• R -"~ ... 'e:
01120. 00 00 00 00 00 00 00 00

II.
HH IA DC EA P ::.:: A B C :S:

0000 ••• 0000+1100 0000 00 00 000000 0000
?TOE

T OE.
.1100 LDS .11 02.11 O:~: 0000 00 00 000000+01:3F
+11 O~: LD:X: .1105.1106+0102 00 00 000000 013F
+1106 :~~T::':: .01 01.11 0'3 0102 00 00 000000 013F
+110'3 .J:S:R .01:3E+1000 0102 00 00 000000+01:3D
HH IA DC EA P I , .. , A B C S
+1000 LDA B.1001.1002 0102 00.08 000000 013D
+1002 LII:>~ .0101+1005 0102 00 08 000000 013D
+1005 CLC .1005+1006 0102 00 08 000000 013D
+1006 LIlA A+Ol09.1008 0102,.31 OS 000000 013D
.1008 AIle A.Ol11.100A 0102.83 OS OOt-iOVO 013D
HH IA DC EA P ::< A B C S:
+100A IIAA .100A+100B 0102 S"-' ".;.0 OS OONOOO 013D
+100B STA A+0119+100D 0102 83 OS OOr-iOOO 013D
+100D DE>:: .100D.100E+010l S3 08 0000,00 013D
.100E DEC B.100E+100F 0101 83.07 000000 013D
+100F BNE .1010+100E, 0101 8"-::' "-' 07 000000 013D

FIGURE 7-1.5.4-1: Simulation of "AAA" (Sheet 2 of 3)

7-36

T
0000000

000000:3
0,000006
0000011
00'00020

T
0000022
0000027
0000029
0000034
0000039

T
0000041
0000044
0000048
0000050
0000054

?HR100.NOLM.RC7.R7

HR 1 I) O.
t~OLtt1.

HH IA DC
100F E:t-iE
10 OF BtiE
10 OF E:t~E

1 I) OF BtiE
100F :BtiE
100F E:tiE
10 OF BtiE

7T5. II~1E~1

.1 011 f;.~T:S:

.110e t-iOP

.11 011 B~:A

.110e tiDP

.110II BRA
0102 1:3 57

EA P I A E: e :~~ T
1010 1 006.01 I) 0.9:~:. 06 000000 013I1 0000079
1010 1006.00FF.83.05 000000 01:311 0000104
1010 100E .• 00FE.04.04 OOOOOC 01 :3 II 0000129
1010 1 I) 06. 0 OFII.'3S. 0:3 000000 01:~:11 0000154
1010 1006.00FC.04.02 OOOOOC 01~:D 0000179
1010 1006.00FB.16.01 HOOOOC 013I1 0000204
1010.1011.00FA.06.00 00020C 01311 0000229

.013F.lloe

.110C.l10Il

.110E·110C

.110C.l10Il

.11 OE.11 oe

OOFA 06 00 a0020e.013F 0000234
OOFA 06 00 00020C 013F 0000236
OOFA 06 00 00020C 013F 0000240
OOFA 06 00 00020C 013F 0000242
OOFA 06 00 00020e 013F 0000246

'30 24 68 09 75 31 .W.$ ••• l
010A '32 58 14 70 36 74 18 52 • ::-::. • E.. • ~~
0112 06 16 04 95 04 83 93 83 .•••••••

E'···' , .. , .
PROGRAM STOP AT 0

USED 22.11 UNITS

FIGURE 7-1.5.4-1: Simulation of "AAA" (Sheet 3 of 3)

7-37

of two simulator commands. These commands instruct the simulator to repeat all commands (LM), and to set

the input base to hexadecimal (lB 16).

Entering the command IB 16 is actually redundant in this example, since as is shown by the initial

status display, the input base was already hexadecimal.

The simulator repeats the IB 16 command, because of the preceding entry of the LM command. All

subsequent commands will be repeated by the simulator until the LM command is cancelled by "NOLM".

Definition of Macro Commands

The user has next defined five Macro commands, to facilitate running the program. The purposes of

the Macro commands are as follows:

SETP -to set the program counter to the beginning of the program, at hexadecimal address 1100; to ensure

format control for repeating commands, displaying all possible registers in the trace, and printing a

header line every five lines of the trace; to ensure that input and display bases are both hexadecimal:

to set initial cycle time to zero.

SX -to facilitate entry of the first of the two 8-byte bcd numbers which are to be added together; this

number will be placed in memory at consecutive addresses beginning at hexadecimal 0102.

SY - to facilitate entry of the second of the two 8-byte bcd numbers which are to be added together; this

number will be placed in memory at consecutive addresses beginning at hexadecimal 010A.

ZSUM -to enter zeros in the memory locations where the result of the bcd addition will be stored, beginning

at hexadecimal address 0112.

DMEM - to display the locations in memory where the two bcd numbers which are to be added together are

stored, and where the bcd sum is stored; NOLM and LM are used to eliminate the repetition of

commands during execution of this Macro.

Macro Library Listing

The operator then entered a command (ML) to obtain a listing of the Macro library. The simulator

displays the Macros SETP, SX, SY, ZSUM and DMEM, in a standard format. This is followed by an indication

of the space which remains for MACRO definitions, expressed as the number of remaining characters.

Program and Data Initialization

The operator next initialized the program by calling successively the Macros SETP, SX, SY and

ZSUM. Text substitution is used with the Macros SX and SY to enter the values of the two 8-byte

binary-coded-decimal numbers which are to be added together.

In the example shown, numbers have been entered for carrying out the addition represented by:

1357902468097531

+9258147036741852

Display of Program and Data Initialization

The operator then called the Macro "DMEM" , and entered the display command (D). The Macro

7·38

"DMEM" display the operands of the arithmetic program which have been entered into the memory, and also

displays the memory locations where the result will be stored, and which have been set to zero. The display

command (D), at this point, enables the user to check that the program counter has been set to the start of the

program at hexadecimal address 1100.

Execution of the bcd Addition

The operator then entered a command to trace 14 instructions (TOE). After repeating this command

the simulator has executed and traced 14 instructions in the program, reaching the end of the first pass through

the loop in the subroutine.

The operator then decided to eliminate the header line and the repetition of commands and run the

program to the end of the last pass through the loop in the subroutine, then obtain a display of the registers at the

end of the loop on each pass. This was achieved by the string of commands:

?HRI00.NOLM.RC7.R7

The command HR 100 has set the header interval to a sufficiently high value to eliminate the header in the

remainder of the execution.

To verify that execution of the addition is complete, the user entered a command to trace five

instructions, (T5), and on the same line has called the MACRO command DMEM for displaying the results of

the computations. The trace shows that execution has returned to the main program (RTS) and has entered the

perpetual loop of two instructions (NOP and BRA). The purpose of the perpetual loop is to provide an easily

recognized indication of the completion of the computations but should be removed when the program is

satisfactorily debugged.

The display of memory obtained by calling the Macro "DMEM" shows the results of the 8-byte

binary-coded-decimal addition as follows:

which is the correct result.

Exit from the Simulator

1357902468097531

+9258147036741852

0616049504839383

The user entered a string of two commands to restore the status (RS) and to exit from the simulator

(EX). The RS command has restored the registers to the status after program initialization and before execution

of the program. Following the EX command the computer system has printed information regarding system

status and usage.

7 -1.5.5 Simulation Results

The comparison of an instruction sequence as shown in the Assembly Listing of Figure 7 -1. 4-2, and

as traced by the Simulator, provides some insight into the internal operations of the microprocessor. The

content of the accumulators, index register and stack pointer can be checked before and after each instruction.

The instruction address oegins with the starting point specified in the ORG directive and advances by the

7-39

number of bytes required for each instruction. The program counter indicates where the next instruction is

located. Of particular significance is the condition code register which shows the effect of accumulator

operations, register data transfers and the base status for conditional branching. The T display keeps the count

of expended microprocessor cycles. By subtraction of the beginning from the end count, the duration of

instruction sequences, loops and subroutines can be calculated. The stack pointer and index register should be

checked to make sure they are not overlapping memory reserved for other program instructions or parameters.

Furthermore, when an instruction which manipulates the stack pointer is executed, it should be

observed that the pointer moves accordingly. For example, a JSR instruction causes the stack pointer to be

decremented two addresses. At the end of the subroutine, the RTS instruction increments it by two, thus

restoring it to its former setting. In the same way, the Push Data instruction decrements the pointer by one,

while the Pull Data instruction restores it.

Memory addresses for temporary storage of data may be examined at crucial points in the program to

make sure the expected value has been stored. The PIA control and data registers may be checked the same way,

since they appear to the microprocessor and the Simulator as memory addresses too.

Errors

Errors detected by the Simulator are printed out in the same format as Assembly errors. Typical

Simulator errors are listed in Table 7-1.5.5-1.

7-1.6 HELP

HELP is a special program designed to provide on-line assistance to the users of the Motorola

support software. It can be called to obtain additional information on error messages printed out during

operation of the Assembler, Simulator, or Build Virtual Machine programs. In addition, it includes a Help

Message File that provides up-to-date information on improvements and new developments in the M6800

System. The Message File is organized into groups. Following are the groups, the related message number

range, and the HELP command which places the HELP program in the group mode.

eMD SYSTEM MESSAGE HUMBER RAHGE
--------------------- -------------------~

E ERRORS 8888 TO 8999
e- BUILD YIRTUAl I1ACHINE 1998 TO 1999
A ASSEMBLER 2998 TO 2999
S SI""UlATOR 3988 TO 3999
H HELP 4998 TO 4999

RESERVED 5989 TO 9999

To obtain additional information while running the other software programs, HELP is called by

entering: RUN HELP. Then enter the HELP error command, E, followed by the number of the error message in

question. A current listing of the error messages is shown in Table 7-1.6-1. For a listing of all the error

messages, enter E followed by 1 to 999. At the completion of the listing, the user must enter the exit command,

EX, in order to return to other programs.

HELP can be invoked from within! the Simulator and Build Virtual Machine programs by entering a

Help command in response to any command request. An up-to-date list of all the Simulator and Build Virtual

1 Because the Assembler operates in the batch mode, to obtain HELP during assembly, the user must exit from the Assembler and enter
the Help program by RUN HELP.

740

8381

381 UNDEFINED SIMULATOR COMMAND
MESSAGE: ****ERROR 301 """""M
"E~HI~G: AN UNDEFINED SIMULATOR CO""AND WAS EHTERED.

8302
392 SYNTAX ERROR

8383
393

8304
394

8395

MESSAGE: ****ERROR 302 """"M"
"E~NING: THE STRUCTURE OF THE SIMUALTOR COMMAND IS SYNTAC

TICALLY INCORRECT.

~ACRO DEFINITION ERROR
MESSAGE: ****ERROR 393 M"M"MM
ME~HIHG: THE MD SIMULATOR COMMAND CANNOT BE USED IN A MACRO

DEFINITION.

MACRO NOT IN LIBRARY
MESSAGE: ****ERROR 394 MHMMMM
ME~HING: THE MACRO TO BE DELETED USING THE MD COMMAND IS

NOT IN THE "ACRO LIBRARY.

395 MACRO DEfINITION ERROR
MESSAGE: ****ERROR 395 ""MKKK

8396

ME~HIHG: THE RL SIMULATOR COMMAND CANNOT BE USED IN A MACRO
DEFINITION.

3aS REGISTER OVERFLOW

8307

MESSAGE: ****ERROR 306 KMK"""
MEANING: AH OPERAND IN THE SR COM"AND IS TOO LARGE FOR

THE ASSOCIATED REGISTER.

397 MACRO LIBRARY OVERFLOW
MESSAGE: ****ERROR 387 """KKK

8308

ME~NIHG: THERE IS INSUFFICIENT STORAGE IN THE MACRO LI
BRARY FOR THE HEW MACRO. THE MACRO IS NOT STORED.

398 "ACRO DEFINITION ERROR

8309

399

8319

MESSAGE: ****ERROR 3es """"""
MEANIHG: THE "AC~O VARIABLE PARAMETER (IN) IS GREATER THAN

CO~"AHD
MESSAGE:
t1E~HIHG:

30.

BUFFER OVERFLOW
****ERROR 399 """""M
MORE THAH 72 CHARACTERS WERE EHTERED AS A COMMAND
LINE. THE TOTAL HUKBER OF CHARACTERS IN A COMMAND
LINE INCLUDES THOSE CHARACTERS IN A MACRO DEFIH
ITION IF THE COMMAND LINE COHTAINS A MACRO CALL.

310 HELP REQUEST
t1ESSAGE:' ****ERROR 310 ""M"""
"E~HIHG: EHTER "HP ALL sn FOR A COMPLETE LIST OF ALL SIM-

ULATOR COM"ANDS.

TABLE 7-1.5.5-1. Typical Simulator Errors (Sheet 1 of 2)

7-41

8311
311

8312

SYHTAX ERROR
"ESSAGE: •••• ERROR 311 """"""
"E~HIHG: SYNTAX ERROR IN THE SIHULATORIS HELP CO""A~D.

312 ILLEGAL HELP "~SSAGE HUMBER
MESSAGE: •• **ERROR 312 """"""
MEANING: THE HELP MESSAGE NU"BER WAS NOT FOUND IN THE HELP

MESSAGE FILE.
8313

313 ADDRESSI~G ERROR
MESSAGE: **.*ERROR 313 """"""
MEnNING: AN ATTEMPT TO STORE BEYOND THE DEFINED "E"ORY

BOUNDS OF THE VIRTUAL "ACHINE FILE WAS MADE.
0314

314 SYNTAX E~ROR IN A SET OR CLEAR BREAK POINT
MESSAGE: ****ERROR 314 """"""
MEANING: THERE IS A SYNTAX IN THE SIMULATORIS

BPI BSI OR BC CO""AND.
0315

315 ILLEGAL MEMORY ADDRESS

8316

MESSAGE: ****ERROR 315 """""M
MEANI~G: A BREAK POINT REQUEST TO CLEAR OR SET A BREAK

POINT AT AN ILLEGAL ME"ORY ADDRESS FOR THE UHF
FILE. USE -BD- TO DISPLAY BREAK POIHTS SET OR
CLEARED.

316 NO ~RE~K POIHT SET AT MEMORY ADDRESS
MESSAGE: ****ERROR 316 """"""

0317
317

0318
318

0319
319

0328

ME~NI~G: NO BREAK POINT FLAC WAS SET AT THE ME"ORY LOCA-
TION ON THE REQUEST TO CLEAR IT'S FLAG. USE -BD
TO DISPLAY BREAK POINTS STILL SET.

:OMMAND HOT TERMINATED WITH A PERIOD
MESSAGE: ****ERROR 317 MHHH""
ME~HING: THE CO"~AND WAS NOT TERMINATED WITH A PERIOD OR

OR THE COM"AND HAS UNSED PARAMETERS.

SY~TAX ~RROR IN ·OH N OR -OF- CO"MAND
MESSA~~: ****ERROR 318 MHMMMM
MEANIHG: SYNTAX ERROR IN THE ·OH a OR "OF- CO""AND.

A) UNDEFINED CODE, NOT X, A, BI 5, T, BP, "F OR F.
B) OPERAT ION HOT =, < OR).
C) DEFINING A MACRO FOR THE COMMAND SECTION OF A

"ON- IS ILLEGAL.
D) NO COMMAND FOLLOWS THE CONDITIONS.

"OH" COMMAND HOT FOUND IN THE ·OH· LIBRARY
MESSAGE: **.*ERROR 319 """"""
MEANING: THE "ON" COMMAND WAS NOT FOUND IN THE -OH R CON-

DITION LIBRARY.

320 ILLEGAL INTERRUPT TYPE OR TIME BASE IS ZERO
MESSAGE: *.**ERROR 328 H""""H
!1EAHIHG: ~IHEN A "IR- CO"HAND IS USED, THE INTERRUPT TYPE

IS UNDEFINED OR THE DELTA TI"E BASE FOR THt FIRST
INTERRUPT IS ZERO.

TABLE 7-1.5.5-1. Typical Simulator Errors (Sheet 2 of 2)

742

••• 1

111 FILE IS HOT A ·"F· FILE

8882

MESSAGE: •••• ERROR 891 LU FILENAME:PASSYORD:USER-ID
MEANING: THE FILE WHOSE FILENAME WAS EHTERED IN RESPONSE TO

THE -EHTER MF FILENAHEM REQUEST IS NOT A VIRTUAL
MACHINE FILE. THE LOGICAL UNIT IDENTIFIER (LU),
THE FILENAMEI THE PASSWORDI AND THE USER-ID OF THE
FILE CAUSING THE ERROR IS LISTED IN THE ERROR MES
SAGE. THE SYSTEM WILL REPEAT THE REQUEST.

882 MF YERSION NUMBER ERROR

8883

MESSAGE: ••• *ERROR 882 HF FILENAME:PASSWORD:ijSER-ID
ME~NING: THE -MF" OPENED IH RESPONSE TO THE "EHTER MF FILE

NAME· REQUEST IS NOT A CURRENT VIRTUAL MACHINE
FILE. THE FILE CAN BE CONVERTED TO THE CURRENT
VERSION BY RUNNING THE BUILD VIRTUAL MACHINE PRO
GRAM ("PBY").

803 TERMINATION DUE TO OLD MF YERSION
MESSAGE: .***SVSTEM ABORT 003

8884

"EANING: THE PROGRAM WAS ABORTED BECAUSE OF AN "OLD A VIRTUAL
USING THE BUILD VIRTUAL MACHINE PROGRAM <MoBYM).

894 TERMINATION DUE TO OPEN FILE ERRORS
MESSAGE: **.*SYSTEM ABORT 004

8885

995

0911

"EANING: FIYE CONSECUTIYE, UNSUCCESSFUL ATTEMPTS WERE
HADE TO OPEN A FILE. THE PROGRAM IS ABORTED.

ER~OR IN
MESSAGE:
MEANING:

THE J .X' JOB CONTROL COMMAND
****ERROR 05 111111
THE JOB CONTROL COM"AHD ENTERED IN RESPONSE
TO A REQUEST FOR A FILENAME IS IN ERROR.
111111 IS THE CHARACTER LOCATION WHERE
CO""AND PROCESSOR STOPPED SCANNING THE COM~AHD.

911 FILE IS BUSY
MESSAG~: ****ERROR 911 LU FILEHAME:PASSWORD:USER-ID
~EANIHG: THE FILE WHOSE FILENAME WAS ENTERED IN RESPONSE TO

A SYSTEM REQUEST TO OPEN A FILE IS CURRENTLY OPEN
AND IS BEING USED BY THIS OR ANOTHER USER. THE
FILE IS NOT AVAILABLE TO THE CURRENT USER. THE
LOGICAL UNIT IDENTIFIER (lU), THE FILENAME, THE
PASSWORD, AHD THE USER-ID OF THE FILE APPEAR IN
THE ERROR KESSAGE.

TABLE 7-1.6-1. HELP Error Messages (Sheet 1 of 7)

743

8812

812 FILE DOES HOT EXIST

9913

"ESSAGE: •••• ERROR 812 LU FILENA"E:PASSWORD:USER-ID
"EAHING: THE FILE WHOSE FILEN~"E WAS ENTERED IH RESPONSE TO

A SYSTEM REQUEST TO OPEN A FILE DOES HOT EXIST.
THE PASSWORD, AND THE USER-ID APPEAR IN THE ERROR
"ESSAGE.

813 INCORRECT ACCESS PRIVELEGES

8814

MESSAGE: *.**ERROR 813 lU FILEHA"E:PASSWORD:USER-ID
"EANING: THERE WAS NO READ PER"ISSION ASSIGNED TO A FILE

WHOSE FILENA"E W~S EHTERED IN RESPONSE TO A SYS
TE" REQUEST TO OPEN A FILE. THIS ERROR OCCURS
ONLY WHEN THE USER ATTE"PTS TO ACCESS A FILE IN
ANOTHER USER'S CATALOG. THE LOGICAL UNIT IDENTI
FIER (LU)" THE FILENA"EI THE PASSWORD, AND THE
USER-ID OF THE FILE APPEAR IN THE ERROR "ESSAGE.

814 INCORRECT PASSWORD

8815

"ESSAGE: .***ERROR 814 LU FILENAME:PASSWORD:USER-ID
"EAHIHG: AN INCORRECT PASSWORD WAS SUPPLIED WITH THE FILE~

NA"E IN RESPONSE TO A SYSTEM REQUEST TO OPEN A
FILE. THE LOGICAL UNIT IDENTIFIER (LU)I THE FILE
NAME" THE PASSWORD/. AND THE USER-ID APPEAR IN THE
ERROR MESSAGE.

815 UHSPECIFIED OPEN ERROR

8816

"ESSAGE: ****ERROR 815 LU FILEHAHE:PASSWORD:USER-ID
MEANING: AN OPEN ERROR OTHER THAN 911-814 OCCURRED WHEN

AN ATTE"PT TO OPEN THE FILE WAS "ADE. THE LOGICAL
UNIT IDENTIFIER (LU)I THE FIlEN~UIE, THE PASSWORD"
AHD THE USER-ID APPEAR IN THE ERROR MESSAGE.

916 FILE IS HOT A "MFH FILE

8917

MESSAGE: ****ERROR 816 LU fILEHAME:PASSWORD:USER-ID
"E~HING: THE FILE WHOSE FILENAME WAS EHT£RED IN RESPONSE TO

THE MEHTER MF FILENAME" REQUEST IS NOT A YIRTUAl
"ACHINE FILE. THE LOGICAL UNIT IDENTIFIER (LU),
THE FILEHA"E, THE PASSWORDI AND THE USER-ID OF THE
FILE CAUSING THE ERROR IS LISTED IN THE ERROR "ES
SAGE. THE SYSTEM WILL REPEAT THE REQUEST.

817 NO"F O?ENED
MESSAGE: ****ERROR 817
MEANIHG: DUE TO A PRIOR OPEN ERRORI A YIRTUAl MACHINE FILE

HAS NOT BEEN OPENED.

TABLE 7-1.6-1. HELP Error Messages (Sheet 2 of 7)

744

1118

818

9824

FIL.E TYPE
"ESSAGE:
"EAMING!

DOES NOT AGREE WITH REQUEST TYPE
**** ERROR 818 lU FIlENA"E:PASSWORD:USER-ID
THE FILE TYPES DO HOT AGREE FOR THE FILEHA~E

AND THE SYSTE"JS REQUEST. ONE "AY BE BIH~RY AND
THE OTHER "AY BE ASCII OR SO"E OTHER CO"BINATION
LIKE THAT. THE LOGICAL UNIT IDENTIFIER (LU), THE
FILENAMEJ THE PASSWORD, AND THE USER-ID OF THE
FILE CAUSING THE ERROR ARE LISTED IN THE ERROR
MESSAGE.

924 FI~E WAS NOT UNSAYED

0025

MESSAGE: **~*ERROR 924 LU FIlENAME:PASSWORD:USER-ID
MEAHI~G: THE FILEI FILENAME ON LOGICAL UNIT LU WAS NOT UN

SAVED BECAUSE 1) THE FILE ldAS BUS'tl 2) THE FILE
DID NOT EXIST, J) OR PASSWORD OR USER-ID IN ERROR.

923 SO~PUTE~ SYSTEM DEPENDENT ERROR CODE

9059

i1E3SAGf:: ****ERROR 025 I I I i I
~E~Hl~G: AN ERRO~ CODE WAS FOUND WHICH WAS NOT EXPECTED

BY THE SYSTEM. THIS ERROR MESSAGE SHOULD BE
PASSED ON TO MOTORALAiS MPU PROGRAMMING STAFF.
111111 IS THE ERROR CODE WHICH IS COMPUTER
DEPENDENT.

059 DEFAULT MF USED.

8051

MESSAGE: '****WARHING 050
~E~NI~G: THE REQUESTED MF FILE DID NOT EXIST. THE BUILD

VIRTUAL MACHINE PROGRAM SUPPLIED A DEFAULT VIRTUAL
MACHINE FILE. THE DEFAULT MF IS IDENTIFIED BY
THE FILENAME AND PASSWORD WHICH WAS ENTERED IN
RESPONSE TO A SYSTEM REQUEST TboPEH A FIL~.

951 FILE IS BUSY

0052

MESSAGE: ****WARNING 051 LV FILENAME:PASSWORD:USER-ID
MEAHIHG: THE FILE WHOSE FILENAME WAS ENTERED IN RESPONSE TO

A SYSTEM REQUEST TO OPEN A FILE IS BUSY. THE FILE
IS PROBABLY BEING USED BY ANOTHER USER OR BY THE
CURRENT USER. THE LOGICAL UNIT IDENTIFIER (LU),
THE FILEHAI1E, THE PASSWORD, AND THE USER-ID AP
PEAR IN THE ERROR MESSAGE. THE OPEN REQUEST
CAN BE REPEATED AT A LATER TIME.

852 OLD YERSION HUMBER FOR MF FILE
MESSAGE: ****WARNIHG 852
"EAHI~G: THE MF FILE WHICH WAS OPENED IN RESPONSE TO A

SYSTEM REQUEST TO OPEN A FILE HAS AN OLD VERSION
NUMBER. THE FILE CAN BE UPGRADED TO CURRENT
STANDARDS BV EXECUTING THE BUILD VIRTUAL U" COM
MAND.

TABLE 7-1.6·1. HELP Error Messages (Sheet 3 of 7)

7-45

8878

878 ~O "ORE DISK SPACE

8979

MESSAGE: ****SYSTE" ABORT 878 111111
"EAMING: A) "ARK III - THE SYSTE"'S PSU STORAGE IS

USED UP. IT CANHOT CREATE A FILE IIIIII
PSU LONG. CALL YOUR G. E. SALE"AH, SYSTEM
ERROR MORE DISK DRIVERS NEEDED.

E) SIGMA 9 - YOUR ACCOUNT CANNOT CREATE A
FILE 111111 GRANULES LONG. PACK YOUR ACCOUNT
BY LOGGING OFF AHD LOGGING ON AGAIN OR
REQU£STIHG YOUR ACCOUNT BE AUTHORIZED FOR
"'ORE DISK SPACE.

979 THE FIL£ ORGANIZATION DOES NOT AGREE WITH REQESTED FILE
MESSAG~: ****SYSTEM ABORT 079

8888

MEANING: THE REQUESTED FILE1S ORGANIZATION IS DIFFERENT
THAN THE FILE SEING OPENED. ONE FILE IS BINARY
THE OTHER IS AN ASCII FILE; ETC.

980 FILE IS BUSY

8881

MESSAGE: ****SYSTEM ABORT 888
MEAHlt~G: THE REQUESTED FILE IS BUSY. THE SYSTEM ABORTS

AFTER "AKIHG 5 TRIES TO OPEN THE FILE AFTER
A DELAY OF SEVERAL SECONDS.

081 DEFAULT MF FILE NOT AVAILABLE
MESSAGE: ****SYSTEM ABORT 8S1

8882

aS2

8883

~1 E ~ H I i~ G : THE R E QUE S TED M F F I LED I D HOT E X 1ST AND THE 5 Y S -
WAS UNASlE TO SUPPLY THE DEFAULT MACHINE FILE.
THIS IS HOT A USER ERROR. NOTIFY THE SYSTE" PRO
GRAM"ER.

UNABLE TO OPEN A SYSTEM SCRATCH FILE
MESSAG~: ****SYSTEM ABORT 982
MEANING: THE SYSTEM WAS UNABLE TO OPEN A SCRATCH FILE.

THIS IS HOT A USER ERROR. NOTIFY THE SYSTE" PRO
GRAMtlER. NOTE: SCRATCH FILES ARE CREATED AND
UNSAYED BY THE SYSTE" FOR USE AS INTERMEDIATE WORK
AREAS. IT IS POSSIBLE THAT THESE FILES MAY NOT
BE UNSAVED DURING A ·SVSTEM CRASH" THE USER
SHOULD DELETE ANV SCRATCH FILES WHICH MAY 8E IN
HIS CATALOG. SCRATCH FILE HAMES APPEAR AS seRNHN
WHERE NNN IS A THREE DICIT HU"BER FROM 888 TO 899

883 UHDEFIHED MF YERSION HUMBER
MESSAGE: ****SYSTEM ABORT NNNHHN
ME~HIHG: THE VIRTUAL MACHINE FILE WHICH WAS OPENED CONTAINS

AN UNDE~INED VERSION HUMBER. THE PROGRAM CANNOT
PROCEED AND IS TERMINATED. THE FILE IS PROBABLY
NOT A VIRTUAL MACHIHE FILE. HNNHNN IS THE UNDE
FINED YERSION HUMBER.

TABLE 7-1.6-1. HELP Error Messages (Sheet 4 of 7)

7-46

8.91

891 FILE IS BUSY

8892

MESSAGE: ••• *ATTN: 891
MEANING: THE FILE WHOSE FILENAME WAS ENTERED IN RESPONSE TO

A SYSTEM REQUEST TO OPEN A FILE IS BUSY. ANOTHER
ATTEMPT TO OPEN THE FILE IS BEING MADE.

892 DEFAULT"F USED
MESSAGE: *.*.ATTN: 892

8899

MEAHI~G: THE REQUESTED "F FILE DID HOT EXIST. THE BUILD
VIRTUAL MACHINE PROGRAM SUPPLIED A DEFAULT VIRTUAL
MACHINE FILE. THE DEFAULT MF IS IDENTIFIED BY
THE FILENAME AND PASSWORD WHICH WAS ENTERED IN
RESPONSE TO A SYSTEM REQUEST TO OPEN A FILE.

899 BUILDI~G DEFAULT MF
MESSAGE: ****ATTH: 899

8191

~EAHING: THE BUILD YIRTUAL MACHINE PROGRAM IS GENERATING
THE DEFAULT VIRTUAL MACHINE FILE. THIS FUNCTION
CAN ONLY BE PERFORMED BY THE ADMINISTRATIVE USER.

181 ILLEGAL BUILD VIRTUAL COMMAND
MESSAGE: ****ERROR 101 AAAAAA

9182

Mt~HIHG: AN ILLEGAL BUILD VIRTUAL MACHINE COMMAHD WAS
ENTERED. AAAAAA IS THE AREA OF THE COMMAND LINE
COHTAININC THE ILLEGAL COMMAND.

182 SYNTAX ERROR

8183

"ESS~GE: ****ERROR 182 AAAAAA
"E~HIHG: THE STRUCTURE OF THE COMMAND IS LOGICALLV INCOR

RECT. AAAAAA IS THE AREA OF THE COMMAND CONTAIN
ING THE ERROR.

183 INVALID LAST WORD ADDRESS
"ESSAGE: ****ERROR 183 11111

8194

"E~HIHG: AN ILLEGAL VALUE WAS USED FOR THE SIZE OF MEMORY
IN THE LW COMMAND. 11111 IS THE DECIMAL EQUIVA
LEHT OF THAT VALUE. LEGAL VALUES MUST BE A MUl
TIPLE OF 256-1 <N*256-1) AND IN THE RANGE 255 -
65535

194 "ACRO IS NOT IN THE KCF" "ACRO LIBRARY
"ESSAGE: ****ERROR 184 1'1"""
"E~HI~G: THE ERROR OCCURRED WHILE TRYING TO COpy MACROS

FROM THE ·CF H FILE TO THE "MFK FILE. ONE OF THE
THE REQUESTED "ACROS, MACRO "1'1111'1, WAS HOT FOUHD.

TABLE 7-1.6-1. HELP Error Messages (Sheet 5 of 7)

747

8115

185

9186

DUPLICATE
MESSAGE:
MEANING:

"ACROHA"E IN -"F- "ACRO LIBRARY
****ERROR 185 """"
THE ERROR OCCURRED WHILE TRYING TO COpy "ACROS
FROM THE "CF" FILE TO THE "MF- FILE. ~ "ACRO
OF THE SAME NA"E AS THE ONE TO BE TRAHSFERRED
ALREADY EXISTS IN THE ""F" FILE. ""M" IS THE NA"E
OF THE "ACRO. NO TRANSFER OCCURRED.

19S INSUFFICIENT MACRO LIBRARY SPACE AYAILABLE
MESSAGE: ****ERROR 186 """"

9187

MEANING: THE ERROR OCCURRED WHILE TRYING TO COpy "ACROS
FROM THE "CF" FILE TO THE ""F" FILE. MM"" IS THE
"AeRO FOR WHICH THERE IS INSUFFICIENT SPACE.

187 ILLEGAL "ACROHAME

9188

198

9109

MESSAGE: ****ERROR 187 """"

HULL FIELD
MESSAGE:
ME~HING:

"MMM ARE THE FIRST 4 CHARACTERS OF THE N~ME.

****ERROR 198
MORE INFORMATION IS HEEDED FOLLOWING THE CO"MAND
FIELD. THE FIELD FOLLOWING THE CO""AHD IS BLANK.

189 FI~ENA"E ALREADY USED

9119

MESSAGE: ****ERROR 189 LU FILENAME:PASSYORD:USER-ID
THE NAME OF AN EXISTING FILE WAS GIYEN IN RESPONSE
TO AN OPERATION REQUIRING A "NEW" FILE. INCLUDED
IN THE ERROR MESSAGE ARE THE OLD FILE'S FILENAME,
PASSlJORD, USER-ID, AND A TWO-CHARACTER LOGICAL UNIT
IDENTIFIER.

118 ILLEGAL ADDRESS

8111

111

MESSAGE: ****ERROR 119 NNHHNN
MEANIWG: AN ILLEGAL ADDRESS WAS ENCOUNTERED. THE AD

DRESS "AY BE GREATER THAN THE LWA (LAST WORD
ADDRESS) FOR THE VIRTUAL MACHINE. THE CURRENT
LWA VALUE CAN BE DISPLAYED BY ENTERING THE MO
COMMAND. NNHHNM IS THE ILLEGAL ADDRESS.

EXECUTION CHECK
MESSAGE: ****ERROR 111
MEANING: EXECUTION OF A

BECAUSE AN OLD
THE I1F COMMAND
THE UM CO""AHD
EXECUTED.

BUILD VIRTUAL COM"AND WAS HALTED
VERSION ""F- FILE WAS LOADED WITH

THE "F FILE MUST 8E UPDATED WITH
BEFORE THE CURRENT CO"MAND CAN 8E

TABLE 7-1.6-1. HELP Error Messages (Sheet 6 of 7)

748

9112

112 CHECKSUM ERROR

9113

MESSAGE: ****ERROR 112 HNHNHH
HE~NIHG: A CHECKSUM ERROR OCCURRED WHILE LOADING "E~ORY

FROM A "ROM- FILE (1M COMMAND). NHHHHN IS THE
RECORD HU"BER CONTAINING THE CHECKSUM ERROR.

113 RO" RECORD ERROR

0198

"ESSAGE: ****ERROR 114 HHNHHH
MEAHIHG: AN ILLEGAL, OUT OF ORDER, OR t1ISSIHG ROM RECORD

OCCURRED AT RECORD NUMBER NHHNHN.

199 MACRO WAS SUCCESSFULLY TRANSFERRED
MESSAGE, ATTN: 199 ""M"

9481

MEANING: MACRO """" WAS SUCCESSFULLY TRANSFERRED FROM THE
·CF- FILE TO THE "MFa FILE.

481 HELP MESSACE HUMBER HOT FOUND
MESSAGE: .*.*ERROR 481

8482

MEAHIHG: THE HELP MESSAGE NUMBER COULD NOT BE FOUND IN THE
HELP MESSACE FILE.

482 ILLEGAL HELP MESSAGE HUMBER
MESSAGE: * ••• ERROR '482

9403

"E~NI~G: THE HELP "ESSAGE HUMBER IS OUTSIDE THE RANGE OF
VALID HELP MESSAGE HUMBERS.

493 UNDEFINED HELP CO""AND
"ESSAGE: * ••• ERROR 483
MEANING: AH UNDEFINED HELP COM"AND WAS ENTERED.

8484

494 SYNTAX ERROR
"ESSAGE: ****ERROR 484
"E~HING: THE STRUCTURE OF THE HELP CO""AND IS SYNTACTICALLY

INCORRECT.

TABLE 7·1.6·1. HELP Error Messages (Sheet 7 of 7)

749

Machine commands can be obtained by entering the Simulator Help command: HP ALL B. A -current listing of

the commands is shown in Table 7-1.6-2. Note that this is a more complete list than the typical commands

shown in Section 7-1.5.5 where the Simulator is explained.

When using HELP from within the Simulator, varying amounts of information can be obtained,

depending on the format used to enter the request. The response will be as follows for the various command

formats:

Command Format

HP nnnn

HP nnnnT

HP nnnnB

HPCMD

HP CMD T

HP CMD B

HPALL

HP ALLT

HP ALL B

Response

Print index information relating to the HELP message identified by

the 1 to 4 digit number "nnnn".

Print text relating to the HELP message identified by the 1 to 4 digit

number "nnnn".

Print index and text relating to the HELP message identified by the 1

to 4 digit number "nnnn".

Print index information relating to the simulator command specified

by"CMD".

Print text relating to the simulator command specified by "CMD" .

Print index and text relating to the simulator command specified by

"CMD".

Print an index of all simulator commands.

Print text for all simulator commands.

Print index and text for all simulator commands.

Additional general information concerning the HELP program can be obtained by calling out the

HELP messages. A partial listing of current HELP messages is listed in Table 7-1.6-3. It should be noted that

HELP is a dynamic program that is constantly being updated to reflect the latest status of the M6800 System

Support Software. It is advisable to occasionally access the HELP message file since it includes information

concerning revisions and improvements as well as error and command data.

7-1.7 BUILD VIRTUAL MACHINE

The Build Virtual Machine (B VM) program provides a way of managing files generated during the

development of software for the M6800 system. It is used to: (1) Structure a virtual Machine File (MF) that

duplicates the configuration desired for the actual system; (2) Merge and/or load Object Files into the Machine

File; (3) Create a formatted tape of the Machine File for generating the required ROM patterns.

A full description of B VM is beyond the scope of this ManuaP, however, study of the B VM

commands listed in Table 7-1.6-2 of the preceding Section will give an indicationofthe1program's capability. It

is of interest here to consider the steps required to generate a tape for ordering the ROMs in which the MC6800

control program will reside.

lSee the M6800 Programming Manual for a detailed description of BVM.

7-50

1881

CC - CO?Y COMMAND FROM MACRO LIBRARY

1082

FORMAT: CC "ACROHAI'IE-1[,"ACRONAI1E-2, ...]
FUNCTION: THE MACRO COM"AHDS SPECIFIED BY THE MACRONA"E

LIST ARE COPIED FROM THE MACRO LIBRARV OF THE
SOURCE FILE INTO THE MACRO LIBRARV OF THE DES
TINATION FILE. THE SOURCE FILE IS IDENTIFIED
BV THE CF CO""AHD AND THE DESTINATION FILE IS
IDENTIFIED BY THE "F CO""AND.

EX~I1PLES: CC MACA
MACRO MACA IS COPIED FROM THE CF FILE TO THE "F
FILE.

CC A, B, C
THREE MACROS, A, B, AND C ARE COPIED.

CF - CO?'-(FILE

1903

eM -

1904

FO~"AT: CF FILENA"E-l
FUNCTIQH: THE -CF" COMMAND LOADS THE FILE AFILENAME-1- INTO

A WORK AREA. THE COPY FILE IS THE SOURCE FILE
FOR ALL COpy FUNCTIONS.

tX~I1PLES: CF MEMFIL

CO?Y t1Ef10RY
FO:;(MAT:
F If l~ C T I 0 H :

THE MACHINE FILE ""E"FIL A IS IDENTIFIED AS THE
SOURCE FILE FOR ALL COpy FUNCTIONS.

eM FWA-l~LWA-l[JFWA-21

MEMORY IS COPIED FROM THE ·eFA FILE INTO THE -MFa
FILE. FWA-l IS THE FIRST WORD ADDRESS OF THE
TRANSFER, LWA-l IS THE LAST WORD ADDRESS, AND
FWA-2 IS THE FIRST WORD ADDRESS OF THE "MFA FILE
WHERE THE DATA IS RECEIVED. FWA-2 IS OPTIONAL
AND IS ASSUMED TO BE EQUAL TO FWA-l IF O"ITTED.

EX~MPLES: eM 0,9FF
MEMORY IS COPIED FROM LOCATIONS e THROUGH FF
FROM THE CF FILE INTO LOCATIONS 0 THROUGH FF
OF THE MF FILE.

CM 9100, 2FF, 1009
MEMORV IS COPIED FROM LOCATIONS le9 THROUGH 2FF
OF THE CF FILE AND RELOCATED TO LOCATIONS 1899
TO 11FF OF THE "F FILE.

DB - SET DISPLAY BASE
FORMAT: DB BASE-l <WHERE BASE-1 = 8, 19 OR 16)
FUNCTION: THE DISPLAV BASE IS SET TO OCTAL, DECIPlAL,

OR HEXADECIMAL WHEN BASE-l IS 8, 19, OR 16,
RESPECTIYELY.

EXAMPLES: DB 8
HU"ERIC OUTPUT FROM THE DM COMMAND WILL BE DIS
PLAYED IN OCTAL.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 1 of 13)

7-51

1995

DF - SET DIS?lAY FLAG

1906

FORMAT: DF FLAG-l (WHERE FLAC-t :c: t .. 2" OR 3)
FUNCTION: MEMORY DUMPS WILL APPEAR IN NUMERiC, CHARt'-lCTER,

OR 80TH WHEN FLAG-l IS L 2" OR 3" RESPECTIVELY.
THE DEFAULT SETTING IS 3.

EXAMPLES: DF 2
OUTPUT FROM THE DM COMMAND WILL BE DISPLAYE IN
CHARACTER FORMAT ONLY.

DM - DISPLAY MEMORY

1007

FORMAT: DM FWA-l~WCT-l

FUNCTION: WCT-l WORDS OF MEMORY BEGINNING AT LOCATION FWA-l
ARE DISPLAYED. THE FORMAT OF THE DISPLAY IS
DETERMINED BY THE DF SWITCH. MEMORY IS DUMPED
FROM THE MMFN FILE.

EX~I1PLES: DI1 100,29
DISPLAY 28 (HEXADECIMAL) WORDS OF MEMORY STAATING
FROM LOCATION 198.

EX - NORMAL EXIT FROM MPBYM SYSTEM

1008

FORMAT: EX
FUNCTION: ANY UPDATED INFORMATION IS SAVED. THE "M~" AND

"CFW FILES ARE CLOSED.

EX~I1PlES: EX
THE BUILD VIRTUAL SESSION IS TERMINATED.

HP - HELP
FORMAT: HP MESSAGECODE-l[SWITCH-1]
FU~CTION: INFORMATION ABOUT MESSAGECODE-l IS PRINTED.

MESSAGECODE-l HAS ONE OF THE FOLLOWING FORMS:
HHHH WHERE NNNN IS A HUMBER FROM 1 TO 9999

CORRESPONDING TO ANY HELP MESSAGE
CMD WHERE C"D IS A BUILD VIRTUAL COMMAND
ALL WHERE THE WORD WALL" REQUESTS THAT

INFORMATION FOR ALL BUILD VIRTUAL COM
MANDS BE PRINTED.

SWITCH-l CONTROLS THE AMOUNT OF DETAIL TO BE
PRINTED AND HAS ONE OF THE FOLLOWING FORMS:

I PRINT INDEX OF MESSAGE ONLY
T PRINT TEXT OF MESSAGE ONLY
B PRINT BOTH THE INDEX AND TEXT

IF SWITCH-1 IS OMITTED, THEN OPTION I IS USED.

EHTER IHP 4912 Bl FOR INFORMATION ON THE SYN
TAX USED IN THE HELP MESSAGES.

EHTER IHP ALL II FOR A LIST OF ALL BUILD VIRTUAL
COMMANDS.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 2of13)

7-52

1989
IS - SET INPUT BASE

1919

FO~MAT 18 BASE-l (WHERE BASE-l IS 2, 8, 19, OR 16)
FUNCTION: THE INPUT BASE IS SET TO BINARY, OCTAL, DECIMAL,

OR HEXADEC II'IAL WHEN BASE-l IS 2, 8, 19, OR 16,
RESPECTIYELY.

EX('H1PLES: 18 8
THE INPUT BASE IS SET TO OCTAL. ALL NUMBERS
IN THE COMMANDS WILL BE INTERPRETED AS OCTAL
UHLESS THERE IS DIFFERENT BASE IMPLIED AS PART
OF THE BASE (IE., DK 8,$19 WILL DUMP 10 HEX
ADECII1AL LOCATIOHS).

1M - INPUT "EMORY (FRO~ ROI1 FILE)

1 011

FO~MAT: I" FILENAME-lt, "AB-l]
FUNCTIOH: MEMORY IS READ FROM A ROM FILE (CREATED BY THE

OM CO"~AHD) AND STORED IN THE "MFK FILE.
"AB-l IS A MEMORY ADDRESS BIAS AND IS OPTIONAL.
W H E H I H C ,L U DE D I I TIS ADD EDT 0 THE ADD RES S 0 F
EACH I1EMORY LOCATION BEFORE THE DATA IS STORED.

EX~MPlES: 1M BACKUP
MEMORY IS LOADED FROM THE ROM FILE "BACKUP" AND
IS STORED IN THE MF FILE.

I" BACKUP, 1989
MEMORY IS LOADED FROM THE ROM FILE "BACKUP" AND
IS STORED IN THE MF FILE AFTER RELOCATIHG EACH
WORD OF MEMORY 1990 LOCATIONS FORWARD.

1M BAC!(UP,9FFFE
BECAUSE OF THE WRAP-AROUND CHARACTERISTIC OF
11 E 11 0 R y, E A C H W 0 R D 0 F 11 E '" 0 R Y F R 0.11 THE ROM F I L E
IS RELOCATED BACKWARD 2 LOCATIONS.

LW - SET LAST WORD ADDRESS OF "E"ORY

1912

FORMAT: LW LWA-l
FUNCTION: THE LAST WORD OF MEMORV IS DEFINED TO BE LWA-l.

LWA-l "UST SE A MULTIPLE OF 256-1 <N*256-1) AND
IN THE RANGE 255-65535. ANY ADDITIONAL MEMORY
ADDED TO THE -"F- FILE IS PRESET TO ZERO.

EXAMPLES: LV lFF
THE LAST WORD ADDRESS OF "EMORY IS DEFINED TO
BE HEXADECIMAL lFF.

MF - MACHINE FILE
FOR MAT : 'M F F I LEN A" E - 1
FU~CTIOH: THE"F CO""AHD LOADS FILE FILEHAME-l INTO A WORK

AREA. THE CCI CF, DMI 1M, lW, I1L, 110, OM, RF,
SM, TI, AND U" CO""AHDS ALL REQUIRE A MF FILE
TO BE LOADED PR SOURCE

EX~"PLES~ "F "EMORY
THE "ACHIHE FILE -"E"ORY· IS IDENTIFIED AS THE
I'IF FILE.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 3 of 13)

7-53

1813

"L - "ACRO LISTING

1014

FORMAT: i'lL
FUHCTIOH: A DIRECTORY OF THE "ACRO LIBRARV IN THE

"F FILE IS PRINTED.

EX~MPLES: I1L

1'10 - MACHIHE ORGANIZATION
FORMAT: 1'10
FUHCTIOH: THE CONFIGURATION OF THE ""F- FILE IS PRINTED.

EX~~MPLES: MO
1015

0" - OUTPUT MEMORY
FO~MAT: OM FILEHA"E-l(FWA-l,LWA-l[,RFWA-l1)

[(FWA-2, LWA-2[, RFWA-2 J) ...]

FUNCTION: OUTPUTS THE SPECIFIED REGIONS OF "E"ORY FRO" THE
""F· FILE INTO FILE FILENAME-t. FWA-l IS THE
FIRST WORD ADDRESS AND LWA-t IS THE LAST WORD
ADDRESS OF THE FIRST REGION. RFYA-t IS THE ROM
MEMORY FIRST WORD ADDRESS. IF PRESENT, "E"ORY
IS RELOCATED TO THIS STARTING ADDRESS IN THE RO"
OUTPUT FILE.

RO" PAPER TAPE FORMAT
BVTE 1 - RECORD TYPE

S9 - HEADER RECORD
SI - DATA RECORD
S9 - END OF FILE RECORD

BVTE 2 - RECORD LENGTH IN BYTES (DOES NOT
INCLUDE BYTE 1)

BYTE 3 -
BYTE 4 -
LAST

UPPER BYTE OF "EMORY ADDRESS
LOWER BYTE OF "EMORY ADDRESS

BYTE - CHECKSUM OF BYTES. THE CHECKSUM +
THE SUM OF BYTES = 255 (MODULO 256).

ALL BYTES BETWEEN BYTE 4 AND THE
CHECKSUM BYTE ARE DATA BYTES. THE
MEMORY ADDRESS OF THE FIRST DATA
BYTE IS IN BYTES 3 AND 4. SUCCESSIVE
DATA BYTES HAVE SUCCESSIVE MEMORY
ADDRESSES.

EXAMPLES: OM TOM(818FF)
MEMORY IS OUTPUT IN ROM PAPER TAPE FORMAT INTO
FILE "TOMB. THE REGION OF "EMORY OUTPUT IS
LOCATIOHS 9 THROUGH FF.

OM DICf«109, lFF,2888)
THE ADDRESSES FOR THE REGION OF ME"ORY FROM
TIONS 190 THROUGH IFF ARE REASSIGNED TO LOCATIONS
2990 THROUGH 28FF BEFORE BEING OUTPUT INTO ROM
FILE "DICK-.

OM HARRV(8,2FF)(388,4FF,699)
TWO REGIONS OF "EMORY ARE OUPUT TO ROM FILE
"HARRY· ADDRESSES FOR THE SECOND REGION ARE
REASSIGNED TO LOCAT10NS 699 THROUGH 7FF.

TABLE 7·1.6·2. HELP Listing of Simulator and BVM Commands (Sheet 4 of 13)

7·54

1916

RF - RENAME FILE

1017

FORMAT: RF FILENAI1E-l
FUNCTION: A DUPLICATE COpy OF THE ""F" FILE IS MADE AND IS

RENA"ED FILENA"E-l. THE OLD "MF" FILE AND ITS
FILENA"E ARE SAYED.

EX~MPLES: RF NEWNA"
A COpy OF THE "F FILE WAS MADE AND -RENAMED -NEWHAM

SM - SET MEMORY
FORMAT: S" FWA-ll YALUE-I[, YALUE-2, ... 1
FU~CTION:

EX~J1PLES:

1918

Tl - ENTER AMFR
FORMAT:
FUNCTION:

EXRMPLES:

1019

LOCATION FWA-l IS SET TO VALUE-l1 THE NEXT LOCA
TION IS SET TO YALUE-ZI ETC.

SM 18,1
THE COtJTEHTS OF LOCATION 10 IS SET TO 1.

SM 2'Ll,2,3,4ISI6,7,8
THE CONTEHTS OF LOCATIONS 20 THROUGH 27 ARE SET
TO 1 THROUGH 8.

TITLE
T I .
BUILD YIRTUAL WILL REQUEST A LINE OF TEXT BY
PRINTING: It ENTER TITLE TEXTII.
EHTER ONE LINE OF TEXT AND A CARRIAGE RETURN.
BUILD VIRTUAL WILL CONTINUE TO REQUEST TEXT UNTIL
A BLANK LINE IS ENTERED OR THE LABEL BUFFER IS
FILLED. THE TITLE OR MACHINE FILEIS LABEL WILL BE
PRINTED EACH TIME THE FILE IS OPENED OR W~EN THE
"MO" COM"AHD IS USED.

TI."O.
EHTER TITLE TEXT

THIS IS THE 1ST LINE OF THE TITLE
ENTER TITLE TEXT

THIS IS LINE 2 OF THE TITLE
EHTER TITLE TEXT

THE TITLE WILL BE EHTER AND THAN THE MEMORY
ORGANIZATION WILL BE PRINT.

UF - UNSAYE FILE
FO~MAT;

FUNCTION;
UF FILENAME-l[1 FILENA"E-2, ... J
THE FILES WHOSE NA"ES APPEAR IN THE FILENAME
ARE DELETED FRO" THE USER'S LIBRARY.

LIST

EXf.fMPLES: UF PETE
MACHINE FILE ·PETE R ID DELETED FROM USER
CATALOG.

UF FILE1,FILE2,FILE3
THE THREE FILES, FILEI, FILE2, AND FILE3 ARE
DELETED.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 5 of 13)

7-55

1929

UM - UPDATE MACHINE FILE

1985

FO~f1AT: U,.
FUHCTIOH: THE "MF" FILE IS UPDATED TO THE LATEST "PU STAND

ARDS. AN "OLD VERSION" ERROR MESSAGE WILL INFORM
THE USER WHEN TO UPDATE THE ""F" FILE.

EXAMPLES: U,.

MPSVM - BUILD VI.RTUAL RELEASE 1.4

1990

1) THE "UF" COM"AND WILL UNSAYE BOTH BINARY AND ASCII FILES.
2) THE "OM- COM"AND NO LONGER HANGS UP IF THE FILEHA~E IS

IS ijOT INCLUDED IN THE COMMAND.
3) MULTIPLE LINES OF TEXT MAY BE ENTERED ON A WTI" CO""AHD.
4) THE "I"H (INPUT "E"ORY FROM ROM FILE) COMMAND ADDED.

*** THIS IS A HEW RELEASE OF THE BUILD YIRTUAL .•••
FOR MORE IHFORMATION LIST MESSAGE TEXT FOR 1999 IN "HELP"

EX: RUM HELPI TVPE- IN U T 1998· CARR! AGE RETURN

TO !_IST THE C~AHGES TO THE NEW BUILD VIRTUAL TYPE-IN THE FOLLOWING

1) LIST THE INDEX TO THE CHAHGES.
TJRNOFF THE -T" (TEXT) TOGGLE AND TURN ON THE WI" (INDEX)
TOGGLE. THE TOGGLE/S STATUS WILL BE PRINTED EACH TIME IT
IS TVPED IN. EX: TYPE-IN "T T CR" (CR =) CARRIAGE RETURN)
HOW SET THE TOGGLES AND TVPE-IN M1989 TO 1989 CR"
T~IS WILL LIST THE INDEXES OF THE RELEASES.

2) LIST THE INDEX AND TEXT OF THE CHANGES.
TJRN ON THE "I a AND aT M TOGGLES AND AND TVPE-IN
"1980 TO 1989 CRY.

3) LIST ALL HELP MESSA~ES WHICH HAVE CHANGED.
TURN ON THE "1ft TOGGLE AND TURN OFF THE aT" TOGGLE THAN
TYPE-IN "96/11/74 TO 11/19/74 CRa THIS WILL LIST THE
I~DEX OF ALL THE MESSAGES IN HELP WHICH HA~E BEEN C~ANGED
OR ADDED TO THE "ESSAGE FILE.

4) TO EXIT HELP. TVPE-IN "EX CR·.
3001

BC - BREAK POINT CLEAR

FO~MAT: BC
FUNCTION: CLEARS ALL BREAK POIKTS AND SETS THE BREAK

POINT FLAG TO RESET.

FORMAT: BC ADR-1[, ADR-2, ...]
FUNCTION: CLEARS ONLY THE BREAK POINTS SET AT "E"ORY

ADDRESSES ADR-l, ADR-2, ...

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 6 of 13)

7-56

3882

BD - DISPLAY BREAK POINTS

3003

FORMAT: BD
FUHCTIOH: DISPLAY THE BREAK POIHT FLAG (RESET, ALL OR

STORE) AND ALL "EMORY ADDRESSES' WHERE A BREAK
PINT IS SET.

BP - SET BREAK
FORMAT:

POI H T S FOR REA D A.N D S TOR E ALL.
BP ADR-t [, ADR-2, ... 1

FUHCTIOH:

FO~MP.T:

FUNCTION:

FO~MAT:

FUHC1IDH:

3 e 04

SET BREAK POINTS AT "E"ORY ADDRESSES ADR-l,
ADR-2, ... THE SIMULATOR WILL STOP AND
PRINT THE SELECTED REGISTERS WHEN~VER A BREAK
POINT LOCATION IS READ OR STORED INTO. BREAK
POlNTS MAY BE SET ON ANY BYTE OF MEMORY. THERE
IS NO LIMIT ON THE HUMBER OF BREAK POINTS.

BP
SET THE BREAK POINT FLAC TO ALL MODES.

HOBP OR NSF'
SET THE BREAK POINT FLAC TO RESET. (BREAK
POINTS SET IN MEMORY ARE HOT CHANGED.)

BS - SEI BREAK
FORMAT:

POINTS FOR STORE ONLY
BS ADR-l(/ADR-2, ... l

3005

FUI-lCTIOH:

FO~MAT:

f-UNClION:

FORMAT:
FUN C T I ON :

SEl BREAK POINTS AT MEMORY ADDRESSES ADR-l,
ADR-2/ ... lHE SIMULATOR WILL STOP AND PR1Nl
lHE SELECTED REGISTERS WHEHEY~R A 8kEAK PDINl
LOCATION IS STORED INTO.

BS
SET THE BREAK POINT FLAC TO STORE MODE.

NOBS OR NBS
SEl THE BREAK POItiT FLAG TO RESET. (BREAK
POINTS SET ON "EJIIORY ARE HOT CHANCED.)

D - DISPLAY REGISTERS

3aas

FO~MAT: D
FU~CTI0H: lH~ CONTENTS OF THE REGISTERS SELECTED WITH THE

SD COMMAND ARE DISPLAYEn. HU"ERICAL VALUES ARE
DISPLAYED IN THE DISPLAY BASE SELECTED BY THE DB
COMMAND.

DB - SEl D13PlAY BASE
FO~MAT: DB BASE-t (WHERE BASE-l = 8, 19 OR 16)
FUHC1ION: THE DISPLAY BASE IS SEl TO OCTAL, DECIMAL,

OR HEXADECIMAL WHEN BASE-1 IS S .. 101 OR 16,

RESPECTIVELV

EXf~MPLES: DB B
NUMERIC OUTPUT FRO" THE DM CO"MAHD WILL BE DIS
PLAYED IN OCTAL.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 7 of 13)

7-57

3887

DF - SET DISPLAY FLAG

3898

FO~I1AT: DF FLAG-l <WHERE FLAG-t II: I, 2, OR 3)
FUNCTION: I'IE"ORV DU"PS "Ill APPEAR IN HU"ERIC, CHARACTER,

OR 80TH WHEN FLAG-l IS 1, 2, OR 3, RESPECTIYElY.
THE DEFRUlT SETTING IS 3.

EX~MPLES: DF 2
OUTPUT FRO" THE D" CO""AND WILL BE DISPLAYE IN
CHARACTER FORMAT ONLY.

DL - DI3PlAY LAST INSTRUCTION
FORMAT: Dl
FUNCTION: DISPLAY THE LAST INSTRUCTION PREVIOUSLY EXECUTED.

3099

DM - DI3PLAY MEMORY

301e

FORMAT: DM FWA-1/WCT-l
FUNCTION: UCT-l WORDS OF "E"ORY BEGINNING AT LOCATION FWA-l

ARE DISPLAYED. THE FOR"AT OF THE DISPLAY IS
DETERMINED BY THE DF SWITCH. "EMORV IS DUMPED
FROM THE -MF N FILE.

EX~MPLE:S: DI1 188,28
DISPLAY 29 (HEXADECIMAL) WORDS OF MEMORY STARTING
FROM LOCATION 190.

E>~ - E>nT
FO~t'1AT : EX
FUHCTIOH:

3011

EXIT FRO" THE SIMULATOR AFTER SAVING THE STATUS
AS FOR THE SS CO""AHD, AND ALSO SAVING THE MACRO
LIBRARY .. AND ALL OF MEMORY INCLUDING THE CURRENT
MEMORY PAGES.

HR - SET HEADER COUNT
FO;:MAT: HR COUHT-t
FUNCTION: PRINT THE REGISTER HEADER LINE EVERV COUHT-l

LINES OF PRINT.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 8 of 13)

7-58

3012
HP - HELP

FORMAT: HP "ESSAGECODE-f[SWITCH-l]
FUNCTION:

3013

INFORMATION ABOUT MESSAGECODE-l IS PRINTED.
MESSAGECODE-l HAS ONE OF THE FOLLOWING FORMS:

HNNN WHERE HHHH IS A NUMBER FROM 1 TO 9999
CORRESPONDING TO ANY HELP MESSAG~

eMD WHERE CMD IS A SIMULATOR COMMAND
ALL WHERE THE WORD MAll" REQUESTS THAT

INFORMATION FOR ALL SIMULATOR COMMANDS
BE PRINTED.

SWITCH-l CONTROLS THE AKOUHT OF DETAIL TO BE
PRIHTED AND HAS ONE OF THE FOLLOWING FORMS:

1 PRINT INDEX OF KESSAGE ONLY
T PRINT TEXT OF "ESSAGE ONLY
B PRINT BOTH THE IHDEX AND TEXT

IF SWITCH-l IS OMITTED, THEN OPTION I IS USED.

ENTER 'HP 4912 8' FOR ItfFOR"ATION ON THE SYN
TAX USED IN THE HELP HESSAGES.

EHTER 'HP ALL I' FOR ~ LIST OF ALL SIMULATOR
COMMANDS.

IB - SET INPUT BASE

3014

FO~MAT IS BASE-l (WHERE BASE-t IS 2, 8, l{L OR 16)
FUNCTIOri: THE INPUT BASE IS SET TO BINARY, OCTAL .. DECl~1Al,

OR HEXADECIMAL WHEN BASE-l IS 2, 8, 19, OR 16~

RESPECT I ELy.

EX;~11PlES: IS 8
THE INPUT BASE IS SET TO OCTAL. ALL NUMBERS
1N THE COMMANDS WILL 9E IHTERPRE)ED AS OCTAL
UNLESS THERE IS DIFFERENT BASE lMPLIED AS PART
OF THE BASE (IE.J DM 9/$10 WILL DUMP 10 HEX
ADECIMAL LOCATIONS).

lR - SET IHTERRUPT REQUEST
F o~r1AT: II< FWA-l [, LWA-l 1
FUNCTION: NO DOCUMENT AVAILABLE.

3015

LM - LIST "ACRO SWITCH

3816

FORMAT: Li1
FUHCTIOH: LIST EACH COMMAND BEFORE IT IS EXECUTED. EHTER

THE NOl" COMMAND TO INHIBIT THE PRINTING OF EACH
COMMAND.

MD - MACRO DELETE
FORMAT: t1D MACRO-1(I MACRO-2, ...]
FUNCTIOH: DELELTE MACROS "ACRO-ll KACRO-2, '" FROM THE

MACRO LIBRARY.

TABLE 7·1.6·2. HELP Listing of Simulator and BVM Commands (Sheet 9 of 13)

7·59

3917

ML - MACRO LISTING

3018

FO~MAT: ML
FUNCTION: A LISTING OF THE "ACRO LIBRARY AND THE AYAILABLE

STORAGE REKAINIHG FOR NEW "ACROS IS PRINTED.

MR - MACRO RESTORE

3019

FO~MAT: MR
FUNCTION: RESTORE THE MACRO LIBRARY WHICH WAS SAVED BY THE

LAST MS OR EX CO""AND.

MS - SA~~ MACRO LIBRARY

3020

FO~M~~T: MS
FU~CTIOH: THE CURREHT MACRO LIBRARY (AS IT APPEARS WHEN

DISPLAYED WITH THE ML COMMAND) IS SAYED IN THE
MACHINE FILE.

OF - DEi.ETE) ON' COMMANDS

3021

FORMAT: OF [CONDITION-1)
FUNCTION: 'ON' COHI1AHDS ARE REMOVED FROM THE 'ON' ClNDITION

LIBRARY. IF THE CONDITION-t IS SPECIFIED) THEN
ONLY THAT IOHI COMMAHD IS REMOVED. IF NO CONDI
TION IS SPECIFIED THEN ALL 'ON' COHDITIOHS ARE
REMOVED. SEE THE ION' COMMAND FOR COHDITION-t'S
FORMAT.

fX:H1PlES: OF
REMOVES ALL 'ON' COMMANDS FROM THE LIBRARY.

OF/A=0FF.
REMOVE ONLY THE 'ON' COMMAND WITH THE CONDITION
A=0FF.
WILL BE DELETED.

OL - LIST THE 'ON' CONDITION LIBRARY
FO~f1AT: OL
FUHCTIJH: A LISTING OF THE 'OH' CONDITION LIBRARY AND THE

AVAILASLE STORAGE REMAINING FOR NEW 'OH' CO"MANDS
WILL BE PRINTED.

TABLE 7·1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 10 of 13)

7-60

3822
ON - SET AND STORE A 'OH' CONDITION to""AND INTO THE LIBRARY

3923

FOR"AT~ OHICONDITIOH-t,CO""AND-l.
FUNCTION: WHEN CONDITION-l IS TRUEI THE CURRENT CO""AND

LINE IS TERMINATED. THE COM"AND CO""AHD-l IS THEN
EXECUTED. THE ~ L"~ CO""AND SHOULD BE ON SO THE
COMMANDS ARE LISTED BEFORE THEV ARE EXECUTED.

CONDITION FOR"AT: CODE-l [OPERATIOH-l YAULE-l]
WHERE CODE-l IS ANY OF THE FOLLOWING REGISTER
CODES:

X - INDEX RECISTER
A - ACCU"ULATOR A
B - ACCUnULATOR B
5 - STACK POINTER
T - TIME

OR FAUL T CODES:
Sf - BREAK POIHT FAULT
MF - MEMORY FAULT
F - ALL OTHER FRULTS

OPERATIOH-l IS OPTIONAL AND "AY BE ANY OF THE
FOLLOWING LOGIC$L OPERTIOHS:
= IF THE CODE EQUALS THE YAULE THE COMIllOM IS

TRUE AND THE CO""AND IS EXECUTED.
< IF THE CODE IS LESS THAN THE YAULE THE CONDI

TION IS TRUE AND THE COM"AHD IS EXECUTED.
> IF THE CODE IS GREATER THAN THE YAULE THE CON-

DITION 15 TRUE AND THE CO""AHD IS EXECUTED.
VALUE-l IS THE PARAMETER WHICH IS COMPARED TO
CODE-l AND IS INCLUDED IN THE CONDITION IF AND
ONLY IF OPERATION-l IS INCLUDED.

COMMAND-l IS ANY CO""AHD OR "ARCO WITH OR WITHOUT
PARAMETERS. ONLY ONE CO"MAND CAN BE ENTERED. THE
FIRST PERIOD TER"INATES THE CO""AND LINE.

ONLY ONE REGISTER 'OH' COMMAND MAY BE ENTERED AT
A T II1E, BUT MUL Tl PLE FAUL T5 I1AY BE TESTED.

EXRMPLES: ON, A)0F21 SA", 1,2.
ON THE A ACCU"ULATOR GREATER THAN SF2 (HEX) THE
MACRO CO""AHD ISAMJ AN IT/S PARAMETERS WILL BE
EXECUTED. (THE TRACE OR RUN WILL BE STOPPED)

ON, BP=1081 D", 188,5.
WHEN A BREAK POINT OCCURS AT LOCATION 188, THE
TENTS OF ME"ORY LOCATIONS 10e THRU 184 WILL BE
DISPLAYED. THE TRACE OR RUN WILL BE STOPPED.

ON I BP I D 11, 1 88 I 5
WHEN ANY BREAK POINT OCCURS, THE CONTENTS OF "EM
ORY LOCATIONS tee THRU 184 WILL BE DISPLAVED. THE
SIMULATOR WILL REQUEST A COM"AHD.

PF - SI~ULATE POWER FAIL
FORMAT: f'F
FUNCTION: SI.I'IULATES POWER FAIL BV PUSHING THE REGISTERS

O'Nro THE~T,ACK AND LOAD INC THE POWER FAI L VECTOR
(LAST WORD ADDRESS-3) INTO THE P REGISTER.

TABLE 7·1.6·2. HELP Listing of Simulator and BVM Commands (Sheet 11 of 13)

7·61

3124
PI - PRINT INTERRUPT REQUESTS WHEN THEY OCCUR

FORMAT: PI [,Ll
FUHCTIOH: NO DOCU"ENT AYAILABLE.

3025
PO - SI"ULATE POWER ON

3826

FORHAT: PO
FUNCTION: SI"ULATES THE POWER ON BY LOADING THE POWER ON

VECTOR (LAST WORD ADDRESS-i) INTO THE P REGISTER
AND LOADING RANDO" INFOR"ATION INTO THE OTHER
REGISTERS.

R - RUN
FO~HAT: R COUHT-l
FUNCTION:

3927

RUN COUHT-t INSTRUCTIONS WITHOUT PRINTING, AND
THEN PRINT THE REGISTERS SELECTED BY THE SR COM
MAND. THE IHPUT BASE OF COUHT-l IS SET BY THE
IS COMMAND.

RC - REPEAT CO""AND

3028

FORMAT: RC COUHT-1
FUNCTION: THE NEXT COMMAND IS EXECUTED COUHT-l TI"ES. IF

THE RC CO"MAND IS THE LAST COHMAND IN A LINE,
THEN THE FIRST COMMAND IN THE NEXT LINE WILL BE
REPEATED COUNT-l TI"ES.

RL - REPEAT LINE

3029

FORMAT: Rl COUHT-l
FUNCTION: THE REMAINIHG PORTION OF THE COMMAND LINE (TO

THE RIGHT OF THE RL COMMAND) IS EXECUTED COUHT-l
TIMES. THE RL COMMAND WILL HAVE NO EFFECT IF IT
IS THE LAST CO""AND IN THE LINE.

RS - RESTORE SIMULATOR STATUS

3830

FORMAT: RS
FUNCTION: RESTORE THE SIMULATOR STATUS SAVED WITH THE SS

CO""AHD.

SD - SELECT DISPLAY REGISTERS
FORMAT: SD REGISTER-l[REGISTER-2 ...]
FUNCTION: REGISTERS REGISTER-1, REGISTER~2, .. , ARE SELECT

ED TO 8E DISPLAYED WHEN THE D, BLI R, AND T COM
"ANDS ARE EXECUTED. REGISTER-l, REGISTER-2, ...
CAN BE ANY OF THE FOLLOWING ONE CHARACTER CODES:

I - INSTRUCTIOH ADDRESS
o - OPERATOR ""E"OMIC CODE
E - EFFECTIYE ADDRESS
P - PROGRA" COUNTER
X - INDEX REGISTER
A - ACCU"ULATOR A
B - ACCU"ULATOR B
C - CONDITION CODES
S - STACK POINTER
T - Tl"£

TABLE 7-1.6·2. HELP Listing of Simulator and BVM Commands (Sheet 12'of 13)

7-62

3031

SM - SET MEMORY
FO~MAT: SM FWA-l J VALUE-l[, YALUE-2, ...]
FUNCTION:

EX~MPlES:

3032

LOCATION FWA-t IS SET TO VALUE-II THE HEXT LOCA-
TION IS SET TO VALUE-21 ETC.

SM 1 e,l
THE CONTENTS OF LOCATION 10 IS SET TO 1.

SM 20,1/2,3,4.,5,6,7,8
THE CONTENTS OF LOCATIONS 28 THROUGH 27 ARE SET
TO 1 THROUGH 8.

SR - SET REGISTER

3033

FORMAT: SR RECISTER-l VALUE-l[,RECISTER-2 VALUE-2, ... 1
FUHCTION: THE REGISTERS IN THE LIST ARE SET TO THEIR RE

SPECTIVE VALUES. REGISTER-I, REGISTER-2, ... CAN
BE ANY OF THE FOLLOWING ONE CHARACTER CODES:

P - PROGRAM COUNTER
X - INDEX REGISTER
A - ACCUMULATOR A
B - ACCUMULATOR B
C - CONDITION CODES
S - STACK POINTER
T - TIME

SS - SA~E SIMULATOR STATUS

3034

FO~MAT: S5
FUNCTION: SAVE THE SIMULATOR STATUS IN THE MEMORY FILE.

ALL REGISTER SETTINGS AND SELECTED OPTIONS ARE
SAYED. THE "ACRO LIBRARY AND CURRENT "PU "EM
ORY PAGES ARE HOT SAVED.

T8 - TRACE BRANCHES

3835

FO~f1AT: TB [COUNT-11
FUHCATIOH: RUN COUHT-l INSTRUCTIONS AND PRINT THE SELECTED

REGISTERS AFTER EYERY BRANCH, J"P, JSR, BSR, RTI,
RTS, OR SUI INSTRUCTION IS EXECUTED. IF COUHT-l
IS O"ITTED ONLY ONE IHSTRUCTOH IS EXECUTED. SEE
CO" "A N D S S DAN D D B FOR S E LEe T I H G THE REG 1ST E R.S'
DISPLAYED AND THE DISPLAY BASE

E X A t1 P LE S : T B 7
RUN 7 INSTRUCTIONS AND TRACE ANY BRANCHES FOUND
(PRINT THE SELECTED REGISTERS).

T - TRACE INSTRUCTION EXECUTIOH
FORMAT: T COUNT-l
FUNCTION: COUNT-l INSTRUCTIONS ARE TRACED. THE REGISTERS

THE EXECUTION OF EACH INSTRUCTION.

TABLE 7-1.6-2. HELP Listing of Simulator and BVM Commands (Sheet 13 of 13)

7-63

4 •••

HELP DIRECTORY

4811

FOR "ORE IHFOR"ATION CONCERNING A CIVEN SUBJECT ENTER THE
SUBJECT'S INDEX FOLLOWED BY A CARRIAGE RETURN.

INDEX
4811
4812
4813

SUBJECT
HELP CO""AHDS
SYNTAX HOTATION CONYENTION
MESSAGE FILE

HELP COM"AHDS

GENERAL: THE HELP SYSTE" OPERATES ON A "ESSAGE FILE. THE "ESSAGE
FIlE CONSISTS OF ENGLISH TYPE STATEMENTS DESIGNED TO ASSIST
THE USER WITH I'IOTOROLA'S "PU SOFTWARE. THERE IS AN INDEX
AND A TEXT PART TO EACH "ESSAGE. MESSAGE CREATION DATES AHD
MESSAGE HUHBERS ARE ASSIGNED TO THE "ESSAGES. THE MESSAGES
ARE FURTHER ORGANIZED INTO SYSTEM GROUPS. THERE ARE INDI
VIDUAL "ESSAGE GROUPS FOR ERRORS, FOR THE ASSE"BlERI
BUILD YIRTUAL MACHINE, SI"ULATOR, AND HELP SYSTEMS. A USER
MAY ACCESS THE MESSAGES BY SPEC~FYIHG A "ESSAGE HUMBER, A
RANGE OF "ESSAGE NU"BERS, A RANGE OF CREATION DATES, OR THE
ENTIRE "ESSAGE FILE. A "ODE CAN BE ENTERED WHERE THE RAHGE
OF-DATES AND PRINT-ALL-MESSAGES COMMANDS APPLY ONLY TO THE
SELECTED GROUP (ERRORS, ASSEMBLER, BUILD VITUAL, SIMULATOR,
OR HELP GROUPS). THREE TOGGLE COMMANDS SELECT/DESELECT THE
PRIHTIHG OF THE "ESSAGE HUI'IBER-CREATIOH DATE, INDEX, AND
TEXT PORTIONS OF EACH MESSAGE.

PRINT MESSAGE COMMANDS

COM"AHD: NU"BER-l
FUNCTION: PRINT MESSAGE NU"BER-l

COMMAND: NU"BER-I, NU"BER-2, NU"BER-31 ...
FUNCTION: PRINT MESSAGES NUMBER-I, HUt18ER-2, NUt1BER-3 ...

COMMAND: HUMBER-l TO HU"BER-2
FUNCTION: PRINT ALL MESSAGES FRO" "ESSAGE NUMBER NU~BER-l

TO "ESSAGE HU"BER HUI'IBER-2.

COM"AHD: DATE-l
FUNCTION: PRINT ALL "ESSAGES WHICH WERE ENTERED (CREATED)

FROM DATE-l UNTIL TODAVJS DATE. DATES ARE
ENTERED IN THE FOR"AT: "M/DD/VY WHERE "M IS THE
"OHTH., DD IS THE DAY I AND YY I S THE YEAR.

FORMAT: DATE-l TO DATE-Z
FUNCTION: PRINT ALL MESSAGES WHICH WERE ENTERED (CREATED)

FROM DATE-l TO DATE-Z.

COH"AHD: ALL
FUNCTION: PRINT EVERY I'IESSAGE IN THE MESSAGE FILE OR EYERY

CO""AHD WAS PREVIOUSLY EXECUTED.

TABLE 7·1.6·3. HELP Messages (Sheet 1 of 3)

7·64

SELECT GROUP CO""AHDS

CO~"AND C
FUNCTION: SELECT THE ASSE"BLERIS "ESSAGE GROUP,

CO~"AND: B
FUNCTION: SELECT THE BUILD VIRTUAL "ESSAGFIS GROUP.

COt1"AND: E
FUNCTION: SELECT THE ERROR'S MESSAGE GROUP.

COM"AND: H
FUNCTION: SELECT THE HELP SYSTEM1S "ESSAGE GROUP.

COi1"AND: S
FUNCTION: SELECT THE SIMULATOR'S MESSAGE GROUP.

COi1"AND: I
FUNCTION: TOGGLE THE PRINT INDEX SWITCH (ON/OFF)

COt1"AHD: N
FUNCTION: TOGGLE THE PRINT MESSAGE HUMBER S~ITCH (ON/OFF)

COi1"AND: T
FUNCTION: TOGGLE THE PRINT TEXT SWITCH (ON/OFF)

COMMAND: P
FUNCTION: TOGGLE THE PAGING SWITCH (ON/OFF)

THE HELP MESSAGE WILL BE PRINTED ON 65 LINES PER
PAGE. (53 LINES OF TEXT),

CO""AND: EX
FUNCTION: EXIT THE HELP SYSTE".

NOTES: 1. "ULTIPLE CO""ANDS CAN BE ENTERED ON A SINGLE LINE BY
SEPERATIHG THE CO""AHDS WITH A SPACE.

2. A SI"ILAR HELP STRUCTURE IS CURRENTLY AVAILABLE IN
THE BUILD VIRTUAL "ACHINE AND SIMMULATOR SYSTEMS.
USER INSTRUCTIOHS FOR THESE HELP SYSTEMS ARE PROYIDED
IN THE' RESPECTIVE SYSTEM.

TABLE 7·1.6-3. HELP Messages (Sheet 2 of 3)

7-65

4012

SYNTAX HOT~TION CONVENTION

GENERAL - BUILD VIRTUAL AND SIMULATOR COMMANDS CONSIST
OF A COMMAND CODE FOLLOWEDJ USUALLY B'(ONE O~:

MORE OPERANDS. OPERANDS PROVIDE THE SPECIFIC
INFORMATION FOR THE COMMAND TO PERFORM THE
REQUESTED OPERATION. THE FOLLOWING SET OC SYM-
BOLS IS USED TO DEFINE THE FORMAT OF EACH COM
MAND, BUT THEY SHOULD NEVER BE ENTERED AS PART
Of THE COMMAND.

HYPHEtt
[] BRACKETS

ELLIPSIS

COMMANDS - BUILD VIRTUAL AND SIMULATOR COMMANDS ARE TWO
LETTER MNEMONIC CODES. MACRO COMMANDS (USER
DEFINED COMMANDS) CONSIST OF ONE TO FOUR LETTER
CODES. A COMPLETE LIST OF THE SYSTEM COM~ANDS

IS PRIHTED WHEN THE JHP AL I I COMMAND IS ENTERED
DURING A BUILD VIRTUAL OR SIMULA~OR SESSION A
LIST Of ALL MACRO COMMANDS IS PRINTED WHEN THE 'ML
COt1MAHD IS ENTERED.

OPERANDS - OPERANDS AR£ IDENTIFIED BY THE HYPHEN. A~

OPERAND WILL CONSIST OF A SYMBOLIC NAME FJLLOWED
BY THE HYPHEN WHICH IS FOLLOijED BY A NUMBER. A
USER SUPPLIED VALUE IS SUBSTITUTED FOR TH~ OPERAND
IN THE COMMAND LINE. THE HYPHEN AND THE NUMBER
APPEHD£D TO EACH SYMBOLIC NAME IS USED TO DIFFER
ENTIATE AMOHG THE POSSIBLE MULTIPLE OCCURRENCES OF
A GIVEN OPERAND IN A COMMAND DEFINITION.

HYPHENS - HYPHENS IDEHTIFY AN OPERAND IN THE STATEMENT DEF-
INITION. THEY ARE NOT ENTERED IN THE ACTUAL COM-
MAN D~

BRACKETS - BRACKETS IMPLY OPTIONAL INPUT. EVERTHIHG WITHIN
A MATCHED PAIR OF BRACKETS IS OPTION~L AND MAY BE
OMITTED. THE BRACKETS ARE NOT INCLUDED IN THE

COMMAND LINE.
HOTE: THE USE OF THE BRACKETS IN THE DEFINITION OF

CO""AHD SYNTAX AND FORMAT IS NOT TO BE CON
FUSED WITH THEIR USE IN MA eRO DEFINITIONS.

ELLIPSIS - AN ELLIPSIS INDICATES THAT THE PRECEDING ITEM OR
GROUPS OF ITEMS MAY BE REPEATED MORE THAN ONCE
IN SUCCESSION.

TABLE 7-1.6-3. HELP Messages (Sheet 3 of 3)

7-66

As the result of assembly, the original source program was converted into numerical machine

language acceptable to the microprocessor. If the Assembler option "Memory" was chosen, the entire

assembled program was saved by the timeshare computer and may now be used to create an output tape. This

tape will not contain any of the source language, comments or Assembler directives provided by the Assembler

listing. It will, however, contain all of the machine language instructions, addresses and data specified by the

source program.

To create the output tape, the first step is to select and reformat the appropriate memory files. This is

accomplished by using the Build Virtual Machine program on the timeshare service. The resulting

reconfigured file is given a new name and saved. The next, and final step, is performed by requesting the

timeshare computer to list the new file on a terminal that has the ability to punch or record a tape. The required

B VM commands for generating the tape are repeated as Table 7-1.7-1 for review.

As an example of their use, the sequence for generating a tape using the Texas Instruments "Silent

700" terminal will be described.

(1) Access the host computer as described in Section 7-1.2.

(2) In response to the query "Type Old or New" , type "OLD".

(3) In response to the query "File Name", type the name of the present memory file.

(4) Call the Build Virtual Machine program by typing "RUN MPBVM."

(5) MPBVM answers with a message and then a question mark.

(6) Enter "MF XYZ", where "XYZ" is the name of the memory file.

(7) In response to the next question mark, type "OM NEW (FA ,LA) " where "NEW" is the name

selected for a new memory file to be configured by B VM. "FA" means the first address in

memory of the user's program, and "LA" means the last address. These addresses are entered

in hexadecimal notation.

(8) When B VM again responds with a question mark, it means the new reconfigured file has been

created.

(9) Next type "EX". This command causes the new file to be saved and then exits the BVM

program.

(10) At this time, the terminal should be prepared for either printing or recording a tape of the new

file.

(11) For the" SILENT 700" , a tape cassette is inserted, rewound and loaded. The Record control is

placed on-line, tape format control set to line, and keyboard and printer turned on if a

printed-out check listing of the tape is desired.

(12) The user types "OLD NEW" where "NEW" is the name of the file that was created in Step 8.

(13) When the terminal prints "ready", type "LIST N H". This command will cause the file to be

listed without a header when a carriage retutn is typed.

7-67

MF - MACHINE FILE
FORMAT: MF FILENAME-l
FUNCTION: THE MF COMMAND LOADS FILE FILENAME-l INTO A WORK

AREA. THE CC, CF, DM, 1M, LW, ML, MO, OM, RF,
:s:t1, T I, AtiD U~l COMMANIIS ALL ~:EQU I RE A MF FILE
TO BE LOADED PR SOURCE

EXAMPLES: MF MEMORY
THE ,..lACH I tiE FILE "MEMOR')"'" I S I IIENT I F I ED AS THE
MF FI~E.

" OM - OUTPUT MEMORY
FORMAT: OM FILENAME-l(FWA-l,LWA-l[,RFWA-l])

[(FWA-2,LWA-2[,RFWA-2]) •••]
FUNCTION: OUTPUTS THE SPECIFIED REGIONS OF MEMORY FROM THE

"r'lF" FILE INTO FILE FILENAME-I. FIJJA-l 1:5: THE
FIRST WORD ADDRESS AND LWA-l IS THE LAST WORD
ADDRESS OF THE FIRST REGION. RFWA-l IS THE ROM
MEMORY FIRST WORD ADDRESS. IF PRESENT, MEMORY
IS RELOCATED TO THIS STARTING ADDRESS IN THE ROM
OUTPUT F.ILE.

ROM PAPER TAPE FORMAT
BYTE 1 - RECORD TYPE

SO - HEADER RECORD
SI - DATA RECORD
S9 - END OF FILE RECORD

BYTE 2 - RECORD LENGTH IN BYTES (DOES NOT
ItiCLUDE BYTE 1)

BYTE 3 - UPPER BYTE OF MEMORY ADDRESS
BYTE 4 - LOWER BYTE OF MEMORY ADDRESS
LA:5:T
BYTE - CHECKSUM OF BYTES. THE CHECKSUM +

THE SUM OF BYTES = 255 (MODULO 256).
ALL BYTES BETWEEN BYTE 4 AND THE
CHECKSUM BYTE ARE DATA BYTES. THE
MEMORY ADDRESS OF THE FIRST DATA
BYTE IS IN BYTES 3 AND 4. SUCCESSIVE
DATA BYTES HAVE SUCCESSIVE MEMORY
ADD~:E:S:SES .

EXAMPLES: OM TOM(O,OFF)
MEMORY IS OUTPUT IN ROM PAPER TAPE FORMAT INTO
FILE "Tor'l". THE F.~EG I ON OF MEMOR~"' OUTPUT 1:5:
LOCATIONS 0 THROUGH FF.

OM DICK(100,lFF,2000)
THE ADDRESSES FOR THE REGION OF MEMORY FROM
TIONS 100 THROUGH IFF ARE REASSIGNED TO LOCATIONS
2000 THROUGH 20FF BEFORE BEING OUTPUT INTO ROM
FILE "DICK".

OM HARRY(0,2FF)(300,4FF,600)
TWO REGIONS OF MEMORY ARE OUPUT TO ROM FILE
II HAF.: F::'r' II • ADDRESS:ES FOR THE S:ECOt"iII, F.:EG I Ot., AF.~E

REASSIGNED TO LOCATIONS 600 THROUGH 7FF.

TABLE 7-1.7-1: BVM "Machine File" and "Output Memory" Commands

7-68

(14) The terminal Record button is pressed and a carriage return is typed on the Keyboard.

(15) The program machine code will now be recorded on the tape. Simultaneously, if the printer is

turned on, it is listed line by line on the terminal.

The resulting tape is suitably formatted either for ordering ROMs or for entry into an EXORciser for

further debug and checkout with the system peripherals.

7-2 THE EXORCISER

The EXORciser (Figure 7-2-1) is a flexible test instrument based on actual M6800 hardware

devices. Because of this it can be used as an extension of the system prototype for evaluating and improving

hardware/software compatibility. It includes built-in diagnostic and utility programs that can be used to debug

the prototype system.

In contrast to the Simulator, which is a software program, the EXORciser is primarily hardware.

Programs under development can be run with the actual system peripheral hardware under real time conditions.

This allows both the software and hardware to be modified as required to improve system operation.

A typical EXORciser configuration is shown in block diagram form in Figure 7-2-2.

FIGURE 7-2-1: The EXORciser

7-69

Debug
System

User
System

<J)

iii
c:
OJ

en
(5

-- -f---

~ 1" ,r
a
U

- I-- -I- --
R/W

VUA

,t

cf>2, VMA, R/W

--
~
~

(0 ... -
<J)

:::l
In

<J)
<J)
Q)

-0
"0
«

Debug
Module

MPU
Module

RAM
Module

t
Additional

RAM's, ROM's
OR

I/O's

I/O
Module

--
---...... j~
~
~

14-
~
r-----.

14- t-----1

§
--- <J) -- --:::l

In
co
co
Cl t d co

a:
<J) - Q)

~ a:
~

II

FIGURE 7-2-2: Typical EXORcisertm System Block Diagram

7-70

..

-..

l

Baud
Rate

Module

20m A

RS232C

I
11---

I TTY

I Alternate I I Terminal .

LL __ .~

a-Control/
Status Li nes

32 Input/
Output Lines

7-2.1 HARDWARE COMPONENTS

The EXORciser chassis fits conveniently on a table top or in a rack. Communication with the user is

through a separate data terminal keyboard and printer. The EXORciser controls are on its front panel. The

microprocessor, memory, input/output interface, and other additional system elements are contained on

plug-in boards which connect to the system busses on the backplane when the boards are inserted.

The basic EXORciser contains three functional modules. Two of these are mounted on separate

plug-in boards. They are:

(1) Microprocessor Module

(2) Debug Module

The third, contained in the housing, is the Baud Rate Module which interfaces to the communication terminal.

In addition to the housing, control panel, card cage, and the two modules mentioned above, the

EXORciser also has a power supply with reserve for up to 14 plug-in boards. This means there are 12 slots

available for additional boards to implement the system configuration, since the EXORciser control nucleus

only occupies two.

7 -2. 1. 1 Hardware Specifications

The basic M6800SDT EXORciser Assembly consists of:

1. Equipment Housing: (Includes Chassis, Power Supply, Card Cage for 14 cards, and Band Rate

Module.)

Chassis

Size: Tabletop:

Rackmount:

Weight:

7" X 17%" X 19%."

7" x 17" X 19"

45 lbs. maximum

7-71

Module Compartment

Front Panel Controls:

Rear Control

Power Supply

AC Power Requirements:

DC Power Supplies:

Operating Environment:

Indicators (Front Panel):

Baud Rate Module

• Communications Clock Circuit

Accommodates fourteen 5%" X 9%" modules

ON/OFF switch

ABORT pushbutton switch

RESTART pushbutton switch

Baud Rate Switch

(110-9600 Baud) 8 pos.

60 Hz, 120 ± 10% VAC, 300 Watts

+5 VDC @ 15A

+ 12 VDC @ 2.5A

-12 VDC @ lA

O°C to 55°C

RUN, ON/OFF, and Battery

• Twelve switch selectable baud rates from 110 to 9600

• TTY (20 milliamp) and/or RS232C

2. Microprocessor Module

• Complete microprocessor (MC6800)

• System crystal clock (1 MHz or external osc.)

• 8-Bit data word

• Bi-directional data bus

• 16-bit address bus

• 72 Instructions - variable length

• Seven addressing modes

• Variable length stack

• Real time interrupt capability

• Restart capability

• Non-Maskable interrupt

• Six internal registers - two accumulators, index register, program counter, stack pointer, condition

code register

• 2/-Lsec instruction cycle (1 MHz clock)

• Memory ready circuit for slow memories

This Card includes the MPU, and the necessary peripheral circuitry to provide the clock,

powerfail/Restart and DMA functions. The clock circuit generates two phase signals for use by the MPU and

the rest of the system. All Address, data, and control lines are equipped with bus drivers and brought out to the

connector.

The DMA circuitry is utilized to transfer data to or from other devices at high speed and allows the

use of memory units that operate at any speed up to the 1 MHz maximum.

7-72

3. DEBUG Module

Hardware Features

• Stop-on-address comparison circuit

• Provision for executing one instruction at a time

• ABORT and RESTART pushbutton switches

• Address selectable scope trigger

Programmed Features (EXbug)

• Load (reads tape into RAM)

• Verify (compare tape with memory)

• Punch (outputs memory contents on tape)

• Print (prints memory contents on terminal)

• Search (searches tape for desired object program)

• Examine and/or change memory

• Set/reset breakpoints

• Set breakpoint loop count

• Display/change registers

• Trace n instructions

• Trace to address

• Search memory for bit pattern

• Calculate offset for branch instructions

• Hex-octal-decimal conversions

4. Table Top Cover Kit or Rack Mounting Kit

The table top version is designated as M6800SDT -T(O) and the Rack mounted version is designated as

M6800SDT -R(O)

Optional Items Include:

1. I/O Module (PIA's sold separately)

2. Static RAM Module (2K X 8)

3. Universal Wirewrap Module

4. Extender Module

5. Rack Mounting Kit

6. Table Top Cover Kit

Input/Output Module (optional)

(Spec. 1810-103)

(Spec. 1810-102)

(Spec. 1810-105)

(Spec. 1810-104)

(Spec. 1810-106)

(Spec. 1810-108)

• Four 8-bit peripheral data busses (TTL compatible)

• Each buss programmable for any input/output combination

• Wirewrap sockets for special interface circuits

• Eight individually controlled interrupt input lines - four usable as peripheral control lines

• Handshake control logic for input/output peripheral operation

• High impedance three-state and direct Darlington transistor drive peripheral lines

• Program controlled interrupt and interrupt mask capability

• Address select logic switchable to any memory location.

7-73

Static RAM Module (optional)

• 2K X 8 random access memory using 1 K X 1 RAMs

• Address select logic for each 1K block assignment

• Expandable to 65K

• RAM/ROM control per 1K X 8 block of memory

• +5 VDC (only) operation

• No clocks required

• Compatible with Microprocessor Module

• 1 JLsec cycle time

• Interfaced via bus driver/receiver

Universal Wirewrap Module

• Plug-in board to accommodate integrated circuit sockets

• Wirewrap pins for simple breadboarding of prototype designs

Extender Module

• Plug-in board to extend another board for easy access to components.

7-2.2 SOFTWARE COMPONENTS

7-2.2.1 EXORciser Control

The EXORciser is controlled by EXbug, a diagnostic program which resides in 3072 bytes of ROM

on the Debug board. This board also includes 256 bytes of RAM which the EXbug program uses to store

interrupt addresses and variable parameters.

EXbug never has to be loaded into the EXORciser since it is permanently stored in ROM. The user's

target program, however, must be loaded into the EXORciser's memory. EXbug performs this function along

with several related ones.

After the tape holding the user's program (generated by the B VM program on the time share

terminal), has been placed in position, EXbug is commanded to Search. When it locates the beginning of the

program, it prints out an identification header. EXbug is then commanded to Load. This operation transfers the .

target program from tape into EXORciser memory. At this time, it is advisable to verify that the machine code

of the tape has been corrected stored in memory. To do this, the tape is rewound to the beginning of the

program, and EXbug is given the command, VERF. Each byte of memory is then compared with the

corresponding byte on tape. Checksum errors are detected and printed out on the terminal. MAID, the

debugging function of EXbug, may then be used to examine and alter memory or to trace, modify, or run the

program.

After the program has been debugged or for an interim inspection, it may be desirable to print it or put it

back on tape again. When given the command, PRNT, and the appropriate memory addresses, EXbug will

output each stored byte to the terminal. To copy the program onto tape, the user first positions the tape and turns

the recorder on. The EXbug command PNCH with the beginning and end memory addresses of the program,

will then cause it to copied, byte by byte, from memory onto the tape.

7-2.2.2 MAID

The MAID (Motorola Active Interface Debug) routine of the EXORciser EXbug control program

7-74

enables the user to perform the following operations in debugging a program:

• Examine and change data in a memory location.

• Examine and change the data in the MPU program registers and counters.

• Calculate the offset in the relative addressing mode.

• Insert, display, and remove breakpoints in the program.

• Freerun or trace the target program under MAID control.

• Perform decimal-octal-hexadecimal conversions.

• Search memory for a bit pattern.

These operations are carried out when one or more of the MAID control commands are entered on

the data terminal keyboard. With the exception of the decimal-octal-hexadecimal base conversions, numerical

values or addresses associated with the commands must be entered in hexadecimal notation.

After executing a command, MAID prints out an asterisk to indicate it is ready for another one. If

MAID can not perform the command, it indicates this by ringing the bell on the terminal. In either case, the

asterisk signifies that EXbug is still running the MAID routine and another command may be entered. The

MAID commands are summarized in Table 7-2.2.2-1.

7-2.3 MEMORY UTILIZATION

As shown on the memory map of Figure 7-2.3-1 the EXORciser has an addressing range of 65,536

bytes. Therefore, the highest address is 65,535 or hexadecimal FFFF. This address, and the one below it are

reserved for the Restart subroutine of EXbug. The entire EXbug program is assigned the highest 4096 bytes of

the addressing range. The three ROMs which contain permanent EXbug instructions have hexadecimal

addresses FOOO to FCOO. Addresses FFOO to FFFF are used for interrupt subroutines, to stack register contents,

and to keep track of variable program parameters. The remaining EXbug addresses, FCOO to FFOO, are

assigned to devices within the system, such as the PIA's and ACIA's for input/output.

The target program· is assigned to memory addresses between 0000 and FOOO. This is a range of

61,440 bytes of storage. Few systems require this large memory capacity, therefore, it can be allocated to

minimize the number of address bits for unambiguous access, or to simplify microprocessor operations. As an

example, suppose that the target program is to be stored in two 1024 byte ROMs. Each one has an addressing

range of 400 hexadecimal. One ROM can be assigned addresses 4000 to 43FF, and the other 4400 to 47FF.

Address lines left unconnected cause the respective bit to appear as a O. Therefore the first ROM address can be

specified:

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

value 0 I 1 I o I 0 0 0 X X X X X X X X X X

NOTE: X represents either a 1 or a 0

Address lines 10, 11, 12, 13, and 15 are left unconnected. For this address range Line 14 is always 1, therefore

it can be connected to a ROM chip select line. The remainder of the address is determined by bits 0 to 9. Only

address lines 0-9 and 14 have to be tied to the microprocessor address buss in this case.

The second ROM would be connected the same way, except for line 10, which should also be tied to

a chip select line. A similar procedure can be used for the PIA'S, ACIA's, or other system components.

7-75

MAID
Command

n

LF

1

n;V

$V

n;P

n;U

;U

n;W

$M

;0

n;O

$R

;P

CR

;S

;T

#n

#n $ n

#@ n

n;O

$T

;N

N

n;N

$S

Description

Print the contents of memory location n and enable the EXORciser to change the
contents of this memory location.

Print the contents of the next sequential memory location and enable the EXORciser
to change the contents of this memory location. (LF - Line Feed Character)

Print the contents of the previous sequential memory location and enable the EXOR
ciser to change the contents· of this memory location. (1 - up arrow character or
SHIFT and N characters)

Set a breakpoint at memory location n.

Display the breakpoint memory locations.

Continue executing from the encounter breakpoint until this breakpoint is encountered
n times.

Remove the breakpoint at memory location n.

Remove all the breakpoints.

Search for the n bit pattern.

Display the search mask.

Executes the user program starting at the auto restart memory location.

Execute user program starting at memory location n.

Display/change the user program registers.

Continue executing from the current program counter setting.

(Carriage Return) Close open address and accept next command.

Disable stop-on-address interrupt, leaving stop address at location previously set.

Discontinue trace mode.

Convert the decimal number n to its hexadecimal equivalent.

Convert the hexadecimal number n to its decimal equivalent.

Convert the octal number n to its hexadecimal equivalent.

Calculate the address offset (for relative addressing mode instructions).

Set the trace mode.

Trace one instruction.

Trace one instruction.

Trace n instructions.

Display/set the stop-on-address compare.

TABLE 7-2.2.2-1 MAID Control Commands

7-76

FFFF

FFOO

FOOO

65535-----1~--~R~A~M~~
64511~,~. ___ R_A ___ M __ ~

64512 -

I
I
I
I

64

ROM2

63

ROM1

62

ROMO

61

(

Interrupt Addresses
Variable Storage

For EXbug

Device Address for
EXbug's ACIA and PIA

1024

1024
EXBUG Program

FOOO 61440 -

83FF

8000

0800

0400

0025

0000

I I

~

~
I

33791 - 1 R.ot." Add,." Powerfail Address
Software Interrupt

I nterrupt Service
ROM/RAM Addresses

33 Etc.

32768

02048

-

-

I I
...!.-...--J..,

~

ROM/PAM

2

1024

I/O
01 024 ---t_~f-------I...- Device

I
I
I

00255 --...... :~II-::-:~~:~~~:::I ~) 128

OOOOO--~--~·~--------~·

Addresses

Typical Users Stack
Location and Variable

Scratch Pad

FIGURE 7·2.3-1: Memory Map and Addressing

7-77

Typical
Users

Program

Dedicated
Memory In
EXORciser

Maximum
Program
Usable
With

Debug
Feature

Microprocessor operations are more efficient if a fewer number of bytes, and processor cycles, are

needed to access memory. Those locations which are the object of frequent Load and Store instructions, within

the user's program, should be assigned an address in the range 00 to FF. They can then be defined by a single

byte of machine code, rather than two. This permits the Assembler to use direct addressing instead of extended

for the relevant memory access instructions. This can result in a saving in memory size and cycle time of up to

33%.

EXbug assumes that the average target program may be contained within half of the maximum range

of the EXORciser memory. For this reason EXbug expects address 83FF to be the top of the target memory

range, and looks for the user specified interrupt subroutine pointers in bytes 83F8 to 83FF when initialized.

These pointers are then transferred to locations FFF8 to FFFF in EXbug' s memory. If the user prefers a different

top of memory location for the interrupt pointers, however, the alternate preferred top of memory location may

be entered into EXbug address FFOO, using the memory change command of MAID. After the interrupt

pointers have been placed in the preferred locations, they are transferred to EXbug's memory when the user

presses the ABORT button.

In order to allow for program expansion within memory, it is recommended that the program

initially be placed in the approximate middle of the addressing range. This would be address 8000 to 83FF if

less than 1024 bytes, 7COO to 83FF for a 2048 byte program, 7400 to 83FF for 4096 bytes, 7COO to 83FF for a

2048 byte program, 7400 to 83FF for 4096 bytes, etc. In this manner, the program instructions are expanded

downward in memory. At the same time, the scratch pad and stack area, in the bottom 256 bytes may be

expanded upward.

7-2.4 HARDWARE OPERATIONS AND CONTROLS

7-2.4.1 Combined Hardware/Software

Many of the EXORciser features are entirely implemented by software routines, but a number of

them also utilize hardware to achieve the desired results. One of the special hardware circuits included on the

DEBUG card generates a "Psuedo Powerfail" interrupt. The NMI and RES (Restart) inputs to the

Microprocessor are switched OFF and then ON again after a short delay. The Microprocessor then performs the

"power down" and "Restart" functions even though the system power has remained on at all times. Other

hardware/software features are:

(a) Trace (or Run) one instruction

(b) Multiple loop breakpoint

(c) Stop-on-address

Run-One-Instruction

When the command to "trace" ($T) or "run" one (or more) instructions is entered (n;N), the

hardware cycle counter is enabled and an RTI instruction is executed. This utilizes 12 clock cycles to move the

contents of pseudo registers established on the stack into the internal registers of the MPU Unit. The instruction

addressed by the P counter (just loaded) is started but since the hardware cycle counter was preset to 13, a

pseudo powerfail interrupt is initiated after the 1st cycle. The MPU completes the instruction in progress,

7-78

whether it is one, two, or three bytes and then enters a normal "Restart" routine by fetching the Restart

routine's address from the top two bytes of memory. These bytes are always reserved for this purpose. (When

the EXORciser was first turned ON, the EXbug program preset its own entry address into those top locations.)

As a result, when a pseudo powerfail occurs, the program stops running after completing the current

instruction, and returns to EXbug. EXbug's "Restart" routine stores the contents of all internal registers in

memory and prints them out on the terminal. The system then waits for the next command.

Multiple Loop Breakpoint

The Breakpoint routine utilizes the "Run-one-instruction" routines; therefore, whenever the

second breakpoint is tested (by entering n;P) it will also depend on the hardware counter to interrupt the system.

Stop-On-Address

This is another of the combination Hardware/Software features. It is called by typing the command

$S, which then transmits the desired address to the comparators in the DEbug card. Whenever the selected

address appears on the address bus, a Psuedo Powerfail interrupt is started. On completion of the instruction at

that address, the program enters the EXbug routine to save the internal registers on the stack and display them

(on the printer). The program counter is displayed, and this identifies the program location which activated the

Stop-On-Address compare. The system then waits for another command.

7-2.4.2 ABORT Button Circuit

One of the unique features of the EXORciser is the ABORT circuit. It operates similarly to the other

Pseudo Powerfail functions except it is manually activated. When a typical program is being tested, and it

, 'runs away" , or locks-up in a loop, (which occasionally happens with an untried program), the ABORT button

should be pressed. This causes a printout on the TTY which identifies t~e location (P counter) and all other

internal register contents (so the diagnosis of the cause can be determined). The system then waits for the next
\

command. The recovery occurs in this case without reinitialization so that prior work is not destroyed.

7-2.4.3 RESTART Button Circuit

Occasionally, when a program "runs away" (due to improper instructions), it destroys some of the

preset data in various places throughout memory. If this included EXbug stack contents, the ABORT button

could not restore operation in EXbug. If this occurs, the "RESTART" button must be used to reinitialize the

system in the same way as initial Tum-On or a true power failure. It is not the same, however, because any

program already in RAM will not be lost by use of the RESTART button.

7-2.4.4 VMA Inhibit Decoder

A requirement of the technique of utilizing EXbug routines, at addresses above the users program in

memory, is that the users program must be inhibited whenever interrupts are serviced or EXbug routines are

entered. Since a user's program might not be fully decoded (and need not be) it could respond along with

EXbug. To prevent this, a decoder circuit is included in the Debug card which inhibits VMA to the users

program whenever an address in EXbug is encountered.

7-79

7 -2.4.5 Asynchronous Communications Interface

The EXORciser utilizes an ASR33 Teletype! (or equivalent) for the user to communicate with the

system. It provides the means to enter commands, load data via the tape reader, punch (or record) data from

memory, or to display the status or data for examination.

An interface is provided which uses duplex serial data in ASCII format. Either 20 milliamperes

neutral circuitry or RS232C is accommodated. Also a switchable baud rate is available (from 110 to 9600 baud)

to work with a variety of terminals. This circuitry is implemented on a separate card located in the rear of the

EXORciser chassis. The RS232C interface and the variable baud rates make it possible to use a number of

teletype substitutes but the TI 733 ASR/KSR2 is particularly recommended. The EXbug program

accommodates 30 baud printers and 1200 baud transfer rates for recording and playback of cassettes. The 12

times improvement in program loading or recording speed plus the much reduced noise level, makes a dramatic

difference in efficiency of EXORciser operations.

7-2.4.6 Scope SYNC

A connector is installed on the DEBUG card and 4 thumbwheel switches are provided on the

DEBUG card to implement a Scope SYNC feature. The switches can be adjusted to correspond to any address

in the range 0 to 65K. When peripheral interface circuitry is being debugged, it is frequently very helpful to

examine the signals on the control leads for that peripheral while triggering the scope at a particular time in the

input or output cycle. By setting the thumbwheels to correspond to a specific address in the peripheral service

routine, and by causing the program to loop through that routine if necessary, a careful study of the signals can

be made.

7-2.5 INTERRUPTS

The MPU reserves two bytes at the top of memory for each of four interrupt vectors. Each two byte

vector contains the starting address of the subroutine to be used when the corresponding interrupt occurs. The

MPU always completes its current instruction before recognizing an interrupt. Then, automatically, without

programmed instructions, it transfers the contents of its registers, program location and status to the memory

stack and carries out the subroutine. At the conclusion of the subroutine, a RTI instruction restores the stacked

information to the MPU.

Three of the four interrupts are used by the EXORciser for internal control, but can be exploited for

additional system functions providing that these do not conflict with EXbug. They are: (1) NMI, (2) Reset, (3)

SWI. The fourth one, the Hardware interrupt, is intended for use with the prototype interface. These interrupts

are described below.

The Non-Maskable-Interrupt is best used to signal when urgent control operations are to be

performed independently of the program. For this reason, it is often used to detect imminent power failure

conditions. The EXORciser also reacts to certain user commands by means of this interrupt:

ITeletype is a trademark of the Teletype Corp.
2Texas Instruments Co.

7-80

(1) MAID commands to run through a breakpoint or trace the target program, as follows:

n;G (commence program execution at address n)

;G (commence program execution at Restart address)

;N (run one instruction)

N (run one instruction)

n;N (run n instructions)

$T (run instructions until select address reached)

;P (proceed from current instruction)

n;P (proceed from current instruction through breakpoint n times)

(2) STOP-ON-ADDRESS COMPARE ($S) also uses the NMI interrupt, although it does not

involve breakpoints or tracing. It is obtained by means of a hardware comparator on the

EXORciser DEbug Module.

(3) ABORT sets the NMI interrupt when the front panel button is pressed. Program control is

returned to EXbug.

NMI always causes the MPU registers to be printed. The memory addresses for the NMI vector are

bytes FFFC and FFFD.

7-2.5.2 RESET

This interrupt occurs when the EXORciser is first turned on, or if the front panel RESTART button is

pressed. EXbug is reinitialized and the EXORciser's internal I/O interfaces are set with starting parameters.

These control the baud rate of the attached data terminal and Debug Module hardware. The Reset subroutine is

also performed if the NMI interrupt is set by a power failure. The interrupt vector for the Reset subroutine is at

memory addresses FFFE and FFFF.

If program control is lost and the ABORT button does not return it to EXbug, the RESTART button

should be pressed to reinitialize the EXORciser. MAID may then be called to check that the user's program has

not been altered.

7-2.5.3 S~

The software interrupt is generated by a program instruction, and as such, is not maskable. As in the

case of all other interrupts, however, the MPU is automatically masked while the interrupt subroutine is being

performed. If desired, the user may deliberately defeat this mechanism by putting a Clear Interrupt Mask

instruction (CLI) in the interrupt subroutine. The SWI vector is at locations FFFA and FFFB. The EXORciser

uses this interrupt in MAID to execute breakpoints that have been set in the program. The breakpoint target

instruction is temporarily replaced by an SWI instruction. This switches control to EXbug when the breakpoint

is encountered, and the MPU registers are printed out. Other uses of SWI are to simulate interrupt-driven

synchronous I/O operations, or to insert entire display, data retrieval or test subroutines into a predefined

program without having to change more than a single instruction byte.

7-2.5.4 Hardware Interrupt

Unless the MPU actively scans the status of I/O devices attached to the system, it depends on this

interrupt to signal peripheral conditions. Like user designed equipment that must perform peripheral functions

7-81

most efficiently, the EXORciser interfaces to the MPU with PIA and ACIA chips. These programmable

devices can be set to provide essential control signals, while buffering data and interrupts to the MPU. In order

to expand EXORciser control to the prototype peripherals, the user connects additional PIA's or ACIA's into

the system to act as the interface. The chip and register select lines of the PIA's or ACIA's are tied to appropriate

bits of the address buss, corresponding to the addresses to be used in the prototype equipment. The MPU data

buss is directly connected to the PIA's or ACIA's. If the prototype hardware was constructed on an EXORciser

type plug-in board, all of these connections are made simultaneously when the board is inserted into the

EXORciser, since the EXORciser backplane ties all board sockets into the MPU busses and control lines.

Under ordinary circumstances, the PIA or ACIA interrupt lines are wire-ored to the MPU. The interrupt signal

is not ambiguous, however, since any or all of the interrupts can be selectively inhibited by the MPU.

For "instant" interfacing and least prototype development time, it is recommended that the

EXORciser I/O Module be used. This optional printed circuit plug-in board can be ordered with the

EXORciser. It allows the user to quickly set the PIA register addresses and, by means of screwdriver adjustable

switches, connect two peripheral data busses to each one of its two PIA's. Additional circuitry in the form of

integrated circuits in 14, 16 or 24 pin wire-wrap sockets may also be added.

Interrupts from the user's equipment to the PIA or ACIA are latched and held until the MPU

dismisses them. Depending on their urgency, the target program may react immediately, or when it has reached

a particular instruction. This is possible because the MPU can mask all interrupts or enable only particular PIA

sections. In any case, when the interrupt is recognized the MPU automatically stacks its registers and status. It

next fetches the subroutine pointer from locations FFF8 and FFF9. The interrupt subroutine is then performed,

and an RTS instruction returns the MPU to its central program. If this was the MAID routine of EXbug, control

commands previously entered by the user will be carried out during and after the interrupt subroutine.

Care must be taken to avoid using the MAID Trace command when an interrupt is anticipated. If this

occurs, EXbug may lose control of the EXORciser. This effect is due to the MPU receiving the NMI and

hardware interrupts simultaneously, each of which have a separate subroutine pointer address. The RESTART

button must then be pressed to reinitialize the EXORciser. One method to avoid tracing through an interrupt is

to set breakpoints around it and then use the program run (;P) to go from the first breakpoint to the second. The

first breakpoint is set into the program just before the interrupt mask is cleared or when a PIA input is expected.

The second is placed in the top of the interrupt subroutine. The program run command will then carry the

system through the interrupt into the subroutine without tracing intermediate instructions. After the second

breakpoint is encountered, tracing may be resumed through an RTI instruction at the end of the subroutine.

A frequently used technique for dealing with multiple wire-ored hardware interrupts is for the

interrupt subroutine to scan each of the interrupt generating PIA's or ACIA's. They may be assigned relative

priorities by the program, and if their interrupt flags are set, appropriate instructions executed according to the

priority sequence.

7-2.6 TEST SIGNALS

System address, data and control signals are readily available for observation since the EXORciser

backplane (see Figure 7 -2.6-1) distributes them to all the board connectors. An extender board may be plugged

into an empty connector, or used to lift an operating board above the chassis. To observe a signal, oscilloscope

probes can then be placed on the appropriate board connector pin or to a wirewrap pin on the board. The

following signals are common to all EXORciser boards:

7-82

Component Side Circuit Component Side Circuit

Pin Number Function Side Function Pin Number Function Side Function

A +5VDC 1 +5VDC A 23
B +5VDC 2 +5VDC B 24
C +5VDC 3 +5VDC C 25
D IRQ 4 Go/HALT D 26
E NMI 5 RESET E 27
F VMA 6 R!W F 28
H GND 7 01 H D3 29 Dl
J 02 8 GND T D7 30 D5
K GND 9 GND K D2 31 DO
L Memory Clock 10 VUA L D6 32 D4
M -12VDC 11 -12VDC M A14 33 A15
N TSC 12 Ref. Req. N A13 34 A12
P B.A. 13 Ref. Gnt. P A10 35 All
R Memory Ready 14 R A9 36 A8
S Refresh Clock 15 S A6 37 A7
T +12VDC 16 + 12VDC T A5 38 A4
U 17 U A2 39 A3
V 18 V Al 40 AO
W 19 W GND 41 GND
X 20 X GND 42 GND
y 21 y GND 43 GND
Z 22

FIGURE 7-2.6-1 Exorciser Backplane Connections for all Boards

7-83

BI-DIRECTIONAL DATA LINES (DO-D.7) - The bi-directional data lines DO'through D7 permit the transfer

of data between the EXORciser MPU and other modules. The data bus output drivers are three-state

devices that remain in the high impedance (off) state except when the MPU performs a memory

write operation.

ADDRESS BUS (AO-Al5) - The sixteen address bus lines are inputs to the bus receiver and select the

memory location to be accessed (write into or read from) by the EXORciser MPU.

NON-MASKABLE INTERRUPT (NMI) - This TTL output requests that the EXORciser MPU performs a

non-maskable interrupt sequence. As with the Interrupt Request Signal, the processor will complete

the current instruction that is being executed before it recognizes the NMI signal. The interrupt mask

bit in the Condition Code Register has no effect on NMI.

The Index Register, Program Counter, Accumulators, and Condition Code Register are

stored away on the stack. At the end of the cycle, a l6-bit address will be loaded that points to a

vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these

locations causes the MPU to branch to a non-maskable interrupt routine in memory.

VALID USERS ADDRESS (VUA) - This output when true indicates to the other Modules that there is a valid

address on the bus and the EXORciser is not addressing an EXbug routine. It is capable of sinking 20

rna. and the voltage levels are TTL compatible.

PHASE 1 CLOCK (cpl) - The cpl clock is the first phase of the non-overlapping clock signals.

PHASE 2 CLOCK (cp2) - The cp2 clock is the second phase of the non-overlapping clock signals.

READ/WRITE SIGNAL (R/W) - This is generated by the EXORciser MPU and determines whether the

MPU is to read (high) data from or write (low) data into other modules or devices. The normal

standby state of this signal is read (high). Three-State Control going high will cause Read/Write to

go into the off (high impedance) state. Also, when the MPU is halted, R/W will be in the off state.

VALID MEMORY ADDRESS (VMA) - This input when true indicates to the DEBUG Module that there is a

valid address on the address bus. This signal is not used by other modules in the EXORciser. See

VUA.

RESET (also called MASTER RESET) - The RESET TTL compatible output, when low, resets the PIA

circuits on the I/O Modules and when high restarts the MPU. This line goes low each time the

EXORciser RESTART switch is actuated or when power is first applied to the EXORciser.

GO/HALT (G/H) - The GO/HALT line is pulled up to 5 volts by the circuitry on the DEBUG card. This TTL

, , 1 " is the Go condition for the MPU Module. The user can control this line through the bus if

desired. When this input is in the high state, the machine will fetch the instruction addressed by the

program counter and start execution. When it is low, all activity in the MPU will be halted. This

input is level sensitive. In the halt mode, the MPU will stop at the end of an instruction, Bus

Available will be at a one level, Valid Memory Address will be at a zero, and all other three-state

lines will be in the three-state mode.

The halt line must go low with the leading edge of phase one to insure single instruction

operation. If the halt line does not go low with the leading edge of phase one, one or two instruction

operations may result, depending on when the halt line goes low relative to the phasing of the clock.

THREE-STA TE CONTROL (TSC) - This input causes all of the address lines and the Read/Write line to go

into the off or high impedance state. The Valid Memory address and Bus Available signals will be

forced low. The data bus is not affected by TSC and has its own enable, (Data Bus Enable). In DMA

7-84

applications, the Three-State Control line should be brought high on the leading edge of the Phase

One Clock. The ~1 clock must be held in the high state for this function to operate properly. The

address bus will then be available for other devices to directly address memory. Since the MPU is a

dynamic device, it must be refreshed periodically or destruction of data will occur in the MPU.

INTERRUPT REQUEST (IRQ) - This input requests that an interrupt sequence be generated within the

MPU. The processor will wait until it completes the current instruction that is being executed before

it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not

set (interrupt masked), the MPU will begin an interrupt sequence. The Index Register, Program

Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU

will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts

may occur. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address

which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes

the MPU to branch to an interrupt routine in memory.

The Go/Halt line must be in the Go (high) state for interrupts to be recognized. If it is in

the Halt (low) state, the MPU will be halted and interrupts will have no effect.

BUS AVAILABLE (BA) - The Bus Available signal will normally be in the low state; when activated, it will

go to the high state indicating that the microprocessor has stopped and that the address bus is

available. This will occur if the Go/Halt line is in the Halt (low) state or the processor is in the WAIT

state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers

will go to their off state and other outputs to their normally inactive level. The processor is removed

from the WAIT state by the occurrence of a maskable or non-maskable interrupt.

MEMOR Y CLOCK - This clock signal provides basic timing for the optional 8K memory boards, DMA if

used, and memory refresh cycles. It is synchronized with ~2 of the MPU clock.

REFRESH CLOCK - This clock determines the frequency of MPU and dynamic memory refresh cycles.

REFRESH REQUEST - This signal indicates when the MPU and dynamic memory should be refreshed.

REFRESH GRANT - This signal acknowledges the Refresh Request, when an MPU clock cycle has been

stolen to refresh the MPU and/or dynamic memory.

MEMORY READY - This signal is used when interfacing slow memories (TACC > 575 nanosec.). If this

signal is brought low, it will stretch the high portion of cp2 of all clocks.

+5 VOLTS - This voltage is available to all EXORciser boards. Total load should not exceed 15 amps

+ 15 VOLTS - This voltage is available to all EXORciser boards. :rotalload should not exceed 2.5 amps.

-12 VOLTS - This voltage is available to all EXORciser boards. Total load should not exceed 1.0 amp.

GROUND - Common electrical reference point for all EXORciser voltages, signals and chassis. When

grounding an oscilloscope, or connecting external circuitry, care must be taken to avoid noise

pickup at the ground point. There are ten separate grounds on the EXORciser backplane, tied

together at a single point, that can be selected for minimum noise on a particular signal line.

All the card slots in the EXORciser housing are wired in parallel so any card could be

inserted in any slot. However, the I/O and Universal Wirewrap cards require 1 ~ inches between

slots while the MPU RAM and Debug Modules (which are standard PC construction) require only

%" . The slots are arranged so that the 6 in the center are % " apart while the 4 on each side are spaced

1~" .

The M6800 Microprocessor Family utilizes an Address and Data Bus structure to

interconnect all units and uses the technique of treating all peripherals as memory. Address decoding

7-85

is thus provided for each I/O channel. Output from or input to a peripheral via the Microprocessor

Bus is achieved by "Storing to" or "Loading from" a specific address which has been assigned to

the PIA's or ACIA's.

In the EXORciser, each Module has MC8T26 Bus Driver/Receivers incorporated so that

an almost unlimited number of memory or I/O Modules can be used. Also each memory or I/O

Module is equipped with address decoding which utilizes hexadecimally marked, screwdriver

adjustable switches to provide instant address assignment for rapid system assembly.

Special Signals

The following signals are not bussed to all boards, but provide essential timing for an individual

module or device:

MPU Module Only:

DATA BUS ENABLE (DBE) - This input is the three-state control signal for the MPU data bus and

will enable the bus drivers when in the high state. This input is TTL compatible; however

in normal operation, it should be driven by the phase two clock. During an MPU read

cycle, the data bus drivers will be disabled internally. When it is desired that another

device control the data bus such as in Direct Memory Access (DMA) applications, DBE

should be held low.

FRONT PANEL

RUN - The RUN signal is present whenever the MPU is executing in user memory (0 to 60K).

ABORT (Two Lines) - These two inputs are connected to a cross-coupled TTL anti-bounce circuit

so that one line is normally low and the other high. The EXORciser ABORT switch is

SPDT and connected so that the grounded side is transferred to the other line when the

button is pressed. The output of this circuit is used to activate NMI.

RESTART (Two Lines) - These two inputs are connected to a cross-coupled TTL anti-bounce

circuit so that one line is normally low and one high. The EXORciser RESTART switch

is SPDT and connected so that the grounded side is transferred to the other line when the

button is pressed. The output of this circuit is the RESET signal.

Baud Rate Module:

READER ON - This signal is the output of a TTL F/P in series with 510 ohms and is applied to the

Baud Rate Module and used to control the reader of a modified teletypewriter. This line

provides approximately 5 rna. to drive the diode in the optical coupler.

TTY SERIAL OUT - This signal is the output of a TTL inverter with a series 510 ohm resistor. It is

intended to drive the diode of an optical coupler on the Baud Rate Module. The signal

switches the 20 milliampre line to the teletype in response to the data from the U AR T .

RS232 INPUT - The RS232 OUT line transfers serial data through the level conversion in the Baud

Rate Module to the terminal device. This output is TTL compatible at this point.

RS232 INPUT - The RS232 INPUT line is a TTL compatible input through which data is received

in a serial format from the level converters on the Baud Rate Module.

TTY SERIAL INPUT - The TTY SERIAL INPUT line is a TTL compatible input through which

data is received in a serial format from the TTY inputs on the Baud Rate Module.

7-86

RS232 DTR - This input is TTL compatible. The signal is generated on the Baud Rate card.

CLOCK (CLK) - The CLK input from the Baud Rate Module determines the baud rate at which the

EXORciser will exchange data with its terminal device. This input is TTL compatible

and represents two standard loads. (3.2 rna. at 0.4 V)

STOP BIT SELECT - This input is TTL compatible. When high, two stop bits are selected by the

UART. When low, one stop bit is selected. The signal is generated by the Baud Rate

Module in the EXORciser.

Reader and Punch Control

The 1.1 version of the EXbug program is designed to work with several models of teletypes as well

as with a Texas Instruments ASR733 Cassette/printer terminal with 1200 baud and Remote Device Control

options.

The EXbug program utilizes the usual ASCII control codes to control teletypes equipped with

Automatic Readers and punches. The codes are: (Shown in hexadecimal notation)

DCl Reader ON - (11)

DC2 Punch ON - (12)

DC3 Reader OFF - (13)

DC4 Punch OFF - (14)

The program also includes routines to control teletypes which have been modified by the addition of

a reader control relay. A Flip/Flop on the DEbug card and an optical coupler (U4) on the Baud Rate Card

implement this function. The' 'D" type Flip/Flop is set by outputting to address FCF4, a data word in which bit

5 is a "1". This turns the reader relay ON. Since both these methods of control are included, either type of

teletype will work.

TI ASR733 Operation

The Texas Instruements ASR 733 terminal recommended for use with this version of EXbug utilizes

an Remote Device Control (RDC) card to provide the extra control functions needed for control of the printer

and Cassettes when using the 1200 baud option. For 10 and 30 character per second (CPS) rates, the tape is

started and stopped (in playback) by the usual ASCII Reader Control codes DCl and DC3 but for 120 CPS

operation the "Block Forward" command oftheRDC card (DLE,7) is used to control the Cassette. The printer

is commanded ON and OFF by the (DLE,9) and (DLE,O) codes to avoid garbled printing. In initialization, the

Auto Device "ON" code (DLE,:) is used to make sure the RDC card will respond.

Baud Rate Control

Another feature of "EXBUG 1.1" is its ability to be adjusted for operation at various baud rates.

Programs written for a TTY require at least two character times (200 milliseconds) for the carriage to return.

For this reason, the CR is issued followed by a (LF) Line Feed so that the next character will print at the

beginning of the next line. When the TI terminal is used at 30 characters per second, the carriage return time ~s

similar so it is necessary to insert 4 additional character delays by outputting null characters (0). The command

S30. is typed to accomplish this.

7-87

In the case where the Verify routine is used, it is very desirable to run the tape at 1200 baud but also

necessary to print the differences found (between the tape and memory). Since the Printer mechanism will only

print at 30 characters per second and the data transfer rate is at 120 CPS, three null characters are inserted

between each character to be printed and 22 nulls are output after each carriage return. Typing" S 120" after the

baud rate has been set for 1200 baud, switches this version (1.1) of EXbug to provide this format.

Formatted Binary Object Program Tapes (i.e. LOAD, VERF, SRCH and PNCH)

The first four routines in EXbug involve the handling of "Formatted Binary Object Program

Tapes." These tapes are generated by the MPU Build Virtual Machine Program on timeshare, or by the PNCH

routine in EXbug. The tape can be the conventional paper tape (if the system terminal is a Teletype) or may be a

Cassette tape such as that produced by the Texas Instruments ASR33 terminal. The procedure for using the

Build Virtual Machine time-share program to generate a suitably formatted tape is described in Section7 -1. 7.

This Section is included in order to summarize the principle features of the EXORciser. For

additional information, the several Manuals provided with the EXORciser should be referred to.

7-3 EVALUATION MODULE

The M6800 Evaluation Module is a pre-engineered assembly that provides an efficient means of

becoming familiar with the M6800 Microcomputer family of parts. The Module (see Figure 7-3-1) is designed

to demonstrate the M6800 Family operating with their specified loading at clock frequencies up to 1.0 MHz. In

addition to its use for evaluating the family devices, it can be used to enter and de-bug simple programs

including the operation! control of peripheral devices. The circuit configuration is shown in block diagram form

in Figure 7-3-2. A brief summary of the specifications is shown in Table 7-3-1.

FIGURE 7-3-1: The Evaluation Module

7-88

An interface is provided for either a 20 rna current loop TTY or an RS-232C compatible terminal.

The terminal can be used to communicate with the Module's diagnostic control program, MIKBUG. The

MIKBUG program is stored in read only memory, and in conjunction with the terminal can be used to perform

the following functions:

.' Load data into the Evaluation Modules random access memory.

• Display and, if desired, change the data in the Modules random access memory.

• Print out or generate a tape of the data stored in the modules memory.

• Display and, if desired, change the contents of the MPU's registers.

• Run User Programs

• Evaluate Interrupts

• Set Breakpoints

The use of each of these features plus a complete description of the Module is provided in the M6800 Evaluation

Module User's Guide; it may be referred to for additional details.

Characteristics Specifications

Power Requirements: +5 VDC @ 2A

+12 VDC @ 250 rnA

-12 VDC @ 250 rnA

Clock Frequency: 100 KHz to 1 MHz (adjustable)

Signal Characteristics:

Connector (P 1)

Address bus Three-state TTL voltage compatible

Data bus

Input TTL voltage compatible

Output Three-state TTL voltage compatible

Input and output commands TTL voltage compatible

MC6820 Peripheral Interface Adapter (P2)

Data signals

PAO-PA7 input/output lines TTL voltage compatible

PAO-PB7 input/output lines Three-state TTL voltage compatible

Control Signals

CAl, CA2, and CB1 TTL voltage compatible

CB2 Three-state TTL voltage compatible

Terminal Interface Specifications (P3)

Data transfer rate 110 or 300 Baud

Signal characterisitcs TTY or RS-232C Compatible

Reader control signal Control signal for modified TTY devices

Data Format ASCII

TABLE 7-3-1 Evaluation Module Specifications

7-89

-.....J
\0
o

TSC

G/H
NM

~VA-;;AT~ M~LE- - - - - - - - - - - - - - - -- -- - -- -- -- -- -- -- -- --,

I
1 I
I RESET RESET

I CI RCUIT TSC

I - ADDRESS 16

bEl

ADDRESS BUS BUS L 1
INTER- , -12

1
A9 (5 E7 AO-A8, A13-A15 AO-A9 AO-A2, FACE Ell~ I A13-A15 A12-A15 5 A13,A15

I
tE2 0?E6~1-'12 3 14 V AO,Al,

E12.£ I A3,A13,
A15

1
I

ROM RAM TERMINAL

I MEMORY MEMORY INTER- j
~ 5 FACE

1 ~ - I
E136 I

I E3 4

L I
I iE4

</>1 E14

MICRO ~ VMA-</>2 BIT 1 PROM I I-=-
PROCESSING ~ CLOCK - RATE MEMORY

BA UNIT RlW_ T - CLOCK

I CONTROL ~ ~ I -
BA

VMA

VUA

R7W ~
BUS ~

INTER-
FACE ~

I L l
I
I

I+--I " I _ DATA DATA PIA '8

I I R/W BUS BUS
OUTPUT INPUT 1
ENABLE ENABLE

/ I I 's I
R/W IROA IROB

V I I Vs Vs ,V8
~ S

8 DATA

I
~~ DATA BUS ~ 8/ BUS LJ

/ INTER-
FACE

nr I

I E9 6 E8

ENABLE

.~ YE10 ENABL

L ________ _ _______ -.J

FIGURE 7-3-2: Evaluation Module Block Diagram

AOTHRUA15

SERIAL INPUT

SERIAL OUTPUT
READER CONTROL

RS-232C OUTPUT

RS-232C INPUT

CAl

CA2

PAO thru PA7

CB2

PBO THRU PB7

09 THRU 07

The Module includes two PIAs. One is used for the terminal interface, however, the other is

available for general use. It can be used in exactly the same manner as in an EXORciser or a prototype hardware

design for interfacing to peripherals. This PIA has, for instance, been used to control a TTY type keyboard and

a self-scan visual display used in conjunction with a portable demonstration kit for the Evaluation Module.

A memory map of the Evaluation Module is shown in Figure 7 -3 -3. The Module provides up to 640

bytes (hex addresses 0000 to 027F) for storage of evaluation programs. The 128 bytes of random access

memory at base memory address AOOO is used as scratch-pad memory for the MIKBUG firmware. MIKBUG is

located at base memory address EOOO. An interface is provided for adding additional blocks of memory. The

additional memory could be located anywhere from 0000 through DFFF except for addresses 8004 through

800B and AOOO through A07F.

provided:

In addition to the Evaluation Module printed circuit assemble itself, the following items are

• An 86-pin connector compatible with the PI connector of the Module

• TTY/RS-232C 16-pin Flatribbon Cable WI for connection between the Module and a terminal.

• PIA Connector/Flatribbon Cable W2 for connecting the Module to external peripheral devices.

• M6800 Evaluation Module Users Guide which contains a complete description of the Module and

includes detailed operating instructions.

This package provides a simple but useful method for evaluating the M6800 Family's characteristics in a

realistic environment.

7-91

Not Use

~------------------------------------~ EFFF

~------------

....

I
,~

Mikbug

Mikbug Program

PIA Addresses

Terminal Addresses

640 Bytes
Random Access

Memory

EOOO

....

t07F
AOOO

800B

8008
8007

8004

.. r-'

0279

0000

FIGURE 7-3-3: Evaluation Module Memory Map

7-92

APPENDIX A
(Questions and Answers)

1 M6800 SYSTEMS OPERATION

Q 1. Is it possible to read a PIA address unintentionally?

A 1. Yes. If the PIA is assigned an address in memory such that the address location immediately preceding

it contains a single byte (inherent address mode) instruction, then the execution of that instruction will

cause the PIA to be read. The MPU always fetches the byte following the operator byte. If the PIA

address that is read happens to be a Data Register, then the interrupt flags may be inadvertently cleared.

This may be avoided by separating PIA addresses from the main program by at least a single byte gap.

Q 2. What is the MPU's drive capability?

A 2. The MPU can drive 130 pf of capacitance and one standard TTL load while operating at 1 MHz. Since

the PIA, RAM, and ROM have Data Bus load capacitances of 10 pf, 15 pf, and 15 pf, respectively, the

MPU can drive from 7 to 10 family devices at 1 MHz.

Q 3. What is the state of the PIA's 1/0 lines at initialization?

A 3. The RES signal to the PIA will reset all six of the internal registers (Control, Data Direction, and

Output Data) to zero. Since all the Data Direction Register bit positions are zero, the I/O Data lines

PAO-PB7 and PBO-PB7 will be established as inputs. Since b5 of both Control Registers is zero, the

CA2 and CB2 control lines are also established as inputs. This has the following effect on lines that will

later be established as outputs (that is, they may be hardwired to the inputs of external logic elements):

Since the B side of the PIA has three-state outputs and the lines are "initially established as inputs, they

represent a high impedance" off" device and will not affect the inputs of gates that may be connected.

The A side lines have an internal pullup resistor and will' 'look" like logic ones to gate inputs. External
. ---

circuitry tied to the A side should require active low signals if they are not to be affected by RES.

On the B side lines that are to be established as outputs and used to drive active high Darlington inputs,

a resistor to ground can be used to avoid initial turn on:

If the output lines are to drive TTL and must be active high, the peripheral logic should be disabled with

a hardware control during the initialization sequence. Note that, as far as system operation is

concerned, the initial state of some lines may not matter. For example, in a tape cassette system if the

motion control circuitry is disabled during initialization, the other lines such as direction and speed are

"don't cares."

A-I

Recommended procedure for initializing the PIAs is as follows:

1. Set b2 = 1 in the Control Register in order to select the Data Register.

2. Write the desired initial logic states into the Data Register.

3. Then establish the required outputs by selecting the Data Direction Register by setting b2 = 0 in the

Control Register and writing the appropriate pattern into the Direction Register.

Q 4. What causes the PIA to miss interrupts when the MPU is halted or in the WAIT mode?

A 4. While there are nominally no restrictions on the format of interrupt signals into CAl, CA2, CB 1, and

CB2 of the PIA, there are certain combinations of system situations that require special consideration.

Assume that the interrupt signal format follows one of the cases shown in Figure Al and that the PIA

has been conditioned by the MPU to recognize the transition polarity represented by the "trailing

edge" of the interrupt pulse.

Interrupt {
Signals Into

,PIA CA(B) 1
and CA(B)2

t
-----~

FIGURE A1. Interrupt Signal Format

The design of the PIA is such that at least one E pulse must occur between the inactive and active edges

of the input signal if the interrupt is to be recognized. Relative timing requirements are shown in Figure

A2. Note that an internal enable signal that is initiated by the first positive transition of E following the

inactive edge of the input signals is included.

E = VMA· </>2

PIA Internal Enable

Int. to CA(B) Inputs

I RQ (Int. Rqt to MPU)

FIGURE A2. Interrupt Enabling

When the MPU has been halted either by hardware control or execution of the Wait For Interrupt (W AI)

instruction, its VMA output goes low. Since VMA is normally used to generate the Enable signal (E =

VMA· cp2) either of these two conditions temporarily eliminates the E signal. The effect of this on the

trailing edge interrupt format is shown in Figure A3 where it is assumed that VMA went low and

eliminated the Enable pulses before the PIA's interrupt circuitry was properly conditioned to recognize

the active transition. It should be noted that this condition occurs only when an active transition is

preceded by an inactive transition and there are no intervening E pulses.

A-2

VMA I After Halt or WAI

E = VMA • cJ>2 r-, r-,

PIA Internal Enable
,..--------------

Int. to CA(B) Inputs

I RQ (Int. Rqt to MPU) L

FIGURE A3. Interrupt Not Properly Enabled

If this combination occurs during system operation, valid interrupts will be ignored. Either of two

simple precautions can be adopted. If the format of the interrupt signals is up to the designer, the

potential problem can be avoided simply by not using the pulse-with-trailing-edge-interrupt format.

If this format is compulsory, it is recommended that ~2 be used as the Enable signal with VMA ANDed

with an address line and applied to one of the PIA's chip select inputs as shown in Figure A4.

AO

A1

A3

A13 CS1

VMA
CS2

A14

cJ>2 E

FIGURE A4. Alternate E Generation

Q 5. Is there any change in the CA2 (CB2) line if it is set to a logic "0" (Control Register bits 5, 4, 3,

are 110 respectively - defining CA2 (CB2) as an output) and then the control register is put in

the handshake mode (CR bits 5, 4, 3, are changed to lOX, respectively)?

A 5. When the control register bits are changed to put the PIA in the handshake mode, the CA2 (CB2) lines

remain low.

Q 6. What are the threshold points for the M6800 family from which the delays are measured?

A 6. The M6800 input thresholds are specified as Logic 1 = 2.0v, Logic 0 = O.8v; the delays are measured

from these points. TTL and M6800 family devices provide output signals having logic 1 = 2.4v and

logic 0 = O.4v, providing 400 mv of noise margin. The delays are measured as shown:

A-3

2.4 V

--iII-- 2.0 V _~~_---.~ Noise Margin = 400 mv

-+-+-.8 V

2.4 V

---.....~-#-- 2.0 V

-~-~-.8V

'-----------------~---' '--------.4 V

~----DelaY---"""""1--

Q 7. What happens in the ACIA when a control word is loaded after an ACIA reset condition? (How is

the ACIA initialized in the system?)

A 7. When power is turned on in the system, the ACIA interrupts may be enabled and generate a system

interrupt. This can happen if there is a glitch in the power supply as the power came on:

Supply
Voltage

~-----------------Vcc

--~------------------------------------~"time

The procedure for initializing the ACIA is to do a master-reset by writing into the control register

(CR 1 = 1; CRO= 1), while the interrupts are masked in the system. The master reset clears the interrupt,

transmit data register empty, and receive data register full flags, and clears both the receive and

transmit data registers. The ACIA interrupts may then be enabled as required.

NOTE: Since a master reset clears the Transmitter buffer, an interrupt will be generated from the ACIA

provided the Transmitter Interrupt Enable (TIE) is activated when loading the control register

subsequent to the master reset.

Q 8. How large a load is the MC8T26 bus driver?

A 8. The MC8T26 has a PNP input and loads the MPU as shown:

200 IJ-a max at "0"

25 IJ-a max at "1"

= 1 0 pf input capacitance

Q 9. Why is 100 KHz specified as the minimum operating frequency?

A 9. The MPU is a dynamic device and (like dynamic memories) requires refreshing via the clock. The

maximum time between refresh transitions on the clock line is 5 IJ-S corresponding to an MPU cycle

time of 10 IJ-S; ora frequency of 100 KHz.

A-4

2 M6800 CONTROL

Q 1. Can ODE be tied to a OC level?

A 1. No, the DBE signal is used to refresh the output buffers which are dynamic. DBE cannot be held in one

state for more than 4.5 /LS without degrading the data held in the output buffers.

Q 2. What does ODE control?

A 2. DBE controls the three-state enable on the data output buffers. When DBE is low, the data output

buffers are in the high impedance state. When DBE is high, the data output buffers drive the data bus.

The data output buffers are also in the high impedance state during the execution of a read cycle (R/W

= 1).

Q 3. What should be used as a ODE control signal?

A 3. Most applications will use cp2 as the DBE control signal. A longer data hold time requirement during a

write cycle may be met by holding DBE high past the trailing edge of cp2. The MPU data setup time

(T ADS) can be shortened from the 200 ns specified by bringing DBE high before the leading edge of

cp2. The exact timing relationships are currently being characterized.

Q 4. What is the relationship od ODE and TSC?

A 4. DBE is the three-state strobe for the data buffers while TSC is the three-state strobe for the address bus

and the R/W line. TSC also forces VMA low. In many applications, it will be desired that the MPU

always drive the bus, thus, TSC will be tied low. In other applications, TSC will be used to implement a

Direct Memory Access, (DMA), or to force VMA low during system power-up rather than using

RESET to disable the devices on the bus. DBE and TSC cannot be tied together because DBE must

change states every 5 /LS whereas, in many systems, TSC will be tied low.

Q 5. Will interrupts (IRQ or NMI) and RESET be recognized while the MPU is halted?

A 5. Interrupts will not be acted on while the MPU is halted. These control signals are latched on the MPU

and will be serviced as soon as the MPU is taken out of the halted state. RESET going low while the

MPU is halted causes the following: VMA-low, BA-low, Data Bus-high impedance, R/W -Read State,

and the Address Bus will contain the restart address FFFE.

Q 6. What happens if the MPU is halted and the + 5 volt power fails?

A 6. The MPU stops program execution and all internal register contents will be lost.

Q 7. How can one tell whether the MPU has halted?

A 7. When the MPU is halted the BA signal will be high. The MPU completes execution of an instruction

before halting. Once the execution is completed, BA will go high within 470 nsec after the leading edge

of the next ~2 signal. Whenever BA goes high the MPU is inactive (halted) and the address bus, R/W

line and data bus are available for use by another device for as long as necessary. One caution to be

observed is that TSC going high will force BA low whether or not the MPU is halted. When the MPU is

halted all MPU outputs are in the high impedance state, therefore, there is no reason for TSC to be high,

however if it is brought high BA will go low and the indication that the MPU is halted will be lost.

A-5

Q 8. What is the timing relationship between HALT and BA?

A 8. If HALT is low during the first lOOns of cf> 1 in the last cycle of an instruction the MPU will halt at the

end of that instruction. If HALT is not low during the first lOOns of cf> 1 in the last cycle of an instruction

the MPU will halt at the end of the next instruction. The fastest instructions such as LDAA (Immediate)

execute in 2/-Ls while the longest instructions such as SWI require 12/-Ls to execute, (assuming a 1 MHz

clock rate). Depending on the instruction being executed when HALT goes low, BA will go high no

sooner than 2/-Ls and no longer than 14/-Ls after the negative transition of HALT.

Q 9. How is single instruction execution accomplished with the MC6800?

A 9. Single instruction execution is accomplished by holding the HALT line active low and pulsing the

HALT line high for one clock cycle when an instruction is to be executed. The transitions of this pulse

must occur within lOOns of the leading edge of cf> 1. The machine will come out of the halted mode and

execute the next instruction which will require from 2 to 12 machine cycles to complete. After

completion of the current instruction the MPU will return to the halted mode. In order to avoid incorrect

operation of the MPU when" stepping" through a program at a very high rate, the HALT line must not

be pulsed high until the MPU has completed executing the instruction commanded by the previous

HALT pulse. The BA signal going high will indicate that the MPU has halted and is available for

another single cycle pulse on the HALT line.

Q 10.

A 10.

Q 11.

All.

Q 12.

A 12.

What effect on the other MPU signals does a low logic level on the RESET pin have?

RESET is intended to be used to initiate the power up sequence. RESET should be held low while

power is coming up and for at least 8 clock cycles after the power supply voltage goes above 4.75 volts

to properly initialize the MPU. During this time the address bus, R/W line, VMA line and data bus will

be in an indeterminate state. If any devices on the data bus could accept a write pulse during this time (a

battery backed RAM for example) they should be disabled until RESET goes high to avoid system

problems. After 8 clock cycles VMA will go low and RESET may be brought high causing the MPU to

vector to the restart addresses FFFE and FFFF.

With the MPU power up and the system running can RESET be pulsed low to re-initialize the

system?

Yes. Assuming that the processor has been running for at least 8 clock cycles, the processor can be

restarted by pulsing the RESET line low. This pulse must remain low for at least three cP2 cycles.

While the RESET line is low the MPU output signal will go to the following states: VMA-Iow,

BA-Iow, Data Outputs-high impedance, R/W (Read State), and the Address Bus will contain the

restart address FFFE. This will occur within 300 ns of the cP1 cycle following the cP1 cycle in which

RESET went low.

How can a 'DMA channel be implemented with the MC6800 MPU?

Two methods of controlling the MPU to allow DMA involve the use of the HALT and TSC lines.

(a) When the HALT line is pulled low the MPU will finish the current instruction and then go into the

halt mode as indicated by BA being high. All address lines, data lines, and R/W lines will be in the

high impedance state, allowing the DMA channel to assume these functions. VMA will be forced

A-6

Q 13.

A 13.

low. Once the MPU enters the halt state (which can take up to 14 nsec to finish the current

instruction), DMA transfers can begin and control the bus as long as necessary. The speed of DMA

is limited only by the constraints imposed by the memory system speed and DMA controller

design.

(b) TSC used in combination with stretching of the clock signals can provide a DMA channel which

allows DMA transfers without stopping MPU program execution. In order to transfer DMA

information using this technique TSC is brought high on the leading edge of cp1 when a DMA

transfer is requested. While TSC is held high the cp1 clock is held in the high state and the cp2 clock

is held in the low state in order to stop program execution by cycle stealing. Assuming that DBE is

driven by cp2 the result of pulling TSC high will be to place the address bus, R/W line, and the data

bus in the high impedance state. VMA and BA will be forced low. Due to the use of dynamic

registers within the MPU the clock signals cannot be held in any given state for more than 4. 511-s

producing a lower limit on clock frequency of 100KHz. This factor limits DMA transfers on the

bus to this 4.511-s interval when cp1 is held high. After the 4.511-s interval when cp1 is being held high

the MPU must be clocked in order to refresh the dynamic registers. This technique of DMA has the

advantage of fast response to a request for a DMA transfer (TSC = 1) but has a limitation on how

much data can be transferred in one block. Halting the machine as described in (a) has a longer

response time before DMA transfers can start but there is no limitation to the block size of the

DMA data.

What control signals could be used to select ROMS, RAMS, and PIA/ACIA?

VMA, R/W and cp2 are all available to enable RAMS, ROMS and PIA/ACIA's. In some cases it may

be desirable to eliminate one of these enabling signals so that enable input may be freed for address

decoding. The following discussion indicates which control signals could be deleted for a given device

and the effects on the system operation.

ROM - R/W and cp2 can be used to enable the ROMS without using the VMA si.gnal. Not using the

VMA signal means that the ROM may be enabled during a non-memory reference read cycle

(VMA would be low but since it is not used the ROM may be enabled). A false read of the

ROM will have no effect on the system and if the non-memory reference cycle had been a

write then the R/W signal would have disabled the ROM.

RAM - VMA can be left off as an enable to a RAM if the MPU will not be halted, WAI Instruction

executed or if the TSC will not be used. Either of these conditions cause the Address lines and

the R/W lines to float which could produce a false write into RAM if not protected by VMA.

During normal operation of the MPU only one instruction, TST, causes a false write to

memory (i.e. the write line going low with~ut VMA also going low). This instruction does

not pose a problem because it first reads the memory and then rewrites the data read. If VMA

was used to enable the RAM this false write would not occur, however, since the memory is

rewritten with the same data no problem occurs by not using VMA as an enable.

A-7

PIA/ACIA --.,;. All three signals must be used to enable or select a PIA or ACIA. Both of these devices

automatically clear the Interrupt Flags when the MPU reads the PIA or ACIA data

registers so that a false read of a PIA or ACIA may cause an interrupt on CAl, CB I,

CA2, or CB2 to be missed. In addition it is suggested that VMAecf>2 not be used as an

Enable signal for a PIA because if the machine is halted, (HALT active or W AI

instruction) VMA is forced low removing the clock from the PIA. Without the Enable

input to the PIA an external interrupt may not be recognized. cf>2 should be used for the

PIA Enable signal so that the PIA Enable clock always occurs whether or not the MPU is

halted. VMA may then be taken directly to chip select inputs or be gated with address

signals to the chip select inputs.

A-8

3 M6800 INTERRUPT OPERATION

Q 1. What happens if the interrupt mark is set (1=1) and (a) a SWI occurs; (b) a WAI occurs?

A 1. (a) The interrupt service routine indicated by the SWI vector will be processed. The Interrupt Mask

status (1= 1) will be saved on the stack with the other Condition Code Register bits. The RTI at the end

of the service routine then restores the 1= 1 status when the stacked condition code register is returned

to the MPU.

(b) If a W AI is executed while the Interrupt Mask is set, the MPU will cycle in a wait loop unless a

non-maskable interrupt (NMI) occurs.

Q 2. Is the interrupt mask always cleared after an RTI?

A 2. An RTI returns the I to the status that existed before the interrupt occurred. If the interrupt mask is set

then only the NMI or SWI can cause interrupts. The interrupt mask will be set following execution of

RTI if it was set prior to the above interrupts.

Q 3. If power goes down how does the programmer know where the MPU contents are stacked?

A 3. If the system uses NMI as a power fail detect input and there is non-volatile memory in the system the

MPU status will be saved on the stack. As part of the NMI service routine the STS instruction can be

used to store the stack pointer into a predetermined non-volatile memory location. If the MPU status is

also to be saved the stack must be in non-volatile memory.

Q 4. How can the NMI input be used as an operator interrupt?

A 4. If NMI is not used for starting a power down sequence, it may be used directly as an operator interrupt

by having an operator interrupt service routine specified at the NMI vector location.

If NMI is used for power down and operator interrupt, some external circuitry may be added so that a

test in the NMI service routine can determine whether a power fail or an operator interrupt has

occurred. In the diagram shown below, the test may be accomplished by reading the PIA data bit,

PAO. IfNMI occurs, a test of the appropriate PIA data register will determine whether a power down

or an operator interrupt occurred.

Powerfail -------~ }--------.
Operator I ntrpt

PAO
---..... NMI

PIA MPU

A-9

Q 5. What instructions set the interrupt mask?

A 5. TAP, SEI, SWI, W AI (after interrupt occurs).

The interrupt mask will also be set by NMI, RES, and IRQ interrupt inputs to the MPU.

Q 6. If NMI occurs while the MPU is halted will the MPU respond to the NMI when it is returned to

the "go" state?

A 6. Yes, there are flip-flops in the MPU to save NMI and IRQ. When the halt condition is removed, the

MPU will execute one instruction and then operate on NMI.

Q 7. How will the MPU react to the following conditions?

HALT

RES (Case 1)

RES (Case 2)

T1 T2 'T3 T4

A 7. In both cases the MPU will eventually recognize the RES. The RES sequence will be initiated when

RES goes high in Case I and when HALT goes high in Case 2. During TI, the MPU is halted and its

outputs are in the three-state high impedance mode. When the RES line goes low at the beginning of

T2, a halt latch is reset, the MPU goes out of three-state, and (after 3 machine cycles) the Address bus is

outputting FFFE, the most significant half of RES vector address

In Case I, the HALT line goes high and the MPU waits in its current state until RES high at the end of

T4; the MPU then fetches the starting address of the RES service routine from FFFE and FFFF and

processes the RES interrupt.

In Case 2, the RES line goes high at the end of T2 and the MPU loads the Program Counter with the data

(starting address of RES routine) from locations FFFE and FFFF and enters the halt mode again. The

RES service routine begins executing when HALT goes high at the end of T3.

Q 8. Can the Interrupt Mask be changed by the TAP instruction?

A 8. Yes. The contents of accumulator A is stored in the Condition Code Register, including the Interrupt

Mask. Note that bits 6 and 7 will not be stored.

Q 9. What happens when an NMI interrupt occurs during a SWI?

A 9. It is a characteristic of the MPU that if an NMI occurs while a Software Interrupt (SWI) is being

executed, the interrupt vector will be retrieved from the IRQ location rather than either the SWI or NMI

locations. If there is a possibility of this situation developing during system operation, precautions

should be taken to avoid an ambiguous result. In most applications, the NMI must be recognized and

serviced whenever it occurs.

A simple procedure is to always set a flag immediately prior to each use of SWI:

A-IO

NOP

SEI

INC NMIFLG

SWI

DEC NMIFLG

CLI

Set possible NMI Flag.

Execute Software Interrupt

Clear flag if SWI was normal

Testing this flag can then be made the first step of the normal IRQ service routine. As an example,

assume that the IRQ vector has been fetched and directs program control to IRQ service routine

START:

START

IRQSVC

TST

BEQ

JMP

xxx

NMIFLG

IRQSVC

NMIAUX

xxxxxx

Was this NMI via SWI?

No, branch to normal IRQ

Yes, go to NMI Service routine

For a normal IRQ, the flag will be zero and the routine will branch to the normal service routine,

IRQSVC. If the IRQ was entered via a Simultaneous SWI-NMI, the flag is non-zero and control is

transferred to an auxiliary NMI routine, NMIAUX:

NMIAUX TSX Get SP into X reg

TST 6,X Lobyte of PC on Stack = q,q,?
BNE HIBYTE Yes, go decrement Hibyte

DEC 5,X No, decrement lobyte

HIBYTE DEC 6,X Decrement Hibyte

NMISVC xxx xxxxx Begin normal NMI service

A normal NMI would be vectored to NMISVC. IfNMISVC is entered via a simultaneous SWI/NMI

and it is required that the program resume normal operation following service of the non-maskable

interrupt, NMIAUX will insure an orderly return to the main program. The NMIAUX sequence causes

the value of the Program Counter that was stacked by the SWI instruction to be decremented by one so

that the stacked program counter is pointing to the S WI instruction's location. This will cause the S WI

instruction to re-execute following an RTI from the NIMSVC service routine. Program flow will then

A-11

Q 10.

A 10.

Q 11.

All.

Q 12.

A 12.

Q 13.

A 13.

Q 14.

A 14.

proceed as if the NMI had not occurred. If there is no system requirement to return to the SWI

sequence, the auxiliary instructions can be deleted and exit from START becomes JMP NMISVC.

Note that the system initialization procedure should include provisions for clearing the NMIFLG flag.

Note also that IRQ is masked while the NMI flag (NMIFLG) is set to prevent an improper branch at

IRQ START.

When will the MPU recognize an IRQ pulse?

The IRQ input is latched internal to the MPU providing the pulse duration is at least two MPU cycles.

Therefore, the MPU will recognize pulses active for two cycles. Three exceptions are to be noted as

follows:

1. If 1M = 1 while a pulse occurs, the MPU will miss the interrupt.

2. If IRQ and NMI are active concurrently, the MPU will recognize NMI. In so doing, the interrupt

latches are reset and the IRQ pulse will be lost.

3. If IRQ occurs during an SWI instruction, the pulse will be lost because SWI clears the interrupt

latches.

What happens if an NMI occurs after an IRQ but before the MPU enters the IRQ service

routine?

The instruction being executed when the IRQ occurred will be completed. The IRQ interrupt sequence

will be initiated and continue (for 9 cycles) until the MPU status has been stacked. Assuming that NMI

occurs during this interval, the MPU will select NMI since it has higher priority . (Note that iflRQ was a

pulse, it is permanently lost unless it lasts until the Interrupt Mask is cleared by software.) The MPU

fetches the starting address of the NMI service routine from locations FFFC and FFFD and begins

servicing the non-maskable interrupt. If the IRQ line is still low when the Interrupt Mask is cleared by

either a CLI during the NMI service routine or the RTI at the end of it, a normal IRQ will then be

initiated.

Assume 1m = 1, IRQ is active (low), and 1m on the stack = 0; then an RTI is encountered. Will one

instruction after the RTI be executed?

No. the IRQ will be serviced prior to the instruction.

Assume 1m = 1, IRQ is active, and 1m on the stack = 1; then an RTI is encountered. Will the

interrupt be recognized after the RTI has executed?

No. The next program instruction will be executed. IRQ will not be serviced until 1m is reset by

software.

Will the MPU recognize an interrupt occurring during the last cycle of an instruction during that

instruction?

Yes. The interrupt must occur during the second to the last cycle of an instruction if it is to be

recognized during that instruction. The interrupt inputs are sampled during 4>2 and clocked during the

next 4> 1 so the interrupt must be present = 200 ns prior to the end of the 4>2 in the last cycle of an

instruction if it is to be recognized during that instruction. The first cycle of any given instruction is

considered to be the OP CODE fetch from memory.

A-12

Q 15.

A 15.

Q 16.

A 16.

Q 17.

A 17.

Q 18.

A 18.

H the Interrupt Mask is set and an interrupt is pending, how fast does the MPU recognize the
interrupt after the mask is cleared by a eLI instruction?

The interrupt will be serviced not more than one instruction after execution of the CLI. If the opcode of

the instruction immediately preceding the CLI instruction has a zero in its least significant bit position,

a pending interrupt will be recognized as soon as execution of CLI is complete. If there was a one in the

least significant bit position of the previous instruction's opcode, the instruction following the CLI will

be executed before the pending interrupt is recognized.

The Wait for Interrupt instruction (W AI) is often used to expedite the handling of interrupts by causing

the MPU to stack its contests and enter a waiting mode. It is normally used in anticipation of an

interrupt that requires the quickest possible handling. It is possible for the MPU to hang-up in the wait

mode if the W AI instruction is used following a Clear Interrupt Mask instruction (CLI) if the

anticipated interrupt is already pending when CLI executes and the interrupt is serviced as soon as the·

mask clears. Completion of the interrupt service routine will return the program to the W AI instruction

and cause the MPU to begin waiting for an interrupt that has already been serviced. If the opcode of the

instruction immediately preceding the CLI instruction had a one in its least significant bit position,

clearing of the Interrupt Mask by CLI is sufficiently delayed such that execution of the W AI instruction

begins before the interrupt can be recognized and the desired result is obtained. That is, W AI executes

and then the interrupt is serviced rather than vice versa. It is recommended that whenever W AI is

preceded by CLI, the CLI should be preceded by a NOP:

NOP

CLI

WAI

Use of the NOP insures that the least significant bit of the instruction preceding CLI will contain a one.

How is NMI masked once it is activated?

The NMI is not masked. The NMI input is reactivated 3 cycles prior to executing the first instruction of

the service routine. Another NMI input will be recognized if a falling edge occurs after this time.

When are the IRQ and NMI reactivated during the interrupt service routine?

Both are reactivated after the 9th cycle of the interrupt sequence, i.e. , after they have been tested to see

which interrupt input caused the sequence to start.

How fast can the MPU service an interrupt?

The MPU can vector to the first instruction of the interrupt service routine in 13 ~ 23 clock periods

depending on what instruction is being executed and how far that execution has progressed at the time

of the interrupt.

A-13

Q 19.

A 19.

Q 20.

A 20.

Q 21.

A 21.

Q 22.

A 22.

Q 23.

A 23.

Q 24.

A 24.

Why is the interrupt mask placed in front of the IRQ flip-flop?

The interrupt mask is placed prior to the IRQ flip-flop to prevent the flip-flop from being set again by

the present interrupt. The interrupt sequence sets the interrupt mask bit just prior to resetting the

interrupt flops.

How fast can an interrupt be serviced using the W AI instruction?

Four MPU cycles are required to start the interrupt sequence after a W AI instruction

When is a puD up resistor required for the IRQ and NMI MPU inputs?

When multiple signals are wired to the interrupt inputs, a 3.3KO pull up resistor is recommended.

WiD the MPU recognize IRQ and NMI when in a single instruction mode of execution, i.e., Gill
high for one cPt high clock cycle?

The IRQ and NMI interrupts will not be recognized in this mode of operation.

When does the MPU recognize an IRQ or an NMI when the HALT line goes high and the
interrupt is present?

The MPU will execute one instruction after the Go/Halt line goes high before the IRQ or NMI is

recognized.

What happens if an NMI occurs immediately after the RES line goes high?

Since the stack is undefined at this time the MPU status will be stored at some unknown location in

memory, overwriting any RAM programs if the stack pointer happened to be pointing at them.

Similarly if an IRQ occurs after the interrupt mask is cleared and before the stack pointer is initialized

the MPU status will be stored starting at an unknown location.

It is therefore recommended that the stack pointer be defined (using the LDS instruction) very early in

the program.

A-14

4 M6800 PROGRAMMING

Q 1. What is meant by dual operand addressing?

A 1. In computer terminology, "dual operand instructions" refers to instructions which reference two

values. The values may be specified as data (immediate operand), contents of a register, or contents of

a memory location.

In the MC6800, dual operand instructions reference an accumulator (register) and either data

(immediate operand) or a memory address:

IMMEDIATE DUAL

OPERAND INSTRUCTION

Add A #17

Operand # 1 = Contents of A

Operand #2 = 17 (decimal)

Q 2. When is there an arithmetic carry?

A 2. Add Instructions

MEMORY REFERENCE

DUAL OPERAND INSTRUCTION

EOR B $8130

Operand # 1 =. Contents of B

Operand #2 = Contents of memory location

8130 (hex)

Carry occurs when the sum of the binary operand values is greater than 255. When DAA follows an add

instruction carry occurs when the sum of the binary coded decimal values is greater than 99. Add

instructions include: ADD, ABA, and ADC.

Subtract Instructions

In subtract operations the condition code register carry (C) bit is used as a borrow bit. When the binary

subtrahend is greater than the minuend the C bit is set. Otherwise it is cleared. Subtract instructions

include: CMP, CBA, NEG SUB, SBA and SBC.

Q 3. How is the H bit (bit 5) in the condition code register used?

A 3. The "H" stands for Half-carry.

In the MC6800 two BCD digits can be obtained in one eight bit byte. Decimal addition is accomplished

by two instructions - an add instruction followed by a DAA (Decimal Adjust Accumulator)

instruction.

The MC6800 add instructions are binary adds. The H bit is set during the add when the binary sum of

the low order decimal digit (bits 0-3) exceeds 15. When the binary sum is less than or equal to 15 the H

bit is cleared. The DAA instruction then uses the H bit to determine how the result of the add must be

adjusted to convert the binary sum to decimal. The H bit is affected by the following add instructions:

ADDA, ADDB, ABA, ADCA, and ADCB. The H bit is not tested by any branch instructions. If it is

desirable to test the H bit a program routine can be written.

Q 4. How is decimal subtraction accomplished?

A 4. There is no Decimal Adjust Subtract instruction for the MC6800. Decimal subtraction is accomplished

by using 9's complement arithmetic. The 9's complement of the subtrahend is found and then added to

A-15

, \

the minuend plus 1. The 9' s complement of a decimal number is found by subtracting each digit from

nine. The following subroutine is a decimal subtract routine of 16 digit numbers.

• DECIMAL SUBTRACT SUBROUTINE FOR 16 DECIMAL DIGIT

• TH 1 ::::: tw::UU TINE :SUBTRACTS THE SUBTRAHEND <: II SUBTRH II)

• FROM THE M I N~JEND (" M I NUEN ") AND PLACES THE
• II I FFE~:ENCE I N II RSL T • II

II:5:UB LII:X: ~~:3 SET B'rTE COUr-iTER
Ir:S:UB 1 LDA A ~~$'39

SUB A :5:UBTRH ,X FINII 9···:5: COMPLEMENT
:5:TA A RSLT,X U:5:E II RSLT" A:5: TEMP STORE
DE:X: DECREMENT BYTE COUNTER
BNE II:5:UBl LOOP UNTIL LAST B,YTE
LII:X: ~~:3 RESTORE B'y'TE COUNTER
:S:EC :5:ET CARRY TO ADD 1 TO COMPL

II:S:UB2 LDA A MINUEN,X LOAD MINUEND
AIIC A F.:SL T ,:x: ADD CO~lPLEf'lENT SUBTRAHEND
DAA DECIMAL AD.JUST
STA A R:S:L T ,:x: S:TORE DIFFERENCE
DE:>:: DECREMENT B'y'TE COUNTER
BNE D:S:UB2 LOOP '-'tiT I L LAST BYTE
RTS F.:ETURN TO HOST PROGRAM

• THE EXECUTION TIME OF THIS SUBROUTINE IS
• 384 MPU CYCLES EXCLUDING THE RTS.

Note that if the subtrahend is less than or equal to the minuend a positive 16 digit difference results.

This is known as unsigned 16 decimal digit precision subtraction. The preceding subroutine Call also be

used for signed (algebraic) subtraction. In this case the precision is 15 decimal digits. The high order

digit position is used to indicate the sign of the number. A zero in the high order digit means positive

and the remaining 15 decimal digits are in true binary coded decimal format. A 9 in the high order digit

means minus and the remaining 15 decimal digits are in 9' s complement binary coded decimal format.

Q 5. What is the difference between the:

BGT and BHI instructions?

BLE and BLS instructions?

A 5. BGT - Branch if Greater Than

BHI - Branch if Higher

BLE - Branch if Less Than or Equal To

BLS - Branch if Less Than or Same

The BGT and BLE instructions are used to test the result of a signed binary operation. The BHI and

BLS instruction is used to test the result of an unsigned binary operation.

A-16

When using signed binary notation the high order bit of a byte represents the sign of the value. A "0" in

bit seven means positive and a" 1 " means negative.

In unsigned binary notation, bit 7 of the number implies a weight of 128.

The correlation between signed and unsigned branch tests subsequent to a subtract or compare

instruction is as follows:

ACC = Accumulator value of tested instruction.

OPRND = Operand value of tested instruction.

ACC < OPRND

ACC < OPRND

ACC 5> OPRND

ACC 5> OPRND

SIGNED TEST

BLT

BLE

BGE

BGT

UNSIGNED TEST

BCS

BLS

BCC

BHI

Q 6. When using the TSX instruction why is the value in the stack pointer register increased by I?

A 6. When stacking data in memory the MC6800 first addresses the memory location referenced by the

stack pointer register and stores the data. Then the value in the stack pointer register is decremented by

one to point to the next stack address.

The TSX instruction adds one to the stack pointer register value as it is transferred to the index register

so that the index register is pointing at the last address of the stack that has stacked data. The TXS

instruction subtracts one from the index register value as it is transferred to the stack pointer register to

reverse the operation.

The value stored in the stack pointer register is not changed due to the execution of the TSX instruction.

Likewise, the value stored in the index register is not changed due to the TXS instruction

Q 7. How fast can data be transferred via aPIA?

A 7. There are two types of data transfer-synchronous and asynchronous. In synchronous data transfer the

source of the data transfer clock is derived from the M6800 system timing. In asynchronous data

transfer the data transfer clock is derived separately from the M6800 system timing.

In the following examples it is assumed that the number of words transferred is known prior to entry

into the data transfer routine.

EXAMPLE 1: 8-bit Word Synchronous Read Transfer

NOTE: Accumulator B is the word counter.

LOOP LDAA

PSHA

DECB

BNE

PIAPRA

LOOP

Executive time @ 1 /Ls/cycle = 14 /LS

Max data rate = 71.4K words/sec.

FETCH DATA

STORE DATA

DECREMENT WORD COUNTER

LOOP UNTIL DONE

A-17

EXAMPLE 2: 8-bit Word Asynchronous Read Transfer

NOTE: a) Accumulator B is the word counter.

b) PIA Control Register A, bit 7 = 1 signifies a word is ready for transfer.

LOOP LDAA

BPL

LDAA

PSHA

DECB

BNE

PIACRA

LOOP

PIAPRA

LOOP

Execution time @ I/Ls/cycle = 22 /LS.

Max data rate = 45.4K words/sec.

FETCH CONTROL WORD

WAIT FOR WORD READY

FETCH DATA

STORE DATA

DECREMENT WORD COUNTER

LOOP UNTIL DONE

EXAMPLE 3: 8-bit Word Asynchronous Write Transfer

NOTE: a) Index register is the word counter.

b) PIA Control Register B bit 7 = 1 signifies a word transfer is requested by the peripheral.

LOOP 1 LDAA DATA, X FETCH DATA FROM MEMORY

LOOP 2 LDAB PIACRB FETCH CONTROL WORD

BPL LOOP 2 WAIT FOR WORD REQUEST

STAA PIAPRB MOVE WORD TO PIA

LDAB PIAPRB CLR CRB, BIT 7

DEX DECREMENT WORD COUNTER

BNE LOOP 1 LOOP UNTIL DONE

Execution time @ 1 /Ls/cycle = /Ls.

Max data rate = 33.3K words/sec.

EXAMPLE 4: I6-bit Asynchronous Word Read Transfer

NOTE: a) Accumulator B is the word counter.

b) PIA Control Register A, bit 7 = 1 signifies a word is ready for transfer.

LOOP LDAA

BPL

LDAA

PSHA

LDAA

PSHA

DECB

PIACRA

LOOP

PIAPRB

PIAPRA

BNE LOOP

Execution time @ I/Ls/cycle = 3 /LS.

FETCH CONTROL WORD

WAIT FOR WORD READY

FETCH HIGH ORDER BYTE

STORE HIGH ORDER BYTE

FETCH LOW ORDER BYTE

STORE LOW ORDER BYTE

DECREMENT WORD COUNTER

LOOP UNTIL DONE

Max data rate = 33.3K words/sec or 66.7K bytes/sec.

The maximum data rates shown in the preceding examples represent simple transfer tasks using

software polling rather. than interrupt service requests. It should be noted that if any other tasks that

must be performed while transferring data would reduce the maximum data rate.

A-I8

