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Academy of Sciences of the Czech Republic

Abstract

To extend the current implementation of copulas in MATLAB to non-elliptical distribu-
tions in arbitrary dimensions enabling for asymmetries in the tails, the toolbox HACopula
provides functionality for modeling with hierarchical (or nested) Archimedean copulas.
This includes their representation as MATLAB objects, evaluation, sampling, estimation
and goodness-of-fit testing, as well as tools for their visual representation or computation
of corresponding matrices of Kendall’s tau and tail dependence coefficients. These are
first presented in a quick-and-simple manner and then elaborated in more detail to show
the full capability of HACopula. As an example, sampling, estimation and goodness-of-fit
of a 100-dimensional hierarchical Archimedean copula is presented, including a speed up
of its computationally most demanding part. The toolbox is also compatible with Octave,
where no support for copulas in more than two dimensions is currently provided.
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1. Introduction

According to Sklar (1959), any continuous d-variate distribution function F can be uniquely
decomposed through

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (x1, ..., xd)
> ∈ Rd, (1)

into its continuous univariate margins F1, ..., Fd and its copula C : [0, 1]d → [0, 1]; the copula
C itself is a d-variate distribution function with standard uniform univariate margins. This,
on the one hand, allows one to study multivariate distribution functions independently of the
margins, which is of particular interest in statistical applications. On the other hand, Sklar’s
Theorem provides a tool for constructing large classes of multivariate distributions and is
therefore often used for sampling multivariate distributions via copulas, which is indispensable
for many applications in the realm of risk management, finance and insurance. Standard
introductory monographs about copulas are, e.g., Nelsen (2006) and Joe (2014).
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Apart from elliptical copulas, i.e., the copulas arising from elliptical distributions via Sklar’s
Theorem, Archimedean copulas (ACs) are a popular choice. In contrast to elliptical copulas,
they are given explicitly in terms of a univariate function called generator. Another desirable
property is their ability to capture different kinds of tail dependencies, e.g., only upper tail
dependence and no lower tail dependence or both lower and upper tail dependence but of
different magnitude. With a wide set of available parameter estimators, e.g., see Hofert,
Mächler, and McNeil (2013), and the algorithm of Marshall and Olkin (1988), ACs are usually
easy both to estimate and to sample. The functional symmetry in their arguments, also
referred to as exchangeability, however, is often considered to be a drawback, e.g., in risk-
management applications where the considered portfolios are typically high-dimensional. To
circumvent exchangeability, or, in other words, to allow for different multivariate margins,
ACs can be nested within each other under certain conditions, which results in hierarchical
dependence structures. This has also led to their name, hierarchical (or nested) Archimedean
copulas (HACs).

As has been recently shown in an empirical study concerning risk management in Okhrin,
Ristig, and Xu (2017), such hierarchical constructions enable one to construct copula models
that can compete with other recently popular multivariate copula models like vine or factor
copulas. For their recent application to modeling dependence between so-called loss triangles,
see Côté, Genest, and Abdallah (2016). Outside of finance, e.g., Górecki, Hofert, and Holeňa
(2016) introduce HACs to Bayesian classification. A detailed analysis of their theoretical
properties can be found in McNeil (2008); Savu and Trede (2010); Hofert (2011); Okhrin,
Okhrin, and Schmid (2013). Considering their sampling, the R package copula (see Jun
Yan (2007); Kojadinovic and Yan (2010); Hofert and Mächler (2011); Hofert, Kojadinovic,
Maechler, and Yan (2017)) offers an implementation of the approaches proposed in Hofert
(2011, 2012). For estimating HACs, one of the most advanced frameworks for this purpose is
offered by the R package HAC, see Okhrin and Ristig (2014, 2016). One can also find packages
implementing HACs in proprietary statistical software. As an example, sampling procedures
involving three popular families of HACs have been implemented in SAS; see Baxter and
Huddleston (2014, pp. 531). In MATLAB, which also provides some support for two popular
multivariate elliptical and three popular bivariate Archimedean families, however, no support
for HACs is provided. The latter also applies to (open-source) Octave, which moreover restricts
the provided functionality only to several families of bivariate copulas and does not implement
any copula estimators at all.

To fill these gaps, the HACopula toolbox for MATLAB and Octave introduces a comprehensive
framework focused particularly on HACs. It implements procedures concerning sampling,
estimation and goodness-of-fit testing. Not only do these procedures cover the basic features
of the aforementioned packages, but also offer an implementation of all estimators recently
introduced in Górecki, Hofert, and Holeňa (2017b), which are, to the best of our knowledge,
the only estimators enabling for estimation of all three components of a HAC, i.e., its structure,
the families of its generators and its parameters. As the estimators from Górecki et al.
(2017b) introduce several so-called collapsing and re-estimation procedures, which, generally,
turn binary HAC structures (binary trees often resulting from estimation processes) into
non-binary ones (allowing to access all possible HAC structures), these are also provided by
the toolbox. To allow for better understanding of how a HAC model has resulted from an
estimation process, the toolbox provides detailed tracing of the estimation process, which is
also a feature not available in other implementations covering HACs. Finally, as ACs are
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a special case of HACs, the new toolbox inherently complements their implementation in
MATLAB and Octave (currently (MATLAB R2018a and Octave 4.4.0) limited to the bivariate
case) and enables for AC modeling in an arbitrary dimension.

The paper is organized as follows. Section 2 provides an introduction to HACs. In Section 3,
the reader gets in touch with the main capabilities of the toolbox, namely with the way HAC
models can be constructed, evaluated, sampled, estimated and goodness-of-fit tested. To get
a more detailed insight, Section 4 elaborates on the examples described in Section 3 and
outlines further features of the toolbox, namely the representation of HAC models, how to
cope with negative correlation in data, and how to access the estimators provided by the
toolbox. As a proof of feasibility in high dimensions, sampling, estimation and goodness-of-fit
of a 100-variate HAC is presented in Section 5, which also includes a way how to speed up its
computationally most demanding part. Section 6 concludes.

2. Hierarchical Archimedean copulas

An Archimedean generator, or simply generator, is a continuous, decreasing function ψ :
[0,∞) → [0, 1] that is strictly decreasing on [0, inf{t : ψ(t) = 0}] and satisfies ψ(0) = 1
and limt→∞ ψ(t) = 0. If (−1)kψ(k)(t) ≥ 0 for all k ∈ N, t ∈ [0,∞), then ψ is called
completely monotone; see Kimberling (1974) or Hofert (2010, p. 54). As follows from McNeil
and Nešlehová (2009), given a completely monotone generator ψ, the function Cψ : [0, 1]d →
[0, 1] defined by

Cψ(u1, ..., ud) = ψ(ψ−1(u1) + ...+ ψ−1(ud)), (2)

where ψ−1 is the generalized inverse of ψ given by ψ−1(s) = inf{t ∈ [0,∞] | ψ(t) = s}, s ∈
[0, 1], is a d-dimensional Archimedean copula (d-AC) for any d ≥ 2. In what follows, we
assume generators to be completely monotone.

In practice, a generator is mostly assumed to belong to a parametric family. Due to this
reason, a generator from a family a with a real parameter θ will be denoted by ψ(a,θ). Our
toolbox implements nine out of the 22 families of Nelsen (2006, pp. 116), see Table 1, i.e.,
we consider a ∈ {A, C, F, G, J, 12, 14, 19, 20}, where the first five family labels denote
the popular families of Ali-Mikhail-Haq, Clayton, Frank, Gumbel and Joe, and the last four
families are special cases of the families known as BB1 (12 and 14) and BB2 (19 and 20), see
Joe (2014, p. 435, Table A.1) for the connection. This subset of families is also chosen since
not all of those 22 families can be nested into each other in order to get a proper HAC; see
Górecki et al. (2017b) for details.

Given a bivariate AC Cψ(a,θ) , there exists a 1-to-1 functional relationship between the param-
eter θ and Kendall’s tau (τ) that can be expressed either in a closed form, e.g., τ = θ/(θ+ 2)
for the Clayton family (a = C), or as a one-dimensional integration; see Table 3 in Górecki
et al. (2017b) for the family 20 and Hofert (2010, p. 65) for the rest of the families in Table 1.
In the following, we denote this relationship by τ(a), e.g., τ(C)(θ) = θ/(θ + 2).

As has already been mentioned in the introduction, to construct a hierarchical Archimedean
copula (HAC), one just needs to replace some arguments in an AC by other (H)ACs, see Joe
(1997) or Hofert (2011). Hence, e.g., given two 2-ACs Cψ1 and Cψ2 , a 3-variate HAC, denoted
Cψ1,ψ2 , can be constructed by

Cψ1,ψ2(u1, u2, u3) = Cψ1(u1, Cψ2(u2, u3)). (3)
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a Θa ψ(a,θ)(t) SNC λl λu
A [0, 1) (1− θ)/(et − θ) θ1 ≤ θ2 0 0

C (0,∞) (1 + t)−1/θ θ1 ≤ θ2 2−1/θ 0
F (0,∞) − log(1− (1− e−θ) exp(−t))/θ θ1 ≤ θ2 0 0

G [1,∞) exp(−t1/θ) θ1 ≤ θ2 0 2− 21/θ

J [1,∞) 1− (1− exp(−t))1/θ θ1 ≤ θ2 0 2− 21/θ

12 [1,∞) (1 + t1/θ)−1 θ1 ≤ θ2 2−1/θ 2− 21/θ

14 [1,∞) (1 + t1/θ)−θ unknown 1/2 2− 21/θ

19 (0,∞) θ/ln
(
t+ eθ

)
θ1 ≤ θ2 1 0

20 (0,∞) ln−1/θ(t+ e) θ1 ≤ θ2 1 0

Table 1: The nine families of generators implemented in HACopula. The table contains the
family label (a), the corresponding parameter range Θa ⊆ [0,∞), the form of ψ(a,θ), the
corresponding sufficient nesting condition (SNC, defined in the last paragraph of Section 2)
involving two generators ψ(a,θ1), ψ(a,θ2), and the lower and upper tail-dependence coefficients
λl(θ) = limt↓0Cψ(a,θ)(t, t)/t and λu(θ) = limt↓0(1−2t+Cψ(a,θ)(t, t))/(1−t), respectively, where
Cψ(a,θ) is a 2-AC; see Section 1.7.4 in Hofert (2010).

A tree representation of such a construction is depicted in Figure 1(a). Using the language
of graph theory, an undirected tree (V, E) related to this representation, where V is a set of
nodes {1, ...,m}, m ∈ N, and E ⊂ V × V, can be derived by enumerating all of its nodes,
e.g., in Figure 1(b), where V = {1, ..., 5} and E = {{1, 5}, {2, 4}, {3, 4}, {4, 5}}. As one can
observe, not all nodes correspond to the same type of objects: The leaves {1, 2, 3} correspond
to the variables u1, u2 and u3, whereas the non-leaf nodes {4, 5}, called forks, correspond to
the ACs (uniquely determined by the corresponding generators) nested in Cψ1,ψ2 . Note that
when deriving a particular (undirected) tree for the tree representation in Figure 1(a), we
assume that

1. the leaves 1, 2 and 3 in Figure 1(b) correspond to u1, u2 and u3 in Figure 1(a), respec-
tively, and that

2. the fork indices (4 and 5) are set arbitrarily, i.e., one can also derive an undirected tree
where the fork indices 4 and 5 are switched.

Also, as each fork corresponds to a generator, we represent this relationship using a labeling
denoted λ, which maps the forks to the corresponding generators. In our example,

λ(4) = ψ2 and λ(5) = ψ1. (4)

Using this notation, (3) can be rewritten as

Cλ(5)(u1, Cλ(4)(u2, u3)). (5)

Observe that the indices of the arguments of the inner copula Cλ(4) correspond to the set
of children of fork 4, i.e., to {2, 3}, and the indices of the arguments of the outer copula
Cλ(5) correspond to the set of children of fork 5, i.e., to {1, 4} (4 represents the the inner
copula Cλ(4)(u2, u3)). This implies that one can express Cψ1,ψ2(u1, u2, u3) in terms of the
triplet (V, E , λ). Following this observation, we denote this HAC in an arbitrary dimension
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Figure 1: (a) A tree-like representation of a 3-variate HAC given by Cψ1,ψ2(u1, u2, u3) =
Cψ1(u1, Cψ2(u2, u3)). (b) An undirected tree (V, E), V = {1, ..., 5}, E =
{{1, 5}, {2, 4}, {3, 4}, {4, 5}} derived for the tree representation in Figure 1(a). (c) Our
representation of C(V,E,λ)(u1, u2, u3) = Cλ(5)(u1, Cλ(4)(u2, u3)), where λ(4) = ψ(a4,θ4) and

λ(5) = ψ(a5,θ5) and (V, E) is given by Figure 1(b).

by C(V,E,λ). For a definition of HACs in this way, see Definition 3.1 in Górecki et al. (2017b).
For clarity, just recall that the descendants of a node v ∈ V is the set of nodes consisting of
all children of v, all children of all children of v, etc., whereas the ancestors of a node v ∈ V
is the set of nodes consisting of the parent of v, the parent of the parent of v, etc.

As mentioned above, in practice, generators are typically assumed to be members of one-
parametric families. E.g., assume that λ(4) and λ(5) are members of such families denoted by
a4 and a5 with parameters θ4 and θ5, respectively, i.e., λ(i) = ψ(ai,θi), i ∈ {4, 5}. Using this
notation, the graphical representation depicted in Figure 1(c) fully determines the parametric
HAC C(V,E,λ) = Cψ1,ψ2 given by (3) and (4), i.e., its structure, the families of its generators
and its parameters, and we will use this notation in this way in arbitrary dimensions.

To guarantee that a proper copula results from nesting ACs, we will use the sufficient nesting
condition (SNC) proposed by Joe (1997, pp. 87) and McNeil (2008). It states that if for all
parent-child pairs of forks (i, j) appearing in a nested construction C(V,E,λ) the first derivative
of λ(i)−1(λ(j)(t)) is completely monotone, then C(V,E,λ) is a copula. This SNC has three
important practical advantages, which are that, for many pairs from the 22 families discussed
above, 1) its expression in terms of the corresponding parameters is known, 2) this expression
does not depend on d for all pairs for which it is known, see Tables 1 and 2, and, most
importantly, 3) efficient sampling strategies based on a stochastic representation for HACs
satisfying the SNC are known; see Hofert (2011) or Hofert (2012). Note that Table 2 lists
all family combinations of the generators of (Nelsen 2006, p. 116–119) that result in proper
HACs according to the SNC, see Hofert (2008) or Theorem 4.3.2 in Hofert (2010) for more
details. Note that there also exists a weaker sufficient condition, see Rezapour (2015), which
however lacks those three advantages and is thus of limited practical use.

3. A quick example

The aim of this section is to allow the reader to quickly get in touch with the main capabilities
of the HACopula toolbox. An illustrative example is provided, showing how to construct
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(a1, a2) Θa1 Θa2 SNC

(A, C) [0, 1) (0,∞) θ2 ∈ [1,∞)
(A, 19) [0, 1) (0,∞) any θ1, θ2
(A, 20) [0, 1) (0,∞) θ2 ∈ [1,∞)
(C, 12) (0,∞) [1,∞) θ1 ∈ (0, 1]
(C, 14) (0,∞) [1,∞) θ1θ2 ∈ (0, 1]
(C, 19) (0,∞) (0,∞) θ1 ∈ (0, 1]
(C, 20) (0,∞) (0,∞) θ1 ≤ θ2

Table 2: All family combinations of the generators of (Nelsen 2006, pp. 116–119) that result in
proper HACs according to the sufficient nesting condition (SNC); see Hofert (2010, Theorem
4.3.2). The table contains the family labels in a parent-child family combination (a1, a2) with
the corresponding parameter ranges Θa1 and Θa2 . The last column contains the SNC in terms
of the parameters of a parent-child pair of generators ψ(a1,θ1) and ψ(a2,θ2), where θ1 ∈ Θa1

and θ2 ∈ Θa2 .

and evaluate a HAC model, how to generate a sample from this model, how to compute a
HAC estimate based on this sample, and finally, how to measure accordance between the
estimate and the model or alternatively between the estimate and the sample. Note that the
example can be reproduced using the file quickex.m in the folder Demos. Also note that all the
presented results are obtained using MATLAB R2017a, so, if the example is executed in Octave,
some slight discrepancies considering formatting of the results might be observed, e.g., Octave
per default shows more digits after the decimal point than MATLAB, or in plots, where Octave
currently (version 4.4.0) does not implement all necessary features corresponding to the ones
provided by MATLAB. Finally note that as the example involves Archimedean families that
are, to our best knowledge, not supported by other software packages covering HACs, the
results reported below in this section can be reproduced only with the HACopula toolbox.
However, in cases where an analogue to some discussed function provided by the toolbox is
available in other software packages (we consider the R packages copula and HAC), this is
accordingly.

3.1. Installing the HACopula toolbox

To install the toolbox, it is enough to unpack the files in a folder and to add the folder
HACopula with its subfolders to the MATLAB or Octave path. This can be done, in MATLAB,
with the button Home/Set Path, and in Octave, with the following code provided the current
folder is the folder HACopula.

addpath(pwd);

addpath([pwd '\' 'Demos']);

addpath([pwd '\' 'Auxiliary']);

addpath([pwd '\' 'Sampling']);

savepath;

Note that the subfolder @HACopula, which is a method folder containing the methods of the
class HACopula, is implicitly covered in the MATLAB (Octave) path and thus not explicitly
shown among the folders that have been added.
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u2 u5 u6

λ(9)
(19, 1.958)
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λ(11)
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τ = 0.200

Figure 2: A 7-variate HAC including the three families C, 12 and 19 with the fork indices
(the arguments of λ(·)) ordered according to Kendall’s tau (τ).

For the full functionality in MATLAB, the toolbox requires Statistics and Machine Learning
Toolbox and Symbolic Math Toolbox. In Octave, it suffices to install and to load the statis-
tics package, see Octave-Forge (2018), and the symbolic package OctSymPy, see Macdonald
(2017). Finally note that the toolbox has been intensively tested with the MATLAB versions
R2016a and R2017a, and its compatibility with Octave has been tested with the version 4.4.0.

3.2. Constructing HACs

The construction of a HAC model with the HACopula toolbox reflects the theoretical con-
struction of HACs, in which several ACs are nested. For illustration, we consider a 7-variate
HAC C(V,E,λ) composed of the four ACs Cλ(8), ..., Cλ(11) given by

λ(8) = ψ
(12,τ−1

(12)
(0.8))

,

λ(9) = ψ
(19,τ−1

(19)
(0.7))

,

λ(10) = ψ
(12,τ−1

(12)
(0.5))

,

λ(11) = ψ
(C,τ−1

(C)
(0.2))

. (6)

To clarify this definition, which maps the forks in (V, E) to the corresponding generators,
note that {1, ..., 7} is the set of leaves in (V, E), and, as each AC (generator) nested in C(V,E,λ)
corresponds to one fork in (V, E), {8, ..., 11} is the set of forks in (V, E). Also, observe that the
generators are from the three families C, 12 and 19, and their parameters are given in terms
of τ . As the SNC implies an ordering of the corresponding Kendall’s tau, the definition of λ
reflects this ordering, i.e., the index of a fork increases as the value of τ decreases. Finally,
when nesting these ACs into each other, we obtain

C(V,E,λ) = Cλ(11)(Cλ(9)(u2, u5, u6), Cλ(10)(u1, Cλ(8)(u3, u4, u7))). (7)

Figure 2 depicts our graphical representation of C(V,E,λ).

Using the toolbox, (6) can be implemented using four cell arrays.
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lam8RightRight = {'12', tau2theta('12', 0.8)};

lam9Left = {'19', tau2theta('19', 0.7)};

lam10Right = {'12', tau2theta('12', 0.5)};

lam11Root = {'C', tau2theta('C', 0.2)};

Each cell array contains the desired family (which can be any from Table 1) and the param-
eter value computed by the function tau2theta, which evaluates τ−1(a) (τ); the inverse τ(a)(θ)
can be evaluated with the function theta2tau. Analogues of these two functions are available
in the R packages copula and HAC under the names tau, iTau and theta2tau, tau2theta,
respectively.

To represent HAC models, the toolbox uses instances of the HACopula class. The following
code shows how to instantiate such a representation (denoted HACModel) for C(V,E,λ) given
by (7).

HACModel = HACopula({lam11Root, {lam9Left, 2, 5, 6}, ...

{lam10Right, 1, {lam8RightRight, 3, 4, 7}}});

The only argument of the constructor of the HACopula class is a cell array representing
the AC in the root of the tree, i.e., Cλ(11) in our example, where the first cell contains its
generator representation (lam11Root) and the remaining cells contain either a leaf index or
another such an AC representation. In other words, each appearing {} defines one AC nested
in the resulting HAC. In the R packages copula and HAC, such an object can be instanti-
ated using onacopula and hac, respectively. The plot depicted in Figure 2 can be obtained
by plot(HACModel). The density of all bivariate marginal distributions corresponding to
HACModel can be obtained by plotbipdfs(HACModel), see Figure 3, where the range of levels
of dependencies (quantified in terms of Kendall’s tau below the main diagonal) as well as
different asymmetries in the tails can be observed.

3.3. Computing probabilities involving HACs

Having constructed the HAC C(V,E,λ) represented by HACModel, one can let the toolbox com-
pute several related quantities. For example, using the method cdf, one can evaluate the
cumulative distribution function of C(V,E,λ) at an arbitrary point from [0, 1]d. Note that un-
less otherwise stated, a method in the following means a method of the HACopula class. The
following code computes the value of C(V,E,λ)(0.5, ..., 0.5).

cdf(HACModel, 0.5 * ones(1, HACModel.Dim))

ans =

0.1855

Note that HACModel.Dim corresponds to the dimension of HACModel. In the R packages
copula and HAC, an analogue of this function is available under the names pCopula and
pHAC, respectively.

To compute the probability of a random vector distributed according C(V,E,λ) to fall in a

hypercube (l, u], where l ∈ [0, 1]d and u ∈ [0, 1]d denote the lower and upper corners of the
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Figure 3: Densities of all bivariate marginal distributions of C(V,E,λ) (HACModel) are shown
above the diagonal whereas below it are shown their contour plots and corresponding Kendall’s
taus.

hypercube in d dimensions, one can use the method prob. The following code computes this
probability for the hypercube given by l = (0.5, ..., 0.5) and u = (0.9, ..., 0.9).

prob(HACModel, 0.5 * ones(1, HACModel.Dim), 0.9 * ones(1, HACModel.Dim))

ans =

0.0437

In the R package copula, this function is available under the same name.

The toolbox also provides the method evalsurv, which can be used to evaluate the survival
copula of C(V,E,λ).

evalsurv(HACModel, 0.5 * ones(1, HACModel.Dim))

ans =

0.1748

Note that, in general, given a continuous random vector X = (X1, ..., Xd) with joint sur-
vival function F̄ (x1, ..., xd) = P(

⋂d
i=1{Xi > xi}) and univariate survival margins F̄i(xi) =

P(Xi > xi), i ∈ {1, ..., d}, the survival copula C̄ associated with X is the copula satisfying



10 The HACopula Toolbox

F̄ (x1, ..., xd) = C̄(F̄1(x1), ..., F̄d(xd)) for all (x1, ..., xd)
> ∈ Rd. If U ∼ C then 1 − U ∼ C̄.

For more details on survival copulas, see, e.g., Nelsen (2006, p. 31) or Durante and Sempi
(2010). Finally note that in the R package copula, the survival copula can be evaluated using
the function rotCopula.

3.4. Sampling HACs

To sample from HACs represented by instances of the HACopula class, the toolbox provides
the method rnd, which implements the sampling strategies proposed in Hofert (2011, 2012).
The following code generates a sample of 500 observations from HACModel and plots all its
2-dimensional projections. Note that the first two lines just set the seed in order for the result
to be reproducible.

rng('default');

rng(1);

UKnown = rnd(HACModel, 500);

plotbimargins(UKnown);

As the function rng has not yet been implemented in Octave, the resulting sample UKnown

produced by MATLAB is available in the file highdimex_data.mat in the folder Demos, which
serves to obtain the same results for MATLAB and Octave. The last line of the code generates
the plot shown in Figure 4, i.e., a sample analogously to Figure 3.

3.5. Estimating HACs

Given i.i.d. observations (Xi1, ..., Xid), i ∈ {1, ..., n} of a d-variate distribution function F
given by (1) with known margins Fj , j ∈ {1, ..., d}, one can estimate C directly using
(Ui1, ..., Uid), i ∈ {1, ..., n}, where Uij = Fj(Xij), i ∈ {1, ..., n}, j ∈ {1, ..., d}. In practice, the
margins are typically unknown and must be estimated parametrically or non-parametrically.
In the following, we base estimation of C on the pseudo-observations

Uij =
n

n+ 1
F̂n,j(Xij) =

Rij
n+ 1

, (8)

where F̂n,j denotes the empirical distribution function corresponding to the j-th margin and
Rij denotes the rank of Xij among X1j , ..., Xnj .

Taking the sample UKnown generated in the previous section and assuming it represents the
observations (Xi1, ..., Xid), i ∈ {1, ..., n}, mentioned above, i.e., assuming F = C(V,E,λ), the
corresponding pseudo-observations U can be computed via

U = pobs(UKnown);

In the R package copula, this function is available under the same name.

Based on the pseudo-observations, the following code shows how to obtain two estimates of
C(V,E,λ). The first one, fitC1219, is fitted under the assumption that the set of the underlying
families are known, i.e., the family of each generator is chosen from the set of families {C,
12, 19}. The other one, denoted fitC, is fitted assuming that this set is unknown and the
Clayton family for each generator were imposed arbitrarily.
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Figure 4: A sample of 500 observations from the C(V,E,λ) depicted in Figure 2.

fitC1219 = HACopulafit(U, getfamilies(HACModel));

fitC = HACopulafit(U, {'C'});

Note that in the first line, the method getfamilies(HACModel) returns the set of the fam-
ilies involved in HACModel, i.e., the first line can alternatively be written as fitC1219 =

HACopulafit(U, {’C’, ’12’, ’19’});. Figure 5 shows the plot of these estimates (the
code for obtaining them is given in the captions). A detailed description of the function
HACopulafit is presented in Section 4.3.

In the R package HAC, an analogue to HACopulafit is estimate.copula, which is, however,
restricted to one pre-defined family of generators in the resulting HAC, i.e., only the estimate
fitC could be obtained.

3.6. Goodness-of-fit testing for HACs

The HACopula toolbox provides several tools for measuring how well an estimate approxi-
mates the true copula (if it is known) or how well it fits the sample (a common case; the
unknown true copula is typically substituted by the so-called empirical copula, i.e., the em-
pirical distribution function of the pseudo-observations).

As a first approach, measuring a certain type of a distance between an estimate and the
empirical copula evaluated at the given data is illustrated by the following code, where the

goodness-of-fit test statistics denoted S
(E)
n in Górecki et al. (2017b) (proposed in Genest,

Rémillard, and Beaudoin (2009) under the notation Sn, see Equation 2 therein) is computed



12 The HACopula Toolbox

u2 u5 u6

λ(9)
(19, 1.803)
τ = 0.688

u1

u3 u4 u7

λ(8)
(12, 3.456)
τ = 0.807

λ(10)
(12, 1.364)
τ = 0.511

λ(11)
(C, 0.452)
τ = 0.184

(a) plot(fitC1219)

u2 u5 u6

λ(9)
(C, 4.409)
τ = 0.688

u1

u3 u4 u7

λ(8)
(C, 8.368)
τ = 0.807

λ(10)
(C, 2.091)
τ = 0.511

λ(11)
(C, 0.452)
τ = 0.184

(b) plot(fitC)

Figure 5: Two estimates computed for the data depicted in Figure 4.

for the two previously considered estimates.

[gofdSnE(fitC1219, U) gofdSnE(fitC, U)]

ans =

0.0298 0.0524

As might be expected, the worse fit (i.e., the larger distance) is reached for the estimate with
misspecified families. In the R package copula, an analogue to gofdSnE is available under the
name gofTstat.

Based on the test statistic S
(E)
n , the toolbox also provides the method computepvalue that

computes an approximate p value of the corresponding goodness-of-fit test via an adapted
Monte Carlo method proposed in Genest et al. (2009), namely, a parametric bootstrap for
Sn.

disp('Computing the p value for the first estimate...');

tic;

estimatorC1219 = @(U) HACopulafit(U, getfamilies(HACModel));

computepvalue(fitC1219, U, estimatorC1219, 100)

toc

disp('Computing the p value for the second estimate...');

tic;

estimatorC = @(U) HACopulafit(U, {'C'});

computepvalue(fitC, U, estimatorC, 100)

toc

Computing the p value for the first estimate...

ans =

0.4700
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Elapsed time is 52.488160 seconds.

Computing the p value for the second estimate...

ans =

0.0500

Elapsed time is 29.103234 seconds.

Similarly to the previous example, one observes lower (approximately 10 times) p value for the
second estimate. As the computation of p values is intensive, a stopwatch timer is involved
(tic and toc); this computation, as well as all the following ones, was done on an Intel Core
2.83 GHz processor. The value of the fourth argument of the method computepvalue (see
the third line) provides the number of bootstrap replications, which is 100 here. Note that
to compute such p values, an estimator of the underlying copula is needed. Therefore as the
third argument, an anonymous function (e.g., estimatorC1219) implementing it is provided.
Finally, note that due to the missing implementation of the previously mentioned function
rng in Octave, the resulting p value might differ from the ones reported above.

At this place, the reader should be warned about the following. Even if the implementation of
the parametric bootstrap method exactly follows its theoretical description proposed in Genest
et al. (2009, Appendix A), the requirements on the properties of the involved rank-based
estimator addressed in Genest and Rémillard (2008, see Equation 31 and below) necessary

to guarantee that the parametric bootstrap method yields valid p values for S
(E)
n have not

been theoretically proven yet. More precisely, according to Genest and Rémillard (2008), the
mentioned requirements are known to be satisfied only for 2-ACs. Any results obtained using
computepvalue should thus be interpreted with care.

Another goodness-of-fit tool provided by the toolbox considers a distance between a copula
estimate and a sample (pseudo-observations), where the latter can be substituted by the true
copula if available. The distance is viewed in terms of matrices of pairwise coefficients like
Kendall’s tau or the upper- and lower-tail dependence coefficients. More precisely, the toolbox
provides the method distance, which returns the quantity given by√√√√ 1(

d
2

) d∑
i=1

d∑
j=i+1

(κ�ij − κ
4
ij )

2, (9)

where (κ�ij) and (κ4ij ) denote either 1) the matrices of pairwise Kendall’s taus correspond-
ing to a copula estimate and a sample, respectively, i.e., κ = τ (denoted by kendall (HAC

vs sample) in the output below), or 2) the matrices of (tail) dependence coefficients corre-
sponding to two HACs (denoted by HAC vs HAC), where κ = τ if the third argument of the
method distance is ’kendall’, κ = λu if this argument is ’upper-tail’ or κ = λl if it is
’lower-tail’; for λl and λu, see Table 1.

K = kendallTauMatrix(U);

disp('kendall (HAC vs sample)');

[distance(fitC1219, K) distance(fitC, K)]
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DISTANCE_TYPE = {'kendall', 'upper-tail', 'lower-tail'};

for i = 1:3

disp([DISTANCE_TYPE{i} ' (HAC vs HAC)']);

[distance(fitC1219, HACModel, DISTANCE_TYPE{i}) ...

distance(fitC, HACModel, DISTANCE_TYPE{i})]

end

kendall (HAC vs sample)

ans =

0.0129 0.0129

kendall (HAC vs HAC)

ans =

0.0136 0.0136

upper-tail (HAC vs HAC)

ans =

0.0081 0.3145

lower-tail (HAC vs HAC)

ans =

0.0260 0.0868

Note that the first line just computes the matrix of pairwise Kendall’s taus for U. Observe
that all resulting distances based on Kendall’s tau are the same. This follows from the used
estimation method, which computes the parameter values just from the matrix of pairwise
Kendall’s taus (which are the same for both estimates) using the 1-to-1 relation between
Kendall’s tau and AC parameters mentioned in Section 3.2. For more details on the estimation
method, see Section 4.3 and Górecki et al. (2017b). Also observe the relatively large value for
the upper-tail distance for fitC, which is produced mainly due to the fact that this estimate
based on the Clayton family is unable to model non-zero upper-tail dependence; see λu for a
= C in Table 1.

The matrix of pairwise Kendall’s taus related to each HACopula object can be displayed using
the method getdependencematrix.

getdependencematrix(HACModel, 'kendall')

getdependencematrix(fitC1219, 'kendall')
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ans =

1.0000 0.2000 0.5000 0.5000 0.2000 0.2000 0.5000

0.2000 1.0000 0.2000 0.2000 0.7000 0.7000 0.2000

0.5000 0.2000 1.0000 0.8000 0.2000 0.2000 0.8000

0.5000 0.2000 0.8000 1.0000 0.2000 0.2000 0.8000

0.2000 0.7000 0.2000 0.2000 1.0000 0.7000 0.2000

0.2000 0.7000 0.2000 0.2000 0.7000 1.0000 0.2000

0.5000 0.2000 0.8000 0.8000 0.2000 0.2000 1.0000

ans =

1.0000 0.1844 0.5111 0.5111 0.1844 0.1844 0.5111

0.1844 1.0000 0.1844 0.1844 0.6880 0.6880 0.1844

0.5111 0.1844 1.0000 0.8071 0.1844 0.1844 0.8071

0.5111 0.1844 0.8071 1.0000 0.1844 0.1844 0.8071

0.1844 0.6880 0.1844 0.1844 1.0000 0.6880 0.1844

0.1844 0.6880 0.1844 0.1844 0.6880 1.0000 0.1844

0.5111 0.1844 0.8071 0.8071 0.1844 0.1844 1.0000

The upper- and lower-tail dependence coefficients for a HACopula object can be displayed as
illustrated below.

getdependencematrix(HACModel, 'tails')

getdependencematrix(fitC, 'tails')

ans =

1.0000 0 0.3182 0.3182 0 0 0.3182

0.2500 1.0000 0 0 0 0 0

0.5946 0.2500 1.0000 0.7689 0 0 0.7689

0.5946 0.2500 0.8123 1.0000 0 0 0.7689

0.2500 1.0000 0.2500 0.2500 1.0000 0 0

0.2500 1.0000 0.2500 0.2500 1.0000 1.0000 0

0.5946 0.2500 0.8123 0.8123 0.2500 0.2500 1.0000

ans =

1.0000 0 0 0 0 0 0

0.2159 1.0000 0 0 0 0 0

0.7179 0.2159 1.0000 0 0 0 0

0.7179 0.2159 0.9205 1.0000 0 0 0

0.2159 0.8545 0.2159 0.2159 1.0000 0 0

0.2159 0.8545 0.2159 0.2159 0.8545 1.0000 0

0.7179 0.2159 0.9205 0.9205 0.2159 0.2159 1.0000

Each tail dependence matrix is represented in a “condensed” form, in which the values above
the main diagonal correspond to the upper tail-dependence coefficients, whereas the values
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below the main diagonal to the lower ones. With the R package copula, these matrices and
distances can be computed using the functions tau, lambdaL and lambdaU.

3.7. Auxiliaries

Another handy tool provided by HACopula allows one to compare HAC structures, where
the structure of a HAC is the set consisting of the descendant leaves of all forks. For ex-
ample, the structure corresponding to HACModel, and also to the three estimates considered
above, is {{3, 4, 7}, {2, 5, 6}, {1, 3, 4, 7}, {1, ..., 7}}; one can observe that the inner sets cor-
respond to the forks 8, 9, 10 and 11, respectively. This tool, implemented by the method
comparestructures, returns 1 if the structure is the same for both inputs, and 0 otherwise.

comparestructures(HACModel, fitC1219)

ans =

logical

1

For a more refined insight into how much two HAC structures match, one can require a second
output from comparestructures, as can be seen in the following code, where the structure
of HACModel is compared to the (trivial) structure of a 7-AC.

[isSameStruc, ratioStruc] = comparestructures(HACModel, ...

HACopula({{'C', 0.5}, 1, 2, 3, 4, 5, 6, 7}))

isSameStruc =

logical

0

ratioStruc =

0.0571

The level of match (ratioStruc ∈ [0, 1]) is based on the trivariate decomposition of HAC
tree structures introduced in Segers and Uyttendaele (2014). Its computation is based on the
idea from Uyttendaele (2017), where two HAC structures are first decomposed to two sets
of trivariate structures and each pair of corresponding trivariate structures is then checked
to match. The level of match is then the ratio of the matching trivariate structures to all
trivariate structures. In our example, ratioStruc = 2/nchoosek(HACModel.Dim,3), i.e., two
trivariate structures in HACModel, namely the ones with leaf indices (2, 5, 6) and (3, 4, 7),
have the same structure (corresponding to a 3-AC) as the trivariate ones corresponding to
the 7-AC model. The remaining trivariate structures in HACModel always, in contrast to the
corresponding ones in the 7-AC model, involve some kind of hierarchy, cf. Figure 2.
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If the structures are the same for two HAC models, HACopula also provides a method that
computes how much the families involved in these HACs match to each other.

[isSameFams, ratioFams] = comparefamilies(fitC1219, fitC)

isSameFams =

logical

0

ratioFams =

0.2500

The first output (isSameFams) returns 1 if the family of a generator in the first argument
(fitC1219) is the same as the family of the corresponding generator in the second argument
(fitC) for all the involved forks, 0 otherwise; observe from Figures 5(a) and 5(b) that the
family is the same only for λ(11). The second output (ratioFams) returns the ratio of the forks
for which the families match to the number of all forks. Note that the described functionality
considering the families and structures is not available from other software packages.

To generate an analytical form of HACModel (or of some of its part) exportable to LATEX, the
toolbox provides the method tolatex.

tolatex(HACModel.Child{2}, 'cdf')

The result is the following formula.

1( 1
u1
− 1
)θ10

+

(((
1
u3
− 1
)θ8

+
(

1
u4
− 1
)θ8

+
(

1
u7
− 1
)θ8)1/θ8

)θ101/θ10

+ 1

(10)

Substituting ’cdf’ by ’pdf’ enables one to access HAC densities, however, one should be
aware of the fact that their computation for d > 5 is time consuming. Also note that such
functionality is not available from other software packages.

As follows from Proposition 2.1 in Okhrin et al. (2013), knowing all bivariate margins of
a HAC, one can uniquely determine it including its tree structure, see the example below
Remark 2.3 therein. It is thus convenient to represent a HAC in terms of its bivariate margins,
as is already done in this work, e.g., in Figures 3 or 4. To access easily any bivariate margin
of a HACopula object, one can use its method getbimargin, which returns the desired margin
represented again as a HACopula object. One can then use it for further computations, e.g.,
for accessing its density, as shown in the following example; compare with Figure 3.

biMargin = getbimargin(HACModel, 1, 6);

ACpdf(biMargin.Family, biMargin.Parameter, 0.9, 0.5)
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ans =

1.0691

4. Elaborating on the quick example

This section provides under-the-hood details of the features presented in the previous section.
All the examples from this section can be reproduced using the file elaboratedex.m in the
folder Demos.

4.1. Constructing HACs

As hinted at Section 3, the toolbox is built around the HACopula class, of which instances
serve as HAC models and of which methods provide desired functionality. Its constructor
will now be addressed in more detail. To this end, the HACModel instantiation described in
Section 3.2 will be used again, however, without the semicolon at the end (of the sixth line).

lam8RightRight = {'12', tau2theta('12', 0.8)};

lam9Left = {'19', tau2theta('19', 0.7)};

lam10Right = {'12', tau2theta('12', 0.5)};

lam11Root = {'C', tau2theta('C', 0.2)};

HACModel = HACopula({lam11Root, {lam9Left, 2, 5, 6}, ...

{lam10Right, 1, {lam8RightRight, 3, 4, 7}}})

HACModel =

HACopula with properties:

Family: 'C'

Parameter: 0.5000

Tau: 0.2000

TauOrdering: 11

Level: 1

Leaves: [2 5 6 1 3 4 7]

Dim: 7

Child: {[1Ö1 HACopula] [1Ö1 HACopula]}

Parent: []

Root: [1Ö1 HACopula]

Forks: {1Ö4 cell}

An instance of the HACopula class defines an AC at the first level of recursion (indicated by
the value of the property Level), of which arguments are represented by the cell array Child

containing in each cell either a HACopula instance (two HACopula instances in the example
above) or an integer representing a variable of the HAC; for the latter, see the output of the
following code.
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HACModel.Child{2}

ans =

HACopula with properties:

Family: '12'

Parameter: 1.3333

Tau: 0.5000

TauOrdering: 10

Level: 2

Leaves: [1 3 4 7]

Dim: 4

Child: {[1] [1Ö1 HACopula]}

Parent: [1Ö1 HACopula]

Root: [1Ö1 HACopula]

Forks: {[1Ö1 HACopula] [1Ö1 HACopula]}

Given such a HAC representation, the properties Leaves, Parent, Root and Forks contain,
respectively, its descendant nodes that are leaves, its parent (an empty matrix, if it is the
root), the root and the descendant nodes that are forks including itself. The main reason
for maintaining these properties is to increase the speed of the calculations regarding the
recursive nature of HACopula instances. Note that the latter three properties contain HACopula

instances. The property TauOrdering plays the role of an identifier of a fork, i.e, each fork has
its unique value of this property, which is ordered according to the corresponding Kendall’s
tau stored in the property Tau (in case of a tie, forks are ordered lexicographically according
to their descendant leaves). This ordering is assigned by the method addtauordering to all
its forks anytime a new instance of HACopula is created. Note that the values of TauOrdering
serve as labels of the nodes in a HAC tree structure that correspond to the generators in
the HAC. Hence, as the nodes in this tree that are leaves (which correspond to the variables
in the HAC) are already labeled 1, ..., d, the values of TauOrdering for the forks are from
{d+ 1, ..., d+ f}, where f is the number of forks. The value of TauOrdering assigned to the
root is d+ f , and for the remaining forks this ordering is decreasing along with the Kendall’s
tau of these forks being increasing.

Also note that the HACopula class is inherited from the abstract class handle, which implies
that, if a function modifies a HACopula object passed as an input argument, the modification
affects the original input object; in all such functions provided by the toolbox, this is noted
at the help part of the corresponding function. To create a copy of a HACopula instance, one
can use the copy method provided by the HACopula class.

Finally note that, as the toolbox works only with the HACs under the SNC, necessary SNC
checks for the parameters are implemented by the method checksnc (for the parametric forms
of the SNC, see Tables 1 and 2), which is also called anytime a new instance of HACopula is
created, together with the method checkleaves, which controls if the leaf indices passed in
the nested cell array to the constructor constitute the set {1, ..., d}.
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Figure 6: A sample of 500 observations from the HAC C(V,E,λ) depicted in Figure 2 with the
flipped variables 1, 2 and 7.

4.2. Sampling HACs

On the one hand, the SNC guarantees that a proper copula results, on the other hand, it
implies that such a HAC is unable to model negative dependence (in the sense of concordance),
e.g., τ ≥ 0 for all pairs of variables from a random vector following such a HAC. Although
this limitation is typically satisfied by financial return series (possibly after adjusting their
sign), it might be too restrictive in certain applications. At the best of our knowledge, the
only attempt to at least partially overcome this limitation has been proposed in Górecki et al.
(2016, Algorithm 4). Although the proposed approach does not solve the problem in general,
it might be helpful in several cases, one of which is illustrated below.

Sample again the data as in Section 3.4, but then, impose some negative dependence by the
simple argument-reflecting transformation given in the last line.

rng('default');

rng(1); % set the seed

UKnown = rnd(HACModel, 500);

UKnown(:, [1 2 7]) = 1 - UKnown(:, [1 2 7]);

The transformation (also called reflection at 1/2 in each (or only some) component(s)) just
flips the data in the columns corresponding to the variables indexed 1, 2 and 7 . The resulting
sample obtained by plotbimargins(UKnown) is depicted in Figure 6.

Now assume that it is unknown how these data were produced. To fit a reasonable HAC
model to these data, one has to somehow reduce the observed negative pairwise correlations,
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e.g., by flipping. To detect which of the variables should be flipped, one can use the function
findvars2flip implementing Algorithm 4 from Górecki et al. (2016).

KNeg = kendallTauMatrix(UKnown);

toFlip = findvars2flip(KNeg)

toFlip =

2 7 1

With this result, one can flip the data using UKnown(:, toFlip) = 1 - UKnown(:, toFlip),
which turn them into the purely positively correlated data depicted in Figure 4, which are
more suited to the modeling under the SNC. Note that this functionality is not available in
other considered software packages. Also note that this approach does not always provide
a solution, e.g., having 3-dimensional (e.g., real-world) data such that τ12 = τ23 = 0.5 and
τ13 = −0.5, no flipping in the sense described above leads to non-negative correlations for all
three pairs from (U1, U2, U3). A solution for such cases is unknown.

4.3. Estimating HACs

Section 3.5 has demonstrated, for the sake of simplicity, only one estimator provided by the
function HACopulafit. However, this function provides a much wider variety of estimators
including, e.g., the 192 estimators considered in Górecki et al. (2017b, Section 7), none of
which is available from the other considered software packages. To get a more complete
picture of the possibilities offered by HACopulafit, see the following code, which shows all its
default settings.

U = pobs(UKnown);

families = getfamilies(HACModel);

[fit, fitLog] = HACopulafit(U, families, ...

'HACEstimator', 'pairwise',...

'ThetaEstimator', 'invtau', ...

'ThetaEstimator2', 'invtau', ...

'g_1', 'average', 'g_2', @(t)mean(t), 'GOF', 'R', ...

'PreCollapse', true, 'Reestimator', 'Ktauavg', ...

'nForks', 'unknown', 'Attitude', 'optimistic', ...

'CheckData', 'on');

Note that in this default setting, HACopulafit implements the estimator denoted Coll=pre &
Re-est=KTauAvg & Alg=PT-avg & Sn=R & Att=opt #Forks=unknown proposed in Górecki
et al. (2017b, Section 7), which is suggested as a good default in the reported simulation study.
For the details explaining the theoretical concept behind these input arguments, see Górecki
et al. (2017b) together with Table 3 here. This links the notation from Górecki et al. (2017b)
with the names of the arguments used in the HACopulafit function. How to use the estimators
available in HACopulafit is described in the help comments provided with its implementation.
Note that apart from the parameters listed in the example above, HACopulafit currently
also accepts other five parameters – ’KendallMatrix’, ’Emp2copulas’, ’PreCollapsedHAC’,
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Features from Corresponding HACopulafit settings
Górecki et al. (2017b)

Alg = PT 'HACEstimator' = 'pairwise' and 'ThetaEstimator' = 'invtau'

Alg = DM 'HACEstimator' = 'diagonal' and 'ThetaEstimator' = 'mle'

g = avg 'g_2' = @(t)mean(t)

g = max 'g_2' = @(t)max(t)

Sn = E 'GOF' = 'E'

Sn = K 'GOF' = 'K'

Sn = R 'GOF' = 'R'

Coll = pre 'PreCollapse' = true

Coll = post 'PreCollapse' = false

Re-est = KTauAvg 'Reestimator' = 'Ktauavg'

Re-est = TauMin 'Reestimator' = 'taumin'

Attitude = opt 'Attitude' = 'optimistic'

Attitude = pes 'Attitude' = 'pessimistic'

Table 3: The left-hand column shows the features of the estimators considered in Górecki et al.
(2017b, Section 7). The right-hand column shows the corresponding input arguments settings
of the function HACopulafit. The ones not shown in the table, i.e., ’g_1’ and ’nForks’, are
set by default to ’average’ and to ’unknown’, respectively.

’CollapsedArray’ and ’MinDistanceArray’,which serve for delivering certain pre-computed
quantities and their description is addressed soon.

An important part of the estimation process implemented by HACopulafit concerns so-called
collapsing of a HAC structure, which turns binary HAC structures (binary trees often resulting
from estimation processes, e.g., see Górecki and Holeňa (2014, Algorithm 3) for a simple
example) to non-binary ones, allowing to access all possible HAC structures. In the simulation
study in Górecki et al. (2017b), the collapsing approach denoted Coll = pre & Re-est =
KTauAvg outperformed the remaining collapsing approaches considered, which is why it was
chosen as default. The following code highlights this approach.

fit2Bin = HACopulafit(U, {'?'}, 'PreCollapse', false);

K = kendallTauMatrix(U);

[colHACArray, minDistArray] = collapse(fit2Bin, 'invtau', ...

K, U, @(t) mean(t), ...

'optimistic', 'Ktauavg', false)

colHACArray =

Columns 1 through 4

[1x1 HACopula] [1x1 HACopula] [1x1 HACopula] [1x1 HACopula]

Columns 5 through 6

[1x1 HACopula] [1x1 HACopula]
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u2

u5 u6

λ(10)
(?, ?)

τ = 0.697

λ(11)
(?, ?)

τ = 0.683

u1

u7

u3 u4

λ(8)
(?, ?)

τ = 0.814

λ(9)
(?, ?)

τ = 0.803

λ(12)
(?, ?)

τ = 0.511

λ(13)
(?, ?)

τ = 0.184

Figure 7: A binary structured HAC estimate obtained for the data depicted in Figure 4,
where no assumption on the underlying families has been made, indicated by the arbitrary
family denoted ’?’ used in the generators.

minDistArray =

0 0.0109 0.0137 0.2960 0.4747 0.3453

The first line computes a binary structured HAC estimate without any assumption on the
underlying families, which is imposed by using an arbitrary family denoted ’?’; see Górecki,
Hofert, and Holeňa (2017a) for the theory behind this approach. The resulting estimate is
depicted in Figure 7 (note that this plot can be obtained by plot(fit2Bin)). In the third
line, a sequence of HACs with decreasing number of forks (colHACArray) is generated by the
method collapse such that two parent-child forks with closest values of Kendall’s tau are
collapsed into one repeatedly until only one fork remains, i.e., the HAC stored in the last
cell of colHACArray is actually an AC, which can be easily checked using plot. Also note
that these differences between Kendall’s tau of the collapsed parent-child forks are stored
in minDistArray. The user is then free to choose any collapsed HAC from the generated
sequence.

To help the user with this choice, the approach proposed in (Górecki et al. 2017b, Section 6.1)
is implemented by the function findjump, which estimates the number of forks in the un-
derlying HAC by detecting the first (relatively) substantial jump in the distances stored in
minDistArray. For our example, these distances are depicted in Figure 8. One can observe
the first substantial jump between the third and the fourth value, which is also detected by
the function.

iJump = findjump(minDistArray)

iJump =

3
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Figure 8: The left-hand side shows the values of minDistArray. The right-hand side shows
the collapsed HAC colHACArray{3}.

One can then automatically choose the collapsed HAC according to this output using the
following code.

fit2UnknownFams = colHACArray{iJump};

Its plot is depicted on the right-hand side of Figure 8. If the input parameter ’PreCollapse’
is set true, the function HACopulafit uses this approach to estimate the number of forks
as default, which is indicated by setting the parameter ’nForks’ to ’unknown’; if the user
prefers some particular number of forks in the resulting HAC, this number of forks can be
enforced by passing it to HACopulafit instead of ’unknown’.

Finally, the families and the parameters can be estimated by supplying the collapsed structure
as optional input argument (structure estimation is avoided in such a case).

fit2 = HACopulafit(U, families, 'PreCollapsedHAC', fit2UnknownFams);

Using plot(fit2), the reader can check that it is the one depicted in Figure 5(a).

Sometimes, it is more convenient to let HACopulafit choose the collapsed structure directly
from the cell array colHACArray (i.e., the function findjump is used directly in HACopulafit),
which can be done as follows.

fitCollDir = HACopulafit(U, families, 'CollapsedArray', colHACArray, ...

'MinDistanceArray', minDistArray);

Using plot(fitCollDir), the reader can again see the HAC representation from Figure 5(a).

It is important to note that HACs delivered to HACopulafit either by ’PreCollapsedHAC’ or
’CollapsedArray’ are not limited to the family ’?’, but can contain any families supported
by HACopula. This also allows one to re-estimate the families and parameters (but keeping
the structure) of an existing HACopula object. For example, if one wants to re-estimate
fitCollDir in order to all involved forks be from the Clayton family, one can use the following
code.

fitClayton = HACopulafit(U, {'C'}, 'PreCollapsedHAC', fitCollDir);
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The resulting estimate has already been depicted in Figure 5(b), as can be checked by
plot(fitClayton).

Once a larger simulation study is to be conducted, optimization comes into play. For this
purpose, the function HACopulafit accepts several pre-computed quantities. Apart from
the parameters ’PreCollapsedHAC’, ’CollapsedArray’ and ’MinDistanceArray’ addressed
above, ’KendallMatrix’, if supplied, avoids computation of the matrix of Kendall taus for
a given data sample. This matrix can be computed by kendallTauMatrix(U) for a data
sample U, which is useful when several estimation procedures are performed on the same
data. Another such a parameter is ’Emp2copulas’ computed by computeallemp2copulas,
which serves for delivering all bivariate empirical copulas. Supplying this input is useful when
several estimation procedures involving goodness-of-fit test statistics are performed on the
same data (i.e., when more than one family is assumed for the generators).

Also note that each time the function HACopulafit is executed, the input data sample U

is tested for uniformity of its univariate margins on [0, 1] by the function iscopuladata,
which for each margin performs the two-sample Kolmogorov-Smirnov test, where the sample
is compared to the standard uniform distribution. To switch off this test, set the parameter
CheckData to ’off’.

Finally, as the estimation process might become complex, particularly when estimating a HAC
involving different families, its details for a particular input are written in the second output
argument of HACopulafit (denoted fitLog in our example). This is particularly useful for
explaining how the algorithm came to the resulting estimate, see the following content of the
variable fitLog. Note that for the sake of brevity, several parts of fitLog are omitted.

fitLog =

'***** HACopulafit: Start... *****

***** Pre-collapsing: Start... *****

Estimating the binary structure (no assumptions on the families)...

***** HACopulafit: Start... *****

(tau^n_{ij}):

. 0.1940 0.5069 0.5154 0.1600 0.1848 0.5112

. . 0.2057 0.2024 0.6729 0.6938 0.2057

. . . 0.8144 0.1648 0.1897 0.8063

. . . . 0.1624 0.1796 0.8006

. . . . . 0.6971 0.1723

. . . . . . 0.1911

. . . . . . .

--------------------------------------------------------------------

k = 1 *** Estimating \lambda(8):

I = [1 2 3 4 5 6 7]

g_1(K_{\downarrow(3), \downarrow(4)}) = 0.81438

Join leaves: \downarrow(8) = [3 4]

--------------------------------------------------------------------

k = 2 *** Estimating \lambda(9):

I = [1 2 5 6 7 8]

g_1(K_{\downarrow(7), \downarrow(8)}) = 0.80345
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Join leaves: \downarrow(9) = [3 4 7]

--------------------------------------------------------------------

(omitting the steps for k = 3, ...6)

--------------------------------------------------------------------

***** HACopulafit: Stop. *****

Generating a sequence of 6 (collapsed) structures from the binary one.

Taking the collapsed structure with 4 forks,

following the estimated number of forks given by findjump, i.e.,

instead of the binary structure given by

\downarrow(8) = {3 4}

\downarrow(9) = {3 4 7}

\downarrow(10) = {5 6}

\downarrow(11) = {2 5 6}

\downarrow(12) = {1 3 4 7}

\downarrow(13) = {1 2 3 4 5 6 7}

taking the non-binary one given by

\downarrow(8) = {3 4 7}

\downarrow(9) = {2 5 6}

\downarrow(10) = {1 3 4 7}

\downarrow(11) = {1 2 3 4 5 6 7}

Note that \downarrow(i) = {i} for i = 1, ..., 7.

***** Pre-collapsing: Done. *****

Estimating the families and parameters...

--------------------------------------------------------------------

k = 1 *** Estimating \lambda(8):

I = [1 2 3 4 5 6 7]

g_1(K_{\downarrow(3), \downarrow(4), \downarrow(7)}) = 0.80709

Admissible families + ranges:

{(C, [eps(0), Inf)), (12, [1, Inf)), (19, [eps(0), Inf))}

Theta estimation:

family = C theta = 8.3676

family = 12 theta = 3.4559

family = 19 theta = 4.2663

Family estimation:

S_n^{g_2} for the families (C, 12, 19) is (0.6070, 0.0497, 2.2102)

Best-fitting \psi^(family, theta) = \psi^(12, 3.4559)

Join leaves: \downarrow(8) = [3 4 7]

--------------------------------------------------------------------

k = 2 *** Estimating \lambda(9):

I = [1 2 5 6 8]

g_1(K_{\downarrow(2), \downarrow(5), \downarrow(6)}) = 0.68796

Admissible families + ranges:

{(C, [eps(0), Inf)), (12, [1, Inf)), (19, [eps(0), Inf))}
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Theta estimation:

family = C theta = 4.4094

family = 12 theta = 2.1365

family = 19 theta = 1.8031

Family estimation:

S_n^{g_2} for the families (C, 12, 19) is (0.6162, 1.2399, 0.0921)

Best-fitting \psi^(family, theta) = \psi^(19, 1.8031)

Join leaves: \downarrow(9) = [2 5 6]

--------------------------------------------------------------------

(omitting the steps for k = 3, 4)

--------------------------------------------------------------------

***** HACopulafit: Stop. *****'

The notation used in the log above corresponds to the notation from Górecki et al. (2017b,
Algorithms 1 and 3). Note that as the estimation procedure described by fitLog involves
pre-collapsing, HACopulafit at the beginning calls itself to get a binary structured estimate
(assuming the arbitrary family ’?’ for all generators), which is indicated by repeating the
log ***** HACopulafit: Start... *****.

At this place, it is important to note, that, on the one hand, the HAC estimators implemented
by HACopulafit have been proven to work by means of simulation, see Górecki et al. (2017b,
Section 7). On the other hand, the statistical (large sample) properties of these estimators,
particularly how the collapsing step affects the asymptotic distribution of the estimator (if it
exists), are unknown at the moment. One thus should have this in mind when interpreting
results obtained with HACopulafit.

5. Speed up for high dimensions

In a lot of applications, copula modeling has to be carried out in high dimensions, e.g., see
Hofert et al. (2013) for a motivation in the area of finance. One purpose of this section is to
demonstrate that such high-dimensional modeling can be accomplished with the HACopula

toolbox. Also, it is shown how to use HACopula to speed up the computation of the matrix
of pairwise Kendall’s taus offered by the standard installation of MATLAB and Octave. This
matrix is frequently required, e.g., for estimation of HACs, and, as is illustrated below, its
computation becomes demanding especially in high dimensions. As the speed-up requires an
installation of an extra compiler compatible with MATLAB or Octave, we have kept this more
advanced part of HACopula to this penultimate section.

For the purposes mentioned above, an example in which a 100-variate HAC is constructed,
sampled, estimated, goodness-of-fit tested and evaluated is provided. Additionally to the
previous examples, computation times for all procedures are shown. Also note that in such
high dimensions, estimation of a HAC including its structure has not yet been reported in
the literature.

To simplify the construction of high-dimensional HAC models, the toolbox provides an auxil-
iary function getfullmodel, which builds a certain type of HAC models that are easily scal-
able to high dimensions. The following example can be reproduced using the file highdimex.m
in the folder Demos.
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Figure 9: A 100-variate HAC with 11 nesting levels, where each level contains one 10-variate
AC from the Clayton family (’C’), with the parameter at the root corresponding to Kendall’s
tau = 0.1 and the differences between the parameters of a parent and its child corresponding
to Kendall’s tau = 0.08 (constructed via getfullmodel(11, 10, ’C’, 0.1, 0.08)).

In the code below, the 100-variate HAC depicted in Figure 9 is constructed and a sample of
2000 observations from it is generated (to get reproducibility with Octave, load U from the
file highdimex_data.mat in the folder Demos).

HACModel = getfullmodel(11, 10, 'C', 0.1, 0.08);

rng('default'); rng(1);

tic; disp('Sampling...'); U = pobs(rnd(HACModel, 2000));toc

Sampling...

Elapsed time is 3.024096 seconds.

Before proceeding to HAC estimation, it is convenient to first compute the matrix of pairwise
Kendall’s taus for U. MATLAB (Statistics and Machine Learning Toolbox) as well as Octave
provides an implementation computing a Kendall’s tau estimate for a pair of vectors of n
observations in O(n2), which makes the computation of the matrix of pairwise Kendall’s taus
(overall effort is thus O(d2n2) in this case) in our example by far the most demanding part
(as illustrated below). However, there exist faster algorithms that can compute a Kendall’s
tau estimate in O(n log(n)), see Knight (1966); Abrevaya (1999); Christensen (2005). One
of them implemented in C++, which has been taken from the VineCopulaMaltlab toolbox,
Kurz (2016), see its file SDTau.cpp, is also provided by HACopula. As it is in C++ (here
in the file fastKendallTau.cpp), it has to be compiled before its first use. Note that to
compile C++ code, both MATLAB and Octave require some C++ compiler, for example,
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see www.mathworks.com/support/compilers.html which contains information about compat-
ible compilers for different releases and operating systems (MATLAB additionally requires
MALTAB coderTM). The commands for the compilation together with computation times for
the standard and for the fast implementation are shown below.

tic; disp('Slow (O(n^2)) computation of Kendall''s matrix...');

KSlow = kendallTauMatrix(U);

toc

% compile fastKendallTau.cpp to a MATLAB executable (.mex) file

if isoctave

mkoctfile --mex fastKendallTau.cpp

else % MATLAB

mex fastKendallTau.cpp

end

tic; disp('Fast (O(n*log(n))) computation of Kendall''s matrix...');

K = kendallTauMatrix(U);

toc

disp('Are the results equal?');

sum(sum(K == KSlow)) == numel(K)

Slow (O(n^2)) computation Kendall's matrix...

Elapsed time is 118.194155 seconds.

Building with 'Microsoft Visual C++ 2017 Professional'.

MEX completed successfully.

Fast (O(n*log(n))) computation Kendall's matrix...

Elapsed time is 3.962349 seconds.

Are the results the same?

ans =

logical

1

I.e., with the fast computation, a speed-up of roughly 30 times can be obtained in this example.

Now, two estimates, one based on the re-estimation approach proposed in Górecki et al.
(2017b) (fit1Avg), the other one on the re-estimation approach proposed in Uyttendaele
(2017) (fit2Min), are computed based on the observations in U. The matrix of pairwise
Kendall’s taus is provided as the last argument.

tic; disp('Estimating (1)...');

fit1Avg = HACopulafit(U, {'C'}, 'Reestimator', 'Ktauavg', 'KendallMatrix', K);



30 The HACopula Toolbox

toc

tic; disp('Estimating (2)...');

fit2Min = HACopulafit(U, {'C'}, 'Reestimator', 'taumin', 'KendallMatrix', K);

toc

Estimating (1)...

Elapsed time is 4.583466 seconds.

Estimating (2)...

Elapsed time is 4.339935 seconds.

In the following code, these two estimates are evaluated in the same way as in Section 3. Note
that the computations of the p values and of the probabilities available from the functions
prob and evalsurv are omitted due to their run-time, as well as the computation of the
distance matrix considering the upper tail dependence due to the fact that it is always zero
for the Clayton family.

tic; disp('goodness-of-fit');

[gofdSnE(fit1Avg, U) ...

gofdSnE(fit2Min, U)]

toc

tic; disp('kendall (HAC vs sample)');

[distance(fit1Avg, K) ...

distance(fit2Min, K)]

toc

DISTANCE_TYPE = {'kendall', 'lower-tail'};

for i = 1:2

tic; disp([DISTANCE_TYPE{i} ' (HAC vs HAC)']);

[distance(fit1Avg, HACModel, DISTANCE_TYPE{i}) ...

distance(fit2Min, HACModel, DISTANCE_TYPE{i})]

toc

end

tic; disp('structures match ratio...')

[~, fit1AvgRatio] = comparestructures(HACModel, fit1Avg);

[~, fit2MinRatio] = comparestructures(HACModel, fit2Min);

[fit1AvgRatio fit2MinRatio]

toc

tic; disp('evaluating CDF at (0.5, ..., 0.5)...')

[cdf(fit1Avg, 0.5 * ones(1, HACModel.Dim)) ...

cdf(fit2Min, 0.5 * ones(1, HACModel.Dim))]

toc

goodness-of-fit
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ans =

0.0016 0.0016

Elapsed time is 1.565559 seconds.

kendall (HAC vs sample)

ans =

0.0118 0.0107

Elapsed time is 1.045704 seconds.

kendall (HAC vs HAC)

ans =

0.0040 0.0065

Elapsed time is 1.363244 seconds.

lower-tail (HAC vs HAC)

ans =

0.0055 0.0117

Elapsed time is 1.460142 seconds.

structures match ratio...

ans =

1.0000 0.9868

Elapsed time is 1.906894 seconds.

evaluating CDF at (0.5, ..., 0.5)...

ans =

0.0011 0.0011

Elapsed time is 0.028698 seconds.

Observe that the times for all the performed procedures (excluding the slow computation of
the matrix of pairwise Kendall’s taus) have taken less then 5 seconds, which, in our opinion,
makes HACopula a tool viable also for large-scale copula modeling. Also observe that the
results for fit1Avg are slightly better (or equal) than the ones for fit2Min (of course, not
taking into account the last evaluation) except for kendall (sample) where the values are
relatively close. This is in accordance with the results reported in Górecki et al. (2017b).
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Considering the structure of the estimates, the function comparestructures shows 100%
match with the structure of HACModel for fit1Avg and almost 99% match for fit2Min, which
can also be visualized using plot.

Considering run times for the computations reported above, note that these might substan-
tially differ for MATLAB and Octave, e.g., for sampling and for estimation we have observed
even more than 10 times longer run times in Octave than in MATLAB.

In the R package HAC, an analogue to the estimators used above (including collapsing and
re-estimation) is provided by the function estimate.copula with the input argument method
set to 4, which corresponds to so-called penalized maximum likelihood method; see Okhrin,
Ristig, Sheen, and Trück (2015); Okhrin and Ristig (2016). To compare this estimator with
the ones considered above, one can use the R script highdimex.R available in the folder
Demos, which computes a HAC estimate for the data generated above (U, also stored in the
file highdimex_data.mat in the folder Demos). At our machine, the computation has taken
approximately 6.5 hours and, by contrast to fit1Avg, the true (model’s) structure has not
been recovered. Recall that with HACopula, the same job took approximately 8.5 seconds
(= 4 seconds to get the matrix of pairwise Kendall’s taus K + 4.5 seconds to get fit1Avg).
The resulting estimate is also available from highdimex_est.RData in the folder Demos and
the plot of it can be obtained in R using the following code.

load("highdimex_est.RData")

require("HAC")

plot(est.obj)

6. Conclusion

The toolbox HACopula extends the current implementation of copulas in MATLAB and Octave
to hierarchical Archimedean copulas. This provides the possibility to work with non-elliptical
distributions in arbitrary dimensions allowing for asymmetries in the tails. In Octave, this
moreover allows one to work with copulas in more than two dimensions. The toolbox im-
plements functionality for constructing, evaluating, sampling, estimating and goodness-of-fit
testing of hierarchical Archimedean copulas, as well as tools for their visual representation,
accessing their analytic forms or computing matrices of pairwise Kendall’s taus or tail depen-
dence coefficients. This was demonstrated with several examples available as demos.
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Hofert M, Mächler M (2011). “Nested Archimedean Copulas Meet R: The nacopula package.”
Journal of Statistical Software, 39(9), 1–20. doi:10.18637/jss.v039.i09.
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Société Française de Statistique, 154(1), 25–63.

Joe H (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.

Joe H (2014). Dependence Modeling with Copulas. CRC Press.

Jun Yan (2007). “Enjoy the Joy of Copulas: With a Package copula.” Journal of Statistical
Software, 21(4), 1–21. URL http://www.jstatsoft.org/v21/i04/.

Kimberling CH (1974). “A Probabilistic Interpretation of Complete Monotonicity.” Aequa-
tiones Mathematicae, 10, 152–164. doi:10.1007/BF01832852.

Knight WR (1966). “A Computer Method for Calculating Kendall’s Tau with Ungrouped
Data.” Journal of the American Statistical Association, 61(314), 436–439. URL https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1966.10480879.

Kojadinovic I, Yan J (2010). “Modeling Multivariate Distributions with Continuous Margins
Using the copula R Package.” Journal of Statistical Software, 34(9), 1–20. URL http:

//www.jstatsoft.org/v34/i09/.

Kurz M (2016). VineCopulaMatlab toolbox. URL https://github.com/MalteKurz/

VineCopulaMatlab.

Macdonald CB (2017). OctSymPy: A Symbolic Package for Octave Using SymPy. URL
https://github.com/cbm755/octsympy.

Marshall AW, Olkin I (1988). “Families of Multivariate Distributions.” Journal of the Amer-
ican Statistical Association, 83(403), 834–841. doi:10.1080/01621459.1988.10478671.

McNeil AJ (2008). “Sampling Nested Archimedean Copulas.” Journal of Statistical Compu-
tation and Simulation, 78(6), 567–581. doi:10.1080/00949650701255834.

McNeil AJ, Nešlehová J (2009). “Multivariate Archimedean Copulas, d -monotone Functions
and l1-norm Symmetric Distributions.” The Annals of Statistics, 37, 3059–3097. URL
http://www.jstor.org/stable/30243736.

Nelsen RB (2006). An Introduction to Copulas. 2nd edition. Springer-Verlag.

Octave-Forge (2018). The Statistics Package for Octave. URL https://octave.

sourceforge.io/statistics/index.html.

Okhrin O, Okhrin Y, Schmid W (2013). “Properties of Hierarchical Archimedean Copulas.”
Statistics & Risk Modeling, 30(1), 21–54. doi:10.1524/strm.2013.1071.

https://CRAN.R-project.org/package=copula
https://CRAN.R-project.org/package=copula
http://dx.doi.org/10.18637/jss.v039.i09
http://www.jstatsoft.org/v21/i04/
http://dx.doi.org/10.1007/BF01832852
https://www.tandfonline.com/doi/abs/10.1080/01621459.1966.10480879
https://www.tandfonline.com/doi/abs/10.1080/01621459.1966.10480879
http://www.jstatsoft.org/v34/i09/
http://www.jstatsoft.org/v34/i09/
https://github.com/MalteKurz/VineCopulaMatlab
https://github.com/MalteKurz/VineCopulaMatlab
https://github.com/cbm755/octsympy
http://dx.doi.org/10.1080/01621459.1988.10478671
http://dx.doi.org/10.1080/00949650701255834
http://www.jstor.org/stable/30243736
https://octave.sourceforge.io/statistics/index.html
https://octave.sourceforge.io/statistics/index.html
http://dx.doi.org/10.1524/strm.2013.1071
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