

Developer’s Guide

Development of Wib Services –

Universal Gateway and Wireless Service Management

Document number: 90-291

Revision: 1.9 2011-06-15

© 2011 Giesecke & Devrient 3S AB. Proprietary/Confidential. All rights reserved.

- 2 -

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Contents

1 Introduction ___ 4

2 References __ 5

3 Definitions and abbreviations _______________________________________ 6

4 Background ___ 7

4.1 Use cases .. 7

4.2 Wib .. 8

4.2.1 User interaction ... 8

4.2.2 Execution model .. 9

4.2.3 Variables .. 11

4.2.4 “Wait-for-response” state... 12

4.2.5 Events ... 12

4.2.6 Timers ... 14

4.2.7 Plug-ins .. 14

4.2.8 Error handling ... 15

4.3 Wiblet .. 15

4.3.1 Installed wiblets ... 16

4.4 Wib services ... 16

4.4.1 Installed Wib services .. 16

4.5 DP and the UG .. 17

4.5.1 WIG WML ... 17

4.5.2 Communication via SMS ... 17

5 Robust WIG WML design __ 19

5.1 Splitting text ... 19

5.2 Alphanumeric passwords ... 21

5.3 Text Size in Select element ... 21

5.4 STK Limitations in the mobile phone .. 21

6 WIG WML how-to ___ 23

6.1 Coding style .. 23

6.2 Closing Card element stops wiblet .. 24

6.3 Jumping as the result of a selection .. 25

6.4 Using icons .. 26

6.5 Retrieving event specific information ... 26

6.6 Static URL references .. 27

6.6.1 Static URL References in WIG WML .. 27

6.7 Changing the Wib operational mode .. 28

6.8 Addressing installed wiblets .. 29

6.9 Using executewiblet (Wib 2.0 and later) ... 31

- 3 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

6.10 WIG WML examples .. 31

7 Some additional UG features _______________________________________ 35

7.1 Caching .. 35

7.2 Cookies .. 35

7.3 Sending SMs .. 35

7.4 Tariff class ... 36

Appendix A WIG WML v5 migration guide _________________________ 38

Appendix B WIG WML migration guide ____________________________ 39

Appendix C Error codes ___ 43

Appendix D Wib compatibility information _________________________ 46

Appendix E WIG compatibility information ________________________ 50

Appendix F WIG WML FAQ _______________________________________ 52

- 4 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

1 Introduction

 The purpose of this document is to provide guidelines and

help to developers of Wib services. The document comes as

a complement to the WIG WML specification (see WIG

WML Specification – Version 5 [7]), and is specifically

aiming to empower Wib services developers to create

services that

 are robust with regard to variable aspects such as mobile

phone capabilities etc.

 utilize Wib and DP capabilities to the maximum

 are well written and maintainable

 are user friendly

 This document is derived from an original document, that

was made obsolete in DP 6.1, – “WIG Application

Guidelines, Delivery Platform 6.0”. That document was

then replaced by “Guidelines – Development of Wib

Services – Delivery Platform 6” which was considerably

rewritten with a clear focus on the needs of the Wib service

developer. The current document is an updated version of

that document.

 The document may not be used for any other purposes than

the ones described above. Specifically, it may not be used as

a source of information when implementing Wib.

- 5 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

2 References
 [1] 3GPP. TS 23.040. Technical realization of the Short

Message Service (SMS). Version 5.1.0 (2001-09).

Available: http://www.3gpp.org/

[2] Ericsson Mobile Communications AB. Enhanced

Messaging Service – White Paper. April 2001.

Publication nr. LZT 108 4854 R1C. Available:

http://www.ericsson.com

[3] ETSI. GSM 11.14. SIM Application Toolkit (SIM-ME)

Interface. Version 8.5.0. Release 1999.

[4] Nokia. Smart Messaging Specification. Rev3.0.0.

2000-12-18. Available:

https://secure.forum.nokia.com/

[5] Universal Gateway Request Protocol – Interface

Specification. G&D SmartTrust.

[6] Universal Gateway Push Request Protocol – Interface

Specification. G&D SmartTrust

[7] WIG WML v5 – Specification. G&D SmartTrust.

[8] SmartTrust Wib™ Plug-ins – Specification. G&D

SmartTrust.

[9] Sony Ericsson, et al. How to Create EMS Services.

Version 1.2 September 2002. Available:

http://www.ericsson.com/

[10] Sony Ericsson. Enhanced Messaging Service (EMS) –

Developers Guidelines. September 2002. Publication

nr. EN/LZT 108 5256 R2A. Available:

http://www.ericsson.com

[11] Wireless Application Protocol Forum. WAP Billing

Framework. Prototype Version 7 Aug 2001.

- 6 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

3 Definitions and abbreviations
Acronym Definition

CGI Common Gateway Interface

DP G&D SmartTrust Delivery Platform

EMS Enhanced Message Service

HTML HyperText Markup Language

NSM Nokia Smart Messaging

STK SIM Application Toolkit

SMS Short Message Service

SM Short Message

UG Universal Gateway

(U)SIM (Universal) Subscriber Identity Module

URL Universal Resource Locator

WAP Wireless Application Protocol

Wib SmartTrust Wib™

Wib command The smallest executable unit in Wib.

wiblet A program that may be executed in the Wib runtime

platform.

WIG Wireless Internet Gateway

WIG WML v3 WIG WML version 3. Supported by all version of DP.

Sometimes referred to as “Old WML”.

WIG WML v4 WIG WML version 4. Supported by DP 6.1.

WIG WML v5 WIG WML version 5. Supported by DP 8.0.

WML Wireless Markup Language

- 7 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

4 Background
 This section aims at presenting concepts and terminology

which are fundamental to the understanding of a Wib

service as well as the environment in which Wib services

are developed and deployed.

4.1 Use cases

 The following use-cases are the two basic use cases of Wib.

 Wib Request

 In this use case, the end-user brings up the Wib menu and

selects one of the menu items. The selection will invoke a

locally installed wiblet which eventually sends a request to

the UG. The Wib request contains binary data. DP (UG)

receives the request and interprets its contents as a URL and

possibly also a query string and translates it into a standard

HTTP GET or POST request.

 The MSISDN of the originating mobile phone may

optionally be attached by DP at the end of the HTTP request

as a query parameter. The HTTP request is then sent to the

content provider Web server, which normally responds with

a WIG WML document. The UG compiles the document

into a wiblet and sends it to the waiting Wib, which

completes the loading and starts executing the dynamically

incoming wiblet.

 For details of the HTTP communication between the UG

and the content provider Web server, see reference [5].

 Wib Push Request

 In this use-case the sequence of actions is initiated from the

content provider side, and the end-user might not even be

aware of that he or she will soon be involved in a Wib

service.

 The first action is when the content provider web server, or

some other entity at the content provider side, sends a push

message to the UG. This message contains information

about the recipient(s) MSISDN as well as a WIG WML

document. The UG compiles the WIG WML document into

a wiblet and forwards the wiblet to the recipient‟s Wib,

which executes the wiblet. Optionally, the originator of the

push message may also get confirmation that the wiblet was

successfully delivered to Wib.

 For details of the HTTP communication as well as the WAP

Push Access Protocol used in this use-case, see reference

[6].

- 8 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

4.2 Wib

 Wib is an execution platform for executing special programs

known as wiblets. As such, Wib provides an interpretation

environment and acts as a virtual machine for wiblets. A

wiblet is a sequence of Wib commands that may be

executed by Wib. Section “Wiblet” on page 15 presents

wiblets in more detail. Wiblets can interact with the user.

 Wib was originally designed as a flexible way of offering

STK applications. Therefore a significant number of the

commands offered by Wib have a direct counterpart in the

STK command set, defined in GSM 11.14 [3]. As an

example, there are Wib commands like “Display Text”,

“Send SM” and “Set Up Call”, to mention a few.

 Nevertheless, many Wib commands are unrelated to STK

and offer functions that are internal to Wib, extending the

capabilities of Wib far beyond what STK offers. Together,

these groups of Wib commands span over functionalities

such as data communication, program flow, user interaction

and data conversion.

 Over the years, several versions of Wib have emerged:

 (Wib 1.0 – Year 1999, prototype version)

 Wib 1.1 – Year 2000

 Wib 1.2 – Year 2001

 Wib 1.3 – Year 2003

 Wib 2.0 – Year 2009

 It is important to note that the different Wib versions are

always backward compatible. This means that features

supported in Wib 1.1 are also supported in the same way by

more recent Wib versions. The reverse is obviously not true,

and therefore this document always tries to point out if a

certain feature described in the text or by WIG WML in an

example, is not supported by all Wib versions.

 Appendix D summarizes the differences between the Wib

versions released to date.

4.2.1 User interaction

 Wib is not equipped with any device for user interaction,

like a screen or a keyboard. Instead Wib relies on the mobile

phone to perform this task. Thus, for Wib to interact with a

user properly, the mobile phone shall provide the following

features.

 A screen capable of displaying text and optionally also

icons.

- 9 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 A keyboard for entering text and digits.

 Buttons for navigation:

 Cancel button; used to terminate the wiblet

execution.

 OK button; used to select a choice or acknowledge

the information on the screen.

 Backward move button; used to restart the currently

executing wiblet, clearing all the variables. If the

wiblet is already at the start position, the execution

will stop.

 A tone-generator (not strictly required)

4.2.2 Execution model

 An in-depth discussion of the execution model of Wib falls

outside the scope of this document. Still, some basic facts

are required to fully understand the behavior of Wib in

certain situations.

 In the state diagram below, the solid boxes represent the

different states that Wib may occupy and the arrows

represent transition between the states due to some action

which is indicated beside the arrow.

Idle Executing

Wait-for-
response

Error

Cancel button
1

WIBlet terminates normally
1

WIB request
op. mode = PULL

 or

forced “Wait-for-
response”

Error handler
installed

Incoming WIBlet

Error
1

Error processing
complete

Repeated menu selections

Menu selection
Event
Incoming WIBlet
Timer expiration

Exit handler
installed

- 10 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

1
With Wib2.0 there is a possibility to start execution of

another installed wiblet or show the main menu both on

normal exit and if an error occurs. In this case Wib remains

in the Executing state and does not transit to Error state or

Idle state respectively

 The “Error” and “Wait-for-response” states are described in

more detail later in this document.

 The “Executing” state is where Wib is busy actually

executing a wiblet. In may be seen in contrast to the “Idle”

state when Wib is doing nothing.

 The transition from “Idle” to “Executing” state due to a

“Menu selection”, “Event” or “Timer expiration” action,

requires the wiblet to be installed in Wib in order to be

executed.

 An “Incoming wiblet” action starting from the “Idle” or

“Wait-for-response” state leads to execution of the incoming

wiblet, which has in this case been dynamically loaded from

the content provider.

 Wib enters “Wait-for-response” state based on a set of rules.

The most important rule to know for a Wib service

developer, is that “Wait-for-response” state is entered based

on the so called Wib operational mode.

 The operational mode is determined by how the currently

executing wiblet was invoked. If it was invoked via a Wib

menu selection, the operational mode is PULL. Conversely,

if it was invoked by a Wib push and thereby coinciding with

the “Wib push” use-case described in section 4.1 , the

operational mode is PUSH.

 The operational mode determines the default behavior of

Wib when it sends a Wib request to the content provider.

The below describes the default behavior for the PULL and

PUSH modes.

 PUSH mode – After sending a request to the content

provider, Wib will continue execution of the current wiblet

with the next Wib command. It will not wait for a response.

 PULL mode – After sending a request to the content

provider, Wib will halt execution of the current wiblet and

enter the “Wait-for-response” state. This also leads to that

all Wib commands following the command that caused

“Wait-for-response” to be entered, will not be reached by

the wiblet execution.

- 11 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 If the above described logic does not fit with the desire of

the Wib service developer, the operational mode may be

changed using the WIG WML element

setreturntarvalue. In Wib 1.3 and later, it is also

possible to explicitly control whether Wib should enter the

“Wait-for-response” state or not, through the go:enterwait

attribute.

 For an WIG WML example how to manipulate the

operational mode, refer to section “Changing the Wib

operational mode” on page 28.

4.2.3 Variables

 Wib has a reserved area of memory where variables may be

written to or read from as Wib executes a wiblet. The most

common way of setting a variable in Wib is through the

WIG WML elements setvar, select or input. Reading a

variable occurs automatically whenever the variable is

referred to by name. In WIG WML, variables can be given

names describing their use like $(PRICE) or $(IMEI). When

this is compiled to a wiblet, variables are identified through

numerical identifiers commonly known as variable IDs.

 Variables come in two different flavors linked to their

maximum persistence in Wib:

 Local variables are variables that are created during the

execution of a wiblet and deleted automatically when the

same wiblet stops executing. Local variables occupy

variable IDs in the range '00'h to 'DF'h. This variable type is

supported by all Wib versions.

 Global variables are variables that can be persistent

throughout the execution of multiple wiblets. Their

maximum life-length is limited by SIM reset, normally

caused by a ME power-off.

 Global variables are cleared when the following WIG WML

elements are executed:

<wml> <!-- since clearonentry default is true

-->

<wml clearonentry="true">

<card clear="all">

<card clear="global">

 Global variables are also cleared when Wib abnormally

terminates execution of a wiblet. That may happen when a

user has pressed 'cancel' or when an error has occurred. In

Wib 2.0 and later it is possible to install an exit handler with

the WIG WML element handleexit. With this element it

is possible to configure to not clear the global variables on

error exit.

- 12 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Global variables are intended primarily for passing data to

and from wiblets, and are supported by Wib 1.3 and later.

 The amount of memory available to variables is limited in

all versions of Wib.

 Wib 1.1 and Wib 1.2 – Support for up to 252 variables in

each wiblet and a maximum variable size of 255 bytes. The

total size of the variable area is manufacturer specific.

 Wib 1.3 – Support for up to 252 variables in each wiblet and

a maximum variable size of 255 bytes. The guaranteed size

of the variable area is at least 1000 bytes for 30 variables.

 Wib 2.0 – Support for up to 252 variables in each wiblet and

a maximum variable size of 8191 bytes. The guaranteed size

of the variable area is at least 1000 bytes for 30 variables.

4.2.4 “Wait-for-response” state

 The purpose of the “Wait-for-response” state is to provide a

user friendly waiting-period after Wib has stopped

executing a wiblet and the next wiblet is being loaded. User

friendly means that Wib should give the end user clear

guidance what is actually going on, and provide updated

progress information as frequently as possible.

 Different Wib versions succeed differently well to achieve

this goal:

 Wib 1.1 and Wib 1.2. Wib falls back to showing the Wib

menu, which is not very user friendly since the end user

may easily think that the wiblet execution has stopped.

 Wib 1.3 and later. Wib provides textual and graphical

(icon) information on the screen of the mobile phone in

three different phases.

 When the request is sent from Wib.

 In the intermediate phase after sending the request

but before reception of the response has started.

 When Wib is receiving the response.

 The textual information is modifiable by the Wib service

developer.

 The “Wait-for-response” state also provides an opportunity

to cancel the “Wait-for-response” state and force Wib back

to the “Idle” state by repeated menu selections from the Wib

menu.

4.2.5 Events

 Wib 1.2 and later versions support invocation of installed

wiblets through a mechanism known as events. An event

- 13 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

can be generated by the mobile terminal as defined in STK

or be internally generated on the card. In both cases, the

event will trigger Wib to look for a configured wiblet to be

executed as a consequence of the event. If no wiblet is

configured, Wib will not invoke any wiblet.

 When a wiblet is invoked due to an event, Wib will

optionally set one or possibly two variables to values that

are associated with the event, so that additional information

may be propagated to the invoked wiblet.

 The following table shows events mapped to affected

variables and what data they hold.

Event Variable id and the data to be stored

MT call „90‟h: Address of calling line identity

„91‟h: Called party subaddress

Call connected „90‟h: Device identities

Call disconnected „90‟h: Device identities

„91‟h: Cause of disconnection

Location status „90‟h: Location status

„91‟h: Location information

User activity

Idle screen available

Card reader status „90‟h: Card reader status

Language selection „90‟h: Language selection

Browser termination „90‟h: Termination cause

Data available „90‟h: Channel status

„91‟h: Channel data length

Channel status „90‟h: Channel status

Access Technology

Change

'90'h: Access technology

Display parameters

changed

'90'h: Display parameters

Local connection '90'h:Service Record

'91'h: Remote Entity Address

'92'h UICC/terminal interface transport level

'93'h: Remote entity transport level address

Network Search Mode

Change

'90'h: Network search mode

Browsing status '90'h: Browsing status

Frames Information

Change

'90'h: Frames information

- 14 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

I-WLAN Access Status '90'h: I-WLAN Access Status

 For more information regarding these events, please consult

GSM 11.14 [3].

 Wib 1.3 adds a new event, the Start-up event, to the list

above. This event is sent to Wib when the (U)SIM has

finished initializing after a power-up or reset.

 Wib 2.0 adds four new events. The Wib specific events can

be found in the table below. Additionally, a separate event

specification that defines additional events is available.

Event Variable id and the data to be stored

Start-up

Network Available '90'h: Location information

Incoming Cell

Broadcast Message

'90'h: Cell broadcast header data

'91'h: Cell Broadcast message

Country Change '90'h: Location Information

Network Change '90'h: Location Information

4.2.6 Timers

 From version 1.3, Wib is equipped with 8 timers that may

be utilized by the Wib service developer. A timer can be

thought of as a clock that can be set to alarm at a certain

time into the future relative to the present time. In other

words it functions as a count-down.

 When the timer fires, Wib executes an installed wiblet

specified when the timer was started.

 Since the actual work is performed by a wiblet, it is up to

the Wib service developer to decide the use-case for timers.

Typically it may be used for periodic tasks like monitoring

or periodic retrieval of information.

4.2.7 Plug-ins

 In addition to the built-in Wib commands, Wib offers an

extension mechanism known as plug-ins. This mechanism

enables access to functionality which is not part of the

standard Wib command set and that can be added at a later

stage. Wib 1.3 and later even supports downloading and

installing new plug-ins over-the-air.

 Currently there are around 30 standard plug-ins defined by

SmartTrust, mainly covering functionality in the area of

security and data retrieval. For a detailed description of

these plug-ins and examples how they are used, refer to [8].

- 15 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

4.2.8 Error handling

 Occasionally an error situation arises where Wib has no

other option than to prematurely abort the wiblet execution.

As the last action before it stops, Wib will display an error

code and possible also an error-message on the screen of the

mobile phone, with information what caused the error.

 Most likely this situation will be confusing to the end user if

it occurs in a “live” Wib service. Therefore it is very

important to test Wib service thoroughly before they are

deployed in order to remove as many potential errors as

possible.

 As a means of debugging a Wib service, the error codes are

useful. Appendix C lists the different error codes along with

associated error messages.

 Wib 2.0 and later offers the possibility to start execution of

another installed wiblet or show the main menu in case an

error occurs. The WIG WML element handleexit is used

to configure this behavior.

4.3 Wiblet

 As described earlier, a wiblet is a sequence of Wib

commands. It is important to note that a wiblet is not the

same as a WIG WML document. The relation between WIG

WML and wiblet is similar to the relation between source

code and object code observed in almost any system for

program development. The source code (WIG WML) is

compiled into object code (wiblet) which is understood by a

computer, in this case Wib. The compilation from WIG

WML to wiblet is always carried out by DP in some way or

another, with the UG as the foremost example.

 The fact that a wiblet is actually object code that Wib

executes may seem obvious when described in this context.

Still, it has subtle implications on the way Wib services

should be designed, since WIG WML is more of a “page-

description” language in the spirit of HTML and WAP

WML where the notion of linear program order is

suppressed in favor of a more tree-like view.

- 16 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

4.3.1 Installed wiblets

 The term installed wiblet is used throughout this document

to indicate that a wiblet is stored locally in Wib, prior to the

moment when it is executed. In other words, loading is not

required. It should be seen in contrast to the term

dynamically loaded wiblets, which is used to express that a

wiblet is loaded from the content provider before it is

executed.

4.4 Wib services

 A Wib service may be perceived in different ways

depending on the point-of-view:

 From Wib point-of-view, it is a one or more wiblets that

may be executed in Wib.

 From an end-user point-of-view, it is the collective

experience created by repeated interactions with Wib in

order to reach a certain goal. Using this rather vague

“definition” it is not always easy to know when

transition between Wib services occurs.

 From a service development point-of-view, it is mainly a

collection of WIG WML documents, CGI scripts and

related data residing on a Web server, together forming

the application.

 All these attempts to capture the nature of a Wib service

should be taken rather informally, since they all omit

information that is not so easily categorized.

4.4.1 Installed Wib services

 Holding on to the view that a Wib service is a collection of

wiblets, it is possible to install a Wib service, in parts or as a

whole.

 The main reason for installing parts of a Wib service is to

reduce the total loading time of the service and possibly also

reduce over-the-air traffic. In some cases all pieces of a Wib

service may be installed in Wib, even if that is not the most

common case.

 If part of the Wib service is installed and part of the Wib

service is loaded dynamically, certain limitations related to

transition between wiblets arise.

- 17 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Wib 1.1 and Wib 1.2. A Wib Service may have its

starting point in a installed wiblet, but once transition

occurs to a wiblet loaded dynamically, there is no way

of “getting back” to the installed wiblet without the end-

user restarting the Wib service.

 Wib 1.3 and later. Wib services may be designed so that

transition between installed and dynamically loaded

wiblets can occur in both directions without restrictions.

 Wib 2.0 and later. With Wib 2.0 there is the possibility

to launch a wiblet stored in a variable.

4.5 DP and the UG

 DP offers a versatile environment for developing and

deploying Wib services. It hides from the Wib service

developer many of the complex issues related to the GSM

network, such as over-the-air security, formatting of SMS

messages and SMS-C protocols. Instead the Wib service

developer is offered, through the UG, a Web based interface

which should be reasonably familiar to developers that have

at some point developed Web based applications.

4.5.1 WIG WML

 The principal language used to develop Wib services is

WIG WML, which is also the application language

supported by the UG. Initially WIG WML was aligned with

WAP WML, but from version 4, which is supported by DP

6.1 and later it has evolved into a language in its own right.

WIG WML 5, which is supported by DP8 and later, was

introduced to make use of the new Wib 2.0 commands.

Appendix F covers frequently asked questions concerning

the rationale behind WIG WML, while Appendix B covers

migration of Wib services written in an earlier version of

WIG WML to version 4 and 5.

4.5.2 Communication via SMS

 Even if the over-the-air communication aspects are hidden

from the Wib service developer, some preconditions should

be pointed out.

- 18 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 The Short Message Service (SMS) which is used to send

data to Wib is a narrow-band communication channel by

today‟s standards. Each SM can hold around 120 bytes of

service (wiblet) data. If the payload exceeds this limit, it will

be split into two or more SMs. The delay experienced by the

end-user accessing the Wib service will increase with the

number of SMs required to send a complete wiblet to Wib.

 There is also a fixed limit to how many SMs that may be

consumed by a single wiblet if the wiblet is loaded

dynamically.

 Wib 1.1 and Wib 1.2. 5 SMs from the content provider to

Wib and 3 SMs from Wib to the content provider.

 Wib 1.3. 7 SMs from the content provider to Wib and 5

SMs from Wib to the content provider.

 Wib 2.0. 9 SMs from the content provider to Wib and 5

SMs from Wib to the content provider.

- 19 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

5 Robust WIG WML design
 This section deals with a number of constraints related to the

mobile phone and the SIM card that must be kept in mind

when developing a Wib service.

5.1 Splitting text

 When working with WIG WML documents containing text, it

is important to understand that there is a limit for how many

characters the mobile phone can display at the same time. The

limit differs between different SIM card manufactures and

mobile phones vendors, but it is usually between 110 - 140

characters.

 If a text contains more characters than the display limit, the

UG will impose a split of the text when the document is

compiled to a wiblet. The text will then be contained in two or

more consecutive screens on the mobile phone, regardless of

how the text is constructed.

 The developer may take control over this process by splitting

the text manually using several p elements in succession in

the WIG WML document. This is the recommended way of

dealing with long texts since the outcome is now under the

control of the developer.

 In the two examples below, the display limit has been set to

110 characters. The doctype has changed in WIG WML v5,

see “WIG WML v5 migration guide” on page 38.

Example [1]

 The following WIG WML document will trigger the “auto-

split” feature of UG to handle the text.

<?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Main">

 <p>This sentence has too much text and could

not be displayed at the same time on the mobile

phone. Because of this, the text has been split

into two paragraphs.

 </p>

 </card>

</wml>

 Result:

- 20 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

This sentence has

too much text and

could not be

displayed at the

same time on the

mobile phone.

Because of

OK?

The user must press the Yes button.

this, the text has

been split into two

paragraphs.

Yes No Yes No

Example [2]

 Here the WIG WML document uses two <p> tags to handle

the text.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Main">

 <p>This sentence have too much text and could

not be displayed at the same time on the mobile phone.

 </p>

 <p>Because of this, the text has been split

into two paragraphs.

 </p>

 </card>

</wml>

 Result:

This sentence has

too much text and

could not be

displayed at the

same time on the

mobile phone.

OK?

The user must press the Yes button.

Because of this, the

text has been split

into two

paragraphs.

Yes No Yes No

- 21 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

5.2 Alphanumeric passwords

 Some mobile phones do not allow the use of the

input:type="password" attribute together with

alphanumeric input. Thus, for the type="password" to

work on all mobile phones, it has to be used together with
format="*N" which indicates numerical input.

Example [3]

<input name="PWD" type="password" format="*N"/>

5.3 Text Size in Select element

 The select element may only be used with a limited

number of characters. The sum of all character displayed on

some mobile phones, that is the title plus the text in each

option, may not exceed 110 characters.

Example [4]

 <card>

 <p>

 <select title="Colour" name="C">

 <option value="1">Blue</option>

 <option value="2">Red</option>

 <option value="3">Yellow</option>

 </select>

 </p>

</card>

 In this example the number of characters is ("Colour" = 6) +

("Blue" = 4) + ("Red" = 3) + ("Yellow" = 6) = 19.

 The select:title attribute is unfortunately displayed in

many different ways and sometimes not at all, depending on

the mobile phone manufacturer.

 Wib and/or the UG configuration also puts limitations on

how much information (i.e. select:title, option text,

option:value and option:onpick URLs) you can totally

have within one select element. It is advisable to try to

keep the total length of all the information as short as

possible to ensure proper operation for all configurations.

5.4 STK Limitations in the mobile phone

 Many Wib functions lead to STK functions. Some of these

have traditionally had a varying level of support in the

mobile terminals. Example of such functions are listed

below.

- 22 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Icons (Wib 1.3)

 Events (Wib 1.2)

 Timers (Wib 1.3)

 Launch browser (Wib 1.2)

 Execute STK (Wib 2.0)

 When developing a Wib service that builds on one of these

features, it is inevitable that the service will fail on some

mobile phones. This fact must be considered by the service

developer, and weighted against the value gained by using

the feature(s). For icons and event usage, the failure shall be

soft, meaning that nothing will happen on the device. The

usage of timers and launch browser may trigger an error on

a terminal that does not support them. Therefore, the Wib

service should use the checkterminalprofile element to

handle the case properly.

 Testing may reveal to what extent a Wib service works on

different mobile phones.

- 23 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

6 WIG WML how-to

6.1 Coding style

 Because of the limitations pointed out in section

“Communication via SMS” on page 17, it is desirable to

design a Wib service in such a way that the number of SMs

required in the SMS communication is kept to a minimum.

The following provides some general recommendations for

achieving this.

 Small WIG WML documents are better that big

 Short URL‟s are better that long

 Exploit the use the static URL references to reduce the

wiblet size. These can be regarded as compressed

server-side bookmarks and also provide value in

creating a more dynamic environment. See section 6.6

for details.

 Simple logic is better that complex

 Make dynamically loading of a wiblets occur in places

where it seems natural from an end user point-of-view,

and thereby causing least annoyance.

 Use Wireless Application Creator, supplied by

SmartTrust, to analyze and optimize the wiblet size.

 UG supports caching of WIG WML documents. This

may be utilized by the Wib service developer to reduce

wiblet loading time.

 Avoid repeating text strings within the same WIG WML

document. Instead use variables wisely.

 The Wib 1.3 function enabling calling locally stored

wiblets as subroutine can provide great improvement in

user experience.

 Wisely used bookmarking can provide the end-user with

shortcuts into often used functions.

 Learn how to design compact end-user dialogs without

sacrificing usability. In fact, using too many words on a

small display has a negative impact on comprehension.

 The last recommendation is a very important one, since

designing a Wib service requires a somewhat different

mind-set than when designing an ordinary web application

where screen size and bandwidth are issues of minor

importance.

- 24 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

6.2 Closing Card element stops wiblet

 The wiblet execution will stop when a closing card element is

encountered. Jumping between cards is possible using a card

reference in the go:href attribute.

The examples below illustrate the two cases:

Example [5]

 In this example only the text "Hi!" is displayed since Wib

stops after the first card.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Main">

 <p>

 Hi!

 </p>

 </card>

 <card id="Next">

 <p>

 Hi again!

 </p>

 </card>

</wml>

Example [6]

 In this case both "Hi!" and "Hi again!" are displayed since

Wib will jump to the next card in the document.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Main">

 <p>

 Hi!

 <go href="#Next"/>

 </p>

 </card>

 <card id="Next">

 <p>

 Hi again!

 </p>

 </card>

</wml>

- 25 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

6.3 Jumping as the result of a selection

 The option:onpick attribute is very powerful since it

allows three types of “jumps” to occur as the result of a

selection.

Example [7]

 This example shows how to jump to a card depending on the

selection.
 <card>

 <p>

 <select title="Colour" name="C">

 <option onpick="#Blue">Blue</option>

 <option onpick="#Red">Red</option>

 </select>

 </p>

</card>

.

<card id="Blue">

.

</card>

.

<card id="Red">

.

</card>

Example [8]
 This example shows how to load and execute a new wiblet

depending on the selection.
 <card>

 <p>

 <select title="Colour" name="C">

 <option

onpick="http://server/path/bluefile.wml">Blue</o

ption>

 <option

onpick="http://server/path/redfile.wml">Red</opt

ion>

 </select>

 </p>

</card>

Example [9]
 Compatibility note: This example is only applicable for Wib

version 1.3 or later.
 This example shows how to execute an installed wiblet

depending on the selection.

- 26 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 <card>

 <p>

 <select title="Colour" name="C">

 <option

onpick="wiblet://server/path/bluefile.wml"

>Blue</option>

 <option

onpick="wiblet://server/path/redfile.wml"

>Red</option>

 </select>

 </p>

</card>

6.4 Using icons

 Compatibility note: This section is only applicable for Wib

version 1.3 or later.

 To be able to use icons in a Wib service, the following tasks

must be accomplished first:

 The SIM card must have icon data installed. Exactly

how this is performed is outside the scope of this

document.

 The Wib service developer must be provided with a list

of installed icons and the icon identifier for each of

them.

 When icons are in place in the SIM, actually using them

from WIG WML is rather straightforward.

Example [10]

 In this example, an icon is displayed alongside with the text

“Icons are cool!!”.
 <card>

 <p iconid="3">

 Icons are cool!!

 </p>

</card>

6.5 Retrieving event specific information

 Compatibility note: This section is only applicable for Wib

version 1.2 or later.

 To be able to read variables set by Wib when an event

occurs, a special syntax must be used where the variable ID

is specified as part of the variable name.

Example [11]

- 27 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 <card>

 <p>

 MT Call Event Ocurred.

 Address: $(ADDRESS:IDx90)

 Subaddress: $(SUBADDRESS:IDx91)

 </p>

</card>

6.6 Static URL references

 This feature allows the UG operator to predefine a set of

URLs that are often used and store them permanently in the

UG. Instead of sending the full URL back and forth between

the UG and Wib, only a reference ID is sent thus reducing

the wiblet size and minimizing the number of SMs over the

air interface. Static URL references may be used in installed

wiblets as well.

 Also, using static URL references instead of full URLs

makes is possible to change the URL, or even change

between HTTP and HTTPS, for dynamically loaded wiblets,

without updating any of the installed wiblets.

 The figure below illustrates a scenario where Wib sends a

request containing a static URL reference to the UG.

Originally, the static URL reference was specified in a WIG

WML go:href attribute like this:

 <go href="!myref!b"/>

 When the UG receives the request, it looks up "myref" in

the database and constructs the full URL. Then it handles

the URL as if it was received directly from Wib.

WIG
Web

Server

http://myhost/test.asp?a=b !myref!b

"myref" = "http://myhost/test.asp?a="

6.6.1 Static URL References in WIG WML

 In WIG WML, the static URL reference is indicated in a URL

with a leading ! character followed by the reference ID and

another ! character. E.g.:

 <go href="!refID!restofmyurl"/>

- 28 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Only one static URL reference is allowed per URL, and the

static URL reference has to be first in the URL.

 Variables are not supported in a static URL reference.

Example [12]

 This example illustrates the use of static URL references.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

‘instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

<card id ="card1">

 <p>

 <setvar name="VAR1" value="A"/>

 <setvar name="VAR2" value="B"/>

 <select name="VAR3" title="Please select">

 <option onpick="!a!">Site A</option>

 <option onpick="#card2">Card 2</option>

 </select>

 </p>

</card>

<card id="card2">

 <p>

 <go href="!myref!$(VAR1)&b=$(VAR2)"/>

 </p>

</card>

</wml>

6.7 Changing the Wib operational mode

 As described earlier in this document, it is possible to change

the operational mode of Wib through the setreturntarvalue

element. Changing the operational mode affects how Wib

behaves upon sending a Wib request. Note that for Wib 1.3, the

“Wait-for-response” state can be controlled explicitly through

the go:enterwait attribute.

Example [13]

 In this example, Wib is forced into PUSH operational mode

through the setreturntarvalue element, which will prevent

Wib from entering the “Wait-for-response” state when

executing the go element.

- 29 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card>

 <p>

 <setreturntarvalue recordid="2"/>

 <!-- Now Wib is in PUSH mode!! -->

 <go

href="http://www.smarttrust.com/no_response.pl"

 enterwait="mode-dependent"/>

 </p>

 </card>

</wml>

Example [14]

 In this example, Wib is forced into PULL operational mode

through the setreturntarvalue element, which will cause

Wib to enter “Wait-for-response” state after executing the go

element.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/WIG-

WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card>

 <p>

 <setreturntarvalue recordid="1"/>

 <!-- Now Wib is in PULL mode!! -->

 <go

href="http://www.smarttrust.com/send_a_response.pl"

 enterwait="mode-dependent"/>

 </p>

 </card>

</wml>

6.8 Addressing installed wiblets

 As described earlier in this document, installed wiblets can

be invoked from other wiblets. For that purpose, a wiblet

Uniform Resource Identifier (Wiblet-URI) is used to

identify the installed wiblet. See [7] for details.

 To define a wiblet-URI for a wiblet is optional, and it is

only needed if the wiblet is to be called by other wiblets or

by timer expirations. The process of choosing the wiblet-

URI for a wiblet, is something that involves the DP

operator. The wiblet-URI must be unique within a DP

installation.

- 30 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Example [15]

 The wiblet-URI is specified for a wiblet in WIG WML

according to this example. The wiblet-URI of this wiblet is

“wiblet://smarttrust.com/demo/myApp”, and if it is installed

it can be invoked from other wiblets.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/

5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

<head>

<meta name="wiblet-uri"

content="wiblet://smarttrust.com/demo/myApp"/>

</head>

 <card>

 <p>

 This service may be invoked by another

service by

 specifying

wiblet://smarttrust.com/demo/myApp as

 wiblet-URI.

 </p>

 </card>

</wml>

Example [16]

 This wiblet illustrates how the wiblet in Error! Reference

source not found. can be addressed. This wiblet could be

installed or it can be dynamically loaded.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card>

 <p>

 This wiblet will now invoke an installed

wiblet.

 <go

href="wiblet://smarttrust.com/demo/myApp"/>

 </p>

 </card>

</wml>

- 31 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

6.9 Using executewiblet (Wib 2.0 and later)

 Wib 2.0 introduces the feature to launch wiblets stored in a

variable. When using the WIG WML element

executewiblet, care has to be taken in which variable the

wiblet is stored. It is strongly recommended to store the

wiblet in a global or a stack variable. Using this practice, the

application programmer can make sure that the variable that

the called wiblet is running in is not modified by the running

wiblet itself.

 This example shows a wiblet that is making an USSD

request and the answer is a wiblet stored in stack variable 1.

The received wiblet is then executed.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/

5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="main">

 <p>

 <sendussd destvar="ussdwiblet:stack01"

ussd="*0100*#" />

 <executewiblet

srcvar="ussdwiblet:stack01"/>

 </p>

 </card>

6.10 WIG WML examples

 This section contains a number of WIG WML examples to

show some basic constructs for a Wib service.

Example [17]

 This example illustrates navigation between cards within a

WIG WML document.

- 32 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="main">

 <p>

 Card selection example.

 <select title="Select card">

 <option onpick="#CARD1">Card1</option>

 <option onpick="#CARD2">Card2</option>

 </select >

 </p>

 </card>

 <card id="CARD1">

 <p>

 Now you’re in CARD1.

 </p>

 </card>

 <card id="CARD2">

 <p>

 Now you’re in CARD2.

 </p>

 </card>

</wml>

Example [18]
 This example illustrates use of the playtone element. The

phone shall play a dial tone during 3 seconds and the text

"Tone!" will be displayed at the same time.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

 xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="main">

 <p>

 This example will play a tone!

 Press ok.

 <playtone toneid="dial" title="Tone!"

duration="3"/>

 </p>

 </card>

</wml>

Example [19]

- 33 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 This example illustrates navigation to WIG WML

documents that will be delivered as dynamic loaded wiblets

from a remote server. The WIG WML documents are

fetched using two different URLs. In the example, this is

done by setting the variable "service" to the name of the

WIG WML document.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/

5.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

<card id="main">

 <p>

 Document selection example.

 <select title="Select card"

name="service">

 <option

value="document1.wml">Name</option>

 <option

value="document2.wml">Location</option>

 </select>

 <go

href="http://www.madeye.org/$(service)"/>

 </p>

 </card>

</wml>

 For the sake of the example, it is possible that the two below

WIG WML are referenced by the above example.
 File document1.wml:
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/WIG-WML/

5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Service1">

 <p>

 Service 1

 <input title="Please enter your

firstname."

 type="text" name="firstname"/>

 You entered $(firstname).

 </p>

 </card>

</wml>

 File document2.wml:

- 34 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card id="Service2">

 <p>

 Service 2

 Location data will be sent to location

service

 Press ok

 <providelocalinfo cmdqualifier="location"

destvar="Info"/>

 <go

href="http://madeye.org/pos.php?info=$(Info)"/>

 </p>

 </card>

</wml>

- 35 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

7 Some additional UG features
 This section describes features that are of interest when

building Wib services.

7.1 Caching

 The UG acts like a proxy cache for requests coming from

Wib. This means that the UG will save a copy of the WIG

WML document it receives from web servers, so that the

next time there is a request for the same document, the UG

will use the copy it has instead of asking the original Web

server.

 The main reason for caching WIG WML documents is to

reduce the time it takes to dynamically load a wiblet to Wib.

 It is recommended to use the UG cache as far as possible.

 The UG cache may be controlled by the Wib service

developer using cache control HTTP headers. For details see

reference [5].

7.2 Cookies

 When the UG requests a WIG WML document from a web

server, the web server may also respond with a piece of state

information in addition to the WIG WML document.

Included in the state object is a description of the range of

URLs for which that state is valid. Any further requests

made by the UG which fall in that range will also include

transmittal of the current value of the state object back to the

Web server. The state object is commonly referred to as a

cookie.

 Note that cookies are never actually sent to Wib and

therefore do not consume bandwidth. Instead they are

managed and stored in the UG, on behalf of Wib.

 Cookies are most often used to enable user-side

customization of Web applications.

 See reference [5] for more information on cookies.

7.3 Sending SMs

 The UG/Wib system supports two different ways of sending

an SM. One way is to let UG send it and that can be called a

server SM The other way is to let Wib send the SM as a

consequence of executing a wiblet containing the sendsm

Wib command.

- 36 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 The server-based method is activated by using the UG

server-side plug-in call sendserversm (or

sendserverdatasm) for server SM. The Wib-based method

is reached by using the sendsm element.

 The originating address in a server SM will be the same as if

the SM had been sent using a Wib SM, i.e. the MSISDN of

the mobile phone.

 It is possible to send both Enhanced Message Service

(EMS) and Nokia Smart Messaging (NSM) messages by

using the sendserverdatasm plug-in or the sendsm

element (requires Wib 1.3 or later).

 Details regarding the format and creation of EMS messages

may be found in Enhanced Messaging Service – White

Paper [2], Enhanced Messaging Service (EMS) –

Developers Guidelines [10] and How to Create EMS

Services [9].

 Details regarding the technical realization of EMS may be

found in TS 23.040. Technical realization of the Short

Message Service (SMS) [1].

 Details regarding the NSM format may be found in Smart

Messaging Specification [4].

7.4 Tariff class

 To charge for a WIG WML document, a tariff class may be

used. The tariff class should be included among the HTTP

headers in the Web server response to a UG request.

 The syntax for the tariff class follows the WAP syntax

according to WAP Billing Framework [11].

 X-WAP-Payment-Info: content-value-class = 1*10

digit
(Zero is not allowed.)

 Before a content provider can use a tariff class, it has to be

defined in DP. The tariff class and a corresponding SMSC

id should be defined by the DP Administrator. Then each

content provider has to be provided with a list of tariff

classes that he is allowed to use.

 When the response/push request reaches the UG, the tariff

class is checked against the content provider's white list of

tariff classes. If the content provider is not allowed to use

the tariff class, it is removed from the response/push

request. If the content provider is allowed to use the tariff

class it is used internally by DP for creating the correct

charging information.

- 37 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Tariff classes can be used together with caching. The tariff

class will then be cached according to the same rules that

apply to the WIG WML document.

Example [20]

 This is an example of how to generate the tariff class header

in a JSP document.
 <?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card>

 <p>

 <% response.addHeader("X-WAP-Payment-

Info",

 "content-value-class=123");%>

 Tariff class included in HTTP header.

 </p>

 </card>

</wml>

Example [21]

 This example shows an ASP document that will generate the

same result as the previous example.
 <%=Response.AddHeader ("X-WAP-Payment-Info",

"content-value-class=123")

%>

<?xml version="1.0" encoding="UTF-8"?>

<wml xmlns="http://www.smarttrust.com/

WIG-WML/5.0"

 xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.smarttrust.com/

WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 <card>

 <p>

 Tariff class included in HTTP header.

 </p>

 </card>

</wml>

- 38 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix A WIG WML v5 migration guide

A.1 Change from DTD to XSD

 In WIG WML v5 the doctype has been removed and

replaced by a scheme declaration according to the example

below. Instead of using a dtd as in WIG WML v4 a scheme

is defined in the element wml.

<?xml version="1.0" encoding="UTF-8"?>

<wml xmlns=http://www.smarttrust.com/

WIG-WML/5.0

 xmlns:xsi=http://www.w3.org/2001/

XMLSchema-instance

xsi:schemaLocation="http://www.smarttrust.com

/WIG-WML/5.0

http://www.smarttrust.com/xsd/wigwml-5.0.xsd">

 Note that the declaration is case-sensitive.

 Failing to reproduce this document type declaration in the

beginning of the document will cause the UG to interpret the

document as being written in an older WIG WML version.

- 39 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix B WIG WML migration guide
 This appendix aims to be a quick-reference for those who

migrate Wib services written in older WIG WML versions

to WIG WML v4 or later.

B.1 Add doctype

 WIG WML v4 requires that the following document type

declaration occurs before any of the WIG WML elements.
<!DOCTYPE wml PUBLIC "-//SmartTrust//DTD WIG-WML 4.0//EN"

 "http://www.smarttrust.com/DTD/WIG-WML4.0.dtd">

 Note that the declaration is case-sensitive.

 Failing to reproduce this document type declaration in the

beginning of the document will cause the UG to interpret the

document as being written in an older WIG WML version.

That would most likely lead to errors.

Note: WIG WML v5 use a scheme declaration instead of a

doctype. See Appendix A

B.2 Change document encoding

 Earlier versions of WIG WML had a concept whereby the

document encoding in the XML declaration also determined

the default character encoding in Wib. In addition, the

default document encoding was ISO-8859-1 if the XML

declaration was omitted or did not contain an encoding

declaration. These two concepts have been abandoned in

later WIG WML versions. Instead, the default document

encoding is now UTF-8, which is in line with the XML

standard, and the default encoding in Wib is no longer

determined by the document encoding, but by the

wml:wibletenc attribute.

 To convert older versions of WIG WML, do one of the

following:

a) If the WIG WML document does not contain an XML

declaration or the document encoding is missing in the

XML declaration, add or modify the XML declaration in the

beginning of the document so that it reads:

<?xml version="1.0" encoding="ISO-8859-1"?>

b) If the WIG WML document does contain the document

encoding in the XML declaration, and the encoding is ISO-

8859-1 or ISO-8859-7, nothing needs to be done.

- 40 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

c) If the WIG WML document does contain the document

encoding in the XML declaration, and the encoding is UTF-

8, modify the wml element according to:

<wml wibletenc="UCS2">

B.3 Remove a and anchor elements

 All occurrences of the a and the anchor element must be re-

written using the select element with options using the

onpick attribute instead.

B.4 Remove emphasis elements

 WIG WML v4 and later does not allow the following

elements:
 b, i, u, big, string, em, small

 Since none of these elements had any visible effect, they

may all be safely removed.

B.5 Remove img elements

 All occurrences of the img element must be removed. This

is always safe since the element had no effect in older WIG

WML versions.

B.6 Remove do elements

 All occurrences of the start and end do tags should be

removed. Elements contained within the do element should

be kept as before.

B.7 Attribute values are case sensitive

 Since all attribute values are case sensitive in WIG WML v4

and later, the document must be corrected with this in mind.

B.8 Tag names are case sensitive

 In WIG WML v4 and later all tag names are case sensitive.

I.e. <P> is different from <p>. The rule in WIG WML v4

and later is that tag names are written using exclusively

lower case letter.

- 41 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

B.9 WMLScript function calls must be rewritten

 The WMLScript syntax has been removed as part of WIG

WML v4 and later. This is actually the biggest change

compared to older versions of WIG WML. Consequently,

all WMLScript function calls must be rewritten using new

language elements as specified in the WIG WML v4 or later

specifications.

 The general rule to find the right element to use in WIG

WML v4 or later is to remove the „wig‟ prefix from the

WMLScript function name and use the new name as the

look up in the WIG WML v4 or later specification. Often

attributes in the element that replaces a WMLScript function

call have a close resemblance with the parameters to the

WMLScript function, which makes migration rather simple

in most case. In the process, make sure that URL escaped

values (like %XX where XX is a hexadecimal number) are

replaced with their unescaped value.

B.10 No automatic title in Select element

 In an earlier version of WIG WML, there was a rule that

said if the select:title attribute was omitted, the text

preceding the select element would be used as title for the

select command in Wib. This is not the case in WIG WML

v4 and later, and omitting the title attribute in the select or

input element will cause the title to be empty in Wib,

independent of any preceding text.

B.11 userdata parameter for wigSendServerDataSM must be
divided into two parameters

 When converting the wigSendServerDataSM WMLScript

function call to the sendserverdatasm server-side plug-in

call in WIG WML v4 or later, the userdata parameter

value must be divided into a user data header parameter and

possibly also a user data parameter. The user data header

length (UDHL) which is the first byte in the original

userdata parameter must also be removed.

B.12 Strict card id attribute value

 card:id attributes which does not start with an underscore

or a letter must be rewritten to do so.

- 42 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

B.13 Replace and ­

 Character entities and ­ are not supported in

WIG WML v4 and must be replaced with numeric character

entities and ­ respectively.

B.14 Rewrite WIGVARxHH

 WIGVARxHH variable names, where HH is a hexadecimal

number, must be replaced with :IDxHH

 It is recommendable, although not mandatory, to have a

describing (variable) name in front of the colon, e.g.:

LOCATION:IDx91

B.15 Rewrite dial-strings

 In all dial-strings, occurrences of lower-case characters “a” -

“e” must be replaced with “A”- “E”, respectively. This

affects the wigSendSM and the wigSetupCall WMLScript

function call.

- 43 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix C Error codes
 If an error occurs, the error is presented to the end user

according to the format description described below. Note

that different Wib version present errors somewhat

differently.

 Wib 1.3 and later:
[ErrorMessage] ErrorCode CommandTag

[TerminaleResponse | FileIdentifier]

 Wib 1.1 and Wib 1.2:
[ErrorMessage] ErrorCode CommandTag

 (Note: [] encloses an optional field(s) and | symbols an

alternative)

 ErrorMessage is a descriptive text explaining the nature of

the error, but may not always be presented to the end user. It

may also be a general text message like “Error”.

 The ErrorCode is always displayed, and may be used to

locate the error message associated with the error in cases

where the ErrorMessage is omitted.

 CommandTag is the numeric tag of the Wib command that

was executing when the error occurred. If the error did not

occur as the result of a failed Wib command, the

CommandTag field is set to "XX"

 TerminalResponse is the terminal response general result

value if a proactive SIM command was issued as part of the

Wib command.

 When the error code is „1F‟h, “Failed to access file”, the file

identifier of the file that could not be accessed shall be given

instead of the TerminalResponse.

Error

Code
Description Note

F
il

e
A

cc
es

s
E

rr
o

r
s

„01‟h Failed to find/read EFBytecode

„02‟h Failed to find/read EFTAR

„03‟h Failed to access/read EFErrorText

„04‟h Failed to find/read EFSMSHeader

„05‟h Failed to read key file.

„06‟h Failed to find/read

EFVersionInformation

Not used since Wib 2.0

„1F‟h Failed to access file.

B
y

te

C
o

d
e

E
rr

o
rs

„20‟h Unknown Wib command found.

„21‟h Variable substitution failed.

- 44 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Error

Code
Description Note

„22‟h Too many variables used. Not used since Wib 2.0

„23‟h Out of variable memory.

'24'h Wiblet too large to handle Not used since Wib 2.0

„25‟h SMS TPDU Tag in incoming

SMS not found.

„26‟h Creation of SELECT ITEM

failed.

Obsolete since Wib 2.0.

Error code '33'h is used

instead

„27‟h Encryption/decryption failed.

„28‟h Out of buffer space.

„29‟h Plug-in not found.

„2A‟h Bad format on proactive STK

command.

Obsolete since Wib 2.0.

Error code '40'h and

'46'h is used instead

„2B‟h "Goto" out of bounds.

„2C‟h E2PROM memory problem.

„2D‟h Command error in client bound

message.

Obsolete since Wib 2.0.

Error code '20'h and

'33'h is used instead

„2E‟h Configuration error.

„2F‟h SET RETURN TAR VALUE not

allowed.

„30‟h Wiblet not found.

„31‟h Timer management failure.

„32‟h Return from wiblet not allowed.

„33‟h Invalid input data to Wib

command.

„34‟h Invalid incoming message.

'35'h Variable too large in submit data

M
o

b
il

e
P

h
o

n
e

E
rr

o
rs

„40‟h Proactive command rejected by

ME.

„41‟h Wrong type of command returned

by ME in terminal response.

„42‟h GET INPUT did not return a

string.

- 45 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Error

Code
Description Note

„43‟h No item identifier was returned by

ME in the terminal response to a

SELECT ITEM.

„44‟h Temporary error occurred in

application. Please try again later.

„45‟h Error in format of received SM.

„46‟h Command not supported by the

mobile.

„47‟h SET UP CALL failed. Not used since Wib 2.0

„48‟h SET UP EVENT LIST failed. Not used since Wib 2.0

P
lu

g
-i

n
 E

rr
o

rs

„60‟h Invalid input parameters.

„61‟h Input out of bounds.

„62‟h Output overflow.

„63‟h RSA error.

„64‟h Illegal operation.

„65‟h Integrity error.

„66‟h PIN length error.

D
ef

a
u

lt
 E

rr
o

rs

„D0‟h Error in application occurred.

Please call support.

P
ro

p
ri

et
a

ry
 E

rr
o

rs

„E0‟h

–

„FF‟h

Error codes in the ('E0'h..'FF'h)

range are proprietary and depend

on the Wib implementation.

- 46 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix D Wib compatibility information
 This appendix describes the differences between the Wib

versions released to date.

D.1 Wib 1.1.1 compared to Wib 1.1

 Wib 1.1.1 has the same functionality as Wib 1.1 with the

exception of one new feature that was added to Wib 1.1.1.

 SMS Default in Get Input: The change applies to the

input element, where it is now possible to mix UCS2

text with SMS Default input.

D.2 Wib 1.2 compared to Wib 1.1

 The list below shows new Wib functions added in Wib 1.2.

 Check Terminal Profile: Better error handling in Wib.

 Conditional Jump: Jump to different WIG WML cards

depending on a variable value.

 Display Text Clear After Delay: Clears the text on the

screen of the mobile phone after a time interval without

interaction from the user.

 Launch Browser: Enables starting a WAP browser

session from Wib.

 Set Extended: Allows value data for the setvar

element to be a mix of static data and variable

references.

 Substring: Copies a sub-string from one variable to

another variable.

D.3 Wib 1.2.1 compared to Wib 1.2

 Wib 1.2.1 has the same functionality as Wib 1.2 with the

exception of one new feature.

 SMS Default in Get Input: The change applies to the

input element, where it is now possible to mix UCS2

text with SMS Default input.

D.4 Wib 1.3 vs. Wib 1.2.1

 The list below shows new Wib commands added in Wib 1.3.

- 47 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Execute Local Wiblet: Enables “local links”, i.e. the

ability to go from any wiblet to an installed wiblet.

 Submit Extended: Support for extensive progress

information using both text and icons. Optional support

for bookmarks.

 Launch Browser Extended: Fixes several issues with

the “old” command which was more or less broken.

 Add/Subtract: Enables simple arithmetic in Wib.

 Convert Variable: Enables various forms of conversion

between text and binary data.

 Group/Ungroup: Packing of many variables into one

and vice versa.

 Set Up Call Extended: New formats for the destination

address with support for variable references. New alpha

identifier for call set up phase. Icon support.

 Display Text Extended: Support for text clearing,

immediate response indicator and text priority. Icon

support.

 Set Up Idle Mode Text Extended: Icon support.

 Send SM Extended: New formats for the destination

address with support for variable references. New alpha

identifier for call set up phase. Icon support.

 Swap nibbles: Swapping the nibbles of an individual

byte.

 BCD to GSM 7bit Default Conversion: Conversion of

binary BCD data to readable text.

 GSM 7bit Default to UCS2 Conversion: Conversion

from SMS default character set to UCS2 and vice versa.

 Timer Management: Timers in Wib.

 Some of the existing (Wib 1.2) Wib commands have also

been changed in a backward compatible way in Wib 1.3, to

add more features.

- 48 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Get Input: Icon support.

 Select Item: Variable reference may now be used in the

options. Icon support for each option as well as in the

title.

 Skip: Two byte skip-length.

 New Context: Enables more fine grained control over

which variables that should be cleared.

 Send USSD: Icon support and improved variable

reference support.

 Variable substitution: Empty variables are substituted

by an empty string in Wib 1.3. In Wib 1.2, an error

would have been generated.

D.5 Wib 2.0 vs. Wib 1.3

 The list below shows new Wib commands added in Wib 2.0.

 Get Terminal Profile: Get terminal profile as sent by

terminal in PROFILE DOWNLOAD

 Execute Wiblet: Executes a wiblet(byte code) received

as input.

 Go On Exit: Command to change default behaviour

when Wib exits execution of a Wiblet normally or due to

error. Options include display of main menu and

execution of another Wiblet.

 Execute STK Command: Wib command to execute

any STK command.

 Create TLV: Creates a TLV structure from a tag and a

value.

 Extract TLV: Breaks down a TLV structure into its

components.

 Convert Text Formats: Conversion between Text and

AlphaIdentifier as well as between packed and unpacked

Text.

 Send Supplementary Service: Allows for sending a SS

string to the network.

 Get ICCID: Allows for retrieval of the ICCID of the

card.

 The list below shows commands which have had their

functionality extended in Wib 2.0.

- 49 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

 Check Terminal Profile: Support for variables. Allows

for check against a single large bitmask.

 Substring: Support for variables. Larger max values for

span and start attribute to support large variables.

Possible to use negative values in span attribute.

 Submit Extended: Added ability to catch errors when

submitting data. Submit header added to inform about

large variables in data and to allow for sending

additional data (IMEI, location information, language

information).

 Send USSD: Added ability to catch errors when sending

USSD. Retry added. Possibility to override input and

output DCS values.

 Launch Browser: Added ability to catch errors when

launching the WAP browser. Retry added.

 Setup Call: Added ability to catch errors when setting

up call. Retry added.

 Send SM Extended: Added ability to catch errors when

sending SM.

 Add/Subtract: New number formats introduced.

 Group/Ungroup Variable: Added support for long

variables.

 Refresh: Added support for lists of network. Allows

steering of roaming.

- 50 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix E WIG compatibility information
 This appendix lists issues related to backward compatibility

of the WIG.

E.1 WIG 3.3 vs. WIG 3.2 (DP 6.0 vs. DP 5.2.3)

 WIG 3.3 is backward compatible with WIG 3.2, with these

exceptions:

 New URL decoding of Push WIG WML documents:

Push documents will not be URL decoded anymore.

Any push application depending on this has to be

updated.

 Restricted variable ID range: The syntax WIGVARxFF

does not work anymore for variable IDs in the range

(0xE0..0xFF). For all other variable IDs, the syntax

works as before.

 Variables not supported in wigLaunchBrowser:
Variables in the URL for the STK command

wigLaunchBrowser are no longer supported.

 Binary data in WIG WML: The ÿ syntax can no

longer be used in WIG WML documents for binary data.

Instead the \xFF syntax shall be used.

 ' not supported as before: The ' character

entity in WIG/Wib specific commands such as

wigSendSM can not be used anymore. Instead %27 shall

be used for indicating the ' character.

 Cache and cookies: A WIG WML document will now

be fetched from cache although there are cookies

associated with the request. The Content Provider is still

in control, since the WIG will only cache a WIG WML

document if the HTTP headers indicate that caching is

allowed.

 Cache and query string: A WIG WML document will

now be cached, although the URL contains a query

string. The Content Provider is still in control, since the

WIG will only cache a WIG WML document if the

HTTP headers indicate that caching is allowed.

- 51 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

E.2 WIG 4.0 vs. WIG 3.3 (DP 6.1 vs. DP 6.0)

 WIG 4.0 supports a new and redesigned version of the WIG

WML language called WIG WML v4. The WIG still

supports earlier versions of WIG WML, but it is

recommended that all new Wib services are developed using

WIG WML v4. Appendix F covers frequently asked

questions concerning the rationale behind WIG WML v4.

 Since WIG WML v4 is a new language, it is not meaningful

to talk about backward compatibility. Instead Appendix B

includes a migration guide for those who consider migration

of their Wib services to WIG WML v4.

- 52 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Appendix F WIG WML FAQ

Q1. Why do we need a new version WML?

 There are two main reasons why the updated WML syntax

was created.

 1. The old WIG WML syntax, which is called WIG WML

v3, is not very user friendly when it comes to

functionality which is not covered by similar

functionality in WAP WML. A good example is the

WML Script calls which are used to call some of the

used STK commands. This syntax is error prone and

with a low verbosity, affecting the possibility to create

and later on comprehend a WML document.

 2. Wib 1.3 introduced many new features that must be

reachable from WIG WML. Continuing on the WIG

WML v3 track would create syntax that breaks the

principle of WAP WML compatibility and at the same

time make a mess out of the language. Instead we

decided to break the principle of WAP WML

compatibility with style by redesigning certain aspects

of the language, and thereby improving the usability of

the language as well as the fitness for its purpose.

 3 Wib 2.0 introduced even more new features and WIG

WML v5 required to be developed.

Q2. What WIG WML version shall I use?

 For DP6.1 up to DP7.2 platforms WIG WML 4 is supported

and shall be used.

For DP8 platforms and later WIG WML 5 is supported. It is

recommended to use this language if developing new

services.

Q3. Do we have to update all our existing applications?

 No. An application only needs to be updated if you want to

make use features in Wib 1.3 and later. Naturally, the

applications can be enhanced by doing that. So it might be

worth considering even if you are not forced to do so.

- 53 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Q4. Can the new WML be used for Wib 1.1 and Wib 1.2?

 Yes! Naturally, you will only be able to use features that are

available in the actual Wib version being used. We strongly

recommend all new applications to use WIG WML v5 since

it is more user-friendly and also catches more errors at an

earlier stage. It also simplifies migration to Wib 1.3.

Q5. Why do I have to update my application completely just to

add icons?

 You do not have to update your application completely.

Only those documents that require icons have to be updated,

and in many cases the change involves only adding the WIG

WML v4 header and adding the icons in the right places,

which you would have to do in any case.

Q6. I want to upgrade from DP 5. Will it cause any problems?

 That will work fine! WIG WML v3 is still supported in DP

6.1 and later.

Q7. I want to upgrade from DP 6.0. Will it cause any

problems?

 No. Same answer as Q6.

Q8. I want to upgrade from DP 7.x. Will it cause any
problems?

 No. Same answer as Q6.

Q9. Our developers cannot learn this new WML. Why can't we

use the old one?

 You can use WIG WML v3 in DP 6.1 and later. The

drawback is that you will not be able to use Wib 1.3 or Wib

2.0 specific features.

Q10. Can new and old WML be mixed?

 Not within the same WML document. A Wib service

consisting of several WML documents may mix WIG WML

v3, v4 and v5 freely between the documents.

- 54 -

Developer’s Guide

Developer's Guide, Development of Wib Services -

Universal Gateway and Wireless Service Management

Q11. The wiblet size appears bigger for Wib 1.3 compared to

Wib 1.2. Is this the case?

 In general the answer is yes. Many of the Wib 1.3

commands are extended versions of the same commands in

Wib 1.2 and Wib 1.1. They offer more features but also

occupy slightly more space. However, Wib 1.3 also

introduces some features that can be used to quite

significantly decrease wiblet size and improve user-

experience. You should look at the possibility of invoking

locally stored wiblets as subroutines and to use bookmarks

in an efficient manner.

