Identification of Clinically Significant Bacteria

Marion Yuen

Laboratory Diagnosis of Infectious Diseases: From Basics to Molecular Methods Workshop

Friday 18 March 2011 Westmead Education & Conference Centre

The Royal College of Pathologists of Australasia has received Australian Government funding under the Specialist Training Program

Difficult Gram Positive Cocci

- Streptococcus mutans
- Alloiococcus otitidis
- Gemella haemolysans
- Helcococcus kunzii

Tests that you need to perform

- Gram stain, haemolysis, motility, catalase
- Morphology in BHI Broth, 24hrs @ 37 °C ?clusters or chains
- Vancomycin susceptibility
- Bile esculin

- PYR, LAP, ADH, Aesculin, hippurate available as rapid disc tests (Remel, Rosco) or part of commercial kit
- Growth in 6.5% NaCl, Tween 80 broths and @ 45°C
- Gas from MRS broth

Streptococcus mutans

Key features

- The key is to recognise that this small GPR is actually a streptococcus
- White, dry colonies α -haemolytic or non-haemolytic on HBA
- Conversion to cocci in chains in BHI, PYG or Thioglycollate broth
- Identifies well on most ID systems

Streptococcus mutans

small GPR/coccobacilli

x400 phase contrast

Alloiococcus otitidis

Key features

- GPC regular size, in pairs, tetrads, clusters
- Slow-growing (48-72hrs) due to lipid requirement
- Strict aerobe and asaccharolytic (unusual for GPC)
- Non-haemolytic to α-haemolytic with age
- Identified by API 20 Strep & ID 32 Strep
- Key tests: Catalase +/+w, PYR+, LAP+, 6.5% NaCl+ (slow),
 - 45°C-, growth on BE but aesculin-, poor or no growth on CA

Alloiococcus otitidis gs x1000 Always check morphology in BHI broth (I know I go on about this!!)

Alloiococcus otitidis

HBA @ 48hrs

Gemella haemolysans

Key features

- Gram-variable cocci in pairs, clusters & small chains
- Slow-growing
- CO_2 enhances growth *G. morbillorum* prefers to grow anaerobically,
 - G. haemolysans prefers to grow aerobically
- Colonies are α-haemolytic or non-haemolytic
- Growth stimulated by Tween 80
- May be confused with NVS but not B6 dependent
- Key tests: PYR+/V (requires heavy inoculum), LAP (V), BE-, 45°C-,

Gemella haemolysans NO₂+, Gemella morbillorum NO₂-

Gemella haemolysans – gs x100 cocci are often decolourised

Helcococcus kunzii

Key features

- Large irregular GPC in <u>clusters</u> "Aerococcus-like"
- Non-haemolytic some strains weakly α-haemolytic
- Lipophilic growth stimulated by Tween 80
- Not included on all commercial kits/system databases, but
 ID 32 Strep gives a profile 4100413 "doubtful" *A. viridans*
- Key tests to differentiate from Aerococcus: LAP-, PYR+, aesculin+, hippurate-, NG @ 45°C, Tween 80 stimulation
- Note: Follow manufacturer's instructions for rapid disc tests

Helcococcus kunzii – gs x1000 cocci are large and in clusters

Always check morphology in broth (BHI) – DO NOT RELY ON GRAM STAIN FOR MORPHOLOGY – see next slide!

GPC's in large clusters prepared from HBA plate gs x1000 -

Same organism grown in

BHI broth for 24 hrs

Helcococcus kunzii HBA @ 48hrs

Difficult Gram Positive Rods

Anaerobes Clostridium tertium

Clostridium tertium

Features

- Slender long Gram-positive rods with oval, terminal spores anaerobically but not aerobically
- Aerotolerant *Clostridia*: *C. tertium*, *C. histolyticum*, *C. Carnis*
- Mis-identified as *lactobacillus* if spores not detected or *Bacillus* species if growth conditions not examined.
 Key tests: *Bacillus* spp: cat +, sporulates aerobically
 C. tertium: cat -, sporulates anaerobically

Clostridium tertium – gs x1000, terminal, oval spores

Clostridium septicum

Key features

- Gram-positive rods medium to large, some "lemon" shaped rod forms, staining often uneven
- Spores oval, central to subterminal, distends cell
- Strict anaerobe, saccharolytic
- Metronidazole = S
- Catalase negative
- Highly motile swarms over plate in 24hrs!
- Must distinguish from *C. sporogenes* lipase, lactose, mannose, enzyme profile on Remel RapID ANA II or other commercial kit (PRO & PYR enzymes)

Swarming over HBA plate in 24 hrs *— Clostridium septicum* gs x1000 central to subterminal spores, lemon-shaped cells

Bifidobacterium longum

Special features

- Habitat intestinal tract of man and animals
- Anaerobic GPR some species are aerotolerant
- Curved rods, rudimentary branching and "bifid" forms, dog bone, long club forms - Gram stain morphology is the key!
- Generally resistant to MTZ
- Fermentative
- >30 species *B. dentium* (previously *B. eriksonii* only pathogen)

"Bifid" form Bifidobacterium spp. gs x1000

Dermabacter hominis

Key Features

- GPR small coccoid to tear drop shaped coryneform rods
- Colonies white to grey, shiny, can be sticky
- Fermentative metabolism
- Identifies on API Coryne
- Unusual reactions: LDC +, ODC +, aesculin +

Dermabacter hominis gs x1000

Dermabacter hominis

4 4

48hrs HBA

Actinomyces species

- GPR, coryneform, curved, irregular, some branching or extensive branching Note: Some newer *Actinomyces* spp. show very little branching and may appear coryneform
- Colony appearance varies with species
- Non-haemolytic, α-haemolytic or β-haemolytic
- Hints that an isolate may be an *Actinomyces* are:
 - -fermentation of xylose, lactose or aesculin hydrolysis
 - -growth conditions
- API Coryne ID: Microbacterium/Cellulomonas, G. vaginalis

Actinomyces israelii – gs x1000 – microcolony grown in BHI broth

Actinomyces spp. vary in their Gram stain appearance

Corynebacterium sundsvallense

Special features

- GPR irregular pleomorphic rods
- Catalase +
- Fermentative
- Non-haemolytic
- Non-pigmented
- Non-motile
- No substrate or aerial mycelium
- Colonies resemble aerobic actinomycete but growth conditions are consistent with *Corynebacterium*

Corynebacterium sundsvallense – HBA, 72hrs

C. durum, C. matruchotii & Rothia dentocariosa share similar characteristics

Arcanobacterium haemolyticum

Key features

- Gram-positive coryneform & irregular, curved rods
- Colonies 0.5mm smooth, dry, whitish colonies at 24hrs
- β-haemolytic colonies best observed @ 48hrs
- 3 medically relevant species: A. haemolyticum, A. pyogenes,

A. bernardiae

- Identifies well on API Coryne
- key tests to differentiate species gelatin, xylose, glycogen

A. haemolyticum – gs x1000 irregular gram positive rods

Arcanobacterium haemolyticum - showing β-haemolysis at 48hrs

Microbacterium oxydans

- GPR regular or pleomorphic, curved
- Colonies moist white-cream or yellow with age
- Motile or non-motile
- Oxidative metabolism but genus is a mixture of both
 oxidative & fermentative species makes ID confusing
- API Coryne usually gives a clue (mannitol +, Aesc +) but check growth conditions

Microbacterium spp. - gs x1000

pigment varies from white, grey to yellow

Microbacterium spp. HBA @ 48hrs

Aerobic Actinomycetes Before we get started -

Questions you need to answer

- Is the isolate a strict aerobe (oxidative) or facultative anaerobe (fermentative)
- Is the organism a GP branching rod or irregular nonbranching rods
- Do the rods stain poorly
- Is there a substrate mycelium <u>and</u> aerial hyphae
- Is there substrate mycelium <u>only</u>
- Is there <u>neither</u> substrate *nor* aerial hyphae
- Is the isolate acid fast by ZN or modified ZN

First - Why are some bugs acid fast?

- Cells that are acid fast contain mycolic acids (large group of long chain fatty acids of varying length)
- The amount of mycolic acids will confer varying degrees of resistance to chemicals, permeability & acid fastness (stain binds to cell wall mycolic acids)

Mycolic acid chain length (carbon number)								
0	20	30	40	50	60	70	80	90
	Coryne		Dietzia	Nocardia		Tsukamurel	la Myc	obacterium
	Rhodococcus							
Gordonia								

Secondly – Aerial hyphae & substrate mycelium

Are you sure you know what you're looking for and how to go about it?

Looking for Substrate and Aerial Hyphae?

- Place culture plate on stage must use clear medium e.g. NA, MHA, SAB
- Drop condenser to increase contrast
- Start with x10 objective to locate individual colonies
- Change to x20 objective to examine structures more closely, BUT don't end up in the agar!

Rhodococcus equi

Special features

- GP rods coryneform, jointed or rudimentary branching morphology varies according to progression of the rod-coccus cycle
- Non-motile
- Oxidative metabolism
- Colonies translucent mucoid, salmon pink with age
- Marked rod-coccus cycle but <u>no</u> substrate or aerial hyphae
- May be partially acid fast (Modified ZN)
- Identifies on API Coryne
- Note: mucoid pink colonies could be *Roseomonas* spp. or other pink oxidative GNR – check gram & do vancomycin or string test

Rhococcus equi – showing oxidative growth pattern

Nocardia spp. – x400

Early colony development showing substrate mycelium

Nocardia spp. NA x10 - note substrate & aerial hyphae

Important Note

Don't be tempted to look for substrate mycelium or aerial hyphae too soon! Check out the next slide

Corynebacterium sundsvallense – MHA, 4 days, x100

Nocardia species

- GP beaded branching rods, fragment to non-motile rods coccobacilli
- Colonies adherent, dry, chalky, heaped & folded with age
- Strict aerobe
- Acid-fast modified ZN stain (Kinyoun)
- Substrate mycelium & aerial hyphae
- Key tests: Lysozyme = R, speciate by antibiotic susceptibility, assimilation reactions, amino acid hydrolysis reactions & Arylsulfatase test - (+ for *N. nova* only)

Nocardia spp. - NA x100

Fragmentation to rods

& coccoid elements

Nocardia spp. – Modified ZN stain showing partial acid fast coccoid-rod elements

Nocardia spp. NA slope @ 7 days Pigment varies from chalk white, salmon pink, orange

Colonies are adherent, dry, heaped and folded with earthy odour

Streptomyces species

- Long filamentous gram positive filaments with minimal branching
- Colonies khaki grey, heaped, folded, adherent, become chalky white with age, earthy odour
- Strict aerobe
- NOT acid-fast
- Substrate mycelium, occ. aerial hyphae that form chains of conidia
- No Fragmentation occur
- Lysozyme = S, biochemically difficult to speciate perform16SrRNA gene sequencing

Streptomyces griseus, x100 - MHA at 48-72 hours

Streptomyces spp.

gs x1000

Long filamentous hyphae with less branching than *Nocardia* spp.

Oerskovia species

- Irregular GPR, branching filaments
- Colonies smooth, glistening, bright yellow
- Facultative anaerobe, Fermentative
- NOT acid fast
- Substrate mycelium that fragments into motile elements but <u>NO</u> aerial hyphae.
- This differentiates *L. aquatica* and *Microbacterium* from *Oerskovia*
- API Coryne identifies *Oerskovia*
- Key tests: hydrolysis of casein, gelatin, xanthine, hypoxanthine

Tsukamurella species

- Irregular GPR no obvious branching, may stain gram variable
- Rough & highly wrinkled colonies in 1-2 days
- Pigment varies with species wh, cr, yell, orange
- Aerobic
- Partially & weakly acid fast by ZN & Modified ZN
- No substrate or aerial hyphae
- Lysozyme = R, 3 Day AryIsulfatase test –, Urea +

Tsukamurella spp. – gs x1000

Tsukamurella inchonensis - HBA @ 72hrs

Oxidative metabolism – no growth ANO₂

The

Tsukamurella colonies, NA plate at 7 days – closer view This is <u>not</u> substrate or aerial hyphae! – only sticky rods

Mycobacterium fortuitum

Mycobacterium abscessus

- Faint staining, gram-variable filaments & curved rods, "ghost" cells (branching filaments can occur with *M. fortuitum*)
- Slow-growing (3-5 days) aerobe
- Colonies non-pigmented, buff to yellow, smooth or dry
- Acid-fast but may be weak or partial
- Members of *M. chelonae* complex highly resistant to antimicrobial therapy

Mycobacterium fortuitum – <u>3 months</u> on NA

Bordetella holmesii

- Small to medium slender GNR, some curved rods
- Non-haemolytic, slow growing aerobe
- Oxidase -, Catalase V, MAC + but growth is slow
- Oxidative
- Non-motile
- Non-reactive browning on tyrosine agar
- Not on database of commercial ID kits/systems

Browning on Tyrosine agar

Bordetella holmesii

growth O₂ & CO₂ but not anaerobic typical of oxidative organisms

Moraxella atlantae

- Plump GNCB, often stains gram variable
- Strict aerobe Oxidative
- Growth stimulated by bile salts (MAC growth is better or equal to HBA)
- Non-motile buy twitching has been observed (pili)
- OX+ (excludes *Acinetobacter* spp.), CAT+, asaccharolytic
- *M. osloensis* some strains tributyrin +, ß-Lactamase +, vancomycin, R

Cells can stain Gram variable & are very coccoid – always check with penicillin challenge & String Test

Moraxella atlantae

gs x1000 Plump GNCB

Important feature is the colony appearance

Colonies are clear & tiny @ 24hrs, pitting and non-pitting forms do occur

Moraxella atlantae @ 4 days showing <u>spreading flat</u> <u>growth</u>

Roseomonas gilardii

- Plump coccoid to oval rods in pairs or short chains
- Resists decolourising
- Colonies mucoid and pale rose pink
- Most species grow on a broad range of media & at 30-42°C
- Oxidase +w/-, Urease +
- Roseomonas spp. are not on database of API 20 NE identify as Methylobacterium spp.
- Confused with *N. gonorrhoeae* grows on TM medium

Roseomonas spp. – gs x1000

NA plate showing mucoid colonies with pale rose pigment

Roseomonas cervicalis

HBA, 48hours

Methylobacterium spp.

Methylobacterium spp. - gs x1000

Terrible gram – but this is what it can look like!

Capnocytophaga ochracea

- Slender, fusiform rod, tapered ends
- Capnophilic
- Gliding motility
- Yellow-orange "ear wax" pigment (swab technique) and pink-lilac sheen
- Colonies fringed to spreading, beaten copper look (*C. ochracea*)
- Bluish-grey, entire colonies (*C. canimorsus*)
- Key distinguishing tests: OX, CAT, ADH

Capnocytophaga ochracea

HBA @ 48hours

Streptobacillus moniliformis

- One of two agents of Rat-bite fever (also Spirillum minus Sodoku)
- Recovered occasionally from blood culture with <u>no</u> added SPS
- Check patient history ?rat bite, pet rat, drug abuse
- Unusual Gram stain 'string of pearls', chains, filaments, swellings
- Non-haemolytic to weak alpha with age
- Non-motile
- Fermentative metabolism
- Identification use a rapid substrate method e.g. ID 32 STREP or similar

Streptobacillus moniliformis

gs x1000 filamentous GNR with swellings

Blood Agar / CO

Vibrio vulnificus

Special features

- Cause of wound infections & primary septicaemia following ingestion of oysters
- Curved & straight GNR
- OX+/Fermenter
- Growth on TCBS = green
- Key tests: O/129 = S
- Salt tolerance to 6% (65%)
- Fermentation of sucrose -, salicin +, cellobiose +, lactose + >75%

Vibrio vulnificus

Green colonies on TCBS at 24 hrs

Vibrio vulnificus colonies on HBA at 24 hrs

Vibrio vulnificus – Salt Tolerance

Vibrio parahaemolyticus

Special features

- Cause of acute GE consumption of contaminated seafood worldwide
- Curved GNR
- OX+/Fermenter
- TCBS = green
- Key tests: O/129 = S/R, salt tolerance to 8% (most strains), fermentation of sucrose -, salicin -, lactose -, cellobiose -, urea + (50% of strains)

The "HACEK" Group

What defines this group of organisms?

- Gram stain morphology
- Cultural characteristics e.g. β-haemolysis i.e. *K. kingae*, pitting colonies, no growth on MAC, colony appearance i.e. dry, adherent, mixed appearance, slow growth rate
- Initial requirement for CO₂ and X factor (lost on subculture)
- Key biochemical characteristics e.g. indole (*C. hominis*)
- Best identified using a rapid substrate method

Cardiobacterium hominis

- Faintly stained Gram-negative regular rods
- "Comets" and rosette arrangements
- Colonies whitish, shiny, may pit the agar
- Key test: Fermentative, oxidase + cat -, indole +
- Differentiate from indole + *Suttonella (Kingella) indologenes*

BA

.

gs x1000 note 'comet tails'

Eikenella corrodens

- Faintly stained slender, straight sided, very regular gram-negative rods
- May be X-dependent on isolation (ignore this)
- OX +, CAT -
- Pitting and non-pitting colony forms
- Key tests: Asaccharolytic, NO₃ +, ODC +, LDC +

Eikenella corrodens - gs x1000

Kingella kingae

- Plump Gram-negative coccobacilli in pairs & short chains, parallel rows & "railway tracks"
- "Soft" β-haemolysis on HBA
- Acid from glucose & maltose has been confuse with
 N. meningitidis
- Associated with bone and joint disease in children

Kingella kingae, HBA, CO₂ at 48hrs

Aggregatibacter aphrophilus

- Small Gram negative coccobacilli
- Capnophilic
- Strong α-haemolysis on HBA
- Culture may look mixed
- Initial requirement for X factor
- Distinguish *A. actinomycetemcomitans,* catalase +, from
 - A. aphrophilus, catalase -

Aggregatibacter aphrophilus

gs x1000

(V dependent strain)

A:

Aggregatibacter aphrophilus, HBA at 48hrs

Aggregatibacter actinomycetemcomitans

- Tiny Gram-negative coccobacilli
- Capnophilic
- Colonies adherent, white, dry
- Fermentative
- Distinguish from Brucella spp. similar Gram stain
- Distinguish from *A. aphrophilus* (Catalase -)

Aggregatibacter actinomycetemcomitans – HBA plates @ 48hours. Growth conditions for *B. melitensis* would be reversed – it is a strict aerobe!

Anaerobiospirillum succiniciproducens

Key features

- Important to recognise that this is not a campylobacter!
- Gram-negative helical rods with rounded ends
- Motile +++ corkscrew
- Strict anaerobe not microaerophilic
- Colonies clear, flat, spreading
- Catalase -, Oxidase –
- Key tests: Glucose, indoxyl acetate, nitrate, urea, H₂S in SIM media

Anaerobiospirillum succiniciproducens

gs x1000

Swarming on HBA plate after 48 hrs anaerobic incubation

A final cautionary note~

Increasingly sophisticated identification methods are becoming available, improving accuracy and turn around times. We welcome these advancements which result in improved patient outcomes.

However we must not neglect basic microbiology skills in the belief that automation can replace them - we must recognise a microorganism of significance before it can be identified - some detective work and sound microbiology are required.

