MATE

HPCAA4SE Autonomous University of Barcelona
o

Date: June 22, 2018
Version: 1.0

MATE USER’S GUIDE

CAOS (UAB)
June 22, 2018

COMPUTER ARCHITECTURES
AND OPERATING SYSTEMS DEPARTMENT
AUTONOMOUS UNIVERSITY OF BARCELONA

Email: grhhpca4se@uab.cat
Web: http://grupsderecerca.uab.cat/hpcadse/en
https://github.com/HPCA4SE-UAB

C__|
gr .hpcadse@uab.cat

Index

1 Introduction

2 MATE installation

2.1 Dependenciesand build o 00 0L
3 Configuration files

3.1 Application controller-ACini

3.2 Analyzer-Analyzerini. L.

3.3 Tunlet - Tunlet.ini

4 Full execution example with XFire

5 Tunlet creation and execution

51 Stepstocreateatunlet 0 0oL
6 Annex
6.1 Configureoptions L
6.2 Simple tunletexample Lo Lo oL
6.21 MPlapplication L.
622 Ctrlepp
6.3 XFireexample o
6.3.1 Analyzerini L o
632 ACini e
633 Tunletini. o .
634 DMLibini oo o

References

11
11
13
13
14
15
15
16
16
17

17

MATE

1 Introduction

The aim of this document is to explain the essential steps to configure, install and ex-
ecute MATE [2, 3, 4]. MATE needs two programs, the Analyzer and AC, to work in
conjunction with the DMLib shared library. In figure 1 we can see how they interact
with each other:

Modification

Events Events
Analyzer

Figure 1: MATE structure

Thus, MATE is composed of the following modules which cooperate to control and
improve the application’s performance:

* The Application Controller (AC) is a daemon that controls the execution and
the dynamic instrumentation of each individual MPI task.

* The Analyzer is a centralized process that carries out the application perfor-
mance analysis, and decides on the monitoring and tuning. It automatically de-
tects existing performance problems on the fly and requests appropriate changes
to improve the application’s performance.

* The Dynamic Monitoring Library (DMLib) is a shared library that is dynami-
cally loaded by the AC in the application tasks to facilitate collecting data and
delivering it to the Analyzer

The knowledge required to perform analysis and tuning is encapsulated in MATE in
a piece of software called a tunlet which will be explained more in detail in section 5.
This document is composed of 4 main sections: MATE installation, configuration files,
a full execution example and the steps to create a tunlet.

2 MATE installation

2.1 Dependencies and build

First off, MATE needs some dependencies to be installed before building it. Those are
the following:

1(18)

MATE

Dyninst - The most critical dependency for MATE is Paradyn’s Dyninst APL
This library is responsible for inserting the instrumentation to the application
that will be monitored. MATE is programmed and tested to work with versions
>7.0.1, being v9.3.2 the latest version tested with. Dyninst can be downloaded
from https://github.com/dyninst/dyninst [1].

MPI - MATE is currently implemented for MPI applications and therefore, it
requires some installed version. The latest MPI installation and version tested
with MATE was OpenMPI v1.10.2 .

PAPI - The latest tested version of PAPI along with MATE was v5.6.1. It can be
downloaded from http://icl.cs.utk.edu/papi/

Other dependencies - MATE also needs the following libraries:
— Boost - The latest tested version of Boost was v1.62.0 . It can be downloaded

from https://www.boost.org/

— libelf & libdwarf - These two libraries can be downloaded from https:
//sourceforge.net/p/elftoolchain/wiki/Home/

— libiberty - It is usually installed along with gcc and it can be downloaded
from https://gcc.gnu.org/onlinedocs/libiberty/

Go to https://github.com/HPCA4SE-UAB/MATE to download MATE once all depen-
dencies have been cleared. The building of MATE is similar to any UNIX-like system
installation:

$./configure --with-dyninst=<DYNINST_DIR> --prefix=<PREFIX>
$ make &% make install

For details on the features that can be input to the configure step, see the annex in
section 6 or do:

$./configure --help

Additionaly, make has four targets explained below:

make - Compiles the application and puts the binaries of Analyzer and AC in
their corresponding folders.

make install - Installs MATE in the prefix chosen (by default /lib and /bin).
make clean - Deletes the compiled files generated in the make step.

make doc - Creates the documentation of MATE in ./doc using Doxygen .

The tree structure that MATE uses can be seen in Figure 2.

2 (18)

https://github.com/dyninst/dyninst
http://icl.cs.utk.edu/papi/
https://www.boost.org/
https://sourceforge.net/p/elftoolchain/wiki/Home/
https://sourceforge.net/p/elftoolchain/wiki/Home/
https://gcc.gnu.org/onlinedocs/libiberty/

MATE

conf
docs
html
latex
examples
L— xfire
src

AC
Analyzer
Common
CMLib

Figure 2: MATE folder tree

3 Configuration files

After the installation process and depending on the application to monitor, you must
take care of MATE's configuration files. This step is necessary to make MATE work
in conjunction with the MPI application. There are four configuration files that have

to be modified. Examples of these can be found in the root directory under the conf/
folder:

¢ AC.ini: configures the Application Controller,

* Analyzer.ini: configures the Analyzer,

¢ Tunlet.ini: configures the tunlet and

* DMLib.ini: configures the DMLib’s syslog options.

In general, a MATE configuration file is composed of several sections with their own
parameters and should look like the following:

[section_name]
parameter_identifier = # user provided_value

[another section name]
parameter_identifier = # user_provided_value

The details for each of these files are shown in the following subsections.

3.1 Application controller - AC.ini

The AC.ini file is where the AC configuration is placed. This file requires the sections:
AC, Analyzer and Syslog detailed below:

[AC]

The AC section specifies parameters associated to the application controller executable:

3 (18)

MATE

[AC]

ACPath = # Application Controller path

DMLib = # 1%bDML<b.so library path
PTPAcceptorPort = # Analyzer waiting event port

[Analyzer]

The Analyzer section is where the Analyzer parameters are specified:

[Analyzer]
Host = # Host where the Analyzer is executing
Port = # Analyzer port

[Syslogl

The Syslog section is where the debug parameters have to be specified:

[Syslog]
MasterSwitch = # true/false
Loglevel =
0 - To show all debug messages in log file.
1 - To show INFO messages.
2 - To show mo messages.
StdErrLoglevel = # 0/ 1/ 2 the same as LogLevel,
but the message will be printed in terminal
StdErr = # true/false to activate the information output
LogFile = # log file name
LogPath = # log file path
AppendMachineName = # true/false
AppendFile = # true/false
Prefix = # prefiz to use when printing information

3.2 Analyzer - Analyzer.ini

The Analyzer configuration file requires the sections: Analyzer, EventCollector and

Syslog:

[Analyzer]

This section only requires the boolean parameter DisableTuningActions to be set. As its

name suggests, it will disable the tuning action if set to true:

[Analyzer]
DisableTuningActions = # true/false

4 (18)

MATE

[EventCollector]

This section defines the Analyzer port to use (where it receives the application metrics
from libDMLib.so):

[EventCollector]
Port = # Analyzer port where it will get the app metrics
from 1tbDML2b.so

[Syslogl

This section contains the same parameters as the previous Syslog section from the
Application Controller and should be filled with the values relative to the Analyzer.

3.3 Tunlet - Tunlet.ini

In the Tunlet configuration file (Tunlet.ini), the functions to monitor and its associated
features are indicated in the Functions section. The fields functionl, function2, ..., func-
tionN are necessary to follow the pattern.

[Functions]
functionl = # name of one function to monitor
function2 = # name of another function to monitor

Each of the functions defined should have its corresponding section such that:

[name of functionl]
entry = # FuncEntry/FuncEzit
event = # iterStart/iterEnd ...

[name_of function2]
entry = ...

The parameters can have the following values:

entry FuncEntry / FuncExit this corresponds to where the function will be monitored,
FuncEntry if in function entry instance, FuncExit if in function exit instance.

event Name of the event that will be generated. Each event is some significant activity
that will be performed during the execution of the app and that collects all the
necessary data during run-time.

Depending on the information that is desired to obtain from each function, one can
specify the following values:

* Source: Depending on the element to monitor, the source parameter can have the
following values:

5 (18)

MATE

FuncParamPointerValue

SendMessageSize

RecvMessageSize

SenderTid

Source Monitoring element
FuncParamValue Function parameter.
VarValue Function variable.
FuncReturnValue Function return value.
ConstValue Constant value.

Function pointer parameter.

The size of the message to send.This attribute can
only be inserted if the entry specified is FuncEntry.

The size of the message to receive. This attribute can
only be inserted if the entry specified is FuncExit.

The identifier of the sender. This attribute can only
be inserted if the entry specified is FuncExit.

¢ type: The source type can be Integer, Short, Float, Double, Char or String.

e id: Since source is a function parameter, then id is the identifier of the parameters.
For instance, if the function f is called by f(a,b,c), the id corresponding to a is
0, bis 1 and c is 2. In any other case, the id will correspond to the name of the

variable.

3.4 DMLib - DMLib.ini:

This configuration file only contains a Syslog section which will have the same
parameters as the other ones. The values need to be changed to those relative to
the DMLib log files. An example of a DMLib.ini file can be seen in section 6.3.4.

4 Full execution example with XFire

For this full execution demo, the configuration files that are used can be found in
section 6. The demo is done with the XFire application. Its files and installation steps
can be found in examples/xfire. The steps to execute XFire along with MATE are:

1. Install XFire: To install XFire, go to examples/xfire/src/ from MATE’s root direc-

tory and do:

$./configure && make

This will create a xfire executable in XFire’s root directory.

6 (18)

MATE

2. Configure Analyzer.ini: The Analyzer.ini config file is in the root directory of
XFire and can be seen in section 6.3.1. The default parameters and values already
in Analyzer.ini don’t need to be changed for the example to work.

3. Configure AC.ini: AC.ini is also provided in the root directory of XFire and can
be seen in section 6.3.2. The parameter ACPath and DMLib must be changed
to point to where the AC executable and [ibDMLib.so library are respectively (in
absolute path). The Host parameter represents the name or ip of the host where
the Analyzer will be run (e.g. localhost if in the same machine).

4. Configure Tunlet.ini: The Tunlet.ini can be seen in section 6.3.3. This is where the
events are defined and will be added as instrumentation to the program. Those
do not need to be changed for the example to work.

5. Execute the Analyzer: The general way of calling the Analyzer is by doing:
$ Analyzer -config </Analyzer/config/file/path> <mpi_app>

To run the Analyzer example, inside XFire’s root dir, do:
$ Analyzer -config Analyzer.ini xfire

6. Execute the Application controller: The general way of calling the AC is by
doing:

$ mpirun -np <n_processes> AC <mpi_app> <app_params>
To run the AC with the XFire app, inside XFire’s root dir, do:
$ mpirun -np 4 AC xfire demo

Where demo is the parameter that tells XFire to run an example.

After a while, the created events will start their execution and the log files will record
the outputs of the AC, Analyzer and DMLib in the specified paths. Those were ex-
plicitly input in AC.ini, Analyzer.ini and DMLib.ini with the parameters LogFile and
LogPath.

5 Tunlet creation and execution

To support the analysis of different problems, MATE includes a catalog of tuning
techniques where each one solves a particular problem. Each tuning technique pro-
vides information about measure points, performance model (analytical model or set
of rules) and tuning action/points/synchronization. Such knowledge is provided to
MATE via specific libraries called tunlets. Each tunlet implements the logic to over-
come a particular performance problem by encapsulating knowledge about it in sev-
eral terms that define the information required for the monitoring, analysis and tuning
phases. The tunlet is thought to detect and resolve situations (events) which are de-
sired to be controlled in your application.

7 (18)

MATE

5.1 Steps to create a tunlet

1. Creation of the tunlet: For a faster and easier tunlet creation, use the tunlet
example MyTunlet.h and MyTunlet.cpp inside the src/Analyzer/ folder in the root
directory of MATE. These and the rest of the files can be found in examples/simple-
tunlet/src/.

The steps to create a tunlet are detailed below:

(a) Create the events for the situations to detect: Each event has to be given a
name. Their definition is done in MyTunlet.cpp and MyTunlet.h by means of
an enumerator, so, these will have to be defined as follows:

o G A W N =

1
2

In MyTunlet.h:

enum EventsEnum

{

idReplaceFunction,
idSetVariableValue,

};...

Then, in MyTunlet.cpp we will only need to create the corresponding map:

std : :map<std :: string , EventsEnum> EventMap = \
boost::assign:: map_list_of ("ReplaceFunction", idReplaceFunction

) ("SetVariableValue", idSetVariableValue) ...;

(b) Capture the events: In MyTunlet.cpp, the function MyTunlet::CreateEvent, in-
herited from the EventHandler class, creates the new events using the previ-
ously defined map EventMap:

N Ul R W N e

10
11
12
13
14
15
16
17
18
19

void MyTunlet:: CreateEvent(Task & t)

{

)

// Create the event
EventsEnum idEvent;

// Read the event name from Tunlet.ini
idEvent = (EventsEnum) EventMap \
[_cfg.GetStringValue (func, "event") |;

// Create the new event

Event endEvent(idEvent,func, ipFuncExit);
endEvent.SetEventHandler (+ this);

t . AddEvent(endEvent) ;

// These final lines have to be included

std :: string semaphoreFunc = "MonitorSignal";

Event semaphoreEvent(0,semaphoreFunc, ipFuncExit);
semaphoreEvent. SetEventHandler (* this) ;

t . AddEvent(semaphoreEvent) ;

(c) Create the actions for each event: All events are handled in the function
MyTunlet::HandleEvent also inherited from EventHandler and therefore, there’s
where each specific action must be taken depending on what the event is. In

8 (18)

MATE

the example below, for idReplaceFunction, the action to perform is to change
the function function_to_replace() for new_function().

1 void MyTunlet:: HandleEvent (EventRecord const & r)
2 {

3 switch (r.GetEventld())

4 {

5 case idReplaceFunction:

6 {

7 _app—>GetMasterTask () —>ReplaceFunction ("
function_to_replace", "new_function", 0);

8 break;

9 }

10

1 case idSetVariableValue: { ... break; }

(d) Finish the tunlet: Apart from the above requirements, the following meth-
ods need to be defined in MyTunlet.cpp:
e [Initialize(Model::Application & app)
* BeforeAppStart()
® Destroy()

Then from the EventHandler class:

o HandleEvent
o CreateEvent

And from the TaskHandler:

o TaskStarted
o TaskTerminated

Generally, these methods can be implemented by default instructions, un-
less requiring specific configurations. These default instructions are shown
in MyTunlet.cpp.

2. Modification of Ctrl.cpp:' The class Controller is responsible for calling the de-
sired functions from our tunlet via its method Controller::Run, but first, we must
place the necessary headers, including our tunlet:

#include "Ctrl.h"
#include "Config.h"
#include "DTAPI.h"
#include "Syslog.h"
#include "MyTunlet.h"
#include <unistd .h>

[B O I N

Then, we will define the constructor where we will read the configuration file
with the ConfigHelper object.

IThe whole code is included in section 6.2.2 and in examples/simple-tunlet/

9 (18)

MATE

7 Controller :: Controller (CommandLine & cmdLine, std::string const &

cfgFile)
8 : _cmdLine (cmdLine)
9 {
10 // Read configuration from file
1 _cfg = ConfigHelper :: ReadFromFile (cfgFile);

13 // Configure log
14 Syslog :: Configure (_cfg);

Now we can define the Controller::Run method that will call our functions from
the tunlet. First we have to create the application, a pointer to the DTLibrary (by
passing the configuration to it) and an object for our tunlet:

17 void Controller ::Run (ShutDownManager =sdm)

18 {

19 DTLibrary * lib = DTLibraryFactory :: CreateLibrary (_cfg);
20 MyTunlet mt;

21

2 // Create the application model

23 Model :: Application & app = lib —>CreateApplication (
24 _cmdLine . GetAppPath () ,

25 _cmdLine . GetAppArgc() ,

26 _cmdLine . GetAppArgv ()) ;

27

28 // Set the reference to the app in the sdm so it can stop the ACs
29 sdm—>setApp (app) ;

30

31 // Initialize the tunlet

32 mt. Initialize (app) ;

Then start the tunlet and the app:

34 // Start app
35 mt. BeforeAppStart () ;
36 app. Start();

And create the main loops that will take care of the event processing;:

37 while (app.GetStatus() == stStarting && !sdm—>isFinished ()) {

38 int nEvents = app.ProcessEvents (true);// Blocking

39 if (nEvents > 0)

40 Syslog :: Debug("[Ctrl] Processed %d events", nEvents);
4 sleep (1);

0 }

43

44 // Do nothing if the user stopped the application
45 if (!sdm—>isFinished ()) f{

46 Syslog ::Debug("[Ctrl] App is running...");

47 Syslog ::Debug("[Ctrl] Waiting for events");

48

49

50 while (app.GetStatus () == stRunning && !sdm—>isFinished ()) {

51 int nEvents = app.ProcessEvents (true); // Blocking
52 if (nEvents > 0)
53 Syslog ::Debug("[Ctrl] Processed %d events", nEvents);

10 (18)

MATE

54
55

56
57
58
59
60
61
62
63
64

sleep (1);
}

Finally destroy both the tunlet and the library.

Syslog ::Debug ("[Ctrl] Application has finished");

// Destroy the tunlet
mt. Destroy ();

// Cleanup
DTLibraryFactory :: DestroyLibrary (lib);
}

Once the tunlet is created and Ctrl.cpp modified, the Analyzer has to be recom-
piled and reinstalled. To do so, include the object MyTunlet.o in the Makefile
inside Analyzer/ and execute the following in MATE’s root folder:

$ make && make install

. Configure Analyzer.ini, AC.ini, Tunlet.ini and DMLib.ini: Once the Analyzer

is ready, we must adapt the files Analyzer.ini, AC.ini, Tunlet.ini and DMLib.ini.
To find the ones used in this example, go to examples/simple-tunlet/ or section 6 of
this document. Also, templates of these can be found in conf/. They have to be
copied into the root directory of the MPI application that we will execute.

Start the Analyzer and AC: The last step to perform will be to start the Analyzer
and AC as explained in section 4:

$ Analyzer -config Analyzer.ini <mpi_app>

$ mpirun -np <n_processes> AC <mpi_app> <app_params>

6 Annex

6.1

Configure options

Configure allows the user to customize the installation of MATE. If there are some
packages installed in local, one can specify the following installation options to look
for them:

11 (18)

MATE

General options

--help

--prefix=<dir>

--with-papi
--with-papi-incdir
--with-papi-libdir

--with-libiberty

--with-libiberty-libdir
--with-libiberty-incdir
--with-libelf
--with-libelf-incdir
--with-libelf-libdir

--with-libdwarf

--with-libdwarf-incdir
--with-libdwarf-libdir
--with-dyninst
--with-dyninst-libdir

--with-dyninst-incdir

Display the help message

Specify the destination directory. By default /bin for
the binaries AC and Analyzer and /lib for the the DM-
Lib library

PAPI directory (must contain ./lib and ./include)
PAPI include directory

PAPI library directory

LIBIBERTY directory (must contain ./lib and ./in-
clude)

LIBIBERTY library directory

LIBIBERTY include directory

LIBELF directory (must contain ./lib and ./include)
LIBELF include directory

LIBELF library directory

LIBDWARF directory (must contain ./lib and ./in-
clude)

LIBDWAREF include directory

LIBDWAREF library directory

DYNINST directory (must contain ./lib and ./include
Directory to look for dyninst libraries

Directory to look for dyninst headers

12 (18)

MATE

Environment variables

CC C compiler command

CFLAGS C compiler flags

LDFLAGS Linker flags, e.g. -L<lib dir> if you have libraries in a nonstan-
dard directory <lib dir>

LIBS Libraries to pass to the linker, e.g. -l<library>

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if you
have headers in a nonstandard directory <include dir>

CXX C++ compiler command

CXXFLAGS C++ compiler flags

6.2 Simple tunlet example

6.2.1 MPI application

#include
#include
#include
#include

<mpi.h>

<stdio .h>
<unistd .h>
<stdlib .h>

int my_val = 1;

void hello_world () {
printf ("The replacing function has worked !'\n");
// 1f we put these two lines, the Analyzer
// will enter the function just once
// MPI_Finalize () ;
// exit(0);

}

void instr_function(int value_to_change) {

if (value_to_change == 1)

else

}

printf ("[INFO]: Value not changed: %d\n", value_to_change);

{

printf ("[INFO]: Changed value to %d!'\n", value_to_change);

int main(int argc, charx* argv) {
// Initialize the MPI environment
MPI_Init (NULL, NULL) ;

// Get the number of processes
int world_size;
MPI_Comm_size (MPL. COMM _WORLD, &world_size);

13 (18)

MATE

// Get the rank of the process
int world_rank;
MPI_Comm_rank (MPL. COMM _WORLD, &world_rank) ;

// Get the name of the processor

char processor_name [MPL MAX PROCESSOR NAME|;

int name_len;

MPI_Get_processor_name (processor_name, &name_len);

// Print of a hello world message from each process
printf ("Hello world from processor %s, rank %d out of %d processors\n",
processor_name, world_rank, world_size);

while (true) {
instr_function (my_val);
}

// Finalize the MPI environment.
MPI_Finalize () ;

6.2.2 Ctrl.cpp

#include "Ctrl.h"
#include "Config.h"
#include "DTAPI.h"
#include "Syslog.h"
#include "MyTunlet.h"
#include <unistd .h>

Controller :: Controller (CommandLine & cmdLine, std::string const & cfgFile)

{

}

: _cmdLine (cmdLine)

// Read configuration from file
_cfg = ConfigHelper :: ReadFromFile (cfgFile);

// Configure log
Syslog :: Configure (_cfg) ;

void Controller ::Run (ShutDownManager xsdm)

{

DTLibrary + lib = DTLibraryFactory :: CreateLibrary (_cfg);
MyTunlet mt;

// Create the application model

Model :: Application & app = lib —>CreateApplication (
_cmdLine . GetAppPath () ,
_cmdLine . GetAppArgce() ,
_cmdLine . GetAppArgv ()) ;

// Set the reference to the app in the sdm so it can stop the ACs
sdm—>setApp (app) ;

// Initialize the tunlet
mt. Initialize (app) ;

14 (18)

MATE

// Start app
mt. BeforeAppStart () ;
app.Start () ;

while (app.GetStatus() == stStarting && !sdm—>isFinished ()) {
int nEvents = app.ProcessEvents (true);// Blocking
if (nEvents > 0)
Syslog ::Debug("[Ctrl] Processed %d events", nEvents);
sleep (1);
}

// Do nothing if the user stopped the application
if (!sdm—isFinished ()) {
Syslog ::Debug("[Ctrl] App is running...");
Syslog ::Debug("[Ctrl] Waiting for events");
}

while (app.GetStatus () == stRunning && !sdm—>isFinished ()) {
int nEvents = app.ProcessEvents (true); // Blocking
if (nEvents > 0)
Syslog ::Debug("[Ctrl] Processed %d events", nEvents);
sleep (1);

Syslog ::Debug ("[Ctrl] Application has finished");

// Destroy the tunlet
mt. Destroy () ;

// Cleanup
DTLibraryFactory :: DestroyLibrary (lib) ;

6.3 XFire example
6.3.1 Analyzer.ini

[Syslog]
MasterSwitch=true
LogLevel=0

StdErr=true
StdErrLoglevel=0
LogPath=$HOME/mpi/log
LogFile=Analyzer.log
AppendMachineName=true
AppendFile=false
Prefix=Analyzer

[Analyzer]
DisableTuningActions=true

15 (18)

MATE

[EventCollector]
Port = 8800

6.3.2 AC.ini

[AC]

ACPath=</path/to/MATEs/AC>
DMLib=</path/to/MATEs/1ibDMLib.so>
PTPAcceptorPort=9900

[Analyzer]
Host=<host_name_or_ip>
Port=8800

[Syslogl

MasterSwitch=true

LogLevel=0 writes all messages, LogLevel=1 writes
only INFO messages

LogLevel=0

Log only info level messages on std err
StdErrLoglLevel=0

StdErr=true

LogFile=AC.log

LogPath=$HOME/mpi/log
AppendMachineName=true

AppendFile=false

Prefix=AC

6.3.3 Tunlet.ini

[global_sendreceive]
entry=FuncEntry
event=IterStart
sourcel=FuncParamValue
typel=Integer

id1=0

source2=VarValue
type2=Integer
id2=TheTotalWork
source3=VarValue
type3=Integer
1id3=TheWorkSizeUnitBytes
source4=VarValue
typed4=Integer

id4=NW

[Factoring_SetNumTuples]

16 (18)

MATE

entry=FuncEntry
event=NewBatch
sourcel=FuncParamValue
typel=Integer

id1=0
source2=FuncParamValue
type2=Integer

id2=1

[global_ sendwork]
entry=FuncEntry
event=TupleStart
sourcel=FuncParamValue
typel=Integer

id1=0
source2=FuncParamValue
type2=Integer

id2=2
source3=FuncParamValue
type3=Integer

id3=4

[arcStepKernel]
entry=FuncEntry
event=CalcStart
sourcel=FuncParamValue
typel=Integer

id1=0
source2=FuncParamValue
type2=Integer

id2=1

6.3.4 DMLib.ini

[Syslog]
MasterSwitch=true
#LogLevel=0 writes all messages, LogLevel=1 writes only INFO messages
LogLevel=0

StdErr=true
StdErrLoglevel=1
LogPath=$HOME/mpi/log
LogFile=DMLib.log
AppendMachineName=true
AppendFile=false
Prefix=DMLib

17 (18)

MATE

References

[1] Dynamic instrumentation library. http://www.paradyn.org/html/dyninst7.
O-software.html. Accessed: 2018-06-08.

[2] Morajko A., Caymes-Scutari P., Margalef T., and Luque E. Mate: Monitoring, anal-
ysis and tuning environment for parallel/distributed applications. Concurrency
and Computation: Practice and Experience, 19(11):1517-1531, 2007.

[3] Anna Morajko, Oleg Morajko, Tomas Margalef, and Emilio Luque. Mate: Dy-
namic performance tuning environment. In Marco Danelutto, Marco Vanneschi,
and Domenico Laforenza, editors, Euro-Par 2004 Parallel Processing, pages 98-107,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[4] Anna Sikora. Dynamic Tuning of Parallel/Distributed Applications. PhD thesis, Uni-
versitat Autonoma de Barcelona, Barcelona, 2004.

18 (18)

http://www.paradyn.org/html/dyninst7.0-software.html
http://www.paradyn.org/html/dyninst7.0-software.html

	Introduction
	MATE installation
	Dependencies and build

	Configuration files
	Application controller - AC.ini
	Analyzer - Analyzer.ini
	Tunlet - Tunlet.ini
	DMLib - DMLib.ini:

	Full execution example with XFire
	Tunlet creation and execution
	Steps to create a tunlet

	Annex
	Configure options
	Simple tunlet example
	MPI application
	Ctrl.cpp

	XFire example
	Analyzer.ini
	AC.ini
	Tunlet.ini
	DMLib.ini

	References

