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1 General Overview

1.1 About this document

This document describes the Movidius SIPP (Streaming Image Processing Pipeline) MA2x5x framework. It is
created as a replacement for the existing MA2100 SIPP User Guide which introduced the SIPP MA2100
framework. Naturally there is a lot of commonality between the inherent functionality and motivations of
both frameworks. Where appropriate information from MA2100 SIPP User Guide has been republished
within this document so that it works as a standalone publication and a direct replacement for MA2100
SIPP User Guide. 

Differences  in  the  SIPP  MA2x5x  framework  versus  its  predecessor  will  be  illustrated  within.  Further
provided  is  the  layout  of  a  feature  plan  for  the  future  development  of  the  framework  and  to  a
comprehensive guide to the usage of the framework on MA2x5x silicon.

1.2 Related documents and resources

Related documentation can be obtained from http://www.movidius.org. If you do not have access to the
documents below, you can request them. Relevant documents include:

1. Myriad 2 Development Kit (MDK) – Getting Started Guide.

2. Myriad 2 Development Kit (MDK) – Programmer's Guide.

3. Myriad 2 Development Kit (MDK) – MA2100 SIPP User Guide.

4. MoviEclipse (MDK – Tools documentation).

1.3 Notational conventions

The following is a description of some of the notations used in this document.

1.3.1 Data formats

Format Description

U8 Unsigned 8-bit integer data 

U16 Unsigned 16-bit integer data 

U32 Unsigned 32-bit integer data 

I8 Signed 8-bit integer data 

I16 Signed 16-bit integer data 

I32 Signed 32-bit integer data 

10P32 10-bit RGB packed into 32 bits (xxRRRRRRRRRRGGGGGGGGGGBBBBBBBBBB)

FP16 IEEE-754 16-bit floating point (half precision, 16-bit)
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Format Description

FP32 IEEE-754 32-bit floating point (single precision, 32-bit)

U8F Unsigned 8 bit fractional data the range [0, 1.0]

Table 1: SIPP Data Formats

1.3.2 Fixed point formats

Fixed-point data may be either signed, or unsigned. It has one or more bits of fractional data, and 0 or more
bits of integer. For signed data, the specified number of integer bits includes the signed bit.

Examples:

 U8.8: Unsigned, with 16 bits of storage (8 bits of integer and 8 fractions).

 S16.16: 1 sign bit, 15 bits of integer precision, and 16 bits of fractional data.

The data can be interpreted by treating it  as integer,  then dividing by 2^N, where N is  the number of
fractional bits.

1.3.3 Glossary terms

When a term that is defined in the glossary is used for the first time in the document, it will be written in
italics.

Term Description

AWB Auto While Balance

Bayer A particular CFA layout, whereby the color channels are arranged in the image as a matrix
of 2x2 blocks. Within each block there are two diagonally-opposed green pixels, as well as
a red and a blue pixel.  The image can be thought  of  as a  4-channel  image,  with  the
channels labeled Gr, R, B and Gb. Green pixels on lines where there are red pixels belong
to the Gr channel, whereas green pixels on lines where there are blue pixels belong to the
Gb channel.

Bayer Order Describes the layout of a 2x2 block of pixels in a Bayer image. Depending on which color
channel is  located at the top-left of the image, the Bayer Order will  be one of GRBG,
GBRG, RGGB or BGGR.

CFA Color Filter Array

CMX Low-latency, high bandwidth memory and cross-connect subsystem

CSI Camera  Serial  Interface  –  a  physical  serial  interface  defined  by  the  MIPI  Alliance  for
connecting camera devices to Application Processors.

DAG Directed Acyclic Graph

Filter A SIPP filter is an entity which does pixel-level processing within a SIPP pipeline. Filters
may be instantiated as nodes in a SIPP pipeline graph. The same type of filter may be

Intel® Movidius™ Confidential 7 SIPP-UM-1.32



Term Description

instantiated more than once in a graph.

MIPI Mobile Industry Processor Interface. The MIPI Alliance is a standards organization focused
on specifying interfaces between hardware components on mobile devices, such as CSI.

Output Buffer An output buffer is a circular line buffer, used to store the processed data output by a
filter.

Inline
processing

When an application performs all processing without buffering any data in DDR, it is called
Inline Processing. An example of inline processing would be a system which processes
lines of data as they arrive from a camera sensor, where all line buffering is in local CMX
memory. As processed lines of data become available, they are transmitted directly from a
local CMX memory buffer to the output device, by a sink filter.

ISP Image signal processing. Typically refers to the processing of image streams coming from
digital camera sensors.

SHAVE Streaming  Hybrid  Architecture  Vector  Engine. Vector processing cores used in Movidius
Myriad processors.

Sink Filter A filter in a SIPP pipeline which does not have any children. These filters typically output
data to an external entity, such as DRAM (using a DMA controller) or a display controller.

SIPP Streaming Image Processing Pipeline

Source Filter A filter in a SIPP pipeline which does not have any parents. These filters typically source
data  from  an  external  entity,  such  as  DRAM  (using  a  DMA  controller)  or  a  camera
interface.

Table 2: Glossary
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2 Introduction to the SIPP framework

2.1 Motivation

Many image processing libraries, such as OpenCV, perform a series of whole-frame operations in series. This
is very DDR intensive, since an entire set of frames must be read from and/or written back to DDR for each
operation. Performance is typically limited by available DDR bandwidth. This is mitigated on x86 platforms
by the presence of large CPU caches,  but for mobile systems with low-power requirements, it  is not a
suitable paradigm.

The approach used by SIPP involves a graph of connected filters. Data is streamed from one filter to the
next, on a scanline-by-scanline basis. Images are consumed in raster order. Scanline buffers are located in
low-latency local memory (CMX). No DDR accesses should be necessary (other than accessing any pipeline
input  or  output  images  located  in  DDR,  using  DMA copies  to/from local  memory).  In  addition  to  the
performance and power benefits of avoiding DDR accesses, the design can also reduce hardware costs,
allowing stacked DDR to be omitted for certain types of applications.

2.2 Myriad SoCs

The SIPP framework is designed to maximize the usage of the available processing resources in Myriad
SOCs. On MA2150 silicon, there are 12 SHAVE vector processing cores. Also available are DMA controllers,
for transferring data from DDR to CMX, and vice-versa. Additionally, a number of hardware accelerators, for
some computationally expensive ISP and computer vision tasks are provided.

Whereas the bulk of the processing is performed by the SHAVE cores and the hardware accelerators, the
SIPP framework runs on a RISC processor.

The SIPP environment is also the development framework for the MA2150 Media sub-system which is a
collection of  SIPP accelerators  consisting of  a  complementary  collection of  hardware image processing
filters  designed  primarily  for  use  within  the  SIPP  software  framework,  allowing  generic  or  extremely
computationally intensive functionality to be offloaded from the SHAVEs. 

CMX memory is generally also used to implement input and output buffers for the hardware filters. An
arbitrary  ISP  pipeline  may  then  be  flexibly  defined  in  software  but  constructed  from  both  software
resources  –  filter  kernels  implemented  on  the  SHAVEs  –  and  high  performance  dedicated  hardware
resources. IN the majority of occasions, CMX memory provides the means of connecting up consecutive
stages of a pipeline: one filter’s output buffer is another’s input buffer. 

2.3 Filter graphs

Processing under the SIPP framework is performed by filters. Applications construct pipelines consisting of
filter nodes linked together in a  DAG (Directed Acyclic Graph).  Each filter is  coupled with one or more
output buffers. The output buffer stores the processed data output by the filter, and can store zero or more
lines of data (zero lines in the case of a sink filter). When a filter is invoked, it produces at least one new line
of data in its output buffer. Certain runtimes enable more than one new line to be produced per invocation
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of the filter. Lines are added to the output buffer in a circular fashion: the lines are written at increasing
addresses, until the end of the buffer is reached, at which point the output position wraps back to the start
of the buffer.

2.3.1 Filter graph rules

The graph validity rules are as follows:

 A filter is allowed to have multiple parent nodes. That is, a filter may source data from more
than one buffer.

 A filter is allowed to have multiple child nodes. That is, more than one filter may source data
from a filter’s output buffer.

 A filter that has no parents (a source filter) must have at least one child node.

 A filter that has no children (a sink filter) must have at least one parent node.

 A source filter connected directly to a sink filter, with no filter(s) in between, is not permitted.

 The graph need not be connected. An example of such a pipeline would be one where incoming
frames  consist  of  separate  Luma  and  Chroma  planes,  and  where  the  Luma  and  Chroma
processing  paths  are  completely  independent  (see  Figure  3:  An  example  of  a  disconnected
graph).

 For R1 Release of the framework, no hardware filter may appear twice in any graph (See section
6.1 – deltas in MA2x5x SIPP FW versus MA2100 SIPP FW)

The  application  may  construct  the  graph  programmatically  by  making  SIPP  API  calls.  The  application
performs the following steps:

1. Instantiates the pipeline.

2. Instantiates the required filters within the pipeline.

3. Connects the filters together to form the graph, by specifying parent/child relationships.

The pipeline is now ready to be executed. When the application initiates execution of the pipeline for the
first time, the framework will first automatically allocate memory for the output buffers. The size of an
output  buffer  is  calculated  based  on  the  requirements  of  the  filters  consuming  from  that  buffer  (for
example, a filter applying a 7x7 convolution requires 7 at least 7 lines to be present in the output buffer).
Additionally, if the graph has multiple paths which diverge and subsequently converge, extra buffering may
be required on one of the paths to ensure that the data is synchronized when it reaches the convergence
point. The framework automatically determines what extra lines of buffering are needed, and allocates the
buffer memory accordingly.
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2.3.2 Simple pipeline examples

In the above example, since the Luma processing path is longer than the Chroma processing path, the
framework automatically adds extra lines to the “Chroma generate” filter’s output buffer, so that the Luma
and Chroma data is in sync when it arrives at the “Chroma/Luma combine” filter. Adding extra buffering
lines allows the latency of the alternate paths to be matched.
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Both of the previous examples perform the same data processing. However, the above example does not
require any DDR. The data can be processed in a streaming fashion, using only local memory. Data coming
from a camera is stored in a local memory buffer by the Mipi Rx filter (in the Mipi Rx filter’s output buffer).
The processed data is then transmitted directly from the Chroma/Luma combine filter’s output buffer by
the Mipi Tx filter. This mode of operation, which doesn’t require DDR, is known as  inline processing.  An
application which does all of its processing inline may be run on a Myriad processor that has not been
packaged with stacked DDR.

Note that the above pipeline can operate in a fully “streaming” fashion: that is, data can be processed in-
line as it arrives from the sensor, adding minimal latency to the data path. All buffers are located in local
(CMX) memory, meaning that this pipeline can run on a processor that is not packaged with external DDR.

2.3.3 Superpipes

A superpipe is a pipeline which consists of multiple disconnected pipelines. While the datapaths for each
pipeline within the superpipe are completely separate as far as the SIPP framework is concerned, there is
only a single pipeline, and only a single schedule needs to be computed. Building a superpipe is no different
from building any other type of pipeline – since there is no requirement that the graph be connected, a
superpipe is a valid form of SIPP pipeline.
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2.3.4 Data rate matching

For most filters, the size of the output image matches the size of the input image. Therefore, the number of
lines that arrive in a filter’s input buffers (its parent’s output buffers) during the course of processing a
frame is normally equal to the number of lines it produces it its output buffer. However, this is not true for
certain filters, such as filters which perform a resizing operation. Consider for example, a filter which down-
samples  an  image  by  a  factor  of  two in  both  the  horizontal  and  vertical  directions.  In  the  horizontal
direction, the width of each line in the filters output buffer will be half the width of the lines in the parent’s
output buffer. In the vertical direction however, what happens is that the downsizing filter only runs once,
producing a single line of data in its output buffer, for every two lines produced in its parent’s output buffer.
The SIPP framework manages this scheduling automatically, making sure that the resize filter is not invoked
until the correct lines are present in the parent’s output buffer.

This means that the line rate may not be the same for all parts of the pipeline. Particular care has to be
taken when different paths in the pipeline converge. The line arrival rate at the inputs to the filter at the
convergence point must match what that filter expects. This is best illustrated by way of an example.
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In the example  above,  the “Downscale  Chroma” filter  downsamples  the data  by  a factor  of  2 in each
dimension. The “Filter Chroma” filter operates on this subsampled data, without altering the image size.
The “Downscale Chroma” and “Filter Chroma” filters only get scheduled half as often as the other filters: in
the course of processing a frame, they only produce half the number of lines. The “Downscale Chroma”
filter only runs once for every two lines that are added into its parent’s output buffer. The “Upsample
Chroma” filter, on the other hand, runs twice for every line that is output into its parent’s output buffer. The
net effect is that the line output rate of the “Upsample Chroma” filter matches the line output rate of the
Luma filter, allowing the “Chroma/Luma combine” filter to merge the data coming from the two paths.

Note  also  that  it  would  be  possible  to  merge  the  Chroma  Upsampling  filter  into  the  “Chroma/Luma
combine” filter,  in order to save memory and local  memory bandwidth.  This is possible as long as the
combine filter consumes the data from its Chroma input at half the rate that it consumes data from its Luma
input.

2.3.5 Hardware and software filters

Some filters are drivers for hardware interfaces. For example, a filter could drive a DMA controller, or a
display or camera interface, in order to source or output data. Additionally on Myriad 2, a filter could be a
driver for a Hardware Accelerator. The remaining types of filters are Software Filters. Software filters are
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implemented on the Shave processors. They can be implemented in C, assembly language, or a mixture of
both.

A pipeline can be implemented as a mixture of hardware and software filters. Multiple instances of the
same software filter can be used in a pipeline. HW filters may be used only once.

2.3.6 Multiple pipelines and DDR

For more complex applications, it’s possible to instantiate multiple pipelines. For example, you might want
to run an ISP (Image Signal Processing) pipeline on the image coming from the camera, and run a Computer
Vision application on the resulting image stream. Or, alternatively, there might be two camera inputs in the
system, with a SIPP pipeline instantiated to process data coming from each of the cameras.

We  cannot  of  course  construct  arbitrarily  complex  pipelines,  or  run  an  arbitrary  number  of  pipelines
concurrently because we will at some point run out of local memory. We can solve this problem if stacked
DDR is available. If we have a single, very complex pipeline, and we run out of local memory, we can split
the pipeline into two or more pipelines. To get around the local memory limit, we do not run our multiple
pipelines in parallel. Instead, we process an entire frame with the first pipeline, with the output frame(s)
being  written to DDR.  Then we process  an entire frame with  the second pipeline.  This  scheme works
because the contents of the line buffer memory does not need to be preserved from one frame to the next.
The amount of extra DDR traffic generated is small: the filters that do all of the real work are still operating
from local memory. If  the input data is coming into the application from a real-time source, such as a
camera,  we might  also need to add some DDR buffering  at  input,  since the pipeline  which is  directly
consuming the data from the camera is not running all of the time.
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Another reason for splitting the pipeline is if  part of the application doesn’t  lend itself  to raster-based
processing. An example would be if some whole-frame operation were to be performed, such as a 2D FFT,
or a rotation by an arbitrary angle. The whole-frame operation could be performed externally to the SIPP
framework, as in the diagram above.
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2.4 General framework architecture

Figure  6 Illustrates  a  basic  overview of  the  SIPP  architecture  in  terms  of  the  main  functional  aspects
involved in launching a pipeline onto the underlying HW and Shave resource.

 API: The API as presented in chapter 7.

 Pipe Creation: Allocates the storage for the pipeline and filter description structures and any
associated parameters and implements the connections between filters as guided by the API.

 Pipe Validation: After creation of a pipe, the pipeline will be checked against a set of rules to
ensure it is considered valid.

 Pipe Analysis:  The main function of this unit is  to establish the most suitable scheduler and
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runtime to be used for the pipeline. Different pipelines have different features and to enable a
framework which is both flexible and efficient a suite of schedulers and runtimes are available.
This unit will establish which is considered most suitable for a pipeline and will on the basis of
this  result  perform  some  other  concomitant  tasks  to  enable  efficient  operation  within  the
selections.

 API Queue: An internal queue stacking most recent operations for each pipeline. Since some
APIs use a non-blocking approach, they are held in this queue until selected by the resource
scheduler for execution.

 Resource Scheduler: Manages access to the underlying SIPP HW and Shave resource – This will
try to ensure all resource is kept as busy as possible based on the pending operations and their
ability  to  run  together  at  the  same  time.  For  those  operations  which  cannot  be  executed
together (due to an underlying resource conflict) this unit will manage appropriate scheduling
for each pipeline.

 SIPP Resource Manager: Ensures each pipeline has access to the memory and other resources it
requires and is responsible for collecting that resource again on termination of the pipeline.

 Scheduler:  Creates  a  schedule  (when required)  for  a  pipeline.  Each  iteration  of  a  schedule
contains instructions on which HW and SW filters are required to operate on that iteration. In
effect this schedule acts as the input to the runtime when it is executing the pipeline on the
HW /Shave resource. The schedule creation process ensures that a minimum amount of line
buffer  data  needs  to  be  stored  in  the  allocated  CMX  resource  while  ensuring  no  data
dependency between filters  involved  within  an iteration.  Depending  on the  features  of  the
pipeline, schedule creation may be complex. It is expected that the Pipe analysis stage will pick
the schedule most suited to the pipeline to perform the scheduling most efficiently. 

 RunTime:  Taking  the schedule  as  an input  the runtime manages the execution of  the filter
kernels on the HW and SHAVE units, iteration by iteration until the full operation is complete.
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3 Using the SIPP framework

3.1 Building a SIPP application

The simplest way to create SIPP pipeline application is to use the Graph Designer [4]. This is a plug-in to the
moviEclipse IDE that allows users create, build and execute applications from the IDE.

The remaining sections describe internal details of the use of the SIPP API and programming.

You  must  include the  sipp.h header file  in  order  to  use  the SIPP API.  You can use one of  the sample
applications, described in the “getting started” section, as a starting point for your application. Any SIPP
application must perform the following steps:

Perform any system initialization, as per the example applications. Any application using the MDK must
perform this step.

 Instantiate a SIPP pipeline, by calling sippCreatePipeline().

 Instantiate some SIPP filters, by calling sippCreateFilter().

 Link the filters together to form a graph, by calling sippLinkFilter().

Once the steps above have been completed, your SIPP pipeline is ready to star t processing frames of data,
by calling sippProcessFrame() / sippProcessFrameNB().
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3.2 Configuring filters

Filters may have zero or more configurable parameters. The parameters are specified via a filter-specific
parameter structure. For SW filters, the size of the configuration structure, in bytes, must be specified via
the  paramsAlloc parameter to  sippCreateFilter(). For HW filters, the struct size is selected from a list of
supported HW filter param sizes.  If a value other than zero is specified, the SIPP framework allocates the
parameter structure internally. The pointer returned by sippCreateFilter()points to a structure which has a
field named “params”.  This  field is  a  pointer which points to the filter’s  internally  allocated parameter
structure.  The layout  of  the actual  parameter  structure  is  defined in  the filter-specific  header file.  For
example, for the Random Noise addition filter, the parameter structure is named RandNoiseParam, and is
defined  in  <filters/randNoise/randNoise.h>.  The  Random  Noise  filter’s  strength parameter  could  be
configured as follows:

RandomNoiseParam *param;

noiseFilter = sippCreateFilter(pl, 0, 640, 480, N_PL(1), SZ(half),
                               SZ(RandNoiseParam),
                               SVU_SYM(svuGenNoise),
                               "Random_Noise");

param = (RandomNoiseParam *)noiseFilter->params;
param->strength = 0.08;

NOTE: Parameter modifications take effect at the start of a frame. Hence they are typically updated in
between calls to sippProcessFrame() / sippProcessFrameNB().

3.3 Pipeline examples

3.3.1 Simple pipeline

In this example we show how to build a SIPP pipeline with a single filter. We will use the 3x3 Convolution
filter as the filter in our example. This filter is included in the MDK. It takes 3 input lines and generates one
output line per invocation.

We are going to build a test application which builds and executes the pipeline. In this example our pipeline
contains a) a DMA input filter to provide data for the filter, b) the 3x3 convolution filter and c) a DMA out to
consume the lines. The DMA in and DMA out filters are built into the SIPP framework. 

 Create the pipeline object.

 Create the filter objects.

 Connect the inputs and outputs to create the filter:

#define IMG_W 640
#define IMG_H 480

void appBuildPipeline()
{
   pl = sippCreatePipeline(2, 5, SIPP_MBIN(mbinImgSipp));
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   dmaIn = sippCreateFilter(pl, 0x00, IMG_W, IMG_H, 1, 
                         sizeof (u8), sizeof (DmaParam),
                            (FnSvuRun)SIPP_DMA_ID, "DMA_In");
   conv3x3 = sippCreateFilter(pl, 0x00, IMG_W, IMG_H, 1, sizeof (u8),
                              sizeof (Conv3x3Param), 
                              SVU_SYM(svuConv3x3), "Conv_3x3");
   dmaOut = sippCreateFilter(pl, 0x00, IMG_W, IMG_H, 1, sizeof (u8), 
                          sizeof (DmaParam), 
                          (FnSvuRun)SIPP_DMA_ID, "DMA_Out");

   sippLinkFilter(conv3x3, dmaIn,3, 3);
   sippLinkFilter(dmaOut, conv3x3, 1, 1);
}

We then write a function which processes a frame through the pipeline. This function first initializes each
filter’s parameter data-structures before it executes the pipeline to process an entire frame.

void appProcFrame(SippPipeline *pl)
{
   DmaParam *dmaInCfg= (DmaParam*)dmaIn->params;
   DmaParam *dmaOutCfg = (DmaParam*)dmaOut->params;
   Conv3x3Param *convCfg = (Conv3x3Param*)conv3x3->params;

   dmaInCfg->ddrAddr = (u32)&iBuf;
   dmaOutCfg->ddrAddr = (u32)&oBuf;
   convCfg->cMat[0] = cMat[0];
   convCfg->cMat[1] = cMat[1];
   convCfg->cMat[2] = cMat[2];
   convCfg->cMat[3] = cMat[3];
   convCfg->cMat[4] = cMat[4];
   convCfg->cMat[5] = cMat[5];
   convCfg->cMat[6] = cMat[6];
   convCfg->cMat[7] = cMat[7];
   convCfg->cMat[8] = cMat[8];
           
   sippProcessFrame(pl);
}

The main body of the test application calls the functions defined above in order to prepare and run the
pipeline. It uses some SIPP helper functions to read and write image files.

int main()
{
   sippPlatformInit(); // SIPP infrastructure initialization

   // Read a frame from file
   sippRdFileU8(iBuf, IMG_W*IMG_H, ""lena_512x512_luma.raw");
 
   // Build the pipeline and process the frame through it
   appBuildPipeline(); 
   appProcFrame(pl);

   // Dump the generated output
   sippWrFileU8(oBuf, IMG_W*IMG_H, "lena_512x512_RGB_conv3x3.raw");
   return 0;
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}

3.3.2 Simple application using asynchronous API

Using the example of 3.3.1 as a base, the application may be easily converted to use the non blocking API
sippProcessFrameNB().

void appProcFrame(SippPipeline *pl)
{
   DmaParam *dmaInCfg= (DmaParam*)dmaIn->params;
   DmaParam *dmaOutCfg = (DmaParam*)dmaOut->params;
   Conv3x3Param *convCfg = (Conv3x3Param*)conv3x3->params;

   dmaInCfg->ddrAddr = (u32)&iBuf;
   dmaOutCfg->ddrAddr = (u32)&oBuf;
   convCfg->cMat[0] = cMat[0];
   convCfg->cMat[1] = cMat[1];
   convCfg->cMat[2] = cMat[2];
   convCfg->cMat[3] = cMat[3];
   convCfg->cMat[4] = cMat[4];
   convCfg->cMat[5] = cMat[5];
   convCfg->cMat[6] = cMat[6];
   convCfg->cMat[7] = cMat[7];
   convCfg->cMat[8] = cMat[8];
           
             sippProcessFrameNB(pl);
}

void appSippCallback ( SippPipeline *             pPipeline,
                       eSIPP_PIPELINE_EVENT       eEvent,
                       SIPP_PIPELINE_EVENT_DATA * ptEventData
                     )
{
    if (eEvent == eSIPP_PIPELINE_FRAME_DONE)
    {
        printf ("appSippCallback : Frame done event received : \n");
        testComplete = 1;
    }
}

volatile u32  testComplete = 0x0;

int main (int argc, char *argv[])
{
    appBuildPipeline();
    ...

    // Register callback for async API
    sippRegisterEventCallback (pl,
                               appSippCallback);

    ...

    appProcFrame(pl);

    ...
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    while ( testComplete == 0x0 )
    {

    }

   // Dump the generated output
   sippWrFileU8(oBuf, IMG_W*IMG_H, "lena_512x512_RGB_conv3x3.raw");
   return 0;
}

3.4 Configuring SIPP

3.4.1 Run-time execution

3.4.1.1 CMX Pool size

The  user  can  control  the  size  of  SIPP  CMX-memory  pool.  The  default  size  is  32  Kb  (as  defined  in
sipp/arch/ma2x5x/build/sippMyriad2Elf.mk). 

The user can override the default pool size with the Makefile options e.g.:
CCOPT += -D'SIPP_CMX_POOL_SZ=32768'

3.4.1.2 Mutex

For Shave synchronization purposes, SIPP component uses 2 mutexes. Immediately after pipeline creation
(via sippCreatePipeline),  these two SIPP mutexes map on Mutex0 and Mutex1.  User  however user can
re-assign mutexes as in example below:

pl = sippCreatePipeline(…); 

// After pipe creation – Default : SippMtx0 = Mutex0,
// SippMtx1=Mutex1
// Reassignment after pipeline creation: SippMtx0 =
// Mutex20, SippMtx1=Mutex21
pl->svuSyncMtx[0] = 20;
pl->svuSyncMtx[1] = 21;

Clearly in a multi-pipeline scenario, if numerous pipes employing SHAVEs were running concurrently, each
would need its own pair of MUTEXES.

3.4.1.3 DMA Settings

To drive data in and out of DDR, the SIPP uses a CmxDma Linked agent component.

By default, SIPP uses LinkedAgent0 and Interrupt0 from CmxDma block. However, these defaults can be
changed  via  Makefile  options  by  setting  values  for  SIPP_CDMA_AGENT_NO  and  SIPP_CDMA_INT_NO
macros, e.g.

CCOPT += - D'SIPP_CDMA_AGENT_NO=1'
CCOPT += - D' SIPP_CDMA_INT_NO=10'
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4 Memory usage and SIPP

This section describes how SIPP uses CMX and DDR memory. Memory is used at two different places:

1. At pipeline initialization

2. During pipeline execution.

For small pipelines it may be sufficient to use CMX for both initialization and execution but for larger, more
complex pipelines DDR can be used.

4.1 Physical Pools

The framework has the concept of 4 physical pools. These are:

 CMX Pool

 DDR Pool

 CMX Scheduler Pool

 CMX Lines Pool

As can be ascertained from the naming convention – three of these pools are located in CMX and the fourth
in DDR.

Figure 8 shows how each physical pool is used. An important point to note is that the CMX Pool and DDR
pool are shared between all active pipelines whereas the scheduling pool and Line Buffer pool are unique to
a single pipeline. They are unique in that they are either displaced at a different physical location or their
usage is displaced in time from that physical location's use by another pipeline.

The common pools (CMX Pool and DDR Pool) are managed as heaps in order to enable memory collection
at pipeline termination.
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4.2 Virtual pool concepts

All memory allocation within the framework itself is serviced via virtual pools. These pools are not specific
to any particular physical device. Rather they represent a means of grouping structures which may have a
relationship to each other, both in terms of their frequency of use and their lifetime.

Each virtual pool can then be individually mapped on a per stream basis to a physical pool. For the majority
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of the virtual pools only a mapping to the physical pools CMX Pool and DDR Pool are recommended. In the
case of vPoolCMXDMADesc, only the CMX pool is considered suitable.

Virtual Pool Default Physical Mapping

vPoolGeneral DDR pool

vPoolPipeStructs CMX Pool

vPoolFilterLineBuf CMX Lines Pool

vPoolCMXDMADesc CMX Pool

vPoolSchedule CMX Pool

vPoolScheduleTemp CMX Scheduler Pool

Table 3: Default virtual to physical pool mappings

A new API, sippChooseMemPool() is provided to enable a runtime altering of these mappings on a per
stream basis. However, this API only supports remapping to either of the DDR or CMX heap managed pools.

The oPipe runtime detailed in chapter  5.1.5 requires the SIPP framework to allow line buffers to be fully
allocated within individual slices. In this case allocation of physical pool descriptors for each slice is needed
so  that  a  virtual  slice  pool  can  target  them,  so  the  vPoolFilterLineBuf0,  vPoolFilterLineBuf1...,
vPoolFilterLineBuf11 virtual pools were added.

Intel® Movidius™ Confidential 26 SIPP-UM-1.32



5 Pipeline performance measurement and optimization

The programming paradigm exposed by the SIPP framework deliberately abstracts the client from many of
the necessary aspects of establishing and running pipelines. However the task of maximising the potential
performance of a pipeline within a particular execution context mandates a degree of understanding of the
SIPP pipeline runtime. This understanding in turn offers a means to interpret the metrics which are available
and to guide usage of the various tuning levers which are available to increase a pipeline's performance.

5.1 Introduction to SIPP Pipeline runtime

As part  of  the pipeline finalization process (triggered through a call  to  one of  the sippFinalisePipeline,
sippAllocCmxMemRegion, sippProcessFrame or SippProcessFrameNB APIs) the SIPP framework performs a
basic piece of pipeline analysis which among other items allows it to select the most suitable scheduler and
runtime for the pipeline from a pool of such at the pipelines disposal. 

The primary concerns of this selection will be ensuring compatibility with existing pipelines and maximising
performance within those criteria.  However,  the goals  of  the chosen scheduler and runtime will  be to
handle the pipeline under their control as efficiently as possible so as to maximise the performance and
potential throughout. 

This sub-section focuses on the SIPP runtime. It will briefly describe the runtime tasks and also look at the
overall subsystem under the control of the runtime to illustrate how performance may be maximized.

The SIPP runtime is distributed across the LEON processor on which the SIPP framework is running – and
across any SHAVE processors assigned to executing SW kernels  on SIPP pipelines.  However,  the SHAVE
aspect to the SIPP runtime is quite fixed and is not subject to selection by the SIPP framework based on
pipeline characteristics as per the LEON SIPP runtime. I  fact  all  LEON SIPP runtimes requiring a SHAVE
runtime use the same version. To be clear this section focuses on the LEON SIPP runtime as the SHAVE SIPP
runtime does not afford any tuning options and is already considered to be optimal for the execution of SW
kernels.

5.1.1 Tasks of LEON SIPP runtime

While the exact nature and list of tasks may differ from pipeline to pipeline depending on various issues (for
example does a pipeline have HW filters/ SW filters etc.?) the list following details an overview of the main
functionality carried out by the runtime. 

 Extract the commands for the current iteration from the pipeline schedule.

 Start all HW filters which need to be started for an iteration.

 Start all SW filters which need to be started for a particular iteration.

 Start all DMA filters which need to be started for current iterations.

 Perform all line preparation tasks for the subsequent iterations – the ultimate output of this
process is the generation of addresses for every line of the input kernel(s) and output line(s) of
SW and DMA filters (HW filters can manage this task themselves).

 Handle any multiple context HW filters (certain conditions only).

 Establish that all started units have completed.

 Update any HW filter input buffers with information on lines added to the buffers on completion
of the current iterations.
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 Restart the process for the next iteration!

5.1.2 Synchronous versus asynchronous runtimes

If a runtime is operating in asynchronous mode, after all line preparation tasks have been performed the
runtime will quit the execution context in order to await further interrupts informing of the completion of
the activities of filters involved in the current iteration. If the runtime is operating in synchronous mode,
establishing that all units have completed will involve polling the operational status of the active units until
it is ascertained that all are done.

5.1.3 Generic runtime

Generic runtime is the SIPP runtime which is suitable for any type of pipeline the clients may use in the SIPP
framework. It is adjusted to handle any valid situation it may encounter. Generic runtime is selected by the
framework by default, if the application doesn't have options to use any other runtime. For some pipelines
generic runtime may not be very efficient, as it may do lots of things not needed for certain pipelines. So if
certain  features  of  the  pipeline  are  recognized,  a  different  runtime may  be called,  one that  has  been
specially tailored to the features of the pipeline.

Generic runtime is based on one line being output by each filter which is scheduled to run in that iteration
and can operate on SW pipelines, HW pipelines or on mixed pipelines.

5.1.4 Multiple Lines Per Iteration runtime

With Generic runtime, a very accurate model of what data will be available from each filter can be kept and
the amount of memory used by each filter is kept to a minimum. However, it also means that each filter
gets serviced by the SIPP framework on every output line, which means a lot of setup and a lot of additional
processing. So the alternative is to ask each filter to produce multiple lines of output every time it is called.
This would mean that the processor has to get involved fewer times allowing performance to go up and
more cycles on the processor to be made available for use by other applications.

Multiple Lines Per Iteration runtime offers the possibility to each filter of producing more than one line of
output  every  time  it  is  called.  MLPI  runtime  will  be  invoked  whenever  the  client  calls  a  new  API
sippPipeSetLinesPerIter() setting the number of lines per iteration to 2/4/8 or 16. The basic premise is that
using this runtime, an increase in performance will be achieved which should be traded off against the
additional (CMX) memory requirements it brings.

5.1.5 OPipe runtime

For all except one of the included runtimes, the task list as defined in 5.1.1 is correct. However for the sake
of completeness this sub-section will highlight the anomalous behaviour of the oPipe runtime when it is
selected.

The framework will select the oPipe runtime for a pipeline if that pipeline is composed entirely without SW
filters and without HW filters being re-used more than once in the same pipeline. It is chosen because it
takes advantage of a HW feature added in MA2150 enabling SIPP HW filters to perform their own flow
control and scheduling when given information about the configuration and usage of their input and output
buffers. This mode renders the task of creating a schedule meaningless since all filters in the pipeline will in
effect be free running. This means their rate is controlled only by the availability of data in the input buffer
and space to decode into within their output buffers. The main reason behind adding the oPipe runtime is
to enable direct streaming between certain filters in the fixed oPipe configuration, saving a lot of power and
bandwidth in this way.
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The tasks of the oPipe runtime are as follows

 Commence any input DMA operations.

 On completion of an input DMA operation, inform all filters connected at their inputs to the
buffer just filled as to the availability of this new input data.

 Monitor all HW filters for interrupts signalling they have completed processing a certain number
of lines. When required, trigger DMA operations to drain these lines from the output buffers of
filters by commencing DMA out operations sized at a specified number of lines.

 On completion of an output DMA operation, inform the filter whose output buffer has been
read that a specified number of lines has been consumed from the output buffer and this space
may not be considered free for re-use by new operations.

To enable the pipeline to take into consideration the oPipe runtime, the macro 
SIPP_SCRT_ENABLE_OPIPE should be defined and the pipeline flag PLF_CONSIDER_OPIPE_RT must be 
set before finalisation of the pipeline (See Table 7 for flag details).

It should be noted that the direct streaming runtime is naturally running using the asynchronous mode. 
While the other runtimes use the DMA unit assigned to SIPP, the oPipe runtime uses the driver for the input
and output DMA operations, so the application must enable CMX DMA driver interrupt handler when using 
the oPipe runtime before starting to run.

oPipe runtime allows the client to hand-craft the buffer allocation for each filter needed and not use the 
internal algorithm to decide buffer sizes. The number of lines per output buffer can be set for each filter 
through a call to sippPipeSetNumLinesPerBuf(). Larger number of lines per output buffer should give a 
speed-up at runtime at the expense of requiring more line buffer memory. 

A further point to note at this stage is that due to its very different nature, not all of the measurements
suggested in 5.2 will be available when this runtime is selected.

5.2 Performance measurement

Ultimately with performance measurement a CC/pix (clock-cycle-per-pixel) metric will be used as the metric
which will be made available for interpretation of the pipeline performance. This metric will be composed
of a measurement of the number of clock cycles which elapse between the call to an API triggering the
framework to commence processing of a frame and an indication from the framework that such processing
is completed to a degree to which the framework is capable of immediately handling further processing.
This value is in turn divided by the number of pixels (in one plane) of the input image to create the final
metric.

While this metric is suitable for final performance evaluation, the framework also considers which metrics
are of interest in the context of facilitating intelligent optimization. To this end the framework provides a
further set of figures which may be used as a guides for which optimization steps detailed in 5.3 may yield
best results in terms of increasing performance. Ultimately the aim is also to provide sufficient information
to enable the user to decide when optimization could yield significant results and at the other end of the
spectrum to recognise when a performance is already sufficiently optimal to render meaningful return from
further optimization as difficult and potentially unobtainable.

5.2.1 HW pipelines

On HW pipelines  side,  two examples  have  been  added:  MonoPipe  and  ISPPipe,  that  can  be  found in
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mdk/examples/Sipp/SippFw/Runtimes.

Both of tests are using only HW filters and they were used for performance measurements. The metrics that
will  be used for  the interpretation of  the pipelines performance are clock cycles per pixel  (cc/pix)  and
memory footprint.

5.2.1.1 Clock cycle per pixel

The value for the first metric needs to be minimized in order to increase the performance of the pipeline.
The following figures illustrate the values for the clock cycles/pixel obtained when the tests are run with
different runtimes and different resolutions. In these particular cases performance measurements are made
using generic runtime, MLPI runtime at 4 lines per iterations and the oPipe runtime. The tests are run over
three resolutions: VGA, HD and 4K. It should also be noted that all tests use asynchronous mode.

Figure  9 shows the  cc/pix  values  for  the  MonoPipe  test.  It  can  be  seen  that  as  horizontal  resolution
increases, the performance difference between runtimes decreases.
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Figure 10 shows the cc/pix values for ISPPipe test. As in the previous case, the runtime and the resolution
that are used in the test will have a major impact on performance. The best case of improving performance
for FULL HD resolution is when oPipe runtime is chosen. Note for example that at HD resolution, cc/pix is
about 36% reduced for the oPipe runtime when compared to the generic runtime.

5.2.1.2 Memory footprint

The second metric which will be discussed regarding the pipeline performance is the memory footprint. This
is in turn broken into two main areas:

 Framework structure allocation.

 Line buffer allocation.

Framework heap usage – in terms of the framework heap, the space is decreased a lot especially when
oPipe runtime is used (see Figure 11).

For example when the test is at 4K resolution, the CMX pool size decreases by 61% if MLPI runtime is
chosen instead of generic runtime. If the oPipe runtime is used it will be saved almost 80% of total space
occupied when generic runtime is used. A large percentage of this saving relates to the schedule. When
MLPI is used, the schedule reduces in size by an order approaching the number of lines per iteration set. For
example, with 4 lines per iteration, the schedule size may be approximately one quarter that of the generic
runtime. For the oPipe runtime no schedule is required.
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Line buffer allocation – considering the line buffer usage for generic and multiple lines per iteration all line
buffers are allocated from vPoolFilterLineBuf. The actual usage for line buffer pool is given by the memory
used in that pool multiplied by the number of slices allocated to the pipeline. 

In  the  following  illustrations  we  take  for  example  the  MonoPipe  test  that  uses  an  image  with  a  VGA
resolution and we can notice, depending on the runtime used, generic or four lines per iteration, how much
vPoolLineBuf is occupied.

Figure 12: Line buffer usage

Regarding the oPipe runtime, we create a set of virtual pools one for each slice that is allocated to the
pipeline. In this case, the actual memory usage will be the amount that is used in each virtual pool.
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For  example,  the  MonoPipe  test  is  running  on  4  slices.  The  pools  allocated  will  be  the  first  four:
vPoolFilterLineBuf0, vPoolFilterLineBuf1, vPoolFilterLineBuf2 and vPoolFilterLineBuf3.

The measurements for the line buffer were made in the same situations presented for the other metrics. It
could be noticed in most of the time that the line buffer usage was almost three times increased when we
used 4 lines per iteration and more than four times when we used oPipe runtime against generic runtime.

Figure 13 shows the difference of line buffer usage in oPipe runtime when using the internal algorithm for
buffer allocation (a) and when the client sets up the buffer sizes (b).

Running in oPipe runtime not only increases performance, but it also reduces the total number of interrupts
taken, which can be a critical factor.

5.2.2 Enabling run time statistics gathering

There are two steps to enabling runtime statistic gathering. These break down into a build time and a
runtime aspect. 

To enable statistics gathering at  build  time,  the macro  SIPP_RUNTIME_PROFILING should  be defined
(within sippMyriad2Elf.mk). There is a build time component because even minimal runtime checks to
ascertain if statistics should be gathered consume some clock cycles and processing MIPS and therefore the
option to remove them entirely to achieve maximum performance is given.

Enabling  the  statistics  gathering  at  runtime  for  a  pipeline  is  achieved  by  setting  the  pipeline  flag
PLF_PROVIDE_RT_STATS before finalisation of the pipeline (See Table 7 for flag details).

All measurements are taken using the system clock so the statistics gathering does does not need a specific
timer.

It should be noted that while minimally invasive – run time gathering of statistics may well have a slight
adverse effect on performance. The statistics are gathered into memory assigned from the vPoolGeneral
virtual pool which by default is mapped to DDR (see Table 3) – clearly the physical mapping of this pool to
DDR or CMX may have some further minor impact on how invasive the statistics gathering is in terms of
performance.  The  size  of  the  area  is  controlled  by  two  build  time  macros  defined  in  sippCfg.h  –
SIPP_RT_ITER_STATS_SIZE which dictates how many iterations will be covered (should be greater than
or equal to the number of iterations calculated by the scheduler) and SIPP_RT_PER_ITER_STATS_SIZE
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which dictates the maximum number of measurements which can be recorded on each iteration.

Clearly the user is free to move around the measurements points in order to record different metrics for
each iteration. The subsequent sub-sections detail some of the metrics which may be targeted.

5.2.3 Scheduling time

Of most interest in situations where rescheduling is frequent such as pyramid scaling. This measurement is
always available in the run time statistics. It is updated only once, when the initial schedule is created –
further calls to sippReschedulePipeline() do not update it.

When an oPipe scheduler / runtime is selected, this metric has little merit as oPipe does not use a pre-
crafted schedule.

5.2.4 Iteration processing times

Each iteration of the schedule is in effect a separate and distinct step for the runtime in the processing of a
frame. Iterations run sequentially in time. Within each iteration there are 4 main activities, each of which
there is merit in timing. These are

 Operation of HW filters.

 Operation of SW filters.

 Operation of DMA units.

 Framework preparation for next iteration.

The timing of each of these elements helps identify the “long-pole” on each iteration. That is to say it points
to which of the 4 elements should be focused on first in order to improve the performance figure.

Note – the accuracy of such measurement may not be as accurate in asynchronous mode due to inherent
addition of interrupt latency into the degree of error. However, the results may still be used to provide a
clue  as  to  what  is  the  long-pole.  If  more  accuracy  is  sought,  there  may  be  merit  to  switch  to  the
synchronous mode using the blocking API if the system under test is composed of a single pipe or may be
broken down to single pipes for the purposes of optimization.

5.3 Optimization

To be clear this section is chiefly interested in pipeline optimization for performance. That is to minimise the
cc/pix value described in 5.2. Optimization against any other metric such as memory footprint is not dealt
with. However the sub-sections which follow will  highlight relationships between certain resources and
performance which may also be used to release resource from a pipeline which is measured to achieve a
performance beyond that which is required in order that some other aspect may use this resource to have
its performance optimised.

HW filters are often specified for 1 cc/pix throughput (though not guaranteed for all data types in all filters).
The maximum theoretical throughput of SW kernels may also be calculated. Therefore it should be possible
to calculate a theoretical value of clock cycles per pixel for a pipeline. Once the pipeline has been run and
measured,  it  may  be  considered  that  a  large  deviation between measured  and  theoretical  values  will
produce a desire to optimise the pipeline configuration.

This sub-section presents a set of optimization options aimed at providing the user with a simple pathway
to achieve the desired performance, or to identify when performance is already approaching the optimal
for the system.
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5.3.1 Optimisation techniques

The  following  sub-sections  detail  some  techniques  which  may  be  used  to  improve  the  measured
performance of a pipeline. While they work under various circumstances, these techniques will be referred
from section 5.3.2 to provide an effective guide to the types of situation for which each technique is best
suited.

5.3.1.1 HW CMX slice start offsets

When more than one slice is assigned to a pipeline for use in the allocation of filter line buffers for that
pipeline – the lines will be partitioned into a number of chunks equivalent to the number of slices allocated
such that some of the line exists in each of the allocated slices. SIPP HW filters and the SIPP framework
support the offsetting the start slices of the HW filters to minimise CMX contention

So for example, consider a HW pipeline involving a DMA In → LUT filter → convolution filter → scalar →
DMA out. 4 CMX slices are assigned to the pipeline at sippCreatePipeline() time. The pipeline may well have
4 filter buffers, located at the outputs of the DMA In, LUT, Convolution and Scalar filters. By default the first
pixel of the output lines of each filter will be placed at the start of the first chunk of the line and the first
chunk  will  be  in  the  first  slice  assigned  to  the  pipeline.  This  means  that  when  all  filters  are  started
simultaneously, they will start fetching their input data from the same CMX slice, leading to contention on
that slice. By simply offsetting the slice start of filters as per table 

Filter Output Buffer First Slice

DMA In 0 

LUT 1

Convolution 2

Scalar 0

Table 4: Example filter output buffer slice starts

Note that no output filter has its buffer start in slice 3. This is because only HW filters support this offsetting
at both input and output. While the Scalar filter would have been capable of writing to an output buffer
with an offset start slice, the DMA Out filter would have been incapable of consuming it. So care must be
taken that candidate filters for this are correctly chosen. To be clear, this is only supported for HW filters and
even then only when their output is consumed only by other HW filters and not SW filters or CMX DMA
units.

Offsetting the start addresses is not an automatic process within the framework. Support is limited to the
provision of the hooks enabling the offset being exposed through the SippFilter structure so that the client
may enforce this if necessary. For example, in order to create the first slice mappings expressed in Table 4,
the following code may be used:

dmaIn       = sippCreateFilter(...
lut         = sippCreateFilter(...
convolution = sippCreateFilter(...

...
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dmaIn->firstOutSlc       = 0;
lut->firstOutSlc         = 1;
convolution->firstOutSlc = 2;

sippFinalisePipe(...
sippProcessFrame(...

Note that as per all configuration of filters, this should be done before any call to sippFinalisePipe(),
sippProcessFrame() or sippProcessFrameNb() to ensure correct results.

5.3.1.2 Use of SW command queues

Starting the CMX DMA units and in certain runtimes, updating and starting the HW filters can be a non-
trivial task. As opposed to simply writing pre-calculated values to fixed addresses, the values to be written
are calculated at runtime as opposed to in the scheduler in order to save space (since the schedule is often
kept  in  CMX and  potentially  a  very  significant  number  of  values  per  iteration need to be kept  this  is
considered the preferred approach). 

The runtime calculation of these values normally occurs within the start and end of iteration framework
overhead (illustrated in Figure 14) so that the values are available at point of use and require no storage.
However, the values can be calculated at any point in time. So a compromise is to calculate the values
during the framework operations section (as illustrated in Figure 14) so that storage is only required for one
iteration's worth of transactions. This results in the start and end of iteration periods decreasing, while the
framework operations period increases. In fact the framework operations period will increase by an amount
greater than the combined saving in the start and end of iteration periods, so the total MIPS required by the
processor has in fact increased slightly. However, if the framework is not the long-pole in the system (see
section 5.3.2.1) then this will still result in a potential improvement in the overall system performance as
the savings in start and end of iteration periods will count towards the overall iteration time, while the
increase in the framework operations period will be masked by the long-pole of the system.

While this mechanism often shows improved results, care should be taken whenever

 The framework is close to being the long pole.

 When running concurrent pipelines with asynchronous API it  is desirable for the framework
operations period to be kept as short as possible so that other operations (such as starting an
alternative pipeline) have a chance to proceed. This aim may outweigh the individual gains seen
on a single pipeline. See section 5.3.3 for more details.

5.3.1.3 Increase number of lines per iteration

By default, schedulers and runtimes (with the exception of the oPipe version) will work on the basis of one
line of output being produced by each of the filters scheduled to run in each iteration.

Through a call to sippPipeSetLinesPerIter() this value may be changed to 2/4/8 or 16. The functionality
exposed through this  API  represents  an attempt to  mitigate  the effects  of  the necessary  per  iteration
overhead in both the SIPP framework running on the LEON processor on Myriad2 and the SIPP runtimes
running on each SHAVE processor assigned to the pipeline. 

Within the SIPP framework, the per iteration overhead consists of

 Start of iteration overhead (see Figure 14).

 End of iteration overhead (see Figure 14).

 Framework operations (see Figure 14).

 For asynchronous mode, interrupt latency + irq handler overhead.
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For the SIPP runtime on the shaves, the per iteration overhead consists of

 IPC operations with LEON.

 Accessing padding information per SW kernel.

 Accessing number of plane information per SW kernel.

 Loading lists of filter wrapper functions.

 Loading I/O information for each filter.

It  is  clearly  observed that  when a  pipeline  is  run with  more then one line  per  iteration,  the iteration
overhead increases, but the number of iterations decreases by a larger amount. For example, in moving
from one to two lines per iteration, the number of iterations in the generated schedule tends to decrease
by almost 50% for an HD image. That is to say there are about half  as many iterations. While the per
iteration overhead grows, it grows by much less than the 100% value which would wipe out any gain from
having 50% fewer iterations. Therefore the total iteration overhead decreases.

It  should  also be noted that in  asynchronous mode,  the interrupt latency  + irq handle overhead does
directly scale relative to the number of iterations – so running more lines per iteration almost always leads
to benefit when running in asynchronous mode.

It is observed that this provides a performance increase in most scenarios. However the increases are most
significant when Framework operations are considered the long-pole (see section 5.3.2). It is often possible
to remove the framework operations from the critical path using this method.

While the advantages of increasing number of lines per iteration have been made clear, the gains need to
be weighed against the increased line buffer requirement of the filters when running more than one line
per  iteration.  The  increase  in  line  buffer  requirement  per  filter  is  difficult  to  predict  in  advance  and
experimentation may be required to derive what the requirements are at each setting. It is worth stating
here for clarity that the increase is not a direct scale with the increase in number of lines per iteration.

NOTE: In a situation in which the oPipe scheduler and runtime is chosen, the number of lines per iteration
is effectively meaningless as it does not employ a mechanism to create a schedule for a certain
number of iterations.

5.3.1.4 Write a bespoke runtime

While the framework will  attempt to choose the most suitable runtime for the described pipeline, the
runtime will still be generic to a degree. It may be possible to tune the runtime for the needs of a specific
pipeline. If this is considered advantageous, then the user may provide their own version of the runtime and
assign it to the pipeline at the correct point.

Uses of this mechanism include but are not limited to:

 Remove unnecessary checks – for example if a pipeline has no HW filters there is no need to
check which HW filters to start in nay iteration which the generic runtime will do.

 Switch the order in which units are started – if it is felt that SW filters will always be on the
critical path, ensure these are started first before DMAs or HW filters.

The run-time is overloaded simply by calling sippFinalizePipeline() and then in client code modifying the
pipeline member 

sippRuntimeFunc                 pfnSippRuntime;
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to point at the function implementing the bespoke runtime.

5.3.2 Long-pole optimization

Section  5.2.4 describes the 4 main activities which occur during each iteration under the control of the
selected SIPP runtime (excluding the oPipe runtime). In order to begin optimization intelligently, a picture of
the  relative  processing  time  required  for  each  of  these  activities  proves  useful  in  determining  the
optimization steps.

NOTE: Before considering how to interpret the runtime statistics in order to ascertain the long-pole, it is
worthwhile to reiterate that the user is responsible for placing the instrumentation code in the
suitable positions within code to gather information relating to the start and stop time of each of
the activities mentioned.

A typical pipeline iteration time-line is illustrated in Figure 14. 

The iteration begins, immediately after the previous iteration is considered complete. After some cycles one
of the 3 functional unit groupings (SW filter, HW filters or CMX DMAs) will  have been started. Soon in
relatively quick succession the other two groupings will be started (if required on that iteration). Once all
required units are operational the framework will dedicate itself to performing the tasks it needs to in order
to be ready to start the subsequent iteration. 

This methodology ensures that all 4 activities occur mostly in parallel. It is also worth noting that there is no
data-dependency between any filters on any iteration. That is to say all filters can run to completion for an
iteration independently of the progress of any other filters in that iteration. In turn this means that HW
filter progress within an iteration is not gated by SW filter progress or DMA progress and the same is true
for the SW filter and DMA activities.

Points  to  note  in  Figure  14 include the two framework overhead periods  at  the start  and end of  the
iteration. Great care has been taken within the runtimes to minimise these periods, as in effect no progress
is being by the filter kernels during this time so their durations directly impact the efficiency of the system.
It should also be noted that the illustration is not necessarily to relative scale.

Finally there follows a brief and non-exhaustive guide to the factors which influence the time required for
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each of the 4 activities:

HW filter time – all HW filters may be run and started together so the total HW time is based on the worst
case HW filter on any iteration. This may be based on the specification and configuration of the HW filters,
the memory bandwidth, DDR usage of the system as a whole, filter line width etc.

SW filter time – The number of SW filters, the bandwidth and complexity of each of the SW filters, the
number of SHAVES allocated to the pipeline, the location of SHAVE code and data, the amount of padding
which must be done as well as the general factors of CMX bandwidth and the filter line width

CMX DMA time – The number of DMA operations required in any iteration and the line width of each
operation as well as CMX and DDR bandwidths to a large extent dictate the CMX DMA activity time

Framework – Framework activities chiefly employ maintaining buffer models for all buffers used as inputs to
SW filters and / or CMX DMA units. These models enable the framework to calculate addresses for each line
of the input kernel and for the output lines for each SW or DMA filter. Essentially the effort required here
depends on the number of SW and DMA filters in the pipeline and is invariant to line width, data-types etc.,
unlike all the other activities.

Note also that the end of iteration framework overhead can involve a few tasks among which informing any
HW filters of new data within their input buffer is most time consuming. 

5.3.2.1 Identification of the long-pole

With run time statistics enabled, timing information should be gathered at appropriate places from the
selected runtime in synchronous or asynchronous mode to allow the time required for the 4 activities to be
measured. At the end of the frame – these measurements may be analysed to ascertain which of the 4
functional units is most often the bottleneck during a single frame execution on a pipeline.

Gathering statistics to enable runtime long-pole detection is dealt with directly in the detailed example
within 5.4. Once the statistics are gathered and the long-pole identified the following sub-sections may be
used to guide an optimization plan.

5.3.2.2 HW filters as long pole

When HW filters are the bottleneck of the system there is one standard optimization technique. If more
than one CMX slice has been allocated to the pipeline – it is worth offsetting the start slices of the HW filters
to minimise CMX contention as described in 5.3.1.1.

Other questions to ask include

 Are all HW filter line buffers located in CMX? If not could they be moved there?

 Is the framework sufficiently far from being the long pole that the use of the SW command
queues described in 5.3.1.2 could be considered? If the framework then becomes the long pole,
using multiple lines per iteration also could see the framework be removed from the critical path
once more.

 Does the selected runtime start HW filters first, before SW filters and DMAs? If not this switch
could be made in code.

 If running using the asynchronous API, using multiple lines per iteration as per section 5.3.1.3
should always have a strong chance to show some improvement.

If these techniques are tried and show no improvement, it is unlikely the performance can be significantly
further improved even using the most bespoke tuning.

Finally, it is worth noting that if after optimization HW remains the long-pole in a pipeline including SW
filters, it may be worth considering using fewer shaves. Since HW is the long-pole, it may be possible to use
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fewer shaves and still  not seriously effect the overall  system performance while releasing this  valuable
resource for use in an alternative activity.

5.3.2.3 SW filters as long pole

Attempts to accelerate a pipeline in which SW filters are the long pole should consider the following

 Can more SHAVEs be added to the pipeline.

 If running using the asynchronous API, using multiple lines per iteration as per section 5.3.1.3
should always have a strong chance to show some improvement.

 Multiple lines per API has the possibility of showing improvement even with the synchronous
API by reducing the SHAVE runtime overhead.

 Does the selected runtime start SW filters first, before HW filters and DMAs? If not this switch
could be made in code.

It is worth noting that the rate of return seen in adding additional SHAVES to pipelines running SW kernels
drops off as more SHAVES are assigned. The reason is the general efficiency of the SW processing drops off
the more shaves which are added. The reason for this is the more SHAVEs which are added, the shorter the
section of line which each shave will cover. However, the per line and the per iteratyi0on overhead remains
the same, so effectively the time spent doing useful work drops while the time spent dealing with overhead
on each SHAVE remains constant. So the efficiency drops off as the time spent doing useful work drops as a
percentage of the total. Of-course in absolute terms, the total time spent executing SW tasks should drop
when more SHAVES are added to the pipeline.

5.3.2.4 CMX DMA as long pole

 Is the framework sufficiently far from being the long pole that the use of the SW command
queues described in 5.3.1.2 could be considered? If the framework then becomes the long pole,
using multiple lines per iteration also could see the framework be removed from the critical path
once more. SW command queues can speed up the process of starting the DMAs.

 Does the selected runtime start DMA filters first, before HW filters and SW filters? If not this
switch could be made in code.

 If running using the asynchronous API, using multiple lines per iteration as per section 5.3.1.3
should always have a strong chance to show some improvement.

5.3.2.5 SIPP framework as long pole

In a situation in which the SIPP framework is the long pole in a pipeline execution the main option available
is to attempt to run more than one line per iteration as described in 5.3.1.3.

The SIPP framework tends to be on the critical path for 'fast' pipelines. That is to say pipelines which have
one or more of the following characteristics.

 Use mainly HW filters.

 Have small line widths.

 Assign many SHAVES.

 Run simple SW kernels.

The time taken for framework operations is independent of line width, filter complexity etc. So the same
pipeline at HD may have SW filters as a long-pole, but at VGA has framework operations as its long pole.

Running more than one line per iteration should scale the HW and SW operations time in direct proportion,
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while  scaling the framework operations time at  a  lesser  percentage,  therefore  bringing the framework
operations time closer to the others or potentially even removing it from the critical path altogether.

Finally, it is worth noting that if after optimization framework operations remains the long-pole in a pipeline
including SW filters, it may be worth considering using fewer shaves. Since framework operations is the
long-pole,  it  may  be  possible  to  use  fewer  shaves  and  still  not  seriously  effect  the  overall  system
performance while releasing this valuable resource for use in an alternative activity.

5.3.3 Multi-pipeline optimization

In order for the SIPP framework to run multiple pipelines in parallel,  the first consideration is  that the
pipelines must not compete for shared resources. That is to say, HW filters may be assigned only to one
pipeline at any time and SHAVE units will also be assigned specifically to one pipeline at any time. However
should pipelines use different SHAVE groups and different HW filters, there is no reason for them not to be
run in parallel.

A secondary and less intuitive consideration is that the pipeline performance must enable pipelines to run
in parallel!

With the current 'bare-metal' implementation of the SIPP framework, a client may make two consecutive
calls to sippProcessFrameNB() in their application in the following way:

sippProcessFrameNb (pPipe0);
sippProcessFrameNb (pPipe1);

It may be reasonably expected that should the criteria for not competing on resource be satisfied then the
two pipelines could run in parallel. However, when running in asynchronous mode, the runtime executes
within  interrupt  context.  It  is  possible  that  when  pPipe0  is  started  by  the  first  call  to
sippProcessFrameNb,  interrupts  may  begin  to  be  taken  before.  The  second  call  to
sippProcessFrameNb has an opportunity to pass the API request for pPipe1 to the resource scheduler. If
the interrupts are sufficiently close together it could be that the insufficient processor MIPS are available
outside of interrupt context during execution of the entire frame for pPipe0 in order to actually get pPipe1
started in order that it may run in parallel.

In this situation, the performance of the first pipe is almost too good for the second pipe to be able to run in
parallel. The net effect is that the pipelines run in series and end up taking more combined cycles than they
should. A further effect is that the advantages of a non-blocking API are in effect lost since no real work may
take place outside of interrupt context while the pipeline is running.

This situation is demonstrated in the example described in section 5.4.

5.4 Performance example guide

With the 16.06 release of the Movidius MDK, a new example has been provided to enable performance
measurement and analysis of SIPP pipelines. It is located in

/mdk/testApps/components/sipptests/Performance/sippPerfTestBed

The leon/main.c file provides the testbed within which pipelines may be created and measured. It further
contains display and logging capability for result  presentation. The file leon/perfTestbedPipes.c contains
example pipelines.

The application is built using build/myriad2/Makefile. This Makefile contains the switch
CCOPT   += -DSIPP_RUNTIME_PROFILING

to enable runtime profiling within the SIPP framework build. Profiling is then available to be activated at
runtime. This is achieved via the lines
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pipe->sippFwHandle->flags |= (PLF_PROVIDE_RT_STATS);

within. As suggested by the code – profiling is activated on a per pipeline basis.

There are 4 configurations provided with this example. They are designed to be analysed a 2 groups of 2
configurations, where the 2 entries in each group show some development as the configuration changes
form one to the other. Therefore configurations A and B are a pair, leaving C and D as a further pair.

5.4.1 Running the application

Within leon/perfTestbedCfg.h set the configuration chosen by enabling either A, B, C or D by leaving
the chosen option as the only one defined in this file.

Configuration Guide

A Single pipeline, running in async mode with one line per iteration

B Single pipeline, running in async mode with sixteen lines per iteration

C Dual pipelines (not competing on resource), running in async mode with one 
line per iteration

D Dual pipelines (not competing on resource), running in async mode with sixteen
lines per iteration

Table 5: Guide to sippPerfTestBed configurations

These configurations are chosen to illustrate the usefulness of running more then one line per iteration in
improving SW efficiency (configurations A and B) and also in enabling larger inactive p[periods for the SIPP
runtime so that other aspects of the SIPP framework may execute ( configurations B and C).

Where appropriate some other aspects which may be of interest will be highlighted.

5.4.2 SW filter efficiency demonstration

Run  the  test  with  configuration  A  –  since  SIPP_RT_STATS_PRINT_CTRL  is  set  to  1  in
mdk/examples/Sipp/SippFw/ma2x5x/sippPerfTestBed/leon/perfTestbedCfg_A.h  significant  trace  will  be
dumped to the console on completion of the test. The majority of the trace illustrates the timings collected
by the runtime profiling for the last frame executed. A sample of the first 20 lines is shown below:

UART: Pipeline 0 - Async mode
UART:  Iter   ItTime      HW        SW       CDMA       FW
UART: =====================================================
UART:    0     3488,        0,        0,     2560,     1927
UART:    1     2917,        0,        0,     2239,     1818
UART:    2     2788,        0,        0,     2104,     1558
UART:    3     3181,     2079,        0,     2647,     1652
UART:    4     3120,     2018,        0,     2586,     1632
UART:    5     3255,     2160,        0,     2721,     1765
UART:    6     3400,     2287,     3117,     2835,     1985
UART:    7     3496,     2394,     3213,     2949,     2000
UART:    8     3391,     2289,     3108,     2844,     1979
UART:    9     3509,     2407,     3226,     2962,     2105
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UART:   10     3520,     2418,     3237,     2973,     2023
UART:   11     3418,     2316,     3135,     2871,     2014
UART:   12     3479,     2370,     3196,     2925,     1968
UART:   13     3522,     2420,     3239,     2975,     2019
UART:   14     3388,     2286,     3105,     2841,     1984
UART:   15     3491,     2389,     3208,     2944,     1994
UART:   16     3374,     2272,     3091,     2827,     1970
UART:   17     3617,     2515,     3334,     3070,     2213
UART:   18     3512,     2410,     3229,     2965,     2008
UART:   19     3435,     2333,     3152,     2888,     2031

In the case of an async pipeline – the figures relate to clock cycles. The information includes an iteration
index (which iteration of the schedule), the total clock cycles for that iteration and then the individual times
for the 4 functional units (HW filters / SW filters / CMX DMA and SIPP framework) to perform their required
operations on that iteration.

It may be seen, even from the brief sample above that for this pipeline in this configuration when SW filters
are required within an iteration, they tend to require the longest time.

This leads the long-pole identification algorithm to state at the end of this trace the following:

UART:  ** SW most often long-pole **

So  in  this  configuration  the  profiling  and  long-pole  identification  algorithm  have  said  that  SW  is  the
bottleneck. That is to say, most gains will be made by analyzing and attempting to optimize software kernel
performance. It is helpful to consider the SW performance now. 

This  test  contains  only  one  SW  kernel  (Box  Filter  5x5).  There  are  twelve  shaves  assigned  to  it  –  the
maximum available on ma2150 so intuitively performance should be close to optimal? However, it is not so
simple. The line width for the filter is 1280 and this is split among the 12 SHAVES so each only processes a
small segment of the line - approximately 100 pixels. With short line widths the SHAVE runtime overhead
tends to form a higher percentage of the overall total. Each SHAVE suffers the same overhead, though of-
course they are suffered in parallel. Generally as the line width drops the ratio of useful work cycles to total
cycles used on the SHAVE drops.  There are two ways to mitigate this.  The first  is  simply to use fewer
SHAVES. However, this would result in the efficiency increasing, but the overall SW time required increasing.

The second is to use multiple lines for each iteration. As the guidance provided in 5.3.2.3 suggested, using
multiple lines per iteration should always have a strong chance to show some improvement in SW time. The
reason is that the efficiency increases and the time involved in the SW kernels increases in rough proportion
to the increase in the number of lines per iteration. However the SHAVE runtime overhead increases by a
much much smaller amount. Therefore efficiency improves.

To illustrate this point, switch the test to run with configuration B. This configuration asks each filter (HW /
SW or CMX DMA) to perform 16 lines of operation on every iteration. The results for the first 20 iterations
are as follows:

UART: Pipeline 0 - Async mode
UART:  Iter   ItTime      HW        SW       CDMA       FW 
UART: ===================================================== 
UART:    0     8176,        0,        0,     7315,     4215 
UART:    1     8155,        0,        0,     7389,     3999 
UART:    2    21918,    21204,        0,     7049,     4416 
UART:    3    21798,    21084,        0,     7194,     5092 
UART:    4    21816,    21088,     9041,     8599,     6903 
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UART:    5    21825,    21088,     8819,    11213,     7379 
UART:    6    21824,    21087,     8575,    11142,     7212 
UART:    7    21837,    21100,     9024,    11544,     7384 
UART:    8    21818,    21094,     8548,    11128,     7164 
UART:    9    21906,    21182,     8731,    11405,     7388 
UART:   10    21832,    21097,     8954,    11330,     7169 
UART:   11    21816,    21092,     8720,    11280,     7341 
UART:   12    21834,    21099,     8885,    11273,     7132 
UART:   13    21817,    21093,     8641,    11433,     7298 
UART:   14    21823,    21099,     8492,    10914,     7125 
UART:   15    21820,    21089,     8856,    11267,     7324 
UART:   16    21812,    21088,     8511,    11234,     7115 
UART:   17    21917,    21182,     8761,    11328,     7389 
UART:   18    21823,    21092,     8779,    11151,     7129 
UART:   19    21824,    21093,     8717,    11168,     7346 

Of-course the individual iteration figures have increased but as much as 16 times of the output per iteration
is  being achieved.  Looking specifically  for  now at  the SW results.  Each iteration time for  the SW filter
increases only by approximately a factor of 3, despite the fact that 16 times the work is being done! Such a
dramatic improvement is a function of the fact that each SHAVE now does about 1600 pixels per iteration
on the SW kernels as oppose to about 100 before.

The results should now indicate that the HW has become the long pole in the tests. 

Note also that the end results of this include:

 Total test time has dropped – It is now roughly 1/3 of what it was with configuration A

 HW is now the long pole on the pipeline – the efficiency improvements for HW when running
with  multiple  lines  per  iteration over  a  single  line  are  much  smaller  due  to  the  inherently
efficient HW operation under all conditions.

5.4.3 Concurrent pipeline scheduling issue demonstration

Run the test with configuration C. This is a dual pipline test runing one line per iteration. In this scenario the
key point of interest is not on the clock cycles. Rather the interest focuses on the order in which events
happen with configurations C and D.

For  interpretation  of  this  information  refer  to  the  output  log  file  -
mdk/examples/Sipp/SippFw/ma2x5x/sippPerfTestBed/build/myriad2/perfTestBedLog.txt.

This contains the following information after running with configuration C.

Test Log : Total test cycles 84592509 LPI 1
<   Time   >|<   Str 0  >|<   Str 1  >|
------------|------------|------------|
      90595 |   F    0 S |            |
    2635632 |   F    0 C |            |
    2728903 |            |   F    0 S |
    5284035 |            |   F    0 C |
    5377790 |   F    1 S |            |
    7922274 |   F    1 C |            |
    8015575 |            |   F    1 S |
   10570564 |            |   F    1 C |
   10664332 |   F    2 S |            |
   13209008 |   F    2 C |            |
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   13302303 |            |   F    2 S |
   15857328 |            |   F    2 C |
   15951078 |   F    3 S |            |
   18495728 |   F    3 C |            |
   18589018 |            |   F    3 S |
   21144146 |            |   F    3 C |
   21237908 |   F    4 S |            |
   23782922 |   F    4 C |            |
   23876214 |            |   F    4 S |
   26431364 |            |   F    4 C |
   26525124 |   F    5 S |            |
   29069648 |   F    5 C |            |
   29162931 |            |   F    5 S |
   31717735 |            |   F    5 C |
   31811512 |   F    6 S |            |
   34356900 |   F    6 C |            |
   34450191 |            |   F    6 S |
   37005096 |            |   F    6 C |
   37098858 |   F    7 S |            |
   39643714 |   F    7 C |            |
   39737001 |            |   F    7 S |
   42291811 |            |   F    7 C |
   42385582 |   F    8 S |            |
   44931092 |   F    8 C |            |
   45024382 |            |   F    8 S |
   47579130 |            |   F    8 C |
   47672880 |   F    9 S |            |
   50218094 |   F    9 C |            |
   50311396 |            |   F    9 S |
   52865983 |            |   F    9 C |
   52959752 |   F   10 S |            |
   55505224 |   F   10 C |            |
   55598519 |            |   F   10 S |
   58153601 |            |   F   10 C |
   58247352 |   F   11 S |            |
   60792158 |   F   11 C |            |
   60885439 |            |   F   11 S |
   63440195 |            |   F   11 C |
   63533958 |   F   12 S |            |
   66079424 |   F   12 C |            |
   66172713 |            |   F   12 S |
   68727644 |            |   F   12 C |
   68821400 |   F   13 S |            |
   71366190 |   F   13 C |            |
   71459471 |            |   F   13 S |
   74014312 |            |   F   13 C |
   74108086 |   F   14 S |            |
   76652932 |   F   14 C |            |
   76746219 |            |   F   14 S |
   79301317 |            |   F   14 C |
   79395066 |   F   15 S |            |
   81939719 |   F   15 C |            |
   82033005 |            |   F   15 S |
   84588179 |            |   F   15 C |

This illustrates the occurrence of events within the application. Each line signifies a new event. “F X S” is
frame X starting for the pipeline within whose column the message is located. “F X C” is frame X completing.

It may be observed that with configuration C the pipelines are effectively running serially. Once any pipeline
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starts a frame, the subsequent event will be the completion of the frame on that pipeline. Never are the
two pipelines running in parallel. This is due to the execution experience detailed in section 5.3.3. Once the
framework runtime has completed its operations for the subsequent iteration, the HW, SW and CMX DMA
interrupts are lined up in sequence meaning that the processor does not return form interrupt context for a
sufficiently long period to enable the access scheduler to post the other pipeline's process frame request
onto the runtime.

Configuration D runs the same test, but this time with 16 lines per iteration. This time the output logfile can
be expected to contain something like the following

Test Log : Total test cycles 20325024 LPI 16
<   Time   >|<   Str 0  >|<   Str 1  >|
------------|------------|------------|
      91251 |   F    0 S |            |
     257972 |      V     |   F    0 S |
    1148463 |   F    0 C |      V     |
    1312810 |   F    1 S |      V     |
    1350661 |      V     |   F    0 C |
    1526899 |      V     |   F    1 S |
    2379197 |   F    1 C |      V     |
    2553105 |   F    2 S |      V     |
    2604046 |      V     |   F    1 C |
    2783351 |      V     |   F    2 S |
    3618095 |   F    2 C |      V     |
    3793842 |   F    3 S |      V     |
    3860614 |      V     |   F    2 C |
    4038300 |      V     |   F    3 S |
    4860156 |   F    3 C |      V     |
    5037649 |   F    4 S |      V     |
    5126651 |      V     |   F    3 C |
    5304938 |      V     |   F    4 S |
    6102450 |   F    4 C |      V     |
    6279877 |   F    5 S |      V     |
    6392641 |      V     |   F    4 C |
    6570558 |      V     |   F    5 S |
    7347716 |   F    5 C |      V     |
    7525617 |   F    6 S |      V     |
    7659311 |      V     |   F    5 C |
    7837410 |      V     |   F    6 S |
    8593023 |   F    6 C |      V     |
    8770638 |   F    7 S |      V     |
    8926332 |      V     |   F    6 C |
    9103918 |      V     |   F    7 S |
    9837406 |   F    7 C |      V     |
   10015101 |   F    8 S |      V     |
   10193945 |      V     |   F    7 C |
   10371274 |      V     |   F    8 S |
   11082970 |   F    8 C |      V     |
   11260563 |   F    9 S |      V     |
   11463087 |      V     |   F    8 C |
   11641326 |      V     |   F    9 S |
   12329820 |   F    9 C |      V     |
   12507416 |   F   10 S |      V     |
   12732020 |      V     |   F    9 C |
   12910018 |      V     |   F   10 S |
   13576939 |   F   10 C |      V     |
   13754687 |   F   11 S |      V     |
   13998502 |      V     |   F   10 C |
   14176174 |      V     |   F   11 S |
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   14821433 |   F   11 C |      V     |
   14999053 |   F   12 S |      V     |
   15265492 |      V     |   F   11 C |
   15443400 |      V     |   F   12 S |
   16066558 |   F   12 C |      V     |
   16244364 |   F   13 S |      V     |
   16532303 |      V     |   F   12 C |
   16709840 |      V     |   F   13 S |
   17310247 |   F   13 C |      V     |
   17488081 |   F   14 S |      V     |
   17797912 |      V     |   F   13 C |
   17975594 |      V     |   F   14 S |
   18555441 |   F   14 C |      V     |
   18733108 |   F   15 S |      V     |
   19065144 |      V     |   F   14 C |
   19243240 |      V     |   F   15 S |
   19797486 |   F   15 C |      V     |
   20322036 |            |   F   15 C |

In this case it may be seen that while events are occurring on one pipeline, the alternate pipeline is often in
progress (as indicated by a “V” in the log). The start and complete events form the two pipes are now
interspersed in the manner to be expected of true concurrent operation.

Note also the total test time has reduced form 85 M cycles to approx 20 M cycles. Some of this is due to the
efficiency increase in the SW filters in using 16 line per iteration but of-course the fact that the HW and
SHAVE resource is now truly running in parallel is also a factor.

Perhaps an equally interesting result can be obtained by switching back to configuration C but modifying
mdk/examples/Sipp/SippFw/ma2x5x/sippPerfTestBed/leon/perfTestbedPipes.c  so  that  each  pipeline  is
allocated only one SHAVE (as opposed to 6 each). The modification required is to search for the lines:

#elif PERF_TESTBED_NUM_PIPELINES > 0x1
u32                sliceFirst[PERF_TESTBED_NUM_PIPELINES] = {0,6};
u32                sliceLast[PERF_TESTBED_NUM_PIPELINES]  = {5,11};
#else

and change to 

#elif PERF_TESTBED_NUM_PIPELINES > 0x1
u32                sliceFirst[PERF_TESTBED_NUM_PIPELINES] = {0,6};
u32                sliceLast[PERF_TESTBED_NUM_PIPELINES]  = {0,6};
#else

This change of-course slows down the SW kernels per pipeline – however this slowdown simply presents an
opportunity for the runtime to service interrupts from the alternate pipeline in the intervening period. This
enables the two pipelines to run in parallel as desired. In fact the overall test time only increased from
about 85M clock cycles to 89M clock cycles, despite now allocating only 1/6th of the SHAVE resource!

This illustrates that when running more than one pipeline in asynchronous mode, it is often the time taken
to service interrupts and the interrupt latency of the system which will be the defining factor in throughput.
The addition of additional resource – such as in the example just shown adding 5 more SHAVES per pipeline
may not in itself make a significant difference. Running multiple lines per iteration not only increases shave
efficiency and therefore helps justify the addition of more SHAVE resource to a pipeline, it also reduces the
total number of interrupts taken which can be a crucial factor. 
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6 MA2150 and MA2100 SIPP comparison

6.1 Target silicon changes

Some  background  on  the  target  silicon  for  the  respective  SIPP  frameworks  is  informative  in  aiding
understanding of some of the differences between them.

MA2150 saw the introduction of an optimized ISP solution employing the SIPP hardware filters called oPipe.
In the oPipe the output of each filter in the pipeline is connected directly to the next filter in the pipeline
where it fills the local line buffer (LLB) if present or is processed directly (without any copy to/from CMX
memory). The introduction of the LLBs greatly reduces memory bandwidth and power consumption in the
oPipe and when the filters are used in the context of the SIPP framework. These LLBs do mean that context
switching those SIPP HW filters which contain them is no longer possible. The consequence of this is that no
sub-frame granularity of operation is available.

In the context of the SIPP framework this means that a HW filter may no longer appear multiple times in the
same pipeline on MA2150. It further means that the sippProcessIters() API available on MA2100 is no
longer available on MA2150 as there is no means to restore the context to the HW filters to enable restarts
within a frame.

Further  MA2150 has  seen the introduction of  two other  features  which have significant  effect  on the
framework. The first is the introduction of filters with multiple output buffers. MA2100 framework could
assume that all filters had only one output buffer. On MA2150 this is no longer the case since the Debayer
filter is capable of producing a RGB and a Luma output. Next is  the concept of an inherent latency of
operation. On MA2100 each filter would produce one line of output on each so it could be said it had zero
latency. On MA2150, due to the composited nature of certain HW filters, these filters need to be called
several times before the first line of output is produced. The MA2150 framework of-course takes care of this
to ensure that all subsequent filters in the pipe are correctly scheduled.

6.2 API

When producing the MA2150 API, a strong influencing factor was to maintain compatibility with the existing
MA2100 API. The intention is that this will mean existing applications should be capable of working with
minimal modification when targeting the new framework, providing of-course that the pipelines created
within the applications target filters which continue to be supported. With this in mind the majority of the
API functions currently exported by the MA2100 framework will be maintained. The new features detailed
in section 6.3 are implemented through the addition of new APIs.

The API is described in full in section 7.

6.3 New MA2150 framework features

6.3.1 Asynchronous API

The addition of an asynchronous API –  sippProcessFrameNB() provides clients to the SIPP framework
with the scope to continue to use the LEON resource while the HW and/or SHAVE filters are operational
during the course of a frame.

Servicing of the HW filters and SHAVEs involved in the frame during its operation by the SIPP framework will
occur in interrupt context. Naturally this may add some cycles to the overall frame processing time since at
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a bare minimum interrupt latency and time to execute interrupt handling framework code will be added per
iteration. However, this additional overhead is seen as worthwhile in order to free the processor to perform
other  latency  dependent  tasks  during  the  frame.  Further  the  continued  provision  of  the  synchronous
blocking API supports those situations when maximum performance is critical.

6.3.2 Multi-pipe concurrent interface

Within the framework an access scheduler has been introduced to provide a multi-pipeline to the client
while  maintaining  control  on the access  of  the pending processing  instructions to  the HW and SHAVE
resource each pipe demands. This interface works in association with the asynchronous API discussed in
6.3.1,  allowing the client to post  sippProcessFrameNB()  operations for several pipelines in sequence
without waiting for that operation to be complete. The framework will control allocation of each pipeline to
the underlying resource in turn based on a scheduling algorithm which has the potential to be tuned to a
clients needs if prioritization of pipelines is required in some way.
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7 MA2x5x SIPP API

7.1 API function calls

7.1.1 sippPlatformInit()

7.1.1.1 Prototype

void sippPlatformInit();

7.1.1.2 Description

This function initializes the SIPP framework AND also initializes the Myriad system e.g. clocks, hardware
accelerators.

If  the  application require  control  over  initializing  the  Myriad device  then it  may be better  to  use  the
sippInitialize() function.

7.1.1.3 Parameters

 –  No parameters.

7.1.2 sippInitialize()

7.1.2.1 Prototype

void sippInitialize();

7.1.2.2 Description

This  function  initializes  the  SIPP  internals  only.  Use  this  function  if  the  Myriad  devices  is  initialized
separately in the application.

7.1.2.3 Parameters

 –  No parameters.

7.1.3 sippCreatePipeline()

7.1.3.1 Prototype

SippPipeline* sippCreatePipeline(u32 shaveFirst, 
                                 u32 shaveLast,
                                 u8 *mbinImg);

7.1.3.2 Description

This is the first API function your application should call, in order to instantiate a SIPP pipeline. A pointer
referring to the SIPP pipeline is returned, which can be passed to other SIPP API functions.
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7.1.3.3 Parameters

shaveFirst, 
shaveLast

These two parameters specify which SHAVE processors are to be assigned to execute 
the SIPP pipeline. They specify an inclusive, contiguous and zero-based set of SHAVEs.
shaveFirst must be <= shaveLast. For example, if 0 and 3 were specified for 
shaveFirst and shaveLast respectively, then SHAVEs 0, 1, 2 and 3 would be 
assigned to the pipeline.

It is up to the application to manage SHAVE allocation. You must decide which SHAVE
processors to allocate processing by the pipeline being instantiated, and which, if any, 
to assign to other processing tasks.

mbinImg As part of the build process for a SIPP application, an mbin (Myriad Binary) is created, 
which contains all of the code (SIPP framework components and filters) which will run 
on the SHAVE processors. At runtime, this code gets loaded into the CMX slice 
associated with each of the SHAVE processors assigned to the pipeline. This 
parameter points to the mbin image containing the code targeted to run on the 
SHAVE processor. For maximum forward portability, you should wrap this parameter 
with the SIPP_MBIN macro.

7.1.3.4 Example

pl = sippCreatePipeline(1, 3, SIPP_MBIN(mbinSippImg));

7.1.4 sippCreateFilter()

7.1.4.1 Prototype

SippFilter* sippCreateFilter(SippPipeline *pl, 
                             u32 flags,
                             u32 outW, 
                             u32 outH, 
                             u32 numPl, 
                             u32 bpp, 
                             u32 paramsAlloc,
                             void (*funcSvuRun)(struct SippFilterS
                                  *fptr, int svuNo, int runNo),
                             const char *name);

7.1.4.2 Description

This function instantiates a SIPP filter and associates it with the specified pipeline, pl. A pointer referring to
the SIPP filter is returned. When instantiating a given type of filter, refer to the filter-specific documentation
to  ensure that  you  pass  parameters  that  are  valid  for  and  compatible  with  that  specific  type  of  filter
(supported pixel depths, number of planes supported, size of configuration parameters structure, function
name of the SHAVE entry point etc).

7.1.4.3 Parameters

Parameter Description

pl A reference to a pipeline, returned by sippCreatePipeline(). The instantiated filter will
be associated with this pipeline.

Intel® Movidius™ Confidential 51 SIPP-UM-1.32



Parameter Description

flags Currently the only defined flag is  SIPP_RESIZE.  This flag should be passed if the
filter input resolution is not the same as the output resolution.

outW Width of the frame to be output by this filter.

outH Height of the frame to be output by this filter.

numPl Number of planes of data in the filter’s output buffer.

Bpp Bytes per pixel of the output buffer data.

paramsAlloc Number of bytes needed to store configuration parameters for the type of filter being
instantiated.

funcSvuRun The filter’s main entry point. This is a pointer to a function which runs on the SHAVE
processor. When invoked, it will produce one scanline of output data (single or multi-
plane).  When  multiple  SHAVEs  are  assigned  to  the  pipeline,  each  SHAVE is
responsible for outputting a segment of the scanline.

name For debug purposes only.  Character  string to identify the filter,  which has meaning
within the application.

7.1.5 sippLinkFilter()

7.1.5.1 Prototype

void sippLinkFilter(SippFilter *fptr, 
                    SippFilter *parent, 
                    u32 nLinesUsed, 
                    u32 hKerSz);

7.1.5.2 Description

This function is  used to link  the filters  which have been instantiated within  a pipeline  into a graph.  It
establishes a parent/consumer relationship between a pair of filters.

7.1.5.3 Parameters

Parameter Description

fptr The child or consumer in the relationship.

parent The parent or producer in the relationship.

nLinesUsed Number of lines that the child filter will reference in the parent filter’s output buffer. 
For example, if the child filter performs a 5x5 convolution on the data from the parent 
filter’s output buffer, the number of “used” lines is 5. The framework will look at the 
requirements of all of the consumers of an output buffer, to automatically determine 
how many lines of data actually need to be allocated in the output buffer.

hKerSz Horizontal kernel size (in pixels) for horizontal padding.
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7.1.6 sippLinkFilterSetOBuf()

7.1.6.1 Prototype

u8 sippLinkFilterSetOBuf (SippFilter * pFilter,
                          SippFilter * pParent,
                          u32          parentOBufIdx)

7.1.6.2 Description

This function is used to when a parent filter has more than one output buffer. By default sippLinkFilter
links the consumer filter to output buffer 0 of the parent filter (info on what this is should be published for
all such filters). This function may be used in conjunction with sippLinkFilter to switch the link to any of
the other parent output buffers available. Note that if  a child wished to consume form more than one
parent buffer then two such links should be made, and those links adjusted where necessary via this API.

7.1.6.3 Parameters

Parameter Description

pFilter The child or consumer in the relationship.

pParent The parent or producer in the relationship.

parentOBufIdx The parent output buffer index that the child will consume from.

7.1.7 sippFinalizePipeline()

7.1.7.1 Prototype

void sippFinalizePipeline(SippPipeline *pl);

7.1.7.2 Description

This function is used to compute the frame schedule and prepares the pipeline(s) for execution. If it is not
called the schedule is initialized the first time the sippProcessFrame or sippAllocCmxMemRegion is called.

By default, the SIPP uses the CMX slices allocated to the SIPP pipeline (via  sippCreatePipeline) as a
temporary workspace to calculate the schedule. For large pipelines this may not be enough so it is possible
to re-use other application memory by calling the function,  sippInitSchedPoolArb,  and pointing at
application memory e.g. Frame buffer area. 

7.1.7.3 Parameters

Parameter Description

pl Pointer reference to the pipeline.
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7.1.8 sippProcessFrame()

7.1.8.1 Prototype

void sippProcessFrame(SippPipeline *pl);

7.1.8.2 Description

Invokes the SIPP scheduler to process 1 frame-worth of data. A single frame of data will be output by the
source filters, and the data will be passed from filter to filter, until a full frame of data has been output by
the sink filters.

7.1.8.3 Parameters

Parameter Description

pl Pointer reference to the pipeline to run.

7.1.8.4 Notes

This is a blocking API and should only be called when no other API calls are outstanding (via the async API
interface).

7.1.9 sippProcessFrameNB()

7.1.9.1 Prototype

void sippProcessFrameNB(SippPipeline *pl);

7.1.9.2 Description

Invokes the SIPP scheduler to process 1 frame-worth of data. A single frame of data will be output by the
source filters, and the data will be passed from filter to filter, until a full frame of data has been output by
the sink filters. Notification of successful completion will be returned to the client via the callback function
the client registered with sippRegisterEventCallback.

7.1.9.3 Parameters

Parameter Description

pl Pointer reference to the pipeline to run.

7.1.9.4 Notes

This is a non-blocking API variant of sippProcessFrame.
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7.1.10 sippReschedule()

7.1.10.1 Prototype

void sippReschedule(SippPipeline *pl);

7.1.10.2 Description

This function is called if the application needs to re-calculate the pipeline execution schedule.

The pipeline schedule is normally calculated once at application initialization. Typical situations where the
schedule needs to be recalculated is if the image or frame resolution changes or if the application needs to
change a parameter e.g. kernel size in one or more of the kernels in the pipeline.

If the application needs to reschedule pipelines then it must specify a buffer area to store the schedule (by
default in applications that don't re-schedule the SIPP handles the schedule buffer area). The function to set
the schedule buffer area is sippInitSchedPoolArb().

7.1.10.3 Parameters

Parameter Description

pl Pointer reference to the pipeline to run.

7.1.11 sippAllocCmxMemRegion()

7.1.11.1 Prototype

Int32 sippAllocCmxMemRegion (SippPipeline * pipe, SippMemRegion * 
memRegList);

7.1.11.2 Description

Provides an additional means to allocate memory to a SIPP framework pipeline for use in the allocation of
HW SIPP filter line buffers, excluding DMA filters. The chief intention of this API is to provide a memory
efficient  mechanism to ameliorate  the bandwidth efficiency  of  pipelines  containing  multiple  HW filters
operating in parallel by spreading the line buffer areas over multiple CMX slices. This mechanism will reduce
the memory access contention of the HW filters.

7.1.11.3 Parameters

Parameter Description

pipe Previously created SippPipeline struct to which the memory regions passed are to be 
assigned.

memRegList Pointer to NULL terminated list of SippMemRegion structures.
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7.1.11.4 Usage Notes

 The sippCreatePipeline() API has 2 parameters sliceFirst and sliceLast. All such CMX slices
assigned at pipline creation are still assumed available to the pipeline and so not need not appear in this
additional list. 

 Line buffers are always aligned to 8 byte boundaries – therefore ideally the regionOffset members of
the  SippMemRegion structs  will  be  8-byte  aligned.  To be otherwise  is  not  an  error,  but  the  SIPP
framework will internally consider the start location to be the first 8 byte aligned address falling within
the region.

 Reaffirmation  that  the  memRegList parameter  to  the  API  must  be  a  NULL-terminated  list  of
SippMemRegion structures. For example a client could statically allocate the following in c-code:

SippMemRegion CmxMemRegions[] = 
{
  {
    .regionOffset = 0x0,
    .regionSize = 0x1000,
    .regionUsed = 0x0, 
  },
  {
    .regionOffset = 0x8000,
    .regionSize = 0x1000,
    .regionUsed = 0x0, 
  },
  { 0, 0, 0 } /* Null terminated List */
};

 CmxMemRegions is then a suitable parameter to the API. Usage of this API is chiefly recommended for
pipelines which involve only SIPP HW filters. For pipelines employing a mix of SW / HW filters, the
chunking of the image will continue to be dictated by the number of SHAVES allocated to the pipeline.
Memory regions allocated via this API which are located in CMX memory slices not linked to one of the
allocated SHAVES will  be used for the output line buffers of those HW filters having exclusively HW
consumer filters. The framework will check that the regions provided are suitable for accepting chunks
of such a HW filter's output by considering the size available and that areas may be found which are
spaced at the requisite distance apart (almost certainly CMX slice size) to enable consistency with the
pipeline chunking. 

 If only one SHAVE is employed, then chunking is not used (or more accurately chunk size is equal to line
width). In this case the slice stride is not relevant and so the restrictions on the memory regions are
reduced.

 Should the client desire to setup memory regions which conform to a slice stride not equal to the
default value (i.e. the CMX region size of 128 Kb) then a call to void  sippSetSliceSize(UInt32
size) should be made to establish the new slice size before the call to sippCreatePipeline() for
the pipeline – the framework will NOT attempt to find some suitable slice stride which could be fitted to
the memory regions provided as the chances of being able to find a suitable quantity in a randomly
allocated set of memory regions are remote. Therefore the client should consider this stride as part of
its memory allocation process. 

 Individual HW filter output line buffers (for individual planes) must be in a single section – that is to say
the full line buffer must be in contiguous memory. So the regions allocated must permit allocation of
these contiguous regions. If chunking is used the line buffers are chunked, but the separate lines (for
each plane) within each chunk are in contiguous memory). 

 In order to avoid contention among the various HW filters in use an ideal assignment of memory regions
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would permit the framework to distribute the line buffers for the HW filters in use among a wide spread
of CMX slices

 The API should be called before any other call to sippFinalizePipeline() as this mechanism needs
to be registered before the triggers of memory allocation within sippFinalizePipeline are called.
In turn this API will itself call sippFinalizePipeline()

7.1.11.5 Constraints

 Regions should not straddle a CMX slice boundary

 Regions must facilitate the allocation of line buffers in such a way that a uniform slice stride value may
be used if chunking of the lines is applied (note chunking need not be applied in a pipeline consisting of
only HW filters, or of HW filters and only one SHAVE performing the SW filters). In order to constitute a
chain of regions suitable for chunking, the region start locations must be spaced at a distance exactly
equal to the slice stride. It is recommended that the default slice stride of 128 Kb is maintained where
possible as this  leads to optimal performance in mixed HW / SW pipelines.  This  means that when
additional  regions  are  allocated  via  this  API,  they  should  be  spaced  at  128  Kb  distance,  or  more
appropriately they should be at  the same offset form the start of the CMX slice in which they are
contained. If the slice stride is not set to 128 Kb, HW constraints on the slice stride must be adhered to.
A single global slice size is programmable. The minimum size is 32 Kb and the maximum is 480 Kb,
programmable in increments of 32 Kb.

7.1.12 SippChooseMemPool

7.1.12.1 Prototype

void   sippChooseMemPool (ptSippMCB       pSippMCB, 
                          SippVirtualPool vPool, 
                          u32             physPoolIdx);

7.1.12.2 Description

This function is called to remap a virtual pool controlled by a certain SIPP Memory Control Block (accessed
through a pointer of type pSippMCB) to be mapped to a physical pool – either the CMX pool or the DDR
pool.

7.1.12.3 Parameters

Parameter Description

pSippMCB Pointer reference to a memory control block.

vPool Virtual Pool to remap.

physPoolIdx Set to 0 to remap to CMX pool or 1 to remap to DDR pool.
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7.1.13 sippRegisterEventCallback()

7.1.13.1 Prototype

void sippRegisterEventCallback (SippPipeline *      pPipe,
                                sippEventCallback_t pfCallback );

7.1.13.2 Description

This function is called when the client wishes to register a callback handler to receive events pertaining to
the  specified  pipeline.  The  pPipe  parameter  will  be  returned  to  the  callback  to  enable  the  client  to
distinguish the source of the callback.

7.1.13.3 Parameters

Parameter Description

pPipe Pointer reference to the pipeline.

pfCallback Pointer to a callback function to be executed by the framework when an event occurs 
for the specified pipeline.

7.1.14 sippDeletePipeline()

7.1.14.1 Prototype

void sippDeletePipeline (SippPipeline * pPipe);

7.1.14.2 Description

Informs the framework that a specified pipeline is no longer to be used and so its internal resources may be
deleted. This includes all memory regions 

7.1.14.3 Parameters

Parameter Description

pPipe Pointer reference to the pipeline.

7.1.15 sippFilterAddOBuf()

7.1.15.1 Prototype

Intel® Movidius™ Confidential 58 SIPP-UM-1.32



void sippFilterAddOBuf(pSippFilter pFilter,
                       u32         numPlanes,
                       u32         bpp);

7.1.15.2 Description

This function is called to add a new output buffer to filters capable of producing more than one output. It is
assumed the vertical and horizontal dimensions of all output buffers are constant for a filter so the output
buffer inherits the dimensions established for the filter during its creation via sippCreateFilter. However
there is scope for the additional output buffer to have a differing number of planes and output format and
so these two variables are established via input parameters.

7.1.15.3 Parameters

Parameter Description

pFilter Pointer reference to the filter.

numPlanes Number of planes for the new output buffer.

bpp Bytes per pixel of the new output buffer's data.

7.1.16 sippFilterSetBufBitsPP

7.1.16.1 Prototype

void sippFilterSetBufBitsPP (pSippFilter pFilter, 
                             u32         oBufIdx, 
                             u32         bitsPerPixel);

7.1.16.2 Description

This function is called to allow an output output buffer type to be modified for a filter. This API allows the
size to be expressed in terms of bits, thus allowing support for packed formats.

7.1.16.3 Parameters

Parameter Description

pFilter Pointer reference to the filter.

oBufIdx Identifies which of the filter's output buffers to modify.

bpp bits per pixel of the new output buffer's data.
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7.1.17 sippPipeSetLinesPerIter

7.1.17.1 Prototype

void sippPipeSetLinesPerIter (pSippPipeline pPipe, 
                              u32           linesPerIter);

7.1.17.2 Description

Optional – by default the SIPP uses one line per iteration of any created schedule. This API allows the client
to modify this to 2/4/8 or 16. This has performance benefits in certain circumstances while increasing the
line buffer memory requirement.

7.1.17.3 Parameters

Parameter Description

pPipe Pointer reference to the pipeline.

linesPerIter Number of lines to run per iteration for each scheduled filter.

7.1.18 sippInitSchedPoolArb()

7.1.18.1 Prototype

void sippInitSchedPoolArb(u8 *addr, u32 size);

7.1.18.2 Description

Optional – by default, the SIPP uses the CMX slices allocated to the SIPP pipeline (via sippCreatePipeline) as
a temporary workspace to calculate the schedule.

This function allows the user specify an alternative memory area for the SIPP to use to calculate the runtime
schedule.

Typically the caller should define a buffer somewhere in DDR or CMX and point SIPP to that. The application
can re-use this memory e.g. frame buffer memory. 

NOTE: This function must be used if the pipeline application reschedules the pipeline.

7.1.18.3 Parameters

Parameter Description

addr Buffer address for (temporary) schedule calculation work area.

size Size of buffer.
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7.1.19 sippRdFileU8()

7.1.19.1 Prototype

void sippRdFileU8(u8 *buff, int count, const char *fName);

7.1.19.2 Description

Read a file containing unsigned 8bit integers.

7.1.19.3 Parameters

Parameter Description

buff Buffer address for data read from file.

count Number of bytes.

fName File name.

7.1.20 sippWrFileU8()

7.1.20.1 Prototype

void sippWrFileU8(u8 *buff, int count, const char *fName);

7.1.20.2 Description

Write unsigned 8bit integers to a file.

7.1.20.3 Parameters

Parameter Description

buff Buffer address with data to write to file.

count Number of bytes.

fName File name.

7.1.21 sippRdFileU8toF16()

7.1.21.1 Prototype

void sippRdFileU8toF16(u8 *buff, int count, const char *fName);
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7.1.21.2 Description

Read a file of 8-bit integers and convert and store as 16-bit Floats (Half-float).

7.1.21.3 Parameters

Parameter Description

buff Buffer address for data read from file.

count Number of bytes.

fName File name.

7.1.22 sippWrFileF16toU8

7.1.22.1 Prototype

void sippWrFileF16toU8(u8 *buff, int count, const char *fName);

7.1.22.2 Description

Compare two unsigned 8-bit integer (char) buffers.

7.1.22.3 Parameters

Parameter Description

refA First buffer.

refB 2nd buffer for comparison.

len Number of bytes to compare.

7.1.23 sippDbgCompareU16

7.1.23.1 Prototype

void sippDbgCompareU16(u16 *refA, u16 *refB, int len);

7.1.23.2 Description

Compare two unsigned 16-bit buffers values.

7.1.23.3 Parameters
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Parameter Description

refA First buffer.

refB 2nd buffer for comparison.

len Number of bytes to compare.

7.1.24 sippDbgCompareU32

7.1.24.1 Prototype

void sippDbgCompareU32(u32 *refA, u32 *refB, int len);

7.1.24.2 Description

Compare two unsigned 32-bit unsigned integer buffers. 

7.1.24.3 Parameters

Parameter Description

refA First buffer.

refB 2nd buffer for comparison.

len Number of bytes to compare.

7.1.25 sippErrorSetFatal

7.1.25.1 Prototype

void sippErrorSetFatal (u32 errCode)

7.1.25.2 Description

Sets the error provided in the parameter as a fatal error which will trigger an abort to allow immediate
debug.

7.1.25.3 Parameters

Parameter Description

errCode A single error code to be marked as fatal if occurs.
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7.1.26 sippGetLastError

7.1.26.1 Prototype

u32 sippGetLastError ( )

7.1.26.2 Description

Returns last error recorded by the framework

7.1.27 sippGetErrorHistory

7.1.27.1 Prototype

u32 sippGetErrorHistory (u32 * ptrErrList)

7.1.27.2 Description

Returns the last errors recorded up to a maximum of the cfg define SIPP_ERROR_HISTORY_SIZE. This is
numbered from boot or the last call to this function.

7.1.27.3 Parameters

Parameter Description

ptrErrList A pointer to client allocated storage error to hold the error list. Area needs to be sized 
at sizeof(u32) *  SIPP_ERROR_HISTORY_SIZE where this macro is as defined in sippCfg.h

7.1.28 sippPipeGetErrorStatus

7.1.28.1 Prototype

u32  sippPipeGetErrorStatus (SippPipeline * pPipe)

7.1.28.2 Description

Returns 0x1 if any error code has been recorded on the specified pipeline

7.1.28.3 Parameters

Parameter Description

pPipe Pointer reference to the pipeline.

7.1.29 sippPipeSetNumLinesPerBuf

7.1.29.1 Prototype

void sippPipeSetNumLinesPerBuf (pSippFilter pFilter,
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                                u32         oBufIdx,
                                u32         numLines)

7.1.29.2 Description

Allows the client to manually set the number of buffer lines to be used for any pipeline buffer when the
direct streaming runtime (oPipe runtime) has been chosen by the framework. This enables the client to
consider reduction of the buffer size allocated by the algorithm if empirical testing shows any performance
degradation is considered justifiable in order to gain a decreased memory footprint.

7.1.29.3 Parameters

Parameter Description

pFilter Pointer reference to the filter.

oBufIdx Index into the filter's list of output buffers.

numLines The number of lines to size the specified buffer to.

7.2 Callback event list

Table 6 below describes the events which may be produced by a pipeline when running asynchronously in
response to a call to sippProcessFrameNB.

Event Description

eSIPP_PIPELINE_FINALISED Pipeline has been finalized.

eSIPP_PIPELINE_RESCHEDULED Pipeline rescheduling is complete.

eSIPP_PIPELINE_FRAME_DONE A pipeline  has  sent  one frame's  worth of  data  to  output
sink.

eSIPP_PIPELINE_ITERS_DONE No longer supported.

eSIPP_PIPELINE_SYNC_OP_DONE Internal event only.

eSIPP_PIPELINE_STARTED Pipeline is internally scheduled to commence execution.

Table 6: Callback events table

NOTE: Callbacks may be made from any context (thread / IRQ) so the client callback function should be
aware of this.

7.3 Pipeline Flags

Each created pipeline contains a flag member  (SippPipeline::u32 flags). The SIPP framework client may
choose to set certain bits within this 32-bit variable to trigger specified behavior within the SIPP framework.
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A guide to the flag to bit mapping and what they achieve when set is detailed in Table 7. Not all flags are
designed g set by the client

Flag Value Client
Access

Description

PLF_REQUIRES_SW_PADDING (1<<0) R Allows Client to understand if SHAVE padding 
has been required in pipe.

PLF_UNIQUE_SVU_CODE_SECT (1<<1) N/A To be removed.

PLF_IS_FINALIZED (1<<2) R Set when pipeline schedule is created.

PLF_MAP_SVU_CODE_IN_DDR (1<<3) W Set to force the shave code to be placed in 
DDR – data remains in CMX.

PLF_RUNS_ITER_GROUPS (1<<4) W Set to create CMX DMA descriptors to allow 
SHAVE data space to be saved to DDR.

PLF_DISABLE_OPIPE_CONS (1<<5) W Force the framework to ignore possible oPipe 
connections in a pipeline when they are 
available – useful if desire to attach.

PLF_PROVIDE_RT_STATS (1<<6) W Runtime statistics are collected (see section XX
for details).

PLF_ENABLE_SW_QU_USE (1<<7) W Enable SW command queue usage, potentially 
increasing performance.

PLF_CONSIDER_OPIPE_RT (1<<8) W Consider the oPipe runtime as an option for 
the pipe.

Table 7: Pipeline flags table

7.4 Error management and reporting

7.4.1 Error flags

Table 8 details the error flags now produced by the framework.

Code Description

E_OUT_OF_MEM Out of memory (a requirement on a memory pool could not be 
satisfied). Try increasing pool size.

E_INVALID_MEM_P Invalid Memory Pool.

E_PAR_NOT_FOUND Parent not found (a filter is looking for a parent and is not found 
in parent list). Internal Error.

E_DATA_NOT_FOUND Internal algorithm failure. Internal Error.

E_RUN_DON_T_KNOW Scheduler: Cannot schedule filter. Pipeline or internal error
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Code Description

E_INVALID_HW_PARAM Invalid HW Parameter.

E_INVLD_FILT_FIRST_SLICE First slice of a filter is smaller than first slice of its pipeline. 
Pipeline creation failure.

E_INVLD_FILT_LAST_SLICE Last slice of a filter is larger than last slice of its pipeline. Pipeline 
creation failure.

E_MISSING_SHAVE_IMAGE If pipeline uses SW filters, but shave image is NULL. Pipeline 
creation failure.

E_UNIMPLEMENTED_FEAT Marks unimplemented feature.

E_PC_CMX_MEM_ALLOC_ERR On PC builds only: marks that CMX memory buffer could not be 
allocated.

E_OPT_EXEC_NUM

E_CANNOT_FINISH_FILTER Scheduler cannot finish schedule of a filter till filter height is 
reached. Can happen for very small image heights. Internal error.

E_DATA_ALIGN Unused on ma2x5x silicon.

E_INVLD_MIPI_RX_LOOPBACK Loopback not supported for the given mipi RX units (only RX 1 
and 3 support loopback).

E_TOO_MANY_FILTERS Maximum permitted number of filters was exceeded, cannot be >
SIPP_MAX_FILTERS_PER_PIPELINE as set in sippCfg.h

E_INVLD_MULTI_INSTANCE Invalid use of multi-instance: applies to all HW filters!

E_INVLD_HW_ID Unused with ma2x5x silicon.

E_TOO_MANY_PARENTS A filter's number of parents exceeds SIPP_FILTER_MAX_PARENTS 
as defined in sippCfg.h

E_TOO_MANY_CONSUMERS A filter's number of consumers exceeds 
SIPP_FILTER_MAX_CONSUMERS as defined in sippCfg.h

E_RUNS_ITER_GROUPS Unused with ms2x5x SIPP.

E_TOO_MANY_DMAS Number of DMA filters defined in the pipeline exceeds 
SIPP_MAX_DMA_FILTERS_PER_PIPELINE as defined in sippCfg.h

E_INVLD_SLICE_WIDTH Invalid Slice width (must be multiple of 8) for a SW filter. 
Attention should be paid when using resizing SW kernels to 
ensure output slice width remains a multiple of 8.

E_OSE_CREATION_ERROR An issue arose from an attempt to create OSEs in pipeline. 
Internal Error.

E_CDMA_QU_OVERFLOW CMX DMA task qu has overflowed.

E_PC_RUNTIME_FAILURE PC Model experienced runtime error.

E_SCHEDULING_OVF Too many events queued in scheduler. Modify app to wait on 
event completion or increase scheduler event queue size via 
SIPP_ACCESS_SCHEDULER_QU_SIZE in 
sippAccessSchedulerTypes.h

E_BLOCK_CALL_REJECTED A blocking API call was rejected as pending operations remain
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Code Description

E_PRECOMP_SCHED An error was detected in an attempt to use a precompiled 
schedule for the pipeline.

E_FINALISE_FAIL An attempt to finalise a pipe failed often due to one of the errors 
above but this allows a catch all test.

E_HEAP_CREATION_FAIL An error occurred in attempt to create a heap.

Table 8: Error code descriptions

7.4.2 Error management API best practice

Some of the errors listed in Table 8 have a pipeline scope, some a filter scope and some a framework scope.
In order to guide the client with further information a suite of error management APIs has been added to
enable a specific scope to be interrogated for the occurrence of errors in previously enabled APIs.

SippGetLastError() (see section 7.1.26) allows a check to see the last error recorded at any level within
the framework while  sippGetErrorHistory()  (see section  7.1.27) returns all  recorded errors since
boot or the last call to the function. For a more pipeline specific scope, sippPipeGetErrorStatus() (see
section 7.1.28) may be used to check out if nay errors have occurred which are specific to that pipeline. This
is a useful tool to call after an API call to check on the pipeline status. If this API call indicates an error has
occurred,  the  previously  mentioned  APIs  may  then  be  used  to  interrogate  the  framework  for  more
information on the error type.

Further some tuning of the response to errors is facilitated.  SippErrorSetFatal() (see section 7.1.25)
allows any error to be marked as fatal so that the framework will trap the processor on its occurrence. This
can facilitate more efficient debug under certain circumstances.

NOTE: It is planned that in MDK releases subsequent to 16.06 SIPP examples will be re-tooled to use the
error management APIs described here.
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8 SIPP Hardware accelerator filters

Below is a summary of hardware filters, along with supported input and output formats, the parameter
structure used to configure the filter, and the number of input lines read by the filter (kernel height) in
order that the filter may execute once. Note this is not the same as producing a single layer of output.

Filter Filter ID Input Precision Output
Precision

Config Struct Input
Lines

DMA SIPP_DMA_ID N/A N/A DmaParam 1

Mipi Tx SIPP_MIPI_TX0_ID
SIPP_MIPI_TX1_ID

U8, U16, U24, U32,
10P32

N/A MipiTxParam N/A

Mipi Rx SIPP_MIPI_RX0_ID
SIPP_MIPI_RX1_ID
SIPP_MIPI_RX2_ID
SIPP_MIPI_RX3_ID

N/A U8, U16, U24, 
U32, 10P32 

MipiRxParam N/A

Sigma
Denoise

SIPP_SIGMA_ID U8, U16 U8, U16 SigmaParam 5

Lens Shading SIPP_LSC_ID U8, U16 (Image) 
U8.8 (Mesh)

U8, U16 LscParam 1

Raw SIPP_RAW_ID U8, U16 U8, U16 RawParam 1/3/5

Debayer SIPP_DBYR_ID U8, U16 U8, U16 DbyrParam 11

Gen Chroma SIPP_CGEN_ID U8, U16 U8 GenChrParam 6

Sharpen SIPP_SHARPEN_ID U8F, FP16 U8F, FP16 UsmParam 3/57

DoG/LTM SIPP_DOG_ID U8F, FP16 U8F, FP16 DogLtmParam 3/57/9/
11/13/1
5

Luma Denoise SIPP_LUMA_ID U8F, FP16 U8F, FP16 YDnsParam 11

Chroma Denoise SIPP_CHROMA_ID U8 U8 ChrDnsParam 3

Median SIPP_MED_ID U8 U8 MedParam 3

Polyphase FIR SIPP_UPFIRDN_ID U8, FP16 U8, FP16 PolyFirParam 7

LUT SIPP_LUT_ID U8, U16, FP16 U8, U16, FP16 LutParam 1

Edge operator SIPP_EDGE_OP_ID U8 U8, U16 EdgeParam 3

Harris Corners SIPP_HARRIS_ID U8 FP16, FP32 HarrisParam 5/7/9
Convolution SIPP_CONV_ID U8F, FP16 U8F, FP16 ConvParam 3/5

Color combination SIPP_CC_ID FP16,U8 (luma), 
U8 (chroma)

U8F, FP16 (luma),
U8 (chroma)

ColCombParam 1 (Lum),
5(Chr)

Table 9: Summary of MA2150 Hardware Filters
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Filter Filter ID Buffer Input buffer ID Output buffer ID

Primary buffers

Sigma denoise 0 in/out 0 0

LSC 1 in/out 1 1

RAW 2 in/out 2 2

Bayer demosaic 3 Bayer in/RGB out 3 3

DoG/LTM 4 in/out 4 4

Luma denoise 5 in/out 5 5

Sharpening 6 in/out 6 6

Chroma generation 7 RGB in/Chroma out 7 7

Median 8 in/out 8 8

Chroma denoise 9 in/out 9 9

Color combination 10 Luma in/RGB out 10 10

Lookup table 11 in/out 11 11

Edge operator 12 in/out 12 12

Convolution kernel 13 in/out 13 13

Harris corners 14 in/out 14 14

Polyphase scaler[0] 15 in/out 15 15

Polyphase scaler[1] 16 in/out 16 16

Polyphase scaler[2] 17 in/out 17 17

MIPI Tx[0] 18 in 18 N.A.

MIPI Tx[1] 19 in 19 N.A.

MIPI Rx[0] 20 out N.A. 20

MIPI Rx[1] 21 out N.A. 21

MIPI Rx[2] 22 out N.A. 22

MIPI Rx[3] 23 out N.A. 23

Secondary buffers

LSC 1 Gain mesh buffer 20 N.A.

Median 8 Luma in 21 N.A.

Color combination 10 Chroma in 22 N.A.

Lookup table 11 LUT buffer 23 N.A.

Luma denoise 5 Cosine 4th law LUT buffer 24 N.A.

Color combination 10 3D LUT buffer 25 N.A.

RAW 2 Defect list 26 N.A.

Bayer demosaic 3 Luma out N.A. 18

RAW 2 AE statistics N.A. 19

RAW 2 AF statistics 24

RAW 2 Luma histogram 25

RAW 2 RGB histogram 26

Table 10: Filter IDs and input/output buffer IDs
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8.1 DMA

The DMA filter can be used to transfer image data from DDR to CMX, and vice versa. An instance of the
DMA filter must be either a source filter or a sink filter It either sources data from DDR as an input to the
pipeline, or writes processed data out to DDR as an output from the pipeline. The transfer of data is either
from DDR to the DMA filter’s output buffer (DMA filter is a source) or from the DMA filter’s parent’s output
buffer to DDR (DMA filter is a sink).

DMA transfers have a source and a destination. The hardware has completely independent state machines
for  managing  the  fetching  of  source  data  vs.  managing  the  storing  of  destination  data.  As  such,  the
configuration of source and destination are completely independent.

Both the source and the destination need to be configured according to the layout of the corresponding
image in memory. Images may contain padding at the right hand side of the image. A programmable stride
allows the padded width of  the image to be greater  than the actual  width.  Padding bytes will  not be
transferred.  Additionally,  the  DMA  controller  supports  the  concept  of  “chunking”.  Chunking  supports
transfers to/from Output Buffers where the scanlines are split across multiple slices.

A total of 4 parameters are used to describe an image layout in memory (all units are in bytes):

 Image line width.

 Chunk width.

 Chunk stride.

 Plane stride.

Each  of  these  four  parameters  are  independently  programmable  for  both  the  source  and  destination
images.

8.1.1 Automatic calculation of image layout parameters

An  automatic  mode  is  supported,  whereby  the  framework  calculates  the  image  layout  parameters
internally.  This  mode should  be used when the image is  a  SIPP-managed buffer (i.e.  an Output  Buffer
located in CMX). For a source filter, the destination image should use automatic mode, and for a sink filter,
the source image should use automatic mode. To specify the use of automatic mode, the “Chunk width”
parameter should be set to 0.
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8.1.2 Images in DDR

For images in DDR, the filter needs to be configured with the image stride (“Line Stride”). If the image has
more than one plane, a plane stride must also be specified. The Chunk Width should be set to the number
of bytes of data to be transferred per line. Since data in DDR is normally never split into slices, the Chunk
Stride should be identical to the Chunk Width.
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8.1.3 Images in CMX

For Images in  CMX, Automatic Mode should be used.  Set  the Chunk Width parameter  to 0 to enable
automatic mode. The configuration parameters (shown below) will be calculated automatically.

8.1.4 DmaParam Configuration

This filter is configured via the DmaParam structure, which has the following user-specifiable fields:

Name Bits Description

ddrAddr 31:0 DDR memory address of the image in DDR. If the transfer is from DDR to the
DMA filter’s output buffer, this is the source image address. If the transfer is
from  the  parent  filter’s  output  buffer  to  DDR,  this  is  the  destination image
address.

dstChkW 31:0 Chunk Width of the destination image

srcChkW 31:0 Chunk Width of the source image

dstChkS 31:0 Chunk Stride of the destination image

srcChkS 31:0 Chunk Stride of the source image

dstPlS 31:0 Plane Stride of the destination image

srcPlS 31:0 Plane Stride of the source image

dstLnS 31:0 Line Stride of the destination Image

srcLnS 31:0 Line Stride of the source Image
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8.2 MIPI Rx

Input Formatted MIPI CSI-2/DSI data via MIPI controller 
hsync/vsync/valid/data parallel interface

Operation Flexible stream processing of input directly from MIPI RX including 
active image region windowing, sub-sampling, data-selection, array 
sensor plane extraction, black level subtraction (for RAW input), and
data format conversion.

Input buffer None – input streams from MIPI RX controller parallel interface.

Output Up to 16 planes of 

- U8/U16/U32/10O32

- Packed RGB888 (3 bytes)

- Packed YUV888 (3 bytes)

RAW/YCbCr/RGB in up to 4 planes

Instances 4

Table 11: MIPI Rx filter overview

The MIPI Rx filters connect to MIPI Rx channels via a parallel interface and adapt the hsync, vsync, valid and
data signals (shown in Table 12) from the MIPI controller to drive their internal data path. 

Signal Bits Direction Description

VSYNC 1 Input Vertical synchronization signal

HSYNC 1 Input Horizontal synchronization signal

DATA 32 Input Input data interface

VALID 1 Input Input data valid

Table 12: MIPI controller Rx interface (signal directions relative to SIPP

Data is clocked into the MIPI Rx filters using the media clock. The media clock is synchronous to the SIPP
system clock but may run either at full speed, half speed or quarter speed. The MIPI Rx data may therefore
be transferred to the SIPP system clock domain without any special synchronization. 

Figure 17 shows a block diagram of the MIPI Rx filter. The filter architecture defines a simple yet flexible
approach to the formatting and storage of incoming image data. The filter is primarily intended to handle
RAW data or single channels/components of YUV/YCbCr/RGB. There is no support for scattering of separate
components/channels of YUV/YCbCr/RGB to multiple buffers or planes.
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Figure 17: MIPI Rx filter block diagram

8.2.1 MIPI Rx Features

8.2.1.1 Windowing

The incoming data stream from the MIPI controller may be windowed, meaning that only pixels falling
within a defined window (or windows) is forwarded for formatting/storage (i.e.  an image crop may be
affected). 

A maximum of 4 orthogonal (non-overlapping) windows may be used allowing, for example, RGBW array
sensor data or mixed data-type frames to be output to separate planes of a planar buffer. 

The window grid is defined in terms of a set of (x, y) co-ordinates. There are 4 x co-ordinates (x 0, x1, x2 and
x3) and 4 y co-ordinates (y0, y1, y2 and y3) which define the top-left corners of up to 4 windows in any of the
following shapes (number horizontally x number vertically): 

 Single window: 1x1

 Single row of windows: e.g. 2x1, 3x1 or 4x1

 Single column of windows: e.g. 1x2, 1x3 or 1x4

 2x2 array of windows

Each of the windows in a single column must have the same width but windows in a single row may have
different widths. There 4 programmable window widths giving the widths of the windows starting at x0, x1,
x2 and x3, respectively. For windowed output to a single plane the total of the widths for the all windows in a
row must be equal to the width of the output frame. However, for output to multiple planes of a planar
buffer the width of each window must be the same and must be equal to the width of the output frame.

Each of the windows in a single row must have the same height but windows on different rows may have
different heights; there are 4 programmable window heights giving the heights of all windows starting at y0,
y1, y2 and y3, respectively. For windowed output to a single frame the total heights for all the windows in a
column must be equal to the height of the output frame.

The filter tracks the input x, y co-ordinate by incrementing two counts as data are received on the parallel
interface. The counts are compared to the programmed windows to determine which window is active. 

Windows may also be interleaved. For example, data from an array sensor may be scanned-in in interleaved
raster order. That is, where the sensor is organized as:

R G

B W
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Then the first line received will span the R/G (at the top of the sensor) and the second line received will
span the B/W (at the bottom of the sensor); thus lines from R/G and B/W are interleaved. In fact, multiple
lines from the top may be followed by multiple lines from the bottom. The bit of the filter’s line count (y co-
ordinate) which is used to determine whether the filter is receiving for the top or bottom set of windows is
therefore programmable. 

Figure 18 shows an example 2x2 window grid. The windows are defined as follows:

 Windows (0,0) and (1,0) share the same start x co-ordinates (x0 and x1)

 Windows (0,1) and (1,1) share the same start x co-ordinates (x2 and x3)

 Windows (0,0) and (0,1) share the same start y co-ordinates (y0 and y1)

 Windows (1,0) and (1,1) share the same start y co-ordinates (y2 and y3)

If interleaved mode is configured then Windows (0,0) and (0,1) (or (0,1) and (1,1)) can use exactly the same
co-ordinates since the co-ordinates are relative to the top/bottom halves (or fields) of the frame.

The following general restrictions apply to the specification of the window grid (unless in interleaved mode)
to ensure that no windows overlap:

xi < xi+1

widthi <= (xi+1 – xi)

yi < yi+1

heighti <= (yi+1 – yi)

All windows in a column must have the same width and all windows in a row must have the same height. 

Data falling  in different  windows may (optionally)  be  stored in  separate  planes of  a  planar  buffer.  The
number of planes of output corresponds to the number of windows in use – a maximum of 4 are supported.
The plane stride ps and number of planes np for the output buffer should be programmed appropriately to

Intel® Movidius™ Confidential 76 SIPP-UM-1.32

Figure 18: Example MIPI Rx window grid for RAW
data from RGBW array sensor



match the size and number of windows. For planar output the plane indices correspond to the windows as
they occur in raster (or interleaved raster) order from left to right and top to bottom in the incoming frame.

8.2.1.2 Data selection and mask

The input parallel interface has a 32 bit data bus. The least significant bit at which the data selection starts is
programmable. A programmable 32 bit mask is provided which is ANDed with the right-shifted selection
allowing, for example, only the luma component to be picked off from the bus. For example if the incoming
data is d, the selection bit is b and the mask is m then the selection s is given by:

s = (d >> b) & m;

By setting the selection bit to zero and the mask to 0xffffffff the full data bus may be selected. If black level
selection and format conversion are disabled for the window then the full  data bus may be written to
memory unmodified. 

For further flexibility selection may enabled/disabled for even/odd pixels and even/odd lines. If selection is
disabled it means that that pixel (or line) is not output but is skipped over; care must be taken to adjust the
width/height of the output to match appropriately.

8.2.1.3 Black level subtraction

For  RAW input  black  level  subtraction may  be  performed.  Four  programmable  16  bit  black  levels  are
available: black0, black1, black2 and black3. For Bayer input black0/black1 are used on even/odd pixels on even
lines and black2/black3 are used on even/odd pixels on odd lines. For planar (array sensor) input black0,
black1,  black2 and black3 are used for planes 0,  1, 2 and 3 respectively. Black level  subtraction may be
enabled individually for each window. The result of the subtraction is checked for underflow; any result less
than zero is clamped to zero.

8.2.1.4 Format conversion

n the final stage input data with a precision higher than 8 bits may be down converted to 8 bits. The down
conversion is performed by right-shifting the input data by a programmable number of bits then rounding
by adding the bit value in the position below bit 0 (after right-shift). The result is saturated to 8 bits. A single
right-shift (number of bits) for format conversion is programmable for all windows, but format conversion
may be enabled individually for each window.

8.2.1.5 Buffer

As there no back pressure can be applied back to the MIPI if the write client become full. A 256 entry fifo is
placed between the Format conversion block and the write client. This will help protect against momentary
stalls on the write client interface. Additionally if the output data after format conversion is 16 bits or less
this fifo will have the data packed such that there will be 512 entries. 

8.2.1.6 Output

The final output data may be in 1-4 bytes. As such the format bit field of the filter’s SIPPOBuf[N]Cfg register,
which indicates the size of the data in bytes, should be set appropriately. Note that the same format applies
to all planes of a planar buffer so if a mixed data-type frame is being windowed and output to separate
planes then the same number of bytes per pixel and pixels per line must be output for each plane.
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8.2.2 MIPI Rx Configuration

Name Bits Description

frmDim
15:0

31:16

PRIVATE – frame dimensions in pixels
Frame width
Frame height

cfg 1:0

2
7:4

11:8
16:12

17 

18

19

23:20
24
25
26

31:28

Clock Speed 
         00 – Clk MIPI =  Clk MIPIRX
         01 – Clk MIPI = (Clk MIPIRX)/2
         10 – Clk MIPI = (Clk MIPIRX)/4
Reserved
Reserved
Format conversion enables (per window)
Format conversion right-shift (number of bits)
Bayer/planar configuration (for black level subtraction)

0 – Planar (array sensor) input
1 – Bayer input

Output configuration
0 – Data from each window written to separate 
plane
1 – Data from all windows written to single plane 
(frame)

Pack Buffer
If formatted data is 16 bits or two pixels may be packed 
into each entry of the buffer FIFO.
Black level subtraction enable (per window)
Use packed windows
Use private chunk stride
Promote data from input bit depth to 16 bit
Input bit depth; Value programmed should be bit depth -1

winX[4] 15:0

31:16

 x_start – x co-ordinate at which window starts

 x_width – width Nth window (N=0..3) 
 or if packed windows are enabled specifies the width 
 of each window

winY[4] 15:0

31:16

 y_start – y co-ordinate at which window starts

 y_height – h0, height of Nth window (N=0..3)

sel01 4:0
11:8

19:15
27:24

Least significant bit of Window 0 selection
Selection enable (set to 1 to enable, if not enabled pixel is
skipped over)

Bit 0 – even pixels on even lines
Bit 1 – odd pixels on even lines
Bit 2 – even pixels on odd lines
Bit 3 – odd pixels on odd lines

Least significant bit of Window 1 selection
Selection enable (set to 1 to enable, if not enabled pixel is
skipped over)
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Name Bits Description

Bit 0 – even pixels on even lines
Bit 1 – odd pixels on even lines
Bit 2 – even pixels on odd lines
Bit 3 – odd pixels on odd lines

sel23 4:0
11:8

19:15
27:24

Least significant bit of Window 2 selection
Selection enable (set to 1 to enable, if not enabled pixel is
skipped over)

Bit 0 – even pixels on even lines
Bit 1 – odd pixels on even lines
Bit 2 – even pixels on odd lines
Bit 3 – odd pixels on odd lines

Least significant bit of Window 3 selection
Selection enable (set to 1 to enable, if not enabled pixel is
skipped over)

Bit 0 – even pixels on even lines
Bit 1 – odd pixels on even lines
Bit 2 – even pixels on odd lines
Bit 3 – odd pixels on odd lines

selMask[4] 0:31 Selection mask for window N  (N=0..3)
black01

15:0

31:16

Black levels 0 and 1
black0 – for Window 0 or Even pixel on even line for Bayer 
data
black1 – for Window 1 or Odd pixel on even line for Bayer 
data

black23
15:0

31:16

Black levels 2 and 3
black2 – for Window 2 or Even pixel on even line for Bayer 
data
black3 – for Window 3 or Odd pixel on even line for Bayer 
data

vbp 15:0

31:16

Vertical black porch. Specifies vertical back porch in lines 
(not normally required)
Private Chunk Stride. Must be a multiple of 8 bytes.
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8.3 MIPI Tx

Input Up to 16 planes (sequentially) of 

- U8/U16/U32

- Packed RGB888 (3 bytes)

- Packed YUV888 (3 bytes)

Operation Timing generation for MIPI Tx controller parallel interface for 
CSI-2/DSI output

Input buffer Minimum of 1 line

Output MIPI CSI-2/DSI output via MIPI Tx controller parallel interface

Instances 2

Table 13: MIPI Tx filter overview

8.3.1 MIPI Tx Configuration

Name Bits Description

frmDim

15:0

31:16

PRIVATE - frame dimensions in pixels

Frame width

Frame height

cfg 0

1

2

3

5:4

Scan Mode

0 – Progressive scan mode
1 – Interlace scan mode

First Field

0 – Use standard timing configuration settings for first 
field

 1 – Use even timing configuration settings for first field

Display Mode

0 – continuous
1 – one shot mode

Level of HSYNC/VSYNC when timing FSMs are in IDLE state

Media Clock Speed

00 – MIPI pixel clock = SIPP clock (this configuration is 
illegal)
01 – MIPI pixel clock = SIPP clock/2
10 – MIPI pixel clock = SIPP clock/4

Vertical interval in which to generate vertical interval 
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Name Bits Description

7:6

8

9

interrupt

00 – VSYNC
01 – Back Porch
10 – Active
11 – Front Porch

Level of VSYNC when timing FSM is in BACKPORCH state

Level of VSYNC when timing FSM is in FRONTPORCH state

lineCompare 31:0 Line count at which to generate line compare interrupt

 

vCompare 31:0 Vertical interval in which to generate vertical interval 
interrupt

00 – VSYNC
01 – Back Porch
10 – Active
11 – Front Porch

hSyncWidth 31:0 Specifies the width, in PCLK clock periods, of the 
horizontal sync pulse (value programmed is HSW-1)

hBackPorch 31:0 Specifies the number of PCLK clocks from the end of the 
horizontal sync pulse to the start of horizontal active 
(value programmed is HBP so a back porch of 0 cycles can 
be set)

hActiveWidth 31:0 Specifies the number of PCLK clocks in the horizontal 
active section (value programmed is AVW-1)

hFrontPorch 31:0 Specifies the number of PCLK clocks from end of active 
video to the start of horizontal sync (value programmed is
HFP)

vSyncWidth 31:0 Specifies the width in lines of the vertical sync pulse 
(value programmed is VSW-1)

This value is used for the odd field when in interlace 
mode

vBackPorch 31:0 Specifies the number of lines from the end of the vertical 
sync pulse to the start of vertical active (value 
programmed is VBP)

This value is used for the odd field when in interlace 
mode
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Name Bits Description

vActiveHeight 31:0 Specifies the number of lines in the vertical active section 
(value programmed is AVH-1)

This value is used for the odd field when in interlace 
mode

vFrontPorch 31:0 Specifies the number of lines from the end of active data 
to the start of vertical sync pulse (value programmed is 
VFP)

This value is used for the odd field when in interlace 
mode

vSyncStartOff 31:0 Number of PCLKs from the start of the last horizontal sync
pulse in the Vertical Front Porch to the start of the vertical
sync pulse.

This value is used for the odd field when in interlace 
mode

vSyncEndOff 31:0 Number of PCLKs from the end of the last horizontal sync 
pulse in the Vertical Sync Active to the end of the vertical 
sync pulse.

This value is used for the odd field when in interlace scan 
mode
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8.4 Sigma Denoise

Input Up to 16 bit RAW (Bayer pattern or non Bayer data)

Operation Weighted averaging filter primarily intended to operate in the Bayer domain

Filter kernel 5x5

Local line buffer Yes, maximum supported image width is 4624

Output Up to 16 bit RAW (Bayer pattern or non Bayer data)

Instances 1

The Sigma denoise filter  is  a weighted averaging filter.  It  is  primarily  intended to operate in the Bayer
domain, but can also operate on non-Bayer data. There are 2 programmable threshold multipliers, called T 1

and T2,  which  can  be  adapted  according  to  the  SNR ratio of  the  image.  A  separate  pair  of  threshold
multipliers may be specified for each of the 4 Bayer channels. There is also a programmable noise floor,
which can be adapted according to the noise characteristics of the camera sensor.

This filter replaces each pixel with a weighted average of 9 pixels in the neighborhood. In Bayer mode, the
filter works over a 5x5 neighborhood, but only averages pixels in the same Bayer channel. The Gr and Gb
channels are processed independently. In non-bayer mode, the filter works over a 3x3 neighborhood. So in
all cases, a total of 9 pixels are averaged. Each pixel to be averaged is assigned a weight of either 0, 1 or 2.
Pixels  assigned a weight of  0 have no impact on the result.  The weighted average,  V',  is  calculated as
follows:

V '=
∑
i=1

9

W i⋅V i

∑
i=1

9

W i

where Vi are the pixel values in the neighborhood to be averaged (including the center pixel), and W i are the
weights  assigned  to  the  corresponding  pixels.  The  weights  are  calculated  by  computing  the  absolute
differences  between  the  center  pixel  and  the  neighborhood  pixels,  and  comparing  the  result  against
thresholds. The thresholds are calculated internally based on a noise model which estimates the variance of
the noise component of the signal, and are then multiplied by the user-programmable threshold multipliers
T1 and T2. If the absolute difference is less than or equal to both thresholds, the pixel is assigned a weight of
2. If the absolute difference is less than or equal to only one of the thresholds, the pixel is assigned a weight
of 1. If the absolute difference is greater than both thresholds, the pixel is assigned a weight of zero. In this
way, the filter will not mix dissimilar pixels, thus avoiding blurring of edges and suppressing of detail.

The two thresholds to compare against, TH1 and TH2, are computed as follows:

N=max(NF ,√(L))
TH 1=N⋅T 1

TH 2=N⋅T 2

where NF is a user-programmable Noise Floor, L is the pixel intensity level in the neighborhood, T1 and T2
are the user-programmable thresholds, and N is an estimate of the noise signal variance as a function of the
neighborhood pixel intensity.
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From the four programmed sets of threshold multipliers, one set (T1 and T2) is selected based on the Bayer
Position of the pixel. If the image were divided into 2x2 blocks, a pixel could be in one of 4 positions within a
block. How the Bayer position maps to a given color channel (Gr, R, B or Gb) depends on the Bayer order of
the image. When programming the threshold registers, this must be taken into account. The illustration
below shows how pixel positions map to Bayer color channels, in the case where the Bayer Order is GRBG. If
the Bayer Order is different, then the mapping of pixel positions to color channels will also be different.

8.4.1 Additional features

8.4.1.1 Black level Subtraction

Black level subtraction may be performed on the filtered pixels by programming  SigmaParam::blcGR,
SigmaParam::blcR, SigmaParam::blcB & SigmaParam::blcGB variables appropriately. (Setting black
levels to 0 disables black level subtraction.)

8.4.2 Configuration

The  Sigma  Denoise  filter  is  configured  via  the  SigmaParam structure,  which  has  the  following
user-specifiable fields:
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Name Bits Description

 FrmDim 31:16 Frame height

15:0 Frame width

thresh[0] 31:24 Bayer position 1 – threshold multiplier 1 U(0,8)

23:16 Bayer position 1 – threshold multiplier 0 U(0,8)

15:8 Bayer position 0 – threshold multiplier 1 U(0,8)

7:0 Bayer position 0 – threshold multiplier 0 U(0,8)

thresh[0] 31:24 Bayer position 3 – threshold multiplier 1 U(0,8)

23:16 Bayer position 3 – threshold multiplier 0 U(0,8)

15:8 Bayer position 2 – threshold multiplier 1 U(0,8)

7:0 Bayer position 2 – threshold multiplier 0 U(0,8)

cfg 23:8 Noise floor – minimum noise variance (noise variance when there 
is no incident light on the sensor). The range is the same as the 
range of the incoming pixel range, as given by the Data Width in 
Bits field.

7:4 Data pixel width – 1

1 Enable pass-through mode

0 RAW data format:

0 – Planar data

1 – Bayer data

bayerPattern 1:0 Bayer pattern (00:GRBG, 01:RGGB, 02:GBRG, 03:BGGR

blcGR 15:0 Bayer mode: black level for GR Pix

Planar mode: black level for plane 0, plane 4, plane 8, plane 12 
etc

blcR 15:0 Bayer mode: black level for R Pix

Planar mode: black level for plane 1, plane 5, plane 9, plane 13 
etc

blcB 15:0 Bayer mode: black level for B Pix
Planar mode: black level for plane 2, plane 6, plane 10, plane 14
etc

blcGB 15:0 Bayer mode: black level for GB Pix
Planar mode: black level for plane 3, plane 7, plane 11, plane 15
etc
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8.5 Raw Filter

Input Up to 14 bit RAW (Bayer pattern or non Bayer data)

Operation Gr/Gb imbalance correction

Hot pixel suppression

Digital gain and saturation

Patch-based colour channel/plane accumulation statistics (AE/AWB)

Patch-based AF stats

Histograms

Filter kernel 5x5

Local line buffer Yes, maximum supported image width is 4624

Output Up to 14 bit RAW (Bayer pattern or non Bayer data) + statistics and histograms

Instances 1

The RAW filter can handle either Bayer pattern or non-Bayer data where each color channel is stored in a
different plane of a planar buffer.

For Bayer data the first stage of processing is Gr/Gb imbalance and, in parallel, bad kernel detection/defect
pixel correction. These processing stages use a 5x5 pixel kernel. Generally the output of Gr/Gb imbalance is
forwarded to the next stage: digital gain and saturation. However, if a defect pixel is detected, it is corrected
and forwarded instead. Defect pixel correction may be configured to touch only green (Gr and Gb) pixels,
leaving R and B pixels unmodified.

For non Bayer data Gr/Gb imbalance (including bad kernel detection) should not be enabled. If a defect
pixel is detected then it is corrected and forwarded to digital gain and saturation.

The  bit  depth  of  the  input  RAW  may  be  between  6  and  16  bits.  The  input  data  width  (in  bytes)  is
programmable for the RAW filter. If the bit depth is 8 bits or fewer the input buffer must be organized with
the values of each color channel packed into the LS bits of each byte. If the bit depth is greater than 8 bits
the input buffer must be organized with the values of each color channel packed into the LS bits of each pair
of bytes.
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8.5.1 Features

8.5.1.1 Statistics

There are four categories of statistics which may be independently enabled:

 Statistics suitable for AE/AWB (Auto Exposure / Auto-White-Balance) algorithms.

 Statistics suitable for AF (Auto Focus) algorithms.

 256-bin Luma Histogram.

 128-bin RGB histogram.

For each statistics type, there is an associated output buffer. Each output buffer has a corresponding base
address  register  (see  Table  10).  There  is  no  programmable  stride,  format  etc.  is  fixed,  and  the  usual
corresponding configuration registers are not implemented. As usual the base addresses of  the buffers
should be aligned on 64 bit boundaries.

For Bayer data the AE/AWB statistics are gathered on a single designated plane (if  processing multiple
planes)  or  on  four  designated  planes  for  non-Bayer  data.  The  AF  statistics  are  gathered  on  a  single
designated plane only, irrespective of whether the data is Bayer or non-Bayer.

Luma  Histogram  statistics  are  gathered  on  a  Luma  channel  derived  from  input  Bayer  data  or  on  the
designated white or clear channel (plane) for non-Bayer. RGB histogram statistics are gathered on a single
designated plane for Bayer data, or on three designated (Red, Green and Blue) planes for non-Bayer data.

Note that statistics are gathered in parallel with defect correction and are based on the uncorrected input
data. 

8.5.1.2 Static defect pixel correction

Static defect pixel correction works by reading a defect list from CMX, via the RAW filter's defect input
buffer. This input buffer's base address register should be set to point to the defect list (see Table 10). The
defect list is a one dimensional array of 32-bit entries, one entry per defect (though whole defective rows
may be signaled with a single entry using a special marker, described below). There is no programmable
stride, format is fixed, and the usual corresponding configuration registers are not implemented. As usual
the BASE address of the buffer should be aligned on a 64 bit boundary. Each entry in the defect list contains
the plane and (X, Y) location in the image of where the defective pixel is located, as shown in Table 14. The
list must be sorted to match the order in which the defective pixels will be encountered when processing
the image (raster order). Note that a maximum of 8 defective pixels may be corrected in a given scanline.

Bit field Definition

31 Red/Blue correction direction bit

0 – Horizontal correction

1 – Vertical correction

30:27 Plane number

26:14 Y co-ordinate of defective pixel

13:0 X co-ordinate of defective pixel

Table 14: Defect list entry bit fields 
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Defective pixels of the Green channel of a Bayer image will be replaced by simple averaging of the 4 nearest
green pixels (the four diagonal neighbors). In the case of the Red or Blue channels, the defective pixel is
replaced by the average of two of the four nearest pixels in the same color channel. The correction direction
bit in the defect list entry controls whether Red and Blue pixels are to be corrected by averaging the two
horizontal neighbors in the same color channel, or the two vertical neighbors in the same color channel.

Note that 14 bits are provided to specify the X co-ordinate but only 13 bits are provided to specify the Y co-
ordinate. The maximum values for X and Y are used to signal extra information as follows:

 If (X, Y) is equal to (0x3FFF, 0x1FFF) this marks the end of the list, and no further entries will be
read.

 If the X co-ordinate is 0x3FFF but the Y co-ordinate is not 0x1FFF, then this signals a bad row of
pixels; all pixels on row Y will be corrected. 

To correct an entire row, the correction direction bit should be set to 1 (vertical correction) in the list entry
signaling the bad row. To correct an entire column of pixels, an explicit entry in the defect list must be
present for every pixel in the column; if the image height is 1080 then 1080 list entries are required to
perform correction of that column. The correction direction bit should be set to 0 (horizontal correction) in
each list entry pertaining to the bad column.

The defect list is read from the defect input buffer as required by the filter. The buffer is accessed via the
filter's read client interface, the same read client interface as used to fill the filter's local line buffer. The first
few entries of the defect list are pre-loaded into a FIFO within the filter before each frame starts, the rest of
the list is read in as defects are processed and space becomes available in the FIFO. These accesses are only
performed when the read client interface is otherwise idle, typically for a few cycles between each line. If
the filter is used within the oPipe with data streaming directly into it then the read client interface always
available exclusively for defect list read access. Note that the first entries of the defect list will be read as
soon as the filter is enabled and static defect correction is enabled, the defect list  buffer base address
should be programmed correctly before the corresponding enable bits are set.

8.5.1.3 Dynamic defect pixel correction

Dynamic pixel correction works by analyzing local gradients, and determining if the pixel is an outlier with
respect to the pixels in the 5x5 neighborhood. Both hot (bright) and cold (dark) pixels can be corrected. If
the pixel is determined to be an outlier, it is reduced in value (in the case of hot pixels) or increased in value
(in the case of cold pixels) in proportion to the local gradient magnitudes. The aggressiveness of the filter
can be independently controlled for hot a cold pixels, and for Green pixels vs. Red/Blue pixels. Additionally,
there is a noise threshold which may be increased to increase the overall aggressiveness of the filter. This
works by subtracting a noise threshold from the pixel values, before the gradients are computed.

8.5.1.4 Gr/Gb imbalance correction, bad kernel detection and defect pixel correction

The processing in the RAW filter is performed using optimized fixed-point arithmetic. The format of the
input data is U(W, 0) where W is specified via the RawParam::cfg variable.

Gr/Gb imbalance correction is used to correct the imbalance between Gr (green pixel horizontally adjacent
to red) and Gb (green pixel horizontally adjacent to blue) in a Bayer image. This imbalance correction can be
distorted by hot or cold pixels (bad pixels) in the locality (i.e. a bad kernel) and will effectively leave a “scar”
around the site where a bad pixel resides. In order to allow the Gr/Gb imbalance correction and defect pixel
correction  filtering  to  operate  in  parallel  without  the  Gr/Gb  imbalance  filter  introducing  these  “scar”
artifacts a bad kernel detection filter is defined. This filter detects when a bad green pixel is in the 5x5
locality and effectively disables Gr/Gb imbalance correction for the current active green pixel.
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All three of these filters use the same 5x5 kernel and run in parallel. Gr/Gb imbalance, bad kernel detection
and bad  pixel  suppression  are  then  combined  as  follows:  if  a  bad  kernel  is  detected  then  the  Gr/Gb
imbalance filter will perform no adjustment to the data and will output the original data instead; however, if
the current pixel (center pixel of the kernel) is detected as a defect pixel then it is corrected, based on the
original input data, and the corrected pixel is output instead of the Gr/Gb imbalance corrected pixel.

The filter does not process the first and last two rows and columns of the input image; these are copied
unmodified to the output.

8.5.1.5 Digital gain and saturation

The final RAW processing step is the application of a digital gain. Four 16 bit U(8,8) gain values and four U16
saturation values are programmable via Rawparam::gainSat[4].

There are two selectable modes of operation: 2x2 mode and 4x4 mode.

 2x2 mode: this mode is for use with a standard 2x2 Bayer CFA. The four registers are mapped to the four
positions in a 2x2 Bayer block.  These values must be programmed taking the Bayer Order of the data
into account as described in the gainSat[4] entry in Table 15.

 4x4  mode:  The  four  registers  are  used  in  sequence,  i.e.  the  programmed  values  in
Rawparam::gainSat[0] are applied to pixel 0, the values in Rawparam::gainSat[1] are applied to pixel 1,
the  values  in  Rawparam::gainSat[2] are  applied  to  pixel  2,  the  values  in  Rawparam::gainSat[3]are
applied to pixel 3, the values in Rawparam::gainSat[0] are applied to pixel 4 etc. 

8.5.1.6 AE/AWB Patch accumulation statistics

If  enabled the RAW filter will  dump a number of  accumulations gathered over a configurable array of
patches overlaid on the image and a luma histogram to its statistics output buffer. (Note that like all other
buffers this buffer must be 64 bit aligned.) 

A  2D  array  of  patches  overlaid  on  the  planes  of  input  image  may  be  specified  with  the
RawParam::statsPatchCfg,  RawParam::statsPatchStart,  RawParam::statsPatchSkip  and
RawParam::statsPlanes variables. The values of all pixels (of the same color channel for Bayer data) within a
patch are accumulated.

The number of patches horizontally and vertically and patch width and height are separately configurable.
The maximum number of patches is 64x64. The maximum patch size 256x256. Only one plane of Bayer data
can be monitored – the designated plane is programmed via the RawParam::statsPlanes variable. For non
Bayer data up to four planes may be monitored, also programmed separately via the RawParam::statsPlanes
variable. The patches are specified by their size, number, start location – the (x, y) co-ordinate of the top-left
patch in the image – and the distance horizontally/vertically to the next patch in the row/column. (Value
programmed for all sizes is size is minus one).

There are two programmable thresholds: a dark threshold and a bright threshold. Pixels that are less than
the  dark  threshold  or  greater  than  the  bright  threshold  are  accumulated  by  an  alternate  set  of
accumulators. Otherwise, they are accumulated by the primary set of accumulators. Furthermore, when
operating in the Bayer domain, if any pixel in a 2x2 block is directed to the alternate set of accumulators,
then all  pixels  in that 2x2 block shall  be directed to the alternate set of accumulators.  A count of  the
number of pixels (or 2x2 blocks in the case of Bayer data) which were directed to the alternate set of
accumulators is maintained and output per-patch.

The  accumulation is  performed on only  the 8  most  significant  bits  of  the  input  data.  The  size  of  the
accumulations internally is 24 bits, but they are written out to the statistics output buffer as U32 values.
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A local RAM is used to store the partial accumulations as lines scan through the filter. On the last line of a
patch and at the end of the patch window in the horizontal direction the relevant accumulation(s)  are
written to the statistics output buffer and the local RAM value is reset to zero.

The AE/AWB patch statistics output buffer is ordered from first to last patch data in the first row of patches
in the lowest order enabled plane followed by first to last patch data in the first row of patches in the
second lowest order enabled plane etc. up to the highest order enabled plane. This is then followed by
second row of patches in the same order and so on until the last row of patches.

8.5.1.7 AF Statistics

Auto Focus (AF) statistics output may be enabled, independently from AE/AWB statistics. The patches are
configured independently from the AE/AWB patches. They are configured in the same fashion, but with one
restriction: the gaps between the patches, both horizontally and vertically, are hardcoded to zero. When
operating on Bayer data,  AF stats are accumulated on the Green channel only:  red and blue pixels  are
ignored.
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Figure 20: Patch statistics configuration



First,  we define the ROI (region of  interest)  as the bounding box of  all  AF patches.  For  each line,  two
separate  IIR  filters  are  run over  every  pixel  within  the ROI,  from left to right.  Each filter  has  a  set  of
programmable coefficients, a programmable subtraction value, and a programmable threshold. The output
of the two filters is then fed into per-patch accumulation logic. For each patch, the following values are
output:

 Sum of all pixels output by filter 1 which are greater than a programmable threshold.

 Sum of all pixels output by filter 2 which are greater than a programmable threshold.

 Sum of the maximum values in each row from filter 1 output.

 Sum of the maximum values in each row from filter 2 output.

 Sum of all (unfiltered) input pixels in the patch.

8.5.1.8 Luma histogram

A histogram of the Luma channel is gathered across the frame on the designated plane, programmed via
the RawParam::statsPlanes variable. For non-Bayer data this should correspond to the clear or white
channel. For Bayer data a Luma channel is derived by convolving the input image with a 3x3 kernel with
following coefficients: 
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Figure 21:  AF stats patch configuration, showing ROI (Region Of Interest)



[ [1, 2, 1],
  [2, 4, 2],
  [1, 2, 1] ] / 16

This kernel gives weights of R = 0.25, G = 0.5, B = 0.25 to each pixel, no matter what Bayer channel is at the
center of the kernel. Note that the effect of this filter is to crop the image by one pixel on all sides such that
the total number of pixels analyzed is reduced by (2*w + 2*h) – 4, where w and h are the width and height
of the image respectively.

The histogram has 256 bins numbered 0 to 255, each containing a U32 count. Bins are indexed using the 8
most significant bits of each pixel. For example if the current pixel value is 0x369 and the configured bit-
depth of the input RAW data is 11 bits then the 8 most signstatsFrmDimificant bits are 0x6d (decimal
109); the count in bin 109 is incremented by 1. 

The histogram is stored in a local RAM during processing then uploaded to the statistics output buffer
starting at bin 0 at the end of the frame. The next frame is stalled until the entire histogram has been
uploaded. The count in each bin is reset to 0 at the start of each frame hence the histogram data uploaded
to memory will only store data relevant to the designated plane of one complete frame.

8.5.1.9 RGB histogram

A histogram is computed independently for each of the R, G and B channels. In Bayer mode the histograms
are computed over the same designated plane as the Luma histogram. In non-Bayer mode, the planes for
the R, G and B histograms are specified via the corresponding fields in the  RawParam::statsPlanes
variable.

Each histogram has 128 bins numbered 0 to 127, each containing a U32 count. Bins are indexed using the 7
most significant bits of each pixel. For example if the current pixel value is 0x369 and the configured bit-
depth of the input RAW data is 11 bits then the 7 most significant bits are 0x36 (decimal 54); the count in
bin 54 is incremented by 1.
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8.5.2 Configuration

The Raw filter is configured via the RawParam structure, which has the following user-specifiable fields:

Name Bits Description

 FrmDim 31:16 Frame height

15:0 Frame width

grgbPlat 29:16 Plato Bright – Maximum local green difference reduction in bright
areas of the image.

13:0 Plato Dark – Maximum local green difference reduction in dark
areas of the image.

grgbDecay 31:16 Decay (slope) control of local green difference reduction in bright
areas of the image. This value should be set >= the plato value for
bright areas (grgbPlat[31:16]).

15:0 Decay (slope) control of local green difference reduction in dark
areas of the image. This value should be set >= the plato value for
dark areas (grgbPlat[15:0]).

badPixCfg 31:16 Noise Level – This can be set to zero for images taken in good
conditions, with low noise level. It should be set to correspond to
the noise level (variance) to prevent noise from interfering with
bad pixel detection.

15:12 Alpha g hot – Filter aggressiveness control for Green Hot pixels.
11:8 Alpha g cold – Filter aggressiveness control for Green Cold pixels.
7:4 Alpha  rb  hot  –  Filter  aggressiveness  control  for  Red/Blue  Hot

pixels.
3:0 Alpha rb  cold  – Filter  aggressiveness control  for Red/Blue Cold

pixels.

cfg 27 Static defect correction enable. When set, a defect list is read 
from CMX memory via the filter's auxiliary input buffer's base 
address register. Static defect pixel correction is performed in 
accordance with the contents of the defect list.

24 RGB histogram enable

23:16 Bad pixel detection threshold

13 AF stats output enable

12 Gain Saturate mode:

0 – 4x4 mode
1 – 2x2 (Bayer CFA) mode

11:8 Input data width – 1

7 Luma histogram enable

6 AE/AWB Stats output enable

5 Hot/Cold green pixel only

4 Hot/Cold pixel suppression enable

3 Gr/Gb imbalance correction enable
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Name Bits Description

2:1 Bayer pattern. When Bayer input, same encoding as used for 
Bayer demosaicing configuration when non-Bayer data should be 
set to 0x00.

0 RAW format:

0 – Planar data

1 – Bayer array data

gainSat[4]

[0] These values operate on GR pixels in bayer or 0, 4, 8, 12... etc in planar

[1] These values operate on GR pixels in bayer or 0, 4, 8, 12... etc in planar

[2] These values operate on GR pixels in bayer or 0, 4, 8, 12... etc in planar

[3] These values operate on GR pixels in bayer or 0, 4, 8, 12... etc in planar

31:16 Level at which pixels will be clamped after corresponding gain is
applied. Format is U16.

15:0 Gain value applied to pixels. Format is U8.8.

statsBase 31:0 AE statistics buffer base – should be 8-byte aligned

statsPlanes Active Planes for AE/AWB Stats collection. For non Bayer data 4
Patch Planes may be programmed. For Bayer data only the first
patch plane will be active.

21:20 The number of active patch planes -1. The Patch Planes used will 
be those programmed in the lower Patch Plane registers, i.e. if 
two patch planes are required then program active_patch_planes 
= 1 and program the required planes into Patch Plane 0 and Patch 
Plane 1.

19:16 Luma Histogram Plane

15:12 Patch Plane 3

11:8 Patch Plane 2

7:4 Patch Plane 1

3:0 Patch Plane 0

statsFrmDim

 

31:16 Frame height

15:0 Frame width

statsPatchCfg Accumulation patch configuration

31:24 Patch height – 1 (programmed as patch height minus 1)

23:16 Patch width – 1 (programmed as patch width minus 1)

13:8 Y_No – number of patches in vertically – 1 

5:0 X_No – number of patches in horizontally – 1

statsPatchStart Start location of first (top-left) patch for AE/AWB statistics

31:16 Y co-ordinate

15:0 X co-ordinate
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Name Bits Description

statsPatchSkip Number of pixels from top-left of one cell to top-left of next for 
AE/AWB statistics.

31:16 Value programmed should be Y skip -1.

15:0 Value programmed should be X skip -1.

statsThresh 31:16 Dark pixel threshold. If a pixel (or any pixel in a 2x2 block, in the
case of Bayer data) is less than this threshold, then the alternate
accumulator  set  is  used  for  that  pixel  (or  2x2 block  of  pixels).
Threshold values have the same bit depth as the incoming data.

15:0 Bright pixel threshold. If a pixel (or any pixel in a 2x2 block, in the
case  of  Bayer  data)  is  greater  than  this  threshold,  then  the
alternate accumulator set is used for that pixel (or 2x2 block of
pixels). Threshold values have the same bit depth as the incoming
data.

afF1coefs[11] Coefficients for auto-focus stats filter 1.

19:0 AF filter 1 coefficient N, in S(12,8) fixed-point format.

afF2coefs[11] Coefficients for auto-focus stats filter 2.

19:0 AF filter 2 coefficient N, in S(12,8) fixed-point format.

afMinThresh 31:16 Minimum threshold for per-patch accumulation of filter 2 output.

15:0 Minimum threshold for per-patch accumulation of filter 1 output.

afSubtract 15:0 Value  to  be  subtracted  initially  from pixels  at  beginning  of  IIR
filtering.

afPatchCfg Accumulation patch configuration for auto Focus Statistics.

Patch height – 1 (programmed as patch height minus 1)

Patch width – 1 (programmed as patch width minus 1)

Y_No – number of patches in vertically – 1 

X_No – number of patches in horizontally – 1

afPatchStart Start location of first (top-left) patch, and hence of the ROI, for
auto-focus statistics.

31:16 Y Coordinate.

15:0 X Coordinate.

afStatsBase 31:0 Auto focus stats base address.

histLumaBase 31:0 Luma histogram base address.

histRgbBase 31:0 RGB histogram base address.

Table 15: RawParam structure user-specifiable fields
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8.6 LSC filter

Input Up to 14 bit RAW (Bayer pattern or non Bayer data) + sub-sampled gain mesh.

Operation Lens shading/color shading correction via application of per pixel gains interpolated
from sub-sampled gain mesh.

Filter kernel Point operation based on bilinear interpolation of gain mesh (2x2 kernel). 
Maximum dimensions of gain mesh are 1023x1023. Gain mesh dimensions must 
not exceed dimensions of input image.

Local line buffer No

Output Up to 14 bit RAW (Bayer pattern or non Bayer data).

Instances 1

Lens shading correction (or anti-vignetting) compensates for the effect produced by camera optics whereby
the  light  intensity  of  pixels  reduces  the  further  away  from  the  center  of  the  image  they  are.  The
compensation is applied by means of a gain map, generated during calibration, which provides a position-
dependent correction. Color shading (color non-uniformity caused by CFA crosstalk) may also be corrected
by this same operation when a separate gain map is available for each color channel.

A mesh based scheme is  used for the gain map and bilinear interpolation is used to sample the mesh
according to the image pixel location to generate the gain to be applied. The pixel is then simply multiplied
by the gain to perform the correction.

The lens shading correction (LSC) filter can handle either Bayer pattern or planar data (e.g. RGBW from
array sensor). 

The  bit  depth  of  the  input  data  may  be  between  6  and  16  bits.  The  input  data  width  (in  bytes)  is
programmable

8.6.1 Features

The input data may be in Bayer or Planar format. The mesh is provided as a separate input image, residing
in CMX memory. The gain map data is stored in U8.8 format. The dimensions of the mesh are typically much
smaller than the dimensions of the image. The hardware will scale the mesh to match the image size. The
maximum mesh size is 1024x1024. The scaled mesh is simply multiplied by the input image in order to
perform the correction. If the input image is in planar format, the mesh must also be in planar format. If the
image to be corrected is in Bayer format,  the 4 mesh planes must be interleaved into a Bayer mosaic
pattern. The Bayer Order of the mesh must match the Bayer Order of the input image.

8.6.2 Configuration

This filter is configured via the LscParam structure, which has the following user-specifiable fields:

Name Bits Description

gmBase 31:0  CMX memory address of the gain correction mesh

gmWidth 9:0  Width of the gain mesh – must be a multiple of 4
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Name Bits Description

gmHeight 9:0  Height of the gain mesh

dataFormat 0 0 = Planar, 

1 = Bayer

dataWidth 3:0 Bits per pixel of the input data. Valid values are in the range [6, 16]. If the
specified value is 8 or less, the data for each pixel is packed into a single byte.
If the specified value is more than 8, the data for each pixel is packed into two
bytes.
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8.7 Debayer / demosaic filter

Input RAW Bayer data in up to 14 bits

Operation Configurable in either high quality or preview mode.

High quality: local luma adaptive hybrid Bayer demosaicing filter combining an 
optimized implementation of AHD and bi-linear interpolation.

Preview: downsize demosaic; optimized demosaic and downsize by two in both 
dimensions.

Filter kernel High quality: 5x11

Preview: 4x4

Local line buffer Yes, maximum supported image width is 4624

Output Planar RGB in up to 16 bits (sub-sampled in preview mode)

FP16/U8F Luma data

Instances 1

The Bayer demosaicing filter supports high-quality demosaicing, in addition to preview image generation.
The output data may be RGB and/or Luma.
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Figure 22: Top-level overview of Bayer Demosaicing filter



8.7.1 Features

8.7.1.1 Packed input

The Bayer-domain input to the block may be either packed or unpacked. Unpacked input is either 8 or 16
bits per pixel. If the number of input bits is either 10 or 12, then packed input is supported. The supported
packed formats match the packed formats supported by the RAW filter, as described in section 8.5.

8.7.1.2 Demosaicing

Bayer color filters are used in most single chip digital image sensors. Each pixel is filtered to record only one
of 3 color components: red, green or blue. Bayer demosaicing algorithms work on a window (or kernel) to
interpolate, from the neighboring pixels, a set of complete RGB (red, green and blue) values for each pixel.

The SIPP Bayer demosaicing filter uses a hybrid approach. A highly optimized implementation of the AHD
(Adaptive Homogeneity Directed) algorithm is run in parallel with a simple bi-linear interpolation. The AHD
algorithm is a much more sophisticated algorithm, but can produce undesirable artefacts in dark areas of
the image, where the SNR is low. The bilinear filter performs classic bi-linear interpolation, but with zipper
artifact avoidance. The filter runs a local luma approximation and merges the output of the AHD algorithm
with the bi-linear interpolation output according to the luma intensity. The merging of AHD and Blinear are
controlled via a programmable slope and offset.

All 4 RGB Bayer patterns are supported. The pattern is defined by the pixel colors of the first two pixels on
the first two lines of the Bayer image: e.g. if the first line contains red (R) and green and starts with a green
(G) pixel then the second line will contain blue (B) and green and start with a blue pixel; the Bayer pattern is
GRBG; if the first pixel is red then the Bayer pattern is denoted as RGGB. The appropriate Bayer pattern
should be programmed in the DbyrParam::cfg variable;  the 4 Bayer patterns and their  encoding are as
follows:

 GRBG = 0
 RGGB = 1
 GBRG =2
 BGGR = 3

(for support of RGBW #1 the GRBG pattern is programmed this is so that the position of the White pixels is
in the green location of the Bayer pattern).

8.7.1.3 Up Conversion of input data

The filter is implemented in 16 bit arithmetic, so to make the most use of the available range input data of
fewer than 16 bits  is  promoted to the 16 bit  range by  left-shifting and filling  the lower order  bits  by
replication of the MSBs of the input data as shown below. 

E.g. conversion of 8 bit to 16 bit as follows:

RAW16 = RAW8 << 8 | RAW8

E.g. conversion of 10 bit to 16 bit as follows:

RAW16 = RAW10 << 6 | RAW10 >> 4

The width of the input data is specified in the DbyrParam::cfg variable. If the width of the output data is
specified as fewer than 16 bits it is taken from the MSBs of the 16 bit RGB results. 
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8.7.1.4 Preview Mode

As an alternative to the full-resolution high-quality demosaiced output, a preview version of the image may
be output instead. The preview image is also RGB, but is one half of the input resolution in each dimension.
The preview image is generated by a “smart binning” filter, which reduces the resolution and converts from
Bayer to RGB in one step. Preview mode is intended to reduce power consumption when full-resolution
output is not needed, since the remainder of the ISP pipeline only needs to process ¼ the number of pixels.
When in preview mode, this filter, and the ones in the pipeline that follow it, only need to be invoked half as
often – this filter only needs to be invoked once for every 2 lines produced by its parent filter.

8.7.1.5 Luma Output

A Luma version of the image may also be output. Both Luma output and RGB output may be independently
enabled/disabled. The Luma is generated from RGB using programmable coefficients.

“Worms” are an artefact that appear where the signal-to-noise ratio is low, i.e. in dark area of the image, or
in low-light conditions.  The demosaic  block performs two types of  demosaicing:  one suitable for  areas
where SNR is low (this type of demosaicing is not susceptible to worms), and one suitable for more normal
conditions. The filter adaptively combines the two outputs, according to some programmable controls. The
output suitable for low-SNR is preferred where the local luminance is lower, and the output for high-SNR is
preferred where the local luminance is higher, and also in the neighborhood of strong edges (high local
gradient).

The Low-SNR and High-SNR output for the Red channel are combined as follows:

                a l pha  =  (l uma  +   g  ·   g r ad ie ntmu lt+o f f se t  )  ·   s l o p e  (1)

                Rou t=Rl o w· (1−al pha )+Rhi gh ·a l p ha  (2)

Where Rlow is the red channel of the demosaiced output for low-SNR conditions, Rhigh is the red channel
of the demosaiced output for normal conditions, luma is the local brightness, and g is an estimate of the
local gradient. Slope, offset, and gradient_mult are user-programmable controls. alpha is scaled (divided by
2^bit_depth-1) and clamped within the range [0, 1] after it is calculated. The Green and Blue channels are
processed in the same way as the Red channel.

8.7.2 Configuration

This filter is configured via the DbyrParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 31:24 Gradient multiplier gm in fixed-point U(1,7) format used to moderate fade
to bilinear interpolation in the presence of strong horizontal/vertical 
gradients

16:15 Plane multiple pm for processing multiple planes of Bayer data. Default 
value is for 1 input Bayer plane, therefore 3 output planes (RGB). Value 
programmed is value minus 1

14:12 Image Order Out

000 – RGB

001 – BGR

010 – RBG

Intel® Movidius™ Confidential 100 SIPP-UM-1.32



Name Bits Description

011 – BRG

100 – GRB

101 – GBR

11:8 Output data width – 1

7:4 Input data width – 1

3 Force RB to zero. For use with RGBW data

2 Luma only Hmap. For use with RGBW data

1:0 Input Bayer pattern:

00 – GRBG

01 – RGGB

10 – GBRG

11 – BGGR

(for RGBW data set this register to 00 - GRBG)

 thresh Color Moire avoidance thresholds, preview mode, Luma and RGB 
generation enables

28 Enable Preview:

0 – AHD/Bilinear demosaic mode is enabled, and the preview generation 
block is bypassed. The output resolution is the same as the input 
resolution.

1 – Preview mode is enabled, and the Demosaic block is bypassed. The 
output resolution is one half of the input resolution in each dimension.

27 Enable Luma write client

26 Enable Luma generation and Luma streaming output

25 Enable RGB output

24:13 Threshold for b

12:0 Threshold for a

dewormCfg 31:16 De-worming  offset  (offset in  equation 1  above).  In  unsigned  8.8  fixed
point format.

15:0 De-worming slope (slope in equation 1 above). 16-bit signed integer.
lumaWeight 23:16 Weight applied to Red channel for Luma generation

15:8 Weight applied to Green channel for Luma generation

7:0 Weight applied to Blue channel for Luma generation
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8.8 DoG / LTM filter

Input FP16/U8F Luma data, 2 read clients are used (older version of data is read by the 
second instance, to match internal latency of filter)

Operation Local Tone Mapping plus Noise reduction based on a Difference of Gaussians

Filter kernel Up to 15x15 

Local line buffer Yes, maximum supported image width is 4624

Output Up to 16 planes of FP16/U8F

Instances 1

The DoG/LTM (Local Tone Mapping) filter is designed to operate on the Luma path of an ISP pipeline, and
performs two major functions:

 Removal of Low Frequency noise via a Difference of Gaussians (DoG) technique

 Application of Local Tone Mapping (LTM)

8.8.1 Features

8.8.1.1 DoG Based Denoise

The DoG denoise filter is designed to remove low-frequency noise. Since the kernel size can be up to 15x15,
it is capable of removing lower-frequency noise that the primary 7x7 Luma denoise filter is not able to
remove. This low-frequency noise is normally only a problem in poor lighting conditions. The idea is to
isolate  frequencies  within  the  image  which  are  within  a  given  band.  This  is  done  by  subtracting  two
Gaussian-filtered  versions  of  the  image.  The  programmer  is  responsible  for  calculating  the  kernel
coefficients.  There  are  two  sets  of  coefficients,  one  for  each  Gaussian  kernel.  When  generating  the
coefficients, values of Sigma should be chosen such that the appropriate band of frequencies are isolated.
After calculating the Difference of Gaussians, values whose absolute value are greater than a programmable
threshold are set to zero. The thresholded bandpass image is then subtracted from the original image, after
being multiplied by a programmable gain in the range [0, 1.0]. This has the effect of removing the isolated
frequencies from the original image. However, due to the thresholding operation, strong edges are not
suppressed. The filter is very effective at removing low-frequency noise in flat areas. It is designed to be
used in conjunction with the Luma Denoise filter, and should be applied prior to Luma Denoise.

The programmable kernels must be symmetrical and separable. For each kernel, a single one-dimensional
kernel is programmed, and this kernel is applied first in the vertical direction, and then in the horizontal
direction. One kernel has a size of 15x15, and the other has a size of 11x11. The 15x15 Gaussian kernel is
expected to generated using a larger value of Sigma. The output of the 15x15 kernel is subtracted from the
11x1 kernel to compute the difference of gaussians. Since the kernels are symmetrical, only 6 coefficients
are programmed for the 11x11 kernel (the other five are automatically generated internally by mirroring)
and only 8 coefficients are programmed for the 15x15 kernel.

The DoG filter operates in two modes:

 Denoise mode.

 DoG-only mode.

In DoG-only mode, the filter outputs the Difference of Gaussians directly. The following restrictions apply
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when the DoG filter is in DoG-only mode:

  LTM is implicitly disabled.

 Only FP16 is supported as the output format (U8F output is not supported).

 The line width is limited to 2312.

In denoise mode, DoG and LTM may be independently bypassed/disabled.

NOTE: When operating in  Denoise  mode,  the data being input to the Gaussian filters  will  have been
subsampled spatially by simple averaging of each 2x2 block, before being stored in an internal line
buffer store. Prior to applying the Gaussian kernels, the data is upsampled back to the original
resolution,  using  bilinear  interpolation.  Since  this  subsampling  and  subsequent  resampling
removes some of the higher frequencies from the image, the net effect of the filter is different than
if the Gaussian kernels were run directly at the full resolution, and therefore the Gaussian kernels
that are specified need to be modified slightly (different values of Sigma) to achieve the same
effect.

When operating in DoG-only mode, the subsampling and subsequent upsampling steps do not take place.

8.8.1.2 Local Tone Mapping (LTM)

The local tone mapping filter is used to apply a spatially-varying contrast curve to the Luma channel, to
bring out details in the image. The idea is to have the contrast curve at its steepest around the range of pixel
intensities that are to be enhanced (given maximum contrast).  Take the following examples of contrast
curves:
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Figure 23: A gamma curve of 1/1.8 increases contrast in the shadows, but compresses the highlights
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Figure 24: A gamma curve of 1.8 increases contrast in the highlights, but compresses the shadows

Figure 25: An S-curve or sigmoid increases contrast in the mid-tones, but compresses the shadows and
highlights



If any of the above curves are applied globally to the Luma channel, then the contrast will be improved in
some areas of the image, but at the expense of decreasing contrast in other areas. What we need is a
spatially adaptive tone mapping operator, which stretches the highlights in bright areas (e.g. enhancing the
appearance of clouds in the sky), while also stretching the shadows in dark areas. This filter is such a filter. A
pre-generated set of tone curves are supplied by the user, and the appropriate curve is selected and applied
based on the light level of the surrounding area, or locality.

Above is a set of curves which could be used by the filter.  Different curves have maximum contrast at
different intensity levels. The filter is programmed with 8 curves, each curve having 16 knee points. The
filter  selects  two curves  based  on  the  local  (or  background)  intensity,  then  interpolates  between two
knee-points along the selected curves. It is, essentially, a bilinear filter, which samples an 8x16 “image”.

The curves are stored as a 2D array of U(12,0) values, with each column storing a single curve. Bilinear
interpolation is performed based on two co-ordinates: on the X axis, the local background intensity is used
to select the curves, and on the Y axis, the incoming pixel value is used to select the knee points:

Intel® Movidius™ Confidential 105 SIPP-UM-1.32

Figure 26: A set of curves generated for use by the LTM filter



The local background intensity is calculated using an 11x11 filter. This filter approximates a bilateral filter,
and heavily blurs the image, without blurring across strong edges.

To use the Local Tone Mapping block, generate the 9 curves to be applied at the various image intensity
levels. Note that the first curve corresponds to a background intensity of 0, and the final curve corresponds
to a background intensity of 1.0. Note also that each curve typically has a value of 0 at the first knee-point,
and a value of 1.0 at the final knee-point. By setting the first and last knee points of each curve to 0 and 1.0
respectively, and setting the rest of the knee-points in each curve to lie along a straight line, the filter is
essentially bypassed.

There is also a programmable threshold to control the Background Intensity generation filter. This threshold
controls the strength of edges that the filter will not cross. If set to its maximum value, the filter acts as an
11x11 box filter.

Note that the filter internally subsamples the input to the Background Intensity filter by simple averaging of
each 2x2 block. The Background Intensity filter runs directly on the subsampled data, so the filter has an
effective support  of  22x22 pixels  in  terms of  the full  image resolution.  The output  of  the Background
Intensity filter is then upsampled to the full image resolution using bilinear interpolation before it is input to
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Figure 27: Bilinear interpolation: curve selection based on background intensity, and knee-point selected
based on single pixel intensity



the bilinear sampling stage.

8.8.2 Configuration

This filter is configured via the DogLtmParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 29:26 Valid values are 3, 5, 7, 9, 11, 13 and 15. Limits the support of the DoG 
Gaussian filters in the vertical direction. Only the specified number of 
lines are fetched from the line buffer, and lines outside of the fetched 
lines are implicitly filled with zeros, which means that the corresponding 
filter coefficients are ignored during the vertical filter pass. The central 
lines are always fetched, such that the center line's values are multiplied 
by the center coefficient regardless of this register setting.

25:22 Number of planes used in LTM upsample.

21:14 Threshold for LTM Background Generation filter.

13:12 Local line buffer downscale rounding mode:
00 – Propagate carry bit.

01 – Don't propagate carry bit.

10 – Horizontal average uses fixed carry-in of 1, vertical average uses fixed
carry-in of 0.

10 Set to 1 to clamp the filter FP16 output into the range [0, 1.0].

9:2 U8F threshold. If the absolute value of the Difference of Gaussians is 
greater than this threshold, it it set to zero.

1:0 Operational mode:

00 – DoG only mode (LTM is implicitly bypassed): output is the 
thresholded Difference of Gaussians.

01 – LTM-only mode, DoG is bypassed/disabled. Output is the local tone 
mapped input.

10 – Denoise mode, LTM is bypassed/disabled. Output is the input minus 
the thresholded Difference of Gaussians.

11 – DoG+LTM mode: output is local tone mapped input minus the 
thresholded Difference of Gaussians.

dogCoeffs11 31:0 Pointer to Coefficient 0 → 5 of the 11x11 kernel.

dogCoeffs15 31:0 Pointer to Coefficient 0 → 7 of the 15x15 kernel.

dogStrength 7:0 Gain applied to difference of gaussians. Format is U8F.

ltmCurves 31:0 Pointer to table of curve table entries in U12F format.
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8.9 Luma Denoise Filter

Input FP16/U8F Luma data.

Operation Luma denoise using an advanced weighted averaging algorithm.

Filter kernel 11x11

Local line buffer Yes, maximum supported image width is 4624.

Output FP16/U8F Luma data

Instances 1

The Luma Denoise filter applies a 7x7 filter to the Luma channel using advanced weighted averaging. The
weights are calculated on a reference image, which is generated internally by the filter from the input. The
reference image is generated in a way that gives control to the user over the filter strength as a function of
the image intensity, and also as a function of the distance from the center of the image. In the diagram
below, this reference image is generated by the “Gen Denoise Ref.” block.

The reference image is used for weight calculation only. Once a weight has been calculated for each pixel in
the 7x7 neighborhood, the output is calculated as a weighted average of the input pixels as follows:

I out=
∑
i=1

n

W i I i

∑
i=1

n

W i

where  Ii are  the  input  pixels  in  the  7x7  neighborhood,  and  W i are  the  calculated  weights  at  the
corresponding positions.
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Figure 28: Top-level data flow of Luma Denoise filter
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Figure 29: Denoise sub-block

Figure 30: SSD windows for weight computation



Each weight is calculated based an Approximated Sum of Squared Differences (ASSD) value calculated by
comparing a 5x5 window around the center pixel to a 5x5 window around the neighborhood pixel. In the
diagram above, the green box highlights the 7x7 area, within which a weight must be calculated for each
neighborhood pixel. The blue box shows a 5x5 window around the center pixel, which is used for each ASSD
calculation. The red box shows the 5x5 window of pixels which is used for calculating weight W0. Effectively,
49 such 5x5 ASSD operations are  needed to compute all  of  the weights for  a  single output  pixel  (the
implementation is optimized to minimize the computation required). Since 7x7 weights are needed, and the
ASSD window is 5x5, 11 lines of input data need to be present in the filter's local line buffer.

Each ASSD result is shifted, then mapped through a LUT operation. The shift amount and the LUT contents
are  programmable,  and are  chosen so as  to  control  the strength of  the filter  (see below).  Finally,  the
resulting weights are modified by the “F2” kernel, before the weighted averaging is performed.

The F2 kernel allows each weight to be multiplied by a factor of 1, 2, 4 or 8. This allows each weight to be
modified  as  a  function of  spatial  distance  from the  center  pixel.  The  F2  kernel  must  be  symmetrical.
Therefore, only the upper-left 4x4 portion of the kernel is programmable, with the hardware generating the
rest by mirroring.

The 16 F2 coefficients are specified via a single 32-bit register. The register via which the F2 coefficients are
programmed has 2 bits per co-efficient. The 2-bit codes translate into weight multipliers as follows:

Bitfield contents Multiplier

0 1

1 2

2 4
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Figure 31: F2 kernel co-efficients



Bitfield contents Multiplier

3 8

After the weighted averaging, the resulting denoised pixel value is blended with the original, non-denoised
input. The blending function is controlled by a programmable value, alpha, which is in the range [0, 1].
Specifying a large value of alpha gives more weight to the denoised pixel value, whereas a smaller value
mixes more of the original input with the output. This allows a tradeoff to be made between aggressive
noise  removal,  and  detail  preservation.  When tuning  the  filter  parameters,  the  denoise  filter  strength
(which is controlled by the bitshift and LUT parameters described below) must be set high enough to avoid
residual  noise  artifacts,  or  “noise  islands”,  and  is  thus  constrained  to  a  certain  extent.  The  “alpha”
parameter gives additional control over noise reduction strength versus detail preservation.

8.9.1 Features

8.9.1.1 Generating the filter parameters

8.9.1.1.1 Weight formula LUT and bit position

The following C code shows how the computed ASSD values are converted to weights by the hardware:

assd = assd >> bitpos;
if (assd > 31)

weight = 0;
else

weight = lut[assd];

The following Matlab code show an example of how to compute the “lut” and “bitpos” programmable
parameters:

% Generate programmable parameters based on desired denoising strength
function [ lut bitpos] = makelut(strength)
    if strength < .001
        % Avoid division by 0
        strength = .001;
    end
    if strength > 2047
        % Limit to prevent 'bitpos' > 11
        strength = 2047;
    end
    bitpos = floor(log2(strength)); % MSB position
    if bitpos < 0
        bitpos = 0;
    end
    npot = 2.^bitpos;       % nearest power of two (rounding down)
    alpha = (strength - npot) / npot;
    divisor = 4*(1-alpha) + 8*(alpha);
    sigma = .05;
    if strength < 1
        % Reduce sigma when 0 < strength < 1
        sigma = sigma * strength;
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    end
    lut = (0:31)/31/divisor;
    lut = exp(-(lut.^2) / (2*(sigma.^2)));  % Gaussian

    % Quantize the LUT entries to 16 distinct values
    lut = int32(uint8(lut*16-1));
end

The input to the above function is a simple “strength” parameter, and the function is designed so that the
effectiveness of the filter increases monotonically as this “strength” parameter increases. In this example,
the LUT is populated with an approximation of a Gaussian curve. As “strength” increases, the shape of the
curve changes from a narrow Gaussian to a wider one, which leads to larger output weights. However,
when a threshold is crossed (“strength” advances to the next power of two), we increment “bitpos” and
transition back to a narrower Gaussian. Recall that if (assd>>bitpos) is greater than 31, the LUT is bypassed,
and the weight is set to 0. Otherwise, the 5 bits of (assd>>bitpos) are used to index the LUT. By making
“bitpos” larger, we select the 5 bits from a higher range of assd, thereby allowing larger values of assd to
produce non-zero weights.  Larger  values  of  assd  occur  when the  area  surrounding the center  pixel  is
dissimilar  from the area surrounding the neighborhood pixel.  Larger  values of  “bitpos” result  in  larger
output weights and therefore more aggressive averaging of the center pixel with its neighbors.

8.9.1.1.2 Distance-based LUT

The distance-based LUT allows the user to control the strength of the denoise, as a function of distance
from the center of the image. Since the image being denoised usually already has anti-vignetting applied,
and since the SNR decreases further away from the center of the image (since less light reaches the corners
of the sensor compared to the center), it is desirable to attenuate the reference image values as a function
of distance from the image center.  The stronger the attenuation, the stronger will  be the effect of the
denoise filter. The attenuation is normally calculated using the cosine-fourth law, which models the lighting
falloff as a function of distance from the image center. The goal is to modify the pixel intensity, I, according
to the following formula:

I=I∗cos (√(x2+ y2))
4

The hardware internally computes x2 + y2. The result is then right-shifted by a programmable amount, to 
bring it into the range [0,255]. The in-range value is then mapped through the LUT, which performs the 
square-root and cosine-fourth operations in one step. Since the LUT is generated by software, the user is 
not restricted to using the cosine-fourth model of lens shading falloff.

The following Matlab code shows an example of generating the programmable bitshift parameter and the 
LUT entries for a given image size. The “angle” parameter controls the strength of the lighting falloff, which 
is a function of the Angle Of View of the sensor. The specified value is half of the diagonal angle of view, in 
radians.

function [ lut bitshift ] = gen_lut_bitshift(angle, width, height)
    w2 = width/2; 
    h2 = height/2; 

    % Maximum value that can be put into LUT 
    maxval = w2^2 + h2^2; 

    % Find how many bits to shift values right by, so that we can use 
    % an 8-bit LUT 
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    shift = floor(log2(maxval)) + 1 - 8; 

    x = 0:255; 
    x2_plus_y2 = bitshift(x, shift); 
    cornerval = sqrt(w2^2+h2^2); 
    lut = round((cos(sqrt(x2_plus_y2) / cornerval * angle) .^ 4) * 255); 
end

8.9.1.1.3 Intensity curve

To give the user control over the strength of the denoise as a function of pixel intensity, a gamma-like curve
can be applied to the reference image. The shape of the gamma curve is  controlled by two 9-element
user-progammable LUTs. The first LUT is applied to pixels in the range [0,31], and the second LUT is applied
to pixels in the range [32,255]. Since the curve is steepest for darker pixels, a more fine-grained LUT is
needed for the lower part of the [0,255] range.

The following Matlab code shows an example of generating the LUT entries for a given Gamma curve:

% Generate two 9-entry LUTS: one which spans the range [0,32], and one 
% which spans the range [32, 255] 
x = 0:255; 
lut1 = uint8((x(round(linspace(1,33,9)))/255) .^ gamma * 255); 
lut2 = uint8((x(round(linspace(1,256,9)))/255) .^ gamma * 255); 

8.9.2 Configuration

This filter is configured via the YDnsParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 24 Clear and set to '1' to enable update of the Cosine 4th law look-up table 
used to generate the reference image

20:16 Amount to right-shift the result of x2+y2 before applying the distance-
based LUT when generating the denoise reference image

15:8 Output weight

3:0 Bit position, controls right-shift of differences prior to indexing LUT

gaussLut[4] 32 4-bit LUT entries where gaussLut[x] is

31:28 LUT entry (x*8) + 7

27:24 LUT entry (x*8) + 6

23:20 LUT entry (x*8) + 5

19:16 LUT entry (x*8) + 4

15:12 LUT entry (x*8) + 3

11:8 LUT entry (x*8) + 2

7:4 LUT entry (x*8) + 1

3:0 LUT entry (x*8) + 0
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Name Bits Description

f2 F2 4x4 2-bit LUT entries

31:30 Row 3, Col 3 LUT entry

29:28 Row 3, Col 2 LUT entry

... ...

3:0 Row 0, Col 1 LUT entry

1:0 Row 0, Col 0 LUT entry

gammaLut[0] LUT entries for applying Gamma to reference image

31:24 Element 3 of Gamma LUT for range [0, 31]

23:16 Element 2 of Gamma LUT for range [0, 31]

15:8 Element 1 of Gamma LUT for range [0, 31]

7:0 Element 0 of Gamma LUT for range [0, 31]

gammaLut[1] LUT entries for applying Gamma to reference image

31:24 Element 7 of Gamma LUT for range [0, 31]

23:16 Element 6 of Gamma LUT for range [0, 31]

15:8 Element 5 of Gamma LUT for range [0, 31]

7:0 Element 4 of Gamma LUT for range [0, 31]

gammaLut[2] LUT entries for applying Gamma to reference image

31:24 Element 2 of Gamma LUT for range [32,255]

23:16 Element 1 of Gamma LUT for range [32,255]

15:8 Element 0 of Gamma LUT for range [32,255] (this entry is ignored!)

7:0 Element 8 of Gamma LUT for range [0, 31]

gammaLut[3] LUT entries for applying Gamma to reference image

31:24 Element 6 of Gamma LUT for range [32,255]

23:16 Element 5 of Gamma LUT for range [32,255]

15:8 Element 4 of Gamma LUT for range [32,255]

7:0 Element 3 of Gamma LUT for range [32,255]

gammaLut[4] LUT entries for applying Gamma to reference image

15:8 Element 8 of Gamma LUT for range [32,255]

7:0 Element 7 of Gamma LUT for range [32,255]

distCfg 31:0 Address of (Cosine 4th law) look-up table 

distOffsets distance-based (Cosine 4th law) look-up table X and Y tile offsets

31:16 Y co-ordinate offset (unsigned)

15:0 X co-ordinate offset (unsigned)

fullFrmDim 31:16 Full image width

15:0 Full image height
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8.10 Sharpen filter

Input FP16/U8F

Operation Enhanced unsharp mask. Programmable (separable, symmetric) blur filter kernel. 
Sharpening functionality can be disabled to use filter kernel on its own. 

Filter kernel 3x3, 5x5 or 7x7

Local line buffer Yes, maximum supported image width is 4624

Output FP16/U8F sharpened image, filtered image or delta (mask)

Instances 1

The sharpening filter implements an enhanced unsharp mask. It addresses short-comings of the traditional
unsharp mask, including:

 Undershoot and overshoot: over sharpening around strong edges, resulting in over dark and saturated
pixels

 Halos around strong edges
 Amplification of noise, especially in smooth areas

It  consists  of  a  configurable  blur  kernel  implemented  as  a  7x1  vertical  FIR  filter  cascaded  into  a  1x7
horizontal  FIR  filter  suitable  for  the  implementation  of  any  separable,  symmetric  function  (typically  a
Gaussian filter is used). The size of the filter kernel is programmable from 3x3 up to 7x7. If a kernel size
smaller than the maximum is used the corresponding filter coefficients should be programmed to zero.
There  are  four  programmable  filter  (symmetric)  coefficients  shared  by  each  filter  direction
(vertical/horizontal). The filter coefficients are numbered 0 to 3, with 3 corresponding with the center pixel
of  the  kernel  and  0  corresponding  to  the  (two)  outermost  pixels  (see  the  UsmParam::coef01  and
UsmParam::coef23 variables). The filter is implemented using FP16 arithmetic. For blur operation the sum
of (all 7 of) the filter coefficients should be 1.0 (or as close as possible).

Figure 28 shows the block diagram of the sharpening filter. The basic unsharp mask operation is as follows:
blur filter output is subtracted from the original input pixels to create a mask. The mask is then added back
to the original image. 
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8.10.1 Features

8.10.1.1 Range stops

Range stops are used to apply sharpening selectively in the tonal range. For example, we normally don’t
want to sharpen dark areas of the image, where a lot of noise tends to be present. The most sharpening is
usually desired in the mid-tones. Additionally, it is important to avoid a sudden transition between the
sharpened  and  the  non-sharpened  brightness  range.  The  range  is  specified  using  four  stops  (see  the
UsmParam::rgnStop01  and  UsmParam::rgnStop23  variables).  For  example,  let’s  say  we  wanted  no
sharpening in the brightness range [0, .05],  full  sharpening in the range [.15, .75],  and less sharpening
towards the saturation point. We would specify our four stops as { .05, .15, .75, 1.0 }. 

The range stops are implemented using a slightly smoothed version of the input pixel, generated with a 3x3
blur kernel with the following coefficients:

[ [0, 1, 0],
  [1, 4, 1],
  [0, 1, 0] ] / 8.
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Figure 32: Sharpening filter block diagram



8.10.1.2 Threshold, strength and delta output

After  the  application  of  the  range  stops  the  mask  is  set  to  zero  if  its  absolute  value  is  less  than  a
programmable  THRESHOLD  (see  the  UsmParam::cfg  variable). After  thresholding  the  mask  value  is
multiplied by one of two programmable strengths to give an overall DELTA which is typically added back to
the original input pixel. STREN_POS is used if the input at this point is positive while STREN_NEG is used if it
is negative (see the UsmParam::strength variable).

8.10.1.3 Overshoot and undershoot limits

The amount of sharpening applied may be limited by using two programmable FP16 values:  OVERSHOOT
and UNDERSHOOT  (see the UsmParam::limit variable). If we were to specify the  limit of the sharpening
applied as a percentage difference from the original pixels then OVERSHOOT and UNDERSHOOT are derived
as follows:

 OVERSHOOT = 1 + limit/100
 UNDERSHOOT = 1.0/OVERSHOOT

Above,  UNDERSHOOT  is  the  reciprocal  of  OVERSHOOT,  however  the  two  values  may  be  programmed
entirely independently: they are represented as FP16 values, overshoot should be in the range [1.0, 2.0] and
undershoot should be in the range [0, 1.0]. The implementation calculates the minimum and maximum
pixel values in the local 3x3 neighborhood, from the smoothed version of the image (as described above).
The resulting range, [min,  max],  is  then expanded by the specified percentage amount [UNDERSHOOT,
OVERSHOOT], and output pixel is then clamped to be within that range: i.e. if the output pixel from the
previous stages of the filter is greater than the max * OVERSHOOT, then it is set to max * OVERSHOOT; if
the output is less than the min * UNDERSHOOT, then it is set to min *UNDERSHOOT.

8.10.1.4 Clipping Alpha

This is a function applied to the data to blend between the unclamped sharpened data and the clamped
sharpened  data  as  shown below.  Alpha  factor  is  an  FP16  value  which  must  be  in  the  range  [0,  1.0],
programmed via the  UsmParam::clip variable.

blend = (clamped sharpened data * alpha) + 
(sharpened data* (1-clipping_alpha))

8.10.1.5 Bypass Modes

The sharpening functionality my be disabled and the filter may be used as a stand-alone blur kernel by
setting bit 4 of the UsmParam::cfg variable. In this mode the output of the programmable symmetric blur
kernel is written to the output buffer, rather than the sharpened image. Alternatively, the unsharp mask
(following the application of range stops, thresholding and strength multiplier) may be selected for output
instead by setting bit 5 of the UsmParam::cfg variable.

8.10.2 Configuration

This filter is configured via the UsmParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 31:16 Threshold. Unsharp mask is set to zero if it's absolute value is less than 
this threshold (FP 16)

5 Output deltas only. Set to 1 to output the internally generated deltas 
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Name Bits Description

otherwise output input + delta

4 Sharpening filter mode. Set to 1 to bypass sharpening and use as generic, 
symmetric, separable 7x7 filter kernel (e.g. for blur)

3 Output clamp. Set to 1 to clamp the filter FP16 output into the range [0, 
1.0]

2:0 Kernel size. Configures width and height of pixel kernel (3 <= KERNEL_SIZE
<=7). 

strength 31:16 Negative sharpening strength  (FP16)

15:0 Positive sharpening strength (FP16)

clip 15:0 Sharpening Clipping Alpha, ALPHA (FP16)

limit Sharpening filter limits

31:16 Overshoot – FP16 in the range [1.0, 2.0]

15:0 Undershoot – FP16 in the range [0.0, 1.0]

rgnStop01 Sharpening filter range stops

31:16 Range stop 1 (FP16)

15:0 Range stop 0 (FP16)

rgnStop23 Sharpening filter range stops

31:16 Range stop 3 (FP16)

15:0 Range stop 2 (FP16)

coef01 Sharpening filter blur kernel coefficients

Gaussian filter coefficient 1 (FP16)

Gaussian filter coefficient 0 (FP16)

coef23 Sharpening filter blur kernel coefficients

Gaussian filter coefficient 3 (FP16)

Gaussian filter coefficient 2 (FP16)

8.11 Chroma Generation Filter

Input 3 planes (in parallel) of U8/U16 RGB data

Operation - Spatial sub-sampling to half the resolution in each dimension

- Reduction of Purple Flare artifacts

- Desaturation of dark areas

- Generation of Chroma (colour ratio) data

Filter kernel 3x3

Local line buffer Yes, maximum supported (input) image width is 4624
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Output 3 planes of sub-sampled U8 Chroma data

Instances 1

The Chroma Gen filter performs a number of functions:

 Reduces the image size by one half in each dimension.

 Reduces Purple Flare.

 Desaturates dark areas.

 Generates Chrominance data in U8 format.

The input to the filter is RGB. The bit depth of the RGB is configurable via the GenChrParam::cfg variable.
The filter data-path itself is 12 bit and the input data is mapped into this range.

NOTE:  When the filter is part of the oPipe however and is directly connected to streaming RGB output
from Bayer demosaicing a bit depth of 12 bits must be used. The output bit depth of the Bayer
demosaicing filter must be configured to match.

Downsizing is performed by simple averaging of every 4 pixels in a 2x2 block.

8.11.1 Features

8.11.1.1 Purple Flare reduction

The  purple  flare  reduction filter  modifies  the  blue  channel  only,  performing  a  constrained  sharpening
operation on this channel. The strength of the correction is programmable.

8.11.1.2 Dark area saturation

Dark  area  desaturation  removes  color  from  dark  areas,  pushing  them  towards  gray.  The  amount  of
desaturation to apply is based on the pixel intensity. The user can control the range of intensity values
which are desaturated, via a programmable offset and slope. The amount of desaturation to be applied,
alpha, is calculated as follows:

α=(max(R ,G , B)−offset )∗slope

Alpha is then clamped to the range [0, 1]. The following graph shows alpha as a function of max(R,G,B):

The desaturation is performed for each channel by blending between the channel value (R, G or B) and the
pixel's luminance, L. L is computed as follows:

L=a∗R+b∗G+c∗B  (1)

where a, b and c are programmable coefficients. The blend is performed as follows:

R=R∗α+L∗(1−α)
G=G∗α+L∗(1−α)
B=B∗α+L∗(1−α)
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8.11.1.3 Chroma generation

Finally, the RGB data is converted to Chrominance data, by dividing each of R, G and B by Luminance. The
Chrominance is calculated as follows:

Cr=
R

(L+epsilon)
∗Kr

Cg=
G

(L+epsilon)
∗Kg

Cb=
B

(L+epsilon)
∗Kb

Where L is calculated as per equation (1) above, Kr, Kg and Kb are programmable coefficients, and epsilon is 
a programmable 8 bit constant. Note that the programmed value of epsilon is mapped to a 12 bit value 
before being used in the arithmetic, as follows:

Epsilon12 = (Epsilon8 << 4) | (Epsilon8 >> 4)

The final 12 bit value of epsilon should match the 12 bit value programmed for the Color Combination filter. 

8.11.2 Configuration

This filter is configured via the GenChrParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 30:29 Local line buffer downscale rounding mode:

00 – Propagate carry bit

01 – Don't propagate carry bit

10 – Horizontal average uses fixed carry-in of 1, vertical average uses fixed
carry-in of 0

28 Bypass (enable pass-through mode)

27:24 Input data width – 1

23:16 Multiplier used to calculate alpha value for dark area desaturation

15:8 Offset used to calculate alpha value for dark area desaturation

7:0 Strength of Purple Flare reduction. Format is U(5,3).

yCoefs Coefficients for Luma generation

23:16 Weight applied to Blue channel for Luma generation

15:8 Weight applied to Green channel for Luma generation

7:0 Weight applied to Red channel for Luma generation

chrCoefs Coefficients for chroma generation

31:24 'Kb' value used during Chroma generation

23:16 'Kg' value used during Chroma generation

15:8 'Kr' value used during Chroma generation
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Name Bits Description

7:0 'epsilon' value used during Chroma generation
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8.12 Median Filter

Input U8 or U8F data, optional Luma input buffer for Chroma median mode.

Operation Classic 2D median filter with configurable kernel size.

Supports Chroma median mode where median filter (Chroma) result is alpha 
blended with original data based on Luma. Planar Chroma difference data is 
processed sequentially in this mode.

Filter kernel 3x3, 5x5 or 7x7

Local line buffer Yes, for Chroma median mode maximum supported sub-sampled Chroma image 
width is 2620 (corresponds to 4624 Luma image width).

Output Median value or any other sorted value from min to max may be selected for 
output, e.g. erode/dilate operations may be implemented by selecting min/max for 
output, respectively.

Instances 1

The median filter implementation uses a progressively updated sorting approach. The filter kernel size is
configurable as 3x3, 5x5 or 7x7 via the MedParam::cfg variable. Note that the default value of zero for the
kernel size bit field is invalid – the kernel size must be explicitly set before the filter is used.

The filter consumes columns of pixels and maintains an ordered list of pixels, sorted by value. The list order
is updated progressively as new columns are read into the kernel and old columns are evicted. The central
pixel in the list contains the median value and is selected for output by default. It is possible to output any
value in the list via the output selection bit field of the MedParam::cfg variable. This means the filter may be
configured to implement erode/dilate morphology filters as described below.

A programmable threshold is also provided allowing selective filtering of pixel values; only pixels greater
than the threshold value are filtered. Pixel values less than or equal to the threshold are passed through
unmodified. The threshold is signed and its reset value is -1 so all pixels are filtered by default. To disable
filtering entirely the threshold may be set to 255.

8.12.1 Features

8.12.1.1 Chroma median use case and luma alpha blending

In the oPipe the median filter is used to process sub-sampled 3-plane chroma. In this use case the median
result may be alpha blended with the original input based on the local Luma intensity such that in low light
conditions, where the chroma information is less reliable, the results are pulled towards the median, but
where lighting conditions are good the filter effect is weaker. The Luma alpha blend is performed as follows:

alpha=(sub-sampled(luma)+offset)∗slope

output=orig∗alpha+median∗(1−alpha)

Where offset and slope are programmable via the MedParam::lumaAlpha variable. Offset is a signed 8 bit
value S(8,0), slope is an unsigned 8 bit value U(8,0).

Reading  of  and  blending  with  the  luma  plane  must  be  specifically  enabled  for  this  use  case,  via  the
MedParam::cfg variable. The luma plane may be in FP16 or U8F formats. If it is in FP16 (as indicated by the
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FORMAT bit field of its MedParam:: cfg variable) then it is converted to U8F on input to the filter data-path.
If the luma plane is not also sub-sampled then it may be sub-sampled by applying the following settings:

 Set the luma sub-sample bit of the MedParam::cfg variable register to 1, this enables horizontal
sub-sampling by skipping pixels and sub-sampling vertically by having the filter issue two luma
input buffer fill level decrements after each run.

 The luma input buffer line stride LS should be set to 2x its full resolution value.

 The luma input buffer's number of planes NP should be set 2 (i.e. 3 planes, to match the number
of planes of chroma data being processed sequentially).

 The luma input buffer's plane stride PS should be set to 0, this has the effect of the forcing the
read client to read the same plane repeatedly (sequentially, when NP > 0).

8.12.1.2 Support for morphological operations

The median filter may be configured to implement two useful morphological operations: erode and dilate.

To implement an erode morphology filter the value of the output pixel should be the minimum value of all
the pixels in the input pixel's neighborhood, i.e. for a 7x7 kernel, set the output selection to zero.

To implement dilate morphology filter the value of the output pixel should be the maximum value of all
the pixels in the input pixel's neighborhood, i.e. set the selection to the size of the filter kernel minus 1,
so 48 for a 7x7 kernel.

8.12.2 Configuration

This filter is configured via the MedParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 30 Set this bit to 1 to decouple read and write access to the local line buffer. 
This is only possible if the programmed kernel size is less than the 
maximum supported kernel size. 

29 Set this bit to 1 to enable horizontal and vertical sub-sampling of the luma
input data used for luma alpha blending

28 Set this bit to 1 to enable luma alpha blending for the chroma median use
case of the oPipe

24:16 9-bit signed threshold. Only pixel values greater than THREHSOLD are 
filtered. Default value is -1 so all pixels are filtered.

13:8 Default value of zero configures output of minimum value of kernel.

2:0 Configures width and height of pixel kernel (3 <= KERNEL_SIZE <= 7). Note
that this must be configured correctly before use. The reset value of 0 is 
invalid.

lumaAlpha Median filter luma alpha blending control

15:8 Slope parameter for deriving the luma alpha blend value. Format is 
U(8,0).

7:0 Offset value for deriving the luma alpha blend value. Format is S(8,0).

Intel® Movidius™ Confidential 123 SIPP-UM-1.32



8.13 Chroma Denoise

Input Up to 3 planes in parallel of sub-sampled U8 Chroma data

Operation Chroma denoise using wide cascaded, thresholded box filters. Data is pre-filtered 
with a programmable 3x3 convolution then the main filtering operation is 
performed first vertically then horizontally on 1, 2 or 3 planes in parallel

Filter kernel 3x3 (convolution pre-filter) then up to 21x23

Local line buffer Yes, maximum supported image width is 2320

Output Up to 3 planes of sub-sampled U8 Chroma data

Instances 1

The Chroma Denoise filter removes color noise, including color splotch noise, which tends to be very low-
frequency especially in low light conditions, so an extremely large filter is needed. The filter operates on
planes of  Chroma difference data. The filter operation is essentially that of a cascaded thresholded box
filter. Filtering is performed first vertically then horizontally. The filter works by finding the average of similar
pixels within the pixel's neighborhood. Similar pixels are those that within a programmable threshold.

The Filter can run in either single plane mode, or multi-plane mode. Single plane mode is activated when
the number of planes per cycle is one, and multi-plane mode is activated when the number of planes per
cycle is two or three. The number of planes per cycle is configured via the PLANE_MODE bit field of the
ChrDnsParam::cfg variable (value programmed is number of planes – 1). Single plane mode is useful for
filtering single planes of image data. Two plane mode is useful for color spaces where there are two planes
of  chrominance data (e.g.  YCbCr color space).  One advantage of  this  mode is  that both planes can be
processed in parallel, which has an obvious performance benefit, but an additional benefit is that exploiting
the correlation between the two planes for the purposes of computing the weights for averaging gives
better results in terms of image quality. Three plane mode works in a similar way to two-plane mode, and is
useful for color spaces with three color components.

In single-plane mode, planes are processed in sequence. Weights are computed independently for each
plane. In multi-plane mode either two or three planes are processed concurrently. In this mode, a single set
of weights is computed, by testing whether all planes are similar enough to the center pixel. This same set
of weights is then used to perform the averaging on all planes.

A pre-filter operation is performed on each plane prior to running the core Chroma Denoise filter. This is a
simple  3x3  convolution.  The  filter  must  be  symmetric  both  horizontally  and  vertically,  so  only  three
coefficients need to be programmed: the center coefficient, the corner coefficient, and the non-corner edge
coefficient.
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After the core Chroma Denoise operation, a Grey Desaturation filter runs, which pulls pixels that are close to
gray even closer. The color that represents “gray” is programmable, and therefore is not necessarily gray.
For example, under warm lighting conditions, the ISP may be tuned so that photos come with a slightly
warm (reddish) color cast, so that the result doesn't look too artificial. In this case, it might be desirable for
the programmed “gray point” (in chroma space) to represent a slightly reddish color. Grey desaturation
works by computing the difference between the current pixel and the gray point. Depending on how close
they are, the color may be pulled closer to the gray point. The Grey Desaturation filter operates as follows:

α=abs( Cr -  greypoint[1]) + abs( Cg - greypoint[2]) + abs(Cb - greypoint[3] )
α=(α+offset)∗slope

α=clamp 01(α)
Cr=greypoint [1]∗(1−α)+Cr∗α
C g=greypoint [2]∗(1−α)+Cg∗α
Cb=greypoint [3]∗(1−α)+Cb∗α

The  calculation  of  α above  may  be  forced  to  1  by  setting  the  Grey  Desat  Passthrough  bit  in  the
ChrDnsParam::grayPt variable.

8.13.1 Features

8.13.1.1 Chroma difference data

Typically three chroma difference planes must be generated before processing. These are ratios of Blue to
Luma, Green to Luma, and Red to Luma. An epsilon may be added to Luma before division to avoid division
by zero. The resulting values are then scaled to the range [0, 255].

8.13.1.2 Single plane mode

In the vertical direction a 21 pixel kernel is used. The absolute differences between every pixel and the
central  pixel  are  computed.  These  are  compared  against  two  programmable  thresholds  (see  the
ChrDnsParam::thr[2] variables). If an absolute difference is less than the first threshold VER_T1 the pixel is
given a weight of one. If an absolute difference is also less than the second threshold  VER_T2 the pixel is
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given a weight of two. All the pixels in the kernel are multiplied by their weights, summed and then divided
by the sum of the weights.  Additionally the weights can be forced to 1 for each pixel under control of
software configurable bit FORCE_WEIGHTS_V (see the ChrDnsParam::cfg variable). In this case the absolute
difference is not compared to the thresholds.

In the horizontal direction the same approach is used but the filtering is performed up to three times, with
the output of the first pass feeding into the input of the second and so on. On the first pass a 23 pixel kernel
used. The second and third passes use 17 and 13 pixel kernels, respectively. The threshold values of HOR_T1
and HOR_T2 are used in all horizontal passes instead of VER_T1 and VER_T2 respectively. The weights can
also be forced to 1 for each pixel under control of software configurable bit FORCE_WEIGHTS_H.

The second and third horizontal pass will use the center pixel of the data stream output from the previous
stage. Each of the horizontal passes may be individually enabled or disabled to give variable length filter.

After vertical and horizontal filtering a final step is performed: the absolute difference between the original
input pixels  and the filtered pixels is computed. If  the absolute difference is less than a programmable
threshold (the LIMIT) then the filtered pixel is output. If the absolute difference is greater than the limit, the
difference between the output pixel and the input pixel is clamped at +/- LIMIT. 

8.13.1.3 Multi-plane mode

In the multi-plane mode, either two or three planes are processed simultaneously. A reference image may
not be used in this mode.

In the vertical direction a 21 pixel kernel is used. The absolute differences between every pixel and the
central  pixel  of  that  plane  are  computed  for  each  plane.  These  3  differences  are  compared  against  3
programmable threshold (VER_T1, VER_T2, VER_T3) and if all 3 are less than the threshold the pixel is given
a weight of one otherwise it is given a weight of zero (if only two planes are active, VER_T3 is ignored). All
the pixels  in  the kernel  are  multiplied by  their  weights,  summed and then divided by  the sum of  the
weights. Additionally the weights can be forced to 1 for each pixel under control of software configurable bit
FORCE_WEIGHTS_V. In this case the absolute difference is not compared to the thresholds.

In the horizontal direction the same approach is used but the filtering is performed up to three times, with
the output of the first pass feeding into the input of the second and so on. On the first pass a 23 pixel kernel
is used. The second and third passes use 17 and 13 pixel kernels, respectively. Three Separate thresholds are
set for the horizontal direction one for each plane (HOR_T1, HOR_T2, HOR_T3). The weights can also be
forced to 1 for each pixel under control of software configurable bit FORCE_WEIGHTS_H.

As before each of the horizontal passes may be individually enabled or disabled to give variable length filter.

After vertical and horizontal filtering a final step is performed: the absolute difference between the original
input pixels  and the filtered pixels is computed. If  the absolute difference is less than a programmable
threshold (the LIMIT) then the filtered pixel is output. If the absolute difference is greater than the limit, the
difference between the output pixel and the input pixel is clamped at +/- LIMIT.

8.13.2 Configuration

This filter is configured via the ChrDnsParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 31:24 Slope for Grey Desaturation – U(8,0)

23:16 Offset for Grey Desaturation – S(8,0)

15:14 Number of planes to process in parallel. Value programmed is number of 
planes – 1:
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Name Bits Description

0 – Single Plane per cycle (single plane mode)

1 – Two planes per cycle (multi-plane mode)

2 – Three planes per cycle (multi-plane mode)

3 – Illegal

13 Force weights vertical

12 Force weights horizontal

11:4 Limit

3 Reserved

2:0 Horizontal filter Enable

Bit 0 corresponds to first horizontal pass, bit 1 corresponds to second and 
so on

thr[0] Chroma denoise 1d Weight Thresholds

31:24 Second Vertical threshold

23:16 First Vertical threshold

15:8 Second Horizontal threshold

7:0 First Horizontal threshold

thr[0] Chroma denoise 1d Weight Thresholds

23:16 Third Vertical threshold

7:0 Third Horizontal threshold

grayPt 31 Grey desaturation passthrough. Forces α to 1 in the gray desaturation 
calculations, effectively disabling gray desaturation.

23:16 Red component of color to desaturate towards

15:8 Green component of color to desaturate towards

7:0 Blue component of color to desaturate towards

chrCoefs 23:16 Corner filter coefficient, in U8F format

15:8 Center-edge (non-corner-edge) filter coefficient, in U8F format

7:0 Center filter coefficient, in U8F format
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8.14 Color combination filter

Input 3 planes of sub-sampled Chroma difference data

1 plane of FP16/U8F Luma data

Operation Upscale, and re-combine Chroma with Luma to produce RGB, color-correction 
matrix and offsets, 3D LUT

Filter kernel 5x5 for chroma upscale

Local line buffer Yes, for Chroma, maximum supported sub-sampled Chroma image width is 2620 
(corresponds to 4624 Luma image width)

Output Planar RGB in FP16/U8F

Instances 1

The color combination filter recombines Chroma and Luma information back into RGB space. The Chroma
planes are expected to be subsampled, so they are first upsampled by 2x in each dimension. This filter also
applies the RGB2RGB matrix (which can be used to perform color correction, saturation etc.). This is a 3x3
matrix. It is followed by the addition of 3 signed offsets, which are applied independently to each of the R, B
and B channels. Finally, a 16x16x16 3D LUT is applied.

8.14.1 Features

8.14.1.1 Color recombination

The “epsilon” parameter specified should be the same value that was passed when generating the Chroma
data in the Chroma Gen filters. Note however that for the Chroma Gen filter, the value of Epsilon in the
GenChrParam::chrCoefs variable is in range [0, 0xff], whereas for the Color Combination filter, the value of
Epsilon in the ColCombParam::krgb[1] variable is in the range [0, 0xfff]. Therefore, the value programmed in
the Color Combination filter should be larger by a factor of 16.

The three constants, k_r, k_g and k_b should be programmed as follows:

k_r=256 /K r

k_g=256 /K g

k_b=256 /Kb

where Kr, Kg and Kb are constants that would typically be equal to the constants of the same name that are 
programmed in the Chroma Gen filter's registers. So for example, if Kr was 85, then k_r would be 3.0118. 
Since the CC_K_R register field is in U(4,8) format, 3.0118*256 = 771 = 0x303 would be the value 
programmed.

8.14.1.2 3D LUT

The 3D LUT maps RGB values to RGB values. A user-supplied table is sampled by trilinear interpolation. The
table is a 16x16x16 3D array,  which each array element containing an RGB triplet  of  U12F values.  The
incoming RGB values act as co-ordinates, which select a point in 3D space within the table. The 3D LUT can
be used to modify some colors in the RGB color space, while leaving others alone. This can be used to
support features such as skin tone enhancement, and preferred colors/memory colors. For example, grass
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can be made to look greener, and the sky can be made to look a more pleasing shade of blue.

The 3D table is a sequence of 2D images. Each 2D image is Row-major, with the incoming Red channel
selecting the column (X axis), and the incoming Green channel selecting the row (Y axis). Which of the 2D
images are selected to interpolate from is determined by the Blue channel (Z axis). Figure 30 illustrates the
concept of the arrays and their indexing.

The elements in each array can be uniquely indexed by using the addressing scheme shown in Figure 31.
The ordering of each component (Red, Green and Blue) in each 64 bit word is also shown in Figure 31.
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8.14.2 Configuration

This filter is configured via the ColCombParam structure, which has the following user-specifiable fields:

Name Bits Description

 cfg 25:24 Plane multiple for processing multiple planes of data. Default value is for 
3 output planes (RGB). Value programmed is value minus 1.

5 Enable U12F output (rather than FP16)

4 Clear then write to '1' to schedule a re-load of the 3D LUT memories 
before the next frame starts 

3 Bypass (disable) 3D LUT

2:1 Chroma sub sampling

0 – 4:2:0 Chroma sub-sampled horizontally and vertically

Other values are reserved for future use

0 Force luma values to 1.0

krgb[0] Color Combination K coefficients

27:16 Coefficient for green plane (plane 1)

11:0 Coefficient for red plane (plane 0)

krgb[1] Color Combination K coefficients

27:16 Epsilon value for all planes

11:0 Coefficient for blue plane (plane 2)

ccm [0] Color adjustment matrix [chroma, color]

31:16 CCM entry [1,0], in S(6,10) format.

15:0 CCM entry [0,0], in S(6,10) format.

ccm [1] Color adjustment matrix [chroma, color]

31:16 CCM entry [1,0], in S(6,10) format.

15:0 CCM entry [0,2], in S(6,10) format.

ccm [2] Color adjustment matrix [chroma, color]

31:16 CCM entry [1,2], in S(6,10) format.

15:0 CCM entry [1,1], in S(6,10) format.

ccm [3] Color adjustment matrix [chroma, color]

31:16 CCM entry [2,1], in S(6,10) format.

15:0 CCM entry [2,0], in S(6,10) format.

ccm [4] Color adjustment matrix [chroma, color] & color adjustment RED offset

28:16 S(1,12) offset added to Red channel after CCM is applied. Data is in the 
U12F format when the addition is performed.

15:0 CCM entry [2,2], in S(6,10) format.

ccOffs Color adjustment Green and Blue offsets
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Name Bits Description

28:16 S(1,12) offset added to Green channel after CCM is applied. Data is in 
U12F format when the addition is performed.

12:0 S(1,12) offset added to Blue channel after CCM is applied. Data is in U12F 
format when the addition is performed.

threeDLut 31:0 Address of 3D-LUT
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8.15 LUT filter

Input Up to 4 planes in parallel of FP16/U8/U16

Operation FP16/U8/U16 pixel value look-up, e.g. for applying gamma correction/color tone 
mapping. Linear interpolation of nearest entries for FP16 look-up. Optional color 
space conversion of the output.

Filter kernel Point operation

Local line buffer No. Min image width 1. Min image height 1.

Output Up to 4 planes in parallel of FP16/U8/U16

Instances 1

The look-up table filter is suitable for applying non-linear transformations to image data such as color-tone
mapping or gamma correction. The filter is capable of processing both integer and FP16 data. The look-up
table itself is defined as a read-only buffer. The base address of the buffer (which must be 64 bit aligned) is
programmed  in  its  base  address  configuration  register  (SIPP_IBUF[19]_BASE)  and  the  buffer  is  loaded
(automatically) into 16 Kb of RAM local to the filter prior to processing (i.e. at the start of the frame). The
table may be re-programmed on a frame-by-frame basis with the filter updating its local RAM between
frames so the processing performed may be adapted from frame to frame depending on, for example,
lighting conditions or some other variant factor.

Look-up table layout

Each entry in the look-up table is 16 bits. When processing planar data either a single table may be used for
all planes or one table per plane may be programmed.

Let’s define a Look-up Folder (LUF) as an array of Look-up Tables (LUTs). A LUF may contain a LUT for each
plane of data to be processed. All the LUTs of a LUF must be stored contiguously in memory starting with
the first 16 bit entry of the first LUT, denoted LUT[0][0]. Up to 16 LUTs may be contained in a LUF and the
maximum size of a single LUT is 8 Kb 16 bit entries (16 Kb, i.e. only a single maximally sized LUT).

Each  LUT  is  organized  into  16  regions.  The  number  of  LUT  entries  in  each  region  is  independently
configurable with the restriction that it must be a power of two. The power of two size of each region, n,
where  the  size  of  the  corresponding  region  is  2n,  is  configured  via  the  SIPP_LUT_SIZES_7_0  and
SIPP_LUT_SIZES_15_8 registers. The maximum number of entries in any single range is 1k and the minimum
number of entries in any range is 1 so the programmed values of n can range from 0 to 10.

If the programmed power of two sizes for range[0], range[1], range[2] and so on are n[0], n[1], n[2] and so
on, respectively, then:

Range[0] of LUT[0] starts at the programmed base address of the LUF and ends at the base address + 2 n[0]+1 -
2 bytes and, Range[1] of LUT[0] starts at the programmed base address + 2 n[0]+1 and ends at the base address
+ 2n[0]+1 + 2n[1]+1 – 2 bytes, a shown in Figure 32.
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The LUT is indexed differently according to the format of the data being processed. For FP16 data the 4 least
significant bits of the 5-bit FP16 exponent are used to select the LUT region then the bits of the significand
are used to index the entries within the region. Note that the 4 LS bits of the exponent are sufficient to fully
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cover the normalized range [0, 1.0]. If the number of entries in the region is less than 1k then only the
required most significant bits of the significand are used to index the region's entries. The remaining bits of
the significand (the LS bits not used to index the region), if any, form an Interpolation Numerator (IN) used
to linearly interpolate between the indexed entry and the next entry. The FP16 format (also known as IEEE
754 half-precision binary floating-point format: binary16) is shown in detail in Figure 33.

For integer data the 4 most significant bits are used to select the LUT region. Thus if the integer width is 10
then bits [9:6] are used with the remaining bits used the index the region's entries. The full scheme for both
FP16 and integer look-up is shown in Table 16.

Input Mode Integer width Range Selection Index[9:0]

Fp16 N/A Data[13:10] Data[9:0]

Integer 8 Data[7:4] {Data[3:0],6’b0}

Integer 9 Data[8:5] {Data[4:0],5’b0}

Integer 10 Data[9:6] {Data[5:0],4’b0}

Integer 11 Data[10:7] {Data[6:0],3’b0}

Integer 12 Data[11:8] {Data[7:0],2’b0}

Integer 13 Data[12:9] {Data[8:0],1’b0}

Integer 14 Data[13:10] Data[9:0]

Integer 15 Data[14:11] Data[10:1]

integer 16 Data[15:12] Data[11:2]

Table 16: LUT range selection bits

The index into each range depends on both the range size and the remaining unused bits (Index[9:0]) of the
incoming data.  The number of  bits  of  FP16 significand used to index each possible range size and the
number of bits left over, used for linear interpolation between entries, is shown in Table 17. It can be seen
that for a maximally sized region (1 Kb entries) can be fully indexed by the 10 bit FP16 significand and that
no linear interpolation between entries is performed in this case.

Pwr of 2 Region Size n Region Size Index bits Interpolation Numerator

0 1 0 Index[9:0]

1 2 Index[9] Index[8:0] << 1
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Pwr of 2 Region Size n Region Size Index bits Interpolation Numerator

2 4 Index[9:8] Index[7:0] << 2

3 8 Index[9:7] Index[6:0] << 3

4 16 Index[9:6] Index[5:0] << 4

5 32 Index[9:5] Index[4:0] << 5

6 64 Index[9:4] Index[3:0] << 6

7 128 Index[9:3] Index[2:0] << 7

8 256 Index[9:2] Index[1:0] << 8

9 512 Index[9:1] Index[0] << 9

10 1024 Index[9:0] 0

Table 17: Range index and interpolation fraction

8.15.1 Features

8.15.1.1 Processing planar buffers

The LUT filter provides two modes for processing planar data. The default mode is to process each plane of
the input buffer in a line sequential manner (as generally supported by all filters). In this mode a separate
LUT may be specified for  each plane (up to a maximum of  16 planes).  This  allows a different  look-up
function to be applied to each plane. As always the entire LUF must fit within the 16 Kb local RAM. For the
maximum number of planes this gives a provision of 512 entries per LUT. An example mapping of LUTs to
planes is shown in Figure 34. It is also possible to use fewer LUTs than planes. In this configuration the LUTs
are applied to planes on a rotating basis.  For  example,  a  9 plane buffer could be processed on a line
sequential basis using a set of 3 LUTs where LUT[0] was applied to planes 0, 3 and 6, LUT[1] was applied to
planes 1, 4 and 7 and LUT [2] was applied to planes 2, 5 and 8. The number of LUTs is specified by the
NUM_LUTS bit field of the LutParam::cfg variable.
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For a higher throughput the LUT may also be configured to process up to four planes of data in parallel. This
mode of processing is known as Channel Mode and is enabled by setting the LUT_CHANNEL_MODE bit of
the LutParam::cfg variable. The number of planes (or channels) to process in parallel must also be specified
via the NUM_CHANNELS bit field of the same register. In Channel Mode a different LUT is always applied to
each channel. If it is desired to apply the same function to each plane (or some of the planes) then the
same LUT should be repeated within the LUF. The NUM_LUTS bit field of the LutParam::cfg variable should
be set to 0 in Channel Mode.

8.15.1.2 LUT filter configuration and LUT update

The  operational  mode  of  the  LUT  filter  are  controlled  by  the  LutParam::cfg  variable  which  allows  the
following to be configured:

 Integer or FP16 look-up (with interpolation between entries if FP16).
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 Integer width (if integer look-up is configured).

 Enable and specify number of per plane LUTs for sequential multi-planar processing.

Bit  14 controls  the LUT update procedure. When the LUT base address is programmed initially  this bit
should be set 1. If the LUT base address is changed or if the content of the LUT at the (already) programmed
base address is modified and the filter will update its local RAM between frames if this bits is cleared then
set to 1 again, i.e. to update the LUT filter's local RAM with new values:

 Update the LUT in system memory (CMX or DRAM).

 Update the programmed LUT base address (if necessary).

 Enable the LUT filter.

 Write '0' to bit 14 of the LutParam::cfg variable.

 Write '1' to bit 14 of the LutParam::cfg variable.

 The filter will update its local RAM at the end of frame it is currently processing.

8.15.1.3 Color space conversion

When configured in 3-plane mode, colour space conversion on the output of the LUT is supported. One
output value from each plane is multiplied by a programmable 3x3 conversion matrix. A programmed offset
is  then added to each element  of  the result  and the results  are  output  to  the respective planes.  For
example, conversion from RGB to YCbCr4:2:2 would operate as follows:

Y M11 M12 M13 R OF1

Cb = M21 M22 M23 x G + OF2

Cr M31 M32 M33 B OF3

The 3x3 matrix coefficients are specified as S(2,10) values, and the offsets are in S(1,12) format. When using
color space conversion, the values programmed in the LUT must be in U12F format when operating in
integer mode, and in the range [0,1.0] when operating in FP16 mode.

8.15.1.4 LUT filter supported data formats

Color Space Conv LUT Entry Format Range Output Format Output

on FP16 [0,1.0] 1 U8F

on FP16 [0,1.0] 2 FP16

on U12F [0,0xfff] 1 U8F

on U12F [0,0xfff] 2 U12F

off FP16 !NaN 1 U8F

off FP16 !NaN 2 FP16

off U12F [0,0xfff] 2 U12F
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Color Space Conv LUT Entry Format Range Output Format Output

off U16 [0,0xffff] 2 U16

off U8F [0,0xff] 1 U8F

Table 18: LUT Filter Supported Data Types

8.15.2 Configuration

This filter is configured via the LutParam structure, which has the following user-specifiable fields:

Name Bits Description

cfg 16 Enable conversion to YUV444. Only valid in channel mode, and if the number 
of planes is 3.

15 APB access Enable. For debug only

14 Clear the set to '1' to schedule LUT update by DMA after the end of the 
current frame (or immediately if filter has not been run). Filter must be 
enabled for LUT load to take place.

13:12 Number of channels (planes) to be processed in parallel in Channel Mode. 
Programmed value should be number minus 1 (maximum of 4 channels 
supported).

11:8 Determines which LUT is applied to each plane when processing multiple 
planes sequentially. The LUT used for a given plane, P is P % NUM_LUTS. 

NOTE: If all planes are to use the same LUT, this bit field should be set to 0. 

NOTE: In Channel Mode this bit field must be set to 0.

7:3 Integer width if in integer mode. Supports 8 to 16 bit

1 Enable Channel Mode – if enabled up to 4 channels (planes) of data may be 
processed in parallel. The number of planes to be processed in parallel is 
specified by NUM_CHANNELS

0 Set to 1 if FP16 interpolation required, set to 0 for integer look-up

sizeA 31:28 LUT region 7 size index n

27:24 LUT region 6 size index n

23:20 LUT region 5 size index n

19:16 LUT region 4 size index n

15:12 LUT region 3 size index n

11:8 LUT region 2 size index n

7:4 LUT region 1 size index n

3:0 LUT region 0 size index n
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Name Bits Description

sizeB 31:28 LUT region 15 size index n

27:24 LUT region 14 size index n

23:20 LUT region 13 size index n

19:16 LUT region 12 size index n

15:12 LUT region 11 size index n

11:8 LUT region 10 size index n

7:4 LUT region 9 size index n

3:0 LUT region 8 size index n

lut 31:0 Address of 3D LUT

lutFormat 1:0 Format of 3D LUT 00: Invalid, 01: 8 bit format, 02 : 16 bit format, 03 : 32 bit
format

mat[0] 11:0 Color conversion matrix coefficient (1,1)

mat[1] 11:0 Color conversion matrix coefficient (1,2)

mat[2] 11:0 Color conversion matrix coefficient (1,3)

mat[3] 11:0 Color conversion matrix coefficient (2,1)

mat[4] 11:0 Color conversion matrix coefficient (2,2)

mat[5] 11:0 Color conversion matrix coefficient (2,3)

mat[6] 11:0 Color conversion matrix coefficient (3,1)

mat[7] 11:0 Color conversion matrix coefficient (3,2)

mat[8] 11:0 Color conversion matrix coefficient (3,3)

offset[0] 12:0 Color conversion offset 1 in S(1,12) format

offset[1] 12:0 Color conversion offset 2 in S(1,12) format

offset[2] 12:0 Color conversion offset 3 in S(1,12) format
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8.16 Polyphase Scalar

Input FP16/U8F

Operation Up/downscale using separable, 16-phase FIR filter

Filter kernel 3x3, 5x5 or 7x7

Local line buffer No

Output FP16/U8F

Instances 3

The poly-phase scaler is suitable for high-quality implementations of Lanczos or bi-cubic scaling. The filter is
capable of scaling up and down and the scaling ratio is independently configurable in a both directions
(horizontal and vertical). The filter implements a 16 phase FIR filter with a configurable number of taps, 3x3,
5x5 and 7x7 are possible.

8.16.1 Features

8.16.1.1 Programming filter coefficients

Filter coefficients are programmable within the range [-0.5, 1.49219]. The coefficients are programmed as 8
bit values in the range [0, 255] where the programmed value, val, maps to the signed fixed-point coefficient,
coeff, as follows:

val = (coeff * 128) + 64

Programmed values of 0x40 and 0xc0 therefore correspond to a coefficients of 0.0 and 1.0 respectively. The
filter data-path is FP16, the programmed coefficients are converted to FP16 values for operation and the
filter can process either normalized FP16 or U8F input buffers.

8.16.1.2 Filter instances

here are 3 instances of the poly-phase scaler. Each instance has its own buffer configuration and control
registers but two of the instances share a common set of filter configuration registers so if both filters are
used they will be operating with identical input image dimensions, scaling ratios, number of phases and
filter coefficients sets. The intended use-case is scaling of component video such as YUV 4:4:4 to YUV 4:2:2
or YUV 4:2:0 where on instance handles the Y plane and the other two handle the U and V planes.

8.16.1.3 Operation overview

Scaling involves an increasing or decreasing of the original sampling rate and is classically performed in
three steps:

1. Up-sample the input by a factor of N using zero-insertion.

2. Interpolate the up-sampled input data by low-pass filtering.

3. Down-sample the result by a factor of D.

The poly-phase scaler is capable of implementing very high order FIR filters efficiently by taking advantage
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of the fact that after up-sampling many filter inputs are zero and therefore do not contribute to the filter
output. The SIPP poly-phase scaler supports effective FIR filter kernels of up to 112-taps organized as 16
phases of 7-taps. 

The  filter  is  constructed  by  cascading  two  7-tap  FIR  filters.  Filtering  is  performed  first  vertically  then
horizontally. The number of phases in use corresponds directly to the up-sampling factor (N). The maximum
up-sampling factor is 16 (effectively allowing a 112-tap filter). 

The pixel kernel for vertical scaling is 1x7 pixels: 1 output pixel is produced by filtering a column of pixels
from 7 consecutive lines in the input image. However,  only lines which will  contribute to the vertically
down-scaled output are actually read and filtered (i.e. some vertical filter phases are skipped based on the
programmed vertical  down-scaling  factor – this  complexity  is  handled automatically).  The pixels  of  the
current output line from vertical scaling are then horizontally up-scaled and filtered and down-scaled. The
pixel kernel for horizontal scaling is 7x1 pixels: 1 output pixel is produced by filtering 7 consecutive pixels in
a line. As with vertical scaling, only pixels which will be part of the down-scaled output are filtered before
being written to the output buffer (i.e. some filter phases are skipped based on the programmed horizontal
down-scaling factor).

8.16.1.4 General Setup

Separate scaling ratios may be specified for horizontal and vertical scaling. The ratios are specified using
numerator/denominator  pair  (N/D)  with  the  numerator  in  5  bits  and  the  denominator  in  6  bits.  The
maximum supported up-scaling ratio is 16 (matching the number of filter phases in the implementation) so
the allowed range for N is [1, 16]. The allowed range for D is [1, 63]. (See the PolyFirParam::horzD and
olyFirParam::vertD variables for further details.) 

For example, if we wish to down-scale the input image by a factor of ¾ in a given dimension we can set N to
3 and D to 4. We might also set N/D to 6/8 or 12/16, as long as the ratio of N/D is correct. 

The horizontal and vertical filter coefficients for each phase are separately programmable. 

Taking 12/16 as an example scaling ratio we are effectively specifying that we will use 12 of the 16 available
phases to low pass filter the up-scaled (zero inserted) input image. With 7 taps per phase we are therefore
implementing a 12x7 = 84 tap FIR filter. The filter function (e.g. Lanczos) should be sampled 84 times to
generate the necessary coefficients. The coefficients from 0 to 83 should be programmed as follows:

Coefficient 0 is phase 0, coefficient 0,
Coefficient 1 is phase 1, coefficient 0,
Coefficient 2 is phase 2, coefficient 0,
…
Coefficient 11 is phase 11, coefficient 0,
Coefficient 12 is phase 0, coefficient 1,
Coefficient 13 is phase 1, coefficient 1,
…
Coefficient 82 is phase 10, coefficient 6,
Coefficient 83 is phase 11, coefficient 6.

The coefficients of phases 12 to 15 will not be used. 

The output image dimensions must be programmed to correspond exactly to the programmed vertical and
horizontal scaling factors as follows:

Output width = ((Input width * HorzN) - 1)/HorzD + 1
Output height = ((Input height * VertN) - 1)/VertD + 1

Where HorzN and HorzD are the numerator and denominator of the horizontal scale factor and VertN and
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VertD are the numerator and denominator of the vertical scale factor, respectively.

The number of filter taps used in both directions (the kernel size) is configurable to 3x3, 5x5 or 7x7. If fewer
than 7 taps are used then the filter coefficients for the unused taps should be set to zero. E.g. if 5 taps are
used coefficients 0 and 6 must be set to zero; if 3 taps are used coefficients 0, 1, 5 and 6 must be set to zero.
Note that the default value of zero for the kernel size bit field is invalid – the kernel size must be explicitly
set before the filter is used.

8.16.2 Configuration

This filter is configured via the PolyFirParam structure, which has the following user-specifiable fields:

Name Bits Description

 clamp 0 Output clamp. Set to 1 to clamp the filter FP16 output into the 
range [0, 1.0]

horzD 5:0 Horizontal scale factor denominator. Maximum valid value is 63

horzN 4:0 Horizontal scale factor numerator. Maximum valid value is 16

vertD 5:0 Vertical scale factor denominator. Maximum valid value is 63

vertN 4:0 Vertical scale factor numerator. Maximum valid value is 16

horzCoefs 31:0 Address of horizontal coefficients

vertCoefs 31:0 Address of vertical coefficients
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8.17 Edge Operator filter

Input U8/U16/FP16 image data or precomputed gradients

Operation Flexible edge-detection operator suitable for implementation of e.g. Sobel filter

Filter kernel 3x3

Local line buffer No

Output U8/U16/FP16 edge data: magnitude + angle suitable for Histogram of Orientated 
Gradients

Instances 1

The Edge Operator filter implements an extension to the functionality of the standard 3x3 Sobel filter. The
filter computes the X and Y gradients ( G x and G y ) using a pair of programmable Sobel filter kernels
then the magnitude, M, and angle, Theta, of the edge at every pixel location is approximated as described
in the following sections.

8.17.1 Features

8.17.1.1 Gradient computation

The  Sobel  filter  kernel  used  to  compute  horizontal  and  vertical  gradients  is  programmable  via  the
EdgeParam::xCoeff and EdgeParam::yCoeff variables. The horizontal and vertical gradient computations are
performed as shown below for each pixel, using Equation 1 and Equation 2, respectively, where A is the 3x3
pixel kernel:

G x=(XCoeff a 0 XCoeff b

XCoeff c 0 XCoeff d

XCoeff e 0 XCoeff f
)⋅A Equation 1

G y=(YCoeff a XCoeff b YCoeff c

0 0 0
XCoeff d XCoeff e XCoeff f

)⋅A Equation 2

Alternatively the Sobel filter operation may be bypassed and pairs of precomputed FP16 or U8 gradients
may  be  processed  directly  from  the  input  buffer  by  selecting  the  appropriate  input  mode  via  the
EdgeParam::cfg variable.

8.17.1.2 Magnitude approximation

The magnitude M is the square root of the sum of the squares of the gradients G x and G y In order to
calculate the square root function the following manipulations are used:

M=√ X 2+ Y 2=∣X∣√1+ (Y / X )2 Equation 3

M=√ X 2+ Y 2=∣Y∣√1+ (X /Y )2 Equation 4

Now  if  Equation  3 is  used  when ∣X∣>∣Y∣ and  Equation  4 is  used  when ∣X∣≤∣Y∣ then  an

Intel® Movidius™ Confidential 144 SIPP-UM-1.32



approximation  for  the  function { f (a)=√1+ a2where0< a≤1} can  be  developed  and  used  to
approximate for M. The following approximation is used:

The range of  a (i.e. 0 to 1) is divided into 32 equal sub ranges.  f (a ) is calculated for the top and
bottom of each of theses ranges as shown in Table 19, below.

Position a a2 1+ a2 √1+ a2

0 0.0000 0.0000 1.0000 1.0000

1 0.0245 0.0006 1.0006 1.0003

2 0.0491 0.0024 1.0024 1.0012

3 0.0736 0.0054 1.0054 1.0027

4 0.0984 0.0097 1.0097 1.0048

5 0.1233 0.0152 1.0152 1.0076

6 0.1483 0.0220 1.0220 1.0109

7 0.1735 0.0301 1.0301 1.0149

8 0.1989 0.0396 1.0396 1.0196

9 0.2246 0.0504 1.0504 1.0249

10 0.2505 0.0627 1.0627 1.0309

11 0.2767 0.0766 1.0766 1.0376

12 0.3033 0.0920 1.0920 1.0450

13 0.3304 0.1091 1.1091 1.0532

14 0.3578 0.1280 1.1280 1.0621

15 0.3857 0.1488 1.1488 1.0718

16 0.4142 0.1716 1.1716 1.0824

17 0.4433 0.1965 1.1965 1.0938

18 0.4730 0.2237 1.2237 1.1062

19 0.5034 0.2534 1.2534 1.1195

20 0.5345 0.2857 1.2857 1.1339

21 0.5665 0.3209 1.3209 1.1493

22 0.5994 0.3593 1.3593 1.1659

23 0.6332 0.4010 1.4010 1.1836

24 0.6682 0.4465 1.4465 1.2027

25 0.7043 0.4960 1.4960 1.2231

26 0.7417 0.5500 1.5500 1.2450

27 0.7804 0.6090 1.6090 1.2685

28 0.8207 0.6735 1.6735 1.2936
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Position a a2 1+ a2 √1+ a2

29 0.8626 0.7441 1.7441 1.3206

30 0.9063 0.8215 1.8215 1.3496

31 0.9521 0.9065 1.9065 1.3807

Table 19: Edge operator magnitude calculation square root approximation LUT

The values for √1+ a2 are stored in a look-up table in FP16 format. A linear interpolation between table
entries is performed for values of a which lie within the range. The final magnitude may be scaled by a
programmable magnitude scale factor (see EdgeParam::cfg the register).

8.17.1.3 Angle approximation (Theta)

The Angle absolute θ will ultimately lie between 0o and 360o depending on the magnitude and polarity of
G x and G y .  First  an estimation of  the primary  angle primary θ based  on ∣X∣ and  ∣Y∣ is

made as shown in Figure 39 and Equation 5 and Equation 6.

θ=a ,∣X∣>∣Y∣ Equation 5
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θ=b ,∣X ∣≤∣Y∣ Equation 6

The primary angle will always lie between 00  and 450. Angles in the range 00  and 450 are represented as
integers  0 to 31,  giving an accuracy of  1.406250.  The ranges are selected by means of  a  look-up table
referenced by tan (θ), computed using ), computed using  Equation 7 and Equation 8. The look-up table values are shown in
Table 20.

tan (θ)=N /D=∣Y∣/∣X∣when∣X ∣>∣Y∣ Equation 7

tan (θ)=N /D=∣X∣/∣Y∣when∣Y ∣>∣X ∣ Equation 8

θ >= θ < tan (θ) >= tan (θ) < Position

0.00 1.41 0.0000 0.0245 0

1.41 2.81 0.0245 0.0491 1

2.81 4.22 0.0491 0.0738 2

4.22 5.63 0.0738 0.0985 3

5.63 7.03 0.0985 0.1233 4

7.03 8.44 0.1233 0.1483 5

8.44 9.84 0.1483 0.1735 6

9.84 11.25 0.1735 0.1989 7

11.25 12.66 0.1989 0.2246 8

12.66 14.06 0.2246 0.2505 9

14.06 15.47 0.2505 0.2767 10

15.47 16.88 0.2767 0.3033 11

16.88 18.28 0.3033 0.3304 12

18.28 19.69 0.3304 0.3578 13

19.69 21.09 0.3578 0.3857 14

21.09 22.50 0.3857 0.4142 15

22.50 23.91 0.4142 0.4433 16

23.91 25.31 0.4433 0.4730 17

25.31 26.72 0.4730 0.5034 18

26.72 28.13 0.5034 0.5345 19

28.13 29.53 0.5345 0.5665 20

29.53 30.94 0.5665 0.5994 21

30.94 32.34 0.5994 0.6332 22

32.34 33.75 0.6332 0.6682 23

33.75 35.16 0.6682 0.7043 24

35.16 36.56 0.7043 0.7417 25
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θ >= θ < tan (θ) >= tan (θ) < Position

36.56 37.97 0.7417 0.7804 26

37.97 39.38 0.7804 0.8207 27

39.38 40.78 0.8207 0.8626 28

40.78 42.19 0.8626 0.9063 29

42.19 43.59 0.9063 0.9521 30

43.59 45.00 0.9521 1.0000 31

Table 20: Edge operator arctan LUT

The absolute position  absolute θ represents an angle between 0o and 360o.  There are 256 ranges of
1.40625o between 0 and 360o. These are divided into 8 distinct regions as shown in Figure 40.

 In regions B, C, F, G ∣Y∣>∣X∣ while in all other areas ∣X∣>∣Y∣
 In regions C, D, E, F the polarity of X is negative while in all other areas it is positive
 In regions E, F, G, H the polarity of Y is negative while in all other areas it is positive

The absolute position absolute θ is calculated from the primary angle primary θ as follows:

absolute θ= primary θ ,∣X∣≥∣Y∣, X≥0,Y≥0

absolute θ=63− primaryθ ,|Y|>|X|, X≥0,Y≥0

absolute θ=64+ primaryθ ,|Y|>|X|, X <0,Y≥0

absolute θ=127− primaryθ ,|X|≥|Y |, X <0,Y≥0
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absolute θ=128+ primary θ ,|X |≥|Y|, X <0,Y <0

absolute θ=191− primaryθ ,|Y|>|X|, X <0,Y <0

absolute θ=192+ primaryθ ,|Y|>|X|, X≥0,Y <0

absolute θ=255− primaryθ ,|X |≥|Y|, X≥0,Y <0

8.17.1.4 Theta modes

There are three possible modes for the output of the angle Theta ( θ ). In normal mode an 8 bit value is
calculated as a representation of the overall angle between 0 and 360o to an accuracy of 1.40625o (0-255) as
described above.

In X-axis reflection mode all values below the X-axis are reflected in the X-axis to give the value above the X-
axis. A value representing an angle between 0 and 180o to 1.40625o accuracy is output (0-127).

In X and Y axis reflection Mode all values below the X-axis are reflected in the X-axis and all values to the left
of the Y-axis  are reflected in the Y-axis.  A value representing an angle between  0 and 90o to  1.40625o

accuracy is output (0-63).

Figure 41 Illustrates where each angle segment will lie after reflection in the X and Y axis. The Theta modes
are configured via the EdgeParam::cfg variable.

Note for compatibility with OpenVX bit 7 of the EdgeParam::cfg register may be set to rotate theta to match
the  OpenVX  implementation.  Without  setting  this  bit  an  angle  of  180o in  the  SIPP  edge  operator
corresponds to an OpenVX angle of 0. 
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8.17.2 Configuration

The Edge operator filter is configured via the EdgeParam structure, which has the following user-specifiable
fields:

Name Bits Description

cfg 31:16 Magnitude Scale Factor. FP16 value used to scale all magnitude 
outputs

7 Theta OpenVX Mode

0 – Disabled

1 – Enabled

6:5 Theta Mode

00 – Normal mode

01 – X-axis reflection mode

10 – X and Y axis reflection mode

4:2 Output Mode. All magnitude outputs will be scaled by the 
Magnitude Scale Factor

000 – 16-bit magnitude

001 – 8-bit scaled magnitude

010 – 8-bit magnitude, 8-bit angle (Theta)

011 – 8-bit angle (Theta)

100 – X, Y gradients scaled to 8 bits (2's complement)

101 – X, Y gradients output in FP16

1:0 Input Mode

00 – Normal mode U8 pixel data

01 – Precomputed FP16 (X,Y) gradients

10 – Precomputed U8 (X,Y) gradients

xCoeff

All in signed 2's complement format

29:25 Edge operator X coefficient F 

24:20 Edge operator X coefficient E

19:15 Edge operator X coefficient D

14:10 Edge operator X coefficient C

9:5 Edge operator X coefficient B

4:0 Edge operator X coefficient A

yCoeff All in signed 2's complement format

29:25 Edge operator Y coefficient F 

24:20 Edge operator Y coefficient E
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Name Bits Description

19:15 Edge operator Y coefficient D

14:10 Edge operator Y coefficient C

9:5 Edge operator Y coefficient B

4:0 Edge operator Y coefficient A
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8.18 Convolution filter

Input FP16/U8F

Operation FP16 precision convolution filter with configurable kernel size and fully 
programmable FP16 coefficients. Absolute or square value of results may be 
selected for output. Results are conditionally accumulated and counted

Filter kernel 3x3 or 5x5

Local line buffer No

Output FP16/U8F + FP32 accumulation and U32 accumulation count. Output may be 
disabled if only the accumulation/count are of interest

Instances 1

In  the  convolution  kernel  input  data  is  convolved  with  a  5x5  kernel  with  fully  programmable  FP16
coefficients. Input data may be FP16 or U8F with computation is performed in FP16 precision (U8F input is
scaled into normalized FP16 in the range [0, 1.0].

For programming, the coefficients of the 5x5 kernel are designated using (x, y) co-ordinates with (0, 0) at
the top-left corner of the kernel and the center pixel corresponding with coefficient (2, 2), as shown in  Table
21.

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(4,0) (4,1) (4,2) (4,3) (4,4)

Table 21: Programmable convolution kernel coefficient designation

The filter may also be configured as a 3x3 kernel (via the ConvParam::cfg variable); in this configuration the
unused outer coefficients of the convolution kernel must be set to zero.

8.18.1 Features

8.18.1.1 Absolute result

The absolute value of each convolution result may be output by setting configuration option bit ABS to ‘1’.

8.18.1.2 Square result

The result of each convolution may optionally be squared by setting configuration option bit SQ to ‘1’.
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8.18.1.3 Accumulate

The results may optionally be accumulated by setting the configuration bit ACCUM to ‘1’. If the ABS bit is set
to ‘1’ then the absolute values of the result are accumulated. If the SQ bit is set to ‘1’ then the squares of
the  convolution results  are  accumulated.  The  final  accumulation is  performed in  floating  point  (FP32)
precision and may be read from the SIPP_CONV_ACCUM register. The accumulation runs across the frame
(and  for  all  planes  if  mutli-planar  sequential  processing  is  performed)  but  the  (read-
only)SIPP_CONV_ACCUM register  is  updated  on  a  line-by-line  basis.  At  the  end  of  a  frame  the  final
accumulation value for that frame may be read until the end of processing for the first line of the next
frame.

8.18.1.4 Accumulation threshold and count

A threshold THR may be set, above which results are included in the accumulation. The threshold is an FP16
value programmable via the ConvParam::cfg variable. When a result is included in the accumulation the
accumulation COUNT is incremented. The final count is an unsigned 32 bit value which may be read via the
(read-only) SIPP_CONV_ACCUM_CNT register. It is updated on a line-by-line basis in the same way as the
accumulation itself.

8.18.1.5 Output disable

In some applications the accumulated results and count are of primary interest and the output result values
themselves are not required. In these cases output may be disabled by setting configuration option bit OD
to ‘1’. If the output is disabled then the filter’s output buffer does not need to be allocated or configured.

8.18.1.6 Evan and odd coefficient sets

The filter may be configured to use a different set of coefficients on even and odd pixels by setting the
EVENODD bit of the ConvParam::cfg variable to '1'. When this bit is set the filter's default coefficients are
used on even pixels and its shadow coefficients are used on odd pixels.

If the EVENODD_SEL bit of the ConvParam::cfg variable is also set then on even lines the default coefficients
are used on even pixels and the shadow coefficients on odd pixels but on odd lines the shadow coefficients
are  used  on  even  pixels  and  default  coefficients  are  on  odd  pixels.  This  configuration  is  suitable  for
processing RAW Bayer data.

8.18.2 Configuration

The convolution filter is configured via the ConvParam structure, which has the following user-specifiable
fields:

Name Bits Description

cfg 25 Set to 1 along with EVENODD to use shadow/default coefficients 
on even/odd pixels of odd lines and default/shadow coefficients 
on even/odd pixels of even lines.

24 Set to 1 to use different coefficient sets on even/odd pixels. 
Default/shadow coefficients are selected on even/odd pixels.

23:8 Accumulation threshold (FP16 value) 

7 Output disable
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Name Bits Description

6 Accumulate results

5 Output square of results

4 Output absolute value of results

3 Set to 1 to clamp the filter FP16 output into the range [0, 1.0]

2:0 Configures width and height of pixel kernel. Valid values of 
KERNEL_SIZE are 3 and 5.

NOTE: This must be configured correctly before use. The reset
value of 0 is invalid.

kernel[0] 31:16 Coefficient (0,1)

15:0 Coefficient (0,0)

kernel[1] 31:16 Coefficient (0,3)

15:0 Coefficient (0,2)

kernel[2] 15:0 Coefficient (0,4)

kernel[3] 31:16 Coefficient (1,1)

15:0 Coefficient (1,0)

kernel[4] 31:16 Coefficient (1,3)

15:0 Coefficient (1,2)

kernel[5] 15:0 Coefficient (1,4)

kernel[6] 31:16 Coefficient (2,1)

15:0 Coefficient (2,0)

kernel[7] 31:16 Coefficient (2,3)

15:0 Coefficient (2,2)

kernel[8] 15:0 Coefficient (2,4)

kernel[9] 31:16 Coefficient (3,3)

15:0 Coefficient (3,2)

kernel[10] 31:16 Coefficient (3,3)

15:0 Coefficient (3,2)

kernel[11] 15:0 Coefficient (3,4)

kernel[12] 31:16 Coefficient (4,1)

15:0 Coefficient (4,0)

kernel[13] 31:16 Coefficient (4,3)

15:0 Coefficient (4,2)

kernel[14] 15:0 Coefficient (4,4), filter coefficients are FP16

NOTE : shadowkernel[15] is exactly as per kernel but for the Shadow coefficient
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8.19 Harris Corner

Input U8

Operation Harris corner detection with configurable kernel size and programmable k

Filter kernel 5x5, 7x7 or 9x9

Local line buffer No

Output FP32 or (scaled) FP16 scores

Instances 1

he Harris corners filter performs corner detection on U8 image data. The filter operates on a configurable
kernel of 3x3, 5x5 or 7x7 pixels. The filter runs a 3x3 Sobel operator at each pixel location in the kernel. A
7x7 kernel therefore spans an area of 9x9 pixels; it is this larger size which should be used to program the
HarrisParam::cfg variable. The filter computes a 2x2 gradient covariance matrix M (x,y) over the kernel. This
matrix  M is  filtered by a Gaussian function (based on Pascal's  triangle)  then the following response is
computed:

score(x,y) = detM(x,y) – k.(traceM(x,y))2 

The parameter k is a full-precision floating point value which is programmed via the HarrisParam::kValue
variable. 

The 3x3 Sobel operator used to compute the gradient covariance matrix is as follows (for dx):

[-1 0 1]
[-2 0 2]
[-1 0 1]

For  dy  the  transpose  of  this  same kernel  is  used.  The  score  is  computed  to  full  32  bit  floating  point
precision.

8.19.1 Features

8.19.1.1 Output modes

Either the score or the determinant may be selected for output. Both are 32 bit floating point values. The
determinant is selected for output by setting the DET_SEL bit of the HarrisParam::cfg variable to '1'. The
score  may  be  scaled  by  subtracting  a  programmable  value,  EXP_SUBTRAHEND,  from its  floating  point
exponent.  The  resulting  value  is  known  as  the  exponent-adjusted  score.  The  default  value  of
EXP_SUBTRAHEND (programmed via the HarrisParam::cfg variable) is 0. If subtracting EXP_SUBTRAHEND
from the exponent would result in a negative value then the exponent of the adjusted score is clamped to 0.

The  score  may also be converted to an FP16 value for  output.  The  conversion  from the  exponent-
adjusted floating point score to FP16 is as follows:

1. Subtract (127 – 15) from the biased adjusted exponent to get the biased FP16 exponent.

2. Clamp the biased FP16 exponent in the range [0, 31].

3. Derive the FP16 significand from the 10 MSBs of the floating point significand and copy the sign bit.
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Conversion  of  the  exponent  adjusted  floating  point  score  to  to  FP16  is  enabled  if  the  output  buffer
FORMAT is set to 2 (for output of the full precision floating-point score or the determinant FORMAT must
be set to 4).

8.19.2 Configuration

This filter is configured via the HarrisParam structure, which has the following user-specifiable fields:

Name Bits Description

cfg 15:8 Exponent subtrahend. This value is subtracted from the exponent 
of the 32 bit floating point score before output or conversion to 
FP16. 

4 Select determinant for output, rather than score. FORMAT must 
be set to 4 when outputting the (32 bit floating point) 
determinant.

3:0 Configures width and height of pixel kernel. Valid values are 5, 7 
and 9.

NOTE: This must be configured correctly before use. The reset
value of 0 is invalid.

kValue 31:0 K value (FP32)
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9 Filter developer's guide

Filters may be written which run on the SHAVE processors, and can be plugged into the SIPP framework. This
chapter describes some concepts which must be understood before developing such a filter. It also defines
the API to which SIPP filters must be written.

This should be read in conjunction with the Myriad Programmers Guide, the Myriad databook and the
MvCV kernel library documentation.

9.1 Overview

Essentially, a filter’s job is to produce a line of data every time it is invoked. It may reference one or more
input buffers in doing so, and read one or more lines of data from each of these input buffers. It is up to the
application and the SIPP framework to provide the filter with access to the required buffers. When invoked,
the filter is provided with pointers to lines of input data within the input buffer.

A pointer to the location within the output buffer, where the generated line will be placed.

Usually, more than one SHAVE processor is assigned to executing a SIPP pipeline. In order to parallelize the
workload, each SHAVE is assigned a portion of the scanline that it is responsible for generating.

9.2 Output buffers

Every filter has exactly one output buffer (with the exception of sink filters, which may have no output
buffer). These buffers are allocated from local memory (CMX memory) by the SIPP framework. The size of
the output buffer is calculated based on the type of data (e.g. 8 or 16 bits per pixel), the frame width, and
the number of lines required by the filters which will consume from the output buffer. The SIPP framework
also organizes the memory in the most optimal way, from a memory bandwidth efficiency point of view. The
hardware  provides  various  mechanisms  to  balance  the  memory  load  among  the  CMX slices,  reducing
memory access contention and avoiding stalls.

Regardless of how the memory in the line buffer is physically organized, the view of the buffer memory
presented to the Shave processors is the same. The buffer is logically broken into vertical strips, with each
strip assigned to one shave processor. The data may also consist of multiple planes. The diagram below
shows the organization of a data buffer containing RGB data, from the SHAVEs point of view.

9.2.1 Left/right padding and replication

In  Figure  42 there  is  padding  at  the  left and  right  of  each  strip.  This  is  to  support  operations  like
convolutions, which reference an area surrounding the pixel. When processing pixels near the edge of the
strip, pixels may need to be referenced outside of the strip boundaries. These references access the padding
areas, shown above. The SIPP framework automatically copies data into the padding areas as necessary, so
that the filter does not need to perform any special handling at slice or image boundaries. The padding
areas at the left of the first strip, and the right of the last strip, are populated with pixel data created by
replication. Other padding areas are populated by replicating data from the neighbouring strip. The filter
should  not  output  data  into  the  padding  areas  –  it  is  generate  by  the  SIPP  framework  as  described.
However, the generated data in the padding areas is available to be referenced by filters consuming from
the buffer.
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9.2.2 Circular buffers and line replication

SIPP buffers are implemented as circular line buffers. After a line is produced in the output buffer, the SIPP
framework advances the output line pointer. When the end of the buffer is reached, the output buffer
pointer is reset to the start of the buffer. Line buffer wrapping is also managed by the SIPP framework for
the input buffers. The filter, when invoked, is presented with an array of line pointers for each input buffer,
which point to a consecutive set of scanlines from the input image.

You can think of the line buffer as a “window” into the input frame (see diagram below). Every time the
filter is invoked, the window “slides down” by one pixel before the next invocation.
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In addition to the padding and replication described in the previous section, the filter does not need to do
any special handling to accomplish padding by replication at the top or bottom of the frame. The SIPP
framework performs virtual line replication at the top and bottom of the frame, by passing duplicate line
pointers to the filters. Thus, for example, if a filter needs 7 lines of data in one of its input buffers before it
can run, the first time it runs, there will be four unique lines in the buffer, and the four line pointers will
point to the same memory location.

9.3 Programming language

Filters may be written using C/C++, assembly language, or a mixture of both. API calls adhere to the C calling
convention in all cases. It is recommended that filters be developed in C initially. This allows them to run in a
PC environment, in addition to running on Myriad hardware. After a prototype implementation has been
developed in C, it is highly recommended to optimize the core of the filter code. This may be accomplished
in a number of ways:

Using the vector intrinsics supported by the compiler to implement explicit vectorization.

Using inline assembly.

Implement  some or  all  of  the filter’s  functionality  using  callable  routines written entirely  in  assembly.
Assembly routines can be called from C or C++ code, if they follow the C calling convention.

The above measures can often yield an order of magnitude improvement over compiled code. Conditional
compilation  using  the  SIPP_PC preprocessor  directive  can  be  used  so  that  C-only  versions  for  PC
simulations, and assembly-optimized Myriad versions, can be maintained in parallel. For example:

void
sampleFilter(SippFilter *fptr, int svuNo, int runNo)
{
#ifdef SIPP_PC
// C/C++ code goes here
#else
// SHAVE inline assembly code goes here
#endif
}

9.4 Defining a filter

Filters are self-contained, in that all header files, along with C and/or assembly files, are provided under the
same folder hierarchy. Since the filters run on SHAVE processors, all source could should reside in a “shave”
folder, as per MDK conventions.

9.4.1 Filter header file

Each filter must provide a header file, which the application must include in order to use the filter. The
header file contains a function prototype for the filter’s entry point, which is callable by the SIPP framework.
Additionally, it defines the filter’s configuration parameter structure, if any. The following is an example of a
filter header file:

#include <sipp.h>
typedef struct
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{
float strength;
}
RandNoiseParam;

void SVU_SYM(svuGenNoise)(SippFilter *fptr, int svuNo, int runNo);

This  example  filter  adds  random noise  to  an  image.  The  filter  has  one  configurable  parameter,  called
“strength”, which controls the level of the noise to add to the image. The prototype for all SIPP filter entry
points is the same, with the exception of the function name. When this entry point is called, the filter is
expected to produce one scanline’s worth of data. If multiple shaves are assigned to the pipeline, then this
function  will  be  called  simultaneously  on  all  of  those  SHAVEs,  for  a  given  filter.  Each  SHAVE  is  only
responsible for producing a portion of the pixels on the output scanline.

The filter entry point takes the following parameters:

 ptr: Points to the main tracking structure associated with the SIPP filter instance.

 svuNo: The SHAVE processors in a Myriad SOC are numbered, starting with 0. This parameter is
the numerical ID of the SHAVE processing that the code is running on.

 runNo: during the processing of a given frame, the filter will be executed a fixed number of
times, which corresponds to the filter’s output frame size. Each time the filter is executed, this
parameter is incremented by one. At the start of a frame, it is reset to 0.

9.4.2 The SippFilter structure

Every instance of a SIPP filter has a SippFilter structure to track it. This structure contains fields which the
SIPP framework uses internally. Many of these fields however may be referenced by the filter itself. The
following table documents the fields which are relevant to filter developers. The fields are described from
the filter’s  point of  view. Fields in the SippFilter structure which are not described here should not be
modified or interpreted by the filter.

bpp Bytes per pixel in the filter’s output buffer. A filter may support outputting data in 
different formats. It could use this field to determine the expected data output 
format, without requiring a special configuration parameter. For example, if a filter 
supported U8 or U16 output data, it could reference this field to determine which 
type of data it was expected to produce.

nPlanes Number of planes in the filter’s output buffer.

outputW Width of the frame to be output by this filter. This is the total number of pixels that 
will be produced by the filter when it runs, by all SHAVEs.

outputH Height of the frame to be output by this filter. This is the total number of times that 
the filter instance will run, in the course of processing a given frame.

planeStride When more than one plane of data is stored in the filter’s output buffer, this field 
specifies the byte offset from the first pixel in a given plane, to the first pixel in the 
following plane.

params A pointer to the filter’s parameters structure. The meaning of the structure being 
pointed to is specific to each type of filter.

sliceWidth When a filter runs, each SHAVE it runs on is responsible for outputting one “slice” of 
the total scanline. This field specifies how many pixels a single SHAVE is responsible 
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for producing.

dbLinesIn This field provides pointers to the data that the filter will operate on. For each input 
to a filter, one or more lines of the corresponding parent’s output buffer are 
available to the filter to read from. This field is a three-dimensional array. The first 
index specifies the input. The valid range is [0, num_inputs], where num_inputs in
the number of parents the filter has. The second index is used to allow parallelism, 
whereby the frame can do preparation work while the filter is running (the line 
pointers are double-buffered). The filter should always use “runNo & 1” as the 
second index. The third index specifies the line number. The valid range is [0, 
num_lines], where num_lines is the number of input lines the filter operates on, 
as specified by the application at graph creation time, via the nLinesUsed 
parameter to sippLinkFilter(). The lines are in top-to-bottom order. As an 
example, a 5x5 convolution kernel would use line pointers [0, 4] to access 5 lines of 
data in order to apply the convolution.

dbLineOut This field points to the location in the filters output buffer where the filter should 
place the output data. Like dbLinesIn, a double-buffering mechanism is used to 
allow parallelism. The field is in fact an array of two pointers. The filter should always
use “runNo & 1” to index the array.

gi Global Info. Points to a “CommInfo” structure, which is described below.

Table 22: The SippFilter structure

The following fields of the CommInfo structure may be referenced by filters:

shaveFirst First SHAVE assigned to the pipeline (inclusive). SHAVE ID’s are zero-based. The 
SHAVEs assigned to the pipeline must be contiguous.

shaveLast Last SHAVE assigned to the pipeline (inclusive).

curFrame Current frame. Incremented each time the pipeline processes a frame.

Table 23: The CommInfo structure

9.4.3 SIPP Macros & Decorators

The following Macros and Decorators are defined for use in SIPP wrapper functions.

SZ Sizeof

N_PL Number of planes

BPP Bits per pixel

SIPP-AUTO Indicate that SIPP infrastructure is to allocate storage

SIPP_MBIN Decorator to nullify argument on PC;
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DDR_DATA DDR section attribute for Myriad build; Null on PC;

ALIGNED Alignment attribute on Myriad; Null on PC

Section Section attribute on Myriad; NULL on PC

SVU_SYM Mark as Myriad Shave symbol

Table 24: SIPP Argument Decorators
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10 Software filters

10.1 MvCV kernels

The SIPP provides wrappers for some kernels in the MvCV kernel library. All SIPP kernels operate on lines of
pixel elements. 

The wrappers are located within the MDK in common\components\sipp\filters. 

Please read the MvCV documentation on the MDK install folder for details on a particular kernel.

Table 25 illustrates some of the SW kernels available. This is not an exhaustive list as new kernels are added
on a frequent basis.

Kernel Name Description

absdiff computes the absolute difference of two images 

accumulateSquare Adds the square of the source image to the accumulator.

accumulateWeighted Calculates the weighted sum of the input image so that accumulator 
becomes a running average of frame sequence

arithmeticAdd Add two arrays

arithmeticAddmask Add with mask for two arrays

arithmeticSub Subtract two arrays

arithmeticSubFp16ToFp16 Subtract two fp16 arrays

arithmeticSubmask Subtract with mask for two arrays

avg Calculate average of two arrays

bitwiseAnd per-element bit-wise logical conjunction(AND) for two arrays

bitwiseAndMask Per element, bit-wise logical AND for two arrays if element mask == 1

bitwiseNot Per-element bit-wise NOT

bitwiseOr Per-element bit-wise logical conjunction(OR) for two arrays

bitwiseOrMask Per element, bit-wise OR for two arrays if element mask == 1

bitwiseXor Per element, bit-wise Exclusive OR for two arrays 

bitwiseXorMask Per element, bit-wise Exclusive OR for two arrays if element mask == 1

boxFilter Calculates average on variable kernel size, on kernel size number of 
input lines

boxFilterNxN Variants of boxfilter optimized for a specific hardcoded kernel size 

cannyEdgeDetection

Finds edges in the input image image and marks them in the output map
using the Canny algorithm(9x9 kernel size).

The smallest value between threshold1 and threshold2 is used for edge 
linking. The largest value is used to find initial segments of strong edges.
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Kernel Name Description

channelExtract Extracts one of the R, G, B, plane from an interleaved RGB line.

ChromaBlock Apply chroma desaturation and 3x3 color correction matrix.

combDecimDemosaic –

contrast Apply contrast on pixel element 

convNxN Convolution optimized for a specific hardcoded kernel size 

convert16bppTo8bpp Convert UInt16 pixel value to UInt8 value (clamped)

convertPFp16U16 Convert FP16 to U16

convertPU16Fp16 Convert U16 to FP16

convGeneric Generic convolution kernel

convSeparableNxN Optimized for symmetric matrix; Coefficients calculated externally and 
passed as parameter. Optimized for kernel sizes 3, 5, 7, 9 and 11 pixels.

convYuv444 Convert line to YUV444

copy Copy elements from one line to another

cornerMinEigenVal Calculates the minimal eigenvalue of gradient matrices for corner 
detection for one line

cornerMinEigenValpatched Calculates the minimal eigenvalue for one pixel

crop Crop image from a pixel position, Width passed as parameter 

cvtColorFmtToFmt

Color conversion to various formats

- NV21 to RGB

- RGB to Luma

- RGB to NV21

- RGB to UV

- RGB to UV420

- RGB to YUV422

- YUV422 to RGB

- YUV to RGB

dilateNxN

Dilates the source image using the specified structuring element which 
is the shape of a pixel neighborhood over which the maximum is taken. 
Matrix filled with 1s and 0s determines the image area to dilate on 3, 5 
and 7 pixel kernel size variants of Dilate kernel.

dilateGeneric
Dilate kernel with kernel size passed as parameter.

Compute the maximal pixel value overlapped by kernel and replace the 
image pixel in the anchor point position with that maximal value.

equalizeHist Equalizes the histogram of a grayscale image. The brightness is 
normalized. As a result, the contrast is improved. 

erodeNxN  3, 5 and 7 kernel size variants of Erode
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Kernel Name Description

erodeGeneric

Compute a local minimum over the area of the kernel. As the The kernel 
is scanned over the image, we compute the minimal pixel value 
overlapped by and replace the image pixel under the anchor point with 
that minimal value. 

fast9 Feature/keypoint detection algorithm 

fast9M2 Feature/keypoint detection algorithm for Myriad 2

gauss Apply Gaussian blur/smoothing

gaussHx2_fp16 Apply downscale 2x horizontal with a Gaussian filters with kernel 5x5.

gaussVx2_fp16 Apply downscale 2x vertical with a Gaussian filters with kernel 5x5.

genChroma

Generate Chrominance from RGB input data and Luma.

Variants for U8, U16, Float16 input; 

Used in Image Signal processing pipeline.

genDnsRef Generate reference for hardware accelerator denoise algorithm; Used in 
Image Signal processing pipeline.

genLuma Generate Luminance from RGB input; Used in Image Signal processing 
pipleine.

harrisResponse Harris corner detector

histogram Computes a histogram on a given line to be applied to all lines of an 
image.

homography Homography transformation.

integralImageSqSumF32 Sum of all squared pixels before current pixel (columns to the left and 
rows above). Output in Float32 precision.

integralImageSqSumU32 Sum of all squared pixels before current pixel (columns to the left and 
rows above). Output in Unsigned 32b Integer precision.

integralImageSumF32 Sum of all pixels before current pixel (columns to the left and rows 
above). Output in Float32 precision.

integralImageSumU16U32 Sum of all pixels before current pixel (columns to the left and rows 
above). Input 16b Unsigned integer, Output in Float32 precision.

integralImageSumU32 Sum of all pixels before current pixel (columns to the left and rows 
above). Output in Unsigned 32b Integer precision.

laplacianNxN
Laplacian differential operator.

Optimized for 3x3, 5x5, and 7x7 kernel sizes

localTM Local Tone map operator

lowLvlCorr
Low level pixel value correction.

Single plane operation.

lowLvlCorrMultiplePlanes
Low level pixel value correction.

Optimized to operates on three plane (Reg, Green, Blue)
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Kernel Name Description

lumaBlur Blur operator on luma channel.

lutNtoM
Look-up-table operator.

Variants for 10 to 16, 10 to 8, 12 to 16, 12 to 8, 8 to 8.

medianFilterNxN Median filter; Variants for 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, and 15x15 
resolutions.

minMaxPos Computes the minimum and the maximum pixel value in a given input 
line and their position.

minMaxValue Computes the minimum and the maximum pixel value in a given input 
line.

negative Invert pixel values

positionKernel returns the position of a given pixel value.

pyrDown Pyramid operator using 5x5 gauss downscale operator.

randNoise Random noise generator U8 output

randNoiseFp16 Random noise – FP16 output

sadNxN

Sum of Absolute Differences. 

taking the absolute difference between each pixel in the original block 
and the corresponding pixel in the block being used for comparison. 

Variants for 5x5 and 11x11 block sizes.

scale05bilinHV
Bilinear downscale filter with 0.5 factor – Horizontal and Vertical 
directions.

Variants for U8 in/out; Fp16 in/out and Fp16 in/U8 out

scale05Lanc6HV Apply a lanczos downscale, with factor 0.5, and 6 taps; Horizontal and 
vertical directions.

scale05Lanc7HV Apply a lanczos downscale, with factor 0.5, and 7 taps; Horizontal and 
vertical directions.

scale2xBilinHV Bilinear upscale – 2x, horizontal & vertical

scale2xLancH Lanczos upscale – 2x, horizontal

scale2xLancHV Lanczos upscaling – 2x, horizontal & vertical

scale2xLancV Lanczos upscaling – 2x, vertical

scaleBilinArb Bilinear scale, arbitrary X and Y scale factors

sobel Sobel edge detection operator

ssdNxN
Sum of Squared Differences (SSD), the differences are squared and 
aggregated within a square window. Optimized for 5x5 and 11x11 
window resolutions

threshold
Computes the output pixel values based on a threshold value and a 
threshold type:

- To_Zero: values below threshold are zeroed 
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Kernel Name Description

- To_Zero_Inv: opposite of Thresh_To_Zero

- To_Binary: values below threshold are zeroed and all others are 
saturated to pixel max value

- Binary_Inv: opposite of Thresh_To_Binary

- Trunc: values above threshold are given threshold value (Default 
type)

thresholdBinaryRange This kernel set output to 0xFF if pixel value is in specified range, 
otherwise output = 0.

thresholdBinaryU8 This kernel set output to 0 if threshold value is less then input value and 
to 0xFF if threshold value is greater then input value

undistortBrown
Apply undistort using Brown's distortion model for known lens distortion
coefficients. It supports radial (up to 2 coef.) and tangential distortions 
(up to 2 coef).

whiteBalanceBayerGBRG Calculate white balance gains for Bayer GBRG input

whiteBalanceRGB Calculate white balance gains for RGB input 

Table 25: SIPP Software Kernels 
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Appendix A  –  MA2100 to MA2x5x SIPP Framework Migration

A.A SIPP MA2x5x framework

At its core the job of the SIPP MA2x5x framework remains the same as the MA2100 framework. Its task
involves a graph of connected filters. Data is streamed from one filter to the next, on a scanline-by-scanline
basis. Images are consumed in raster order. Scanline buffers are located in low-latency local memory (CMX).
No DDR accesses should be necessary (other than accessing any pipeline input or output images located in
DDR, using DMA copies to/from local memory).  In addition to the performance and power benefits of
avoiding DDR accesses, the design can also reduce hardware costs, allowing stacked DDR to be omitted for
certain types of applications

SIPP  MA2x5x  framework  architecture  has  been  further  motivated  by  a  desire  to  free  micro-processor
resource from being entirely consumed by SIPP pipeline while the pipeline is operational. This has led to the
creation of a nonblocking API for frame processing, expanded upon further in A.B.A.

The impact of switch to a non-blocking asynchronous API is felt to a minor degree in terms of performance.
However, the reduction in performance is not significant enough to effect any but the highest throughput
ISP pipelines. For these pipelines, the blocking synchronous mode API is retained (with the same limitations
as on MA2100 framework) for use if desired. Further to this an alternative programming paradigm for ISP
pipelines is provided within the MDK – the OPipe. The OPipe component is expected to service the highest
performance ISP pipelines now.

A.B SW functionality changes

A.B.A API changes

➢ Non blocking functionality

The main feature add of the MA2x5x SIPP framework is in the addition of a non-blocking API for frame
processing. This enables processing resource to be applied to other tasks when not required by the SIPP
framework during the processing of the frame.

The SIPP framework operates in interrupt context during the run time for the frame. At the end of each line
interrupts will be taken form constituent parts of the pipeline and a decision made on the suitability of the
system to move to the next line or to complete the frame at the appropriate point.

The asynchronous behavior mandated that the framework provides a mechanism to its clients to pass back
information on the progress of  the pipelines.  This  is  achieved through allowing the client to register a
pipeline specific callback function. The framework will execute this callback inline when an event is raised
on the associated pipeline. Since this event will most likely be raised in interrupt context, it is considered
good practice for the registered callback function to do no more than set a flag indicating that the client
should take care of the event in thread context at a future point.

An example of such an implementation is described in the code snippet following.

void appSippCallback ( SippPipeline *             pPipeline,
                       eSIPP_PIPELINE_EVENT       eEvent,
                       SIPP_PIPELINE_EVENT_DATA * ptEventData
                     )
{
    if (eEvent == eSIPP_PIPELINE_FRAME_DONE)
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    {
        printf ("appSippCallback : Frame done event received : \n");
        testComplete = 1;
    }
}

int main (int argc, char *argv[])
{
    pPipe = sippCreatePipeline(0, 7, SIPP_MBIN(mbinImgSipp));
    ...

    // Register callback for async API
    sippRegisterEventCallback (pPipe,
                               appSippCallback);

    ...

    sippProcessFrameNB (pPipe);

    ...

    while ( testComplete == 0x0 )
    {

    }

    ...

    return 0;
}

In this situation, the client creates a pipeline and then registers a function – appSippCallback() with the
framework. After calling sippProcessFrameNB the application is free to carry on with other tasks. At some
future  point  the  SIPP  framework  calls  the  registered  callback  function and  signals  that  the  frame has
completed by passing this function the eSIPP_PIPELINE_FRAME_DONE event.

The callback function sets a flag which the client may check using some mechanism in thread context. It
may then continue on to some other event on the pipeline.

➢ Concurrent pipeline support

A  non  blocking  API  allows  the  SIPP  MA2x5x framework  to  present  an  interface  enabling  concurrent
operations on distinct pipelines. The client is free to call sippProcessFrameNB() for all pipelines. Control over
how and when each pipeline will e scheduled will ne handled by the framework. 

Consider a situation in which sippProcessFrameNB is called for 4 created pipelines. A decision on which of
the pipelines is to be scheduled first is made by the framework's scheduling algorithm. Once this pipeline is
launched,  the  other  pipelines  will  also  be  considered.  If  any  is  capable  of  running  alongside  the  first
scheduled  pipeline,  a  further  pipeline  may  be  launched.  And  again  the  remaining  pipelines  will  be
considered in terms of their suitability for running alongside all currently scheduled pipelines.

What makes pipelines suitable for concurrent operation is naturally a lack of conflict in the resource they
require. That is to say should two pipelines not share the same HW filters or desire to use the same SHAVE
units, then they can rum together. 

It should be noted that in the  SIPP MA2x5x framework only the non blocking API will enable concurrent
operation as the runtime employed y the blocking API can handle only one pipeline at a time (as per the
SIPP MA2100 framework). 
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A.C HW filter changes between MA2100 and MA2x5x

 Filters Removed: 
◦ Bayer demosaicing post-processing median filter.

 New Filters: 
◦ Sigma Denoise:

- Operates in Bayer domain, or on planar data.
◦ Gen Chroma (RGB in, 3-plane chroma out):

- Includes Purple Flare Reduction and Dark Area Desaturation filters.
◦ Difference of Gaussians noise reduction/Local Tone Mapping (4x modes of operation): 

- DoG only: output is a thresholded difference of Gaussians (LTM filter is bypassed).
- LTM only: output is local tone-mapped input (DoG is bypassed).
- Denoise  mode:  output  is  input  minus  thresholded  difference  of  Gaussians  (LTM  filter  is

bypassed).
- DoG+LTM mode: output is local tone-mapped input minus thresholded difference of Gaussians.

 Extra Scalers: 
◦ Now have 3x instances of poly-phase scaler.
◦ All instances are identical, however:

- Instance 0 has its own configuration registers, but,
- Instances 1 and 2 share a single set of configuration registers.

◦ (Imagined use case is arbitrary scaling of YUV 4:4:4 to 4:2:2 or 4:2:0 where instance 0 handles Y and
instances 1 and 2 handle U and V, sharing the same scaling ratio and filter coefficients.).

◦ Scaler coefficients are now in a special biased 8 bit format (previously they were FP16).
 Filters Enhanced: 

◦ Harris Filter:
- Added support for optional output of determinant.

◦ Convolution Kernel:
- Added support for even/odd coefficient sets (e.g. for Bayer processing) by borrowing shadow

coefficients.
◦ Edge Operator:

- Increased  precision  of  angle  output  to  1.41  degrees,  i.e.  angle  is  now  represented  by  an
unsigned 8 bit integer between 0 and 255, directly usable for indexing bins of histogram.

- OpenVX compatibility.
◦ RAW Filter:

- Enhanced AE/AWB stats (special handling of saturated and dark pixels).
- Added support for static defect correction (reads in defect list, handles defect rows/columns).
- Added AF stats.
- 256 bin luma histogram (up from 64).
- 128 bin RGB histograms.

◦ Bayer Demosaicing Filter:
- Added luma generation (i.e. can output luma as well as RGB).
- Added fast preview mode (downscale-demosaic).

◦ Chroma Denoise:
- Added Gaussian 3x3 pre-filter.
- Support for 1, 2 (previously unsupported) or 3-plane operation.
- Added optional Grey Desaturation post-filter step.

◦ Luma Denoise:
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- Added reference generation block (Cosine 4th law LUT plus Gamma Adjustment).
- Removed reference input buffer.
- Corrected various problems missed in V1 verification.

◦ Median Filter:
- Added support for alpha blending of median filtered output with input based on luma input.
- Added new luma input buffer.

◦ LUT Filter:
- Added support for color space conversion of output (in 3-plane mode).
- Added requirement that LUT filter is enabled before LUT load request.
- LUT load requests are now scheduled. Will occur after frames, or immediately if no frame start

has been seen.
◦ Color combination filter:

- Removed dark area desaturation step.
- Added 3D LUT.

◦ MIPI Rx filter:
- Added line counter and interrupt on designated line.
- Line may be based on window line or output line.
- Deprecated packed windows feature.

 New Generic/Universal Features: 
◦ Support for packed RAW10/12 buffers in Sigma Denoise, LSC and RAW filters.
◦ Support for packed RAW10/12 input buffer in Bayer Demosaicing Filter.
◦ Support for packed RAW10/12 output buffers in MIPI Rx filters.
◦ Universal support for unaligned output buffers.
◦ Restricted support for unaligned input buffers:

- The following selected filter input buffers may have any alignment:
 Median filter (primary input buffer, luma buffer must be aligned).
 Look up table (primary input buffer, LUT buffer itself must be aligned).
 Edge Operator.
 Convolution Kernel.
 Harris Filter.
 Polyphase scalers (all instances).

A.D SIPP MA2100 to MA2x5x porting checklist

This chapter will provide a basic guide to users wishing to run existing SIPP MA2100 applications on SIPP
MA2x5x framework targeted at MA2x5x.

The  SIPP MA2x5x framework provides an API which is to a large degree a superset of the  SIPP MA2100
framework. That is to say the SIPP MA2100 API continues to be almost fully supported in SIPP MA2x5x. This
approach  facilitates  the  most  expedient  route  for  porting  existing  applications  to  the  SIPP  MA2x5x
framework.

As a general  rule then it  may be said  that all  SIPP MA2100 applications should build  and run on  SIPP
MA2x5x. The exceptions to this rule are detailed in the remainder of this chapter. In brief these are broken
down into a small number of API changes and the evolution of the underlying hardware on the targeted
platforms.

A.E Pipeline level

One fundamental difference in the MA2x5x SIPP HW versus MA2100 is the increased efficiency of the ISP
pipeline.  The  throughput  of  the  system has  been  optimized  through  implementing  direct  connections
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between HW filters. These connections are implemented via the inclusion of local line buffers (LLBs) within
the filters themselves. Within these line buffers sufficient data may be held to allow one line of output from
the filter to be produced at the filter's maximum operating resolution.

While the inclusion of the local line buffer aids in delivering increased performance while minimizing the
power requirements of the pipelines, a consequence of their  use is an increased complexity in context
saving the filter status. For this reason, context switching has been dispensed with in the  SIPP MA2x5x
framework. This has several consequences. Chief among these are the removal of the sippProcessIters() API
and the requirement that no hardware filter (bar the Polyphase Scalar)  may appear twice in the same
pipeline. These consequences are covered in more detail in the sections following

A.F Removal of sippProcessIters

The sippProcessIters() API allowed a sub-frame level of processing to be achieved. In turn this enabled the
application to  begin  and  carry  out  other  tasks  which  were  latency  sensitive  during  the  course  of  the
processing of a full frame of data.

One of  the motivations behind this  (the latency of  operation) has been addressed by providing a non-
blocking version of the API freeing the application to begin other tasks while the SIPP framework looks after
processing a full frame. Furthermore the new framework can practice real concurrency if pipelines where
available. That is to say pipelines which do not have any conflict of resource in terms of SHAVEs or HW
filters will be run concurrently by the new framework.

A.G No multiple use of HW filter in same pipe

The inability to simply context switch many of the HW filters of MA2x5x as stated in A.E dictates that no HW
filter may be used twice in the same pipeline. Therefore for situations in which a current application has
specified such a SIPP pipeline, the workaround is to decompose the existing single pipeline into more than
one new pipelines, the number of new pipelines being set by the maximum number of times any single HW
filter appears in the original pipeline. Each new pipeline will use the HW filter once (as well as other filters if
necessary), and will leave one frame of data in DDR memory. This data then becomes the input for a second
pipeline, again employing the same HW filter.

Note that multiple use of the same SW filter does not impose this constraint.

Note also that MA2x5x contains three instantiations of the Polyphase Scalar filter. Therefore these three
units may each be used in a pipeline without creating the need to decompose the pipeline into multiple
sub-pipes.

A.H Filter level

A.H.A Removed filters

Only the Bayer demosaicing post-processing filter has not been retained between MA2100 and MA2x5x.
Clearly therefore applications which created pipelines using the Bayer demosaicing post-processing filter on
MA2100 must be modified to use alternatives when targeting MA2x5x.

A.H.B Retained Filters
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There are 12 filters which have persisted between MA2100 and MA2x5x. In many cases improvements in
the HW design  may mean that  the  same configuration produces  slightly  different  results.  Any bitwise
checking on the output of such operations should take this into account.

In many cases the retained filters have been enhanced with additional features. Some of these features are
“always on” while some are explicitly enabled. The new features are not dealt with in the context of this
porting document.

The following sub-sections detail the porting considerations for each of the 12 retained HW filters in turn.

➢ Harris Corner

The Harris filter is now capable of doing its own padding. Therefore the slight cropping of the image which
was necessary in MA2100 is no longer required in MA2x5x. Therefore input and output resolution should be
the same.

➢ Edge Detection

There are no porting requirements for this filter. SIPP MA2100 configurations should be fully compatible
with SIPP MA2x5x.

➢ Convolution

There are no porting requirements for this filter. SIPP MA2100 configurations should be fully compatible
with SIPP MA2x5x.

➢ Lens Shading correction

There are no porting requirements for this filter. SIPP MA2100 configurations should be fully compatible
with SIPP MA2x5x.

➢ RAW

When computing AE stats, these AE stats are now stored in a manner conforming with the following c-
struct:

typedef struct
{
    uint32_t count    [4]; // number of pixels in alternative 
accumulation.
    uint32_t accum    [4]; // accumulation of pixels within limits
    uint32_t alt_accum[4]; // accumulation of pixels outside limits

} ae_patch_stats;

On MA2100 these stats were just a simple uint32 array. If using the RAW filter for AE stats on MA2x5x the
memory written will be larger than with MA2100. Care should be taken to ensure the memory allocation for
this area reflects this.

➢ Debayer

The debayer filter is capable of producing two outputs in MA2x5x. These are RGB and Luma outputs. Each
must be explicitly enabled. Therefore to port a MA2100 SIPP FW application using the debayer, the RGB
output must be explicitly enabled now. This is done by setting bit 25 of the thresh member of the debayer
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parameter structure as so...

debayer            = sippCreateFilter ( pipeLine, 
                                        0x0, 
                                        PIPELINE_WIDTH, 
                                        PIPELINE_HEIGHT,
                                        N_PL(NUM_DEBAYER_PLANES), 
                                        SZ(UInt8), 
                                        SIPP_AUTO, 
                                        (FnSvuRun)SIPP_DBYR_ID, 
                                        0);
debayerCfg         = (DbyrParam *)debayer->params;
debayerCfg->thresh = ((0x1)<<25);

On MA2x5x, HW enhancements mean the debayer filter no longer crops the image. Therefore the input and
output resolutions for this filter will remain the same. Existing applications do not necessarily need to be
updated for this but the option is now available.

➢ Median

There are no porting requirements for this filter. SIPP MA2100 configurations should be fully compatible
with SIPP MA2x5x.

➢ Luma Denoise

The luma denoise filter now has its own reference generation block. This means the reference input buffer
has been removed and pipelines using this block must be suitably adjusted to remove this input.

The kernel size for this unit has also been modified to 11x11.

➢ Chroma Denoise

The chroma denoise filter is now a composite of 3 units. At the front-end there is a 3x3 Gaussian filter,
followed by the main chroma denoise algorithm. Lastly there is a gray point desaturation unit.

Having the 3x3 Gaussian filter at the front means that the kernel width and height of the chroma denoise
unit as used in sippLinkFilter API must be set to a kernel width of 3 and a kernel height of 3.

The 3x3 Gaussian filter may not be bypassed but of-course its effects can be eliminated through the use of
the correct coefficients.

The gray point desaturation unit may be bypassed if desired but this must be explicitly added as per the
code following.

chromadnsCfg       = sippCreateFilter ( pipeLine, 
                                        0x0, 
                                        PIPELINE_WIDTH, 
                                        PIPELINE_HEIGHT,
                                        N_PL(NUM_CHROMADNS_PLANES), 
                                        SZ(UInt8), 
                                        SIPP_AUTO, 
                                        (FnSvuRun)SIPP_CHROMA_ID, 
                                        0);
chromadnsCfg         =  (ChrDnsParam *)chromadns->params;
chromadnsCfg->grayPt = (1 << 31);
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➢ Sharpen

There are no porting requirements for this filter. SIPP MA2100 configurations should be fully compatible
with SIPP MA2x5x.

➢ Color combination

The color combination unit has a 3D LUT included in MA2x5x. To maintain MA2100 functionality this LUT
must  be  explicitly  bypassed.  This  is  achieved  by  setting  bit  3  of  the  cfg  member  of  the  color  comb
parameters structure as follows:

colorComb         = sippCreateFilter ( pipeLine, 
                                       0x0, 
                                       PIPELINE_WIDTH, 
                                       PIPELINE_HEIGHT,
                                       N_PL(NUM_COL_COMB_PLANES),
                                       SZ(half), 
                                       SIPP_AUTO, 
                                       (FnSvuRun)SIPP_CC_ID, 
                                       0);
colorCombCfg      = (ColCombParam *)colorComb->params;
colorCombCfg->cfg = (1 << 3);

➢ Polyphase Scalar

On MA2Xx5x filter coefficients are programmed as 8 bit values in the range [0, 255] where the programmed
value, val, maps to the signed fixed-point coefficient, coeff, as follows:

val = (coeff * 128) + 64

This gives a coefficient range of [-0.5, 1.49219]. Programmed values of 0x40 and 0xc0 therefore correspond
to a coefficients of 0.0 and 1.0 respectively. The filter data-path is FP16, the programmed coefficients are
converted to FP16 values for operation and the filter can process either normalized FP16 or U8F input
buffers.

Any  application using  a  polyphase  scalar  being  mapped to  MA2x5x  needs  to  have  the  coefficient  set
remapped to this new range and bit width.
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