
MIPS R2000 Assembly Language

Arithmetic and Logical Instructions

Instruction Format Comment

Absolute value

abs rdest, rsrc

pseudoinstruction Put the absolute value of register

rsrc in register rdest

Addition (with overflow)

add rd, rs, rt

Addition (without overflow)

addu rd, rs, rt

Put the sum of the register rs and

rt into register rd

Addition immediate

(with overflow)

addi rt, rs, imm

Addition immediate

(without overflow)

addiu rt, rs, imm

Put the sum of register rs and the

sign-extended immediate into

register rt

AND

and rd, rs, rt

Put the logical AND of register rs

and rt into register rd

AND immediate

andi rt, rs, imm

Put the logical AND of register rs

and the zero-extended immediate

into register rt

Divide (with overflow)

div rs, rt

Divide (without overflow)

divu rs, rt

Divide register rs by register rt.

Leave the quotient in register lo

and the remainder in register hi. If

an operand is negative, the

remainder is unspecified by the

MIPS architecture and depends

on the convention of the machine

on which SPIM is run.

Divide (with overflow)

div rdest, rsrc1, src2

pseudoinstruction

Divide (without overflow)

div rdest, rsrc1, src2

pseudoinstruction Put the quotient of register rsrc1

and src2 into register rdest.

Multiply

mult rs, rt

Unsigned multiply

multu rs, rt

Multiply registers rs and rt. Leave

the low-order word of the product

in register lo and the high-order

word in register hi

6 5 5 5 5 6

0 rs rt rd 0 0x21

6 5 5 5 5 6

0 rs rt rd 0 0x20

6 5 5 16

8 rs rt imm

6 5 5 16

9 rs rt imm

6 5 5 5 5 6

0 rs rt rd 0 0x24

6 5 5 16

0xc rs rt imm

6 5 5 10 6

0 rs rt 0 0x1a

6 5 5 10 6

0 rs rt 0 0x1b

6 5 5 10 6

0 rs rt 0 0x18

6 5 5 10 6

0 rs rt 0 0x19

Multiply (without overflow)

mul rdest, rsrc1, src2

pseudoinstruction

Multiply (with overflow)

mulo rdest, rsrc1, src2

pseudoinstruction

Unsigned multiply (with

overflow)

mulou rdest, rsrc1, src2

pseudoinstruction Put the product of register rsrc1

and src2 into register rdest.

Negate value (with overflow)

neg rdest, rsrc

pseudoinstruction

Negate value (without

overflow)

negu rdest, rsrc

pseudoinstruction Put the negative of register rsrc

into register rd.

NOR

nor rd, rs, rt

Put the logical NOR of registers

rs and rt into register rd

NOT

not rdest, rsrc

pseudoinstruction Put the bitwise logical negation of

register rsrc into register rdest.

OR

or rd, rs, rt

Put the logical OR of registers rs

and rt into register rd.

OR immediate

ori rt, rs, imm

Put the logical OR of register rs

and the zero-extended immediate

into register rt.

Remainder

rem rdest, rsrc1, rsrc2

pseudoinstruction

Unsigned remainder

rem rdest, rsrc1, rsrc2

pseudoinstruction Put the remainder of register rsrc1

divided by register rsrc2 into

register rdest. If an operand is

negative, the remainder is

unspecified by the MIPS

architecture and depends on the

convention of the machine on

which SPIM is run.

Shift left logical

sll rd, rt, shamt

Shift left logical variable

sllv rd, rt, rs

Shift right arithmetic

sra rd, rt, shamt

Shift right arithmetic

variable

srav rd, rt, rs

Shift right logical

srl rd, rt, shamt

6 5 5 5 5 6

0 rs rt rd 0 0x27

6 5 5 5 5 6

0 rs rt rd 0 0x25

6 5 5 16

0xd rs rt imm

6 5 5 5 5 6

0 rs rt rd shamt 0

6 5 5 5 5 6

0 rs rt rd 0 4

6 5 5 5 5 6

0 rs rt rd shamt 3

6 5 5 5 5 6

0 rs rt rd 0 7

6 5 5 5 5 6

0 rs rt rd shamt 2

Shift right logical variable

srlv rd, rt, rs

Shift register rt left (right) by the

distance indicated by the

immediate shamt or the register rs

and put the result into register rd.

Argument rs is ignored for sll,

sra, and srl.

Rotate left

rol rdest, rsrc1, rsrc2

pseudo-instruction

Rotate right

ror rdest, rsrc1, rsrc2

pseudo-instruction Rotate register rsrc1 left (right) by

the distance indicated by rsrc2

and put the result into register

rdest.

Subtract (with overflow)

sub rd, rs, rt

Subtract (without overflow)

subu rd, rs, rt

Put the difference of registers rs

and rt into register rd.

Exclusive OR

xor rd, rs, rt

Put the logical XOR of registers

rs and rt into register rd.

XOR immediate

xori rt, rs, imm

Put the logical XOR of register rs

and the zero-extended immediate

into register rt.

Constant-Manipulating Instructions

Load upper immediate

lui rt, imm

Load the lower halfword of the

immediate imm into the upper

halfword of register rt. The lower

bits of the register are set to 0.

Load immediate

li rdest, imm

pseudoinstruction Move the immediate imm into

register rdest.

Comparison instructions

Set less than

slt rd, rs, rt

Set less than unsigned

sltu rd, rs, rt

Set register rd to 1 if register rs is

less than rt, and to 0 otherwise.

Set less than immediate

slti rd, rs, imm

Set less than unsigned

immediate

sltiu rd, rs, imm

Set register rd to 1 if register rs is

less than the sign-extended

immediate, and to o otherwise.

Set equal

seq rdest, rsrc1, rsrc2

pseudoinstruction Set register rdest to 1 if register

rsrc1 equals rsrc2, and to 0

otherwise.

6 5 5 5 5 6

0 rs rt rd 0 6

6 5 5 5 5 6

0 rs rt rd 0 0x22

6 5 5 5 5 6

0 rs rt rd 0 0x23

6 5 5 5 5 6

0 rs rt rd 0 0x26

6 5 5 16

0xe rs rt imm

6 5 5 16

0xf 0 rt imm

6 5 5 5 5 6

0 rs rt rd 0 0x2a

6 5 5 5 5 6

0 rs rt rd 0 0x2b

6 5 5 16

0xa rs rd imm

6 5 5 16

0xb 0 rt imm

Set greater than equal

sge rdest, rsrc1, rsrc2

pseudoinstruction

Set greater than equal

unsigned

sgeu rdest, rsrc1, rsrc2

pseudoinstruction Set register rdest to 1 if register

rsrc1 is greater than or equal to

register rsrc2, and to 0 otherwise.

Set greater than

sgt rdest, rsrc1, rsrc2

pseudoinstruction

Set greater than unsigned

sgtu rdest, rsrc1, rsrc2

pseudoinstruction Set register rdest to 1 if register

rsrc1 is greater than register rsrc2,

and to 0 otherwise.

Set less than equal

sle rdest, rsrc1, rsrc2

pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrc1, rsrc2

pseudoinstruction Set register rdest to 1 if register

rsrc1 is less than or equal to rsrc2,

and to 0 otherwise.

Branch instructions

Branch instruction

b label

pseudoinstruction Unconditionally branch to the

instruction at the label.

Branch coprocessor z true

bczt label

Branch coprocessor z false

bczf label

Conditionally branch the number

of instructions specified by the

offset if z’s condition flag is true

(false). z is 0, 1, 2, or 3. The

floating point unit is z = 1.

Branch on equal

beq rs, rt, label

Conditionally branch the number

of instructions specified by the

offset if register rs equals rt.

Branch on greater than

equal zero

bgez rs, label

Conditionally branch the number

of instructions specified by the

offset if register rs is greater than

or equal to 0.

Branch on greater than

equal zero and link

bgezal rs, label

Conditionally branch the number

of instructions specified by the

offset if register rs is greater than

or equal to 0. Save the address of

the next instruction in register 31.

Branch on greater than zero

bgtz rs, label

Conditionally branch the

instructions specified by the

offset if register rs is greater than

0.

6 5 5 16

0x1z 8 1 offset

6 5 5 16

0x1z 8 0 offset

6 5 5 16

4 rs rt offset

6 5 5 16

1 rs 1 offset

6 5 5 16

1 rs 0x11 offset

6 5 5 16

7 rs 0 offset

Branch on less than equal

zero

blez rs, label

Conditionally branch the

instructions specified by the

offset if register rs is less than or

equal to 0.

Branch on less than zero and

link

bltzal rs, label

Conditionally branch the

instructions specified by the

offset if register rs is less than 0.

Save the address of the next

instruction in register 31.

Branch on less than zero

bltz rs, label

Conditionally branch the

instructions specified by the

offset if register rs is less than 0.

Branch on not equal

bne rs, rt, label

Conditionally branch the

instructions specified by the

offset if register rs is not equal to

rt.

Branch on equal zero

beqz rsrc, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc equals 0.

Branch on greater than

equal

bge rsrc1, rsrc2, label

pseudoinstruction

Branch on greater than

equal unsigned

bgeu rsrc1, rsrc2, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc1 is greater than or equal to

rsrc2.

Branch on greater than

bgt rsrc1, src2, label

pseudoinstruction

Branch on greater than

unsigned

bgtu rsrc1, src2, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc1 is greater than src2.

Branch on less than equal

ble rsrc1, src2, label

pseudoinstruction

Branch on less than equal

unsigned

bleu rsrc1, src2, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc1 is less than or equal to src2.

Branch on less than

blt rsrc1, src2, label

pseudoinstruction

Branch on less than

unsigned

bltu rsrc1, src2, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc1 is less than src2.

6 5 5 16

6 rs 0 offset

6 5 5 16

1 rs 0x10 offset

6 5 5 16

1 rs 0 offset

6 5 5 16

5 rs rt offset

Branch on not equal zero

bnez rsrc, label

pseudoinstruction Conditionally branch to the

instruction at the label if register

rsrc is not equal to zero

Jump instructions

Jump

j target

Unconditionally jump to the

instruction at target.

Jump and link

jal target

Unconditionally jump to the

instruction at target. Save the

address of the next instruction in

register $ra.

Jump and link register

jalr rs, rd

Unconditionally jump to the

instruction whose address is in

register rs. Save the address of the

next instruction in register rd

(which defaults to 31).

Jump register

jr rs

Unconditionally jump to the

instruction whose address is in

register rs.

Load instructions

Load rdest, address

la rdest, address

pseudoinstruction Load computed address – not the

contents of the location – into

register rd.

Load byte

lb rt, address

Load unsigned byte

lbu rt, address

Load the byte at address into

register rt. The byt is sign-

extended by lb, but not by lbu.

Load halfword

lh rt address

Load unsigned halfword

lhu rt, address

Load the byte at address into

register rt. The byt is sign-

extended by lh, but not by lhu.

Load word

lw rt, address

Load 32-bit word at address into

register rt.

Load word coprocessor

lwcz rt, address

Load the word at address into

register rt of coprocessor z (0-3).

The FP unit is z = 1.

Load word left

lwl rt, address

6 26

2 target

6 26

3 target

6 5 5 5 5 6

0 rs 0 rd 0 9

6 5 5 5 5 6

0 rs 0 0 0 8

6 5 5 16

0x20 rs rt offset

6 5 5 16

0x24 rs rt offset

6 5 5 16

0x21 rs rt offset

6 5 5 16

0x25 rs rt offset

6 5 5 16

0x23 rs rt offset

6 5 5 16

0x3z rs rt offset

6 5 5 16

0x22 rs rt offset

Load word right

lwr rt, address

Load the left (right) bytes from

the word at the possibly unaligned

address into register rt.

Load doubleword

ld rdest, address

pseudoinstruction Load the 64-bit double word at

address into registers rdest and

rest + 1.

Unaligned load halfword

ulh rdest, address

pseudoinstruction

Unaligned load halfword

unsigned

ulhu rdest, address

pseudoinstruction Load the 16-bit halfword at the

possibly unaligned address into

register rdest. The halfword is

sign-extended by ulh, but not

ulhu.

Unaligned load word

ulw rdest, address

pseudoinstruction Load the 32-bit word at the

possibly unaligned address into

register rdest.

Store instructions

Store byte

sb rt, address

Store the low byte from register rt

at address.

Store halfword

sh rt, address

Store the low halfword from

register rt at address.

Store word

sw rt, address

Store the word from register rt at

address.

Store word coprocessor

swcz rt, address

Store the word from register rt of

coprocessor z at address. The FP

unit is z=1.

Store word left

swl rt, address

Store word right

swr rt, address

Store the left (right) bytes from

register rt at the possibly

unaligned address.

Store doubleword

sd rsrc, address

pseudoinstruction Store the 64-bit double word in

registers rsrc and rsrc+1 at

address

Unaligned store halfword

ush rsrc, address

pseudoinstruction Store the low halfword from

register rsrc at the possibly

unaligned address.

Unaligned store word

usw rsrc, address

pseudoinstruction Store the word from register rsrc

at the possibly unaligned address.

6 5 5 16

0x26 rs rt offset

6 5 5 16

0x28 rs rt offset

6 5 5 16

0x29 rs rt offset

6 5 5 16

0x2b rs rt offset

6 5 5 16

0x2z rs rt offset

6 5 5 16

0x2a rs rt offset

6 5 5 16

0x2e rs rt offset

Data movement instructions

Move from hi

mfhi rd

Move from lo

mflo rd

The multiply and divide unit

produces its results in two

additional registers, hi and lo.

These instructions move values to

and from these registers.

Move the hi (lo) register to

register rd.

Move to hi

mthi rs

Move to lo

mtlo rs

Move register rs to the high (lo)

register.

Move from coprocessor z

mfcz rt, rd

Coprocessors have their own

register sets. These instructions

move values between these

registers and the CPU’s registers.

Move coprocessor z’s register rd

to CPU register rt. The FP unit is

z=1.

Move double from

coprocessor 1

mfc1.d rdest, frsrc1

pseudoinstruction Move FP registers frsrc1 and

frsrc1+1 to CPU registers rdest

and rdest+1.

Move to coprocessor z

mtcz rd, rt

Move CPU register rt to

coprocessor z’s register rd.

FP instructions (vergl. Patterson/Hennessy: Computer Organization & Design)

Exception and interrupt instructions

Return from exception

rfe

Restore the status register.

System call

syscall

Register $v0 contains the number

of the systems call provided by

SPIM

Break

break code

Cause exception code. Exception

1 is reserved for the debugger.

No operation

nop

Do nothing

6 5 5 5 5 6

0 0 0 rd 0 0x10

6 5 5 5 5 6

0 0 0 rd 0 0x12

6 5 5 5 5 6

0 rs 0 0 0 0x11

6 5 5 5 5 6

0 rs 0 0 0 0x13

6 5 5 5 5 6

0x1z 0 rt rd 0 0

6 5 5 5 5 6

0x1z 4 rt rd 0 0

6 1 9 5 5 6

0x10 1 0 0 0 0x20

6 5 5 5 5 6

0 0 0 0 0 0xc

6 5 5 5 5 6

0 0 0 0 0 0

20

code

6 6

0 0xd

MIPS Register und Konventionen für die Verwendung der Register

Register name Number Usage

$zero 0 constant 0

$at 1 reserved for assembler

$v0 2 expression evaluation and results of a function

$v1 3 expression evaluation and results of a function

$a0 4 argument 1

$a1 5 argument 2

$a2 6 argument 3

$a3 7 argument 4

$t0 8 temporary (not preserved across call)

$t1 9 temporary (not preserved across call)

$t2 10 temporary (not preserved across call)

$t3 11 temporary (not preserved across call)

$t4 12 temporary (not preserved across call)

$t5 13 temporary (not preserved across call)

$t6 14 temporary (not preserved across call)

$t7 15 temporary (not preserved across call)

$s0 16 saved temporary (preserved across call)

$s1 17 saved temporary (preserved across call)

$s2 18 saved temporary (preserved across call)

$s3 19 saved temporary (preserved across call)

$s4 20 saved temporary (preserved across call)

$s5 21 saved temporary (preserved across call)

$s6 22 saved temporary (preserved across call)

$s7 23 saved temporary (preserved across call)

$t8 24 temporary (not preserved across call)

$t9 25 temporary (not preserved across call)

$k0 26 reserved for OS kernel

$k1 27 reserved for OS kernel

$gp 28 pointer to global area

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address (used by function call)

Reference:

http://www.cs.wisc.edu/~larus/SPIM/cod-appa.pdf

	MIPS R2000 Assembly Language
	Arithmetic and Logical Instructions
	Constant-Manipulating Instructions
	Comparison instructions
	Branch instructions
	Jump instructions
	Load instructions
	Store instructions
	Data movement instructions
	FP instructions (vergl. Patterson/Hennessy: Computer Organization & Design)
	Exception and interrupt instructions
	MIPS Register und Konventionen für die Verwendung der Register

