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Foreword 

The RCA CDP1802 COSMAC Microprocessor is a one-chip CMOS 
8-bit register-oriented central processing unit. It is suitable for use in 
a wide range of stored-program computer systems and products. 
These systems may be either special or general purpose in nature. 

This User Manual provides a detailed guide to the COSMAC Micro­
processor. It is written for electronics engineers and assumes only a 
limited familiarity with computers and computer programming. It 
describes the microprocessor architecture and provides a set of 
simple, easy-to-use programming instructions. Examples are given to 
illustrate the operation and usage of each instruction. 

For systems designers, this Manual illustrates practical methods of 
adding external memory and control circuits. Because the processor 
is capable of supporting input/output (I/O) devices in polled, inter­
rupt-driven, and direct-memory-access modes, detailed examples are 
provided for the use of the I/O instructions and the use of the I/O 
interface lines. The latter include direct-memory-access and interrupt 
inputs, external flag inputs, command lines, processor state indica­
tors, and external timing pulses. 

This Manual also discusses various programming techniques and 
gives examples. The material covers, in addition to basic guidelines, 
more advanced topics such as interrupt response and subroutine link­
age and nesting. 

This basic Manual is intended to help design engineers understand 
the COSMAC Microprocessor and to aid them in developing simpler 
and more powerful products utilizing the wide range of microproces­
sor capabilities. Users requiring information on available hardware 
and software support systems for the CDPl802 Microprocessor 
should also refer to the following publications: 

MPM-202 Timesharing Manual for the RCA CDP1802 COSMAC 
Microprocessor 

MPM-203 Evaluation Kit Manual for the RCACDP1802COSMAC 
Microprocessor 

MPM-206 Subroutine Library for RCA COSMAC Microprocessors 

MPM-208 Operator Manual for RCA COSMAC D~velopment 

System 
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Introduction 

General 

The RCA COSMAC Microprocessor architecture has 
been developed for a wide variety of applications. These 
applications range from replacement of SSI and MSI 
integrated circuits to new applications requiring the full 
flexibility of a computer-based approach. 

The RCA-CDP1802 is a byte-oriented central process­
ing unit (CPU) employing the COSMAC architecture and 
utilizing complementary-symmetry MOS technology 
(CMOS). 

CDPl802 operations are specified by sequences of 
instruction codes stored in a memory. Sequences of 
instructions, called programs, determine the specific 
behavior or function of a COSMAC-based system. Sys­
tem functions are easily changed by modifying the pro­
gram stored in memory. This ability to change function 
without extensive hardware modification is the basic 
advantage of a stored-program computer. Reduced cost 
results from using identical LSI components (memory 
and microprocessor) in a variety of different systems or 
products. 

The CDP1802 Microprocessor includes all of the cir­
cuits required for fetching, interpreting, and executing 
instructions which have been stored in standard types of 
memories. Extensive input/output (I/O) control features 
are also provided to facilitate system design. 

Although Microprocessor cost is only a small part of 
total system or product cost (memory, input, output, 
power-supply, system-control, and design costs are also 
major considerations), a unique set of COSMAC features 
combine to minimize the total system cost. For exam­
ple, the low-power, single-voltage CMOS circuitry mini­
mizes power-supply and packaging costs. A single-phase 
clock drives the system and an optional on-chip oscilla­
tor circuit works with an external crystal to provide this 
clock Signal. High noise immunity and wide temperature 
tolerance facilitate use in hostile environments. In addi-

tion, compatibility with standard, high-volume memories 
assures minimum memory cost and maximum system 
flexibility for both current and future applications. Pro­
gram storage requirements are reduced by means of an 
efficient one-byte operation code. 

The 40-pin system interface of the CDP1802 is de­
signed to minimize external I/O and memory control 
circuitry. Four directly testable input flags, an output 
flip-flop, an internal direct-memory-access (DMA) mode, 
flexible I/O instructions, program interrupt, program 
load mode, and static circuitry are other features ex­
plicitly aimed at total system cost reduction. The 
CDP1802 does not require an external bootstrap ROM. 

Microprocessor programming and system design are 
facilitated by the availability of a variety of support pro­
grams and support hardware. Extensive support software 
and support hardware are available for use in developing 
COSMAC systems. Machine-language programming is 
sometimes indicated when only a few short programs 
need to be developed. A series of efficient, easy-to-Iearn 

. instructions are provided for the CDP1802 which are 
simple to use in machine-language programs. 

Specific Features 

The advanced features and operating characteristics 
of the RCA Microprocessor CDP1802 include: 

• static CMOS circuitry, no minimum clock fre-
quency 

• full military temperature range (-55 to +125°C) 

• high noise immunity, wide operating-voltage range 

• TTL compatibility 

• single-phase clock; optional, on-chip, crystal­
controlled oscillator 

• simple control of reset, start, and pause 
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• 8-bit parallel organization with bidirectional data 
bus 

• built-in program-load facility 

• any combination of standard RAM's and ROM's 
via common interface 

• direct memory addressing up to 65,536 bytes 

• flexible programmed I/O mode 

• program interrupt mode 

• on-chip DMA facility 

• four I/O flag inputs directly testable by branch 
instruction 

• programmable output port 

• one-to-three byte instruction format with two 
machine cycles for each instruction* 

• 91 easy-to-use instructions 

• software compatibility with the CDP1801 

• 16 X 16 matrix of registers for use as multiple pro­
gram counters, data pointers, or data registers 

System Organization 

Fig. 1 illustrates a typical computer system incor­
porating the RCA Microprocessor CDP1802. Operations 
that can be performed include: 

a) control of input/output (I/O) devices, 

b) transfer of data or control information between 
I/O and memory (M), 

c) movement of data bytes between different mem­
ory locations, 

*Except long-branch and long-skip instructions which require 
three machine cycles. 

d) interpretation or modification of bytes stored in 
memory. 

In such a system, the CDP1802 can, for example, 
control the entry of binary-coded decimal numbers from 
an input keyboard and store them in predetermined 
memory locations. It can then perform specified arith­
metic operations using the stored numbers and transfer 
the results to an output display or printing device. 

System input devices may include switches, paper­
tape/card readers, magnetic-tape/disc devices, relays, 
modems, analog-to-digital converters, photodetectors, 
and other computers. Output devices may include lights, 
relays, CRT /LED/liquid-crystal devices, digital-to-analog 
converters, modems, printers, and other computers. 

Memory can comprise any combination of RAM and 
ROM up to a maximum of 65,536 bytes. ROM (Read­
Only Memory) is used for permanent storage of pro­
grams, tables, and other types of flxed data. RAM 
(Random-Access Memory) is required for general­
purpose computer systems which require frequent pro­
gram changes. RAM is also required for temporary 
storage of variable data. The type of memory and re­
quired storage capacity is determined by the specific 
application of the system. 

Bytes are transferred between I/O devices, memory, 
and COSMAC by means of a common, bidirectional 
eight-bit data bus. 

Fifteen I/O control signal lines are provided. Systems 
can use some or all of these signals depending on re­
quired I/O sophistication. A three-bit N code is gener­
ated by the input/output instruction. It can be used to 
specify whether an I/O. byte on the bus is meant to 
represent data, an I/O device selection code, an I/O 
status code, an I/O control code, etc. Use of the N code 
to specify an I/O device directly permits simple, inex­
pensive control of a small number of I/O devices or 

l~l 

ROM 

US 

ADDR BUS ADDR BUS CLOCK XTAL NO, Nl, N2 
::'::'IL 

TPA TPA 
TPA,TPB 

----
SCQ, SCl 

MWR 
CPU DMA-IN, ~,INT 

RAM CDP1802 I/O 

MRD 

MRD MRD 
EF1, EF2, EF3, EF4 

CE Q 

Ds Ds Ds 
8-BIT BIDIRECTIONAL DATA BUS 

Fig. 1 - Block diagram of typical computer system using the RCA COSMAC 
Microprocessor CDP1802. 
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modes. Use of the N code to specify the meaning of the 
word on the data bus facilitates systems incorporating a 
large number of I/O devices or modes. 

Four I/O flag inputs are provided. I/O devices can 
control these inputs at any time to signal the CDP1802 
that a byte transfer is required, that an error condition 
has occurred, etc. These flags can also be used as binary 
input lines if desired. They can be tested by CDP1802 
instructions to determine whether or not they are active. 
Use of the flag inputs must be coordinated with pro­
grams that test them. 

An output line (Q) is also available which provides a 
level output whose value is controlled by COSMAC 
instructions. This Q line, under program control, can 
activate or signal I/O devices. It can also be used in con­
nection with one of the flag inputs to form a serial I/O 
interface. 

A program interrupt line can be activated at any time 
by I/O circuits to obtain an immediate microprocessor 
response. The interrupt causes the CDP1802 to suspend 
its current program sequence and execute a predeter­
mined sequence of operations designed to respond to the 
interrupt condition. After servicing the interrupt, the 
CDP1802 resumes execution of the interrupted program. 
The CDP1802 can be made to ignore the interrupt line 
by resetting its interrupt-enable flip-flop (IE). 

Two additional I/O lines are provided for special 
types of byte transfer between memory and I/O devices. 
These lines are called direct-memory-access (DMA) lines. 
Activating the DMA-in line causes an input byte to be 
immediately stored in a memory location without inter­
vention by the program being executed. The DMA-out 
line causes a byte to be immediately transferred from 
memory to the requesting output circuits. A built-in 
memory pointer register is used to indicate the memory 
location for the DMA cycles. The program initially sets 
this pointer to a beginning memory location. Each DMA 
byte transfer automatically increments the pointer to 
the next higher memory location. Repeated activation of 
a DMA line can cause the transfer of any number of con­
secutive bytes to and from memory independent of con­
current program execution. 

I/O device circuits can cause data transfer by acti­
vating a flag line, the interrupt line, or a DMA line. The 
flag lines must be sampled by the program to determine 
when they become active and are used for relatively slow 
changing signals. Activating the interrupt line causes an 
immediate COSMAC response regardless of the program 
currently in progress, suspending operation of that pro­
gram and allowing real-time response. Use of DMA pro­
vides the quickest response with least disturbance of the 
program. 

A two-bit state code and two timing lines are pro­
vided for use by I/O device circuits. These four signals 
permit synchronization of I/O circuits with internal 
CDP1802 operating cycles. The state code indicates 
whether the CDP1802 is responding to a DMA request, 
responding to an interrupt request, fetching an instruc­
tion, or executing an instruction. The timing signals 

are used by the memory and I/O systems to signal a 
new processor state code, to latch memory address bits, 
to take memory data from the bus, and to set and reset 
I/O controller flip-flops. 

Bytes are transmitted to and from memory by means 
of the common data bus. The CDP1802 provides two 
lines to control memory read/write cycles. During a 
memory write cycle, the byte to be written appears on 
the data bus, either from the CPU or from an I/O device, 
and a memory write pulse is generated by the CPU at the 
appropriate time. During a memory-read cycle, a 
memory read level output is generated which is used by 
the system to gate the memory output byte onto the 
common data bus for use by the CPU or by an I/O 
device. 

The CDP1802 provides eight memory address lines. 
These eight lines supply 16-bit memory addresses in the 
form of two successive 8-bit bytes. The more significant 
(high-order) address byte appears on the eight address 
lines first, followed by the less Significant (low-order) 
address byte. The number of high-order bits required to 
select a unique memory byte location depends on the 
size of the memory. For example, a 4096-byte memory 
would require a 12-bit address. This 12-bit address is ob­
tained by combining 4 bits from the high-order address 
byte with the 8 bits from the low-order address byte. 
One of the two CDP1802 timing pulses may be used to 
strobe the required high-order bits into an address latch 
(register) when they appear on the eight address lines. 
Latch circuits are not required at all if address registers 
are incorporated on the memory chips, as in the RCA 
1800-series ROM's. An internal CPU register holds the 
eight low-order address bits on the address lines for the 
remainder of the memory cycle. 

Four additional lines complete the microprocessor 
system interface. A single-phase clock input determines 
operating speed. The external clock may be stopped and 
started to synchronize the CDP1802 operation with 
system circuits if desired. Construction of the clock 
circuit is simplified by use of XTAL input. A crystal is 
connected between XTAL and clock input; no active 
components are needed. The clear input line initializes 
the microprocessor, and its release starts instruction exe­
cution. The wait line suspends the CPU operation clean­
ly. Simultaneous assertion of clear and wait puts the 
CPU in a program load mode. 

COSMAC Architecture and Notation 

Fig. 2 illustrates the internal structure of the 
COSMAC Microprocessor CDP1802. This simple, unique 
architecture results in a number of system advantages. 
The COSMAC architecture is based on a register array 
comprising sixteen general-purpose 16-bit scratch-pad 
registers. Each scratch-pad register, R, is designated by 
a 4-bit binary code. Hexadecimal (hex) notation will be 
used here to refer to 4-bit binary codes. The 16 hexa­
decimal digits (O,1,2, ... E,F) and their binary equivalents 
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MEMORY 
AODRESS 

I/O COMMAND 
OR SERIAL DATA 

I/O 81·DIRECTIONAL 
COMMAND DATA BUS 

(8) 

(8) 

(16) 

(16) (4) 

R(O).1 R(O).O 
R SELECT 

R 1 .1 R(I).O 

R(2).1 R(2).O 

SCRATCH PAD 

R(9).1 R(9).O 
REGISTERS 

R(A).! R(A).O R 

R(E).1 

R(F).1 

(8) (8) 

Fig. 2 - Internal structure of the CDP 1802 Microprocessor. 

(0000,0001,0010, ... ,1110,1111) are listed in Appendix 
A. 

Using hex notation, R(3) refers to the 16-bit scratch­
pad register designated or selected by the binary code 
0011. R(3).0 refers to the low-order (less significant) 
eight bits or byte of R(3). R(3).1 refers to the high-order 
(more significant) byte of R(3). 

Three 4-bit registers labeled N, P, and X hold the 
4-bit binary codes (hex digits) that are used to select 
individual 16-bit scratch-pad registers. The 16 bits con­
tained in a selected scratch-pad can be used in several 

~ A - - - N 2 

p 0 

X 3 

I 8 
R(O) - -

R(l) - - IALU I- I 
R(2) 01 25 .. DF= 

R(3) - - I D I- I • 

ways. Considered as two bytes, they may be sequen­
tially placed on the eight external memory address lines 
for memory read/write operations. Either byte can also 
be gated to the 8-bit data bus for subsequent transfer 
to the D register. The 16-bit value in the A register can 
also be incremented or decremented by 1 and returned 
to the selected scratch-pad register to permit a scratch­
pad register to be used as a counter. 

The notation R(X), R(N), or R(P) is used to refer to 
a scratch-pad register selected by the 4-bit code in X, N, 
or P, respectively. Fig. 3 illustrates the transfer of a 
scratch-pad register byte, designated by N, to D. The 

A 01 25 - N 2 

p 0 
A.O 

X 3 

I 8 
RIO) - -

R(l ) - - IALU I - I 
R(2) 01 25 I- DF = 

R(3) - - D 25 r-
25 

Fig. 3 - Use of N designator to transfer data from scratch-pad register R(2) to the 
D register. 



Introduction _______________________________ 11 

A 00 02 N 0 

6 p 0 

I-
ADDHcSS 

X 1 
M 

I F 
00 01 FF R(oI - -
00 02 C5 R(I) 00 02 I- IALUI- I 

A 00 02 N 0 

[b p 0 

l- I X 
ADDRESS M 

I F 
00 01 FF R(O) - -

00 02 C5 R(l) 00 02 I- IALUI - I • 00 ,03 AA R(2) - - DF =- 00 03 AA R(2) - - DF =-

00 04 23 R(3) - - I D I- I 00 04 23 R(3) - - 0 C5 I-
~ C5 

Fig. 4 - Transfer of data from memory to the D register. 

left half of Fig. 3 illustrates the initial contents of vari­
ous registers (hex notation). The operation perfonned 
can be written as 

R(N).O~D 

This expression indicates that the low-order 8 bits 
contained in the scratch-pad register designated by the 
hex digit in N are to be placed into the 8-bit D register. 
The designated scratch-pad register is left unchanged. 

The right half of Fig. 3 illustrates the contents of the 
CDPI802 registers after this operation is completed. 
The following sequence of steps is required to perfonn 
this operation: 

1) N is used to select R. (left half of Fig. 3) 

2) R(N) is copied into A. 1 
3) A.O is gated to the bus. (right half of Fig. 3) 

4) The bus is gated to D. 

Memory or I/O data used in various COSMAC opera­
tions are transferred by means of the commo'n data bus. 
Memory cycles involve both an address and the data 
byte itself. Memory addresses are provided by the con­
tents of scratch-pad registers. An example of a memory 
operation is 

M(R(X))~D 

This expression indicates that the memory byte 
addressed by R(X) is copied into the D register. Fig. 4 
illustrates this operation. The following steps are 
required: 

1) X is used to select R. 1 
2) R(X) is copied into A. (left side of'Fig. 4) 

3) A addresses a memory byte. 

4) The addressed memory byte 1 
is gated to the bus. (right side of Fig. 4) 

5) The bus is gated to D. 

Reading a byte from memory does not change the con­
tents of memory. 

The 8-bit arithmetic-logic unit (ALU in Fig. 2) per­
fonns arithmetic and logical operations. The byte stored 
in the D register is one operand, and the byte on the bus 

(obtained from memory) is the second operand. The re­
sultant byte replaces the operand in D. A single-bit 
register data flag (DF) is set to "0" if no carry results 
from an add or shift operation. DF is set to "I" if a 
carry does occur. During subtraction, DF = 0 if the sub­
trahend is larger than the minuend, indicating that a bor­
row has occurred. The 8-bit D register is similar to the 
accumulator found in many computers. 

The internal flip-flop Q can be set or reset by instruc­
tions, and can be sensed by conditional branch instruc­
tions. The state of Q is also available as a microprocessor 
output. 

I nstruction Format 

COSMAC operations are specified by a sequence of 
instruction codes stored in external memory. A one-byte 
instruction format is applicable for most instructions. 
Two 4-bit hex digits contained in each instruction byte 
are designated as I and N, as shown in Fig. 5. 

For most instructions, the execution requires two 
machine cycles. The first cycle fetches or reads the 
appropriate instruction byte from memory and stores 
the two hex instruction digits in registers I and N. The 
values in I and N specify the operation to be perfonned 
during the second machine cycle. I specifies the instruc­
tion type. Depending upon the instruction, Neither 
deSignates a scratch-pad register, as illustrated in Fig. 3, 
or acts as a special code, as described in more detail 
below. 

5A (HEX) 

I \ 
I N 

10 1 0 1 1 0 1 01 
,7 6 5 4, 

I 
,3 2 

I 
1 0, 

High-Order Low·Order 

Digit Digit 

Fig. 5 - One-byte instruction format. 
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A 02 98 N 6 

~ ~ P 1 

ADDRESS 
X 7 M 
I 4 

02 97 46 R(O) - -
02 98 F4 R(I) 02 98 i- IALUI- I 
02. 99 56 R(2) - - DF=-

02 9A 17 R(3) - - I D I- I • 
A 02 98 N 4 ~ 

rh r- p 1 

X 7 
ADDRESS M 

I F r-02 97 46 R(O) - -

02 98 F4 - R(l) 02 99 - ~ 02 99 56 R(2) - - DF= -

02 9A 17 R(3) - - D -

J F4 

Fig. 6 - Typical instruction fetch cycle. 

Instructions are nonnally executed in sequence. A 
program counter is used to address successively the 
memory bytes representing instructions. In the 
COSMAC architecture, anyone of the 16-bit scratch-pad 
registers can be used as a program counter. The value of 
the hex digit contained in register P determines which 
scratch-pad register is currently being used as the pro­
gram counter. The operations performed by the instruc­
tion fetch cycle are 

M(R(P)) ~ I,N ;R(P)+ 1 

Fig. 6 illustrates a typical instruction fetch cycle. 
Register P has been previously set to 1, designating R(1) 
as the current program counter. During the instruction 
fetch cycle, the "0298" contained in R(P) is placed in A 
and used to address the memory. The F4 instruction 
byte at M (0298) is read onto the bus and then gated 
into I and N. The value in A is incremented by 1 and 
replaces the original value in R(P). The next machine 
cycle will perfonn the operation specified by the values 
in I and N. Following the execute cycle, another instruc­
tion fetch cycle will occur. R(P) designates the next in­
struction byte in sequence (56). Alternately repeating 
instruction fetch and execute cycles in this manner 
causes sequences of instructions that are stored in 
memory to be executed. 

Although most of the program instructions have a 
one-byte fonnat, some are two or three bytes in length. 

The immediate and short-branch instructions have a 
two-byte format, as shown in Fig. 7. For example, the 
instruction "30" followed by "45" will execute an 
unconditional branch to the address 45 on the current 
page; the instruction "FC" followed by "22" will exe­
cute an immediate add operation in which the operand 
22 is added to the second operand from the D register. 

N OPCODE 

OPERAND 
or ADDRESS 

Fig. 7 - Two-byte instruction format. 

The long-branch instructions have a three-byte for­
mat, as shown in Fig. 8. When the instruction "C32F9A" 
is encountered, a conditional long-branch operation is 
perfonned. In this case, if the DF flag is set, a long 

N OPCODE 

Fig. 8 - Three-byte format for long-branch instructions. 

branch to the address 2F9A is executed. IfDF is not set, 
the next instruction in sequence is executed (the one fol­
lowing 9A). 

The long-skip instructions are one byte and require 
no address bytes (as the long-branch instructions do). 

~ ____ -L ___ N __ ~I OPCODE 

Fig. 9 - Three-byte format for long-skip instructions. 

However, the unconditional long-skip and long-skips 
with test conditions met will, in effect, have the instruc­
tion fonnat shown in Fig. 9. 

If the test conditions are met, the two bytes are 
skipped. If the test condition is not satisfied, execution 
continues at the first byte following the operation code. 
For a summary of instructions and formats, see Appen­
dixA. 
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Timing 

The CPU machine cycle during which an instruction 
byte is fetched from memory is called state 0 (SO). The 
cycle during which the instruction is executed is called 
state 1 (SI). During execution of a program, the 
CDPlS02 generally alternates between SO and SI, as 
shown in Fig. 10. Each machine cycle (SO or SI) is in­
ternally divided into eight equal time intervals, as illus­
trated in the section on Timing Diagrams. Each time 
interval is equivalent to one cycle (T). The rate at which 
machine cycles occur is, therefore, one eighth of the 
clock frequency. The instruction time is 16T for two 
machine cycles, and 24T for three machine cycles. 

The majority of instructions require the same fetch/ 
execute time. The only exceptions are the long-branch 
and long-skip instructions. These instructions require 
two machine cycles for execution. The instruction cycle 
in these cases contains three machine cycles (one fetch 
and two execute). The state sequencing will then be as 
shown in Fig. 11. 

I so SI SI so I 
.oj 

.. ·1 so SI 1 so 1 SI so SI 

~ • -I INSTRUCTION 
CYCLE 

Fig. 10 - Sequence of machine states for normal 
instruction cycles. 

R(P) is incremented after its use. Immediate addressing 
allows the user to extract data from the program stream 
without setting up special constant areas in memory and 
pointers to them. Operations ADD IMMEDIATE (FC) 
and LOAD IMMEDIATE (FS) are examples of immedi­
ate instructions. 

In stack addressing, one specific CPU register is im­
plied as the pointer to memory. Often, R(X) is used, and 
in one case R(2) is used. A "stack" is a last-in first-out 
working area in memory used to store intermediate cal­
culations and to keep track of transfers of control be­
tween parts of a program. 

SI SI I so SI SI 

t INSTRUCTION 
CYCLE 

Fig. 11 - Sequence of machine states for long-branch and long-skip instruction cycles. 

Addressing Modes 

There are four basic modes of addressing in the 
COSMAC architecture: register, register-indirect, imme­
diate, and stack. 

In register addressing, the address of the operand is 
contained in the four lower-order bits, the N-field, of 
the instruction byte. This addressing mode allows the 
user to directly address any of the 16 scratch-pad regis­
ters for the purpose of counting or moving data in or 
out of registers. Typical instructions in this category are 
DECREMENT (2N) and GET LOW (SN). 

Register-indirect addressing is a variant of indirect 
addressing utilizing CPU registers as pointers to memory. 
In this mode, the selected register contains not data, but 
the address of data. A four-bit address in register N will 
specify one of the sixteen scratch-pad registers whose 
contents are the address of data in memory. 

Indirect addressing is the dominant mode in 
COSMAC. It allows the user to address up to. 65 kilo­
bytes of memory with a single one-byte instruction. 

In immediate addreSSing, R(P) addresses memory so 
that the operand is the byte following the instruction. 

The strength of the COSMAC architecture, and its 
ability to optimize program size and efficiency as com­
pared with more conventional minicomputer architec­
tures, lies in these four addressing modes and the liberal 
number of CPU registers. By using stacks for working 
space, immediate addressing for all constants, register 
pointers for tabular and vector arrays, and the registers 
themselves for miscellaneous counters and switches, 
optitJial use of program space is made. 

Multiple Program Counters 

A program counter is a register which points to the 
next instruction to be fetched and executed. COSMAC 
provides the unique capability to specify, in a single 
instruction, anyone of the ·16 registers as program 
counter. This feature makes it possible to maintain 
pointers to several different programs simultaneously 
and tQ transfer control quickly from one to another. A 
pointer to a program which services an interrupt request 
is a special and important example of this feature. 
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Instruction 
Repertoire 

This section defines each instruction and describes it 
in terms of internal machine operation. Examples are 
given throughout for illustration. The following section, 
Instruction Utilization, covers many of the same instruc­
tions but from a why, when, and how point of view. For 
example, this section defines operation of ADD and 
ADD WITH CARRY instructions. The Instruction Utili­
zation section discusses how these instructions apply and 
interact in multiple precision arithmetic. 

Each CPU instruction is fetched during the SO 
machine cycle and executed during the S 1 state except 
for long-branch and long-skip instructions which require 
two Sl states for execution. The operations performed 
during the execute cycle SI are determined by the two 
hex digits contained in I and N. These operations are 
divided into eight general classes: 

Register Operations - This group includes seven in­
structions used to count and to move data between 
internal COSMAC registers. 

Memory Reference - Seven instructions are provided 
to load or store a memory byte. . 

Logic Operations - This group contains ten instruc­
tions for performing logic operations. 

Arithmetic Operations - This group contains twelve 
instructions for performing arithmetic operations. 

Branching - Twenty different conditional and un­
conditional branch instructions are provided. These 
instructions can be subdivided into sixteen short-branch 
instructions for in-page operation and eight long-branch 
instructions to any location in memory space. 

Skip Operations - Nine conditional and uncondi­
tional skip instructions are provided covering both short­
and long-skip instructions. 

Control - Ten control instructions facilitate program 
interrupt, operand selection, branch and link operations, 
and control of an output flip-flop. 

I/O Byte Transfer - Seven instructions are provided 
to load memory and CPU from I/O control circuits, and 
seven instructions to transfer data from memory to I/O 
control circuits. 

Each instruction is designated by its two-digit hex 
code and by a name. A deSCription of the operation is 
provided using the symbolic notation described earlier. 
A two-to-four-Ietter abbreviated name is also given and 
is used as a mnemonic for assembly language program­
ming. Examples are shown in this section for most in­
structions. Note that all the examples illustrate action 
only during the instruction execute cycle, SI. A sum­

. mary of the instruction repertoire is given in Appendix 
A. It should be noted that "68", which is unused, is 
reserved for future use by RCA. It is considered an 
"illegal" code and should not be used. 
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Register Operations 

INC INCREMENT REG N R(N)+l lN 

When 1=1, the scratchpad register specified by the hex digit in N is incremented by 1. Note that FFFF+l= 
0000. 

A 02 FF I - N 3 A 02 FF l- N 3 

p 0 p 0 
+1 

X 2 
+1 

X 2 

I 1 I 1 
RIO) 03 7A RIO) 03 7A 

Rll) 01 32 IALU I- I Rll) 01 32 !ALU I - I 
R(2) - - OF =- R(2) - - OF =-

R(3) 02 FF ~ I 0 I AB I - R(3) 03 00 l- I 0 lAB 1 

Fig. 12 - Example of instruction 1N - INCREMENT R(N). 

DEC DECREMENT REG N R(N)-l 2N 

When 1=2, the register specified by N is decremented by 1. Note that OOOO-l=FFFF. 

A 01 3d - N 1 A 01 32 ~ N 1 

p 0 
p 0 

-1 
X 2 

-1 
X 2 

I 2 ) 2 
RIO) 03 7B R(D) 03 7B 

R(1) 01 32 ~ IALU I- I r- R(l) 01 31 - !ALU I - I 
R(2) - - OF =- R(2) - - OF =-

R(3) 03 00 I 0 I AB I R(3) 03 00 I 0 lAB 1 

Fig. 13 - Example of instruction 2N - DECREMENT R(N). 

IRX INCREMENT REG X R(X)+l 60 

When 1=6 and N=O, the scratch-pad register specified by the hex digit in X is incremented by 1. 

A 02 70 N 0 A 02 70 N 0 

p 0 P 0 
+1 

l- . X 2 
+1 - X 2 

I 6 I 6 
RIO) 03 7B RIO) 03 7B 

Rll) 01 32 IALU I -I Rll) 01 32 !ALU! - I 
R(2) 02 70 I- OF= - f- R(2) 02 7E - OF= -

R(3) 03 00 I 0 
1 -I R(3) 03 00 I 0 I - 1 

Fig. 14 - Example of instruction 60 - INCREMENT R(X). 
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GLO GET LOW REG N R(N).O -+- D 

When 1=8, the low-order byte of the register specified by N replaces the byte in the D register. 

A 01 31 ~ N 1 i A 01 31 l- N 1 

p 0 p 0 
A.O 

X 2 X 2 

I 8 
A(OI 03 7C 

A(11 01 31 f4- IALU I- I • 
I 8 

A(OI 03 7C 

A(1) 01 31 ~ IALU I- I 
A(21 - - OF=- A(21 - - OF=-

A(31 03 00 I' 0 I AB I A(31 03 00 0 31 

31 31 

Fig. 15 - Example of instruction BN - GET LOW. 

PLO PUT LOW REG N 

When I=A, the byte contained in the D register re­
places the low-order byte of the register specified by N. 

i A - - l- N 2 

p 0 

X 2 

I A 
A(OI 03 7E 

A(ll 01 31 IALU I- I 
A(21 00 00 f-- DF=-

A(31 72 00 0 72 

72 

D -+- R(N).O 

The contents of D are not changed. 

A - - - N 2 

p 0 

X 2 

• 
I A 

AIOI 03 7E 

A(1) 01 31 
IALU I- I 

A(21 00 72 .... OF=-

A(31 72 00 0 72r-
t 72 

Fig. 16 - Example of instruction AN - PUT LOW. 

GHI GET HIGH REG N R(N).1 -+- D 

When 1=9, the high-order byte of the register speci- fied by N replaces the byte in the D register. 

A 72 00 f--- N 3 { A 72 00 - N 3 

p 0 p 0 
A.l 

X 2 X 2 

I 9 
A(OI 03 70 

A(ll 01 31 IALU I- I • I 9 
A(oI 03 70 

A(ll 01 31 IALU I- I 
A(21 - - OF=- A(21 - - OF=-

A(31 72 00 l- I 0 I 31 I A(31 72 00 I- 0 72 

72 72 

Fig. 17 - Example of instruction 9N - GET HIGH. 

8N 

AN 

9N 
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PHI PUT HIGH REG N 

When I=B, the byte contained in the D register re­
places the high-order byte of the register specified by N. 

i A - - - N 2 

p 0 

X 2 

I B 
R(O) 03 7F 

R(l) 01 31 IALU 1- l 
R(2) 00 72 ~ DF= -

R(3) 72 00 D 66 ~ 

66 

D -+ R(N).l BN 

The contents ofD are not changed. 

A - - - N 2 

P 0 

X 2 

• 
I B 

R(O) 03 7F 

R(l) 01 31 IALU I- I 
R(2) 66 72 ~ DF= -

R(3) 72 00 D 66 r--
t 66 

Fig. 18 - Example of instruction BN - PUT HIGH. 

Memory Reference 

LDN LOAD VIA N 

When 1=0 and N is different from 0, the external 
memory byte addressed by the contents of the register 

A 00 19 - N 1 

cb p 0 

2 X 
ADDRESS M 

I 0 
00 17 12 R(O) 01 00 

00 18 34 R(l) 00 19 4- IAlUl -I • 00 19 56 R(2) 00 17 DF=-

00 lA 78 R(3) - - I D I F71 

M(R(N)) -+ D; N*O ON 

specified by N replaces the byte'in the D register. The 
contents of memory are not changed. 

A 00 19 r- N 1 

6 p 0 

X 2 
ADDRESS M 

I 0 
00 17 12 R(O) 01 00 

00 18 34 R(l) 00 19 - IAlU I - I 

00 19 56 R(2) 00 17 DF=-

00 lA 78 R(3) - - D 561-

~ 56 

Fig. 19 - Example of instruction ON - LOAD VIA N. 

LDA LOAD ADVANCE 

When 1=4, the external memory byte addressed by 
the contents of the register specified by N replaces the 
byte in the D register. The original memory address con-

A 00 19 - N 1 

~ p 0 

X 2 
ADDRESS M 

I 4 

00 17 12 R(O) 01 00 

00 18 34 R(l) 00 19 I- IALul- I • 00 19 56 R(2) 00 17 DF =-

00 lA 78 R(3) - - I D I F7 I 

M(R(N)) -+ D; R(N)+l 4N 

tained in R(N) is incremented by 1. The contents of 
memory are not changed. 

A 00 19 l- N 1 

cb p 0 

X 2 
ADDRESS M 

I 4 
00 17 12 R(O) 01 00 

00 18 34 - R(l) 00 lA I- IALU I- I 
00 19 56 R(2) 00 17 DF =.-

00 lA 78 R(3) - - D 56 J--
~ 56 

Fig. 20 - Example of instruction 4N - LOAD ADVANCE. 
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LDX LOAD VIA X 

When I=F and N=O, the memory byte addressed by 
the contents of the register specified by X replaces the 
byte in the D register. (This instruction does not incre-

A 00 32 N 

cb 
0 

p 0 

I-ADDRESS M 
X 2 

I F 
00 30 01 R(O) 00 70 

00 31 00 R(l) 00 33 IALUI- 1 
00 32 92 R(2) 00 32 I- DF=-

00 33 57 R(3) - - I D 100 I 
• 

M(R(X)) -+ D FO 

ment the address as LOAD ADVANCE does.) The con­
tents of memory are not changed. 

A 00 32 N 0 

cb p 0 

f-. 2 X 
ADDRESS M 

00 30 01 
I F 

R(O) 00 70 

00 31 00 R(l) 00 33 IALU 1- 1 
00 32 92 R(2) 00 32 f-. DF=-

00 33 57 R(3) - - D 92 I-
1 92 

Fig. 21 - Example of instruction FO - LOAD VIA X. 

LOAD VIA X AND ADVANCE 

When 1=7 and N=2, the external memory byte ad­
dressed by the contents of the register specified by X 
replaces the byte in the D register. The original memory 

A 00 17 N 2 

clJ p 0 

--- 2 X 
ADDRESS M 

I 7 
00 17 12 R(O) 01 00 

00 18 34 R(l) 00 19 IALUI -I 
00 19 56 R(2) 00 17 I*- DF=-

00 1A 78 R(3) - - I D I Fsi 
• 

M(R(X)) -+ D; R(X)+1 

address contained in R(X) is incremented by 1. The con­
tents of memory are not changed. 

A 00 17 N 2 

c6 p 0 - X 2 
ADDRESS M 

17 
I 7 

00 12 R(O) 01 00 

00 18 34 R(l) 00 19 IALU 1 - 1 
00 19 56 f--- R(2) 00 18 I- DF =-

00 lA 78 R(3) - - D 12J-

1 12 

Fig. 22 - Example of instruction 72 - LOAD VIA X AND ADVANCE. 

LOAD IMMEDIATE 

When I=F and N=8, the memory byte immediately 
following the current instruction byte replaces the byte 
in D. Because the current program counter represented 
by R(P) is incremented again by 1 during the execution 
of this instruction, the instruction byte following the 
immediate byte placed in D will be fetched next. 

The use of immediate data is a useful way to avoid 

M(R(P)) -+ D; R(P)+1 

setting up special constant areas in memory and pointers 
to them. 

This instruction is one of five which load D from 
memory. It uses R(P) as a pointer, while LDA and LDN 
use R(N) and LDX and LDXA use R(X). LOI, as well as 
LDA and LDXA, increments the pointer after use, but 
LDX and LDN do not. 
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A 03 28 N 8 

cb I- p 0 

X 2 
ADDRESS M 

l-
I F 

03 27 F8 R(O) 03 28 

03 28 92 Rll) 00 71 IALul- I 

A 03 28 N 8 

clJ I- p 0 

X 2 
ADDRESS M 

I F 
03 27 F8 - RIO) 03 29 I-
03 28 92 Rll) 00 71 IALU I- I • 03 29 'F9 R(2) 00 33 DF= - 03 29 F9 R(2) 00 33 DF=-

03 2A 57 R(3) - - I D 121 I 03 2A 57 R(3) - - D 92 1--
~ 92 

Fig. 23 - Example of instruction FB - LOAD IMMEDIA TE. 

STR STORE VIA N 

When 1=5, the byte in D replaces the memory byte 

A 00 17 l- N 2 

clJ p 0 

ADDRESS M 
X 2 

I 5 
00 17 12 RIO) 01 01 

00 18 34 Rll) 00 lA IALul- I • 00 19 56 R(2) 00 17 ~ DF=-

00 lA 78 R(3) - - D 56 

56 

D -+ M(R(N)) 5N J 

addressed by the contents of the register specified by N. 
The contents of D are not changed. 

A 00 17 l- N 2 

6 p 0 

X 2 
ADDRESS M 

I 5 
00 17 56 R(O) 01 01 

00 18 34 R(l) 00 lA IALU I- I 
00 19 56 R(2) 00 17 re- DF=-

00 lA 78 R(31 - - D 56J-

t 56 

Fig. 24 - Example.of instruction 5N - STORE. 

STORE VIA X AND DECREMENT 

When 1=7 and N=3, the byte in D replaces the 
memory byte addressed by the contents of the register 
specified by X. The original memory address contained 

A 00 17 N 3 

6 p 0 

~ X 2 
ADDRESS M 

I 7 
00 17 12 RIOI 01 00 

00 18 34 R(l) 00 19 IALUI - I 
00 19 56 RI21 00 17 -DF=-

00 lA 78 RI31 - - D F5 

F5 

• 

D -+ M(R(X)); R(X)-1 

in R(X) is decremented by 1. The contents of D are not 
changed. 

A 00 17 N 3 

dJ p 0 

l- x 2 
ADDRESS M 

00 
I 7 

00 17 F5 RIOI Cl 

00 18 34 RIl) 00 19 IALU I - I 
00 19 56 r- R(2) 00 16 I- DF=-

00 lA 78 R(3) - - D F5r-, 
F5 

Fig. 25 - Example of instruction 73 - STORE VIA X AND DECREMENT. 
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Logic Operations 

In general, R(X) or R(P) points to one operand, D is 
the other, and the result replaces the latter in the D 
register. When R(X) is used as the pointer, the X register 
must have been previously loaded (by an instruction 
SET X described among the control instructions). If 

OR OR 

When I=F and N=l, the individual bits of the two 8-
bit operands are combined according to the rules for 
logical OR as shown to the right. The byte in D is one 
operand. The memory byte addressed by R(X) is the 
second operand. The result byte replaces the D operand. 
This instruction can be used to set individual bits. 

A 00 33 N 1 

6 p 0 

- X 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 ~ ALU OR 

00 32 92 R(2) 00 32 DF=- t 
00 33 57 R(3) - - 0 92 

R(P) is used as the pointer to the operand, it points to 
the byte in memory after the instruction, called the 
immediate byte. The use of immediate data is a simple 
way of extracting data directly from the instruction 
sequence. 

M(R(X)) OR D -+ D Fl 

M(R(X)) D OR 

0 0 0 

0 1 

0 1 

1 1 1 

A 00 33 N 1 

cb p 0 

~ X 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 I-

~ 00 32 92 R(2) 00 32 DF=-

00 33 57 R(3) - - o 07 , 
57 

Fig. 26 - Example of instruction F1 - OR. 

OR IMMEDIATE 

When I=F and N=9, a logical OR operation is per­
formed similar to Fl. The D byte is one operand, and 

A 03 2A N 9 

cb - p 0 

ADDRESS 
X 2 

M 

l+-
I F 

03 27 F8 R(O) 03 2A 

03 28 92 R(l) 00 71 ALU OR I--
03 29 F9 R(2) 00 33 DF=- r 
03 2A 57 R(3) - - 0 92 

• 

M(R(P)) OR D -+ D; R(P)+l 

the memory byte immediately following the F9 instruc­
tion is the second operand. The result goes to D. 

A 03 2A N 9 

6 I- p 0 

X 2 
ADDRESS M - 03 28 l-

I F 
03 27 F8 R(O) 

03 28 92 R(l) 00 71 

~ 03 "29 F9 R(2) 00 33 DF=-

03 2A 57 R(3) - - . 0 07 

-' 57 

Fig. 27 - Example of instruction F9 - OR IMMEDIATE. 
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XOR EXCLUSIVE-OR 

When I=F and N=3, the individual bits of the two 8-
bit operands are combined according to the rules for 
logical EXCLUSNE-OR as shown to the right. The D 
byte and M(R(X)) are the two operands. The result byte 
replaces the D operand. This instruction can be used to 
compare two bytes for equality since identical values 
will result in all zeros in D. 

A 00 33 N 3 

cb p 0 

I-- x 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 ~ ALU XOR~ • 00 32 92 R(2) 00 32 DF=- t 
00 33 57 R(3) - - 0 92 

M(R(X)) XOR D -+ D F3 

M(R(X)) D XOR 

0 0 0 

0 1 

0 1 

0 

A 00 33 N 3 

p 0 

l- x 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(ll 00 33 I- ALU XOR 

00 32 92 R(2) 00 32 DF=- , 
00 33 57 R(3) - - 0 C5 

57 

Fig. 28 - Example of instruction F3 - EXCLUSIVE-OR. 

EXCLUSIVE-OR IMMEDIATE 

When I=F and N=B, an EXCLUSNE-OR operation 
similar to F3 is performed. The D byte is one operand, 
and the memory byte immediately following the FB 

A 03 2E N 

ct] B 

I-- p 0 

ADDRESS 
X 2 

M 
I F 

03 2B FA R(O) 03 2E -
03 2C OF R(l) 00 71 ALU XOR!-

03 20 FB R(2) 00 33 DF=- t 
03 2E FO R(3) - - D 07 I • 

M(R(P)) XOR D -+ D; R(P)+1 

instruction is the second operand. This instruction can 
be used to complement the D register when the immedi­
ate byte is "FF". 

A 03 2E N B 

cb I- p 0 

X 2 
ADDRESS M 

I F 
03 2B FA - R(O) 03 2F -
03 2C OF R(l) 00 71 ALU XOR 

03 20 FB R(2) 00 33 DF= - I 
03 2E FO R(3) - - D F7 

~ FO 

Fig. 29 - Example of instruction FB - EXCLUSIVE-OR IMMEDIATE. 

AND I AND 

When I=F and N=2, the individual bits of the two 8-
bit operands are combined according to the rules for 
logical AND as shown to the right. The byte in D is one 
operand. The memory byte addressed by R(X) is the 
second operand. The result byte replaces the D operand. 
This instruction can be used to test or mask individual 
bits. 

M(R(X)) AND D -+ D 

M(R(X)) D 

o 0 

o 
o 

AND 

o 
o 
o 

F2 
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A 00 33 N 2 

6 p 0 -ADDRESS M 
X 1 

I F 
00 30 01 RIO) 00 71 

00 31 00 R(1) 00 33 - ALU AND 

N 2 

P 0 

• 
ADDRESS M 

00 30 01 R{O) 00 71 

00 31 00 R{l) 00 33 

00 32 92 R(2) 00 32 DF=- t 00 32 92 R(2) 00 32 

00 33 57 R(3) - - D 92 00 33 57 R(3) -
57 

Fig. 30 - Example of instruction F2 - AND. 

AND IMMEDIATE 

When I=F and N=A, a logical AND operation is per· 
formed similar to F2. The D byte is one operand, and 

A 03 2C N 

c6 
A 

r- p 0 

X 2 
ADDRESS M 

l-
I F 

03 26 FA R{O) 03 2C 

03 2C OF R{l) 00 71 ALU ANDr- • 03 2D FB R(2) 00 33 DF= - t 
03 2E FO R(3) - - D D7 

M(R(P)) AND D ~ D; R(P)+1 

the memory byte immediately following the FA instruc­
tion is the second operand. 

N A 

cb 
A 03 2C - p 0 

X 2 
ADDRESS M - l-

I F 
03 2B FA R{O) 03 2D 

03 2C OF R{l) 00 .71 ALU AND 

03 2D FB R(2) 00 33 
DF -- t 

03 2E FO R(3) - - D 07 

+ OF 

Fig. 31 - Example of instruction FA - AND IMMEDIA TE. 

SHIFT RIGHT SHIFT D RIGHT; LSB(D) ~ DF, O~ MSB(D) 

When I=F and N=6, the 8 bits in D are shifted right 
one bit position. The original value of the low-order D 
bit is placed in DF. The final value of the high-order D 

RIO) -

R(1) -
R(2) -

R(3) -

-
-

-
-

16 

P 0 

X 1 

I F • 

bit is always "0". This instruction can be used to test 
successive bits of the operand or to divide by 2. 

16 

p 0 

X 1 

I F 
R{O). - -
R{l) - -
R(2) - -

R(3) - -

~
LU -

DF = 1 

D 79 

Fig. 32 - Example of instruction F6 - SHIFT RIGHT. 
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SHRC SHIFT RIGHT WITH CARRY 
76 

RSHR RING SHIFT RIGHT SHIFT 0 RIGHT; LSB(O) -+ OF, OF -+ MSB(O) 

When 1=7 and N=6, the contents of the D register 
are shifted one bit position to the right. The low-order 
bit of the D register becomes the carry bit (OF), while 

Before SHRC: 

o 

the carry bit becomes the high-order bit of the D 
register. 

Either mnemonic may be used for this instruction. 

CL...-_00_00_l_l0_0_rDJ 

After SHRC: 

1000 0110 

R(O) - -

R(l) - -

R(2) - -

R(3) - -

i 6 
P 0 

X 1 

I 7 

~LU .... 

OF= 1 

o OC 
• R(O) - -

R(l) - -
R(2) - -
R(3) - -

i 6 

P 0 

X 1 

I 7 

~
LU -

OF =0 

o 86 

Fig. 33 - Example of instruction 76 - SHIFT RIGHT WITH CARRY. 

SHIFT LEFT 

When I=F and N=E, the 8 bits in D are shifted left 
one bit position. The original value of the high-order 
D bit is placed in DF. The final value of the low-order 

Before SHL: 

D 
After SHL: 

RIO) - - i E 
P 0 

X 1 

I F 

R(l) - -
R(2) - -
R(3) - -

~LU .... 

OF =-

o 79 

SHIFT 0 L.:.EFT; MSB(O) -+ OF, 0-+ LSB(O) 

D bit is always "0". This instruction can be used to test 
successively bits of the operand or to multiply by 2. 

o 

01111001 

11110010 

• R(O) - -

R(ll - -
R(2) - -
R(3) - -

i. E 

P 0 

X 1 

I F 

~
LU -

OF=O 

o F2 

Fig. 34 - Example of instruction FE - SHIFT LEFT. 
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SHLC SHIFT LEFT WITH CARRY 
SHIFT D LEFT; MSB(D) -+ DF, DF -+ LSB(D) 7E 

RSHL RING SHIFT LEFT 

When 1=7 and N=E, the contents of the D register 
are shifted one bit position to the left. The high·Qfder 
bit of the. D register becomes the carry bit (DF), while 

Before SH LC: 

D 

the carry bit becomes the low-order bit of the D register. 
Either mnemonic may be used for this instruction. 

r,--_0_00_0_1_10_0---J~ 

After SHLC: 

0001 1001 

mE 

p 0 

X 1 

I 7 
R(O) - -
R(1) - -

R(2) - -
R(3) - -

~ALU <-

DF=1 

D OC 

~
LU -

DF = 0 

D 19 

mE 

p 0 

X 1 

I 7 

• R(O) - -

R(1) - -
R(2) - -
R(3) - -

Fig. 35 - Example of instruction 7E - SHIFT LEFT WITH CARRY. 

Arithmetic Operations 

This group provides the operations ADD, SUB­
TRACT, and REVERSE SUBTRACT. The three basic 
instructions are augmented with instructions to handle 
immediate data, data with carry or borrow, and immedi­
ate data with carry or borrow. 

ADD ADD 

When I=F and N=4, two 8-bit operands are added 
together. The D byte and M(R(X)) are the two single­
byte operands. The 8-bit result of the binary addition 
replaces the D operand. The final state of DF indicates 
whether or not a carry occurred. It is independent of the 
original content in DF. 

Example 1: 3A + 4B = 85 

In general, R(X) is the pointer to one operand in 
memory. The other operand is found in D. For immedi­
ate data, R(P) is used as the pointer and addresses the 
byte in memory after the instruction, called the immedi­
ate byte. 

M(R(X))+D -+ DF, D F4 

D register contains 85, DF contains 0 

Example 2: 3A + FO = 12A 

D register contains 2A, DF contains 1 

The latter example demonstrates overflow. The result is 
too big for the 8-bit register, and a carry is generated. 
DF can be subsequently tested with a branch instruc­
tion. 
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A 00 33 N 4 

cb p 0 

l- x 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 - ALU (+) 

A 00 33 N 4 

p 0 

l- x 1 

F I 
R(O) 00 71 

R(lI 00 33 I- ALU (+) • 
ADDRESS M 

00 30 01 

00 3'1 00 

00 32 92 R(2) 00 32 OF =- f 00 32 92 R(2) 00 32 OF = 0 1 
00 33 57 R(3) - - 0 92 R(3) - - 0 E9 00 33 57 

57 

Fig. 36 - Example of instruction F4 - ADD. 

ADD IMMEDIATE 

When I=F and N=C, the two operands are added as in 
F4. The D byte is one operand, and the memory byte 

A 03 30 N C 

d:J I- p 0 

X 2 
ADDRESS M 

l-
I F 

03 2F FC RIO) 03 30 

03 30 80 R(l) 00 71 ALU (+) I-
03 31 FD R(2) 00 33 OF =- f 
03 32 92 R(3) - - 0 F7 

• 

M(R(P))+D -? DF, D; R(P)+1 

immediately following the FC instruction is the other 
operand. 

A 03 30 N C 

clJ t- p 0 

X 2 
ADDRESS M 

I F 
03 2F FC I----' RIO) 03 31 t-
03 30 80 R(l) 00 71 ALU (+) 

03 31 FD R(2) 00 33 DF=t 1 
03 32 92 R(3) - - 0 77 

~ 80 

Fig. 37 - Example of instruction FC - ADD IMMEDIA TE. 

ADD WITH CARRY 

When 1=7 and N=4, the specified byte plus the con­
tent of DF are added to the contents of the D register. 
The 8·bit result of the binary addition replaces the D 

A 03 32 N 4 

cb P 0 

l- x 2 
ADDRESS M 

I 7 
03 2F FC R(O) 03 03 

03 30 80 R(l) 00 71 ALU (+) f--
03 31 48 R(2) 03 32 -- OF = 1 f 
03 32 3A R(3) - - 0 20 

• 

M(R(X))+D+DF -? DF, D 

operand. DF will indicate if the addition generated a 
carry. 

N 4 

p 0 

ADDRESS Iv! 

03 2F FC R(O) 30 30 

03 30 80 R(l) 00 71 

03 31 48 R(2) 03 

03 32 3A R(3) 

3A 

Fig. 38 - Example of instruction 74 - ADD WITH CARRY. 
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Example 1: 

Byte in memory: 3A = 00111010 

D register contains: 2D = 00101101 

DF contains: 1 

Result: 68 = 01101000 

After addition: 

D contains: 01101000 

DF contains: 0 

The ADD WITH CARRY instruction is useful when 
multibyte words are to be added. In the sample above, 
two 8-bit words were first added (not shown) and gener­
ated a carry which must be included in the next higher­
order byte addition as shown below. For instance add: 

3AFO 
+ 2D20 

3Pi 
+ 2~ I 

DF =~ 68 DF = .:J 
FO 

+ 20 

10 

Final result: DF = 0 6810 

ADD WITH CARRY, IMMEDIATE 

When 1=7 and N=C, the specified byte in memory 
plus the content of the carry bit is added to the con-

A 03 30 N C 

cb I- p 0 

2 X 
ADDRESS M 

l-
I 7 

03 2F 7C RIO) 03 30 

03 30 C2 Rill 00 71 ALU 1+) 

03 31 48 R(2) 03 32 DF = 1 t 
03 32 85 R(3) - - 0 3D 

• 

Example 2: 

Byte in memory: 

D register contains: 

DF contains: 

Result: 

After addition: 

D contains: 

DF contains: 

C2 = 11000lll 0 

3D 00111101 

1 

100 = 100000000 

00000000 

1 

Similarly to Example 1, the following operations 
were performed: 

C2Dl 
+ 3D33 

n C2 

+ 3D 

DF=~ 00 DF =~ 
Final result: DF = 1 

M(R(P))+D+DF -+ DF, D;R(P)+l 

D1 

+ 33 
04 

0004 

tents of the D register. The final state of DF indicates 
whether or not a carry occurred. 

A 03 30 N C 

cb - p 0 

X 2 
ADDRESS M 

I 7 
03 2F 7C - RIO) 03 31 r-
03 30 C2 R(1) 00 71 ALU 1+) 

03 31 4B R(2) 03 32 OF = 1 ~ 
03 32 85 R(3) - - 0 00 

! C2 

Fig. 39 - Example of instruction lC -ADD WITH CARRY, IMMEDIATE. 

SD SUBTRACT D 

When I=F and N=5, the byte in D is subtracted from 
the memory byte addressed by R(X). The 8-bit result 
replaces the subtrahend in the D register. Subtraction is 
2's complement: each bit of the subtrahend is comple­
mented and the resultant byte added to the minuend 
plus 1. The final carry of this operation is stored in DF: 

DF=O indicates a borrow 
DF=l indicates no borrow 

M(R(X))-D -+ DF,D F5 

Example 1: 42 -OE =42 + F1 + 1 = 134 

D register contains 34, DF contains 1. (No borrow) 

Example 2: 42 -42 =42 + BD + 1 = 100 

D register contains 00, DF contains 1. (No borrow) 

Example 3: 42 - 77 = 42 + 88 + 1 = CB 

D register contains CB, DF contains O. (Borrow) 
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A final value of "0" in DF indicates a borrow and 
that the subtrahend was larger than the minuend. The 
answer is negative, but in 2's complement form: taking 

A 00 33 N 5 

cb p 0 

~ X 1 
ADDRESS M 

I F 
00 30 01 R(O) 00 71 

00 31 00 R(I) 00 33 f- ALU (-)1-
00 32 92 R(2) 00 32 DF=- J 
00 33 57 R(3) - - 0 92 

• 

the 2's complement of CB and assigning a minus sign 
provides the correct answer (42 - 77 = -35). 

N 5 

p 0 

ADDRESS M 

00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 

00 32 92 R(2) 00 32 

00 33 57 R(3) -

57 

Fig. 40 - Example of instruction F5 - SUBTRACT D. 

SUBTRACT 0 IMMEDIATE 

When I=F and N=D, the two operands are subtracted 
as in F5. The D byte is the subtrahend, and the memory 
byte immediately following the FD instruction is the 

A 03 32 N 0 

~ t- p 0 

X 2 
ADDRESS M 

03 2F FC R(O) 03 32 I-
I F 

03 30 80 R(I) 00 71 ALU (-) 

03 31 FD R(2) 00 33 DF= - f 
03 32 92 R(3) - - D 77 

• 

M(R(X))-O ~ OF,O; R(P)+l 

minuend. The final value in DF indicates whether or not 
a borrow occurred. 

A 03 32 N 0 

cb - p 0 

X 2 
ADDRESS M 

I F 
03 2F FC ,....... R(O) 03 33 -
03 30 80 R(l) 00 71 ALU (-) 

03 31 FD R(2) 00 33 DF= 1 , 
03 32 92 R(3) - - D lB 

~ 92 

Fig. 41 - Example of instruction FD - SUBTRACT D IMMEDIA TE. 

SUBTRACT 0 WITH BORROW 

When 1=7 and N=5, the byte in D with a borrow-in 
from a previous operation is subtracted from the mem­
ory byte addressed by R(X). The 8-bit result replaces the 
subtrahend in the D register. A fmal borrow is comple-

A 00 32 N 5 

cb p 0 

l- x 2 
ADDRESS M 

I 7 
00 30 01 R(O) 00 30 

00 31 18 R(I) 00 37 ALU HI-
00 32 40 R(2) 00 32 - DF= 0 f 
00 33 57 R(3) - - 0 20 

• 

M(R(X))-O-(NOT OF) ~ OF, 0 

mented and stored in. DF. Subtraction is performed by 
complementing each bit of the D register and adding it, 
with the carry-in from a previous operation, to the minu­
end. 

N 5 

P 0 

ADDRESS M 

00 30 01 R(O) 00 30 

00 31 18 R(l) 00 37 

00 32 40 R(2) 00 32 

00 33 57 R(3) 

40 

Fig. 42 - Example of instruction 75 - SUBTRACT D WITH BORROW. 
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The SUBTRACT D WITH BORROW instruction is 
applicable when multibyte words are subtracted. The 
following examples assume that two bytes have been 

CONDITION I: DF = 0, i.e. Borrow = 1 

subtracted generating a borrow which must be included 
in the next higher-order byte subtraction. Four alterna­
tives are possible in the subtraction of two words: 

Borrow is present from a preceding carry 

Case 1 M(R(X» > D 

Example: 

M(R(X» =40 
D =20 

40 - 20 - 1 = 40 + DF + 0 = llF 
After addition: 

D register contains 1 F 
DF contains I (Borrow = 0) 

CONDITION II: DF = 1, i.e. Borrow = 0 

Case 2 M(R(X» < D 

Example: 

M(R(X» =4A 
D =Cl 

4A - Cl - I = 4A + 3E + 0 = 88 
After addition: 

D register contains 88 
DF contains 0 (Borrow = 1) 

No borrow is present from a preceding carry 

Case 3 M(R(X» > D Case 4 M(R(X» < D 

Example: 

M(R(X» =64 
D =32 

64 - 32 - 0 = 64 + CD + 1 = 132 
After. addition: 

D register contains 32 
DF contains 1 (Borrow = 0) 

Example: 

M(R(X» = 71 
D =F2 

71 - F2 - 0 = 71 + OD + 1 = 7F 
After addition: 

D register contains 7F 
DF contains 0 (Borrow = 1) 

In Cases 2 and 4, the answer is a negative number and in 2's complement notation. 

SOBI SUBTRACTD WITH BORROW, 
IMMEDIATE 

When 1=7 and N=D, the two operands and borrow are 
subtracted as in instruction 75. The memory byte imme­
diately following the 7D instruction is the minuend. To 
the minuend is added the complement of the contents in 

A 02 22 N D 

cb - P 1 

X 2 
ADDRESS M 

I 7 
02 20 25 R(O) 03 32 

02 21 7D R(1) 02 22 - ALU (-) 

02 22 64 R(2) 03 71 DF= 1 t 
02 23 18 R(3) - - D 32 

M(R(P))~D-(NOT OF) ~ OF, 0; R(P)+1 70 

D plus the carry-in in DF from a previous operation. The 
8-bit result replaces the contents of the D register and a 
final borrow is complemented and stored in DF. The 
program counter is also incremented by 1. 

A 02 22 N D 

dJ ~ P 1 

X 2 
ADDRESS M 

I 7 
02 20 25 R(O) 03 32 

02 21 7D r-- R(l) 02 23 f- ALU (-) 

02 22 64 R(2) 03 71 DF=1 
, 

02 23 18 R(3) - - D 32 

~ 64 

Fig. 43 - Example of instruction 7D - SUBTRACT D WITH BORROW, IMMEDIATE. 
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SM SUBTRACT MEMORY 

When I=F and N=7, the memory byte addressed by 
R(X) is subtracted from the byte in D. The result byte 
replaces the minuend in D. This operation is identical to 

A 00 33 N" 7 

6 p 
0 -X 1 

ADDRESS M 
I F 

00 30 01 R(O) 00 71 

00 31 00 R(I) 00 33 - ALU HI-
00 32 92 R(2) 00 32 DF=- r 
00 33 57 R(3) - - 0 92 

• 

O-M(R(X)) ~ OF, 0 F7 

F5 with the operands reversed. A final borrow is comple­
mented and stored in DF. 

N 7 

p 0 

ADDRESS M 

00 30 01 R(O) 00 71 

00 31 00 R(l) 00 33 

00 32 92 R(2) 00 32 

00 33 57 R(3) -
57 

Fig. 44 - Example of instruction F7 - SUBTRACT MEMORY. 

SUBTRACT MEMORY IMMEDIATE 

When I=F and N=F, the two operands are subtracted 
as in F7. The D byte represents the minuend, and the 
memory byte immediately following the FF instruction 

A 03 34 N F 

cfu - p 0 

X 2 
ADDRESS M 

I F 
03 33 FF R(O) 03 34 -
03 34 lA R(l) 00 71 ALU HI-
03 35 62 R(2) 00 33 DF=- t 
33 36 6A R(3) - - 0 18 

• 

O-M(R(P)) ~ OF, 0; R(P)+l 

represents the subtrahend. (This instruction is equivalent 
to FD with the operands reversed.) A final borrow is 
complemented and stored in DF. 

A 03 34 N F 

clJ - p 0 

X 2 
ADDRESS M 

I F 
03 33 FF r- R(O) 03 35 :-
03 34 lA R(l) 00 71 ALU H 

03 35 62 R(2) 00 33 DF= 1 ! 
03 36 6A R(3) - - 0 01 , 

lA 

Fig. 45 - Example of instruction FF - SUBTRACT MEMORY IMMEDIATE. 

5MB SUBTRACT MEMORY WITH BORROW 

When 1=7 and N=7, the byte in memory addressed by 
R(X) plus the borrow (indicated by DF=O) is subtracted 
from the byte in the D register. This operation is similar 
to the instruction 75 but with the operands reversed. 
The 8-bit result replaces the minuend in D, and DF=O 

, 

A 00 32 N 7 

cb P 1 - X 2 
ADDRESS M 

I 7 
00 30 18 R(O) 00 71 

00 31 25 R(l) 00 33 ALU HI-
00 32 Cl R(2) 00 32 I- DF=O t 
00 33 64 R(3) - - 0 4A 

• 

O-M(R(X))-(NOT OF) ~ OF, 0 77 

will indicate if a final borrow occurred. Subtraction 
takes place by complementing the memory byte ad­
dressed by R(X) and adding it with the contents of DF 
to the minuend in D. 

ADDRESS M 

00 30 18 

00 31 25 

00 32 Cl 

00 33 64 

R(O) 00 

R(I) 00 

R(2) 00 

R(3) 

71 

33 

32 

Cl 

N 7 

p 

Fig. 46 - Example of instruction 77 - SUBTRACT MEMORY WITH BORROW. 



5MBI 
SUBTRACT MEMORY WITH BORROW, 

IMMEDIATE 

When 1=7 and N=F, the two operands and borrow 
~re subtracted as in instruction 77. The immediate byte 
~n memory follOwing the instruction 7F plus the borrow 
IS the subtrahend, and the contents of D is the minuend. 

A 00 22 

~ 
N F 

I- p 1 

ADDRESS M 
X 2 

I 7 
00 20 18 R(O) 00 32 

00 21 7F R(1) 00 22 I- ALU H 

00 22 F2 R(2) 00 71 DF = 1 f 
00 23 64 R(3) - - D 711 

D-M(R(P))-(NOT DF) -+ DF, D;R(P)+1 7F 

The 8-bit result replaces the contents of D, and again 
DF=O indicates that a final borrow was generated. The 
program counter is also incremented by 1. 

c6 
A 00 22 N F 

I- p 1 

ADDRESS M 
X 2 

I 7 
00 20 18 R(O) 00 32 

00 21 7F - R(1) 00 23 I- ALU H 

00 22 F2 R(2) 00 71 DF = 0 • 00 23 64 R(3) - - D 7F 

t F2 

Fig. 47 - Example of instruction 7F - SUBTRACT MEMORY WITH BORROW 
IMM£DIA T£. ' 

Branching 

Short-Branch Operations 

The .current program counter, R(P), normally steps 
sequentIally through a list of instructions, skipping over 
immediate data bytes. When 1=3, a short branch instruc­
tion is executed. The N code specifies which condition is 
tested. If the test is satisfied, a branch is effected by 
changing R(P). 

When a branch condition is satisfied, the byte imme­
diately following the branch instruction replaces the 
low-order byte of R(P). The next instruction byte will 
be fetched from the memory location specified by the 
byte following the branch instruction. If the test condi­
tion is not satisfied, then execution continues with the 
instruction following the immediate byte. This ability to 
branch to a new instruction sequence (or back to the 
beginning of the same sequence to form a loop) is funda­
mental to stored-program computer usefulness. 

UNCONDITIONAL SHORT BRANCH 

When 1=3 and N=O, an unconditional short branch 
operation is performed. The byte immediately following 

Because with this instruction only the low-order byte 
of R(P) can be modified, the range of memory locations 
that can be branched to is limited. Since only the low­
order 8 bits can be modified, short branching is limited 
to 28 or 256 bytes. Each 256-byte memory segment is 
called a page. Instructions for branching to any location 
in memory are described in the next subsection headed 
"Long-Branch Operations". 

The special case of a short branch instruction and its 
immediate byte occupying the last two bytes in a page is 
treated as follows: If a branch takes place, R(P).l is not 
changed-the branch stays on the same page. If a branch 
does not take place, execution continues at the first 
(Oth) byte of the next page. A branch instruction on the 
last byte of a page always leads into the next page, either 
by branch or by increment. In other words, the address 
of the immediate byte determines the page to which a 
branch takes place. 

M(R(P)) -+ R(P)'O 

the "30" replaces R(P).O. 
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A 01 23 J N 0 

cb I-- p 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 RW) - -
01 22 30 RI1I 01 23 I- IALUI- I 

A 01 23 N 0 

c6 f- p 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 RW) - -

01 22 30 Rll) 01 82 - IALU I- I • 01 23 82 R(2) 00 37 OF= - 01 23 82 R(2) 00 37 OF =-

01 24 2A R(3) - - I o I- I 01 24 2A R(3) - - I D I- I 

+ 82 t 
Fig. 48 - Example of instruction 30 - UNCONDITIONAL SHORT BRANCH. 

NBR NO SHORT BRANCH 
SKP SHORTSKIP 

When 1=3 and N=8, the name NO SHORT BRANCH 
implies that the byte following the "38" instruction is 
an address which will be skipped. This instruction may 

BZ SHORT BRANCH IF D=O 

When 1=3 and N=2, a conditional short branch opera­
tion dependent on the value ofD is performed. The byte 
in D is examined and if it is equal to zero a branch oper­
ation is performed. If the value of D is not zero, R(P) is 
incremented by 1. This increment causes the branch 
address byte following the "32" instruction to be 
skipped so that the next instruction in sequence is 
fetched and executed. 

This instruction can be used following one of the 

A 01 23 N 2 

6 - P 1 

ADDH~SS 
X 2 

M 
I 3 

01 21 F6 RIO) - -
01 22 32 Rill 01 23 - ALU - f-
01 23 97 R(2) 00 37 OF =-

01 24 2C RI31 - - I D I 00 I • 

R(P)+1 38 

also be considered to be a SHORT SKIP and is so de­
scribed in the section on SKIP instructions. 

IF D=O, M(R(P)) -+ R(P).O 32 
ELSE R(P)+1 

ALU operations described earlier. For example, an 
EXCLUSIVE-OR operation (F3 or FB) might be used to 
compare an input byte with a byte representing a con­
stant. A zero result byte in D would represent equality. 
The "32" instruction could then be used to branch to a 
location in the program for handling this value of the 
input byte when D=OO, or to proceed to the next in­
struction in sequence if D:f:OO, possibly to look for 
equality with other constants. 

A 01 23 N 2 

c6 - P 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 RIOI - -
01 22 32 Rill 01 97 f- IALU I - I 
01 23 97 RI21 00 37 OF =-

01 24 2C R(31 - - I 0 I 00 I 
+ 97 t 

CONDITION TRUE 

ADDRESS M 

01 21 F6 

01 22 32 

01 23 97 

01 24 2C 

A 01 23 N 2 

cb I-- p 1 

X 2 

A 01 23 N 2 

cb f- p 1 

X 2 
ADDRESS M 

I 3 
RIO) - -

I 3 
01 21 F6 RIO) - -

R(1) 01 23 ~ IALul- I • 01 22 32 r- Rll) 01 24 - IALul - I 
R(2) 00 37 OF =- 01 23 97 R(2) 00 37 DF=-

R(3) - - I o 112 I 01 24 2C R(3) - - I 0 

CONDITION FALSE 

Fig. 49 - Example of instruction 32 - SHORT BRANCH IF D = 0 for both false and 
true conditions. 

112 I 
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BNZ SHORT BRANCH IF D NOT 0 

When 1=3 and N=A, a branch is performed only if the 
byte in D does not equal zero; if it does, the next 

A 01 23 N A 

6 - P 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 R(O) - -

01 22 3A R(I) 01 23 ~ IALul- I 
01 23 97 R(2) 00 37 OF =-

01 24 2C R(3) - - I 0 112 1 
• 

IF D NOT 0, M(R(P)) -+ R(P).O 3A 
ELSE R(P)+1 

instruction in sequence is executed. 

A 01 23 N A 

c6 - P 1 

X 2 
ADDRESS M 

I 3 
01 21 F6 R(O) - -

01 22 3A R(lI 01 97 ~ IALU I- I 
01 23 97 R(2) 00 37 DF= -

01 24 2C R(3) - - I 0 112 I 

t 97 
, 

Fig. 50 - Example of instruction 3A - SHORT BRANCH IF D NOT O. 

BDF SHORT BRANCH IF DF=1 IF DF=1, M( R(P)) -+ R(P)O 
BPZ SHORT BRANCH IF POS OR ZERO 33 
BGE SHORT BRANCH IF EOUAL OR GREATER ELSE R(P)+1 

When 1=3 and N=3, branching occurs if DF=l. Other­
wise, the next instruction in sequence is performed. 
Examples are not shown for all of the remaining branch 
instructions because they differ only in the condition 

BNF SHORT BRANCH IF DF=O 
BM SHORT BRANCH IF MINUS 
BL SHORT BRANCH IF LESS 

When 1=3 and N=B, a short branch occurs only if 
DF=O. Otherwise, the next instruction in sequence is 

BO SHORT BRANCH IF 0=1 

When 1=3 and N=l, a short branch occurs only if 
Q=l. Otherwise, the next instruction in sequence is 

A 01 23 N 1 

cb - P 1 

2 X' 
ADDRESS M 

I 3 
01 21 F6 R(O) - -

01 22 31 R(lI 01 23 -- IALUI - I 
OF -

01 23 97 R(2) 00 37 
1 0 I - I 01 24 2C R(3) - -

j o[2J 

tested. The instruction has three mnemonics useful fol­
lowing a shift, subtraction, or comparison (by subtrac­
tion), respectively. 

IF DF=O, M(R(P)) -+ R(P).O 
3B 

ELSE R(P)+1 

fetched and executed. Again, three mnemonics may be 
useful, all resulting in the same machine action. 

IF 0=1, M(R(P)) -+ R(P).O 
ELSE R(P)+1 

fetched and executed. 

A 01 

cb 
M 

F6 R(O) -

31 R(I) 01 

ADDRESS 

• 
t------+--!01 

01 22 

01 23 97 R(2) 00 

01 24 2C R(3) -

31 

31 N 1 

~ P 1 

X 2 

I 3 -

97 I- IALUI - I 
OF 

37 I o I - I -

f olJ] 
CONDITION TRUE 
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ADDRESS M 

A 01 23 N 1 - P 1 

X 2 

A 01 23 N 1 

clJ· 
...,;. P 1 

X 2 
ADDRESS M 

01 21 F6 
I 3 

R(O) - - I 3 
01 21 F6 R(O) - -

01 22 31 

01 23 97 

01 24 2C 

R(l) 01 23 - IALul -I 
R(2) 00 37 DF -

1 D 1 -I R(3) - -

01 22 31 f"- R(l) 01 24 - IALU 1 -I 
01 23 97 00 37 

DF-
R(2) I D 1 - I 01 24 2C R(3) - -

CONDITION FALSE 

Fig. 51 - Example of instruction 31 - SHORT BRANCH IF Q = 1 for both true and 
false conditions. 

BNO SHORT BRANCH IF 0=0 

When 1=3 and N=9, a short branch occurs only if 
Q=O. Otherwise, the next instruction in sequence is 

B1 SHO,RT BRANCH IF EF1=1 

BNl SHORT BRANCH IF EF1=0 

B2 SHORT BRANCH IF EF2=1 

BN2 SHORT BRANCH IF EF2=0 

B3 SHORT BRANCH IF EF3=1 

BN3 SHORT BRANCH IF EF3=0 

B4 SHORT BRANCH IF EF4=1 

BN4 SHORT BRANCH IFEF4=O 

When 1=3 and N=4,S,6, or 7, short branching occurs 
only When the corresponding external flag input (EFl, 
EF2, EF3, or~4) is held in its "true" state by external 
circuits (i.e., EFl, EF2, EF3, or EF4 = 0 or Low). 

IF 0=0, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

fetched and executed. 

IF EF1=1, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF1=0, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF2=1, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF2=0, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF3=1, M(R(P)) -~ R(P).O 
ELSE R(P)+l 

IF EF3=0, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF4=1, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

IF EF4=0, M(R(P)) -+ R(P).O 
ELSE R(P)+l 

39 

34 

3C 

35 

3D 

36 

3E 

37 

3F 

When 1=3 and N=C,D,E, or F, short branching occurs 
only when the corresponding external flag input (EFI, 
EF2, EF3, or EF4) is held in its "false" state by external 
circuits (i.e., EFl, EF2, EF3, or EF4 = 1 or High). 
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Long-Branch Operations 

The long-branch instructions have a two-byte address 
and allow branching to any location within the full 

LBR LONG BRANCH 

When I=C and N=O, an unconditional long branch is 
performed. The two bytes in memory following the 
operation code replace the full 16-bit contents of R(P). 

A 00 31 N 0 

cb r- p 2 

X 1 
ADDRESS M 

I C 
00 30 CO RIO) 01 35 

00 31 25 Rll) 01 75 IALUI - I 
00 32 3A R(2) 00 31 - DF= -

00 33 62 R(3) - - I D 1 - 1 
~ 

• 

memory space during three machine cycles (one fetch 
plus two execute). 

M(R(P)) ~ R(P).l 
CO 

M(R(P+l)) ~ R(P).O 

If, for instance, the instruction C0253A has been exe­
cuted, the next instruction will be found at memory 
location 253A. 

A 00 31 N 0 

cb i- p 2 

X 1 
M ADDRESS 

00 30 CO RIO) 
I C 

01 35 

00 31 25 Rll) 01 75 IALU I -I 

00 32 2A R(2) 25 3A ~ DF= -

00 33 62 R(3) - - I D 1 -I 
3A 25 , 

Fig. 52 - Example of instruction CO - LONG BRANCH. 

NLBR NO LONG BRANCH 
LSKP LONG SKIP 

When I=C and N=8, the program counter will be 
incremented twice. For instance, in the instruction 
sequence C85A2B23, the instruction to be executed 
following C8 is 23. The name LONG SKIP, LSKP, may 

A 00 31 N 8 

cb - P 2 

1 X 
ADDRESS M 

I C 
00 30 C8 RIO) 01 35 

00 31 5A Rill 01 75 IALul - I 
00 32 28 R(2) 00 31 - DF=-

00 33 23 R(3) 
1 D 1 -I 

R(P)+2 C8 

also be used (see SKIP instructions). NO LONG 
BRANCH, NLBR, tells the assembler to expect a two­
byte branch address, while LSKP has no restrictions on 
the next two bytes. 

A 00 31 N 8 

~ i- p 2 

X 1 
ADDRESS M 

I C 
00 30 C8 RIO) 01 35 

00 31 5A Rill 01 75 IALU I -I 
00 32 28 r-- R(2) 00 33 - DF=-

00 33 23 R(3) I D 1 - 1 

Fig. 53 - Example of instruction C8 - NO LONG BRANCH or LONG SKIP. 

LBZ LONG BRANCH IF D=O 

When I=C and N=2, a conditional long branch is per­
formed. If D=O, the contents of the program counter 
R(P) will be replaced with a specified two-byte address. 
If D:fO, the program counter is incremented twice. 

IF D=O, M(R(P)) ~ R(P).l 
M(R(P)+l) ~ R(P).O C2 

ELSE R(P)+2 

Example: When C2 is fetched from the instruction 
sequence C21A3343, the next instruction to be fetched 
is at memory address lA33 if D=O. If DfQ, execution 
continues with 43. 
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ADDRESS M 

00 30 C2 

00 31 lA 

00 32 33 

00 33 43 

~ 

ADDRESS M 

00 30 C2 

00 31 lA 

00 32 33 

00 33 43 

LBNZ 

LBDF 

LBNF 

LBQ 

LBNQ 

A 00 31 N 2 

cb r- p 2 

X 1 

I C 
R(O) 01 35 

R(l) 01 75 IALUI - I 

A 00 31 N 2 

cb - P 2 

X 1 
M 

01 35 
I C 

C2 R(O) 

lA R(I) 01 75 IALU I - I 
ADDRESS 

... 00 30 

.". 00 31 

R(2) 00 31 I- DF= - 00 32 33 R(2) lA 33 - DF= -

R(3) - - I 0 I 00 I 00 33 43 R(3) - -. I 0 I 00 I 
33 lA T f 

CONDITION TRUE 

A 00 31 N 2 

~ i- p 2 

X 1 clJ 
A 00 31 N 2 - P 2 

X 1 
ADDRESS M 

I C 
R(O) 01 35 

I C 
00 30 C2 R(O) 01 35 

R(l) 01 75 ALU -I- 00 31 lA R(l) 01 75 IALU I - I 
R(2) 00 31 t- DF= - 00 32 33 r- R(2) 00 33 I- OF =-

R(3) - - I 0 I F3 I 00 33 43 R(3) - -

CONDITION FALSE 

Fig. 54 - Example of instruction C2 - LONG BRANCH IF D = 0 for both true and 
false conditions. 

IF D NOT 0, M(R(P)) ~ R(P).1 
LONG BRANCH IF D NOT 0 M(R(P)+1) ~ R(P).O 

ELSE R(P)+2 

IF DF=1, M(R(P)) ~ R(P).1 
LONG BRANCH IF DF=1 M(R(P)+1) ~ R(P).O 

ELSE R(P)+2 

IF DF=O, M(R(P)) ~ R(P).1 

LONG BRANCH IF DF=O M(R(P)+1) ~ R(P).O 
ELSE R(P)+2 

IF Q=1, M(R(P)) ~ R(P).1 

LONG BRANCH IF Q=1 M(R(P)+1) ~ R(P).O 
ELSE R(P)+2 

IF Q=O, M(R(P)) ~ R(P).1 
LONG BRANCH IF Q=O M(R(P)+1) ~ R(P).O 

ELS,E R(P)+2 

I 0 I F31 

CA 

C3 

CB 

C1 

C9 
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Skip Instructions 

The SHORT SKIP is unconditional and skips the byte 
following the operation code. The LONG SKIP is also 
unconditional but skips two bytes following the opera­
tion code. The other instructions are long skips if test 

SKP SHORTSKIP 
NBR NO SHORT BRANCH 

When 1=3 and N=8, the byte following the "38" in­
struction is skipped. The name SHORT SKIP implies 

LSKP LONG SKIP 
NLBR NO LONG BRANCH 

When I=C and N=8, the two bytes following the "C8" 
instruction are skipped. The alternative name NO LONG 

LSZ LONG SKIP IF 0=0 

A 00 31 N E 

~ P 2 

X 1 

f C 
00 30 CE R(O) 01 35 

00 31 05 R(1) 01 75 IALUI -I 
00 32 72 R(2) 00 31 ~ DF=-

00 3352 R(3) - - I D I 00 I 

conditions for D, DF, or Q are satisfied. The long-skip 
instructions require three machine cycles, one fetch and 
two execute, as do the long-branch instructions. 

R(P)+1 38 

nothing about the following byte, but the alternative 
name NO SHORT BRANCH implies a branch address. 

R(P)+2 C8 

BRANCH implies that these two bytes represent an un­
used branch address. 

IF 0=0, R(P)+2 CE 
ELSE CONTINUE 

A 00 31 N E 

clJ I- p 2 

X 1 
ADDRESS M 

I C 
00 30 CE R(O) 01 35 

00 31 05 R(l) 01 75 IALU I - I 

00 32 72 - R(2) 00 33 f4::-
00 33 62 R(3) - - I D I 00 I 

CONDITION TRUE 

I A N E A N E 

f0- p 2 I- p 2 

X 1 

I C 
R(O) 01 35 

R(1) 01 75 IALUI - I 
ADDRESS M 

00 30 CE 

00 31 05 

X 1 

35 
I C 

R(O) 01 

. R(l) 01 75 IALUI- I • 
ADDRESS M 

00 30 CE 

00 31 05 

00 32 72 R(2) 00 31 I-- DF=- 00 32 72 R(2) 00 31 - DF=-

00 33 62 R(3) - - I D I F71 00 33 62 R(3) I D I F7 I 
CONDITION FALSE 

Fig. 55 - Example of instruction CE - LONG SKIP IF 0 = 0 for both true and false conditions. 

LSNZ LONG SKIP IF 0 NOT 0 

LSOF LONG SKIP IF OF=1 

IF 0 NOT 0, R(P)+2 
ELSE CONTINUE 

IF OF=1, R(P)+2 
ELSE CONTINUE 

C6 

CF 
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LSNF LONG SKIP IF DF=O 

LSO LONG SKIP IF 0=1 

LSNO LONG SKIP IF 0=0 

LSIE LONG SKIP IF IE=1 

When I=C and N=E, 6, F, 7, D, 5, or C, a conditional 
long skip is performed. If the test conditions for D, DF, 
Q, or IE are satisfied, the two bytes following the opera­
tion code are skipped. If the test condition is not met, 
normal program execution continues. For instance, if 

IF DF=O, R(P)+2 
C7 

ELSE CONTINUE 

IF 0=1, R(P)+2 
CD 

ELSE CONTINUE 

IF 0=0, R(P)+2 
C5 ELSE CONTINUE 

IF IE=1, R(P)+2 
CC 

ELSE CONTINUE 

instruction "CD" is fetched from the sequence 
CD5525F2, the Q bit is examined and if Q=I, the next 
instruction to be executed is F2. If Q=O, execution con­
tinues with instruction "55". 

Control Instructions 

IDL IDLE 

When 1=0 and N=O, the microprocessor repeats exe­
cute (SI) cycles until an I/O request (INTERRUPT, 
DMA-IN, or DMA-OUT) is asserted. When the request is 

I NOP I NO OPERATION 

When I=C and N=4, no operation occurs. Execution 
proceeds with the next sequential instruction (A3 in the 

A ~ 30 N 4 - P 2 

ADDRESS M 
X 3 

I C 
00 30 45 R(O) 00 31 

00 31 A3 R(l) 00 72 IALUI ~ 1 
00 32 62 R(2) 00 30 ... DF=-

00 33 F3 R(3) - - I D 14A I • 

WAIT FOR DMA OR INTERRUPT 
00 

M(R(O)) ~ BUS 

acknowledged, the IDLE cycle is terminated and the 
I/O request is serviced, whereupon normal operation is 
resumed. 

CONTINUE C4 

example below). This instruction requires three machine 
cycles, as do the other I=C instructions. 

A 00 30 N 4 

I- p 2 

X 3 
ADDRESS M 

00 30 46 R(O) 00 31 
I C 

00 31 A3 R(1) 00 72 IALU I -I 
00 32 62 R(2) 00 30 -- DF=-

00 33 F3 R(3) - - I D 14A I 

Fig. 56 - Example of instruction C4 - NO OPERATION. 
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SEP SETP 

When I=D, the digit contained in N replaces the digit 
in P. This operation is used to specify which scratch-pad 
register is to be used as the program counter. This in­
struction causes a jump to the instruction sequence 
beginning at M(R(N)). It facilitates "branch and link" 

N 8 

p 8 

X 2 

D 
R(O) - -
R(l) 01 23 IALU 1-
R(2) 00 37 DF=-

R(3) - - D I- I • 

ON 

functions and subroutine nesting. (These topics are dis­
cussed in the section on Instruction Utilization and in 
the section on Programming Techniques under the head­
ing "Subroutine Techniques".) 

R(O) - -

R(l) 01 23 

R(2) 00 37 

R(3) - -

N 8 

p 8 

X 2 

D 

DF=-

o 1- I 

Fig. 57 - Example of instruction DN - SET P. 

SEX SET X 

When I=E, the N digit replaces the digit in X. This in­
struction is used to designate R(X) for ALU and I/O 

N 3 

p 

X 2 3 

E 
R(O) - -
R(l) 01 23 IALU 1-
R(2) 00 37 DF=-

R(3) - - I D I- I • 

byte transfer operations. 

R(O) -
R(l) 01 

R(2) 00 

R(3) -

-

23 

37 

-

N 3 

p 

X 3 

E 

DF=-

o 1- I 

Fig. 58 - Example of instruction EN - SET X. 

SEQ SETQ 

EN 

78 

When 1=7 and N=B, the Q output -flip-flop is set. Q 
was initially reset to "0" in the RESET mode and can 

later be tested by the branch instructions BQ and BNQ. 

R(O) -

R(I) -

R(2) -
R(3) -

-
-

-

-

ms 
p -

x -

I 7 

IALU 1 -

D I - I 
aD 

• R(O) - -

R(1) - -

R(2) - -
R(3) - -

Fig. 59 - Example of instruction 78 - SET O. 

ms 
p -

x -
I 7 

IALU! - 1 

1 D 1 - I 
a~ 
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REO RESETQ 

When 1=7 and N=A, the output flip-flop Q is reset. Q 
is initially reset to "0" in the RESET mode and can later 

R(O) -
R(I) -
R(2) -
R(3) -

-

-

-
-

I A 

P -

X -

I 7 

lAW I - 1 

1 0 1 - 1 

aD 

0-+0 7A 

be tested by the two branch instructions BQ and BNQ. 

R(O) -

R(1) -
R(2) -
R(3) -

-

-

-
-

~.
A 

P -

X -

I 7 

IALU 1 - I 

1 0 1 - 1 

aG 
Fig. 60 - Example of instruction lA - RESET Q. 

Interrupt and Subroutine Handling 

The special interrupt servicing instructions can best 
be understood by examining COSMAC's response to an 
interrupt. When an interrupt occurs, it is necessary to 
save the current configuration of the machine by storing 
the values of X and P, and to set X and P to new values 
for the interrupt service program. The interrupt forces 
X and P to be automatically transferred into a tempo­
rary register T (P goes into the lower 4 bits, while X goes 

INTERRUPT ACTION 

N 

P 3 

X 4 

R(O) - -
R(I) 00 56 

R(2) 01 24 DF=-

R(3) 02 3C o 1- I 
IE = 1 

into the higher 4 bits), and forces a value of "1" into P 
and "2" into X. In addition, further interrupts are dis­
abled by resetting the interrupt enable flip-flop (E) to 
''0''. Also, a speCific code is provided on the COSMAC 
state code line. Details of the interrupt servicing are dis­
cussed in the section on Interfacing and System Opera­
tions under the heading "I/O Interface". 

X,P -+ T; 1 -+ P; 2 -+ X; 0 -+ IE 

N 

P 

X 2 

RIO) - -
R(lI 00 56 

R(2) 01 24 DF=-

R(3) 02 3C I 0 1- I 
IE =0 

Fig. 61 - Example of --- INTERRUPT ACTION. 

SAV SAVE 

When 1=7 and N=8, a SAVE operation is perfonned. 
This operation stores the byte contained in the T register 
at the memory location addressed by R(X). Subsequent 

T-+ M(R(X)) 78 

execution of a RETURN or DISABLE instruction can 
then replace the original X and P values to resume (or 
return to) nonnal program execution. 
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MARK PUSH X, P TO STACK 

When 1=7 and N=9, another save operation is per­
formed. The current contents of the X and P registers 
are stored through the temporary register T and into the 

HT 
A 00 71 N 9 

6 r- p 3 I-

~ ~ ADDRESS M 
X 2 

• 00 
I 7 

70 15 R(O) 00 31 

00 71 F7 R(l) 00 36 IALUI - I 
00 72 48 R(2) 00 71 ~ DF=-

00 73 01 R(3) - - I 0 I - I 
t 

(X,P) -+ T; (X,P) -+ M(R(2)) 
79 

THEN P-+X; R(2)-1 

byte in memory addressed by R(2). The contents of P 
are set into X and R(2) is decremented by 1. 

23 I 1 T 1 23 I 

ADDR 

00 ~ P 3 

X 3 
ESS M 

70 15 
I 7 

00 71 23 IALU I - I 
00 72 48 DF= -

00 73 01 R(3) I 0 I - I 

Fig. 62 - Example of instruction 79 - PUSH X, P TO STACK. 

RETURN 

When 1=7 and N=O, a RETURN operation is per­
formed. The digits in X and P are replaced by the 
memory byte addressed by R(X) , and R(X) is incre-

A 01 23 N 0 

cb • P 1 

I-
ADDHI::SS M 

X 2 

I 7 
01 21 00 RW) - -

01 22 00 R(lI 00 56 IALUI- I 
01 23 43 R(2) 01 23 ~ OF =-

01 24 00 R(3) 02 3C I o I- I 
IE =-

• 

M(R(X)) -+ (X,P); R(X)+1; 1-+ IE 

mented by 1. The I-bit Interrupt Enable (IE) flip-flop is 
set. 

A 01 23 N 

~ 
0 

p 3 I-
4 ~ X 

ADDRESS M 
I 7 

01 21 00 RIO) - -

01 22 00 R11) 00 56 IALU I - I 
01 23 43 I-- R(2) 01 24 I- OF =-

01 24 00 R(3) 02 3C I 0 I- I 
~ IE = 1 43 

Fig. 63 - Example of instruction 70 - RETURN. 

DISABLE 

When 1=7 and N=I, an instruction similar to 
RETURN is executed, except that in this case IE is reset. 
While IE=O. the interrupt line is ignored by the proces­
sor. 

M(R(X)) -+ (X,Pl, R(X)+1; 0 -+ IE 

Either the RETURN or DISABLE instruction can be 
used to set or reset IE, respectively, as explained in the 
section on Programming Techniques under the heading 
"Interrupt Service". 
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I nput/Output Byte Transfer 

OUT OUTPUT 

When 1=6 and N=I,2,3,4,S,6, or 7, the memory byte 
addressed by R(X) is placed on the data bus. The three 
lower-order bits of N are simultaneously sent from the 
CPU to the I/O system. These three N lines are low at 
all times except when an Input/Output instruction is 
being executed (1=6). The I/O system recognizes these 
conditions and reads the output byte from the lines. 

The N lines may be decoded with MRD to select or 

M(R(X)) ~ BUS; R(X)+1 
6N 

N=1-7 

control 7 output devices. For more complex systems, see 
"I/O Interface" in the section Interfacing and System 
Operations. 

R(X) is incremented by I so that successively exe­
cuted output instructions can transfer bytes from suc­
cessive memory locations, If X is set to the same value as 
P, then the byte immediately following the output 
instruction is read out as immediate data. 

r- N2,Nl,NO (111) N2, Nl, NO r- (111) 

A 00 33 N 7 

dJ p 0 

r- x 2 
ADDK~SS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 Rll) 00 71 IALUI-
I 

A 00 33 I N 7 

c6 p 0 - X 2 
ADDRESS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 R(1) 00 71 IALU I - I • 00 33 56 R(2) 00 33 - OF =- 00 33 56 r- R(2) 00 34 ~ OF =-

00 34 78 R(3) - -
I oI- I 

00 34 78 R(3) - - I 0 I- I 

t 56 
56 

Fig. 64 - Example of instruction 6N (N = 1 -7) - OUTPUT. 

INP INPUT 

When 1=6 and N=9,A,B,C,D,E, or F, an input byte re­
places the memory byte addressed by R(X). The input 
byte is also placed in the D register. R(X) is not modi­
fied. The three bits of N are simultaneously sent from 
the CPU to the I/O system during execution of the 

BUS~ M(R(X)); BUS~ 0 
6N 

N=9-F 

instruction. The I/O circuits should gate an input byte 
onto the data lines during the execute cycle. The N lines 
may be decoded with MRD to select or control 7 input 
devices. For more complex systems, see "I/O Interface" 
in the section Interfacing and System Operations. 

Ar-
N2, Nl, NO (010) _A.. N2, Nl, NO (010) 

A 00 34 N A 

cb p 0 

t- 2 X 
ADDRESS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 Rll) 00 71 IALUI - I • 
A 00 34 N A 

cb P 0 

~ X 2 
ADDRESS M 

I 6 
00 31 12 RIO) 03 36 

00 32 34 Rill 00 71 IAl.U I - I 

00 33 56 R(2) 00 34 ..... OF =- 00 33 56 R(2) 00 34 ~ OF =-

00 34 78 R(3) - -
I 
oI-

I 
00 34 27 R(3) - - 0 27 

27 27 J 27 f 27 

Fig. 65 - Example of instruction 6N (N = 9 - F) - INPUT. 

DMA Servicing 

DMA-IN ACTION 

DMA-OUT ACTION 

During DMA operation, R(O) points to a memory 
location for data transfer. After each byte transfer, R(O) 
is incremented by 1. For concurrent DMA and Interrupt 

BUS ~ M(R(O)) ;R(O)+1 

M(R(O)) ~ BUS; R(O)+1 

requests, DMA-IN has priority, then DMA-OUT, and 
then Interrupt. For further details, refer to "I/O Inter­
face" in the section Interfacing and System Operations. 
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Instruction Utilization 

In this section, the basic usage of some of the instruc­
tions defined in the preceding section is described from 
the user's point of view. Additional information on in­
structions applicable to subroutines and interrupts is 

given in the subsections on "Subroutine Techniques" 
and "Interrupt Service" in the section on Programming 
Techniques. 

Stack Handling Instructions 

These instructions are provided for data movement to 
and from memory, and are well suited for stack han­
dling. The further use of these instructions in subroutine 
linkages is discussed in the subsection on "Subroutine 
Techniques" in the section Programming Techniques. 

Mnemonic 

IRX 

LDX 

LDXA 

STXD 

Example 1. Pushing data onto a stack; saving a register 

GHI R3 .. Load R(3).1 into D 

STXD · . Store it onto stack (push) 

GLO R3 · . Load R(3).O into D 

STXD · . Store it onto stack (push) 

K-2 K-2 free location 

K -1 K-1 from R(3).O 

K free location R(X) 1--1 K from R(3).1 

K+1 other data K+1 other data 

Stack at start up Stack after second STXD 

Op Code 

60 

FO 

72 

73 

~ (X) 
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Example 2. Retrieving data from a stack; restoring a register 

IRX · . Advance pointer to data 

LDXA · . Load data and advance pointer (pop) 

PLO R3 · . Move D to R(3).0 

LDX · . Load data, no advance of pointer (pop) 

PHI R3 · . Move D to R(3).1 

K-2 free location ~ R(X) K - 2 

K-1 to R(3).0 K-1 

K toR(3).1 K free location R(X) 14-1 

K+1 other data K+1 other data 

Stack at start up Stack after using LDXA and LDX 

Shift Instructions 

Shift instructions are used for division, multiplica­
tion, bit and byte manipulation, and testing. A multipli­
cation by 2 is accomplished by instruction SHL, whereas 
a division by 2 is done by SHR. Bit shifting in either 
direction can be performed either by using the basic 
shift instructions SHR and SHL or by using the SHRC 
and SHLC instructions. For the basic shift instructions, 
zeros are shifted appropriately into the D register; bits 
shifted out of the DF are lost. The shift with carry or 
ring shift instructions retain all bits by shifting them 
through the DF and back into the D register. 

Mnemonic 

SHR 

SHRC 

SHL 

SHLC 

Op Code 

F6 

76 

FE 

7E 

Example. Shifting the contents of the 16-bit register R(5) one bit to the right 

initially 

R(5) 1A 75 

~ 

SUB1: GHIR5 · . Load #1A into D 

SHR · . Shift it one bit to the right 

PHIR5 .. Store the result (#OD) in R(5).1 

GLO R5 · . Load #75 into D 

SHRC · . Shift it one bit to the right 

· . Shifting in carry from SHR 

PLO R5 · . Store the result (#3A) in R(5).0 

finally 

R(5) I OD 3A 
10000 1101 0011 1010 I 
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Arithmetic Instructions 

Multiple Precision Addition 
Multiple precision addition is used to add two oper­

ands of multiple byte length. The multiple precision 
addition is performed by adding the two least significant 
bytes and then adding the next two bytes to the carry 
created by the preceding addition. This operation is re­
peated for each subsequent byte in an operand. Finally, 
the two most significant bytes are added together with 
the carry from the preceding addition. The DF will be 
set to "1" if there is a carry from the two most signifi­
cant bytes. 

The ADC instruction together with ADD is used for 
adding two operands of multiple byte length. Consider 
the addition of two numbers each 2 bytes long. 

1. The two least Significant bytes are added first by 
using the ADD instruction. The 8-bit sum will be 

Mnemonic Op Code 

ADD F4 

ADC 74 

stored in the D register, and the I-bit DF (which 
represents the output carry) will be set to "1" if 
there is a carry out from the most significant bit. 
If there is no carry, the D F is reset. 

2. Next, the two most significant bytes are added 
using the ADC instruction. The state ofDF, which 
represents the output carry from step 1 and the 
input carry to step 2, will be taken into considera­
tion. The 8-bit sum will be stored in the D register, 
and the I-bit DF will be set to "1" if there is a 
carry from the most significant bit. 

Example 1. Adding two operands #913A and #F BEO - arithmetic 

913A 

+ F 8 E 0 

Sum: 80 1A,DF = 1 

1001 

1111 

1000 

input carry 

n 0001 . 0011 1010 

1011 1110 0000 

1101 OF =[!] 0001 1010 

+ 

• DF~~ 
output carry Use ADC Use ADD 

Example 2. Adding two operands each 2 bytes long - assembly code 

Register MA contains the address of the first operand, while the second 
operand is found in register AC. 

ADDX: INCMA 

SEX MA 

GLOAC 

ADD 

PLOAC 

DECMA 

GHIAC 

ADC 

PHIAC 

· . Point to low 8-bit memory location 

.. Set X to MA 

· • Fetch AC low 8 bits 

• • Add the two low-order bytes 

· . Store the result in (AC).O 

· • Point to high 8-bit memory location 

· . Fetch AC high 8 bits 

· . Add the two high-order bits with carry 

· . Store the result in (AC).1 

· . AC contains 16-bit sum 

· . 0 F = 1 denotes owrflow 
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Multiple Precision Subtraction 
The concept of multiple precision for subtraction is 

analogous to that for addition. It is performed by suc· 
cessive subtractions starting with the two low-order 
bytes and ending with the two high·order bytes. The 
borrow from each step is included in the next higher. 
order subtraction. 

The SDB instruction together with SD is used to sub· 
tract two operands of any byte length. Consider the sub· 
traction of two numbers each 2 bytes long. 

1. The least significant byte of the subtrahend in D 
is subtracted from the least significant byte of the 
minuend in M(R(X» by using the SD instruction. 
The 8-bit result will be stored in the D register, 
and the l-bit DF (which represents the borrow) 
will be set to 1 if there is no borrow out or to 0 if 
there is a borrow out from the most significant 
bit. 

2. Next, the most significant byte of the subtrahend 
is subtracted from the most significant byte of the 

Mnemonic Op Code 

SO F5 

SOB 75 

minuend using the SDB instruction. The state of 
DF, which represents the output borrow from step 
1 and the input carry to step 2, will be taken into 
consideration. The 8-bit result will be stored in the 
D register and the l·bit DF will be set to "1" if 
there is a carry from the most significant bit, i.e. 
no borrow. 

Note that upon completion of subtraction: 
DF = 0 means a borrow (the minuend is less than the 

subtrahend). 
DF = 1 means a non·negative result (the minuend is 

greater than or equal to the subtrahend). 
In case of DF = 0, the result is negative; the corre· 

sponding value can be obtained by complementing each 
bit and adding "1" to the result. 

Example 1. Subtracting #FA92 from #8179 - arithmetic 

M(R(X)): 8179 

- 0: FA92 

Difference: 86E7. OF = 0 

M(R(X»: 

+D: 
OF= 0 

1000 

0000 

1000 

input carry 

0 

0001 

0101 

0110 OF =@] 

0111 

0110 

1110 

1001 

forced by 
hardware 

1101 

0111 OF= -

output borrow Use SOB Use SO 

(0 denotes that the 0 values are complemented) 

Example 2. Subtracting one 2-byte operand from another 2-byte operand - assembly code 

The operand contained in register AC is subtrActed from the operand the 
address of which is in register MA. 

SOX: INCMA · . Point to the low 8 bits 

SEXMA .. Set X to MA 

GLOAC · . Fetch AC low 8 bits 

SO · . Subtract 0 from M(R(MA)) 

PLOAC · . Store result in (ACI.O 

OECMA · . Point to the high 8 bits 

GHIAC · . Fetch AC high 8 bits 

SOB · . Subtract 0 from M(R(MA)) with 

.. Borrow 

PHIAC · . Store result in (ACI.1 

· . AC contains 16-bit result 
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Interpretation of OF - A Summary 

The four shift instructions and the twelve arithmetic 
instructions are the only ones that can alter the content 
ofDF. 

ADD. Executing 74 or 7C allows a carry-in from a 
previous addition, thus facilitating multibyte addition. 
Executing F4 or FC, on the other hand, ignores the 
original content of DF. After any of the four add in­
structions F4, FC, 74, or 7C, the content of DF will 
indicate if a carry occurred. 

DF = 0 indicates a carry did not occur. 
DF = 1 indicates a carry did occur. In unsigned binary 

representation, DF = 1 also signals an overflow condition. 

SUBTRACT. Subtraction is done in 2 's complement 
arithmetic. Each bit of the subtrahend is complemented, 
and the resultant byte plus 1 is added to the minuend. 

Executing 75, 7D, 77, or 7F allows a borrow-in from 
a previous subtraction, thus facilitating multibyte sub­
traction. Again, execution of F5, FD, F7, or FF ignores 
the initial state of DF. After any of the eight subtract 
instructions above, the content of DF will indicate if a 
borrow occurred. 

DF = 1 indicates no borrow occurred. 
DF = 0 indicates a borrow did occur and that the 

magnitude of the subtrahend was larger than the minu­
end. The negative answer is then in 2's complement 
representation. 

Branch and Skip Instructions 

SKP: When the SKP instruction is used, the byte fol­
lowing it will be unconditionally skipped. 

SKP .. SKIP the next instruction 
UP: INC R1 .. INC R1 if a BRANCH to UP 

GLO R1 .. Always do R(1).O~O 

In this case, the INC RI instruction will be skipped 
and execution continues at the instruction following 
INC RI, which is GLO RI. 

The SKP instruction can be used in a subroutine with 
more than one entry point. Depending on the selected 

Example: 

TYPE5 

TYPE 6 

TYPE 

TY1 

TYPE5: 

TYPE6: 

TYPE: 

TY1: 

LOA R5 

LOA R6 

GHI R6 

; SKP 

; SKP 

Mnemonic Op Code 

SKP 38 
NBR 

LSKP C8 
NLBR 

entry, the code for the other entries to the subroutine 
will be skipped. 

LOA R5 

LOA R6 

GHI R6 

• TY1 code 
starts here 

.. Skip to TY1 

.. Skip to TY1 

.. 

.. Subroutine code starts here 
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In the above example the subroutine TY1 has multi­
ple entries. When an entry is selected, the other entries 
will be skipped. For example, if TY1 is called via 
TYPE5, the LDA R5 will be executed first, and then 
execution continues at the first instruction in TY1 sub­
routine, skipping over the two entries TYPE6 and TYPE. 

NBR: When the NBR instruction is used, the branch 
to the specified address following the NBR instruction 
will not be taken. 

NBR LABEL 

In this case, a short branch to the address LABEL will 
not occur, and execution continues at the instruction 
following the skipped byte. This instruction may be con­
sidered a conditional SHORT BRANCH to LABEL, the 
condition for which is never met. 

The SKP instruction is a different syntactic form of 
the same machine operation code as for NBR. This form 
does not require an argument. 

LSKP: When an unconditional long skip is executed, 
the two bytes following the instruction will be skipped. 

LSKP; ADD; INC RA 

In this case, the two one-byte instructions ADD; INC 
RA will be skipped, and execution continues at the in­
struction following INC RA. 

The conditional long skip is used to skip on specific 
conditions of the two bytes following the instruction. 

LSDF .. If DF = 1, RSHR 
ANI #01 .. Else AND #01 

MA: RSHR .. Always ring shift 

In this example, the two-byte instruction ANI #01 will 
be skipped if DF = 1 and execution continues at label 
MA. 

NLBR: When the NLBR instruction is used, the long 
branch to the specified two-byte address following the 
instruction will not be taken. 

NLBR LABEL 

This instruction may be considered a conditional long 
branch to LABEL, the condition for which is never met. 

The NLBR and LSKP, and NBR and SKP pairs, have 
the same machine operation code. The two assembler 
syntaxes for each pair exist for the convenience of the 
user and to aid program debugging. 

Control Instructions 

NOP: The Nap instruction causes only the program 
counter to be incremented; it has no additional effects. 
This instruction is useful in timing loops to provide a 
time delay or wait function until, perhaps, a certain 
operation has been completed. 

LDI50 · . Load number of loops 

PLO R6 · . Into R6 

MA: DEC · . Reduce count 

NOP · . Delay one instruction 

G'LO R6 · . Test for done 

BNZMA · . If not done, branch 

· . Time expired; continue. 

The Nap instruction can also be used to reserve space 
for other code which may be unknown at the time the 
program is prepared. Additionally, it can be used to re­
place an instruction in a program, thus removing its 
effect, a useful debugging technique. 

SEP: The SEP instruction is used to specify which 
scratch-pad register is to be used as the program counter. 
This instruction causes an immediate jump to the in­
struction sequence beginning at M(R(N)) and R(N) be­
comes the program counter. The instruction facilitates 
branch and link functions and subroutine nesting (refer 
to subsection on "Subroutine Techniques" in the section 
Programming Techniques). ~ 

SEX: This instruction is used to designate R(X) used 
by some logic, arithmetic, register, or I/O byte transfer 
operations. Setting X to a new value assigns a register 

Mnemonic Op Code 

NOP C4 
SEP DN 
SEX EN 
SEQ 7B 
REQ 7A 
SAY 78 
MARK 79 
RET 70 
DIS 71 

R(X) to be used as a pointer to the data byte. 

Example: Designating an R(X) can be used to advantage 
when two bytes stored at different memory locations are 
compared. The first byte is stored at M(R(7)), and the 
second is stored at M(R(8)). 

COMPAR: SEX R7 .. R (X) points to byte one 

LDX .. Load the first byte into D 

SEX R8 .. R(X) points to byte two 

SM .. Compare the two bytes 

BNZ XYZ .. Branch to XYZ if no match 

.. Else continue here 

WHEN X = P: There are three instructions which 
have particular usefulness when X is set equal to P: the 
OUTPUT instructions (61-67), the RETURN instruction 
(70), and the DISABLE instruction (71). Because each 
of these instructions increments the R(X) register, when 
X = P the R(P)/R(X) register will be incremented once 



for the fetch cycle when it acts as a program counter and 
once for the execute cycle when it acts as R(X). As a 
result, the byte immediately following the instruction 
byte is the operand byte. For example, if P = 3, the 
sequence will output the byte AD by means of the data 
bus. 

E3 SEX R3 .. SetX=3 

61 OUT 1 · . Output a byte from memory 

AD #AD · . I mmediate byte 

· . Next instruction 

This technique is also useful with the RETURN and 
DISABLE instructions, as discussed in the subsection on 
"Interrupt Service" in the section Programming Tech­
niques. 

SEQ and REQ: Q is a flip flop brought out of the 
CDPl802 as a single output line. Q can be set (SEQ) or 
reset (REQ) under program control and later tested in 
the program by the conditional branch instructions BQ 
and BNQ. Depending upon the outcome of the test, the 
program can decide upon a course of action. Note that 
at start up, the Q line is reset (Q = 0) by the RESET 
mode (CLEAR = L and WAIT = H). 

For example, the SEQ and REQ instructions can be 
used to send serial bits of data to an output device (TTY 
for example). The length of each bit is determined by a 
time delay subroutine. See Fig 66. 

Another application is the control of an external 
relay or lamp. 

SA V : When an interrupt occurs, X and P are auto­
matically transferred into the temporary register T. The 

SEO REO 

COSMAC 

o 
CPU 

SA V instruction is used in the interrupt subroutine to 
store the byte contained in the T register onto the stack. 
It is usually preceded by a DEC R2 instruction to make 
sure that R(2) is pointing to a free memory location. 
Subsequent execution of a RETURN or DISABLE 
instruction can replace the original X and P values to 
return to the interrupted program for normal execution 
(refer to subsection "Interrupt Service" in the section 
Programming Techniques). 

MARK: A primary use of the MARK instruction is 
to facilitate nested subroutine linkage when multiple 
program counters are employed. This use is exemplified 
in the subsection on "Subroutine Techniques" in the 
section Programming Techniques. 

A secondary use of the MARK instruction is simply 
to determine X and P by storing their values in memory 
for subsequent analysis. This capability is useful in the 
design of debugging aids. 

RET and DIS: Because the interrupt mechanism 
stores X and P in the temporary register T and is typi­
cally followed by the execution of SA V instruction, 
M(R(2)) contains the value of X and P at the time of 
interrupt. The DIS and RET instructions are used to 
restore the machine status (X,P) from M(R(2)) and give 
control back to R(P). The DIS instruction also resets the 
interrupt enable flip-flop (IE=O), while RET sets the 
interrupt enable flip-flop (IE=I). Thus, a return from an 
interrupt program or subroutine may be made with 
either interrupt processing enabled or disabled. 

The two instructions RET and DIS can also be used 
in nested subroutine calls in conjunction with the 
MARK instruction (See subsection "Subroutine Tech­
niques" in the section Programming Techniques). 

TTY 

INTERFACE 

Fig. 66 - Sending serial data from microprocessor to TTY interface. 
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Programming 

The purpose of this section is to discuss basic pro­
gramming concepts especially as they relate to the writ­
ing of COSMAC programs. It is intended for engineers 
new to programming. Experienced programmers, how­
ever, are also encouraged to read this section to get a 
feeling for the differences between COSMAC and more 
conventional computer architectures. 

Resource Allocation 

Before detailed programming can begin, decisions 
must be made as to which functions are to be executed 
by software and which are to be implemented in the 
input/output hardware. The layout of data in memory 
must be planned and the utilization of registers worked 
out. 

The hardware/software tradeoff is often the most 
difficult but rewarding phase of designing a micro­
processor-based product. On the basis of previous famili­
arity, engineers may tend to favor incorporation of hard­
ware timers, decoders, rate multipliers, etc. when these 
functions might be done more economically in software. 
Generally, the system designer should attempt initially 
to do everything in software (except jobs requiring sub­
microsecond response), pushing functions out to special 
I/O hardware only when the CPU cannot keep up. He 
may find, even then, that a second CPU/ROM subsystem 
is more cost-effective than special-purpo~e hardware. 

Allocation of the various built-in I/O capabilities of 
COSMAC is difficult to discuss in general terms because 
applications are so varied. The DMA channel can clearly 
be used for CRT refresh from memory and for block 
transfers such as between a floppy disc and memory. 
The decision whether to use the DMA or the Interrupt 

Techniques 

channels for a slow communication line is more difficult 
and depends on what other I/O interfacing is required. 
More subtle uses of DMA include Simply using R(O) as a 
counter (ignoring the data transfer), and using DMA to 
cycle through a sequence of A/D conversions, for 
example. The input flags are obviously appropriate for 
slow-varying binary real-world inputs, but can also be 
used by I/O circuits to signal status to the CPU. The Q 
level output may be used as the system output, to signal 
I/O circuits, or even to select banks of memory. 

Often, the most basic system design issue is deciding 
what functions to carry out in response to one or more 
interrupt signals. Generally, the less done in servicing 
interrupts, the better. In this way the amount of book­
keeping overhead is minimized each time an interrupt 
comes in. It also minimizes the problems of contention 
among multiple interrupt signals. Furthermore, it makes 
the system easier to design, debug, and more likely to be 
error-free. 

RAM and Register Allocation for Data 

Registers must be allocated among program counter 
usage, data pointing, storage usage, and general utility 
usage. This allocation many vary dynamically as a pro­
gram executes, but generally it is more efficient to assign 
fixed functions to most registers. The utility registers 
may be used differently by different parts of the pro­
gram. Allocation as program counters will be discussed 
later. 

Data may be considered as: 1) isolated variables, 
parameters, or switches which are referred to at many 
different parts of a program, 2) temporary, intermediate 
results obtained in the process of a computation and then 
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thrown away, 3) constants used as masks or for compari­
sons, for example, and 4) strings, blocks, or tables of 
data which relate possibly to I/O operations or are stored 
in ROM. These types of data are respectively best han­
dled I) by direct use of registers to hold the random iso­
lated variables, 2) by use of a memory "stack" (defined 
below) for intermediate results, 3) by use of data inter­
mediate instructions for constants, and 4) by use of 
register pointers into memory for strings, tables, etc. 

The advantage of using register storage directly is that 
simple I-byte instructions are used to bring data to and 
from the D register, saving time and program space com­
pared with storing them in RAM. Furthermore, a param­
eter which needs to be incremented or decremented can 
be stored in the low half of a register and incremented or 
decremented in place without using the D register. 

A stack is a last-in first-out storage mechanism. It is 
best implemented in COSMAC by dedicating a block of 
RAM and using one register R(2) to point at the "top" 
of the stack, i.e., the space where the next byte should 
be put. The programmer "pushes" intermediate results 
onto the stack for storing using R(2) as the pointer and 
then decrementing the pointer (so that the block of 
RAM used starts at the highest address). Later, he 
"pops" them off when he is ready to use them by a load 
or ALU instruction, incrementing the pointer before he 
does so. Users of certain Hewlett Packard calculators will 
be familiar with the idea that a stack can be used to 
organize a very complicated calculation. 

(A Programming Note: Often, a programmer knows 
le will be using a piece of data pushed onto the stack 
soon with no intervening further use of the stack. In 
such cases he will omit the decrement of the pointer 
after pushing data and the increment before using data, 
thus saving one or two instructions. Such deviations 
from standard usage should be well marked by com­
ments in the program to avoid problems in case the code 
is changed later.) 

There are many good reasons to use a stack mechan­
ism, some of which are discussed subsequently in the 
material on program structure and subroutines. For now, 
the main reason is efficiency of resource use. First, only 
one register pointer R(2) is required to work with a 
potentially large number of pieces of data. Second, RAM 
is used efficiently because the allocation of space re­
quired must match the maximum number of interme­
diate bytes stored at any given time, rather than the 
total required over the duration of the program (The 
maximum "depth" of a stack is generally very small). 
Third, the stack is efficiently addressed by I-byte 
COSMAC instructions, thus saving program space. 

The data immediate mode of addressing is the best 
COSMAC practice when constants are needed in a pro­
gram. This mode provides best economy of resources in 
most cases (no need for a special pointer to memory), 
and a I-byte load or ALU instruction suffices to address 
it. Furthermore, this mode makes code easiest to "read" 
because each constant used is found at the point in the 

program where it is needed and its value is immediately 
obvious. Constants can readily be located and changed 
during the programming process. With this approach, a 
constant which is used at several different places in a 
program will be stored several times. In extreme cases it 
may be better to set up a pointer to such a constant. In 
most cases, however, the data immediate mode is usually 
best. 

Data which appears as a string of bytes is best stored 
in RAM and addressed by setting up a register pointer to 
it. Multiple strings usually should have multiple address 
pointers. The COSMAC instructions are designed to 
work efficiently with such data, allowing the pointer to 
be incremented and decremented as the bytes of data are 
accessed. Sometimes, the programmer will share a few 
pointers between several different strings of data not 
being simultaneously accessed. In this case, it is good 
practice to allocate all strings to one 256-byte page of 
memory so that a pointer can be moved from one data 
item to another simply by loading the lower byte of the 
pointer register. 

ROM tables, when frequently used, may also justify 
a dedicated pointer. 

Writing a Program 

Structure is the essence of programming. The better a 
programmer organizes the program's structure, the 
quicker the design, the more efficient the result, and the 
more likely it is to be correct or "bug-free." 

Loops 

The most characteristic structure in programming is a 
simple loop. A loop consists of an initialization section, 
a main body of steps to be executed, and a test section 
to determine whether and how often to "loop" through 
the main body. As a simple example, consider a routine 
which implements a delay. Fig. 67 shows such a routine 
in three forms: flow chart, symbolic, and numeric. The 
programmer should become familiar with all three of 
these representations. 

The flow chart (Fig. 67a) shows the program struc­
ture explicitly and says in words what happens at each 
point in the structure. 

The symbolic form, shown in Fig. 67b, specifies the 
instructions to be executed and includes the movement 
of data among the various COSMAC registers. The delay 
constant, which is assumed to be stored in a memory 
location, is loaded into D and then moved to the lower 
half of a utility register UTIL. The expression "LOOP:" 
labels the next part of the program for future use. Three 
"NOP" instructions are specified. These instructions are 
the main body of the loop. Then, the utility register is 
decremented. Finally, the lower half of UTIL is loaded 
into the D register and a conventional branch instruction 
is executed. Control keeps going back to the "LOOP" 
until the count goes to zero. 
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LDX · . Load delay constant 0103 FO 

LOAD DELAY 
CONSTANT PLO UTIL · . into UT I L.O 0104 A8 

LOOP: NOP .. Kill time 0105 C4 

EXECUTE SOME NOP .. Kill time 0106 C4 
NO·OPSTO 
KILL TIME NOP .. Kill time 0107 C4 

DEC UTiL .. Decrement 010828 
DECREMENT DELAY 

CONSTANT GLO UTIL . Examine current value 010988 
DONE YET? 

BNZ LOOP . Branch if not 0 010A 3A05 
YES 

· . Else continue 

a. Flow chart form b. Symbolic form c. Numeric form 

Fig. 67 - Simple loop example: delay function. 

This same program is also shown in Fig. 67c in 
numeric fonn, which is as it might appear in hexadeci­
mal code. Note that UTIL is assumed to be R(8). 

Conditional Branches 
A second characteristic structure in programs em­

ploys the conditional branch. In the conditional branch, 
a comparison or test of some kind is made, and one of 
two different bodies of code is executed, depending on 
the outcome. Fig. 68 illustrates a simple example where 
the intention is to fix a lower bound to a variable Z and 
substitute a constant 03 if Z is less than 03. Note that 
once the appropriate action is carried out, the two 
branches of the program come back together. 

By defining steps in a loop to be themselves loops or 
conditional executions, and by building up a hierarchy 
of nested loops and conditionals, any function can be 
programmed. Structures of this type are the most effi­
cient to generate, the most efficient to check out, and 
the least likely to contain undetected bugs. More compli­
cated structures are very common (they appear in RCA 
utility programs, for example), because programmers 
like to play «tricks" such as branching from one part of 
a program into another, sharing a common part for a 
while, and then branching back to the original part con­
ditionally on some obscure characteristic that distin­
guishes the two program parts. These practices, however, 
lead to problems. A simple change in the one part of 

COMPARE Z,3 LDX 

code may have unfortunate consequences for another 
part which is «borrowing" a piece of it in the above 
manner. The optimum flow chart is usually one without 
odd-looking branches from one part to another. 

Subroutines 

Very often, however, a piece of program is useful in 
many different place in the total program-a multiply 
routine, for example. To avoid the dangerous practices 
referred to above, but still to need have only one copy 
of such a routine present in memory, the programmer 
should use the concept of a subroutine. A subroutine is 
a generalized form of instruction, a subprogram which 
does something that might have been implemented in 
the original CPU as an instruction. It should be exactly 
defined so far as the function it performs, where it gets 
its data and puts its results, and what resources it uses­
registers and RAM. Subroutines may have the structure 
of a loop or of a conditional branch, and in either case 
may themselves use other subroutines within the body 
of their code. The main design effort in a large program 
is in the building up of a set of subroutines suitable for a 
given application. 

COSMAC offers many different ways to handle sub­
routine structure, representing different tradeoffs among 
efficiency in execution time, efficiency in program size, 
and effiCiency in use of register resources. These ways 
are described in the next part of this section. COSMAC 
also offers more direct mechanisms for treating subrou-

· . Assume R (X) points to Z 

· . Fetch Z 0213 FO 

Z;;'03 SMI #03 · . Compare with 03 0214 FF 03 

BGE EXIT 0216331B 

LDI #03 .. Load 03 0218 F803 

STXD · . and store at Z 021A 73 

EXIT: 021B 

a. F low chart form. b. SymbOlic form. c. Numeric form. 

Fig. 68 - Simple conditional branch example: limiting a variable. 
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tines as extensions of the basic instruction set. These 
interpretive techniques are described in the last part of 
this section on Programming Techniques. 

Subroutine Techniques 
In large programs, a particular sequence of instruc­

tions is often used many times. For example, a code 
conversion from one data format to another might be 
required several places in a communications program. A 
straightforward approach to programming the code con­
version is to insert the proper sequence of instructions 
each place in the program where the needed function is 
to be performed. This duplication of instructions, how­
ever, would consume much memory storage space, espe­
cially if the sequence is long. An alternative method is to 
write the sequence only once and reuse it each time it is 
needed. This shared usage of the same code is accom­
plished by writing the function as a subroutine which 
can be called each time it is needed. When the subrou­
tine has completed its function, it returns to the pro­
gram that called it. A subroutine may be called many 
times from different places in the main program. Most 
programs will contain several subroutines. 

If subroutines are required frequently, the most 
efficient technique for entering and exiting from the 
subroutine should be used. The COSMAC architecture 
provides several techniques for calling and returning 
from subroutines. The particular technique or combina­
tion of techniques to be used is determined by the com­
plexity and requirements of the function to be per­
formed. In the following material, each of three tech­
niques is described along with application examples. 
Although the techniques are described independently, 
they are not mutually exclusive and features of each can 
be combined. 

SEP Register Technique 

The SEP register technique is the fastest and yet the 
most basic subroutine call and return convention. It util· 
izes the COSMAC architecture to rapidly change pro­
gram counter assignments from one register to another. 
The procedure is as follows: 

STEP 1. Point one of the 16 registers to the sub­
routine that the program will call. This step is typically 
accomplished by executing the following code: 

LDI A.O(sub) .. replace "sub" with subroutine name 
PLO Rn .. replace "n" with a register number 
LDI A.1 (sub) .. "sub" is the entry point to the subroutine 
PHI Rn .. "n" is the register to point to "sub" 

Register Function 

R(O) I nitial program counter 
Later, DMA pointer 

R(3) Program counter 

This four-instruction sequence will load the address 
of the first instruction in the subroutine into a register. 
Thus, the register "n" will point to the entry point of 
the subroutine. If the programmer does not use this 
register for any other purpose than to point to the sub­
routine, the initialization procedure need be done only 
once. If, however, the same register is to be used various­
ly in the program to point to another subroutine or to 
hold data, then, before additional calls, the register must 
be reinitialized. 

(Note: In many of the examples to follow it will be 
necessary to initialize pointers using the four-instruction 
sequence given above. As a shorthand notation, this 
instruction sequence will be represented by a statement 
such as: 

LOAD 'RN', 'SUB'. 

This statement happens to conform to that required of 
an assembler macro call, but for present purposes its use 
is intended for saving space.) 

STEP 2. A call to the subroutine is performed by 
making R(n) the program counter. This change is done 
by executing the instruction SEP to register "n". Execu­
tion of the subroutine will then begin with R(n) as the 
program counter. Because the initial value of P is 0 at 
program start up, this technique is also used to change 
program counters from R(O) to any other register as 
shown in Example 1 below. 

STEP 3. A return from the subroutine is performed 
by making R(p) the program counter where p was the 
register used as the program counter by the calling pro­
gram at the time of the call to the subroutine. This 
change is done by executing the instruction SEP to regis­
ter "p". The execution of the calling program will re­
resume with R(p) the program counter. Examples 2 and 
3 illustrate this SEP Register Technique. 

The procedure above in basic and expanded forms is 
illustrated in the following three examples. 

Example 1. Change the Program Counter from R(O) to 
R(N). 

Any COSMAC program always starts with R(O) as the 
program counter. Changing from R(O) to any arbitrary 
register (R(3) in this example) may be necessary to free 
R(O) for later use as a DMA pointer. 

The address of the first instruction in the main pro­
gram is loaded into R(3). Then, a SEP R3 instruction 
will cause the main program to use R(3) as the program 
counter thereby freeing R(O) for DMA use. The register 
assignment table is given in Fig. 69. 

Comment 

Defined by hardware 

Register # is arbitrary 

Fig. 69 - Register assignment table for Example 1.· 
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Programming Technique: 
Execution begins at location 0000 with R(O) as the program counter. 
Load the address of "MAIN" program into R(3): 

PC = R(O) 
LOAD 'R3', 'MAIN' .. Load A(MAIN) into R(3) 

.. Change program counter to R(3) to effect an immediate call to the main program: 

SEP R3 
.. ---t- PC becomes R(3} 

.. Execution starts at label "MAIN" I 
~--------------------------------~ 

MAIN: 

END 

A typical assembly listing for Example 1 is given in Fig. 70. 

Program counter M Address M Byte 

R(O) 0000 F834 

1 
0002 A3 
0003 F812 
0005 B3 
0006 03 

R(3) 1234 

! 

-r-PC= R(3) 
· . "MAIN" program code starts here 

· . More code in the "MAIN" program 

· . End of source program 

Assembly program Comment 

LOI A.1 (MAIN) .. Point R3 to 
PLO R3 · . "MAIN" program 
LOI A.O (MAIN) · . 
PHI R3 · . 
SEP R3 · . Change PC to R 3 

MAIN: ORG * · . "MAIN" program 
starts here 

Fig. 70 - Assembly listing for Example 1. 

Example 2. Main Program Calling a Subroutine. 

In this example, a subroutine is called by loading its 
address into a register and using "SEP register" to do the 
call. The subroutine is called from two places in the 
main program. When it has performed its function, the 
subroutine does a return by doing a SEP back to the 

Function 

register of the main program. This returning SEP instruc­
tion is performed just in front of the entry point to the 
subroutine. This step leaves the subroutine's program 
counter as it was originally (Le., pointing to the same 
location as at initialization). Thus, the initialization need 
be done only once in this example. The register assign­
ment table is given in Fig. 71. 

Comment 

R(3) 
R(7) 

The "MAIN" program pointer 
"Subroutine" entry pointer 

Arbitrary 
Arbitrary 

Fig. 71 - Register assignment table for Example 2. 
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Programming Technique: 

.. Execution starts with R(O) as the program counter . 

. . Load the address of "MAIN" program into R(3): 

+PC=R(O) 
LOAD 'R3', 'MAIN' .. Load A(MAIN) into R(3) I 

~--------------------------~ 

.. Load the address of subroutine "SUBl" into R(7): 

PC = R(O) 
LOAD 'RT, 'SUB1' .. Load A(SUB1) into R(7) 

.. Change program counter to R(3) to give control to "MAIN" program: 

PC becomes R (3) To "MAIN" 
· . Execution resumes at label "MAIN" SEP R3 

.. GENERAL PURPOSE AREA 

.. Place data or subroutines here 

MAIN: · . "MAIN" program execution starts her:--
PC = R(3) 

To "SUB1" 

l"~F 
To "SUB1" 

From "SUB1" r 
Return 

L 
From CALL 

I 

I 
I 

SEP R7 

I SEP R7 
I 

BR MAIN 

EXIT1: SEP R3 

SUB1: 

BR EXIT1 

END 

· . More code in "MAIN" program 

I .. Call "SUB1" 
PC becomes R(7) 

· . "SUB 1" returns here 

o • "MAIN" program code 

· . Can call "SUB 1" again I 
PC becomes R (7) 

· . "SUB 1" returns here 

· . "MAIN" program code 

.. 

· . Start "MAIN" again 

· . Return to the mainline code e---
PC restored as R (3) 

· . "SUB 1" execution starts here -
PC = R(7) 

· . More code in "SUB 1" 

· . Branch to entry point 

· . of "SUB 1" minus one byte 

· . This leaves R(7) pointing 

· . to "SUB1" allowing following 

· . repeated calls 

· . End of program source 
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Example 3. Main Program Calling Two Subroutines. 
Register Function 

R(3) 
R(7) 

R(8) 

"MAIN" program counter 
"SUB1" pointer 
"SUB2" pointer 

Comment 

Arbitrary 
Arbitrary 
Arbitrary 

This is an example of a source program containing 
two subroutines (SUBl and SUB2). These two subrou­
tines are called from several places in the mainline. A 
separate register is assigned to each subroutine entry 
point permitting rapid subroutine calls and requiring no 
reinitialization of pointers before successive calls. The 
register assignment table is given in Fig. 72. Fig. 72 - Register assignment table for Example 3. 

Programming Technique: 
· . Execution starts with R(O) as the program counter. 
· . Load the address of "MAIN" program into R(3): 

4-' PC=R(O) 
LOAD 'R3', 'MAIN' ,. Load A(MAIN) into R(3) I 

~--------------------------~ 
· . Load the address of subroutine "SUBl" into R(7): 

-=+PC=R(O) 
LOAD 'R7', 'SUBI' .. Load A(SUBI) into R(7) I 

~--------------------------------~ 
· . Load the address of subroutine "SUB2" into R(8): 

~PC=R(O) 
LOAD 'RB', 'SUB2' .. Load A(SUB2) into R(B) I 

L-________________________________ ~ 

· . Change program counter to R(3) to give control to "MAIN" program: 

To "MAIN" PC becomes R(3) 
SEP R3 .. Execution resumes at label "MAIN" 

, . GENERAL PURPOSE AREA 

.. Place data or subroutines here 

- PC = R(3) 
MAIN: · . "MAIN" program execution starts here 

o • More code in "MAIN" program 

To "SUBI" I 1 I 
SEP R7 •. Call "SUBI" 

PC becomes R(7) 

From 

"SF 
· . "SUB I" returns here 

o • More code in "MAIN" program 

To "SUB2" I 1 I 
SEP RB .. Call "SUB2" 

PC becomes R (B) 

From 

"SUB2" · . "SUB2" returns her. 

r · . More code in "MAIN" program 

To "SUBI" I I I 
SEP R7 · . Can call "SUB I" again 

PC becomes R(7) 

From 

"SUBI" · . "SUB 1" returns here 

r · . More code in "MAIN" program 

.. Program 

BR MAIN · . Start "MAIN" again 
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EXIT1: SEP R3 

SUB1 : 

BR EXITl 

EXIT2: SEP R3 

SUB2: 

BR EXIT2 

END 

Fig. 73 is a pictorial representation of Example 3. 
The "MAIN" program is running in R(3) 
"SUBl" runs in R(7) 
"SUB2" runs in R(8) 
To call "SUBl", SEP R7 
To call "SUB2", SEP R8 
To return to the "MAIN" program, SEP R3 

Note that the subroutines "SUBl" and "SUB2" are 
mutually exclusive in that "SUBl" cannot call "SUB2", 
or vice versa, because "SUB2" always returns to the 
caller with a SEP R3. In order for "SUB2" to return to 
"SUBl ", if would have to do a SEP R7. Caution must be 
exercised to assure that a subroutine "knows" the pre· 
vious program counter for the return. 

MARK Subroutine Technique 

In each of the preceding examples, every subroutine 
had to know the program counter of the calling program 
in order to do the proper SEP for the return. In large 
complicated programs where subroutines call other sub­
routines, a given subroutine may have to return to differ­
ent program counters at different times. This problem 
may be overcome with the use of the "MARK Subrou­
tine Technique," a technique which is required only 
when subroutines are nested (call one another), and the 
order of nesting varies dynamically. 

PC restored as R(3) 
· . Return to the mainline call 

PC = R(7) 

· . "SUB 1" execution starts here 

· . More code in "SUB 1 " 

· . B ranch up to before entry 

· . to restore R (7) 

-- PC restored as R (3) 
· . Return to the mainline call -- PC = R(8) 

· . "SUB2" execution starts here 

· . More code in "SUB2" 

· . Branch up to before entry 

· . to restore R (8) 

· . End of program source J 
MAIN PROGRAM 

I pc = R(3) 

SE 

SE 

P R3 

.1 SU81 

P R7 PC = R(7) 

SE 

SE 

P R3 

.1 SUB2 

P R8 PC = R(S) 

Fig. 73 - Pictorial representation of program counter 
assignments. 

The MARK instruction is used to save the current 
value of X and P in an area of memory called a stack. In 
a COSMAC based system, this stack consists of any num­
ber of locations in RAM pointed to by a 16-bit user­
specified register. The pointer contains an address which 
enables the CPU to find the current "top" ofthe stack. 
The stack provides for temporary storage and retrieval of 
successive bytes of information in a last-in first-out man-

nef. When a byte of information is stored in the stack, it 
is stored at the address which is specified by the con­
tents of the stack pointer. The stack pointer is then 
decremented by one, enabling another byte to be 
"pushed" onto the stack "on top" of the last one stored. 
Hence, the stack pointer points to a free memory loca­
tion. Conversely, to retrieve information from the stack, 
the pointer is incremented by one and the byte is 
"popped' from the stack by loading it into a register. 
The top of the stack is then free for other "push" opera­
tions. The programmer must make sure that the stack 
pointer is initialized to an appropriate high address 
memory location before an instruction that uses the 
stack is executed. 

In the COSMAC architecture, R(2) is the most 
natural register to use as a stack pointer because of the 
way interrupts are handled (X is set to 2). 

The use of the MARK instructions also provides 
another benefit. The calling program may pass data 
(parameters) to the subroutine via "inline" data lists. 
An inline data list is a block of immediate constant data 
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supplied by the calling program to the subroutine. This 
data is adjacent to (inline with) the call statement. In 
Example 4, SUB! passes an inline #24 to SUB2. 

The MARK Subroutine Technique works as follows: 

1. The calling program executes a MARK instruction. 
This instruction pushes the values of X and Ponto 
the stack pointed to by R(2) and then copies P 
into X. The current value of X is now the same as 
the old value ofP. P remains the same. 

2. The calling program calls the subroutine via a SEP 
instruction to a register that points to the sub­
routine. The execution of the subroutine then 
begins. 

3. If the calling program has provided inline parame­
ters to the subroutine, then the subroutine picks 
up these parameters by executing LDXA instruc­
tions. This procedure will load the next parameter 
to the D register and automatically advance the 
caller's program counter (R(X)) to the next byte. 
There should be as many LDXA instructions as 
there are inline data bytes. Thus, the passing of 
data is accomplished without the subroutine 
knowing the old program counter (X designator). 

4. After the subroutine performs its task, it returns 
to the caller by setting X to 2, incrementing R(2) 
(preparing R(X) for a return), and executing a 

RET instruction. These instructions will load the 
contents of memory byte pointed to by R(2) to 
the X and P registers. Processing continues with 
the calling program running with its original X and 
P. 

5. Upon return of control from the subroutine to the 
calling program, the calling program must decre­
ment R(2) to compensate for the increment in the 
RET instruction. 

Example 4. Main Program Calling Nested Subroutines. 

This example illustrates a program that has two sub­
routines. Both subroutines are called by the main pro­
gram. One of the subroutines is also called by the other 
subroutine. The register assignment table is given in 
Fig. 74. 

R(2) 
R(3) 
R(7) 
R(8) 

Function 

Stack pointer 
"MAIN" program counter 
"SUB 1" pointer 
"SUB2" pointer 

Comment 

Arbitrary 
Arbitrary 
Arbitrary 

Fig. 74 - Register assignment table for Example 4. 

Programming Technique: 

.. Execution starts at location 0000 with R(O) as the program counter . 

. . Load the address of "MAIN" program into R(3): 

L.. 
__________________ ~___l pc= R(O) LOAD 'R3', 'MAIN' .. Load A(MAIN) into R(3) ~ 

· . Load the address of subroutine "SUB!" into R(7): 

'--_________________ ~___l pc = R(O) _ LOAD 'Rr, 'SUB1' .. Load A(SUB1) into R(7) ~ 

· . Load the address of subroutine "SUB2" into R(8): 

'------_____________ ~___.J pc = R(O) 
LOAD'R8':SUB2' .. Load A(SUB2) into R(8) ~ 

· . Set stack pointer R(2) to a RAM area: 

.-={-pc = R(O) 
LOAD'R2':STACK' .. Load A(STACK) into R(2) I 

'-------------------~ 

pc becomes R(3) 
SEP R3 

.. GENERAL PURPOSE AREA 

.. Place data or subroutines here 
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MAIN: 
. ~h PC becomes R(3) 

· . nMAIN" program execution starts ere X' = 2 

· . More code in "MAIN" program 

MARK · . Save the state of the machine 

· . (X,P) = (2,3) onto stack 

· . Note that X = P = 3 now. 

To "SUB1" I 
I 

SEP R7 
From 

" Call "SUB1" 
... +----t-PC becomes R(7) 

J 
"SUB1" 

r---- DEC R2 · . Fix stack po inter 

· . "MAIN" program continues 

· . More code in "MAIN" program 

BR MAIN · . Start "MAIN" again 

PC = R(71 
EXIT1: RET · . Return to "MAIN" program 

SUB1: · . "SUB1" execution starts here 

· . Code in "SUB 1 " 

· . More code in "SUB 1" 

· . Prepare to call "SUB2" 

MARK · . Save (X,P) = (3,7) onto stack 

· . Note that X = P = 7 now. 

To "SUB2" SEP RB .. Call "SUB2" 
PC becomes R (B) 

,#24 · . Pass a data byte to "SUB2" 
From 

"SUB2" 

~ DEC R2 · . Fix stack pointer on return 

· . from "SUB2" 

· . More code in "SUB 1" 

SEX R2 · . Point R(X) to stack for return 

INC R2 · . Point to old (X,P) 

BR EXIT1 · . Branch to the entry point 

· . to "SUB1" minus one byte 

· . This leaves R(71 pointing 

· . to "SUB1" 
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EXIT2: RET 

SUB2: 

LDXA 

SEX R2 

INC R2 

BR EXIT2 

END 

Standard Call and Return Technique 

The Standard Call and Return Technique (SCRT) is 
the most advanced technique described in this material. 
It has several advantages over the preceding techniques 
in that: 

1. There is unlimited subroutine nesting capability. 

2. There is no confusion over program counter assign­
ments. 

3. The passing of parameters to subroutines is well 
defined. 

4. It has a maximum of flexibility in storing working 
registers. 

SCRT is not without its disadvantages, however. They 
are: 

1. It requires additional execution time in calling and 
returning. 

2. It reserves three registers for linkage. 

The specific implementation discussed here may also be 
tailored to suit the preferences of the programmer in 
that additional registers may be saved or restored. 

The SCRT centers around the register assignments 
given in Fig. 75. 

Register Function 

Stack pointer 
Program counter 

· . Return to "SUB'" 
_----I- PC = R(B) 

· . "SUB2" execution starts here 

· . Pick up inline parameter 

· . from caller 

· . More code in "SUB2" 

· . Point R(X) to stack for return 

· . Point to old (X,P) 

· . Branch to entry point 

· . to "SUB2" minus one byte 

· . This leaves R(B) pointing 

.. to "SUB2" 

· . End of program source 

Register R(2) must point to a free memory area for use 
as a stack. This stack must be large enough to hold two 
bytes for each level of nesting that might occur plus any 
additional bytes that the programmer might choose to 
push onto the stack. Thus, for a program that contains 
five subroutines and the possibility exists that the main 
program might call a subroutine which calls another 
which in turn calls another, then the last subroutine is 
said to be three levels deep. 

Register R(3) is the basic program counter for both 
the main program and the subroutine. So long as the 
proper SCRT call and return conventions are main­
tained, the programmer is assured that R(3) is the pro­
gram counter. 

The SCRT uses two linking subroutines: one when 
the call operation is to be performed and the other when 
the return from the subroutine is to be performed. 
Registers R(4) and R(5) must be initialized once in the 
program to point to the linking call subroutine and the 
linking return subroutine, respectively. 

Calling a Subroutine 

A call to a subroutine is performed by executing a 
SEP R4 instruction. The two bytes following this SEP 
instruction must contain the address of the subroutine 

R(2) 
R(3) 

R(4) 
R(5) 
R(6) 

Dedicated program counter for call routine 
Dedicated program counter for return routine 
Pointer to the return location and arguments passed by the 

calling program 

Fig. 75 - Register assignment table for standard call and return technique (SCRT). 
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to be called. For example, to call the subroutine labeled 
MULT, the following assembly language statement could 
be employed: 

SEP R4 .. Call multiply subroutine 
.A(MUL T) .. Call multiply subroutine 

For those subroutines that expect a constant to be 
passed to it as an inline parameter, the following call 
could be used: 

SEP R4 .. Call type program 
.A(TYPE) .. Call type program 
,T'Text for Typing' 
,#00 .. Denote end of string with null 
Other methods for passing parameters to a subroutine 

involve the use of a register, a memory area pointed to 
by a register, a reserved area of memory, DF, or Q. Data 
may not be passed via the D register, however, because 
the D register is used by the linking subroutines. 

After a SEP R4 instruction is executed, the following 
events take place: 

1. R(4) becomes the program counter. 

2. The call subroutine starts running in R(4). 

3. The current contents of R( 6) is pushed onto the 
stack. 

4. The contents of R(3) is copied into R(6). 

S. The address of the subroutine being called is' 
loaded into R(3). 

6. A SEP R3 starts execution of the called sub­
routine. 

As a result of the register manipulations, (a) the sub­
routine being called will run in R(3), (b) register R(6) 
will point back to the data list of inline parameters pro­
vided by the caller or to the return address for the return 
operation, and (c) because R(6) was saved, the stack will 
have "grown" by two bytes. 

If the subroutine is expecting inline parameters to be 
passed to it, it should execute as many LDA R6 instrUC­
tions as there are bytes in the data list. This execution 
will load the successive data bytes into the D register for 
use by the subroutine and increment R(6) up to the 
proper address for a return operation. If the subroutine 
needs to call other subroutines, it may call by executing 
a SEP R4, etc. As many subroutines in succession as are 
required may be called. 

Returning from a Subroutine 

Once a subroutine has been called and has completed 
its function, control should be returned to the caller by 
executing a SEP RS instruction: 

SEP R5 .. Return to caller 
After the SEP RS instruction is executed, the following 
events take place: 

1. R(S) becomes the program counter. 

2. The return subroutine starts running. 

3. The contents of R(6) is moved to R(3). 

4. The saved R(6) contents is reloaded from the stack 
into R(6). 

S. The execution of the calling program is resumed 
with a SEP R3 from the linking program. 

Example S. Main Program Calling for Unlimited 
Subroutine Nesting. 

This example illustrates the Standard Call and Return 
Technique (SCRT) capable of handling an unlimited 
number of nested subroutines. The register assignments 
are given in Fig. 7S. 

Programming Technique: 

.. Execution starts at location 0000 with R(O) as the program counter. 
Load the address of "MAIN" program into R(3): 

,---------------•• ===I-pc = R(O) 
LOAD'R3':MAIN' .. Load A(MAIN) into R(3) 

· . Load the address of the call routine into R(4): 

,--------------•• ;:::::::==1- PC = R(O) 

LOAD 'R4', 'CALL' .. Load A(CALL) into R(4) 

· . Load the address of the return routine into R(S): 

,----------------;:===+-PC = R(O) 
LOAD 'R5':RETPGM' .. Load A(RETPGM) into R(5) 

· . Set stack pointer R(2) to a RAM area: 

,---------------•• ;::::==!_ PC = R(O) 

LOAD'R2':STACK' " Load A(STACK) into R(2) 
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To "MAIN" i---------------------li;:::===l- PC becomes R(3) 
SEP R3 . . Execution resumes at label "MAIN" 

" GENERAL PURPOSE AREA 

. " Place data or subroutines here 

MAIN: " " "MAIN" program code - PC = R(3) 

"" 

To "SUB1" I 
T I 

SEP R4; ,A(SUB 1) "" Call "SUB1" 
via "CALL" 

PC becomes R(4) 

n " " "SUB 1" returns here 

+ 
" " More code in "MAIN" 

.. program 
From "SUB1" 

via "RETPGM" I I To "SUB2" I 
SEP R4; ,A(SUB21.#11 " " Call "SUB2", and pass the 

PC becomes R(4) 

via "CALL" " " inline argument (#11) 

,---- .. "SUB2" returns here 

" " More code in "MAIN" 

.. program 
From "SUB1" 

via "RETPGM" BR MAIN " " Start "MAIN" again 

--.j-PC = R(3) 
SUB1: . . "SUB 1" execution starts here 

" " More code in "SUB 1" 

Return via II------------------.i==l-1--..!- PC becomes R(5) 

!"RETP"-G-M-":~~~~~-_I_S_E_P __ R_5 ______ "_"_R_(_5)_iS_P_o_in_ti_n_g_to_"R_ET_P_G_M_" ___ -" 

_I- PC = R(3) 
SUB2: " " "SUB2" execution starts here 

LOA R6 " " Get parameter from caller 

To "SUB1" 
" " More code in "SUB2" 

via "CALL" 
I SEP R4: ,A(SUB1) " "Call "SUB1" 1 ! I 

" " More code in "SUB 1" 

PC becomes R(4) 

Return via 

"RETPGM" I 
" " R(5) is pointing to "RETPGM" I 

~ I 
SEP R5 

PC becomes R(5) 
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To called programr-----------------------_--,f- PC = R(4) 
4-,---t- EXITA: SEP R3 .. R(3) is pointing to the first 

Enter "CALL" 
· . instruction in subroutine. 

CALL: SEX R2 · . Point to stack 

GHIR6 · . Push R(6) onto stack to 

STXO · . prepare it for pointing 

GLO R6 · . to arguments, and decrement 

STXO · . to free location. 

GHIR3 · . Copy R (3) into R(6) to 

PHI R6 · . save the return address. 

GLO R3 · . save the return address. 

PLO R6 · . save the return address. 

LOA R6 · . Load the address of subroutine 

PHI R3 · . into R(3) 

LOA R6 · . into R(3) 

PLO R3 · . into R(3) 

BR EXITA · . Branch to entry point of "SUB 1" 

· . minus one byte. This leaves R(4) 

· . pointing to "CALL" allowing 

· . following repeated calls. 

To return ,----------------------_--,~ PC = R(5) 

4-,---+ EXITR: SEP R3 .. Return to "MAIN" program. 

Enter "RETPGM" 
---~ RETPGM: GHI R6 

PHI R3 

GlO R6 

PlO R3 

SEX 2 

INC R2 

LDXA 

PLO R6 

LOX 

PHIR6 

BR EXITR 

I nterru pt Serv ice 

The use of the COSMAC interrupt line involves 
special programming considerations. The user should be 
aware of the fact that an interrupt may occur between 
any two instructions in a program. Therefore, the se­
quence of instructions initiated by the interrupt routine 
must save the values of any machine registers it shares 

· . Copy R(6) into R(3) 

R(3) contains the return 

· . address 

· . address 

· . Point to stack 

· . Point to saved old R(6) 

· . Restore the contents 

.. of R(6). 

.. of R(6). 

.. of R(6). 

· . Branch to entry point of "RETPGM" 

· . minus one byte. This leaves R(5) 

· . pointing to "RETPGM" for 

· . following repeated calls. 

with the original program and restore these values before 
resuming execution of the interrupted program. 

R(1) must always be initialized to the address of the 
interrupt service program before an interrupt is allowed. 
Fig. 76 illustrates a hypothetical interrupt service rou­
tine. R(l) is initialized to 0055 before permitting inter­
rupt. R(2) is a stack pointer, i.e., it addressed the free 
topmost byte in a variable-size data storage area. This 
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stack area grows in size as the pointer moves upward 
(lower memory addresses), much like a stack of dishes 
on a table. Also like the dish stack, it shrinks as bytes 
are removed from the top. In the interrupt service 
example of Fig. 76, the stack grew by two bytes as 
X,P, and D were stored on it, and then decreased to its 
original size when D and X,P were restored. Such a stack 
is sometimes referred to as a "LIFO" (Last-In-First-Out) 
because the first item removed from the stack is the last 
one placed on it. 

When bytes are to be stored onto the stack by the 
interrupt routine the pointer R(2) is first decremented 
to assure that it is pointing to a free space. In the exam­
ple shown, location OOFO may have been in use when 
the interrupt occurred, so the pointer decrements to 
OOEF to store X,P. When bytes are no longer needed, 
they are removed from the stack and the pointer is 
incremented. 

The stack in Fig. 76 is used to store the values of X,P, 
and D associated with the interrupted program. If the 

START 

Fig. 76, program execution branches to location 
M(00S3). R(2) points at M(OOEE). The LDA (42) in­
struction at M(00S3) restores the original value of D and 
R(2) advances to M(OOEF). The RETURN instruction 
(70) sets IE=1 and restores the original, interrupted X 
and P register values. The next instruction executed will 
be the one which would have been executed had no 
interrupt occurred (unless the interrupt is still present, in 
which case the whole process is repeated). Note that 
R(1) is left pointing at M(OOSS) and R(2) is pointing at 
M(OOFO), as they were before the interrupt. 

When IE is reset to 0 by the S3 interrupt response 
cycle, further interrupts are inhibited regardless of the 
INTERRUPT line state. This setting prevents a second 
interrupt response from occurring while an interrupt is 
being processed. The instruction (70) that restores origi­
nal program execution at the end of the interrupt rou­
tine sets IE=} so that subsequent interrupts are per­
mitted. 

Sometimes the programmer needs to control IE 

ADDRESS 

<I"''' 
BYTE OPERATION COMMENTS 

0053 42 EXIT: LDA R2 RESTORE D 
0054 70 RET RESTORE X, P AND 

R(2); ENABLE 

~OO55 INTERRUPTS 
22 DEC R2 DEC STACK POINTER 

0056 78 SAV OLD X, P ONTO STACK 
0057 22 DEC R2 DEC STACK POINTER 
0058 52 STR R2 OLD D ONTO STACK 

- SAVE OTHER REGIS-
TERS IF REQUIRED 

- PERFORM "REAL 
WORK" REQUESTED 
BY INTERRUPT 

- RESTORE OTHER 
REGS· 

- PREPARE TO RETURN 
30 BR EXIT 
53 

-

I -
- STORAGE FOR OTHER 

REG. 
OOEE STORAGE FOR D 
OOEF STACK STORAGE FOR T, i.e. 

1 
OLD X, P 

OOFO STACK TOP WHEN 
INTERRUPTED 

- OTHER STACK ENTRIES 
-
-

Fig. 76 -Interrupt service routine. 

interrupting program will modify any other registers 
(scratchpad or DF), their contents must also be saved. 

After these "housekeeping" steps have been com­
pleted, the "real work" requested by the interrupt Signal 
can be performed. This work may involve such tasks as 
transferring I/O bytes, initializing the DMA pointer 
R(O) , checking the status of peripheral devices, incre­
menting or decrementing an internal timer/counter regis­
ter, branching to an emergency power-shut-down 
sequence, etc. 

Upon completion of the "real work", return house­
keeping must be performed. The contents of registers 
saved on the stack are now restored. In the example of 

directly. For example, he may want to permit new inter­
rupts to interrupt the servicing of old interrupts. Or, he 
may want to shut off interrupts during a critical part of 
the main program. 

The RETURN and DISABLE instructions can be used 
to set or reset IE without changing P and performing a 
branch. A convenient method is to set X equal to the 
current P value and then perform the RETURN (70) or 
DISABLE (71) instruction, using the desired X,P for the 
immediate byte. For example, if IE=O, X=S, and P=3, 
the sequence 

E3 SEX R3 .. SetX=3 
70 RET .. Return X to 5, P to 3, 1 -* IE, 
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R(3)+1. 
53 ,#53 .. Immediate byte 

would have no effect other tltan setting the interrupt 
enable IE. A similar sequence with a 71 instruction can 
be used to disable interrupts during a critical instruction 
sequence. 

Interpretive Techniqlies 

An interpretive system offers the advantages of a 
"higher-level" language without the disadvantages of 
complex translation programs. The idea is to define a 
set of pseudo instructions which are more powerful 
than basic CPU instructions and, consequently, easier 
to program with. Each pseudo instruction is imple­
mented by a corresponding subroutine. In the simplest 
interpretive system, each subroutine ends with a 
mechanism which passes control on to the next sub­
routine (i.e., pseudo instruction) to be executed. The 
sequence of pseudo instruction is defined by a pseudo 
program, analogous to the way a program defines a 
sequence of instructions. A pseudo program counter is a 
register which is generally pointing at the next pseudo 
instruction to be executed. Just as with a real program 
counter, pseudo branch instructions may affect the nor­
mal sequencing of the pseudo program counter. 

Specifically, let PPC be the pseudo program counter­
one of the COSMAC registers. Let PC be the nonnal 
program counter. Suppose that all subroutines begin and 
end on the same page in memory. They may branch to 
other pages, but they eventually come back. Then, a 

pseudo program is nothing more than a series of ad­
dresses-the low-byte address of each successive sub­
routine to be executed. Each subroutine ends with the 
same two instructions: 

LOA PPC .. fetch next address 
PLO PC .. into PC low. 

These instructions give control over to the next sub­
routine. 

Just as with subroutine calls (which they closely 
resemble), pseudo instructions may be followed by argu­
ments or argument addresses. For example, a (long) 
branch pseudo subroutine would be: 

LBR: LOA PPC .. Put first address byte 
STR STACK .. into the stack. 
LOA PPC .. Put second byte 
PLO PPC .. into PPC low. 
LON STACK .. Put first byte 
PHI PPC .. into PPC high. 
LOA PPC .. Go 
PLO PC .. to next pseudo instruction. 

A typical set of pseudo instructions might include 
multiple-precision or floating-point arithmetic functions, 
I/O handling instructions, multi-way branches on arith·· 
metic comparisons, subroutine linkage routines, and a 
mechanism to drop into standard COSMAC instructions 
whenever necessary. The programmer should choose and 
program a set of instructions suitable to his specific 
application. 

More details and a discussion of .alternative interpre­
tive systems may be found in COSMAC Application 
Notes to be provided. 
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Interfacing and 
System Operations 

This section describes some circuits and suggested 
techniques for interfacing the COSMAC Microprocessor 
CDP1802 with external memories, control circuits, and 
input/output devices in various system configurations. 
Reference to the section on Timing Diagrams will be 
helpful in reading this material. 

Memory Interface and Timing 

The use of memory interface lines is best described 
by specific examples. Fig. 77 shows the direct intercon­
nection of a static 32-byte RAM to the CPU. No ex­
ternal parts are required. The same simplicity in interfac­
ing is evident in Fig. 78 for a 256-byte static RAM. For 
memories requiring more than eight addressing bits, Fig. 
79 illustrates the interconnections of a static 1024-byte 
RAM to the CPU. The 1024-byte read-write memory 
comprises eight 1024-word by I-bit CDP1821 RAM's. 
These static RAM's, requiring only a single power sup­
ply, are easy to use. Ten memory address bits are re­
quired to select lout of 1024 memory byte locations. 

5 
MAO-4 

STATIC RAM 

MWR 
32 BYTES 
CDP1824 
(32 x 8) 

HI' Cs 

MRD 
DATA 

Ds 8 DATA BUS 0-7 

The high-order byte (A.1) of a 16-bit memory address 
appears on the memory address lines MAO-7 first. The 
two least significant bits of A.1 are strobed into the 2-bit 
address latch by timing pulse TPA. Fig. 80 shows the 
memory read and write timing. For a more detailed tim­
ing diagram including set-up and settling time delays, 
refer to the data bulletin for the CDP1802. 

The low-order byte (A~O) of a i6~bl.t COSMAC 
memory address appears on the MA 0-7 lines after the 
high-order bits have been strobed into the address latch. 
Latching all eight A.I bits would permit memory expan­
sion to 65,536 bytes. Chip select decoding would have 
to be added to the latch output for memory expansion. 
The MA 0-7 lines may also require buffer circuits to 
reduce the load on them to achieve high speed. 

The state of the MWR and MRD lines determines 
whether a byte is to be read from the addressed memory 
location, written into it, or neither operation performed. 
Fig. 81 tabulates the operation of the memory control 
lines. Note that the MRU and MWR lines are active low. 
The CPU controls the destination of the memory output 

MAO-7 

MWR 

CPU 
CDP1802 

-
MRD 

DATA 

~8 

VCC 

( 99 
I I 
: I 

BUS PULL UP 
SISTORS 
Kn) 

RE 
(22 

Fig. 77 - Interface for the CDP1824 static RAM to the CDP1802 microprocessor in a 
32-byte RAM system. 



68 -------___ ~-- User Manual for the RCA CDP1802 COSMAC Microprocessor 

Fig. 78 -Interface for the CDP1822 static RAM to the CDP1802 microprocessor in a 
256-byte RAM system. 

byte when it appears on the data bus. The byte may be 
strobed into an internal CPU register or into an external 
I/O register. During a WRITE cycle, the memory output 
is in a high-impedance state. The CPU or I/O circuits can 
then place a byte to be stored in memory on the bus. A 
negative-going MWR pulse will cause the data byte to be 
written into the addressed memory location. Eight bus 
pull-up resistors should be provided to place the bus in a 
known state when it is not being driven. 

Figs. 82 and 83 show interfacing for the CDP1802 
with various other memories in the 1800 series of parts. 
Other industry standard RAM's and ROM's are readily 
accommodated by the CDP1802's general-purpose inter­
face lines. Access time, however, must be consistent with 
clock frequency. The data bulletin for the CDP1802 
gives curves relating access time, clock frequency, and 
instruction cycle. For example, a 4-MHz clock will re-

8 

quire a memory having a maximum access time of 900 
nanoseconds. The time required by the CPU and internal 
gating is also specified on the data sheet. 

If a memory does not have a 3-state high-impedance 
output, MRD is useful for driving memory-bus separator 
gates; otherwise, it is used to control 3-state outputs 
from the addressed memory. A low on MRD indicates a 
read cycle; the low MRD line enables the memory­
output-bus gates during the read cycle. For various 
memory systems, the MRD signal and the MWR pulse 
polarity and width may require modification by external 
circuitry. 

Segments of ROM's can be attached in the same man­
ner as RAM's but with the write controls omitted. The 
CDP183l ROM is especially easy to use because address 
latching is provided on chip to latch the 8 most signifi­
cant bits of a l6-bit address. The on-{;hip decoder is 

MA8-9 

MAO-7 

B 

MA 

STATIC RAM 
'-------I TPA 

1024 BYTES 
EIGHT CDP1821's 
(1024X 1) 

CPU 
CDP1802 

ioe------.------i MWR 

I------,.~ MRD 

B 
DATA BUS 0-7 

VCC BUS 

99 PULL UP 
I : RESISTORS 
I I (22K!1) 

Fig. 79 -Interface for the CDP1821 static RAM to the CDP1802 microprocessor in a 
1024-byte RAM system. 
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Fig. 80 - Memory read and write timing diagram. 

MEMORY 
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H 
L 

NON-MEMORY 
OPERATION 
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H 

mask programmable which enables placement of a 512-
byte memory block anywhere within 65 kilobytes of 
memory space. Note that the chip enable output signal 
goes high when the device is selected. It is intended as a 
chip-select control for small (up to 256-byte) RAM 
systems. 

Fig. 81 - Operation of the memory control lines. Dynamic RAM's can be used with appropriate refresh 
circuits. Because the CDP1802 circuitry is static, the 

MAO-7 
MA MA 

STATIC RAM 8 

256 BYTES CPU 
EIGHT CDPI827's CDP1802 
(256 XI) 

RIW MWR 

Cs MRD 

VCC 

<;> <j> BUS PULL UP 

8 I I RESISTORS 
I I (22 KUl 

DATA BUS 0-7 I I 

Fig. 82 - Interface for the CDP1827 static RAM to the CDP1802 microprocessor in a 
256-byte RAM system. 
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clock may be stopped and restarted for asynchronous 
memory operation if required, or the WAIT input may 
be used to signal a Data Ready condition. For additional 
information on this subject, refer to the following sub­
section on "Control Interface." 

Control Interface 

The COSMAC Microprocessor CDP1802 has an 
internal oscillator that works with a crystal connected 
between the CWCK and XTAL terminals. If desired, 
however, an external oscillator may be used and fed into 
the CLOCK input. If an external oscillator is used, no 
connection is required at the XTAL terminal. (Note: 
care must be taken not to load the XTAL.) Any type of 

s MAO-7 

Us Jls 
MA MA 

TPA -----
ROM 

STATIC RAM 

256 BYTES 
512 BYTES TWO CDP1S22's MWR 
CDP1S31 (256 X 4) 
(512 x S) 

CEO CS1 

I 
+vCC _ CS2 MRl5 

-
MRD --

DOUT DIN DOUT 

US fis Us 
< 

s 

If the WAIT line is brought low (with CLEAR high), 
the CPU stops operation cleanly on the next negative­
going transition of the clock (pause mode). Output sig­
nals are held at their values indefinitely. This state is 
useful for several purposes. Using the WAIT line, the 
CPU can be easily single-stepped for debugging purposes 
or, if stopped early in the machine cycle, the CPU can 
be held off the data bus to allow for multiprocessor 
systems, etc. Also, the WAIT line can be used as a data­
ready signal from a slow memory or peripheral, or 
signals TPA and TPB can be stretched. When the WAIT 
line is returned high, the machine resumes running on 
the next negative-going transition of the clock input. 
The WAIT signal does not inhibit the on-chip crystal 
oscillator. DMA's and Interrupts are not acknowledged 
in the Pause mode. 

lis 
MA 

TPA 

MWR CPU 
CDP1802 

-

r 
MRD 

DATA 

DATA BUS 0-7 Ds 

vcc 

9?9 
' I ~ I I 

BUS PULL UP 
ISTORS 
Kn) 

RES 
(22 

Fig. 83 -Interface for a mixed ROM/RAM system. 

single-phase clock may be used so long as the rise and 
fall times of the clock pulse are less than 15 micr6-
seconds. Each machine cycle consists of eight clock 
pulses, and each instruction requires two or three 
machine cycles. Thus, with a 6.4-MHz clock frequency, 
a machine cycle of 1.25 microseconds could be achieved, 
and instructions would be executed in 2.5 to 3.75 micro­
seconds depending on the instruction. 

During normal operation, the CLEAR and WAIT lines 
are both held high. A low level on the CLEAR line will 
put the machine into the reset mode with I, N, X, P, Q, 
Data Bus = 0, and IE = 1. Actually, X, P, and R(O) are 
reset during a special SI cycle (not available to the pro­
grammer) immediately following transition from the 
reset mode to any of the other modes (load, run, or 
pause). The clock must be running to effect this cycle. 

If the CLEAR and WAIT lines are both held low, the 
machine enters the load mode. This mode allows input 
bytes to be sequentially loaded into memory beginning 
at M(OOOO). Input bytes can be supplied from a key­
board, tape reader, etc., by way of the DMA facility. 
This feature permits direct program loading without the 
use of external "bootstrap" programs in ROM's. 

Fig. 84 shows one circuit using standard devices from 
the CD4000 series for controlling the run and load 
modes of the CDP1802. Note the power-on reset 
feature. To load and start a program, the sequence of 
operations would be as follows: First, depress the reset 
and then the load buttons. The CPU is now ready to 
load by means of the DMA channel. When loading is 
completed, depressing the reset and then the run buttons 
will start program execution at M(OOOO) with R(O) as 
the program counter (after one machine cycle). If a 
DMA request is present when the run switch is turned 
on, the machine will go into the DMA state immediately 
with R(O) as the program counter. The user should 
therefore inhibit DMA externally until the program has 
changed to a program counter different from R(O). 
Interrupts, however, are disabled until the first instruc­
tion or DMA request is executed. This delay allows the 
programmer to place instruction 71 and 00 in the first 
two memory bytes to inhibit interrupts until he is ready 
for them. The combined effect of the two instructions is 
to set IE = O. Interrupts must not occur, however, when 
the machine is in the load mode because they will force 
the machine into an anomalous running state. Fig. 85 
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Fig. 84 - Simple control interface for CDP1802 microprocessor. 

shows the sequence of events and states involved in 
loading and running a program. 

Another circuit that can be used for single-stepping 
the microprocessor (one machine cycle per switch de­
pression) is shown in Fig. 86. This capability is often 
useful as a debugging aid. 

Fig. 87 provides a summary of the modes discussed, 
the control levels, and the characteristic features of these 
modes. It is. evident that the run mode can be entered 
from either the reset or the pause mode. 

o 2 3 4 5 6 
CLOCK 

o 

I/O Interface 

The three basic ways in which the CPU can com­
municate with I/O devices are programmed I/O, inter­
rupt I/O, and Direct Memory Access (DMA). In the 
programmed I/O mode, all data transfer is controlled 
and timed by the program. In the interrupt I/O mode, 
the CPU responds to an I/O generated Signal. In the 

2 3 4 5 6 7 0 1 ___ ITLfULJLf'L 

CLEAR ---,~ _________________________ __ 

WAIT '--______________ -.J 
NOTE 1 

TPA~ __________ .....IIl .... ____ _ __________ r 
CPU OUTPUT 

TO DATA ~ ~=-==0'I ~ BUS ~------------Jlj""""~ 

MA~~ ____________________ M_(~OO~O~O) ________________ ~~~~M~(O~OO~O~) __________ _ 

DMA·IN L..o-____________ ~r 

==~ 
RUN + RESET_ ... r1~---------'L=-:O"-A~D-"-M;.:;O.::.D.::.E-------•• t RESET L RUN __ 
MODE MODE MODE r- MODE 

E22a UNDEFINED 

~ OFF - High-impedance state 

Note 1 - In the Load Mode, TPA pulses are generated only during DMA cycles. 

Fig. 85 - Timing diagram for load and run sequences. 
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CPU 
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Fig. 86 - Circuit for single-stepping the CDP1802 microprocessor. 

MODE CLEAR WAiT OPERATION 

RESET 0 1 I, N, X, P = 0, R(O) =0, Q= 0, BUS = 0, 
IE = 1; TPA and TPB are suppressed; 
CPU inS1. 

RUN 1 1 CPU starts running one machine cycle after 
CLEAR is released. Execution starts at 
M(OOOO) , or an S2 cycle follows if DMA 
was asserted. I nternal sampling of interrupt 
is inhibited during initialization cycle. 

RESET 0 1 As above. 
LOAD 0 0 CPU in IDLE. An I/O device can load memory 

without "bootstrap" loader. 
PAUSE 1 0 Clock:~stops internal operation. 

CPU outputs held indefinitely. Permits 
stretching of machine cycle to match slow 
devices or memory cycles. DMA and 
INTERRUPTS not acknowledged. 

RUN 1 1 Clock:...J"l.. _________ ~ 

Resume operation 

Fig. 87 - Truth table for mode control of CDP1802 microprocessor. 
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Fig. 88 - Summary of interface lines provided by CDP1802 microprocessor. 
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DMA mode, a direct high-speed data channel- is estab­
lished between memory and I/O device. The I/O device 
"steals" execution cycles from the CPU and transfer 
data during these time slots. 

Fig. 88 gives a summary of the interface lines pro­
vided by the CDP1802 microprocessor. The large 
number of dedicated lines available offers both economy 
and flexibility in I/O system designs. 

The following paragraphs indicate a few ways in 
which I/O data transfer can be accomplished under the 
three basic modes of operation. Throughout these exam­
ples, IC's from the CDP1800 and CD4000 series of stan­
dard parts are used. Devices from the 1800 series belong 
to a growing family of dedicated parts designed specifi­
cally to interface with each other and with the CDP1802 
Microprocessor for optimum system design. A broad 
choice of standard parts from the 4000 series is also 
available for flexible and inexpensive system operations. 
For detailed information on these devices, the reader 
should refer to the latest RCA Integrated Circuits 
DATABOOK. 

Programmed I/O - Direct Selection of I/O 
Devices 

One input port only. When I = 6 and N = 9, A, B, C, 
D, E, or F, a byte on the data bus is written into the D 
register and the memory location addressed by R(X) .. 

The simplest form of input to the microprocessor 
utilizes one of the four external flag lines: EF1, EF2, 
EF3, or EF4. A low on a flag line places it in its true 
state. The short branch instructions 34, 35, 36, 37, 3C, 
3D, 3E, and 3F allow programs to determine the states 
of these flag lines. 

Fig. 89 illustrates one method of using a flag line 
(EFI in this case) to signal the CPU and initiate a byte 
transfer into memory and D register. In this circuit, 
turning the switch on sets EFI low and turning it off 
sets EF1 high. The flip-flop eliminates switch bounce. 
Assume first that the switch is off and, therefore, EFI = 
1. The short branch instruction 3C will test the status of 
the EFI flag. The 3C instruction executes a short branch 

MEMORY 

ADDRESS BYTE 

-------
XXOA 3C CPU 

if EFI = 0 (i.e., EFI = 1), in this case to the branch 
address XXOA. So long as the switch is off, the program 
will continue to test the EFI flag and execute a branch 
to XXOA during every instruction cycle. Assume next 
that the switch is activated so that EFI becomes true 
(i.e., EFI = 0). Execution of 3C now requires that the 
next instruction EA be executed. This instruction sets 
up R(A) as a data pointer and, in this example, it has 
been preloaded with address XX1A. Instruction 69 is an 
input command and loads the byte on the bus into D 
and the memory location addressed by R(A), (XXI A). 

The switch of Fig. 89 might be replaced by a Tele­
type* output relay. The opening and closing of this relay 
contact represent the bit-serial teletype character code. 
A . COSMAC program could interpret the sequential 
states of the EF1 line to provide an extremely simple 
bit-serial interface. (The Terminal Interface card and the 
Utility Program described in Manual MPM-203 give a 
practical illustration.) 

Fig. 90 also shows how input bytes can be read into 
memory in conjunction with a flag line, but the byte is 
now entered under CPU control. In this example, the 
user's strobe asserts one of the EF flags which is being 
monitored by a branch instruction in the program. A 
byte is latched into the register in a high to low transi­
tion of the strobe pulse and generates a service request. 
When a low is detected on EF1, the program branches to 
an input instruction 69 (I = 6 and N = 9). During execu­
tion of 69, the three N bits available at the interface are 
valid. The NO line, which was low, is active high during 
the execute cycle. When the CPU responds with an input 
instruction and the NO line goes high, the input byte is 
enabled onto the data bus. 

During this machine cycle, the CPU generates a low 
MWR pulse which writes the valid byte on the bus into 
memory. For further details on input instruction tim­
ing, refer to the section on Timing Diagrams. Note that 
the EF1 line is forced high (the service request is reset) 
at the end of the valid NO bit to assure that only one 
byte is entered per strobe pulse. 

The input byte might be the byte output of a paper­
tape reader, keyboard, or other input device. The input­
*Registered trademark, Teletype Corporation. 
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Fig. 89 - Use of a flag line (EFt) as an input command. 
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Fig. 90 - Direct selection of I/O devices - one input port. 

byte-transfer rate should be consistent with the speed 
the program samples the flag line and executes input­
byte-transfer instructions. 

One output port only. When 1=6 and N = 1,2,3,4, 
5,6, or 7, the memory byte addressed by R(X) is placed 
on the data bus. The three N bit lines are valid during 
the execution cycle and indicate that an I/O operation 
is performed. The M(R(X)) byte appears on the data 
bus before the timing' pulse TPB occurs and remains on 
the bus until after t4e TPB line returns to its low state. 

Fig. 91 shows simple logic for transferring a byte 
from memory to an output register under program con­
trol. If a 61 instruction is executed, the NO line becomes 
high during the execute cycle and can be used with the 
timing pulse TPB to strobe a valid data byte into the 
output register. The user is then free to enable the out­
put of the register. For more information on output 
instruction timing, refer to the section on Timing Dia­
grams. 

Fig. 92 shows how an output instruction, in this case 
61, might be used to set a byte into a two-hex-digit out-

-
MWR 

CPU 
SYSTEM 

CDP1802 
MEMORY -

MRD 

\. M(R(X)) ft 
< 

put display device. Each HP5082-7340 display chip con­
tains a 4-bit register, a decoder, and a hex LED display. 
During the execution cycle of instruction 61, when the 
NO bit is valid, TPB will strobe valid data into the two­
digit hex display. 

A COSMAC program can be written to simulate a 
free-running two-digit decimal counter. Each two-digit 
count can be placed in the output display of Fig. 92. 
The switch in Fig. 89 can be used to start and stop the 
counter. If the switch is in the "ON" position, counting 
proceeds (00-99). When the switch is turned off, count­
ing stops and the current value of the count is displayed. 
Turning the switch "ON" again will re-initiate counting, 
starting at the value displayed. A portion of a possible 
"counter program" is shown in Fig. 93. In this example, 
the logic in Fig. 92 must be modified with the 1VmD 
line to distinguish between input and output instruc­
tions, as discussed in the material following. 

One input and one output port. Fig. 94 shows how 
the logic in Figs. 90 and 91 can be combined to provide 
byte transfers in either direction. The level of the MRD 
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Fig. 91 - Direct selection of I/O devices - one output port. 
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Fig. 92 - Direct selection of I/O devices - one pair of output display digits. 
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Fig. 93 - Portion of a two-digit decimal counter program. 
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line detennines direction of data flow. During an input 
instruction execute, the CPU is in a memory write cycle 
with MRD high, i.e., the input register is enabled to the 
bus and the input byte is read into memory when MRD 
is high. DUring an output instruction execute, the CPU 
is in a memory read cycle with MRD low and, hence, the 
input register is disabled from the bus. At TPB, valid 
data is strobed from the bus into the output register. 

More than one I/O device - Input ports only. The 
simple byte logic in Fig. 90 can be expanded up to three 
I/O ports with direct selection of the devices, as shown 
in Fig. 95. The three N bits are valid during I/O opera­
tion; hence, instruction 69 selects port I, 6A selects port 
II, and 6C selects port III. The user's strobe will activate 
an EF flag and enter a byte into the register. 

More than one I/O device - Output ports only. The 
simple logic described in Fig. 92 can be similarly ex­
panded to handle three pairs of display digits, as shown 
in Fig. 96. Each digit pair is selected by one of the N 
lines, depending on the chosen instruction. Instruction 

61 selects digit pair DO, 62 selects pair DI, and 64 
selects pair D2. 

More than one I/O device - Both input ports and 
output ports. The circuits in Figs. 95 and 96 were de­
signed for data flow in or out, respectively. Three I/O 
ports under control of the N lines can easily be wired up 
by expanding the logic in Fig. 94. 

Another simple three-port I/O system but with a 
CD4000-series register is shown in Fig. 97. In this 
circuit, the I/O device has master-slave flip-flops. Both 
input and output data can be disabled, and data is 
strobed in on a leading edge of the clock pulse when the 
input is enabled. NO and a read level on MRD will enable 
data from the bus into output register #1 while the 
input register #1 is disabled from the bus. A valid byte is 
strobed from the bus into the output port at TPB. Dur­
ing an input instruction, a high level on MRD enables the 
input port #1 to the bus. Similarly, Nl controls I/O 
ports #2, and N2 controls I/O ports #3. 
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Fig. 95 - Direct selection of I/O devices - three input ports. 
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Programmed I/O - One-level I/O System 

The I/O interface systems described so far are appli­
cable for small systems (up to three I/O ports) where the 
N lines can be used directly to select or control I/O de­
vices. If more than three I/O devices are required, the N 
lines can be decoded to specify up to 1 of 7 different 
I/O ports or channels. Fig. 98 illustrates this approach. If 
line 1 is selected from the decoder, for instance by exe­
cuting input instruction 69, the input register is enabled 
to the bus because MRD is high during memory write 
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N2 
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T 

DISABLE OUT #1 

II .- 00 - 2x 
CL CD4076 

riD 

J 

cycle. Decode line 1 will also be active high during an 
output instruction, 61, but MRD is low during memory 
read cycle, disabling the input register from the bus. At 
TPB, the valid byte from memory is strobed into the 
output register. 

As discussed earlier, the user's strobe or write signal 
can be used to activate an EF flag or the interrupt line. 
An I/O request can be acknowledged by OR-ing the N 
lines. If the interrupt is asserted, the two state<ode lines 
SCQ and SCI are both high, acknowledging an interrupt 
(S3) cycle. 
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Fig. 97 - Direct selection of I/O devices - one of three input ports or one of three 
output ports. 
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Fig. 98 - Selection of I/O devices by one-level decoding - one of seven input ports or 
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Programmed I/O - Two-Level I/O System 

The COSMAC architecture imposes no theoretical 
limits on the number of I/O ports which the CPU can 
accommodate. Systems larger than those discussed up 
till now, however, require an additional level of de­
coding. 

Fig. 99 shows one possible implementation of a large 
I/O system which handles 256 input and 256 output 
ports. A 61 instruction is first executed to place an 8-bit 
device-selection code in the I/O device-select register. 
Subsequent execution of a 62 instruction will send an 
8-bit control code to the selected output port or chan­
nel. Control codes can be used to start or stop electro­
mechanical devices, set up specific modes of operation, 
etc. When the 8-bit I/O device-select register specifies an 
output device, execution of a 63 instruction will cause 
the transfer of an output data byte to the selected 
device. 

After an input device is selected, a 6A instruction 
could be executed to obtain a status byte from it 
selected device. Subsequent execution of a 6B instruc­
tion could store an input byte in memory. The remain­
ing I/O instructions could be used to control other sys­
tem functions either directly or under control of the 
device-select register. 

Note that the I/O register has two chip-select inputs; 
hence, an output register is selected only when both the 
address decode line and MRD are true. A byte can only 
be strobed into the selected output register during TPB 
when a command decode line is true. In order to select 
the input register, both the address decode line and the 
command decode line must be asserted when MRD is 
not true. 

In summary, a byte on the data bus can be a device­
select code, a control byte, a status byte, read data, 
write data, etc. To describe or interpret the byte on the 
bus, the decoded outputs of the three N bits are used. 

The above examples under "I/O Interface" indicate 
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only a few of the ways in which I/O instructions can be 
implemented. The I/O interface lines can be used in a 
great variety of ways, limited only by the ingenuity of 
the· system designer. 

DMA Operation 

The I/O examples described above require that a pro­
gram periodically sample I/O device status. These tech­
niques also require several instruction executions for 
each I/O byte transfer. In many cases it is desirable to 
have I/O byte transfers occur without burdening the 
program or to transfer data at higher rates than possible 
with programmed I/O. A built-in direct-memory-access 
(DMA) facility permits high-speed I/O byte transfer 
operations independent of normal program execution. 

During DMA operation R(O) is used as the memory 
address register and should not be used for other pur­
poses. Two lines, DMA-IN and DMAOOOT, are used to 
request DMA byte transfer to and from the memory. 
Also, a specific code is provided on the state code lines 
(SCO, SCI) to indicate a DMA cycle (S2). 

DMA-IN ACTION 

DMA-OUT ACTION 

DMA-IN 
Fig. 100 illustrates the manner in which DMA-IN 

might be implemented_ The leading edge of an enter 
pulse will clock an input byte into the register and acti­
vate the DMA-IN request. 

A low DMA-IN .line automatically modifies the nor-

CLEAR WAIT 

! ! 
CPU 

CDP1802 

- SCO 

I .. MWR 

SYSTEM SCI 
. MEMORY -

~ 

mal fetch-execute sequences. If the DMA-IN line goes 
low during an instruction fetch cycle (SO), then the 
normally following execute cycle (Sl) will still be per­
formed. Following this execute cycle (Sl), a special 
DMA cycle (S2) occurs. If the DMA-IN line goes low 
during an instruction execute cycle (SI), then the DMA 
cycle (S2) will follow immediately after SI. If the 
DMA-IN line is reset to its high state during the DMA 
cycle (S2), then the deferred next instruction fetch 
cycle (SO) will be performed following the S2 cycle, as 
shown on Fig. 100. 

An S2 cycle is indicated by a low SCO line and a high 
SCI line. This condition is used to place a DMA input 
byte onto the bus, as shown. For further details on 
timing, see the section Timing Diagrams. The S2 cycle 
stores the input byte in memory at the location ad­
dressed by R(O). R(O) is then incremented by 1 so that 
subsequent S2 cycles will store input bytes in sequential 
memory locations. S2 cycles do not alter the sequence 
of program execution. The program will, however, be 
slowed down by the S2 cycles that are "stolen". The 
concurrent program must, of course, properly use R(O) 

BUS-+ M(R(O)); R(O)+1 

M(R(O)) -+ BUS; R(O)+1 

and memory areas in which input bytes are being stored. 
It may examine R(O) and the memory area involved to 
observe the course of the data transfer. The program 
must also set R(O) to the address of the desired first 
input byte location in memory before permitting a DMA 
input operation. 
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Fig. 100 -Implementation of DMA-IN operation. 
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So far, single byte transfer per enter request has been 
discussed. If the DMA-IN remains low, S2 cycles will be 
performed until the DMA-IN goes high. In this mode of 
block transfer, the reset logic in Fig. 100 must be modi­
fied. The DMA mode permits a maximum I/O byte 
transfer rate of one byte per machine cycle which, with 
two microseconds per instruction cycle time, amounts to 
a transfer rate of one megabyte per second. 

The DMA-IN feature, in conjunction with CLEAR 
and WAIT signals, provides a built-in program load 
mechanism. A low on CLEAR and a high on WAIT puts 
the CPU in the RESET mode. The CPU now idles (Sl 
state) with R(O) = 0000. The LOAD mode is next 
entered by bringing the WAIT line low (CLEAR = Land 
WAIT = L). This mode allows input bytes to be sequen­
tially loaded into memory beginning at M(OOOO). Input 
bytes can be supplied from a keyboard, tape reader, etc. 
via the DMA-IN facility and circuitry similar to Fig. 100. 
For details on timing refer to the material in this section 
on "Control Interface." 

DMA-OUT 
A low on the DMA-OUT line causes S2 cycles to 

occur in a similar manner as a low on the DMA-IN line. 
The 82 cycle caused by a low on the DMA-OUT line 
places the memory byte addressed by R(O) on the bus 
and increments R(O) by 1. DMA output bytes can be 
strobed into an output device by TPB, as shown in Fig. 
101. The program must set R(O) to the address of the 
first output byte of the desired memory sequence before 
the DMA transfer request occurs. For details on DMA­
OUT timing, refer to the section on Timing Diagrams. 

Note: In the event of concurrent DMA and INTER­
RUPT requests, DMA-IN has priority followed by DMA­
OUT and then INTERRUPT. 

TPB 

MWR SCO 

I--
SYSTEM 

SC1 

MEMORY MRD CPU 

..... 

Interrupt I/O 
The interrupt mechanism permits an external signal 

to interrupt program execution and transfer control to a 
program designed to handle the interrupt condition. This 
function is useful for responding to system alarm condi­
tions, initializing the DMA memory pointer, or, in 
general, responding to real-time events less urgent than 
those handled by DMA but more urgent than those 
which can be handled by sensing external flags. 

A low on the INTERRUPf line causes an interrupt 
response cycle (S3) to occur following the next Sl cycle, 
provided the IE flip-flop is set. Execution of an 83 
cycle is indicated by a high on both the SCO and the 
SCI lines'. 

Fig. 102 shows a typical interrupt circuit. The flip­
flop is reset during the S3 cycle. During the S3 cycle, the 
current values of the X and P registers are stored in the 
T register. P is then set to 1, X to 2, and IE to O. Follow­
ing S3, a normal instruction fetch cycle (SO) is per­
formed. The S3 cycle, however, changed P to 1 so that, 
next, the sequence of instructions starting at the 
memory location addressed by R(I) will be executed. 
This sequence of instructions is called the interrupt serv­
ice program. It saves the current state of the COSMAC 
registers such as T, D, and possibly some of the scratch­
pad registers, by storing them in reserved memory loca­
tions. DF must also be saved if the interrupt service pro­
gram will disturb it. The service program then performs 
the desired functions, restores the saved registers to their 
original states, and returns control to execution of the 
Original program. Special instructions RETURN, DIS­
ABLE, and SAVE (70, 71, and 78) facilitate interrupt 
handling. These instructions are described in the sections 
on Instruction Repertoire and Instruction Utilization. 
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Fig. 102 - Typical circuit for implementation of interrupt operation. 

Their use is illustrated in the section on Programming 
Techniques under the heading "Interrupt Service." 

The COSMAC Microprocessor also provides a special 
one-bit register called Interrupt Enable (IE). When IE is 
set to "0", the state of the interrupt line is ignored. IE is 
set to "1" in the reset mode. IE can be set to "1" or "0" 
by RETURN and DISABLE instructions, respectively. It 
is automatically set to "0" by an S3 cycle, preventing 
subsequent interrupt cycles even if the INTERRUPT 
line stays low. The program must set IE to "1" to permit 
subsequent interrupts. Setting IE to "1" takes place 
automatically when the program executes the RETURN 
instruction. Sharing the INTERRUPT line with a 
number of interrupt signal sources is possible. 

When the interrupt facility is used in a system, R(1) 
must be reserved for use as the interrupt service program 

VDD 

counter, and R(2) is normally used as a pointer to a 
storage area. The latter may be shared with the main 
program if appropriate conventions are employed, as 
described in the section on Programming Techniques. 

System Configurations 

Parallel 1/0 Interface 
Fig. 103 shows the CPU interfaced to other parts 

members of the 1800 family. Only five parts plus a 
crystal are required to interface directly in a simple and 
efficient system configuration. The RC network con­
nected to CLEAR is optional and provides power-on 
reset. This basic system implementation can easily be 
expanded for larger memory capacity as shown in this 
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Fig. 103 - System configuration for parallel I/O interface. 
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section under the heading "Memory Interface and 
Timing." . 

More I/O ports can be added by following one of the 
approaches outlined under "Programmed I/O." Several 
N bits can be used directly for I/O control, or they can 
be decoded for either one- or two-level I/O systems. 

The byte I/O register can be configured as either 
input or output port by the level on the MODE control. 
When the register is used as an input port, data is latched 
into it by a low level on the clock line. The negative 
transition of clock sets SR = 0, which can be used as a 
service request to the microprocessor. Data is read out 
of the port onto the data bus when the chip is selected 
(CSI . CS2 = 1), and the negative transition ofCSI . CS2 
resets the service request (SR = 1). 

When the byte I/O register is used as an output port, 
i.e., MODE control = H, data is strobed into the register 
from the bus by CSI ·CS2· TPB = 1. In the output mode, 
data is enabled out of the port at all times. 

Serial I/O Interface 

Using EF input and Q output. Fig. 104 shows a sim-
, .. 

pIe, serial interface for a COSMAC-based computer 
system. The sequential logic states of one of the EF lines 
may represent a bit-serial character. A software program 
can then interpret these logic levels and assemble the bits 
into one-byte data words in memory. 

In an analogous manner, SEQ and REQ instructions 
in the program can generate high and low levels on the Q 
output line for serial transmission of a byte from mem­
ory. This method can be used for interfacing a Teletype, 
printer, or any peripheral with a serial interface. A typi­
cal interface circuit between the peripheral and the CPU 
is shown in the Terminal Board for the Prototyping 
Development System described in Manual MPM-203. 

Another illustration of Q as an output under program 
control is given in Fig. 105. This minimum system con­
figuration shows a 4-bit digital combination lock. The 
status of the four manual switches or buttons represent­
ing a combination is tested by short branch instructions. 
If the combination is correct, the program sets Q = 1, 
thereby activating the solenoid of an electric lock. 

The basic program with sixteen possible combinations 
can be enhanced by various additions. For instance, the 
correct combination must be entered in a certain 
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sequence, or the code must be set within a minimum 
time period. 

Discussed earlier were I/O systems of varying com­
plexities in which the I/O ports were selected either 
directly or through one or two levels of decoding. In this 
context, the digital combination lock represents the 
lowest order of complexity. No selection is required and 
no input or output register is necessary. 

Using universal asynchronous receiver-transmitter. A 
more sophisticated and powerful approach to serial 
interfacing than the one shown in Fig. 104 is outlined 
below. The program itself is relieved of the task of for­
matting and control, and these functions are taken over 
by a dedicated hardware circuit. 
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CSl 

CS3 
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INTERRUPT INTERRUPT 

EF 4 

{ DA TOEF 
OR 

INTERRUPT RTHR 
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(optional), and stop bits (I, 1~, or 2), as illustrated in 
Fig. 107. The receiver converts a serial input word with 
start, data, parity, and stop bits into parallel data. It veri­
fies proper code by checking parity and the receipt of a 
valid stop bit. Both the receiver and transmitter are 
double buffered. 

Although the receiver and transmitter can operate 
with separate data buses, if the MODSEL line is high, the 
UART is directly compatible with COSMAC and bidirec­
tional data transfer on a common bus. 

There are four registers under program control in the 
UART. One is loaded from the bus in the transmit 
mode, one is read to the bus in the receive mode, a Con­
trol register is loaded from the bus at initialization, and a 
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Fig. 106 - System configuration for asynchronous serial data communication interface. 

Fig. 106 shows the CDP1854, a CMOS Universal 
Asynchronous Receiver-Transmitter (UART), interfaced 
to the CPU in a typical data communication application. 
The UART consists of a receiver and transmitter de­
signed to provide the necessary formatting and control 
for interfacing serial asynchronous data to and from 
peripheral devices. The receiver-transmitter is capable of 
full duplex operation and is externally programmable. 

The transmitter converts parallel data to a serial word 
containing the data (5-8 bits), a start bit, a parity bit 

Status register is read in the receive mode. The two-bit 
code on MRD and RSEL determines which register is 
selected and the direction of data flow. Refer to the 
truth table in Fig. 108. 

The UART is enabled to the data bus when the three 
chip selects are asserted. Therefore, by decoding, a large 
number of UART's can operate in a system on the same 
bus. 

Fig. 106 illustrates one possible way of interfacing 
the UART and the CPU. One of the N bits selects the 

Fig. 107 - Word format in asynchronous serial data communication. 
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chip, and the two other N bits select register and receive/ 
transmit mode. A typical operation might be as follows: 

The control register is first loaded from memory 
under program control, for instance, through executing 
output instruction 65. The individual bits in the control 
byte set up the system mode according to the bit pat­
tern. The bit assignments are listed in Fig. 109. The pro­
gram determines if the system operates with parity or 
not; if parity, odd or even; how many stop bits; the 
number of bits in the data word; etc. For instance, a 
high in bit position 0 will inhibit parity generation; or, 
if transmit break is present, the serial-data-out line is 
held low. 

Transmitting a character is initiated by executing, for 
instance, output instruction 64. During the execute 
cycle, N2 selects the chip and NI and NO select the 
Transmitter Holding Register (THR) , which is loaded 
from the bus at TPB. When the byte has been transferred 
to the Transmitter Shift Register (TSR) for eventual 
serial transmission (on SO), the Interrupt line is asserted 
to indicate that THR is empty and a new character may 
be loaded. Reading the Status Register will also provide 
this information. 

In the receive mode, a serial character is entered on 
the SI line and shifted into the Receiver Shift Register. 
When this register is full, the byte is transferred to the 
Receiver Holding Register (RHR) and a Data Available 
flag is generated, which is one of the status bits. Before 
accepting the character, the program would typically 
read the Status Register. The bit assignments of the lat­
ter are shown in Fig. 110. The program can therefore 
determine if, for instance, there is parity error or if a 
complete character has been received and is ready for 

7 I 6 I 5 I 4 I 3 I 2 

1 1 1 

I 

CHIP ASYNCHRONOUS 
INSTRUCTIONS SELECT MRD RSEL RECEIVER! 

TRANSMITTER 
OUT IN N2 Nl NO ~ R E GlSTEfI- OPERATION 

61 69 0 0 1 ~ -
62 6A 0 1 0 ~ -
63 6B 0 1 1 ~ -
64 6C 1 0 0 Transmit Data BUS'" 

Tr. Data 
65 6E 1 0 1 Control BUS ... 

Control 
66 60 1 1 0 Receive Data Rec. Data ... 

BUS 
67 6F 1 1 1 Status Status -+ 

1 

t 

BUS 

Fig. 108 - Truth table for selecting chip and registers 
with the N bits. 

transfer over the bus to memory. 
Some of the status bits, if set, will also generate an 

interrupt condition. The Status Register in this example 
is read by executing input instruction 6F. If the received 
character is acceptable, the input instruction 6D will en­
able the byte onto the bus, and MWR writes it into 
memory. Upon reading of data from the UART, the DA 
status bit is automatically reset. If another character is 
received before the previous one is read out, an overrun 
condition is Signaled. 

Flexibility in system operation is enhanced by a few 
additional signal lines. The DA and RTHR flags are 
brought out separately and could, for instance, signal the 
CPU over the EF lines. Clear to Send (CTS) and Request 
to Send (RTS), in addition to the two peripheral status 
lines IPI and IP2, facilitate "hand-shaking" with 
modems and peripherals. 

I 0 I 
L- PARITY INHIBIT 

EVEN PARITY ENABLE 

STOP BIT SELECT 

WORO LENGTH SELECT 1 

WORD LENGTH SELECT 2 

INTERRUPT ENABLE 

TRANSMIT BREAK 

TRANSMIT REQUEST 

Fig. 109 - Bit assignments for control register. 

11 1,
_t L- DATA AVAILABLE 

'------ OVERRUN ERROR 

PARITY ERROR 

FRAMING ERROR 

'----------- PERIPHERAL STATUS BIT 1 

'------------- PERIPHERAL STATUS BIT 2 

1--_____________ TRANSMITTER SHIFT REG. EMPTY 

'----------------- TRANSMITTER HOLDING REG. EMPTY 

Fig. 110 - Bit assignments for status register. 
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Timing Diagrams 

The following topics illustrated with timing diagrams 
are covered in this section. 

1. Input instruction timing. 

2. Output instruction timing. 

3. DMA-IN timing. 

4. DMA-OUT timing. 

S. Instruction set timings. 

Input Instruction Timing 

Fig. III provides the timing relationships for input 
instructions. An input instruction will permit a byte 

o 3 4 5 6 

from an external device to be written into memory and 
the D register: 

BUS"""* M(R(X)), D 

The instruction 69, forinstance, will be fetched from 
memory during state SO when the CPU asserts MRD and 
reads the instruction into the I and N registers. The in­
struction will be executed during the next machine 
cycle, state Sl, which is a memory write cycle. The CPU 
generates an active low MWR pulse during this cycle 
which will strobe an input byte from the data bus into 
memory. A high MRD level during the memory write 
cycle will also disable the memory output during this 
period. 

o 3 4 6 o 

TPA 

~~~~W~~WS~I~~~UWU ----

-f- I r, I 

CLOCK 

TPB 

MACHINE CYCLE 

INSTRUCTION 

MRD I 

NO-N2 

MWR 

DATA BUS.' 

m High-impedance state 

·User·generated signal 

r ~ -, 
i 

CYCLE I Cr.-CLE n + 1) 

F TCH ( 0) E ECU E (51) 

1.1 6) N= -F 

~ Q.OF Q<; ~ ~ALlO ~ATA ROM NPUT DEVI( E OFF 

I 
MEM~RY . ~ EMOF r.-

EAD QYCLE WR EC'CLE 

Fig. 111 - Input instruction timing. 
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During the execute cycle when I = 6 and N = 9, A, B, 
C D E or F the three low-order N bits are available 
~d ~an' be us~d for enabling a byte onto the data bus 
from the input device. 

Output Instruction Timing 

Fig. 112 provides the timing relationships for output 
instructions. An output instruction will permit a stored 
byte in memory to be read out to an external device: 

M(:R(X)) -+ BUS; R(X) + 1 

The instruction 61, for instance, will be fetched from 
memory during state SO when the CPU asserts MRD and 
reads the instruction into the I and N registers. The in­
struction will be executed during the next machine 
cycle, state SI, which is now a memory read cycle: 

MRD is during the latter cycle once more asserted 
and enables the output from the memory onto the bus. 
Data is valid after the access time has elapsed. The valid 
data from memory can next be strobed into the output 
device by a user-generated strobe. Data will, always be 
valid when TPB, the N bits, and MRD signals are true. 

The three N bits are valid during the execute cycle 
when 1=6 and N = 1,2,3,4,5,6, or 7 and can be used 
for enabling a byte from the data bus into the output 
device. 

DMA-IN Timihg 

Fig. 113 provides the timing relations for DMA-IN 
operation. When DMA-IN is asserted, a byte on the data 
bus from an external device is written into memory at 
the location specified by the register R(O): 

BUS -+ M(R(O)), R(O) + 1 

DMA-IN is a uset-generated signal that can be asserted 
any time, but the CPU will always complete its current 
instruction cycle before it enters the DMA cycle or state 
S2. The DMA-IN request is sampled internally during 
TPB and the end of art SI, S2, or S3 state. Note that the 
last execute cycle before the DMA cycle can be either a 
memory read, a memory write, or a non-memory cycle. 
When the CPU enters the DMA state following DMA-IN, 
it enters a memory. write cycle. Memory output is dis­
abled by a high MRD level, and a low MWR pulse is 
generated which will write valid data on the bus supplied 
from the input device into memory. 

During S2, MRD is high and will disable memory out­
put to the data bus. If the DMA-IN request goes away 
during S2, the CPU will next execute a fetch cycle and 
complete the next instruction cycle which had been de­
ferred. 

DMA-OUT Timing 

Fig. 114 provides the timing relations for the DMA­
OUT operation. When DMA-OUT is asserted, a byte 
stored in memory at the location specified by register 
R(O) is read out to the data bus and can be strobed into 
an external device: 

M(R(O)) -+ BUS, R(O) + 1 

DMA-OUT is a user-generated signal and can be 
asserted any time, but the CPU will always complete its 
current instruction cycle before it enters the DMA cycle 
or state S2. The DMA-OUT request is sampled internally 
during TPB and the end of an SI, S2, or S3 state. Note 
that the last execute cycle before the DMA cycle can be 
either a memory read, a memory write, or a non­
memory cycle. When the CPU enters the DMA state fol-

o 4 6 0 234 i; 6 

CLOCK -W-W-SLSlJ1.JiI~~--1=J-1l-fl..1}I~ ~ 
o 

TPA r- i J I I .-- i i! " 
TPB -r-j , I I I r-, I i I I I rh,"-'~_ 

i I! 

DATA STROBE' 

(MRD . TPB . NI 

I 

i 
! 

' FET( H 

! 
i 

~ "Don't Care" or internal delays. 

·User-generated signal 

I I 
L 

Fig. 112 - Output instruction timing. 

--
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4 6 o 

~ High-Impedance state 

~ "Don't care" or internal delays 

·User-generated signal 

Fig. 113 - DMA-IN timing. 

lowing DMA-OUT, it goes into a memory read cycle. 
The memory is enabled to the bus when MRD is low 
and, after the necessary access time, valid data appears 
on the data bus and can be strobed into the output de­
vice. An appropriate data strobe can be generated by the 
user during S2 when TPB is true. 

If the DMA-OUT request goes away during S2, the 
CPU will revert to, a fetch cycle and complete the next 
instruction cycle. 

Interrupt Timing 

Fig. 115 provides the timing relations for interrupt 
service. INTERRUPT is a user-generated signal which 

can be asserted any time. However, the request is not 
recognized until the end of the current instruction cycle. 
It is recognized then only if the INTERRUPT ENABLE 
flip-flop in the CPU is set. Interrupt is sampled internally 
at the end of each execute cycle. The execute cycle can 
be either a memory read, a memory write, or a non­
memory cycle. 

The interrupt state, S3, is a non-memory cycle. Dur­
ing this period the contents of X and P are stored in the 
temporary register T, and X and P are set to new values: 
2 in X and 1 in P. The interrupt enable flip-flop is auto­
matically deactivated to inhibit further interrupts. The 
interrupt routine is now in control, and the next 
machine cycle is a fetch operation. 

Note: DMA has priority over Interrupt. 
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Fig. 114 - DMA-OUT timing. 
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~ "Don't care" or internal delays 

"SIgnal generated by user 

Fig. 115 - Interrupt timing. 

Instruction Set Timing 

The timing diagram in Fig. 116 illustrates various 
timing relationships for the instruction repertoire. They 
show, for instance, whether the CPU is in a memory 
read, memory write, or non-memory cycle during the 
different states of machine cycles. The diagrams also 
show what the output from memory is during fetch or 
execute, or what the output from CPU to memory is. 
From this point of view, the whole instruction set can 
be classified in five groups as follows: 

Group 1. Memory cycles: 
Read/Non-memory. 

Operation Code 
IN 
2N 

31-37}* 
39 -3F 

60 
76 
7A 
7B 
7E 

Group 2. Memory cycles: 
ReadIWrite. 

Operation Code 
8N 
9N 
AN 
BN 
DN 
EN 
F6 
FE 

Operation Code 

5N 
69 -6F 

73 
78 
79 

*If test conditions are not met. 
rpIf test conditions are met. 

Group 3. Memory cycles: 
Read/Read. 

Operation Code 

ON (N =1= 0) 
30 

31-37}", 

Operation Code 

75 
77 
7C 

39 - 3F 'I' 7D 
4N 7F 

61 - 67 
70 
71 
72 
74 

C5 -C7} * 
CC-CF 
FO - F5 
F7 -FD 

Group 4. Memory cycles: 
Read/Read/Read. 

Operation Code 

CO 
CI - C3} '" 
C9-CB'I' 

Group 5. Memory cycles: 

FF 

Read/Non-memory /Non-memory. 

Operation Code 

Cl - C3} * 
C9 -CB 

C4 
C5 - C7}", 
CC-CF 'I' 

C8 

By way of illustration consider, for instance, the in­
struction DECREMENT N (2N) in Group 1. During the 
instruction fetch cycle, the operation code 2N is read 
from memory and is transferred via the data bus to the 
CPU. During the next machine cycle (execute), the CPU 
generates a non-memory cycle and the memory output is 
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Fig. 116 - Instruction set timing. 
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disconnected from the bus. R(N) is decremented inter­
nally in the CPU in the execute cycle after the I and N 
registers have decoded the instruction. 

The sequence of action is similar for a short branch 
instruction, if the test condition is not satisfied. In this 
case the program counter R(P) is simply incremented by 
1, a non-memory cycle. 

The STORE VIA N instruction (SN) is representative 
of Group 2. During the fetch cycle, the byte SN is read 
from memory and transferred over the bus to the I and 
N registers for interpretation. During the execute cycle, 
the CPU is in a memory write cycle. The memory output 
is held off the bus, and the contents of the D register are 
written into memory during the MWR pulse at the loca­
tion addressed by R(N). 

In Group 3, consider instruction LOAD ADVANCE 
(4N) as an example. This instruction is complementary 
to SN above. The operation code 4N is first fetched 
during a memory read cycle. Subsequently during execu­
tion, the byte in memory addressed by R(N) is read and 
transferred over the bus to the D register during another 
memory read cycle. R(N) is also incremented during 
state SI, but this operation is internal to the "CPU. 

Some of the short branch instructions, for instance 
31-37 and 39-3F, belong in this group if the test condi-

tions are met. In the latter case, the branch address is 
read from memory during the SI state and transferred 
over the bus to R(P).O in the CPU. 

Group 4 may be illustrated by LONG BRANCH in­
struction CO. As discussed previously, all C instructions 
require two machine cycles for execution. During the 
SO state the operation code is first read from memory. 
Then, the high-order branch address is read during the 
first execute cycle and loaded into R(P).I. During the 
second execute cycle, the low-order branch address is 
read and transferred over the bus to R(P).O. Hence, the 
instruction cycle represents a memory read/read/read 
sequence .. 

·Group .5 represents a memory cycle sequence of read/ 
non-memory/non-memory operations. If, for instance, 
the NO OPERATION (C4) instruction is fetched, it 
requires two machine cycles for execution which are 
both non-memory cycles. 

The IDLE instruction (00) represents a special case. 
After the CPU fetches the instruction from memory, it 
will "idle" in a sequence of execute states (SI) until 
DMA or Interrupt is asserted. During the idle mode, the 
memory byte addressed by R(O) is present on the data 
bus durfug each machine cycle. The CPU is in a memory 
read/read/read - - - - sequence. 
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Applications -
Sample Programs 

Two sample programs are included in this section to 
illustrate the use of some of the preceding instructions 
and techniques and to demonstrate the ease with which 
they can be used to develop programs. The examples 
show programs for processing two input bytes and for 
controlling a microcomputer-driven scale. 

Processing Two Input Bytes 

This program inputs two bytes from two different 
devices. These devices might be the outputs from two 
analog-to-digital converters or mechanical position re­
solvers. The program compares the digital inputs and, if 
they are equal, sets the Q flag to "I." In the event the 
two bytes are unequal, the Q flag is set to "0" and the 
larger of the two values is outputted to a third device. A 
minor change to this program could have it outputting 
the difference between the two bytes, an indication per­
haps of the degree of mechanical "error." 

The overview operation of this program is given in the 
flow chart in Fig. 117. A more detailed flow chart cor­
responding to the actual implementation is given in Fig. 
118. This flow chart more closely corresponds to the 
assembled program listing shown in Fig. 119. 

A few programming techniques used in this program 
warrant special attention. 

1. The INITIALIZATION block in Fig. 117 becomes 
two blocks in Fig. 118. A portion of the original 
initialization block is done only once during the 
execution of the program. The other part is done 
every time the program loops back to the label 
GO. This arrangement was done to save memory at 
the expense of execution time, a common trade­
off. The output instruction increments R(X) each 

time it is executed. To maintain R(X) pointing to 
the same memory location, it could be followed 
by a DEC R2. However, the execution ofthe LDI 

YES 

Fig. 117 - Program flow chart for processing two input 
bytes: inputting two bytes, comparing them, 
outputting the larger, and setting Q to "1" if 
equal. 
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,--_ ....... _-., M(OO) : M(03) 

.---...... ----, M(04) : M(07) 

,--------., M(OB): M(09), 

(A) -+ R3.0 

,---...... ---, M(OA) 
INPUT 2ND 
OPERAND 
(B) -+ MEMORY 

YES 

B>A 

r--------, M(16) : M(17) 
AIS LARGER, 
STORE INTO 
MEMORY 

OUTPUT BYTE 
IN MEMORY 

RESETQ 

M(1B) 

M(19) 

M(1A) : M(1B) ~ ___ L-_______________ J 

Fig. 118 - Detailed program flow chart for processing two input bytes. 

and PLO (lines 4 and 5), which are already in the 
program, serve the same purpose. The decrement 
instruction, therefore, is purposely omitted. 

2. Lines 8 through 10 use the characteristics of the 
input instruction to advantage. Because the data 
byte goes into both memory and D, the first input 
instruction is followed by the storing of the data 
from D into a scratch-pad register. The second in­
put instruction utilizes the feature that the data 
byte also goes into memory. After the retrieval of 
the first byte from the scratch pad, the contents of 
D and memory are ready for comparison. 

Microcomputer Scale 

This example shows a program for a price-calculating 
scale. It reads the unit price from an input device such as 
a keyboard, reads the weight of the weighed item from 
the scale mechanism, multiplies the numbers to produce 

the total price, and then displays the total price to the 
customer. An overall flow chart for this program is given 
in Fig. 120. This flow chart illustrates an effective ap­
proach to the solution of moderate to large program­
ming tasks. Each of the basic actions (initialization, in­
put, calculation, and display) is treated as an indepen­
dent block of code and coded as a subroutine. The final 
application program is then a collection of the subrou­
tines flowcharted in this figure. 

The flow charts for the individual subroutines are 
shown in Figs. 121, 122, 123, and 124. In addition, the 
flow chart of the calculation subroutine is done in suffi­
cient detail for comparison with its assembly-language 
listing, part of which is shown in Fig. 125. The calcula­
tion subroutine is implemented with the RCA COSMAC 
Arithmetic Subroutine Package that contains indepen­
dent l6-bit addition, subtraction, multiplication (giving 
32 bits), division (from 32 bits), and BCD conversions to 
and from binary. Further details on this package are 
available in Manual MPM-206. 
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0000 7A; 0001 REQ .. RESET Q TO "0" 
0001 F8oo; 0002 LDI A.l (STORE) .. SET STORAGE POINTER R(2) 
0003 B2; 0003 PHI R2 .... TO POINT AT A FREE LOCATION 
0004 F81C; 0004 GO: LDI A.O (STORE) .... IN RAM M(STORE) 
0006 A2; 0005 PLO R2 
0007 E2; 0006 SEX R2 
0008 69; 0007 INP 1 .. READ 1ST INPUT BYTE INTO 0 
0009 A3; 0008 PLO R3 · . SAVE THE 1ST INPUT 
ooOA 6A; 0009 INP 2 · . READ 2ND INPUT BYTE INTO 
OooB 0010 .... MEMORY 
ooOB 83; 0011 GLOR3 .. LOAD THE 1ST INPUT INTO 0 
OOOC F7; 0012 SM · . 1ST INPUT MINUS 2ND INPUT 
0000 3B18; 0013 BNF RES2 .. BRANCH TO RES21F 2ND INPUT 
OooF 0014 · ... IS GREATER THAN 1ST INPUT; 
OOOF 0015 · ... OTHERWISE: 
OOOF 83; 0016 GLOR3 · . LOAD THE 1ST INPUT INTO 0 
0010 F3; 0017 XOR · . M(R(2)I.XOR.D, TO CHECK IF THE 
0011 0018 · ... TWO INPUTS ARE EQUAL 
0011 3A16; 0019 BNZ RESl .. BRANCH TO RESl IF NOT EQUAL 
0013 0020 .... (1ST INPUT IS GREATER THAN 
0013 0021 · ... 2ND INPUT); OTHERWISE: 
0013 7B; 0022 SEQ · . EQUAL; SET Q FLAG 
0014 3004; 0023 BR GO · . GO BACK TO BEGINNING 
0016 0024 
0016 83; 0025 RES1: GLOR3 · . LOAD 1ST INPUT INTO 0 
0017 52; 0026 STR R2 · . STORE IT AT M(STORE) 
0018 0027 
0018 61; 002B RES;!: OUT1 .. OUTPUT LARGER VALUE 
0019 7A; 0029 REQ .. RESET Q FLAG 
001A 3004; 0030 BR GO · . GO BACK TO BEGINNING 
001C 0031 
oolC 0032 STORE: ORG * · . STORAGE AREA 
001C 0033 
oolC 0034 
001C 0035 
oolC 0036 
00lC 0037 END ., END OF PROGRAM SOURCE 
0000 

Fig. 119 - Assembly listing for two-byte processing program. 

Fig. 120 - Over-all program flow chart for 

microcomputer scale. 

READ KEYBOARD 

NO 

TELL OPERATOR 
TO RE ENTER 

Fig. 121 - Program flow chart for keyboard subroutine. 
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Fig. 122 - Program flow chart for scale subroutine. 

NO 

Fig. 123 - Program flow chart for display subroutine. 

DISPLAY 
"ERROR" 

Fig. 124 - Subroutine flow chart for calculating total 
price. 



Applications - Sample Programs ----------______________ _ 95 

0215 0037 ............................................... 
0215 04; 0038 SEP CALL .. DO DECIMAL TO 81NARY CONVERSION 
0216 076E; 0039 ,A(CDB) .. " 
0218 0270; 0040 ,A(PRICE) .. CONVERT PRICE INTO 81NARY 
021A 05; 0041 ,#{J5 .. PRICE IS 5 CHARS LONG 
021B 0042 '" AC NOW CONTAINS BINARY VALUE 
021B 0043 .. OF PRICE PER POUND 
021B 0044 ............................................... 
021B 04; 0045 SEP CALL .. PUSH CONTENT OF AC INTO STACK 
021C 06E9; 0046 ,A(PUSHAC) .. " 
021E 0047 ............................................... 
021E 04; 0048 SEP CALL .. DO DECIMAL TO BINP.RY CPIIIVE,RSION 
021F 076E; 0049 ,A(CD8) .. " 
0221 0282; 0050 ,A(LBS) · . CONVERT QUANTITY (L8S) 
0223 0051 · .. INTO BINARY 
0223 05; 0052 ,#{J5 .. QUANTITY IS 5 CHARS LONG 
0224 0053 .. AC NOW CONTAINS BINARY VALUE 
0224 0054 .. OF ~UANTITY (LBS) 
0224 0055 ............................................... 
0224 82; 0056 GLO SP .. COPY STACK POINTER TO MA 
0225 AD; 0057 PLOMA .. " 
0226 10; 0058 INC MA .. POINT TO AC. 1 
0227 0059 ............................................... 
0227 04; 0060 SEP CALL .. DO THE MULTIPLICATION 
0228 0475; 0061 ,A(MPY) .. " 
022A 0062 ............................................... 
022A 0063 ... DIVIDE 8Y 100TO REMOVE LAST TWO 
OnA 0064 ... DECIMAL DIGITS 
022 A 12; 0065 INC SP · . MOVE SP TWO BYTES 
022B 12; 0066 INC SP .,. BELOW TOPOF STACK, POP PRICE 
022C 0067 ... OFF STACK 
022C F864; 0068 LDI 100 .. LOAD 100 INTO STACK WITH 
onE 52; 0069 STR SP · .. SP POINTING TO THE HIGH BYTE 
022F 22; 0070 DEC SP 
0230 F800; 0071 LDI 00 
0232 52; 0072 STR SP 
0233 82; 0073 GLO SP .. COPY STACK POINTER TO MA 
0234 AD; 0074 PLO MA .. POINT TO HIGH BYTE OF 100 
0235 22; 0075 DEC SP .. POINT TO FREE SPACE 
0236 D4; 0076 SEP CALL 
0237 051E; 0077 ,A(DIV) .. DIVIDE PRODUCT 8Y 100 
0239 334A; 0078 BDF LAB3 .. IF OVERFLOW GO TO LAB3 
023B 0079 ............................................... 
023B 0080 ... CHECK IF REMAINDER IS GREATER 
023B 0081 ... THAN 50, IF SO, ROUND UP 
0238 8E; 0082 GLO MO .. MO CONTAINS THE REMAINDER 
023C I'F32; 0083· SMI 50 
023E 3841; 0084 BNF LAB1 · . IF NO ROUND UP 
0240 0085 .. , GOTO LA81 
0240 1F; 0086 INCAC · • IF ROUND UP ADD 1 TO 
0241 0087 ... THE LEAST SIGNIFICANT DIGIT 
0241 0088 ................................................ 
0241 12; 0089 LAB1: INC SP .. MOVE SP DOWN TWO BYTES 
0242 12; 0090 INCSP ... BELOW TOP OF STACK 
0243 0091 ............................................... 
0243 D4; 0092 SEP CALL .. DO BINARY TO DECIMAL CONVERSION 
0244 0645; 0093 ,A(CBD) .. " 
0246 0287; 0094 ,A(TPR) .. CONVERT TOTAL PRICE INTO DECIMAL 
0248 06; 0095 ,#{J6 .. TOTAL PRICE IS 6 CHARS LONG 
0249 0096 .. TOTAL !,RICE IS STORED IN M(TPR) 
0249 0097 

Fig. 125 - Partial assembly-language listing of the calculation subroutine. 
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Appendix A­
Instruction Summary 

The COSMAC instruction summary is given in Tables 
I and II. Hexadecimal notation is used to refer to the 
4-bit binary codes. 

In all registers bits are numbered from the least sig­
nificant bit (LSB) to the most significant bit (MSB) 
starting with O. 

R(W): Register designated by W, where W=N or X, 
orP 

R(W).O: Lower-order byte of R(W) 
R(W).l: Higher-order byte of R(W) 
NO = Least significant Bit of N Register 

Operation Notation 
M(R(N)) ~ D; R(N) + 1 

This notation means: The memory byte pointed to by 
R(N) is loaded into D, and R(N) is incremented by 1. 

TABLE I -INSTRUCTION SUMMARY 
by Class of Operation 

Register Operations 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

INCREMENT REG N INC 1N R(N) +1 
DECREMENT REG N DEC 2N R(N) -1 
INCREMENT REG X IRX 60 R(X) +1 
GET LOW REG N GLO aN R(N).~D 

PUT LOW REG N PLO AN D~R(N).O 

GET HIGH REG N GHI 9N R(N).l~D 

PUT HIGH REG N PHI BN D~R(N).1 

Memory Reference 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

LoAD viA N LON ON M(R(N"~D; FOR N NOT 0 
LOAD ADVANCE LOA 4N M(R(N))~D;R(N) +1 
LOAD VIA X LOX FO M(R(X))~D 
LOAD VIA X AND ADVANCE LDXA 72 M(R(X))~D; R(X) +1 
LOAD IMMEDIATE LDI Fa M(R(P))~D; R(P) + 1 
STORE VIA N STR 5N D~M(R(N)) 

STORE VIA X AND STXD 73 D~M(R(X)); R(X)-1 
DECREMENT 

Logic Operations+. 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

OR OR F1 M(R(X)) OR D~D 
OR IMMEDIATE ORI F9 M(R(P)) OR D~D; R(P) +1 
EXCLUSIVE OR XOR F3 M(R(X)) XOR D~D 
EXCLUSIVE OR IMMEDIATE XRI FB M(R(P)) XOR D~D; R(P) +1 
AND AND F2 M(R(X)) AND D~D 
AND IMMEDIATE ANI FA M(R(P)) AND D~D; R(P) +1 
SHIFT RIGHT SHR F6 SHIFT 0 RIGHT, LSB(D)~DF, 

76· 
~MSB(D) 

SHIFT RIGHT WITH SHRC 1 SHIFT 0 RIGHT, LSB(D)~DF, 
CARRY DF~MSB(D) 

RING SHIFT RIGHT RSHR 
SHIFT LEFT SHL FE SHIFT 0 LEFT, MSB(D)~DF, 

7E· 
~LSB(D) 

SHIFT LEFT WITH SHLC 1 SHIFT 0 LEFT, MSB(D)~DF, 
CARRY DF~LSB(D) 

RING SHIFT LEFT RSHL 
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Arithmetic Operationst. 

.. OP 
INSTRUCTION MNEMONIC CODE OPERATION 

ADD ADD F4 M(R(X)) +D-+OF. 0 
ADD IMMEDIATE ADI FC M(R(P) +D-+DF. 0; R(P) +1 
ADD WITH CARRY ADC 74 M(R(X)) +0 +DF-+DF. 0 
ADD WITH CARRY. ADCI 7C M(R(P) +0 +DF-+DF. 0 

IMMEDIATE R(P) +1 
SUBTRACT 0 SO F5 M(R(X))-D-+DF.D 
SUBTRACT 0 IMMEDIATE SOl FD M(R(P))-D-+DF. 0; R(P) +1 
SUBTRACT 0 WITH SOB 75 M(R(X))-D-(NOT DF)-+DF; 0 

BORROW 
SUBTRACT 0 WITH SDBI 70 M(R(P))-D-(NOT DF)-+DF. 0; 

BORROW. IMMEDIATE R(P) +1 
SUBTRACT MEMORY SM F7 D-M(R(X))-+DF.D 
SUBTRACT MEMORY SMI FF . D-M(R(P))-+DF.D; 

IMMEDIATE R(P) +1 
SUBTRACT MEMORY WITH 5MB 77 D-M(R(X))-(NOT DF)-+DF, 0 

BORROW 
SUBTRACT MEMORY WITH 5MBI 7F D-M(R(P))-(NOT DF)-+DF. 0 

BORROW. IMMEDIATE R(P) +1 

Branch Instructions - Short Branch 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

SHORT BRANCH BR 30. M(R(P))-+R(P).O 
NO SHORT BRANCH NBR 38 R(P) +1 

(SEE SKP) 
SHORT BRANCH IF D=O BZ 32 IF D=O. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF BNZ 3A IF D NOT O. M(R(P))-+R(P).O 

DNOTO ELSE R(P) +1 I' 
SHORT BRANCH IF DF = 1 BDF~ SHORT BRANCH IF POS BPZ 33· IF DF=1. M(R(P))-+R(P).O 

OR ZERO ELSE R(P) +1 
SHORT BRANCH IF EOUAL BGE 

OR GREATER 
SHORT BRANCH IF DF=O BNF 1 3B· IF DF=O. M(R(P))-+R(P).O 
SHORT BRANCH IF MINUS BM ELSE R(P) +1 
SHORT BRANCH IF LESS BL 
SHORT BRANCH IF 0=1 BO 31 IF 0=1, M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF 0=0 BNO 39 IF 0=0. M(R(P))~R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF EF1=1 B1 34 IF EF1=1. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF EF1=0 BN1 3C IF EF1=0. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORTBRANCHIFEF2=1 B2 35 IF EF2=1. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF EF2=0 BN2 3D IF EF2=0. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF EF3=1 B3 36 IF EF3=1. M(R(P))~R(P);O 

ELSE R(P) +1 
SHORTBRANCHIFEF3=0 BN3 3E IF EF3=O. M(R(P))-+R(pLo 

ELSE R(P) +1 
SHORT BRANCH IF EF4=1 B4 37 IF EF4=1. M(R(P))-+R(P).O 

ELSE R(P) +1 
SHORT BRANCH IF EF4=0 BN4 3F IF EF4=0. M(R(P))-+R(P).O 

ELSE R(P) +1 
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Branch Instructions - long Branch 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

LONG BRANCH LBR CO M(R(P) )-+R (P).1 

C8t 
M(R(P) +1)-+R(P).0 

NO LONG BRANCH NLBR R(P) +2 
(SEE LSKP) 

LONG BRANCH IF D=O LBZ C2 IF D=O, M(R(P))-+R(P).1 
M(R(P) +l)-+R(P).O 

ELSE R(P) +2 
LONG BRANCH IF D NOT 0 LBNZ CA IF D NOT 0, M(R(P))-+ 

R (P).1 
M(R (P) +1)-+ 

R(P).O 
ELSE R(P) +2 

LONG BRANCH IF DF=1 LBDF C3 IF DF=1, M(R(P))-+R(P).1 
M(R(P) +1)-+ 

R(P).O 
ELSE R(P) +2 

LONG BRANCH IF DF=O LBNF CB IF DF=O, M(R(P) )-+R(P).1 
M(R(P) +1)-+ 

R(P).O 
ELSE R(P) +2 

LONG BRANCH IF Q=1 LBQ C1 IF Q=1, M(R(P))-+R(P).1 
M(R(P) +l)-+R(P).O 

ELSE R(P) +2 
LONG BRANCH IF Q=O LBNQ C9 IF Q=O, M(R(P))-+R(P).1 

M(R(P) +1)-+ 
R(P).O 

ELSE R(P) +2 

Skip Instructions 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

SHORT SKIP SKP 38· R(P) +1 
(SEE NBR) 

C8t LONG SKIP LSKP R(P) +2 
(SEE NLBR) 

LONG SKIP IF D=O LSZ CE IF D=O, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF D NOT 0 LSNZ C6 IF D NOT 0, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF DF=1 LSDF CF IF DF=1, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF DF=O I-SNF C7 IF DF=O, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF Q=1 LSQ CD IF Q=1, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF Q=O LSNQ C5 IF Q=O, R(P) +2 
ELSE CONTINUE 

LONG SKIP IF IE=l LSIE CC IF IE=1, R(P) +2 
ELSE CONTINUE 
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Control Instructions 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

IDLE IDL 00 WAIT FOR DMA OR .. 
INTERRUPT; M(R(O))~BUS 

NO OPERATION NOP C4 CONTINUE 
SET P SEP ON N~P 

SET X SEX EN N~X 

SETO SE~ 7B l~O 

RESET 0 REO 7A ~O 
SAVE SAV 78 T~M(R(X)) 

PUSH X,P TO STACK MARK 79 (X,P)~T; (X,P)~M(R(2)) 
THEN P~X; R(2)-1 

RETURN RET 70 M(R(X))~(X,P); R(X) +1 
l~IE 

DISABLE DIS 71 M(R(X))~(X,P); R(X) +1 
~IE 

Input-Output Byte Transfer 

OP 
INSTRUCTION MNEMONIC CODE OPERATION 

OUTPUT 1 OUT 1 61 M(R(X))~BUS; R(X) +1; 
N LINES = 1 

OUTPUT 2 OUT 2 62 M(R(X))~BUS; R(X) +1; 
N LINES = 2 

OUTPUT 3 OUT3 63 M(R(X))~BUS; R(X) +1; 
N LINES = 3 

OUTPUT 4 OUT4 64 M(R(X))~BUS; R(X) +1; 
N LINES = 4 

OUTPUT 5 OUT5 65 M(R(X))~BUS; R(X) +1; 
N LINES =5 

OUTPUT 6 OUT 6 66 M(R(X))~BUS; R(X) +1; 
N LINES = 6 

OUTPUT 7 OUT 7 67 M(R(X))~BUS; R(X) +1; 
N LINES = 7 

INPUT 1 INP 1 69 BUS~M(R(X)); BUS~D; 
N LINES = 1 

INPUT 2 INP 2 6A BUS~M(R(X)); BUS~D; 
N LINES = 2 

INPUT 3 INP 3 6B BUS~M(R(X)); BUS~D; 
N LlNES=3 

INPUT 4 INP4 6C BUS~M(R(X)); BUS~D; 

N LINES = 4 
INPUT 5 INP 5 60 BUS~M(R(X)); BUS~D; 

N LINES = 5 
INPUT 6 INP 6 6E BUS~M(R(X)); BUS~D; 

N LINES = 6 
INPUT 7 INP 7 6F BUS~M(R(X)); BUS~D; 

N LINES = 7 

+NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE 
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED. 

++NQTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS 
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF. 
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OPERATION 
CODE 

00 
ON 
1N 

2N 

30 

31 

32 

33 I" 

-
~ 

-
'" 

34 

35 

36 

37 

3B { -
39 

3A 

3B 
,.. 

- ( 

- , 

TABLE II -INSTRUCTION SUMMARY 
By Numerical Order 

MACHINE 
OPERAND MNEMONIC NAME CYCLE 

- IDL IDLE 2 
REG N LON LOAD VIA N 2 
REG N INC INCREMENT 2 

REG N 
REG N DEC DECREMENT 2 

REG N 
ADDRESS BR SHORT 2 

BRANCH 
ADDRESS BO SHORT 2 

BRANCH 
IF 0=0 

ADDRESS BZ SHORT 2 
BRANCH 
IF 0=0 

ADDRESS BDF SHORT 2 
BRANCH 
IF DF=l 

ADDRESS BPZ SHORT 2 
BRANCH 
IF POS 
OR ZERO 

ADDRESS BGE SHORT 2 
BRANCH 
IF EOUAL 
OR 
GREATER 

ADDRESS B1 SHORT 2 
BRANCH 
IF EF1=1 

ADDRESS B2 SHORT 2 
BRANCH 
IF EF2=1 

ADDRESS B3 SHORT 2 
BRANCH 
IF EF3=1 

ADDRESS B4 SHORT 2 
BRANCH 
IF E,F4=1 

ADDRESS NBR NO SHORT 2 
BRANCH 

- SKP SHORT SKIP 2 
ADDRESS BNO SHORT 2 

BRANCH 
IF 0=0 

ADDRESS BNZ SHORT 2 
BRANCH 
IF 0 NOT 0 

ADDRESS BNF SHORT 2 
BRANCH 
IF DF=O 

ADDRESS BM SHORT 2 
BRANCH 
IF MINUS 

ADDRESS BL SHORT 2 
BRANCH 
IF LESS 

NUMBER OF 
PROGRAM 

BYTES 

1 
1 
1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 
2 

2 

2 

2 

2 
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INstRUCTION SUMMARY (CONT'D) 

NUMBER OF 
OPERATION . MACHINE PROGRAM 

CODE OPERAND MNEMONIC NAME CYCLES BYTES 

3C ADDRESS BNl SHORT 2 2 
BRANCH 
IFEF1=0 

3D ADDRESS BN2 SHORT 2 2 
BRANCH 
IF EF2=0 

3E ADDRESS BN3 SHORT 2 2 
BRANCH 
IF EF3=0 

3F ADDRESS BN4 SHORT 2 2 
BRANCH 
IF EF4=0 

4N REG N LDA LOAD 2 1 
ADVANCE 

5N REG N STR STORE VIA N 2 1 
60 - IRX INCREMENT 2 1 

REG X 
61 DEVICE 1 OUT1 OUTPUT1 2 1 
62 DEVICE 2 OUT2 OUTPUT2 2 1 
63 DEVICE 3 OUT3 OUTPUT3 2 1 
64 DEVICE 4 OUT4 OUTPUT4 2 1 
65 DEVICE 5 OUT5 OUTPUT5 2 1 
66 DEVICE 6 OUT6 OUTPUT6 2 1 
67 DEVICE 7 OUT7 OUTPUT7 2 1 
69 DEVICE 1 INP1 INPUT1 2 1 
6A DEVICE 2 INP2 INPUT2 2 1 
6B DEVICE 3 INP3 INPUT3 2 1 
6C DEVICE 4 INP4 INPUT4 2 1 
6D DEVICE 5 INP5 INPUT5 2 1 
6E DEVICE 6 INP6 INPUT6 2 1 
6F DEVICE 7 INP7 INPUT7 2 1 
70 - RET RETURN 2 1 
71 - DIS DISABLE 2 1 
72 - LDXA LOAD VIA X, 2 1 

ADVANCE 
73 - STXD STORE VIA X 2 1 

AND 
DECREMENT 

74 - ADC ADD WITH 2 1 
CARRY 

75 - SDB SUBTRACT 2 1 
DWITH 
BORROW 

76 

1 
- SHRC SHIFT RIGHT 2 1 

WITH 
CARRY 

- - RSHR RING SHIFT 2 1 
RIGHT 

77 - 5MB SUBTRACT 2 1 
MEMORY 
WITH 
BORROW 

78 - SAV SAVE 2 1 
79 - MARK PUSH X,P 2 1 

TO STACK 
7A - SEa SETa 2 1 
7B - REO RESET a 2 1 
7C DATA ADDI ADD WITH 2 2 

CARRY 
IMMEDIATE 
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INSTRUCTION SUMMARY (CONT'D) 

NUMBER OF 
OPERATION MACHINE PROGRAM 

CODE OPERAND MNEMONIC NAME CYCLES BYTES 

7D DATA SDBI SUBTRACT 2 2 
DWITH 
BORROW 
IMMEDIATE 

7E - SHLC SHIFT LEFT 2 1 
WITH CARRY 

- RSHL RING SHIFT 2 1 
LEFT 

7F DATA 5MBI SUBTRACT 2 2 
MEMORY 
WITH BOR-
ROW, 
IMMEDIATE 

8N REG N GLO GET LOW REG 2 1 
N 

9N REG N GHI GET HIGH 2 1 
REG N 

AN REG N PLO PUT LOW 2 1 
REG N 

BN REG N PHI PUT HIGH 2 1 
REG N 

CO ADDRESS LBR LONG BRANCH 3 3 
C1 ADDRESS LBQ LONG BRANCH 3 3 

IF Q=1 
C2 ADDRESS LBZ LONG BRANCH 3 3 

IF D=O 
C3 ADDRESS LBDF LONG BRANCH 3 3 

IF DF=1 
C4 - NOP NO OPERATION 3 1 
C5 - LSNQ LONG SKIP IF 3 1 

Q=O 
C6 - LSNZ LONG SKIP IF 3 1 

D NOTO 
C7 - LSNF LONG SKIP IF 3 1 

DF=O 
C8 } - LSKP LONG SKIP 3 1 
- ADDRESS NLBR NO LONG 3 3 

BRANCH 
C9 ADDRESS LBNQ LONG BRANCH 3 3 

IF Q=O 
CA ADDRESS LBNZ LONG BRANCH 3 3 

IF D NOT 0 
CB ADDRESS LBNF LONG BRANCH 3 3 

IF DF=O 
CC - LSIE LONG SKIP 3 1 

IF IE=1 
CD - LSQ LONG SKIP 3 1 

IF Q=1 
CE - L.SZ LONG SKIP 3 1 

IF D=O 
CF - LSDF LONG SKIP 3 1 

IF DF=1 
DN REG N SEP SET P 2 1 
EN REG N SEX SET X 2 1 
FO - LDX LOAD VIA X 2 1 
F1 - OR OR 2 1 
F2 - AND AND 2 1 
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INSTRUCTION SUMMARY (CONT'D) 

NUMBER OF 
OPERATION MACHINE PROGRAM 

CODE OPERAND MNEMONIC NAME CYCLES BYTES 

F3 - XOR EXCLUSIVE 2 1 
OR 

F4 - ADD ADD 2 1 
F5 - SD SUBTRACT D 2 1 
F6 - SHR SHIFT RIGHT 2 1 
F7 - SM SUBTRACT 2 1 

MEMORY 
Fa DATA LDI LOAD 2 2 

IMMEDIATE 
F9 DATA ORI OR 2 2 

IMMEDIATE 
FA DATA ANI AND 2 2 

IMMEDIATE 
FB DATA XRI EXCLUSIVE 2 2 

OR 
IMMEDIATE 

FC DATA ADI ADD 2 2 
IMMEDIATE 

FD DATA SDI SUBTRACT D 2 2 
IMMEDIATE 

FE - SHL SHIFT LEFT 2 1 
FF DATA SMI SUBTRACT 2 2 

MEMORY 
IMMEDIATE 

Hexadecimal Code 
I nterpretation of 0 F HEX BINARY HEX BINARY 

Carry Borrow 0 0000 a 1000 

DF Generated Generated D 1 0001 9 1001 

After 1 Yes 2 0010 A 1010 

Addition 0 No 
3 0011 

4 0100 

B 1011 

C 1100 

After 1 No Positive Number 5 0101 D 1101 

Subtraction 0 Yes Negative Number 6 0110 E 1110 

2's complement 7 0111 F 1111 

COSMAC Register Summary 

D a Bits Data Register N 4 Bits Holds Low-Order I nstr. 
(Accumulator) Digit 

DF 1 Bit Data Flag (ALU Carry) I 4 Bits Holds H igh-Order I nstr. 
R 16 Bits 1 of16 Scratch pad Digit 

Registers T a Bits Holds old X, P after 
P 4 Bits Designates which register I nterrupt (X is high 

is Program Counter byte) 
X 4 Bits Designates which register IE 1 Bit Interrupt Enable Flip Flop 

is Data Pornter Q 1 Bit Output Flip Flop 
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DMA ·lNf 

i15IT'DM~ 

S2 

r.> DMA IN/OUT -
CYCLE 

DMA 

~ 

so 
FETCH 
CYCLE 

\} 
51 

EXECUTE 
CYCLE 

II 

DMA 

DMA ·INT 

Appendix B­
State Sequencing 

53 
INTERRUPT 

~ 
CYCLE 

i 

fl5IT. DMA' INT 

INT· DMA 
DMA 

State Type 
State Code Lines 

SC1 SCO 
SO (Fetch) L L 
S1 (Execute) L H 
S2 (DMA) H L 
S3 (I nterrupt) H H 

The CDP1802 state transitions when in the RUN mode. 
Each cycle requires the same period of time-8 clock 
pulses. The execution of an instruction requires either 

two or three machine cycles, SO followed by a single S1 
cycle or by two S1 cycles. S2 is the response to a DMA 
request and S3 is the interrupt response. 

RESET ~ RUN MODE: 

f CLEAR ~ 0 I nitialization cycle 
\ WAIT ~ 1 1 lSi Instruction Fetch from M(OOOO) .. RESET • MODE 

STATE Sl ---51--- Sl Sl SO' SI SO 51 ... 

STATE CODE 
LH 

SC1,SCO 
--- LH --- LH LH LL LH LL LH 

.... t--_____ INTERRUPTS _____ --t··,I'NSTRUCTlON~ 
DISABLED TIME ,---

*52, if DMA was asserted, but never 53 
SOME HAVE TWO 
Sl STATES 

RUN ~ PAUSE ~ RUN MODE: 

RUN -1- PAUSE 1 RUN 
I 

MACHINE I I 
n n+l , , n+2 n+3 ... 

CYCLES 
, , , , 

STATE SO, Sl,S2 or S3 

DMA AND INTERRUPT MODE: 

DMA·IN INTERRUPT DMA·OUT 

~- ~ ~ 
STATE .. . SO Sl SO SI 52 SO 51 53 SO Sl SO 51 52 SO Sl .... 

,.-. 

STATE CODE LL LH 
SC1,SCO 

- LL LH HL LL LH HH LL LH LL LH HL LL LH 
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Appendix C­
Terminal Assignments for the 

RCA CDP1802 COSMAC Microprocessor 

SIGNAL NAME SIGNAL NAME 

--.. CLOCK I· 40 VDD 

CONTROL {WAIT 2 39 XTAL --+ ---. -- 3 DM. IN } CLEAR 38 
+-- Q 4 37 DMA OUT I/O 

REQUESTS 
STATE 

{SCI 5 36 INTERRUPT .--
CODES 

MWR -+ <I--- SCO 6 35 

+--- MRD 7 34 TPA.}-- TiMING 
BUS 7 8 33 TPB PULSES 

----to 
BUS6 9 32 MA7 
BUS 5 10 31 MA6 

DATA BUS4 BUS II 30 MA5 

.---. BUS 3 12 29 MA4 MEMORY 
BUS 2 13 28 MA3 ADDRESS 

-----+ 
BUS I 14 27 MA2 
BUS a 15 26 MAl 

VCC 16 25 MAO 

[N2 17 24 UT}-IIO _ 
18 EF2 110 

COMMANDS N I 23 FLAGS 
4-- NO 19 22 -EF3. . +----: 

VSS - 20 21 EF 4 

TOP VIEW 

92CS-27467 
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Appendix D 
COSMAC Dictionary 

Access Time: Time between the instant that an address is 
sent to a memory and the instant that data returns. Since 
the access time to different locations (addresses) of the 
memory may b~ different, the access time specified in 
a memory device is the path which takes the longest time. 

Accumulator: Register and related circuitry which holds one 
operand for arithmetic and logical operations. 

Additional Hardware: Microprocessor chips differ in number 
of additional ICs required to implement a functioning 
computer. Generally, timing, I/O control, buffering, and 
interrupt control require external components. 

Address: A number used by the CPU to specify a location 
in memory. 

Addressing Modes: See Memory Addressing Modes 

ALU: Arithmetic-Logic Unit. That part of a CPU which 
execute~ adds, subtracts, shifts, AND's, OR's, etc. 

Architecture: Organizational structure of a computing 
syste~, mainiy referring to the CPU or microprocessor. 

Assembler: Software that converts an assembly.language 
program into machine language. The assembler assigns 
locations in storage to successive instructions and reo 
places symbolic addresses by machine language equiva· 
lents. If the assembler runs on a computer other than 
that for which it creates the machine language, it is a 
Cross-Assembler. 

Assembly Language: An English·like programming language 
which saves the programmer the trouble of remembering 
the bit patterns in each instruction; also relieves him of 
the necessity to keep track of locations of data and in­
structions in his program. 

The assembler operates on a "one-for·one" basis in that 
each phrase of the language translates directly into a 
specific machine-language word, as contrasted with High 
Level Language. 

Assembly listing: A printed listing made by the assembler 
to document an assembly. It shows, line for line, how the 
assembler interpreted the assembly language program. 

Asynchronous Operation: Circuit operation without reliance 
upon a common timing source. Each circuit operation is 
terminated (and next operation initiated) by a return 
signal from the destination denoting completion of an 
operation. (Contrast with Synchronous Operation). 

Baud: A communications measure of serial data transmission 
rate; loosely, bits per second but includes character­
framing START and STOP bits. 

Benchmark Program: A sample program used to evaluate 
and· compare computers. In generai, two computers will 
not use the same number of instructions, ~emory words, 
or cycles to solve the same problem. 

Bit: An abbreviation of "binary digit". (Single characters in 
a binary number.) 

Bootstrap (Bootstrap Loader): Technique or device for 
loading first instructions (usually only a few words) of a 
routine into memory; then using these instructions to 
bring in the rest of the routine. 

The bootstrap loader is usually entered manually or by 
pressing a special console key. COSMAC does not need 
one. See Load Facility. 

Branch: See Jump. 

Branch Instruction: A decision-making instruction which, 
on appropriate condition, forces a new address into the 
program counter. The conditions may be zero result, 
overflow on add, an external flag raised, etc. One of two 
alternate program segments in the memory are chosen, 
depending on the results obtained. 

Breakpoint: A location specified by the user at which 
program execution (real or simulated) is to terminate. 
Used to aid in locating program errors. 

Bus: A group of wires which allow memory, CPU, and I/O 
devices to exchange· words. 

Byte: A sequence of n bits operated upon as a unitis called 
an n-bit byte. The most frequent byte size is 8 bits. 

Call Routine: See Subroutine 

Clock: A device that sends out timing pulses to synchronize 
the actions of the computer. 

Compiler: Software to convert a program in a high-level 
language such as FORT AN into an assembly language or 
machine language program. 

COSMAC: Generic description for the RCA family of 
compatible microprocessor products (1800 series). Based 
on a unique architecture, the COSMAC family includes 
CPU's, memories, I/O's, proto typing systems, and soft· 
ware. 

COSMAC Development System (formerly "Microkit"): 
Microcomputer used for software development and sys­
tem prototyping. Uses the COSMAC 1800 family of 
microprocessor products. 

COSMAC Software Development Package (CSDP): An 
assembler and interactive debugger/simulator for COS­
MAC microcomputer systems. The debugger is a power-
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ful "software oscilloscope" that allows the user to start 
and stop the simulator, examine and modify the program 
variables, and dump and restore the entire simulated 
machine at wilt. CSDP is available either on the General 
Electric Mark III Service or as a Fortran IV program that 
can be easily installed on a host computer. 

Cross Assembler: A symbolic language translator that runs 
on one type of computer to produce machine code for 
another type of computer. See Assembler. 

CPU (Central Processing Unit): That part of a computer 
system that controls the interpretation and execution of 
instructions. In general, the CPU contains the following 
elements: 

Arithmetic·Logic Unit (ALU) 
Timing and Control 
Accumulator 
Scratch·pad memory 
Program counter and address stack 
Instruction register and decode 
Parallel data and I/O bus 
Memory and I/O control 

Cycle Stealing: A memory cycle stolen from the normal CPU 
operation for a DMA operation. See DMA. 

Cycle Time: Time interval at which any set of operations is 
repeated regularly in the same sequence. 

D Register: The accumulator in the COSMAC micro· 
processor. 

Data Pointer: A register holding the memory address of the 
data (operand) to be used by an instruction. Thus the 
register "points" to the memory location of the data. 

Data Register: Any register which holds data. In the 
COSMAC microprocessor, anyone of the 16 x 16 
scratch·pad registers can be used to hold two bytes of 
data. 

Debug. To eliminate programming mistakes, including 
omissions, from a program. 

Debug Programs: Debug programs help the programmer to 
find errors in his programs while they are running on the 
computer, and allow him to replace or patch instructions 
into (or out of) his program. 

Designator: The three 4-bit registers P, X, and N in the 
COSMAC microprocessor are called designators. P and 
X are used to designate which one of the sixteen 16-bit 
scratch·pad registers is used as the current program 
counter and the data pointer, respectively. 

N can designate: one of the scratch·pad registers; an I/O 
device or command; a new value in P or X; and a 
further definition of an instruction. 

Diagnostic programs: These programs check the various 
hardware parts of a system for proper operation; CPU 
diagnostics check the CPU, memory diagnostics check 
the memory, and so forth. 

Direct Addressing: The address of an instruction or operand 
is completely specified in an instruction without reference 
to a base register or index register. 

DMA: Direct Memory Access. A mechanism which allows an 
input/output device to take control of the CPU for one 
or more memory cycles, in order to write to or 'read 
from memory. The order of executing the program steps 
(instructions) remains unchanged. 

Editor: As an aid in preparing source programs, certain 
programs have been developed that manipulate text 
material. These programs, called editors, text editors, or 
paper tape editors make it possible to compose assembly 
language programs on-line, or on a stand-alone system. 

Execute: The process of interpreting an instruction and 
performing the indicated operation(s). 

Fetch: A process of addressing the memory and reading 
into the CPU the information word, or byte, stored at 
the addressed location. Most often, fetch refers to the 
reading out of an instruction from the memory. 

Firmware: Software which is implemented in ROM's. 

Fixed-instruction Computer (Stored-Instruction Computer): 
The instruction set of a computer is fixed J>y the 
manufacturer. The users will design application programs 
using this instruction set (in contrast to the Micro­
programmable Computer for which the users must design 
their own instruction set and thus customize the com-

o puter for their needs.) 

Fixed Memory: See ROM 

Flag Lines: Inputs to a microprocessor controlled by I/O 
devices and tested by branch instructions. 

Fortran: A high·level programming language generally for 
scientific use, expressed in algebraic notation. Short for 
"Formula Translator". 

Guard: A mechanism to terminate program execution(real 
or Simulated) upon access to data at a specified memory 
location. Used in debugging. 

Hardware: Physical equipment forming a computer system. 

Hexadecimal: Number system using 0, 1, ..... , A, B, C, 
0, E, F to represent all the possible values of a 4-bit 
digit. The decimal equivalent is 0 to 15. Two hexa­
decimal digits can be used to specify a byte. 

High-Level Language: Programming language which gener­
ates machine codes from problem- or function-oriented 
statements. FORTRAN, COBOL, and BASIC are three 
commonly used high-level languages. A single functional 
statement may translate into a series of instructions or 
subroutines in machine language, in contrast to a low­
level (assembly) language in which statements translate 
on a one·for-one basis. 

Immediate Addressing: The method of addressing an 
instruction in which the operand is located in the 
instruction itself or in the memory location immediately 
following the instruction. 

Immediate Data: Data which immediately follows an 
instruction in memory, and is used as an operand by 
that instruction. 

Indexed Addressing: An addressing mode, in which the 
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the address part of an instruction is modified by the 
contents in an auxiliary (index) register during the 
execution of that instruction. 

Index Register: A register which contains a quantity which 
may be used to modify memory address. 

Indirect Addressing: A means of addressing in which the 
address ofthe operand is specified by an auxiliary register 
or memory location specified by the instruction rather 
than by bits in the instruction itself. 

Input-Output (I/O): General term for the equipment used to 
communicate with a computer CPU; or the data involved 
in that communication. 

Instruction: A set of bits that defines a computer operation, 
and is a basic command understood by the CPl). It may 
move data, do arithmetic and logic functions, control 
I/O devices, or make decisions as to which instruction to 
execute next. 

Instruction Cycle: The process of fetching an instruction 
from memory and executing it. 

Instruction Length: The number of words needed to store 
an instruction. It is one word in most computers, but 
some will use multiple words to form one instruction. 
Multiple-word instructions have different instruction 
execution times depending on the length of the instruction. 

Instruction Repertoire: See Instruction Set 

Instruction Set: The set of general-purpose instructions 
available with a given computer. In general, different 
machines have different instruction sets. 

The number of instructions only partially indicates the 
quality of an instruction set. Some instructions may 
only be slightly different from one another; others 
rarely may be used. Instruction sets should be compared 
using benchmark programs typical of the application, to 
determine execution times. and memory requirements. 

Instruction Time: The time required to fetch an instruction 
from memory and then execute it. 

Interpreter: A program which fetches and executes "in· 
structions" (pseudo instructions) written in a higher 
level language. The higher-level language program is a 
pseudo program. Contrast with Compiler. 

Interrupt Request: A signal to the compu ter that tempo­
rarily suspends the normal sequence bf a routine and 
transfers control to a special routine. Operation can be 
resumed from this point later. Ability to handle inter­
rupts is very useful in communication applications where 
it allows the microprocessor to service many channels. 

Interrupt Mask (Interrupt Enable): A mechanism which 
allows the program to specify whether or not interrupt 
requests will be accepted. 

Interrupt Service Routine: A routine (program) to properly 
store away to the stack the present status of the machine 
in order to respond to an interrupt request; perform the 

"real work" required by the interrupt; restore the saved 
status of the machine; and then resume the operation of 
the interrupted program. 

I/O Control Electronics (I/O Controller): The control 
electronics required to interface an I/O device to a 
computer CPU. 

The powerfulness and usefulness of a CPU is very closely 
associated with the range of I/O devices which can be 
connected to it. One can not usually simply plug them 
into the CPU. The I/O Control Electronics will do the 
"matchmaking". The complexity and cost of the Control 
Electronics are very much determined by both the hard­
ware and software I/O architecture of the CPU. 

I/O Interface: See I/O Control Electronics 

I/O Port: A connection to a CPU which is configured (or 
programmed) to provide a data path between the CPU 
and the external devices, such as keyboard, display, 
reader, etc. An I/O port of a microprocessor may be an 
input port or an output port, or it may be bidirectional. 

Jump: A departure from the normal one-step incrementing 
of the program counter. By forcing a new value (address) 
into the program counter the next instruction can be 
fetched from an arbitrary location (either further ahead 
or back). 

For example, a program jump can be used to go from 
the main program to a subroutine, from a subroutine 
back to the main program, or from the end of a short 
routine back to the beginning of the same routine to 
form a loop. See also the Branch Instruction. If you 
reached this point from Branch, you have executed a 
Jump. Now Return. 

Linkage: See Subroutine 

Load Facility: A hardware facility to allow program loading 
using DMA. It makes bootstrap unnecessary. 

Loader: A program to read a program from an input device 
into RAM. May be part of a package of utility programs. 

Loop: A self-contained series of instructions in which the 
last instruction can cause repetition of the series until a 
terminal condition is reached. Branch instructions are 
used to test the conditions in the loop to determine if 
the loop should be continued or terminated. 

Low-Level Language: See Assembly Language 

Machine: A term for a computer (of historical origin). 

Machine Code: See Machine Language 

Machine Cycle: The basic CPU cycle. In one machine cycle 
an address may be sent to memory and one word (data 
or instruction) read or written, or, in one machine cycle 
a fetched instruction can be executed. One machine 
cycle in the COSMAC microprocessor consists of eight 
clock pulses. 

Machine Language: The numeric form of specifying in­
structions, ready for loading into memory and execution 
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by the machine. This is the lowest-level language in 
which to write programs. The value of every bit in every 
instruction in the program must be specified (e.g., by 
giving a string of binary, octal, or hexadecimal digits for 
the contents of each word in memory). 

Machine State: See State Code 

Macro (Macroinstruction): A symbolic source language 
statement which is expanded by the assembler into one 
or more machine language instructions, relieving the 
programmer of having to write out frequently occuring 
instruction sequences. 

Manufacturer's Support: It includes application information, 
software assistance, components for prototyping, availa­
bility of hardware in all configurations from chips to 
systems, and fast response to requests for engineering 
assistance. 

Memory: That part of a computer which holds data and 
instructions. Each instructions or datum is aSSigned a 
unique address which is used by the CPU when fetching 
or storing the information. 

Memory Address Register: The CPU register which holds 
the address of the memory location being accessed. 

Memory Addressing Modes: The method of specifying 
the memory location of an operand. Common addressing 
modes are -- direct, immediate, relative, indexed, and 
indirect. These modes are important factors in program 
efficiency. 

Microcomputer: A computer whose CPU is a micro­
processor. A microcomputer is an entire system with 
microprocessor. memory, and input-output controllers. 

Microprocessor: Frequently called "a computer on a chip". 
The microprocessor is. in reality. a set of one. or a few. 
LSI circuits capable of performing the essential functions 
of a computer CPU. 

Microprogrammable Computer: A computer in which the 
internal CPU control signal sequence for performing 
instructions are generated from a ROM. By changing the 
ROM contents. the instruction set can be changed. This 
contrasts with a Fixed·lnstruction Computer in which 
the instruction set can not be readily changed. 

Microtutor: Inexpensive microcomputer for first·level hands­
on experience with microprocessor hardware and pro­
gramming. Comes complete with CPU, memory, input 
and output devices, and power supply. 

Mnemonics: Symbolic names or abbreviations for instruc· 
tions, registers, memory locations, etc. A technique for 
improving the efficiency of the human memory. 

Multiple Processing: Configuring two or more processors in 
a single system, operating out of a common memory. 
This arrangement permits execution of as many pro­
grams as there are processors. 

Nesting: Subroutines which are called by subroutines are 
said to be nested. The nesting level is the number of 
times nesting can be repeated. 

Nibble: A sequence of 4 bits operated upon as a unit. Also 
see Byte. 

Object Program: Program which is the output of an auto­
matic coding system, such as the assembler. Often .the 
object program is a machine-language program ready for 
execution. 

On-Line System: A system of I/O devices in which the 
operation of such devices is under the control of the 
CPU, and in which information reflecting current ac­
tivity is introduced into the data processing or con· 
trolling system as soon as it occurs. 

Op Code (Operation Code): A code that represents specific 
operations of an instruction. 

Operating System: System software controlling the overall 
operation of a multi-purpose computer system, including 
such tasks as memory allocation, input and output distri­
bution, interrupt processing, and job scheduling. 

Page: A natural grouping of memory locations by higher­
order address bits. In an g-bit microprocessor, 28 = 256 
consecutive bytes often may constitute a page. Then 
words on the same page only differ in the lower-order 
g address bits. 

PLA (Programmable Logic Array): A PLA is an array of 
logic elements which can be programmed to perform a 
specific logic function. In this sense, the array of logic 
elements can be as simple as a gate or as complex as a 
ROM. The array can be programmed (normally mask 
programmable) so that a given input combination 
produces a known output function. 

Pointer: Registers in the CPU which contain memory 
addresses. See Program Counter and Data Pointer. 

Program: A collection of instructions properly ordered to 
perform some particular task. 

Program Counter: A CPU register which specifies the 
address of the next instruction to be fetched and 
executed. Normally it is incremented automatically each 
time an instruction is fetched. 

PROM (Programmable Read-Only Memory): An integrated­
circuit memory array that is manufactured with a pattern 
of either all logical zeros or ones and has a specific pattern 
written into it by the user by a special hardware pro­
grammer. Some PROMs, called EAROMs, Electrically 
Alterable Read-Only Memory, can be erased and repro­
grammed. 

Prototyping System: A hardware system used to breadboard 
a microprocessor·based product. Contains CPU, memory, 
basic I/O. power supply, switches and lamps, provisions 
for custom I/O controllers, memory expansion, and 
often. a utility program in fixed memory (ROM). See 
COSMAC Development System. 

Pseudo Instruction: See Interpreter 

Pseudo Program: See Interpreter 

RAM (Random Access Memory): Any type of memory 
which has both read and write capability. It is randomly 
accessible in the sense that the time required to read 
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from or to write into the memory, is independent of the 
location of the memory where data was most recently 
read from or written into. In contrast, in a Serial Access 
Memory, this time is variable. 

Register: A fast-access circuit used to store bits or words in 
a CPU. Registers playa key role in CPU operations. In 
most applications, the efficiency of programs is related 
to the number of registers. 

Relative Addressing: The address of the data referred to is 
the address given in the instruction plus some other 
number. The "other number" can be the address of the 
instruction, the address of the first location of the cur­
rent memory page, or a number stored in a register. 
Relative addressing permits the machine to relocate a 
program or a block of data by changing only one number. 

Resident Software: Assembler and editor programs incor­
porated with a prototyping system to aid in user program 
writing and development. See Software. 

Return Routine: See Subroutine 

ROM: Read-Only Memory (Fixed Memory) is any type of 
memory which cannot be readily rewritten; ROM 
requires a masking operation during production to per­
manently record program or data patterns. in it. The 
information is stored on a permanent basis and used 
repetitively. Such storage is useful for programs or tables 
of data that remain fixed and is usually randomly 
accessible. 

Routine: Usually refers to a sub·program, i.e., the task per­
formed by the routine is less complex. A program may 
include routines. See Program. 

Scratch-Pad Memory: RAM or registers which are used to 
store temporary intermediate results (data), or memory 
addresses (pointers). 

Serial Memory (Serial Access Memory): Any type of 
memory in which the time required to read from or 
write into the memory is dependent on the location in 
the memory. This type of memory has to wait while 
non desired memory locations are accessed. Examples 
are paper tape, disc, magnetic tape, CCD, etc. In a 
Random Access Memory, access time is constant. 

Simulators: Software simulators are sometimes used in the 
debug process to simulate the execution of machine­
language programs using another compu ter (often a 
timesharing system). These simulators are especially 
useful if the actual computer is not available. They may 
facilitate the debugging by providing access to internal 
registers of the CPU which are not brought out to 
external pins in the hardware. See COSMAC Software 
Development Package. 

Snapshots: Capture of the entire state of a machine 
(real or simulated) -- memory contents, registers, 
flags, etc. 

Software: Computer programs. Often used to denote 
general-purpose programs provided by the manufacturer, 
such as assembler, editor, compiler, etc. 

Source Program: Computer program written in a language 
designed for ease of expression of a class of problems or 
procedures, by humans: symbolic or algebraic. 

Stack: A sequence of registers and/or memory locations 
used in LIFO fashion (last-in-first-out). A stack pointer 
specifies the last-in entry (or where the next-in entry 
will go). 

Stack Pointer: The counter, or register, used to address a 
stack in the memory. See Stack. 

Stand-Alone System: A microcomputer software develop­
ment system which runs on a microcomputer without 
connection to another computer or a timesharing system. 
This system includes an assembler, editor, and debugging 
aids. It may include some of the features of a prototyping 
kit. 

State Code: A coded indication of what state the CPU is 
-- responding to an interrupt, servicing a DMA request, 
executing an I/O instruction, etc. 

Subroutine: A subprogram (group of instructions) reached 
from more than one place in a main program. The process 
of passing control from the main program to a sub­
routine is a subroutine call, and the mechanism is a 
subroutine linkage. Often data or data addresses are 
made available by the main program to the subroutine. 
The process of returning control from subroutine to 
main program is subroutine return. The linkage auto­
matically returns control to the original position in the 
main program or to another subroutine. See Nesting. 

Subroutine Linkage: See Subroutine 

Support: See Manufacturer's Support 

Synchronous Operation: Use of a common timing source 
(clock) to time circuit or data transfer operations. 
(Contrast with Asynchronous operation) 

Syntax: Formal structure. The rules governing sentence 
structure in a language, or statement structure in a 
language such as assembly language or Fortran. 

Terminal: An Input-Output device at which data leaves or 
enters a computer system, e.g., teletype terminal, CRT 
terminal, etc. 

Test and Branch: See Branch Instruction 

Unbundling: Pricing certain types of software and services 
separately from the hardware. 

Universal Asynchronous Receiver/Transmitter (UART): A 
device that translates serial data bits from two-wire lines 
to parallel format (receive mode) or parallel data bits to 
serial format for transmission over two-wire lines (trans­
mit mode). 

Utility Program: A program providing basic conve!1iences, 
such as capability for loading and saving programs, for 
observing and changing values in a computer, and for 
initiating program execution. The utility program elimi­
nates the need for "re-inventing the wheel" every time a 
designer wants to perform a common function. 

Word: The basic group of bits which is manipulated (read 
in, stored, added, read out, etc.) by the computer in a 
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single step. Two types of word are used in every 
computer: Data Words and Instruction Words. Data 
words contain the information to be manipulated. 
Instruction words cause the computer to execute a 
particular operation. 

Word Length: The number of bits in the computer word. 
The longer the word. length, the greater the preCision 
(number of Mgnificant digits). In general, the longer the 
word length, the richer the instruction set, and the more 
varied the addressing modes. 
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