

MTS SDK .NET Integration Guide

February 2019

 	

2 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Document	version	

Version Author Date Comments
1.6 Srđan

Tot
2019-02-27 Added timeout configuration properties

1.5 Srđan
Tot

2019-02-13 Added MTS Client API configuration properties

1.4 David
Hrovat

2018-10-11 Added exclusiveConsumer configuration property

1.3 David
Hrovat

2017-11-10 Added port number configuration property

1.2 David
Hrovat

2017-09-12 Added provideAdditionalMarketSpecifiers property to config
section

1.1 Uros
Bregar

2017-09-09 Added description about Rest and Cache log
Added accessToken configuration property
Updated method SetIdUof

1.0 Uros
Bregar

2015-03-13 Initial version

	 	

3 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Table	of	Contents	

DOCUMENT VERSION 2

GETTING STARTED 4

LOGGING 4

CONFIGURATION 5

OBTAINING THE SDK 8

SDK SETUP AND TEARDOWN 8

BUILDING TICKET INSTANCES 10

SENDING TICKETS TO MTS 12

TIPS AND TRICKS 13

BUILDING SELECTION INSTANCES 13

	 	

4 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Getting	started	

Before starting to use the SDK please read the appropriate MTS documentation found on
www.betradar.com under Help/Developer Zone/Downloads. SDK examples and code
documentation is available on the https://sdk.sportradar.com.

Logging	

To more easily find the log entry associated with a specific action that occurred within the
SDK, the logs are split into several files.

• Feed log: contains log entries for all messages send to or received from the MTS
• Rest log: contains log entries for all messages send or received from API calls1
• Cache log: contains log entries for all messages related to internal cache(s)
• Execution log: contain log entries for all important actions and all error / warning

conditions which occur within the SDK
• Client interaction log: logs the interaction between the user code and the SDK
• Statistics log: contains periodically written statistic information

To enable the SDK logging the logging framework used by the SDK must be properly
configured. The configuration is done by call of the following method:

SdkLoggerFactory.Configure(new FileInfo("config_file_path"));

The default configuration file can be obtained from the SDK example project available on the
SDK site.
Logs are used by the support team, so it is recommended to send them along with any issue
related e-mails.

1 REST API calls are made only when building ticket with UnifiedFeed selections

5 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Configuration	

The configuration needed by the SDK must be provided via the app.config file, which must
contain the following section:

<mtsSdkSection
 username="username",
 password="password",
 host=" mtsgate-ci.betradar.com ",
 vhost="/vhost",
 useSsl="false",
 node="3",
 bookmakerId="1",
 limitId="1",
 currency="EUR",
 channel="Internet",
 accessToken="your_uf_access_token",
 provideAdditionalMarketSpecifiers="true",

port="5671",
exclusiveConsumer="true",
keycloakHost="https://mts-auth.sportradar.ag",
keycloakUsername="username",
keycloakPassword="password",
keycloakSecret="secret",
mtsClientApiHost="http://10.200.24.234:9211/edge/proxy",
ticketResponseTimeout="15000",
ticketCancellationResponseTimeout="600000",
ticketCashoutResponseTimeout="600000" />

Required attributes:

• username: Username used to connect to the AMQP broker. Betradar provides this
value.

• password: Password used to connect to the AMQP broker. Betradar provides this
value.

• host: The hostname of the AMQP broker. Please use the following hostnames unless
the integration team provides different ones.

o Integration environment: mtsgate-ci.betradar.com

6 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

o Production environment: mtsgate-t1.betradar.com

Optional attributes:

• vhost: The name of the virtual host configured on the AMQP broker. If the value is
not specified, the value of ‘/username’ attribute is used as virtual host.

• useSsl: The value specifying whether SSL will be used when connecting to the bro-
ker. Default value is true.

• node: This value is used to filter MTS responses which were produced as responses to
requests send by different SDK instances. In most configurations each SDK should use
different node value. Default value is 1.

• bookmakerId: When provided, it is used as the default value for the BookmakerId
on the ticket. The value can be overridden when building the ticket. Betradar pro-
vides this value.

• limitId: When provided, it is used as the default value for the LimitId property on
the ticket. The value can be overridden when building the ticket. Betradar provides
the set of available values.

• currency: When provided, it is used as the default value for the Currency property
on the ticket. The value must comply with the ISO 4217 standard.

• channel: When provided, it is used as the default value for the SenderChannel
property on the ticket. Value must be one of the SenderChannel enumeration mem-
bers.

• accessToken: When selections are build using UnifiedOdds ids, the accessToken is
used to access sports API. Also ensure that server running the sdk is whitelisted on
api.betradar.com. Betradar provides this value.

• provideAdditionalMarketSpecifiers: This value is used to indicate if the sdk
should add market specifiers for specific markets. Only used when building selection
using UnifiedOdds ids. If this is set to true and the user uses UOF markets, when
there are special cases (market 215, or $score in SOV/SBV template), sdk automati-
cally tries to add appropriate specifier; if set to false, user will need to add this man-
ually.

• port: Port should be chosen through the useSsl property. Manually setting port
number should be used only when non-default port is required.

• exclusiveConsumer: The value specifying whether the rabbit consumer channel
should be exclusive. Default value is true.

• keycloakHost: The auth server for accessing MTS Client API.

7 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

• keycloakUsername: The default username used to get access token from the auth
server. It can be overridden when the MTS Client API methods are called.

• keycloakPassword: The default password used to get access token from the auth
server. It can be overridden when the MTS Client API methods are called.

• keycloakSecret: The secret used to get access token from the auth server.
• mtsClientApiHost: The MTS Client API host.
• ticketResponseTimeout: The ticket response timeout in ms. Default value is 15000ms

and it can't be less than 10000ms or greater than 30000ms.
• ticketCancellationResponseTimeout: The ticket cancellation response timeout in ms.

Default value is 600000ms and it can't be less than 10000ms or greater than
3600000ms.

• ticketCashoutResponseTimeout: The ticket cashout response timeout in ms. Default
value is 600000ms and it can't be less than 10000ms or greater than 3600000ms.

For more information about the ticket properties please refer to the MTS_Ticket_Integration
document.

	 	

8 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Obtaining	the	SDK	

The SDK is provided as a code library (Sportradar.MTS.SDK.dll), which is available on the SDK
site and via the NuGet package manager. The usage of NuGet package manager is
recommended, since it supports update notifications and makes it easier to obtain new
releases of the SDK.

SDK	setup	and	teardown	

The SDK is setup by the following steps:

• Creating an instance of the MtsSdk class.
• Attaching to the following events exposed by the MtsSdk type.

o SendTicketFailed – raised if the ticket could not be send to the AMQP broker
within the set timeout (usually 15 seconds). This usually indicates an Internet
connection or firewall issues.

o TicketResponseReceived – occurs when a response to ticket placement or
ticket cancellation request from the MTS is received.

o UnparsableTicketResponseReceived – occurs when the response from the
MTS cannot be deserialized. This usually indicates that a deprecated version
of the SDK is being used.

o TicketResponseTimedOut - event to notify user if the ticket response did not
arrive in timely fashion (when sending in non-blocking mode). Timeouts are
set using ticketResponseTimeout, ticketCancellationResponseTimeout and
ticketCashoutResponseTimeout.

• Opening the created MtsSdk instance.

These steps can be performed by the following code:

var config = MtsSdk.GetConfiguration();
var mtsSdk = new MtsSdk(config);
mtsSdk.SendTicketFailed += OnSendTicketFailed;
mtsSdk.TicketResponseReceived += OnTicketResponseReceived;
mtsSdk.UnparsableTicketResponseReceived += OnUnparsableTicketResponseReceived;
mtsSdk. TicketResponseTimedOut += OnTicketResponseTimedOut;
mtsSdk.Open();

9 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

For more information on how to handle the events please refer to the SDK examples and/or
the SDK code documentation.

Once the initialized MtsSdk instance is no longer needed, it must be teardown in order to
release resources held by it. It is also recommended to detach from events before disposing
the instance. This can be accomplished by the following code:

mtsSdk.SendTicketFailed -= OnSendTicketFailed;
mtsSdk.TicketResponseReceived -= OnTicketResponseReceived;
mtsSdk.UnparsableTicketResponseReceived -= OnUnparsableTicketResponseReceived;
mtsSdk. TicketResponseTimedOut -= OnTicketResponseTimedOut;
mtsSdk.Close();

	 	

1 0 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Building	ticket	instances	

The SDK uses a “builder pattern” to simplify the process of creating new ticket instances.
Below is the list of most noticeable builders.

• TicketBuilder: A root builder used as a starting point when building tickets.
• SenderBuilder: Used to specify the information about a ticket sender (bookmaker).
• EndCustomerBuilder: Used to build EndCustomer instances, representing the punt-

er associated with the ticket. This information is part of the send element.
• BetBuilder: Used to build bet instances, which is part of the ticket. Each ticket must

contain at least one bet.
• SelectionBuilder: Used to build selection instances, which are parts of bet. Each

bet must contain at least one selection.

Below is a code snippet, which builds a ticket containing the mandatory information. Please
note that some information from the configuration gets automatically applied to the ticket,
so changing the configuration can make the snippet below produce an incomplete ticket. For
more information refer to configuration section of this document and to
MTS_Ticket_Integration document.
Builders can be obtained on mtsSdk instance through BuilderFactory.

1 1 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

var _builderFactory = _mtsSdk.BuilderFactory;
var ticket = _builderFactory.CreateTicketBuilder()
 .SetTicketId("ticketId")
 .SetSender(_builderFactory.CreateSenderBuilder()
 .SetCurrency("EUR")
 .SetEndCustomer(_builderFactory.CreateEndCustomerBuilder()
 .SetId("customerClientId")
 .SetConfidence(1)
 .SetIp(IPAddress.Loopback)
 .SetLanguageId("en")
 .Build())
 .Build())
 .AddBet(_builderFactory.CreateBetBuilder()
 .SetBetId("betId")
 .SetBetBonus(1)
 .SetStake(1, StakeType.Total)
 .AddSelectedSystem(1)
 .AddSelection(_builderFactory.CreateSelectionBuilder()
 .SetEventId(1)
 .SetId("selectionId")
 .SetOdds(11000)
 .Build())
 .Build())
 .BuildTicket();

	 	

1 2 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Sending	tickets	to	MTS	

SDK supports two ways of sending tickets to the MTS. The recommended way is to use the
non-blocking mode. Non-blocking indicates the execution of the current thread is not
blocked after the ticket is send and the response from MTS (TicketResponseReceived event)
is process in another thread. To send a ticket in a non-blocking mode, the following line can
be used:

mtsSdk.SendTicket(ticket);

For this mode event TicketResponseTimedOut is also available to notify user if the ticket
response did not arrive in timely fashion.

When sending the ticket in the blocking mode, the current thread is blocked until a response
from MTS is received or a timeout occurs (usually 15 seconds). When using the blocking
mode, the TicketResponseReceived event for that ticket is never raised. Ticket can be sent in
a blocking mode using the following line:

var ticketResponse = mtsSdk.SendTicketBlocking(ticket);

	 	

1 3 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Tips	and	tricks	

Building	selection	instances	

The SDK supports markets used by three Betradar feeds – LO (Live Odds), LCoO (Live Cycle of Odds)
and UF (Unified Feed) implemented by different methods on the SelectionBuilder type.

• SetId(string id);
This method should be used when building string representations of the market
identifiers directly (without the help from the SDK).

• SetIdLo(int type, int subType, string sov, string selectionId);
This method should be used when building market identifiers from information pro-
vided by the LO feed.

• SetIdLcoo(int type, int sportId, string sov, string selectionId);
This method should be used when building market identifiers from information pro-
vided by the LCoO feed.

• SetIdUof(Product product, URN sportId, int marketId, string selec-
tionId, IDictionary<string, string> specifiers, IReadOnlyDiction-
ary<string, object> sportEventStatus);
This method should be used when building market identifiers from information pro-
vided by the UF feed. Note: this method will throw if accessToken is not provided.
Method parameter sportEventStatus needs the following keys:

o HomeScore (home_score in sport event status)
o AwayScore (away_score in sport event status)
o Server (current_server in sport event status)

If you are using UnifiedFeed sdk the map with the correct keys may be obtained:
var sportEventStatusProperties = sportEvent.Status.Properties;

