

MTS Java SDK developer guide

August 2016

Page | 1 www.betradar.com

Table of Contents

1 Introduction ... 2

2 SDK global overview ... 2

3 Using the SDK ... 2

3.1 Ticket sender.. 4

3.2 Ticket cancellation sender .. 6

Page | 2 www.betradar.com

1 Introduction

To make Managed Trading Service integration as quick and easy as possible Software

Development Kit was developed.

SDK exposes MTS feed interface in a more user-friendly way and isolates the client from having

to do proper connection handling, message sending, JSON feed parsing and dispatching.

This document contains info about Java implementation and usage of the SDK.

2 SDK global overview

MTS supports AMQP and UDP protocol. SDK uses AMQP. While SDK tries to hide as many

details as possible, clients should still be familiar with AMQP protocol. Basics can be read at

https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

We also recommend reading “MTS integration with AMQP” and “MTS Ticket Integration”

documents.

3 Using the SDK

In this document pseudo code is used to give you basic understanding, for actual usage examples

please check the SDK example project.

First you need to create a new instance of the SDK:

MtsSdkApi mtsSdk = new MtsSdk();

This creates the SDK but does not start anything yet.

You need to call open method first. There are 3 variants.

https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

Page | 3 www.betradar.com

First option:

MtsSdkApi.open()

This will initialize the SDK using the “mts-sdk.properties” file located in your resources folder.

Second option:

MtsSdkApi.open(String filePath)

This will initialize the SDK using the file found in the path you specified. It can be absolute or

relative path. Settings format in the file must be the same as in “mts-sdk.properties”.

Third option:

MtsSdkApi.open(Properties properties)

This will initialize the SDK using passed Properties instance where key values are same as they

would be in “mts-sdk.properties” file.

It is possible to create multiple SDK instances using different settings (by using last two open

methods) which can prove useful if you want to run multiple clients on the same machine.

After SDK is initialized you can create one or multiple messages senders. There are four possible

senders.

Page | 4 www.betradar.com

3.1 Ticket sender

The main sender is TicketSender which is used to send tickets to the MTS. You obtain a new

instance by calling

TicketSender ticketSender =

MtsSdkApi.getTicketSender(TicketResponseListener responseListener)

where responseListener is your implementation of ticket response listener. In

TicketResponseListener events will be triggered when your ticket publish succeeded/failed and

when you receive a ticket acceptance response from the MTS.

Ticket sender enables two ways of sending tickets. First one is by using

TicketSender.send(Ticket ticket)

This will send ticket asynchronously and trigger response in your response listener. This is the

recommended way of sending tickets.

We also developed second option for clients who are more used to synchronous sending.

TicketResponse response = TicketSender.sendBlocking(Ticket ticket) throws

ResponseTimeoutException

This method will block calling thread until ticket acceptance reply is received or throw

ResponseTimeoutException in case reply is not received in time. This method returns

TicketResponse object directly and no responseReceived will be triggered in your implementation

of TicketResponseListener.

Page | 5 www.betradar.com

No matter which method you use you need to generate a Ticket instance first which will be send

to the MTS.

This is done over TicketBuilder class. MTS ticket version 1.X uses object hierarchy which we

concealed and made the builder flat with only selection as a sub object on the ticket. Below is an

example of ticket generation

Ticket ticket = TicketSender.newBuilder()

 .setBookmakerId(1)

 .setTicketId(“ticket id”)

 .setLimitId(2)

 .setChannelId(SourceChannel.INTERNET)

 .setDeviceId("device1")

 .setEndCustomerId("User123456")

 .setEndCustomerIp("1.3.3.7")

 .setLanguageId("EN")

 .setCurrency("EUR")

 .setStake(5.0)

 .setSystem(0)

 .setBonusWin(10.2)

 .addSelection()

 .setLine(LineType.PREMATCH)

 .setMarket("lcoo:10/1/*/1")

 .setMatch(9569629)

 .setOdd(1.1)

 .buildSelection()

 .build()

To add selections you call

TicketBuilder.addSelection()

which returns selection builder where you can set selection properties. When you are done with

selection you call

SelectionBuilder.buildSelection()

which builds the selection, adds the selection to parent and returns parent ticket builder.

Page | 6 www.betradar.com

3.2 Ticket cancellation sender

When you want to cancel an accepted ticket you use TicketCancelSender. Only asynchronous

sending is supported.

You obtain a new instance by calling

TicketCancelSender ticketSender = MtsSdkApi.getTicketCancelSender(

TicketCancelResponseListener responseListener)

where responseListener is your implementation of ticket cancellation response listener. In

TicketCancelResponseListener events will be triggered when your ticket cancellation publish

succeeded/failed and when you receive a ticket cancellation response from the MTS.

Example of ticket cancellation generation

TicketCancel ticketCancel = TicketCancelSender.newBuilder()

 .setCancelMessageId("messageID")

 .setTicketId(“ticket id”)

 .setBookmakerId(1)

 .setCancellationReason(101)

 .setReasonMessage("customer cancelled ticket")

 .build()

After you have constructed a TicketCancel instance you send it using TicketSender.

TicketCancelSender.send(TicketCancel ticketCancel)

Page | 7 www.betradar.com

3.3 Ticket acknowledgement sender

Clients who want to send ticket acceptance acknowledgement can do that over the

TicketAcknowledgmentSender class. As acknowledgment has no reply your listener needs to

implement only publish failure/success handler methods.

Sender creation:

TicketAcknowledgmentSender ticketAckSender =

MtsSdkApi.getTicketAcknowledgmentSender (

TicketAcknowledgmentResponseListener responseListener)

Message creation:

TicketAcknowledgment ticketAcknowledgment =

TicketAcknowledgmentSender.newBuilder()

 .setTicketId(“ticket id”)

 .setAckStatus(TicketAckStatus.ACCEPTED)

 .setBookmakerId(1)

 .setSourceCode(100)

 .build();

Message sending:

TicketAcknowledgmentSender.send(TicketAcknowledgment ticketAcknowledgment);

Page | 8 www.betradar.com

3.4 Ticket cancel acknowledgement sender

Ticket cancellation acknowledgment sender is very similar to ticket acceptance acknowledgment

sender.

Sender creation:

TicketCancelAcknowledgmentSender ticketCancelAckSender =

MtsSdkApi.getTicketCancelAcknowledgmentSender (

TicketCancelAcknowledgmentResponseListener responseListener)

Message creation:

TicketCancelAcknowledgment ticketCancelAcknowledgment =

TicketCancelAcknowledgmentSender.newBuilder()

 .setTicketId(“ticket id”)

 .setAckStatus(TicketCancelAckStatus.CANCELLED)

 .setBookmakerId(1)

 .setSourceCode(101)

 .build();

Message sending:

TicketCancelAcknowledgmentSender.send(TicketCancelAcknowledgment

ticketCancelAcknowledgment);

Page | 9 www.betradar.com

4 SDK settings

Setting Mandatory Default Description

mts.sdk.vhost = /vhost true / AMQP virtual host

mts.sdk.username = user true / AMQP username

mts.sdk.password = pass true / AMQP password

mts.sdk.test = false false true Which environment to
connect to

mts.sdk.ssl = true false true Use SSL for
communication

mts.sdk.hostname=
127.0.0.1

false integration-
mts.betradar.com if
test=true, else
tradinggate.betradar.com

Hostname

mts.sdk.port = 1337 false 5671 if ssl=true, else 5672 Port

mts.sdk.node = 1 false 1 Node id to be used when
creating routing key

mts.sdk.
ticket_response_timeout =
15000

false 15000 How long (in ms) to wait
while waiting for ticket
response. Used only with
sendBlocking method

mts.sdk.
messages_per_second =
40

false 40 Max message rate
allowed to be send to the
MTS for each sender

