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Chapter 1

Machine learning terminologies

Codes and Datasets

The datasets and the codes of the tutorial can be downloaded from the repository

1.1 Introduction

In this chapter, we will understand the basic building blocks of SciKit-Learn library. Further, we will discuss the
various types of machine learning algorithms. Also, we will see several terms which are used in machine learning
process.

Machine learning algorithms is a part of data analysis process. The data analysis process involves following steps,

Collecting the data from various sources

Cleaning and rearranging the data e.g. filling the missing values from the dataset etc.

Exploring the data e.g. checking the statistical values of the data and visualizing the data using plots etc.
Modeling the data using correct machine learning algorithms.

Lastly, check the performance of the newly created model.

In this tutorial we will see all the steps of data analysis process except the first step i.e. data
collection process. We will use the data which are available on the various websites.

Important: Data analysis requires the knowledge of multiple field e.g. data cleaning using Python or R language.
Good knowledge of mathematics for measuring the statistical parameter of the data. Also, we need to have the
knowledge of some specific field on which we want to apply the machine learning algorithm. Lastly, we must have
the understanding of the machine learning algorithms.

1.2 Machine learning

In general programming methods, we write the codes to solve the problem; and the code can solve a particular
types of problem only. This is known as ‘hard coding’ method. But in the machine learning process, the codes are
designed to see the patterns in the datasets to solve the problems, therefore it is more generalizes and can make
the decisions on the new problems as well. This difference is shown in Table 1.1.

Table 1.1: Hard coding vs Machine learning

Type Description
Hard coding can solve a particular type of problems
Machine learning | sees the pattern in the data and solve the new problem by itself
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Lastly, the Machine learning can be defined as the process of extracting knowledge from the data, such that an
accurate predication can be made on the future data. In the other words, machine learning algorithms are able to
predict the outcomes of the new data based on their training.

1.3 Basic terminology

In this section, we will see basic building blocks of SciKit library along with several terms used in machine learning
process.

1.3.1 Data: samples and features

Data is stored in two dimensional form in the SciKit, which are known as the ‘samples’ and ‘features’.

Note:

e Samples: Each data has certain number of samples.

e Features: Each sample has some features, e.g if we have samples of lines, then features of this lines can be
‘x” and ‘y’ coordinates.

e All the features should be identical in SciKit. For example, all the lines should have only two features i.e.
‘x” and ‘y’ coordinates. If some lines have third feature as ‘thickness of line’, then we need to append/delete
this feature to all the lines.

1.3.2 Target

e Target: There may be the certain numbers of possible outputs for the data, which is known as ‘target’. For
example, the the points can be on the ‘straight line’ or on the ‘curve line’. Therefore, the possible targets
for this case are ‘line’ and ‘curve’.

e Different names are used for ‘targets’ and ‘features’ as shown in Table 1.2,

Table 1.2: Other names for ‘targets’ and ‘features’

Name Other names
Features | Inputs, Attributes, Predictors, Independent variable, Input variables
Target Outputs, Outcomes, Responses, Labels, Dependent variables

1.3.3 Load the inbuilt data

Let’s understand this with an example. The SciKit library includes some input data as well. First we will use
these data and later we will read the data from the files for the data analysis.

e The stored datasets in the SciKit library can be used as below,

>>> from sklearn.datasets import load_iris # import 'iris' dataset
>>> iris = load_iris() # save data set in 'iris'

e Now, we can see the data stored in the ‘iris’. Note that dataset is stored in the form of ‘dictionary’.

>>> iris.keys()
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])

Following is the description of above keys,

e ‘feature names’: This contains the information about the features (optional).

3 Meher Krishna Patel
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>>> iris.feature_names

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

e ‘data’: It contains certain numbers of samples for the data e.g. this dataset contains 150 samples and each
sample has four features. In the below results, the first three entries of the data is shown. The name of
the columns (i.e. features of the data) are shown by the ‘feature names’ e.g. the first column stores the

speal-length.

>>> iris.data.shape # 150 samples, 4 features
(150, 4)
>>> iris.datal0:3] # display 3 samples of stored data

array([[ 5.1, 3.5, 1.4, 0.2],
[4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2]11

e ‘target names’: This contains the details about the target (optional).

>>> iris.target_names # flower categories
array(['setosa', 'versicolor', 'virginica'l],
dtype='<U10")

e ‘target’: It is the possible outputs for the data (optional). This is required for supervised learning, which

will be discussed in this chapter. Here ‘0’ represents the ‘setoas’ family of the Iris-flower.

>>> iris.target
array([0O, O, O, O, ..., O, 1, 1, 1, ..., 2, 2, 2])

e ‘DESCR’: It contains the description about the data set(optional).

>>> iris.DESCR
'Iris Plants Database\n: \n [...]

Note: Following are the important points about the dataset, which we discussed in this section,

e Datasets have samples of data, which includes some features of the data.

e All the features should be available in every data. If there are missing/extra features in some data, the we

need to add/remove those features from the data for SciKit.
e Also, the dataset may contain the ‘target’ values in it.

1.4 Types of machine learning

Machine learning can be divided into two categories i.e. supervised and unsupervised, as shown in this section,

1.4.1 Supervised learning

In Supervised Learning, we have a dataset which contains both the input ‘features’ and output ‘target’; as discussed

in Section 1.3.3, where Iris flower dataset has both ‘features’ and ‘target’.

1.4.1.1 Classification and regression

The supervised learning can be further divided into two categories i.e. classification and regression.

e Classification: In classification the targets are discrete i.e. there are fixed number of values of the outputs
e.g. in Section 1.3.3 there are only three types of flower. Also, these outputs are represented using strings
e.g. (Male/Female) or with fixed number of integers as shown for ‘iris’ dataset in Section 1.3.3 where 0,

1 and 2 are used for three types of flower.

— If the target has only two possible values, then it is known as ‘binary classification’.

PythonDSP


http://pythondsp.readthedocs.io/en/latest/pythondsp/toc.html

Chapter 1. Machine learning terminologies

— If the target has more than two possible values, then it is known as ‘multiclass classification’.
e Regression: In regression the targets are continuous e.g. we want the calculate the ‘age of the animal (i.e.
target)’ with the help of the ‘fossil dataset (i.e. feature)’. In this case, the problem regression problem as
the age is a continuous quantity as it does not have fixed number of values.

1.4.2 Unsupervised learning

In Unsupervised Learning, the dataset contains only ‘features’ and ‘no target’. Here, we need to find the relationship
between the various types of data. In the other words, we have to find the labels from the given dataset.

Unsupervised learning can be divided into three categories i.e. Clustering, Dimensionality reduction and Anomaly
detection.

e Clustering: It is process of reducing the observations. This is acheived by collecting the simialar data in one
class.

e Dimensionality reduction: This is the reduction of higher dimensional data to 2 dimensional or 3 dimensional
data, as it is easy to visualize the data in 2 dimensional and 3 dimensional form.

e Anomaly detection: This is the process of removal of undesired data from the dataset.

Note: Sometimes these two methods, i.e. supervised and unsupervised learning, are combined. For example the
unsupervised learning can be used to find useful features and targets; and then these features can be used by the
supervised training method.

For example, we have a the ‘titanic’ dataset, where we have all the information about the passengers e.g. age,
gender, traveling-class and number of people died during accident etc. Here, we need to find the relationship
between various types of data e.g. people who are traveling in higher-class must have higher chances of survival
etc.

Important: Please note the following points,

e Not all the problems can be solved using Machine learning algorithms.

e If a problem can be solved directly, then do not use machine learning algorithms.

e Each machine learning algorithms has it’s own advantages and disadvantages. In the other words, we need
to choose the correct machine learning algorithms to solve the problem.

e We need not to be expert in the mathematics behind the machine learning algorithms; but we should be
aware of pros and cons of the algorithms.

e Below is the summery of this section. Table 1.3 shows the types of machine learning, and Table 1.4 shows
the types of variable in machine learning algorithms.

Table 1.3: Classification of Machine learning

Machine learning | Subtypes
Supervised Binary classification, multiclass classification, regression
Unsupervised Clustering, Dimensionality reduction, Anomaly detection

Table 1.4: Types of variable

Type Description
categorical or factor | string (e.g. Male/Female), or fixed number of integers 0/1/2
numeric floating point values
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1.5. Conclusion

1.5 Conclusion

In this chapter, we discussed various terms used in machine learning algorithms, which are shown Table 1.2, Table
1.3 and Table 1.4. In next section, we will see an example of ‘multiclass classification’.
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Chapter 2

Multiclass classification

2.1 Introduction

In this chapter, we will use the ‘Iris-dataset’ which is available in the ‘SciKit library’. Here, we will use ‘KNeigh-
borsClassifier’ for training the data and then trained models is used to predict the outputs for the test data. And
finally, predicted outputs are compared with the desired outputs.

2.2 Iris-dataset

2.2.1 Load the dataset

Lets see the Iris-dataset which has following features and target available in it, which are show in Listing 2.1.

e Features:
— sepal length in cm
— sepal width in cm
— petal length in cm
— petal width in cm
e Targets:
— Iris Setosa
— Iris Versicolour
— Iris Virginica
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2.2. Iris-dataset

Listing 2.1: Iris-dataset

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> iris.keys()
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
>>> iris.feature_names
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
>>> iris.target_names
array(['setosa', 'versicolor', 'virginica'l],
dtype='<U10")
>>> iris.data.shape # 150 samples with 4 features
(150, 4)

2.2.2 Split the data as ‘training’ and ‘test’ data

We have 150 samples in our data. We can divide it into two parts i.e. ‘training dataset’ and ‘testing
dataset’. A good choices can be 80% training data and 20% test data.

Important: The training data set must included all the possible ‘targets’ in it, otherwise the machine
will not be trained for all the ‘targets’; and will generate huge errors when those datasets will appear
in the test. We can use “stratify” in the ‘train_test split’ which takes care of this, as shown in Listing
2.2.

Here we will use the ‘KNeighborsClasssifier’ class of ‘sklearn’ for training the machine. Lets write the code in the
file. Here Lines 17-27 are used to create the training and test datasets. Then Line 36 instantiates an object of
KNeighborsClasssifier, which fits the models based on training data at Line 38. Next, the trained model is used
to predict the outcome of the test data at Line 40. Finally, prediction error is calculated at Line 44.

Listing 2.2: Training and test data

# multiclass_ezx.py

import numpy as np

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

# both train_size and test_stize are defined when we do not want to
# use all the data for training and testing e.g. in below example we can
# use train_size=0.4 and test_size=0.2
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accurancy depends on the
# selection of data e.g. if we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

(continues on next page)
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Chapter 2. Multiclass classification

(continued from previous page)

print ("Proportion of 'targets' in the dataset")

print("All data:", np.bincount(train_targets) / float(len(train_targets)))
print("Training:", np.bincount(train_targets) / float(len(train_targets)))
print("Training:", np.bincount(test_targets)/ float(len(test_targets)))

# use KNeighborsClassifier for classification

classifier = KNeighborsClassifier()

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data
# predict the 'target' for 'test data'

prediction_targets = classifier.predict(test_features)

# check the accuracy of the model
print("Accuracy:", end=' ')
print(np.sum(prediction_targets == test_targets) / float(len(test_targets)))

e Following are the outputs of the code,

$ python multiclass_ex.py

Proportion of 'targets' in the dataset

A1l data: [ 0.33333333 0.33333333 0.33333333]
Training: [ 0.33333333 0.33333333 0.33333333]
Training: [ 0.33333333 0.33333333 0.33333333]

Accuracy: 0.933333333333

Note: We need to follow the below steps for training and testing the machine,

Get the inputs i.e. ‘features’ from the datasets.

Get the desired output i.e. ‘targets’ from the datasets ‘targets’.
Next, split the dataset into ‘training’ and ‘testing’ data.

Then train the model using ‘fit’ method on the ‘training’ data.

printing and plotting operation will be discussed in next chapter.

Finally, predict the outputs for the ‘test data’, and print and plot the outputs in different formats.

This

2.3 Conclusion

In this chapter, we learn to split the dataset into ‘training’ and ‘test’ data. Then the training data is used to fit
the model and finally the models is used for predicting the outputs for the test data for a ‘classification problem’.
In the next chapter, we will discuss the ‘binary classification problem’. Also, we will read the from the file, instead

of using inbuilt dataset of SciKit.
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Chapter 3

Binary classification

3.1 Introduction

In Chapter 2, we see the example of ‘classification’, which was performed on the data which was already available
in the SciKit. In this chapter, we will read the data from external file. Here the “Hill-Valley ” dataset is used
which is available at UCI Repository, which contains 100 input points (i.e. features) in it. Based on these points,
the output (i.e. ‘target’) is assigned with one of the two values i.e. “1 for Hill” or “0 for Valley”. Fig. 3.1 shows the
graph of these points for the Valley and the hill. Further, we will use “LogisticRegression” model for classification
in this chapter. It is a linear model, which finds a line to separate the ‘hill’ from the ‘valley’.

Note that, there are different datasets available on the website i.e. noisy and without noise. In this chapter, we
will use the dataset without any noise. Lastly, we can download different data from the website according to our
study e.g. data for regression problem, classification problem or mixed problem etc.

3.2 Dataset

Lets quickly see the contents of the dataset “Hill Valley without noise Training.data”, as shown in Listing 3.1.
The Fig. 3.2 shows the plot of the Rows 10 and 11 of the data, which represents the “hill” and “valley” respectively.

In Listing 3.1, the Lines 12-23 are reading the data, cleaning it (i.e. removing the header line and line-breaks
etc.) and changing it into desired format (i.e making list of list and then numpy array). This process is known as
Data-cleaning and Data-transformation, which constitute 70%-90% of the work in machine-learning tasks.

Listing 3.1: Quick analysis of data in
“Hill Valley without noise Training.data”

# hill_valley.py
# 1:hill, O:valley

import matplotlib.pyplot as plt
import numpy as np

f = open("data/Hill_Valley_without_noise_Training.data", 'r')
data = f.read()
f.close()

data = data.split() # split on \n
data

data[1:-1] # remowve 0th row as it is header

# save data as list 2.e. list of list will be created
data_list = []

(continues on next page)
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3.3. Extract the data i.e. ‘features’ and ‘targets’

(continued from previous page)

for d in data:
# split on comma
row = d.split(",")
data_list.append(row)

# convert list into numpy array, as it allows more direct-operations
data_list = np.array(data_list, float)

print ("Number of samples:", len(data_list))
print (" (row, column):", data_list.shape) # 100 features + 1 target = 101

# print the last wvalue at row = 10

row = 10

row_last_element = data_list[row] [-1] # 1:hill, O:wvalley
print("data_list[{0}] [100]: {1}".format(row,row_last_element)) # I

# plot row and row+l %.e 10 and 11 here

plt.subplot(2,1,1) # plot row
plt.plot(data_list[row] [1:-1], label="row = {}".format(row))
plt.legend() # show legends

plt.subplot(2,1,2) # plot row+l
plt.plot(data_list[row+1][1:-1], label="row = {}".format(row+1))
plt.legend() # show legends

plt.show()

Following is the output of the above code,

$ python hill_valley.py

Number of samples: 607
(row, column): (607, 101)
data_list[10][100]: 1.0

3.3 Extract the data i.e. ‘features’ and ‘targets’

In Chapter 2, it is shown that the machine-learning tasks require the ‘features’ and ‘targets’. In the current data,
both are available in the dataset in the combined form i.e. ‘target’ is available at the end of each data sample.
Now, our task is to extract the ‘features’ and ‘targets’ in separate variables, so that the further code can be written
easily. This can be done as shown in Listing 3.2,

Listing 3.2: Extract the data i.e. ‘features’ and ‘targets’

# hill_valley.py
# 1:hill, O:valley

import matplotlib.pyplot as plt
import numpy as np

f = open("data/Hill_Valley_without_noise_Training.data", 'r')
data = f.read()
f.close()

data = data.split() # split on \n
data = data[l:-1] # remove 0th row as it is header

(continues on next page)
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Chapter 3. Binary classification

525 4 — row = 10
5.00
4.75
4.50
4.25 A
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1.5+
1.4 4
131 — row=11
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0 20 40 60 80 100

Fig. 3.2: Plot for data at Rows 10 and 11

(continued from previous page)

# save data as list 2.e. list of list will be created
data_list = []
for d in data:

# split on comma

row = d.split(",")

data_list.append(row)

# convert list into numpy array, as it allows more direct-operations
data_list = np.array(data_list, float)

# print ("Number of samples:", len(data_list))
# print (" (row, column):", data_list.shape) # 100 features + 1 target = 101

# # print the last wvalue at row = 10

# row = 10

# row_last_element = data_list[row][-1] # 1:htll, O:valley

# print("data_list[{0}][100]: {1}".format (row,row_last_element)) # 1

# plot row and row+l %i.e 10 and 11 here

plt.subplot(2,1,1) # plot row
plt.plot(data_list[row] [1:-1], label="row = {}".format(row))
plt.legend() # show legends

H O R ®

**

plt.subplot(2,1,2) # plot row+tl
plt.plot(data_list[row+1][1:-1], label="row = {}".format(row+1))
# plt.legend() # show legends

H*

# plt.show()

(continues on next page)
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3.4. Prediction

(continued from previous page)

# extract targets

row_sample, col_sample = data_list.shape # exztract row and columns in dataset

# features : last column ©.e. target value will be removed form the dataset

features = np.zeros((row_sample, col_sample-1), float)
# target : store only last column
targets = np.zeros(row_sample, int)

for i, data in enumerate(data_list):
targets[i] = datal[-1]
features[i] = datal:-1]

# print(targets)

# print(features)

# recheck the plot

row = 10

plt.subplot(2,1,1) # plot row
plt.plot(features[row], label="row = {}".format (row))
plt.legend() # show legends

plt.subplot(2,1,2) # plot rowtl

plt.plot(features[row + 1], label="row = {}".format(row+1))

plt.legend() # show legends

plt.show()

3.4 Prediction

Once data is transformed in the desired format, the prediction task is quite straight forward as shown in Listing

3.3. Here following steps are performed for prediction,

Split the data for training and testing (Lines 77-88).

Select the classifier for modeling, and fit the data (Lines 90-93).
Check the accuracy of prediction for the training set itself (Lines 95-98).
Finally check the accuracy of the prediction for the test-data (Lines 100-103).

Note: The ‘accuracy score’ is used here to calculate the accuracy (see Lines 97 and 102).

Listing 3.3: Prediction

# hill_valley.py
# 1:hill, O:valley

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

f = open("data/Hill_Valley_without_noise_Training.data",

data = f.read()
f.close()

data = data.split() # split on \n

|r|)

(continues on next page)
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Chapter 3. Binary classification

(continued from previous page)

data = data[l:-1] # remove 0th rTow as it is header

# save data as list i.e. list of list will be created
data_list = []
for d in data:

# split on comma

row = d.split(",")

data_list.append(row)

# convert list into numpy array, as it allows more direct-operations
data_list = np.array(data_list, float)

# print ("Number of samples:", len(data_list))
# print (" (row, column):", data_list.shape) # 100 features + 1 target = 101

# # print the last wvalue at row = 10

# row = 10

# row_last_element = data_list[row][-1] # 1:hill, O:valley

# print("data_list[{0}][100]: {1}". format (row,row_last_element)) # 1

# # plot row and row+l i.e 10 and 11 here

# plt.subplot(2,1,1) # plot row

# plt.plot(data_list[row][1:-1], label="row = {}". format(row))

# plt.legend() # show legends

# plt.subplot(2,1,2) # plot rowtl

# plt.plot(data_list[row+1][1:-1], label="row = {}".format(rowt1))

# plt.legend() # show legends

# plt.show()

# extract targets
row_sample, col_sample = data_list.shape # extract row and columns in dataset

# features : last column 7.e. target value will be removed form the dataset
features = np.zeros((row_sample, col_sample-1), float)

# target : store only last column

targets = np.zeros(row_sample, int)

for i, data in enumerate(data_list):
targets[i] = datal[-1]
features[i] = datal[:-1]

print (targets)

print (features)

R

# recheck the plot

row = 10

plt.subplot(2,1,1) # plot row
plt.plot(features[row], label="row = {}".format(row))
plt.legend() # show legends

HHOR R R W

H*

plt.subplot(2,1,2) # plot rowtl
# plt.plot(features[row + 1], label="row = {}".format(row+1))
# plt.legend() # show legends

# plt.show()

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(

(continues on next page)
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(continued from previous page)

features, targets,

train_size=0.8,

test_size=0.2,

# random but same for all run, also accuracy depends on the

# selection of data e.g. 2f we put 10 then accuracy will be 1.0
# in this exzample

random_state=23,

# keep same proportion of 'target' in test and target data
stratify=targets

# use LogisticRegression

classifier = LogisticRegression()

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data'’

prediction_training_targets = classifier.predict(train_features)

self _accuracy = accuracy_score(train_targets, prediction_training_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print("Accuracy for test data:", test_accuracy)

Following are the results for the above code,

$ python hill_valley.py
Accuracy for training data (self accuracy): 0.997933884298
Accuracy for test data: 1.0

Note: In Iris-data set in Chapter 2 , the target depends directly on the input features i.e. width and length
of petal and sepal. But in Hill-valley problem, the output does not directly depends on the location of the input
values, but on the relative-positions of the certain inputs with all other inputs.

LogisticRegression assign a weight to each of the features and then calculate the sum for making decisions e.g. if
sum is greater than 0 then ‘hill’ and if less than 0 then ‘valley’. The coefficients which are assigned to each feature
can be seen as below,

$ python -i hill_valley.py

Accuracy for training data (self accuracy): 0.997933884298

Accuracy for test data: 1.0

>>> classifier.coef_

array([[-0.75630448, -0.70813863, -0.64901487, -0.57633845, -0.48687761,
[...]
-0.6593235 , -0.719707 , -0.76843887, -0.8077998 , -0.8396179411)

Also, the KNeighborsClassifier will not work here, as it looks for the features which are nearer to the ‘targets’,
and then decide the boundaries. But, in Hill-Valley case, a valley can be at the top of the graph as shown in
Fig. 3.1, or at the bottom of the graph. Similarly a Hill can be at the top of graph or at the bottom location.
Therefore it is not possible to find the nearest points for the Hill-Valley problem, which can distinguish a Hill from
a Vally. Hence, KNeighborsClassifier will have the accuracy score = 0.5 (i.e. random guess). We can verify it by
importing the “KNeighborsClassifier” and replacing the “LogisticRegression” to “KNeighborsClassifier” in Listing
3.3.
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Chapter 3. Binary classification

3.5 Rock vs Mine example

The file “sonar.all-data” contains the patterns obtained by bouncing sonar signals off a metal cylinder and the
rocks under similar conditions. Last column contains the target names i.e. ‘R’ and ‘M’, where ‘R’ and ‘M’ are
rocks and metals respectively.

Note: Remember that, in classification problems the targets must be descrete; and can have the value as ‘string’
or ‘number’ as shown in Table 1.4.

As oppose to previous section, here the ‘targets’ has the direct relationship with ‘features’, therefore we can use
both the classifier i.e. “LogisticRegression” and “KNeighborsClassifier” as shown in Listing 3.4.

Since, the target is not the numeric value, therefore targets are stored in the list as shown in Line 33 (instead of
numpy-array). Select any one of the classifier from Lines 55-56 and run the code to see the prediction accuracy.

Listing 3.4: Rock vs Mine

# rock_mine.py
# 'R': Rock, 'M': Mine

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

f = open("data/sonar.all-data", 'r')
data = f.read()
f.close()

data = data.split() # split on \n

# save data as list t.e. list of list will be created
data_list = []
for d in data:

# split on comma

row = d.split(",")

data_list.append(row)

# extract targets
row_sample, col_sample = len(data_list), len(data_list[0])

# features : last column t.e. target value will be removed form the dataset
features = np.zeros((row_sample, col_sample-1), float)

# target : store only last column

targets = []1 # targets are 'R' and 'M'

for i, data in enumerate(data_list):
targets.append(data[-1])
features[i] = datal:-1]

# print(targets)

# print(features)

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,

(continues on next page)
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(continued from previous page)

train_size=0.8,

test_size=0.2,

# random but same for all run, also accuracy depends on the

# selection of data e.g. ©f we put 10 then accuracy will be 1.0
# in this ezample

random_state=23,

# keep same proportion of 'target’' in test and target data
stratify=targets

# select classifier
classifier = LogisticRegression()
# classtifier = KNeighborsClassifier()

# training using 'training data’
classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print ("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print("Accuracy for test data:", test_accuracy)

Following are the outputs for the above code,

(for LogisticRegression)

$ python rock_mine.py

Accuracy for training data (self accuracy): 0.795180722892
Accuracy for test data: 0.761904761905

(for KNeighborsClassifier)

$ python rock_mine.py

Accuracy for training data (self accuracy): 0.843373493976
Accuracy for test data: 0.785714285714

3.6 Conclusion

In this chapter, we read the data from the file, and then converted the data into the format which is used by SciKit
library for further operations. Further, we used the class ‘LogisticRegression’ for modeling the system, and check
the accuracy of the model for the training and test data.
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Chapter 4

Regression

In previous chapters, we saw the example of supervised learning for ‘classification’ problems; i.e. the ‘targets’ had
the fixed number of values. In this section, we will see the another class of supervised learning i.e. ‘regression’,
where ‘targets’ can have continuous values. Note the ‘features’ can have continuous values in both the cases.

Also, in previous chapters, we used the SciKit’s inbuilt-dataset and read the dataset from the file. In this chapter,
we will create the dataset by ourselves.

4.1 Noisy sine wave dataset

Let’s create a dataset where the ‘features’ are the samples of the cooridantes of the x-axis, whereas the ‘targets’
are the noisy samples of the sine waves i.e. uniformly distributed noise samples will be added to the sine-wave;
and the corresponding waveforms are shown in Fig. 4.1. This can be achieved as below,

Fig. 4.1: Sine wave + Uniformly distributed noise generated by Listing 4.1
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4.1. Noisy sine wave dataset

Listing 4.1: Generation of noisy sine wave as shown in Fig. 4.1

# regression_ex.py

import numpy as np
import matplotlib.pyplot as plt

N = 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

plt.plot(x, sine_wave, '0');

plt.show()

Note: For SciKit library, the features must be in 2-dimensional format, i.e. features are the ‘list of list’, whereas
target must be in 1-dimensional format. Currently, we have both in 1-dimensional format, therefore we need to
convert the ‘features’ into 2-dimensional format as shown in Listing 4.2.

Listing 4.2: converting ‘x’ into 2D

# regression_ex.py

import numpy as np
import matplotlib.pyplot as plt

N = 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusotd with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# plt.plot(z, sine_wave, 'o0');

# plt.show()

# convert features in 2D format i.e. list of list
print('Before: ', x.shape)

features = x[:, np.newaxis]

print('After: ', features.shape)

# uncomment below line to see the differences
# print(z)
# print(features)

# save sine wave in variable 'targets'
targets = sine_wave

Below is the output for above code,

$ python regression_ex.py
Before: (100,)
After: (100, 1)

20 PythonDSP
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Chapter 4. Regression

4.2 Regression model

Now, we test the regression model i.e. “LinearRegression” on the dataset as below, which has the similar steps as
classification problems. The predicted and actual points of the sine wave is shown in Fig. 4.2.

Important: Please note the following important points,

e The ‘stratify’ can not be used for single features as shown in Line 40.

e The ‘score’ uses ‘feature and target (not predicted target)’ for scoring in Regression. This calculates the
score which is known as R? score.

e The ‘accuracy score’ uses ‘feature and ‘predicted target’ for scoring in Classification.

Listing 4.3: Score of regression model

# regression_ezx.py

import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

N = 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# plt.plot(z, sine_wave, 'o0');

# plt.show()

# convert features in 2D format i.e. list of list
# print('Before: ', z.shape)

features = x[:, np.newaxis]

# print('dfter: ', features.shape)

# uncomment below line to see the differences
# print(z)
# print(features)

# save sine wave in variable 'targets'’
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = LinearRegression()
regressor.fit(train_features, train_targets) # fit the model for training data

(continues on next page)
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4.2. Regression model

(continued from previous page)

# predict the 'target' for 'training data'’
prediction_training_targets = regressor.predict(train_features)

# note that 'score' uses 'feature and target (not predict_target)'
# for scoring in Regression

# whereas 'accuracy_score' uses 'features and predict_targets'

# for scoring in Classtification

self_accuracy = regressor.score(train_features, train_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print("Accuracy for test data:", test_accuracy)

# plot the predicted and actual target for test data
plt.plot(prediction_test_targets, '-*')
plt.plot(test_targets, '-o' )

plt.show()

Following are the outputs of above code,

$ python regression_ex.py
Accuracy for training data (self accuracy): 0.843858910263
Accuracy for test data: 0.822872868183
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Fig. 4.2: Actual and predicted points of the sine wave
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Chapter 4. Regression

4.3 Conclusion

In this chapter, we saw the example of Regression problems. Also, we saw the basic differences between the scoring
in the Regression and Classification problems.
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Chapter 5

Cross validation

5.1 Introduction

In this chapter, we will enhance the Listing 2.2 to understand the concept of ‘cross validation’. Let’s comment the

Line 24 of the Listing 2.2 as shown below and and excute the code 7 times.

# multiclass_ex.py

import numpy as np

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

# both train_size and test_size are defined when we do not want to
# use all the data for training and testing e.g. in below example we can
# use train_size=0.4 and test_size=0.2
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accurancy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
# random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# print ("Proportion of 'targets' in the dataset”)

# print("411 data:", np.bincount(train_targets) / float(len(train_targets)))
# print("Training:", np.bincount (train_targets) / float(len(train_targets)))
# print("Training:", np.bincount(test_targets)/ float(len(test_targets)))

# use KNeighborsClassifier for classification

classifier = KNeighborsClassifier()

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

(continues on next page)
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(continued from previous page)

# predict the 'target' for 'test data’
prediction_targets = classifier.predict(test_features)

# check the accuracy of the model
print("Accuracy:", end=' ')
print(np.sum(prediction_targets == test_targets) / float(len(test_targets)))

o Now execute the code 7 times and we will get different ‘accuracy’ at different run.

$ python multiclass_ex.py
Accuracy: 0.966666666667

$ python multiclass_ex.py
Accuracy: 1.0

$ python multiclass_ex.py
Accuracy: 1.0

$ python multiclass_ex.py
Accuracy: 0.966666666667

$ python multiclass_ex.py
Accuracy: 1.0

$ python multiclass_ex.py
Accuracy: 0.966666666667

$ python multiclass_ex.py
Accuracy: 0.933333333333

Note:

e The ‘accuracy’ may be changed dramatically for some other datasets for different ‘train’ and ‘test’ dataset.
Therefore it is not a good measure to compare the two models.

e Also, in this method of finding the accuracy, we have very few data as the ‘test-data’. Further, we have less
train-data as well due to splitting.

To avoid these problems, the ‘cross-validation’ method is used for calculating the accuracy.

5.2 Cross validation

In the below code, the cross-validation value is set to 7 i.e. ‘cv=7" at Line 48.

Note: Following are the operations performed by the cross-validation method,

The ‘cv=T" will partition the data into 7 parts.

Then it will use ‘first’ part as ‘test set’ and others as ‘training set’.

Next, it will use ‘second’ part as ‘test set’ and others as ‘training set’ and so on.
In this way, each sample will be in test-dataset exactly one time.

Also, in this method, we have more training and testing data.

Lastly, we need not to split the data manually in the cross-validation method.

# multiclass_ezx.py

import numpy as np

(continues on next page)
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5.2. Cross validation

(continued from previous page)

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

both train_size and test_size are defined when we do not want to

use all the data for training and testing e.g. in below example we can

use train_size=0.4 and test_size=0.2

train_features, test_features, train_targets, test_targets = train_test_split(

HOR R W

# features, targets,

# train_size=0.8,

test_size=0.2,

# random but same for all run, also accurancy depends on the

# selection of data e.g. <if we put 10 then accuracy will be 1.0
# in this exzample

# random_state=23,

# keep same proportion of 'target' in test and target data
stratify=targets

HHOoR R R R "R W

# )

print ("Proportion of 'targets' in the dataset")

print ("All data:", np.bincount(train_targets) / float(len(train_targets)))
print ("Training:", np.bincount(train_targets) / float(len(train_targets)))
print ("Training: ", np.bincount(test_targets)/ float(len(test_targets)))

HOR R W

# use KNevghborsClassifier for classification

classifier = KNeighborsClassifier()

# training using 'training data’

# classifier. fit(train_features, train_targets) # fit the model for training data
# predict the 'target' for 'test data'’

# prediction_targets = classifier.predict(test_features)

H*

check the accuracy of the model
print ("dccuracy: ", end=' ')
# print(np.sum(prediction_targets == test_targets) / float(len(test_targets)))

H*

# cross-validation

scores = cross_val_score(classifier, features, targets, cv=7)
print("Cross validation scores:", scores)

print("Mean score:", np.mean(scores))

e Below are the outputs for above code, which are the same for each run,

$ python multiclass_ex.py

Cross validation scores: [ 0.95833333 1. 0.95238095
0.9047619 0.95238095 1. 1. ]

Mean score: 0.966836734694

$ python multiclass_ex.py

Cross validation scores: [ 0.95833333 1. 0.95238095
0.9047619 0.95238095 1. 1. ]

Mean score: 0.966836734694

$ python multiclass_ex.py

(continues on next page)
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(continued from previous page)

Cross validation scores: [ 0.95833333 1. 0.95238095
0.9047619 0.95238095 1. 1. ]
Mean score: 0.966836734694

5.3 Splitting of data

Warning;:

e Note that, in cross-validation, the data is not split randomly, therefore it is not good for the data where
the ‘targets’ are nicely arranged. Therefore, it is good to shuffle the targets before applying the ‘cross-
validation’ as shown in Listing 5.1.

e Further, it does not create the model to predict the new samples; it only gives an idea about the accuracy
of model.

e It takes time to cross validate the dataset as number of iterations are increased e.g. for cv=7, the data
will be split in 7 parts and each part will be tested with respect to others. Further, the data will be
iterated 7 times, therefore total 49 checks will be performed.

5.3.1 Manual shuffling

e Targets can be shuffled manually as below,

Listing 5.1: Shuffle the targets

# multiclass_ex.py

import numpy as np

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

# both train_size and test_size are defined when we do not want to

# use all the data for training and testing e.g. in below example we can

# use train_size=0.4 and test_size=0.2

# train_features, test_features, train_targets, test_targets = train_test_split(

# features, targets,
# train_stze=0.8,

test_size=0.2,

# random but same for all run, also accurancy depends on the
selection of data e.g. if we put 10 then accuracy will be 1.0
in this exzample
random_state=23,
keep same proportion of 'target' in test and target data

tratify=targets

HOR R R W™ R W
[ T

# )

# print ("Proportion of 'targets' in the dataset”)
# print("All data:", np.bincount(train_targets) / float(len(train_targets)))
# print("Training:", np.bincount(train_targets) / float(len(train_targets)))

(continues on next page)
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(continued from previous page)

# print("Training:", np.bincount(test_targets)/ float(len(test_targets)))

# use KNeighborsClasstifier for classification

classifier = KNeighborsClassifier()

# training using 'training data’

# classifier.fit(train_features, train_targets) # fit the model for training data
# predict the 'target' for 'test data’

# prediction_targets = classifier.predict(test_features)

# check the accuracy of the model
# print("dccuracy:", end=' ')
# print(np.sum(prediction_targets == test_targets) / float(len(test_targets)))

print("Targets before shuffle:\n", targets)

rng = np.random.RandomState (0)

permutation = rng.permutation(len(features))

features, targets = features[permutation], targets[permutation]
print("Targets after shuffle:\n", targets)

# cross-validation

scores = cross_val_score(classifier, features, targets, cv=7)
print("Cross validation scores:", scores)

print("Mean score:", np.mean(scores))

e Below is the output of above code. In the iris dataset we have equal number of samples for each target,
therefore the effect of shuffle and no-shuffle is almost same, but may vary when targets do not have equal
distribution.

$ python multiclass_ex.py

Targets before shuffle:
[0O0O00000...00000
11111111 ...11111
22222222 ...22222
]

Targets after shuffle:
[21020201112111...
111202001222212 ...
102101210222200 ...

]
Cross validation scores: [ 1. 0.95238095 0.9047619 1.
1. 0.95238095 0.95238095]

Mean score: 0.965986394558

5.3.2 Automatic shuffling (KFold, StratifiedKFold and ShuffleSplit)

The shuffling can be performed using inbuilt functions as well as shown in below code.

Note: The data are not shuffled in the Listing 5.2, but chosen random during splitting the data into the ‘training
data’ and ‘test data’. Following 3 options are available for splitting (select any one from the Lines 55, 56 and 58),

e KFold(n_splits=3, shufle=True) : Shuffle the data and split the data into 3 equal part (same as Listing
5.1).

o StratifiedKFold(n_splits=3, shuffle=True) : KFold with ‘stratify’ option (see Listing 2.2 for details).

o ShuffleSplit(n_splits=3, test size=0.2) : Randomly splits the data. Also, it has the option to define the
size of the test data.
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Chapter 5. Cross validation

Warning: Note that in the Iris data set, the targets are equally distributed, therefore if we use the option
KFold(n_splits=3), i.e. no shuffling, then we will have the accuracy ‘0’; as the data will be trained on only one
set. Hence it is a good idea to keep shuffle on.

Listing 5.2: KFold, StratifiedKFold and ShuffleSplit

# multiclass_ezx.py

import numpy as np

from sklearn.datasets import load_iris

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold, StratifiedKFold, ShuffleSplit

# create object of class 'load_iris'

iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

both train_size and test_size are defined when we do not want to

use all the data for training and testing e.g. in below example we can

use train_size=0.4 and test_size=0.2

train_features, test_features, train_targets, test_targets = train_test_split(
# features, targets,
# train_size=0.8,

test_size=0.2,

# random but same for all run, also accurancy depends on the

selection of data e.g. if we put 10 then accuracy will be 1.0

O R R

in this example
random_state=23,
keep same proportion of 'target' in test and target data

FHOR R R R R W
(SIS T

tratify=targets
#)

print ("Proportion of 'targets' in the dataset”)

print ("411 data:", np.bincount(train_targets) / float(len(train_targets)))
print ("Training: ", np.bincount(train_targets) / float(len(train_targets)))
print ("Training:", np.bincount(test_targets)/ float(len(test_targets)))

H R R R

# use KNeighborsClassifier for classification

classifier = KNeighborsClassifier()

# training using 'training data’

# classifier.fit(train_features, train_targets) # fit the model for training data
# predict the 'target' for 'test data'

# prediction_targets = classifier.predict(test_features)

# check the accuracy of the model
print ("dccuracy: ", end=' ')
print (np.sum(prediction_targets == test_targets) / float(len(test_targets)))

H R

print ("Targets before shuffle:\n", targets)

rng = np.random.RandomState (0)

permutation = rng.permutation(len(features))

features, targets = features[permutation], targets[permutation]
print ("Targets after shuffle:\n", targets)

THOR R R R

# cross-validation

(continues on next page)
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5.4. Template for comparing algorithms

(continued from previous page)

# cv = KFold(n_splits=3, shuffle=True) # shuffle and divide in 3 equal parts
cv = StratifiedKFold(n_splits=3, shuffle=True) # KFold with 'stratify' option
# # test_size is available in ShuffleSplit

# cv = ShuffleSplit(n_splits=3, test_size=0.2)

scores = cross_val_score(classifier, features, targets, cv=cv)

print("Cross validation scores:", scores)

print("Mean score:", np.mean(scores))

Important: In ‘ShuffleSplit’, the data do appear in the ‘test set’ equally.

It is always better to use “KFold with shuffling” i.e. “cv = KFold(n_splits=3, shuffle=True)” or “StratifiedK-
Fold(n_splits=3, shuffle=True)”.

5.4 Template for comparing algorithms

As discussed before, the main usage of cross-validation is to compare various algorithms, which can be done as
below, where 4 algorithms (Lines 9-12) are compared.

# cross_valid_ezx.py

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

models = []

models.append(('LogisticRegression', LogisticRegression()))
models.append (('KNeighborsClassifier', KNeighborsClassifier()))
models.append (('SVC', SVC()))
models.append(('DecisionTreeClassifier', DecisionTreeClassifier()))

# KFold with 'stratify' option
cv = StratifiedKFold(n_splits=7, shuffle=True, random_state=23)
for name, model in models:
score = cross_val_score(model, features, targets, cv=cv)
print ("Model:{0}, Score: mean={1:0.5f}, var={2:0.5f}".format (
name,
score.mean(),
score.var ()

)

e Below is the output of above code, where we can see that SVC performs better than other algorithms.
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$ python cross_valid_ex.py

Model:LogisticRegression, Score: mean=0.96088, var=0.00141
Model:KNeighborsClassifier, Score: mean=0.96088, var=0.00141
Model:SVC, Score: mean=0.97449, var=0.00164
Model:DecisionTreeClassifier, Score: mean=0.95408, var=0.00115

Warning: Note that different values of ‘cv’ will give different results, e.g. if we put cv=3 at Line 29 (instead
of cv=cv), then we will get following results, which shows that ‘KNeighborsClassifier’ has the best performance.

$ python cross_valid_ex.py

Model:LogisticRegression, Score: mean=0.94690, var=0.00032
Model:KNeighborsClassifier, Score: mean=0.98693, var=0.00009
Model:SVC, Score: mean=0.97345, var=0.00008
Model:DecisionTreeClassifier, Score: mean=0.96732, var=0.00111

31 Meher Krishna Patel



© W N O ;oA W N =

-
(=]

Chapter 6

Clustering

6.1 Introduction

In this chapter, we will see the examples of clustering. Lets understand the clustering with an example first. In
the Listing 6.1, two lists i.e. x and y are plotted using ‘scatter’ plot. We can see that the data can be divided into
three clusters as shown in Fig. 6.1.

Note: In Fig. 6.1, it is easy to see the clusters as samples are very small; but it can not visualize so easily if we
have a huge number of samples, as shown in this chapter. In those cases, the machine learning approach can be
quite useful.

Listing 6.1: Clusters

# cluster_ez.py
import matplotlib.pyplot as plt

x = [-3, 25, -2, 7, -1, 9]
y = [11, 66, 13, 25, 12, 27]
plt.scatter(x, y)

plt.show()

6.2 KMeans

Now, we will cluster our data using “KMeans” algorithms.

e Similar to previous chapters, first we need to transform the data in 2-dimensional format, so that is can be
used by SciKit library. In the below code, the lists ‘x” and ‘y’ are merged together, so that a ‘list of list’ will
be created,

# cluster_ez.py

import matplotlib.pyplot as plt
import numpy as np

x = [-3, 25, -2, 7, -1, 9]
y = [11, 66, 13, 25, 12, 27]
# plt.scatter(z, y)

# plt.show()

(continues on next page)
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Fig. 6.1: Clusters

(continued from previous page)

# convert list into array based on columns
data = np.column_stack((x, y))
print(data)

$ python cluster_ex.py
[[-3 11]

[25 66]

-2 13]

[ 7 25]

[-1 12]

[ 9 27]]

e Now, we can use the “KMeans” algorithm to the transformed data as shown in Listing 6.2. The clusters
generated by the algorithm is shown in Fig. 6.2.

Note:

e Centroids are the location of mean points generated by KMeans algorithm, which can be generated using
‘cluster centers .

e Also, each points can be assigned a label using ‘labels . Note that, once we get the labels, then we can use
supervised learning for further analysis.

e Number of samples should be higher than the number of clusters. For example, currently we have 6 samples,
if we use “n_ clusters=7", then error will be generated.

e We should increase the value of “n_ clusters” to remove the outliers from the clustering. For example, in the
current dataset, the points location i.e. [25, 66] can be seen as outliers i.e. it may be in the dataset due to
measurement error or noise. Since, it is present in the dataset, it will affect the final locations of clusters. In
the other words, if we put “n_ clusters=2”, then one cluster will locate the point [25, 66], and second cluster
will take the mean the of rest of the points, which may not be desirable, therefore, we need to decide the

value of “n_ clusters” according to dataset.
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6.2. KMeans

Listing 6.2: Clusters generated by KMeans algorithm

# cluster_ez.py

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans

x = [-3, 25, -2, 7, -1, 9]
y = [11, 66, 13, 25, 12, 27]
# plt.scatter(z, y)

# plt.show()

# convert list into array based on columns
data = np.column_stack((x, y))
# print(data)

model = KMeans(n_clusters=3) # separate data in 3 clusters
model.fit(data)

model .predict(data)

# model. fit_predict(data) # combine above two steps in ome

# locations of the means generated by the KMeans
centroids = model.cluster_centers_
print("Centroids:\n", centroids)

# each sample is labelled as well
targets = model.labels_
print("Targets or Lables:\n", targets)

# plot the data

plt.scatter(x, y)

plt.scatter(x = centroids[:, 0], y = centroids[:, 1], marker='x")
plt.show()

$ python cluster_ex.py

Centroids:

[[ -2. 12.]
[ 25. 66.]
[ 8. 26.]]

Targets or Lables:
[01020 2]

Tip: KMeans algorithm should be used for the number of samples less than 10000. If there are more than 10000
samples, then MiniBatchKMeans algorithm must be used, which converge faster than the KMeans, but the quality
of the results may reduce.
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Chapter 7

Dimensionality reduction

7.1 Introduction

During the data collection process, our aim is to collect as much as data possible. During this process, it might
possible some of the ‘features’ are correlated. If the dataset has lots of features, then it is good to remove some of
the correlated features, so that the data can be processed faster; but at the same time the accuracy of the model

may reduced.

7.2 Principal component analysis (PCA)

PCA is one of the technique to reduce the dimensionality of the data, as shown in this section.

7.2.1 Create dataset

e Lets create a dataset first,

# dimension_ezx.py

import numpy as np
import pandas as pd

# feature wvalues

x = np.random.randn(1000)
y = 2¥x

z = np.random.randn(1000)

# target wvalues
t=len(x)*[0] # list of len(z)
for i, val in enumerate(z):
if x[il+y[i]l+z[i] < O:
t[i] = 'N' # negative
else:
t[i] = 'P'

# create the dataframe

df = np.column_stack((x, y, z, t))
df = pd.DataFrame (df)

print (df.head())
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Chapter 7. Dimensionality reduction

Warning: The output ‘t’ depends on the the variables ‘x’, ‘y’ and ‘z’, therefore if these variables are not
correlated, then dimensionality reduction will result in severe performance degradation as shown in this chapter.

e Following is the output of above code,

$ python dimension_ex.py
0 1 2
1.619558594848966 3.239117189697932 -1.7181741395151733
0.7926656328473467  1.5853312656946934 -0.5003026519806438
-0.40666904321652636 -0.8133380864330527 -0.5233957097467451
-1.813173189559588  -3.626346379119176  -1.418416461398814
0.4357818365640018  0.8715636731280036  1.7840245820080853

s W NN - O
o ==2'%"'Yw

7.2.2 Reduce dimension using PCA

Now, we create the PCA model as shown Listing 7.1, which will transform the above datasets into a new dataset
which will have only 2 features (instead of 3).

Note: The PCA can have inputs which have only ‘numeric features’; therefore we need to ‘drop’ the ‘categorical’
features as shown in Line 26.

Next we need to instantiate an object of class PCA (Line 27) and the apply ‘fit’ method (Line 28).

Finally, we can transform our data using ‘transform’ method as shown in Line 29.

Listing 7.1: Dimensionality reduction using PCA

# dimension_ex.py

import numpy as np
import pandas as pd
from sklearn.decomposition import PCA

feature wvalues

= np.random.randn(1000)
2%x
np.random.randn(1000)

#
X
y
z

# target wvalues
t=len(x)*[0] # list of len(z)
for i, val in enumerate(z):
if x[i]+y[il+z[i] < O:
t[i] = 'N' # negative
else:
t[i] = 'P'

# create the dataframe

df = np.column_stack((x, y, z, t))
df = pd.DataFrame (df)

# print (df.head())

# dataframe for PCA : PCA can not have 'categorical' features
df_temp = df .drop(3, axis=1) # drop 'categorical' feature
pca = PCA(n_components=2) # 2 dimensional PCA
pca.fit(df_temp)

df_pca = pca.transform(df_temp)

print (df_pca)

e Following is the output of above code, where the dataset has only two features,
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$ python dimension_ex.py
[[-2.54693351 -0.07879497]
[ 0.42820972 -0.90158131]
[-1.94145497 -1.70738801]
[-0.92088711 0.54590025]
[-2.44899588 -1.403821 ]
[-1.94568343 -0.50371273]]

7.2.3 Compare the performances

Now, we will compare the performances of the system with and without dimensionality reduction.

Note:

Please note the following points in this section,

e If the features are highly correlated, then performance after ‘dimensionality reduction’ will be same as the

without ‘dimensionality reduction’.

e If the features have good correlation, then performance after ‘dimensionality reduction’ will be reduced
slightly than the without ‘dimensionality reduction’.
e If the features have no correlation, then performance after ‘dimensionality reduction’ will be reduced signifi-
cantly than the without ‘dimensionality reduction’.

The code which is added to Listing 7.1 is exactly same as the code which is discussed in Listing 3.3; i.e. split of
dataset into ‘test’ and ‘training’ and then check the score, as shown in below code.

Here Lines 42-70 calculates the score for ‘without dimensionality reduction’ case, whereas Lines 73-103 calculates
the score of “dimensionality reduction using PCA”.

Listing 7.2: Dimensionality reduction using PCA

# dimension_ez.py

import numpy as np
import pandas as pd
from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

feature wvalues

= np.random.randn(1000)
2¥x
np.random.randn(1000)

N < M %
]

# target wvalues
t=len(x)*[0] # list of len(z)
for i, val in enumerate(z):
if x[i]+y[il+z[i] < O:
t[i] = 'N' # negative
else:
t[i] = 'P’

# create the dataframe

df = np.column_stack((x, y, z, t))
df = pd.DataFrame (df)

# print(df.head())

# dataframe for PCA : PCA can nmot have

'categorical’ features

(continues on next page)
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Chapter 7. Dimensionality reduction

(continued from previous page)

df _temp = df .drop(3, axis=1) # drop 'categorical' feature
pca = PCA(n_components=2) # 2 dimensional PCA
pca.fit(df_temp)

df_pca = pca.transform(df_temp)

# print (df_pca)

# assign targets and features wvalues

# targets

targets = df [3]

# features

features = pd.concat([df[0], df[1], df[2]], axis=1)

#### Results for the without reduction case

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. 2f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# use LogisticRegression

classifier = LogisticRegression()

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

print ("Without dimensionality reduction:")

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print ("Accuracy for test data:", test_accuracy)

#### Results for the without reduction case

# updated features after dimensionality reduction

features = df_pca

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# use LogisticRegression

(continues on next page)
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7.2. Principal component analysis (PCA)

(continued from previous page)

classifier = LogisticRegression()
# training using 'training data’
classifier.fit(train_features, train_targets) # fit the model for training data

print("After dimensionality reduction:")

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print("Accuracy for test data:", test_accuracy)

e Following is the output of the above code.

Note: Since the ‘x’ and ‘y’ are completely correlated (i.e. y = 2*x), therefore the performance of dimensionality
reduction is exactly same as the without reduction case.

Also, we will get different results for different execution of code, as the ‘x’; ‘y’ and ‘z’ are randomly generated on
each run.

$ python dimension_ex.py

Without dimensionality reduction:
Accuracy for training data (self accuracy): 0.99875
Accuracy for test data: 1.0

After dimensionality reduction:
Accuracy for training data (self accuracy): 0.99875
Accuracy for test data: 1.0

e Next replace the value of ‘y’ at Line 13 of Listing 7.2 with following value, and run the code
again,

[...]
y = 2*x + np.random.randn(1000)
[...]

As, noise is added to ‘x’ as noise is added, therefore the ‘x’ and ‘y’ are not completely correlated (but still highly
correlated), therefore the performance of the system will reduce slightly, as shown in below results,

Note: Remember, the ‘target’ variable depends on ‘x’, ‘y’ and ‘z’ i.e. it is the sign of the sum of these variables.
Therefore, if the correlation between the ‘features’ will reduce, the performance of the dimensionality reduction
will also reduce.

$ python dimension_ex.py

Without dimensionality reduction:
Accuracy for training data (self accuracy): 0.9925
Accuracy for test data: 0.99

After dimensionality reduction:
Accuracy for training data (self accuracy): 0.9775
Accuracy for test data: 0.97
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e Again, replace the value of ‘y’ at Line 13 of Listing 7.2 with following value, and run the code
again,

[...]
y = np.random.randn(1000)
[...]

Now ‘x’, ‘y’ and ‘z’ are completely independent of each other, therefore the performance will reduce significantly
as shown below,

Note: Each run will give different result, below is the worst case result, where test data accuracy is 0.575 (i.e.
probability 0.5), which is equivalent to the random guess of the target.

$ python dimension_ex.py

Without dimensionality reduction:
Accuracy for training data (self accuracy): 0.995
Accuracy for test data: 0.995

After dimensionality reduction:
Accuracy for training data (self accuracy): 0.64125
Accuracy for test data: 0.575

7.3 Usage of PCA for dimensionality reduction method

Important: Below are the usage of dimensionality reduction technique,

Dimensionality reduction is used to reduce the complexity of data.

It allows faster data processing, but reduces the accuracy of the model.

It can be used as noise reduction process.

It can be used as ‘preprocessor of the data’ for the supervised leaning process i.e. regression and classification.

7.4 PCA limitations

Warning: Note that the PCA is very sensitive to scaling operations, more specifically it maximizes variability
based on the variances of the features.

Due to this reason, it gives more weight to ‘high variance features i.e. high-variance-feature will dominate the
overall performance.

To avoid this problem, it is better to normalized the features before applying the PCA model as shown in
Section 8.4.

7.5 Conclusion

In this chapter, we learn the concept of dimensionality reduction and PCA. In the next chapter, we will see the
usage of PCA in a practical problem.
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Chapter 8

Preprocessing of the data using Pandas
and SciKit

In previous chapters, we did some minor preprocessing to the data, so that it can be used by SciKit library. In
this chapter, we will do some preprocessing of the data to change the ‘statitics’ and the ‘format’ of the data, to
improve the results of the data analysis.

8.1 Chronic kidney disease

The “chronic_kidney disease.arft” dataset is used for this tutorial, which is available at the UCI Repository.

e Lets read and clean the data first,

Listing 8.1: Read the data

# kidney_dis.py

import pandas as pd
import numpy as np

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc',
'ba','bgr','bu','sc','sod', 'pot', 'hemo’', 'pcv’',
'wbcc', 'rbec', 'htn','dm','cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' in 1t, convert these into Nal
df = df .replace('?', np.nan)
# drop the Nal
df = df.dropna(axis=0, how="any")

# print total samples

print("Total samples:", len(df))

# print 4-rows and 6-columns
print("Partial data\n", df.iloc[0:4, 0:6])

e Below is the output of above code,
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Chapter 8. Preprocessing of the data using Pandas and SciKit

$ python kidney_dis.py
Total samples: 157
Partial data

age bp sg al su rbc
30 48 70 1.005 4 O normal
36 53 90 1.020 2 O abnormal
38 63 70 1.010 3 O abnormal
41 68 80 1.010 3 2 normal

8.2 Saving targets with different color names

In this dataset we have two ‘targets’ i.e. ‘ckd’ and ‘notckd’ in the last column (‘classification’). It is better to save
the ‘targets’ of classification problem with some ‘color-name’ for the plotting purposes. This helps in visualizing
the scatter-plot as shown in this chapter.

Listing 8.2: Alias the ‘target-values’ with ‘color-values’

# kidney_dis.py

import pandas as pd
import numpy as np

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc',
'ba', 'bgr','bu','sc','sod', 'pot', 'hemo', 'pcv',
'wbcc', 'rbec', 'htn','dm','cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' im 1it, convert these into Nall
df = df .replace('?', np.nan)
# drop the Nal
df = df .dropna(axis=0, how="any")

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print ("Partial data\n", df.iloc[0:4, 0:6])

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
print(label_color[0:3], label_color[-3:-1])

Note: We can convert the ‘categorical-targets (i.e. strings ‘ckd’ and ‘notckd’) into ‘numeric-targets (i.e. 0 and
1’) using “.cat.codes” command, as shown below,

# covert 'ckd' and 'motckd' labels as '0' and '1'

targets = df['classification'].astype('category').cat.codes
# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i==0 else 'green' for i in targets]
print(label_color[0:3], label_color[-3:-1])
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8.3. Basic PCA analysis

e Below is the first three and last two samples of the ‘label color’,

$ python kidney_dis.py
['red', 'red', 'red'] ['green', 'green']

8.3 Basic PCA analysis

Let’s perform the dimensionality reduction using PCA, which is discussed in Section 7.2.

8.3.1 Preparing data for PCA analysis

Note that, for PCA the features should be ‘numerics’ only. Therefore we need to remove the ‘categorical’ features
from the dataset.

Listing 8.3: Drop categorical features

# kidney_dis.py

import pandas as pd
import numpy as np

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc',
'ba','bgr','bu','sc','sod', 'pot', 'hemo’', 'pcv’',
'wbcc', 'rbecc', 'htn','dm','cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' in 1t, convert these into Nal
df = df .replace('?', np.nan)
# drop the Nal
df = df.dropna(axis=0, how="any")

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print("Partial data\n", df.iloc[0:4, 0:6])

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
# print(label_color[0:3], label_color[-3:-1])

# list of categorical features

categorical_ = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane'
]

# drop the "categorical" features

# drop the classification column

df = df .drop(labels=['classification'], axis=1)

# drop using 'inplace' which %s equivalent to df = df.drop()

df .drop(labels=categorical_, axis=1, inplace=True)
print("Partial data\n", df.iloc[0:4, 0:6]) # print partial data
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Chapter 8. Preprocessing of the data using Pandas and SciKit

e Below is the output of the above code. Note that, if we compare the below results with the results of Listing
8.1, we can see that the ‘rbc’ column is removed.

$ python kidney_dis.py
Partial data

age bp sg al su bgr
30 48 70 1.005 4 0O 117
36 53 90 1.020 2 0 70
38 63 70 1.010 3 0O 380
41 68 80 1.010 3 2 157

8.3.2 dimensionality reduction
Let’s perform dimensionality reduction using the PCA model as shown in Listing 8.4. The results are shown in
Fig. 8.1, where we can see that the model can fairly classify the kidney disease based on the provided features. In

the next section we will improve this performance by some more preprocessing of the data.

Listing 8.4: dimensionality reduction using PCA

# kidney_dis.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc',
'ba', 'bgr','bu','sc','sod', 'pot', 'hemo’', 'pcv’',
'wbcc', 'rbec', 'htn','dm', 'cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' in it, convert these into Nal
df = df .replace('?', np.nan)
# drop the Nal
df = df.dropna(axis=0, how="any")

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print("Partial data\n"”, df.iloc[0:4, 0:6])

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
# print(label_color[0:3], label_color[-3:-1])

# list of categorical features

categorical_ = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane'
]

# drop the "categorical" features

# drop the classification column

df = df .drop(labels=['classification'], axis=1)

# drop using 'inplace' which is equivalent to df = df.drop()

(continues on next page)
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8.4.

Preprocessing using SciKit library

(continued from previous page)

df .drop(labels=categorical_, axis=1, inplace=True)
# print("Partial data\n", df.iloc[0:4, 0:6]) # print partial data

pca = PCA(n_components=2)

pca.fit(df)

T = pca.transform(df) # transformed data

# change 'T' to Pandas-DataFrame to plot using Pandas-plots
T = pd.DataFrame(T)

# plot the data

T.columns = ['PCA component 1', 'PCA component 2']

T.plot.scatter (x='PCA component 1', y='PCA component 2', marker='o',
alpha=0.7, # opacity
color=label_color,
title="red: ckd, green: not-ckd" )

plt.show()

red: ckd, green: not-ckd

]
300 ~

200 ~

100 A

PCA component 2

T T
5000 10000
PCA component 1

Fig. 8.1: Chronic Kidney Disease

8.4 Preprocessing using SciKit library

T
15000

It is shown in Section 7.4, that the overall performance of the PCA is dominated by ‘high variance features’.

Therefore features should be normalized before using the PCA model.

In the below code ‘StandardScalar’ preprocessing module is used to normalized the features, which sets the
‘mean=0" and ‘variance=1" for all the features. Note that the improvement in the results in Fig. 8.2, just by

adding one line in Listing 8.5.

Important:

Currently, we are using preprocessing for the ‘unsupervised learning’.
b
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Chapter 8. Preprocessing of the data using Pandas and SciKit

If we want to use the preprocessing in the ‘supervised learning’, then it is better to ‘split’ the dataset as ‘test and
train’ first; and then apply the preprocessing to the ‘training data’ only. This is the good practice as in
real-life problems we will not have the future data for preprocessing.

Listing 8.5: Scale the features using “StandardScalar”

# kidney_dis.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA
from sklearn import preprocessing

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc’,
'ba', 'bgr','bu','sc','sod', 'pot', 'hemo’', 'pcv’',
'wbcc', 'rbec', 'htn','dm', 'cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' in 1t, convert these into Nal
df = df .replace('?', np.nan)
# drop the Nal
df = df.dropna(axis=0, how="any")

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print("Partial data\n", df.iloc[0:4, 0:6])

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
# print(label_color[0:3], label_color[-3:-1])

# list of categorical features

categorical_ = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane'
]

# drop the "categorical" features

# drop the classification column

df = df .drop(labels=['classification'], axis=1)

# drop using 'inplace' which is equivalent to df = df.drop()

df .drop(labels=categorical_, axis=1, inplace=True)

# print("Partial data\n", df.iloc[0:4, 0:6]) # print partial data

# StandardScaler: mean=0, wvariance=1
df = preprocessing.StandardScaler() .fit_transform(df)

pca = PCA(n_components=2)

pca.fit(df)

T = pca.transform(df) # transformed data

# change 'T' to Pandas-DataFrame to plot using Pandas-plots
T = pd.DataFrame(T)

(continues on next page)
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(continued from previous page)

# plot the data

T.columns = ['PCA component 1', 'PCA component 2']

T.plot.scatter (x='PCA component 1', y='PCA component 2', marker='o',
alpha=0.7, # opacity
color=label_color,
title="red: ckd, green: not-ckd" )

plt.show()

red: ckd, green: not-ckd
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Fig. 8.2: Chronic Kidney Disease results using “StandardScalar”

8.5 Preprocessing using Pandas library

Note that, in Section 8.3.1, we dropped several ‘categorical features’ as these can not be used by PCA. But we can
convert these features to ‘numeric features’ and use them in PCA model.

Again, see the further improvement in the results in Fig. 8.3, just by adding one line in Listing 8.6.

Listing 8.6: Convert ‘categorical features’ to ‘numeric features’ us-
ing Pandas

# kidney_dis.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA
from sklearn import preprocessing

# create header for dataset
header = ['age','bp','sg','al','su', 'rbc', 'pc', 'pcc',

(continues on next page)
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(continued from previous page)

'ba','bgr','bu','sc','sod', 'pot', 'hemo', 'pcv’',
'wbcc', 'rbec', 'htn','dm','cad', 'appet', 'pe', 'ane’',
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' in 1t, convert these into Nal
df = df .replace('?', np.nan)
# drop the Nal
df = df.dropna(axis=0, how="any")

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print("Partial data\n", df.iloc[0:4, 0:6])

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
# print(label_color[0:3], label_color[-3:-1])

# list of categorical features

categorical_ = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane'
]

# drop the "categorical” features

# drop the classification column

df = df .drop(labels=['classification'], axis=1)

# drop using 'inplace' which %s equivalent to df = df.drop()
# df.drop(labels=categorical_, azis=1, inplace=True)

# convert categorical features into dummy wvariable
df = pd.get_dummies(df, columns=categorical_)
# print("Partial data\n", df.iloc[0:4, 0:6]) # print partial data

# StandardScaler: mean=0, wvariance=1
df = preprocessing.StandardScaler() .fit_transform(df)

pca = PCA(n_components=2)

pca.fit(df)

T = pca.transform(df) # transformed data

# change 'T' to Pandas-DataFrame to plot using Pandas-plots
T = pd.DataFrame(T)

# plot the data

T.columns = ['PCA component 1', 'PCA component 2']

T.plot.scatter (x='PCA component 1', y='PCA component 2', marker='o',
alpha=0.7, # opacity
color=label_color,
title="red: ckd, green: not-ckd" )

plt.show()

Important: Let’s summarize what we did in this chapter. We had a dataset which had a large number of
features. PCA looks for the correlation between these features and reduces the dimensionality. In this example,
we reduce the number of features to 2 using PCA.

After the dimensionality reduction, we had only 2 features, therefore we can plot the scatter-plot, which is easier
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Fig. 8.3: Chronic Kidney Disease results using “get dummies”

to visualize. For example, we can clearly see the differences between the ‘ckd’ and ‘not ckd’ in the current example.

In conclusion, dimensionality reduction methods, such as PCA and Isomap, are used to reduce the dimensionality
of the features to 2 or 3. Next, these 2 or 3 features can be plotted to visualize the information.

It is important that the plot should be 2D or 3D format, otherwise it is very difficult for the eyes to visualize it
and interpret the information.
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Chapter 9

Pipeline

9.1 Introduction

Pipelines takes ‘a list of tranforms’ along with ‘one estimator at the end’ as the inputs. In this chapter, we will
use the ‘Pipeline’ to reimplement the Listing 8.6.

9.2 Pipeline

In this section, Listing 8.6 is reimplemented using ‘Pipeline’. In Listing 9.1 the Pipeline ‘pca’ is defined at Lines
56-60. When ‘pca.fit(df)’ operation is applied at Line 62, the ‘df’ is send to Pipeline for processing and model is
fit, and finally used by Line 63. This can be very handy tool when we have a chain of preprocessing.

Listing 9.1: Pipeline

# kidney_dis.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA
from sklearn import preprocessing
from sklearn.pipeline import Pipeline

# create header for dataset
header = ['age','bp','sg','al','su', ' 'rbc', 'pc', 'pcc',
'ba', 'bgr','bu','sc','sod', 'pot', 'hemo', 'pcv',
'wbcc', 'rbecc', 'htn','dm', 'cad', 'appet', '
'classification']
# read the dataset
df = pd.read_csv("data/chronic_kidney_disease.arff",
header=None,
names=header
)
# dataset has '?' im 1t, convert these into Nal
df = df.replace('?', np.nan)
# drop the Nal
df = df .dropna(axis=0, how="any")

pe','ane',

# print total samples

# print("Total samples:", len(df))

# print 4-rows and 6-columns

# print("Partial data\n", df.iloc[0:4, 0:6])

(continues on next page)
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9.2. Pipeline

(continued from previous page)

targets = df['classification'].astype('category')

# save target-values as color for plotting

# red: disease, green: no disease

label_color = ['red' if i=='ckd' else 'green' for i in targets]
# print(label_color[0:3], label_color[-3:-1])

# list of categorical features

categorical_ = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'dm', 'cad', 'appet', 'pe', 'ane'
]

# drop the "categorical" features

# drop the classification column

df = df .drop(labels=['classification'], axis=1)

# drop using 'inplace' which is equivalent to df = df.drop()
# df.drop(labels=categorical_, azis=1, inplace=True)

# convert categorical features into dummy variable
df = pd.get_dummies(df, columns=categorical_)
# print("Partial data\n", df.iloc[0:4, 0:6]) # print partial data

# StandardScaler: mean=0, wvariance=1
# df = preprocessing.StandardScaler().fit_transform(df)

# pca = PCA(n_components=2)

# add list of transforms in Pipeline and finally the 'estimator'
pca = Pipeline([
('scalar', preprocessing.StandardScaler()),
('dim_reduction', PCA(n_components=2))

D

pca.fit(df)

T = pca.transform(df) # transformed data

# change 'T' to Pandas-DataFrame to plot using Pandas-plots
T = pd.DataFrame(T)

# plot the data

T.columns = ['PCA component 1', 'PCA component 2']

T.plot.scatter (x='PCA component 1', y='PCA component 2', marker='o',
alpha=0.7, # opacity
color=label_color,
title="red: ckd, green: not-ckd" )

plt.show()
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Chapter 10

Clustering with dimensionality reduction

10.1 Introduction

In previous chapters, we saw the examples of ‘clustering Chapter 6, ‘dimensionality reduction (Chapter 7 and
Chapter 8)’, and ‘preprocessing (Chapter 8)’. Further, in Chapter 8, the performance of the dimensionality
reduction technique (i.e. PCA) is significantly improved using the preprocessing of data.

Remember, in Chapter 7 we used the PCA model to reduce the dimensionality of the features to 2, so that a 2D
plot can be plotted, which is easy to visualize. In this chapter, we will combine these three techniques together,
so that we can get much information from the scatter plot.

Note: In this chapter, we will use a ‘whole sale customer’ dataset, which is available at UCI Repository.

Our aim is to cluster the data so that we can see the products, which are bought by the customer together. For
example, if a person went to shop to buy some grocery, then is is quite likely that he will but the ‘milk’ as well,
therefore we can put the ‘milk’ near the grocery items; similarly it is quite unlikely that the same person will buy
the fresh vegetables at the same time.

If we can predict such behavior of the customer, then we can arrange the shop accordingly, which will increase the
sell of the items. In this chapter, we will do the same.

10.2 Read and clean the data

e First the the dataset and drop the columns which have “Null” values,

# whole_sale.py
import pandas as pd

df = pd.read_csv('data/Wholesale customers data.csv')
print(df.isnull() .sum()) # print the sum of null values

e Following is the output of above code. Note that there is no ‘Null’ value, therefore we need not to drop

anything.
$ python whole_sale.py
Channel 0
Region 0
Fresh 0
Milk 0
Grocery 0

(continues on next page)
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(continued from previous page)

Frozen 0
Detergents_Paper 0
Delicatessen 0

dtype: int64

e Next, our aim is to find the buying-patterns of the customers, therefore we do not need the columns ‘Channel’
and ‘Region’ for this analysis. Hence we will drop these two columns,

# whole_sale.py
import pandas as pd

df = pd.read_csv('data/Wholesale customers data.csv')
print(df.isnull() .sum()) # print the sum of null values

df = df .drop(labels=['Channel', 'Region'], axis=1)
# print(df.head())

10.3 Clustering using KMean

e Now perform the clustering as below. Note that, the ‘Normalizer()’ is used at Line 14 for the preprocessing.
We can try the different preprocessing-methods as well, to visualize the outputs.

Note: After completing the chapter, try following as well and see the outputs,

e Use different ‘preprocessing’” methods e.g ‘MaxAbsScaler’ and ‘StandardScaler’ etc. and see the performance
of the code.
o Use different values of n_ clusters e.g 2, 3 and 4 etc.

# whole_sale.py

import pandas as pd
from sklearn import preprocessing
from sklearn.cluster import KMeans

df = pd.read_csv('data/Wholesale customers data.csv')
# print(df.isnull().sum()) # print the sum of null values

df = df .drop(labels=['Channel', 'Region'], axis=1)
# print(df.head())

# preprocessing
T = preprocessing.Normalizer().fit_transform(df)

# change n_clusters to 2, 3 and 4 etc. to see the output patterns
n_clusters = 3 # number of cluster

# Clustering using KMeans

kmean_model = KMeans(n_clusters=n_clusters)

kmean_model.fit (T)

centroids, labels = kmean_model.cluster_centers_, kmean_model.labels_
# print(centroids)

# print(labels)
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Chapter 10. Clustering with dimensionality reduction

10.4 Dimensionality reduction

Now, we will perform the dimensionality reduction using PCA. We will reduce the dimensions to 2.

Important:

e Currently, we are performing the clustering first and then dimensionality reduction as we have few features
in this example.

o If we have a very large number of features, then it is better to perform dimensionality reduction first and
then use the clustering algorithm e.g. KMeans.

# whole_sale.py

import pandas as pd

from sklearn import preprocessing
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

df = pd.read_csv('data/Wholesale customers data.csv')
# print(df.isnull().sum()) # print the sum of null values

df = df .drop(labels=['Channel', 'Region'], axis=1)
# print (df.head())

# preprocessing
T = preprocessing.Normalizer() .fit_transform(df)

# change n_clusters to 2, 3 and 4 etc. to see the output patterns
n_clusters = 3 # number of cluster

# Clustering using KMeans

kmean_model = KMeans(n_clusters=n_clusters)

kmean_model.fit (T)

centroids, labels = kmean_model.cluster_centers_, kmean_model.labels_
# print (centroids)

# print(labels)

# Dimesionality reduction to 2

pca_model = PCA(n_components=2)

pca_model .fit(T) # fit the model

T = pca_model.transform(T) # transform the 'normalized model'
# transform the 'centroids of KMean'

centroid_pca = pca_model.transform(centroids)

# print(centroid_pca)

10.5 Plot the results

Finally plot the results as below. The scatter plot is shown in Fig. 10.1.

e Lines 36-39 assign colors to each ‘label’, which are generated by KMeans at Line 24.

e Lines 41-45, plots the components of PCA model using the scatter-plot. Note that, KMeans generates
3-clusters, which are used by ‘PCA’; therefore total 3 colors are displayed by the plot.

e Lines 47-51, plots the ‘centroids’ generated by the KMeans.

e Line 53-66 plots the ‘features names’ along with the ‘arrows’.

Important:
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10.5. Plot the results

e The arrows are the projection of each feature on the principle component axis. These arrows represents
the level of importance of each feature in the multidimensional scaling. For example, ‘Frozen’ and ‘Fresh’
contribute more that the other features.

e In Fig. 10.1 we can conclude that the ‘Fresh items such as fruits and vegetables’ should be places place
separately; whereas ‘Grocery’, ‘Detergents Paper’ and ‘Milk’ should be placed close to each other.

# whole_sale.py

import pandas as pd

import matplotlib.pyplot as plt

from sklearn import preprocessing
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

df = pd.read_csv('data/Wholesale customers data.csv')
# print(df.isnull().sum()) # print the sum of null values

df = df .drop(labels=['Channel', 'Region'], axis=1)
# print(df.head())

# preprocessing
T = preprocessing.Normalizer() .fit_transform(df)

# change n_clusters to 2, 3 and 4 etc. to see the output patterns
n_clusters = 3 # number of cluster

# Clustering using KMeans

kmean_model = KMeans(n_clusters=n_clusters)

kmean_model.fit (T)

centroids, labels = kmean_model.cluster_centers_, kmean_model.labels_
# print(centroids)

# print(labels)

# Dimesionality reduction to 2

pca_model = PCA(n_components=2)

pca_model.fit(T) # fit the model

T = pca_model.transform(T) # transform the 'normalized model'
# transform the 'centroids of KMean'

centroid_pca = pca_model.transform(centroids)

# print(centroid_pca)

# colors for plotting

colors = ['blue', 'red', 'green', 'orange', 'black', 'brown']
# assign a color to each features (note that we are using features as target)
features_colors = [ colors[labels[i]l] for i in range(len(T)) ]

# plot the PCA components

plt.scatter(T[:, 0], T[:, 1],
c=features_colors, marker='o',
alpha=0.4

# plot the centroids

plt.scatter(centroid_pcal:, 0], centroid_pcal:, 1],
marker='x"', s=100,
linewidths=3, c=colors

# store the values of PCA component in vartable: for easy writing
xvector = pca_model.components_[0] * max(T[:,0])
yvector = pca_model.components_[1] * max(T[:,1])

(continues on next page)
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(continued from previous page)

columns = df.columns

# plot the 'name of individual features' along with vector length
for i in range(len(columns)):
# plot arrows
plt.arrow(0, 0, xvector[il, yvector[i],
color='b', width=0.0005,
head_width=0.02, alpha=0.75
)
# plot name of features
plt.text(xvector[i], yvector[i], list(columns)[i], color='b', alpha=0.75)

plt.show()

Fig. 10.1: Scatter plot for ‘Wholesale dataset’
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Chapter 11

Image recognition

11.1 Introduction

In previous chapters, we saw the examples of ‘classification’, ‘regression’, ‘preprocessing’, ‘dimensionality reduction’
and ‘clustering’. In these examples we considered the numeric and categorical features. In this chapter, we will
use the ‘numerical features’, but these features will represent the images.

Note: In Chapter 2, we used the the Iris-dataset which was available in the SciKit library package; and the
dataset which is available in the SciKit library starts with prefix ‘load ’ e.g. load iris.

In this chapter, we will use the dataset whose names are available in the dataset. And we need Internet connection
to load them on the computer. These datasets start with ‘fetch ’ e.g. ‘fetch olivetti faces’, as shown in next
section.

When the dataset ‘fetch olivetti faces’ is instantiated, then the data will be downloaded and will be saved in
~/scikit_learn data. Further, once the data set is downloaded then it will be used from this directory.

11.2 Fetch the dataset

Lets download the dataset and see the contents of it. Note that the dataset will be downloaded during instantiation
(Line 4), and not by the Line 2.

Note: In the dataset, there are images of 40 people with 10 different poses e.g. smiling and angry faces etc.
Therefore, there are total 400 samples (i.e. 40x10).

Listing 11.1: Download the data

# faces_ez.py

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces

faces = fetch_olivetti_faces() # download the dataset at ~“/scikit_learn_data
print("Keys:", faces.keys()) # display keys

print("Total samples and image size:", faces.images.shape)

print("Total samples and features:", faces.data.shape)

print("Total samples and targets:", faces.target.shape)
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Following is the output of above code. Note that there are total 400 samples and the images size is (64, 64), which
is stored as features of size 4096 (i.e. 64x64).

$ python faces_ex.py

Keys: dict_keys(['data', 'images', 'target', 'DESCR'])
Total samples and image size: (400, 64, 64)

Total samples and features: (400, 4096)

Total samples and targets: (400,)

Note: Please look at the values of the ‘images’, ‘data’ and ‘targets’ as well as below,

$ python -i faces_ex.py

>>> # Sizes
>>> print(faces.images[0] .shape)
(64, 64)

>>> print(faces.data[0].shape)
(4096, )

>>> print(faces.target[0].size)
1

>>> # Contents
>>> print(faces.images[0])

[[ 0.30991736 0.36776859 0.41735536 ..., 0.37190083 0.33057851
0.30578512]

[ 0.3429752 0.40495867 0.43801653 ..., 0.37190083 0.33884299
0.3140496 1]

[ 0.3429752 0.41735536 0.45041323 ..., 0.38016528 0.33884299

0.29752067]

H

[ 0.21487603 0.20661157 0.22314049 ..., 0.15289256 0.16528925

0.17355372]
[ 0.20247933 0.2107438 0.2107438 ..., 0.14876033 0.16115703

0.16528925]
[ 0.20247933 0.20661157 0.20247933 ..., 0.15289256 0.16115703
0.1570248 1]

>>> print(faces.data[0]) # list size =
[ 0.30991736 0.36776859 0.41735536 ..., 0.15289256 0.16115703
0.1570248 ]

>>> print (faces.target[0]) # person 0
0

11.3 Plot the images

Let’s plot the images of first 20 images, which are shown in Fig. 11.1,

Listing 11.2: Plot the images

# faces_ez.py

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces

(continues on next page)
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(continued from previous page)

faces = fetch_olivetti_faces() # download the dataset at ~/scikit_learn_data

# print("Keys:", faces.
# print ("Total samples
# print("Total samples
# print("Total samples

keys()) # display keys

and image size:", faces.images.shape)
and features:", faces.data.shape)

and targets:", faces.target.shape)

images = faces.images # save images

# note that images can

# features, whereas faces.images are 3D data %.e.

features = faces.data
targets = faces.target

not be saved as features, as we need 2D data for

# features
# targets

fig = plt.figure() # create a new figure window
for i in range(20): # display 20 images

# subplot : 4 Tows

img_grid = fig.add_

# plot features as

and 5 columns
subplot(4, 5, i+1)
image

img_grid.imshow(images[il)

plt.show()

(samples, pizel-z, pizel-y)

Fig. 11.1: First 20 images in the dataset

e Before moving further, let’s convert the Listing 11.2 into a function, so that the code can be reused. Listing
11.3 is the function which can be used to plot any number of images with desired number of rows and columns
e.g. Line 26 plots 10 images with 2 rows and 5 columns.
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Listing 11.3: Function for plotting the images

# faces_ez.py

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces

# function for plotting images
def plot_images(images, total_images=20, rows=4, cols=5):
fig = plt.figure() # create a new figure window
for i in range(total_images): # display 20 images
# subplot : 4 rows and 5 columns
img_grid = fig.add_subplot(rows, cols, i+1)
# plot features as image
img_grid. imshow(images[i])

faces = fetch_olivetti_faces() # download the dataset at ~/scikit_learn_data
# print("Keys:", faces.keys()) # display keys

# print("Total samples and image size:", faces.images.shape)

# print("Total samples and features:", faces.data.shape)

# print("Total samples and targets:", faces.target.shape)

images = faces.images # save wmages

# note that images can not be saved as features, as we need 2D data for

# features, whereas faces.images are 3D data i.e. (samples, pizel-z, pizel-y)
features = faces.data # features

targets = faces.target # targets

# plot 10 images with 2 rows and 5 columns
plot_images(images, 10, 2, 5)
plt.show()

11.4 Prediction using SVM model

Since there are images of 10 people here, therefore the number of different target values are fixed, hence the problem
is a ‘classification’ problem. In Chapter 2 and Chapter 3, we used the ‘KNeighborsClassifier’ and ‘LogisticRegres-
sion’ for the classification problems; in this chapter we will used the ‘Support Vector Machine (SVM)’ model for
the classification.

Note: SVM looks for the line that seperates the two classes in the best way.

The code for prediction is exactly same as in Chapter 2 and Chapter 3, the only difference is that the ‘SVC (from
SVM)’ model is used with ¢ kernel="linear” (Line 49)’. Note that, by default ¢ kernel="rbf” ¢ is used in SVC, which
is required for the non-linear problems.

Listing 11.4: Prediction using SVC

# faces_ez.py

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

# function for plotting images

(continues on next page)
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11.4. Prediction using SVM model

(continued from previous page)

def plot_images(images, total_images=20, rows=4, cols=5):
fig = plt.figure() # create a new figure window
for i in range(total_images): # display 20 images
# subplot : 4 rows and 5 columns
img_grid = fig.add_subplot(rows, cols, i+1)
# plot features as image
img_grid. imshow(images[i])

faces = fetch_olivetti_faces() # download the dataset at ~/scikit_learn_data
# print("Keys:", faces.keys()) # display keys

# print("Total samples and image size:", faces.images.shape)

# print("Total samples and features:", faces.data.shape)

# print("Total samples and targets:", faces.target.shape)

images = faces.images # save wmages

# note that images can not be saved as features, as we need 2D data for

# features, whereas faces.images are 3D data i.e. (samples, pizel-z, pizel-y)
features = faces.data # features

targets = faces.target # targets

# # plot 10 images with 2 rows and 5 columns
# plot_images(images, 10, 2, 5)
# plt.show()

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# use SVC

classifier = SVC(kernel="linear") # default kernel=rbf

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data'’

prediction_training_targets = classifier.predict(train_features)

self _accuracy = accuracy_score(train_targets, prediction_training_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print("Accuracy for test data:", test_accuracy)

e Below is the output of above code,

$ python faces_ex.py

Accuracy for training data (self accuracy): 1.0
Accuracy for test data: 0.9875

e Let’s print the locations of first 20 images, where the test-images and the predicted-images are different from
each other. Also, plot the images to see the differences in the images.
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Chapter 11. Image recognition

Listing 11.5: Plot first 20 images from the test-images and
predicted-images

# faces_ez.py

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_olivetti_faces
from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

# function for plotting images
def plot_images(images, total_images=20, rows=4, cols=5):
fig = plt.figure() # create a new figure window
for i in range(total_images): # display 20 images
# subplot : 4 rows and 5 columns
img_grid = fig.add_subplot(rows, cols, i+1)
# plot features as image
img_grid.imshow(images[i])

faces = fetch_olivetti_faces() # download the dataset at ~/scikit_learn_data
# print("Keys:", faces.keys()) # display keys

# print("Total samples and image size:", faces.images.shape)

# print("Total samples and features:", faces.data.shape)

# print("Total samples and targets:", faces.target.shape)

images = faces.images # save images

# note that images can not be saved as features, as we need 2D data for

# features, whereas faces.images are 3D data i.e. (samples, pizel-z, pizel-y)
features = faces.data # features

targets = faces.target # targets

# # plot 10 images with 2 rows and 5 columns
# plot_images(images, 10, 2, 5)
# plt.show()

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# use SVC

classifier = SVC(kernel="linear") # default kernel=rbf

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print("Accuracy for training data (self accuracy):", self_accuracy)

(continues on next page)
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(continued from previous page)

# predict the 'target' for 'test data’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print ("Accuracy for test data:", test_accuracy)

# location of error for first 20 images in test data
print("Wrongly detected image-locations: ", end=' ')
for i in range (20):
# if images are not same then print location of images
if test_targets[i] != prediction_test_targets[i]:
print (i)

# store test images in list

faces_test = []

for i in test_targets:
faces_test.append(images[i])

# store predicted images in list

faces_predict = []

for i in prediction_test_targets:
faces_predict.append(images[i])

# plot the first 20 images from the list
plot_images(faces_test, total_images=20)
plot_images(faces_predict, total_images=20)
plt.show()

e Below are the outputs of above code. The plotted test-images and predicted-images are shown in Fig. 11.2
and Fig. 11.3 respectively, where we can see that the image at location 14 (see red boxes) is at error.

$ python faces_ex.py

Accuracy for training data (self accuracy): 1.0
Accuracy for test data: 0.9875

Wrongly detected image-locations: 14

11.5 Convert features to images

Note: In Listing 11.5, we have used the ‘images (i.e. faces test.append(images[i]))’ at Lines 75 and 80, to plot
the images.

Also, we can convert the ‘features’ into images for plotting the images as shown in Lines 77 and 84 of Listing 11.6.

Listing 11.6: Convert features to images

# faces_ez.py

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_olivetti_faces
from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

# function for plotting images
def plot_images(images, total_images=20, rows=4, cols=5):
fig = plt.figure() # create a new figure window

(continues on next page)
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Fig. 11.2: Test-images
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Fig. 11.3: Predicted images
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(continued from previous page)

for i in range(total_images): # display 20 images
# subplot : 4 rows and 5 columns
img_grid = fig.add_subplot(rows, cols, i+1)
# plot features as image
img_grid.imshow(images[i])

faces = fetch_olivetti_faces() # download the dataset at ~/scikit_learn_data
# print("Keys:", faces.keys()) # display keys

# print("Total samples and image size:", faces.images.shape)

# print("Total samples and features:", faces.data.shape)

# print("Total samples and targets:", faces.target.shape)

images = faces.images # save images

# note that images can not be saved as features, as we need 2D data for

# features, whereas faces.images are 3D data i.e. (samples, pizel-z, pizel-y)
features = faces.data # features

targets = faces.target # targets

# # plot 10 images with 2 rows and 5 columns
# plot_images(images, 10, 2, 5)
# plt.show()

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# use SVC

classifier = SVC(kernel="linear") # default kernel=rbf

# training using 'training data’

classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print ("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print ("Accuracy for test data:", test_accuracy)

# location of error for first 20 images in test data
print ("Wrongly detected image-locatiomns: ", end=' ')
for i in range (20):
# 1f images are not same then print location of images
if test_targets[i] != prediction_test_targets[i]:
print(i)

# store test images in list
faces_test = []

(continues on next page)
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11.5. Convert features to images

(continued from previous page)

for i in test_targets:
# faces_test.append(images[i])
# convert 'features' to images
faces_test.append(np.reshape(features[i], (64, 64)))

# store predicted images in list

faces_predict = []

for i in prediction_test_targets:
# faces_predict.append(images[i])
# convert 'features' to images
faces_predict.append(np.reshape(features[i], (64, 64)))

# plot the first 20 images from the list
plot_images(faces_test, total_images=20)
plot_images(faces_predict, total_images=20)
plt.show()
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Chapter 12

More examples on Supervised learning

12.1 Introduction

In this chapter, some more examples are added for Supervised learning.

12.2 Visualizing the Iris dataset

In this section, we will visualize the dataset using ‘numpy’ and ‘matplotlib’ which is available in the Scikit dataset.

12.2.1 Load the Iris dataset

e First load the data set and quickly see the contents of it,

# visualization_exl.py
# plotting the Iris dataset

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

iris = load_iris() # load the iris dataset
print("Keys:", iris.keys()) # print keys of dataset

# shape of data and target
print ("Data shape", iris.data.shape) # (150, 4)
print ("Target shape", iris.target.shape) # (150,)

print("data:", iris.datal:4]) # first 4 elements

# unique targets

print("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# counts of each target

print("Bin counts for targets:", np.bincount(iris.target))

print("Feature names:", iris.feature_names)
print("Target names:", iris.target_names)

e Below is the output of above code,
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12.2. Visualizing the Iris dataset

$ python visualization_exl.py

Keys: dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
Data shape (150, 4)

Target shape (150,)

data: [[ 5.1 3.5 1.4 0.2]

L
L
L

FNEF NN
o N ©
w w w
=N

=R e
oW oD
o oo
NN N
—_

Unique targets: [0 1 2]
Bin counts for targets: [60 50 50]

Feature names: ['sepal length (cm)', 'sepal width (cm)',
'petal length (cm)', 'petal width (cm)']

Target names: ['setosa' 'versicolor' 'virginica']

12.2.2 Histogram

e Let’s plot the histogram of the ‘targets’ with respect to each feature of the dataset,

# visualization_exl.py
# plotting the Iris dataset

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

iris = load_iris() # load the 4iris dataset
# print("Keys:", iris.keys()) # print keys of dataset

# # shape of data and target
# print("Data shape", iris.data.shape) # (150, 4)
# print("Target shape"”, iris.target.shape) # (150,)

# print("data:", iris.datal:4]) # first / elements

# unique targets

print ("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# counts of each target

print ("Bin counts for targets:", np.bincount(iris.target))

HOR R R

# print("Feature names:", iris.feature_names)
# print("Target names:", iris.target_names)

colors = ['blue', 'red', 'green']
# plot histogram
for feature in range(iris.data.shapell1]): # (shape = 150, /)
plt.subplot(2, 2, feature+l) # subplot starts from 1 (not 0)
for label, color in zip(range(len(iris.target_names)), colors):
# find the label and plot the corresponding data
plt.hist(iris.dataliris.target==1label, feature],
label=iris.target_names[label],
color=color)

(continues on next page)
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(continued from previous page)

plt.xlabel(iris.feature_names[feature])
plt.legend()
plt.show()

e The Fig. 12.1 shows the histogram of the targets with resepct to each feature. We can clear see that the
feature ‘petal widht’ can distinguish the targets better that other features.
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Fig. 12.1: histogram of targets with resepct to each feature

12.2.3 Scatter plot

e Now, we will plot the scatter-plot between ‘petal-width’ and ‘all other features’.

# visualization_exl.py
# plotting the Iris dataset

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

iris = load_iris() # load the iris dataset
# print("Keys:", iris.keys()) # print keys of dataset

# # shape of data and target
# print("Data shape", iris.data.shape) # (150, 4)
# print("Target shape"”, iris.target.shape) # (150,)

(continues on next page)
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12.2. Visualizing the Iris dataset

(continued from previous page)

# print("data:", iris.datal:4]) # first / elements

# unique targets

print ("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# counts of each target

print ("Bin counts for targets:", np.bincount(iris.target))

HOR R R

H*

print ("Feature names:", iris.feature_names)
# print("Target names:", iris.target_names)

colors = ['blue', 'red', 'green']
# # plot histogram
# for feature in range(iris.data.shape[1]): # (shape = 150, 4)
# plt.subplot(2, 2, feature+l) # subplot starts from 1 (mot 0)

# for label, color in zip(range(len(iris.target_names)), colors):

# # find the label and plot the corresponding data
# plt.hist(iris.dataliris. target==label, feature],
# label=iris.target_names/[label],
# color=color)
# plt.zlabel (iris. feature_names/[feature])
# plt.legend()

# plot scatter plot : petal-width vs all features
feature_x= 3 # petal width
for feature_y in range(iris.data.shape[1]):
plt.subplot(2, 2, feature_y+1) # subplot starts from 1 (not 0)
for label, color in zip(range(len(iris.target_names)), colors):
# find the label and plot the corresponding data
plt.scatter(iris.dataliris.target==label, feature_x],
iris.dataliris.target==1label, feature_y],
label=iris.target_names[label],
alpha = 0.45, # transparency
color=color)
plt.xlabel(iris.feature_names[feature_x])
plt.ylabel(iris.feature_names[feature_y])
plt.legend()
plt.show()

e The Fig. 12.2 shows the scatter-plots between ‘petal width’ and ‘all other features’. Here we can see that
some of the ‘setosa’ can be clearly disntinguish from ‘versicolor’ and ‘virginica’; but the ‘versicolor’ and
‘virginica’ can not be completely separated with each other with any combinations of ‘x’ and ‘y’ axis.

12.2.4 Scatter-matrix plot

e In Fig. 12.2, we plotted the scatter-plots between ‘petal width’ and ‘all other features’; however, many other
combinations are still possible e.g. ‘petal length’ and ‘all other features’. Pandas library provides a method
‘scatter matrix’, which plots the scatter plot for all the possible combinations along with the histogram, as

shown below,

# visualization_exl.py
# plotting the Iris dataset

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

(continues on next page)
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Fig. 12.2: Scatter plot :

petal width {(em)

‘petal-width’ vs ‘all other features’

(continued from previous page)

iris = load_iris() # load the iris dataset
# print("Keys:", iris.keys()) # print keys of dataset

H*

# shape of data and target
print ("Data shape", iris.data.shape) # (150, 4)
print ("Target shape”, iris.target.shape) # (150,)

R

**

print ("data:", iris.datal:4]) # first / elements

# unique targets

print ("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# counts of each target

print ("Bin counts for targets:", np.bincount(iris.target))

HOR R W

F*

print ("Feature names:", iris.feature_names)
print ("Target names:", iris.target_names)

**

F*

colors = ['blue’,
# plot histogram
# for feature in range(iris.data.shape[1]): # (shape = 150, 4)
# plt.subplot(2, 2, feature+l) # subplot starts from 1 (not 0)
# for label,
# # find the label and plot the corresponding data
# plt.hist(iris.dataliris. target==label, feature],
# label=1i7ris.target_names[labell],
# color=color)
# plt.zlabel (iris. feature_names/[feature])
# plt.legend()

'red’, 'green']

**

color in zip(range(len(iris.target_names)),

# plot scatter plot : petal-width vs all features
# feature_z= 3 # petal width

colors):

(continues on next page)
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12.2. Visualizing the Iris dataset

(continued from previous page)

# for feature_y in range(iris.data.shape[1]):
# plt.subplot(2, 2, feature_y+1) # subplot starts from 1 (not 0)
# for label, color in zip(range(len(iris.target_names)), colors):
# # find the label and plot the corresponding data
# plt.scatter(iris.dataliris. target==label, feature_z],
# iris.dataliris. target==1label, feature_y],
# label=iris.target_names[label],
# alpha = 0.45, # transparency
# color=color)
# plt.zlabel (iris. feature_names[feature_z])
# plt.ylabel (iris. feature_names[feature_y])
# plt.legend()

# create Pandas-dataframe

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

# print(irts_df.head())

pd.plotting.scatter_matrix(iris_df, c=iris.target, figsize=(8, 8));
plt.show()

e Below are the histogram and scatter plot generated by above code,

sepal length (cm)

sepal width (cm)

petal length (cm)

HLL

petal width (cm)
l

e o sens
:

3 Joas

~ w ~ <+ ~ =+ o - ~
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

Fig. 12.3: Scatter matrix for Iris dataset

12.2.5 Fit a model and test accuracy

e Next, split the data as ‘training’ and ‘test’ data. Then, we will fit the training-data to the model “KNeigh-
borsClassifier”, and check the accuracy of the model on the test-data.

# visualization_exl.py

# plotting the Iris dataset

(continues on next page)
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Chapter 12. More examples on Supervised learning

(continued from previous page)

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

iris = load_iris() # load the iris dataset
# print("Keys:", iris.keys()) # print keys of dataset

**

# shape of data and target
print ("Data shape", iris.data.shape) # (150, 4)
print ("Target shape”, iris.target.shape) # (150,)

R

**

print("data:", iris.datal:4]) # first / elements

# # unique targets

# print("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# # counts of each target

# print("Bin counts for targets:", mp.bincount(iris.target))

# print("Feature names:", iris.feature_names)

# print("Target names:", iris.target_names)

# colors = ['blue’, 'red’, 'green']

# # plot histogram

**

for feature in range(iris.data.shapel[1]): # (shape = 150, 4)
# plt.subplot (2, 2, feature+l) # subplot starts from 1 (not 0)
# for label, color in zip(range(len(iris.target_names)), colors):
# # find the label and plot the corresponding data
# plt.hist(iris.dataliris. target==label, feature],
# label=1iris.target_names[labell],
# color=color)
# plt.zlabel (iris. feature_names/[feature])
# plt.legend()

# plot scatter plot : petal-width vs all features
# feature_z= 3 # petal width
# for feature_y in range(iris.data.shape[1]):
# plt.subplot(2, 2, feature_y+1) # subplot starts from 1 (not 0)
# for label, color in zip(range(len(iris.target_names)), colors):
# # find the label and plot the corresponding data
# plt.scatter(iris.data[iris. target==label, feature_z],
# iris.dataliris. target==1label, feature_y],
# label=iris.target_names[label],
# alpha = 0.45, # transparency
# color=color)
# plt.zlabel (iris. feature_names[feature_z])
# plt.ylabel (iris. feature_names[feature_y])
# plt.legend()

# # create Pandas-dataframe

# aris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

# # print(iris_df.head())

# pd.plotting.scatter_matriz(iris_df, c=iris.target, figsize=(8, 8));
# plt.show()

# save 'features' and 'targets' in X and y respectively
X, y = iris.data, iris.target

(continues on next page)
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12.2. Visualizing the Iris dataset

(continued from previous page)

# split data into 'test' and 'train' data
train_X, test_X, train_y, test_y = train_test_split(X, vy,
train_size=0.5,
test_size=0.5,
random_state=23,
stratify=y

# select classifier
cls = KNeighborsClassifier()
cls.fit(train_X, train_y)

# predict the 'target' for 'test data'’

pred_y = cls.predict(test_X)

test_accuracy = accuracy_score(test_y, pred_y)
print("Accuracy for test data:", test_accuracy)

e Below is the accuracy of the model,

$ python visualization_exl.py

Accuracy for test data: 0.946666666667

12.2.6 Plot the incorrect prediction

e Finally we will plot the incorrectly detected test-samples as shown below,

# visualization_exl.py
# plotting the Iris dataset

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

iris = load_iris() # load the iris dataset
# print("Keys:", iris.keys()) # print keys of dataset

# # shape of data and target
# print("Data shape", iris.data.shape) # (150, 4)
# print("Target shape", iris.target.shape) # (150,)

# print("data:", iris.datal:4]) # first J elements

# unique targets

print ("Unique targets:", np.unique(iris.target)) # [0, 1, 2]
# counts of each target

print ("Bin counts for targets:", np.bincount(iris.target))

HOR B ®

**

print ("Feature names:", iris.feature_names)
# print("Target names:", iris.target_names)

# colors = ['blue’, 'red', 'green']
# # plot histogram

(continues on next page)
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Chapter 12. More examples on Supervised learning

(continued from previous page)

# for feature in range(iris.data.shape[1]): # (shape = 150, 4)
# plt.subplot(2, 2, feature+l) # subplot starts from 1 (not 0)
# for label, color in zip(range(len(iris.target_names)), colors):
# # find the label and plot the corresponding data
# plt.hist(iris.dataliris. target==label, feature],
# label=1iris.target_names[labell],
# color=color)
# plt.zlabel (iris. feature_names/[feature])
# plt.legend()

# plot scatter plot : petal-width vs all features
# feature_z= 3 # petal width
# for feature_y in range(iris.data.shape[1]):
# plt.subplot(2, 2, feature_y+1) # subplot starts from 1 (not 0)
# for label, color in zip(range(len(iris.target_names)), colors):
# # find the label and plot the corresponding data
# plt.scatter(iris.data[iris. target==label, feature_z],
# iris.dataliris. target==1label, feature_y],
# label=iris.target_names/[label],
# alpha = 0.45, # transparency
# color=color)
# plt.zlabel (iris. feature_names[feature_z])
# plt.ylabel (iris. feature_names[feature_y])
# plt.legend()

# # create Pandas-dataframe

# aris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

# # print(iris_df.head())

# pd.plotting.scatter_matriz(iris_df, c=iris.target, figsize=(8, 8));
# plt.show()

# save 'features' and 'targets' in X and y respectively
X, y = iris.data, iris.target

# split data into 'test’' and 'train’' data
train_X, test_X, train_y, test_y = train_test_split(X, y,
train_size=0.5,
test_size=0.5,
random_state=23,
stratify=y

# select classifier
cls = KNeighborsClassifier()
cls.fit(train_X, train_y)

# predict the 'target' for 'test data'’

pred_y = cls.predict(test_X)

# test_accuracy = accuracy_score(test_y, pred_y)
# print("Adccuracy for test data:", test_accuracy)

incorrect_idx = np.where(pred_y != test_y)
print ('Wrongly detected samples:', incorrect_idx[0])

# scatter plot to show correct and incorrect prediction
# plot scatter plot : sepal-width vs all features
colors = ['blue', 'orange', 'green']
feature_x= 1 # sepal width
for feature_y in range(iris.data.shape[1]):
plt.subplot(2, 2, feature_y+1) # subplot starts from 1 (not 0)

(continues on next page)
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12.2. Visualizing the Iris dataset

(continued from previous page)

for i, color in enumerate(colors):

# indices for each target 2.e. 0, 1

g 2

idx = np.where(test_y == i) [0]

# find the label and plot the corresponding data

plt.scatter(test_X[idx, feature_x],
test_X[idx, feature_y],
label=iris.target_names[i],

alpha =
color=color

)

0.6, # transparency

# overwrite the test-data with red-color for wrong prediction

plt.scatter(test_X[incorrect_idx,

feature_x],

test_X[incorrect_idx, feature_y],

color="red",
marker='"",
alpha=0.5,

label="Incorrect detection",

s=120 # size of marker

)

plt.xlabel('{0}'.format(iris.feature_names[feature_x]))
plt.ylabel('{0}'.format(iris.feature_names[feature_y]))

plt.legend()

plt.show()

e Results for above code are shown in Fig. 12.4. In the two subplots, there are only 3 triangles, as two of these

are overlapped with each other; also the overlapped triangles will look darker as we are using the ‘alpha’

parameter.
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The overlapping points can be understood from below results.

e Line 3-4 shows the features of the incorrectly detected targets.

e The Lines 7 and 13 have same ‘sepal-width (col 1)’ and ‘petal-width (col 3)’, therefore two triangles are
overlapped in the scatter plot “sepal-width vs petal-width”.

e Similarly, Lines 7 and 13 have the same ‘sepal-width (col 1)’, therefore the triangles are overlapped in the
scatter plot of “sepal-width vs sepal-width”.

$ python -i visualization_exl.py

>>> print(np.where(pred_y != test_y) [0]) # error locations
[11 48 66 72]

>>> test_X[11] # see values at error locations
array([ 6.1, 3. , 4.9, 1.8])

>>> test_X[48]

array([ 6.3, 2.8, 5.1, 1.5])

>>> test_X[66]

array([ 6.3, 2.7, 4.9, 1.8])

>>> test_X[72]

array([ 6. , 3., 4.8, 1.8])

12.3 Linear and Nonlinear classification

In this section, we see the classification-boundaries of the ‘linear’ and ‘nonlinear’ classification models.

12.3.1 Create ‘make blob’ dataset

e Let’s create the dataset ‘make blob’ with two centers and plot the scatter-plot for it,

# make_blob_ezx.py

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

X, y = make_blobs(centers=2, random_state=0)

print ('X.shape (samples x features):', X.shape)
print('y.shape (samples):', y.shape)

print('First 5 samples:\n', X[:5, :])
print('First 5 labels:', y[:5])

plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', s=40, label='0")
plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', s=40, label='1"')

plt.xlabel('first feature')
plt.ylabel('second feature')
plt.legend()

plt.show()

e Below is the output of the above code. The Fig. 12.5 is the scatter plot which is generated by above code,

$ python make_blob_ex.py

X.shape (samples x features): (100, 2)

(continues on next page)
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(continued from previous page)

y.shape (samples): (100,)

First 5 samples:
[[ 4.21850347 2.23419161]

[ 0.90779887
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Fig. 12.5: Scatter plot for make blob

12.3.2 Linear classification

Let’s use the model ‘LogisticRegression()’ to perform the linear classification,

# make_blob_ez.py

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X, y = make_blobs(centers=2, random_state=0)

# print('X.shape (samples z features):', X.shape)
# print('y.shape (samples):', y.shape)

# print('First &5 samples:\n', X[:5, :])
# print('First &5 labels:', y[:5])

(continues on next page)
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(continued from previous page)

R

plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', s=40, label='0")
plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', s=40, label='1")

# plt.zlabel ('first feature')
# plt.ylabel('second feature')
# plt.legend()

# plt.show()

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2,
random_state=23,
stratify=y)

# Linear classifier

cls = LogisticRegression()
cls.fit(X_train, y_train)
prediction = cls.predict(X_test)
score = cls.score(X_test, y_test)
print("Accuracy:", score)

e Below is the accuracy for the above model,

$ python make_blob_ex.py

Accuracy: 0.9

12.3.3 classification boundary for linear classifier

Since the model is linear, therefore it will use the ‘straight line’ for defining the boundary for the classification.
The boundary can be drawn using ‘plot _2d _separator’ as shown in below code,

Listing 12.1: Decision bounadary for linear classifier

# make_blob_ez.py

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from figures import plot_2d_separator

X, y = make_blobs(centers=2, random_state=0)

# print('X.shape (samples z features):', X.shape)
# print('y.shape (samples):', y.shape)

# print('First 5 samples:\n', X[:5, :])
# print('First &5 labels:', y[:5])

**

plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', s=40, label='0")
# plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', s=40, label='1")

# plt.zlabel ('first feature')
# plt.ylabel('second feature')
# plt.legend()

# plt.show()

X_train, X_test, y_train, y_test = train_test_split(X, vy,

(continues on next page)

8]. Meher Krishna Patel




26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

12.3. Linear and Nonlinear classification

(continued from previous page)

test_size=0.2,
random_state=23,
stratify=y)

# Linear classifier

cls = LogisticRegression()
cls.fit(X_train, y_train)
prediction = cls.predict(X_test)
score = cls.score(X_test, y_test)
print("Accuracy:", score)

plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1],
c='red', s=40, label='0"')

plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1],
c='green', s=40, label='1"')

plot_2d_separator(cls, X_test) # plot the boundary

plt.xlabel('first feature')

plt.ylabel('second feature')

plt.legend()

plt.show()

e The Fig. 12.6 shows the decision boundary generated by above code,

second feature

first feature

Fig. 12.6: Decision boundary for linear classifier

12.3.4 Nonlinear classification and boundary

Let’s use the nonlinear classifier i.e. ‘KNeighborsClassifier’ and see the decision boundary for it,
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Chapter 12. More examples on Supervised learning

Listing 12.2: Decision bounadary for nonlinear classifier

# make_blob_ezx.py

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from figures import plot_2d_separator

X, y = make_blobs(centers=2, random_state=0)

# print('X.shape (samples z features):', X.shape)
# print('y.shape (samples):', y.shape)

# print('First &5 samples:\n', X[:5, :])
# print('First &5 labels:', y[:5])

# plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', s=40, label='0")

# plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', s=40, label='1")
# plt.zlabel ('first feature')

# plt.ylabel('second feature')

# plt.legend()

# plt.show()

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2,
random_state=23,
stratify=y)

# Linear classifier
# cls = LogisticRegression()

# Nonlinear classifier

cls = KNeighborsClassifier()
cls.fit(X_train, y_train)
prediction = cls.predict(X_test)
score = cls.score(X_test, y_test)
print("Accuracy:", score)

plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1],
c='red', s=40, label='0")

plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1],
c='green', s=40, label='1")

plot_2d_separator(cls, X_test) # plot the boundary

plt.xlabel('first feature')

plt.ylabel('second feature')

plt.legend()

plt.show()

e Below is the output of above code. The Fig. 12.7 shows the nonlinear decision boundary generate by the

code.

$ python make_blob_ex.py
Accuracy: 1.0

Note:

e Now, increase the noise (i.e. cluster std) in the make blobs dataset by replacing the Line 10 of Listing 12.2
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second feature

first feature

Fig. 12.7: Decision boundary for nonlinear classifier

with below line, and see the decision boundary again,

X, y = make_blobs(centers=2, random_state=0, cluster_std=2.0)

e Note that, we may get multiple boundaries in nonlinear classification, when the noise is high; which will
reduce the performance of the system. Those multiple boundaries can be removed by increasing the number
of neighbors at Line 35 for ‘KNeighborsClassifier’ as shown below,

cls = KNeighborsClassifier(n_neighbors=25)

Warning: Increasing the ‘n_neighbors’ in ‘KNeighborsClassifier’ does not mean that it will increase the
performance all the time. It may reduce the performance as well.

For better results, we must have higher number of samples to reduce the variability in the performance metrics.
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Chapter 13

Performance analysis of models

13.1 Introduction

In the previous chapters, we saw the examples of ‘supervised machine learning’, i.e. classification and regression
models. Also, we calculated the ‘score’ to see the performance of these models. But there are several other standard
methods to evaluate the performance of the models. Table 13.1 shows the list of metrics which can be used to
measure the performance of different types of model, , which are discussed in the chapter.

Table 13.1: Metrics to measure the performance

Problem Performance metric

Classifica- | Accuracy, Receiver operating curve (ROC), Area under ROC,

tion Logarithmic loss, Confusion matrix, Classification report

Regression | Mean square error (MSE), Root MSE (RMSE), Mean absolute error,
R2

13.2 Performance of classification problem

In this section, we will see the performance measurement of the classification problem.

Note: Cross-validation is used in this section, which is discussed in Chapter 5.

Remember, cross-validation does not create the model to predict the new samples; it only gives an idea about the
accuracy of model.

13.2.1 Accuracy

The ‘accuracy’ is the ratio of the ‘correct predictions’ and ‘all the predictions’. By default, the scoring is done
based on ‘accuracy’,

Note: In previous chapters, we already calculated ‘accuracy’ for the ‘training’ and ‘test’ datasets. For
easy analysis, the ‘Cross-validation’ class have in-built performance-measurement methods e.g. ‘accuracy’,
‘mean_squared _error and r2_score’ etc. as shown in this chapter.

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.neighbors import KNeighborsClassifier

(continues on next page)
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(continued from previous page)

>>> from sklearn.model_selection import cross_val_score
>>>
>>> # create object of class 'load_iris'
... iris = load_iris()
>>>
>>> # save features and targets from the 'iris'
... features, targets = iris.data, iris.target
>>>
>>> # use KNeighborsClassifier for classification
... classifier = KNeighborsClassifier()
>>>
>>> # cross-validation
scores = cross_val_score(classifier,
features, targets,
cv=7, scoring="accuracy")

>>> prlnt(”Cross validation scores:", scores)
Cross validation scores: [ 0.95833333 1. 0.95238095
0.9047619 0.95238095 1. 1.]

>>> print("Mean={0:0.4f}, Var={1:0.4f}".format (
np.mean(scores),
o np.var(scores)))
Mean=0.9668, Var=0.0011

13.2.2 Logarithmic loss

It measures the probability of having the correct predictions, and prints the logarithmic value of the probability.
Since the probability has the range between 0 and 1, therefore ‘Logarithmic loss’ has the range between 0 and

‘infinity’.

Note: Higher the ‘Logarithmic loss’ value, better is the model. Perfect model will have the maximum value i.e.

‘0.

>>> import numpy as np

>>> from sklearn.datasets import load_iris

>>> from sklearn.neighbors import KNeighborsClassifier

>>> from sklearn.model_selection import cross_val_score

>>>

>>> # create object of class 'load_iris'

... iris = load_iris()

>>>

>>> # save features and targets from the 'iris'

... features, targets = iris.data, iris.target

>>>

>>> # use KNeighborsClasstifier for classification

... classifier = KNeighborsClassifier()

>>>

>>> # cross-validation
scores = cross_val_score(classifier,

features, targets,
cv=7, scoring="neg_log_loss")
>>> prlnt(”Cross validation scores:", scores)

Cross validation scores: [-1.45771098 -0.03187765
-0.07858381 -0.14654173 -1.66902867 -0.02125177
-0.03495091]

>>> print("Mean={0:0.4f}, Var={1:0.4f}".format (

np.mean(scores),
np.var(scores)))

Mean——O 4914, Var=0.4644
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13.2.3 Classification report

Classification report gives the ‘precision’, ‘recall’, ‘F1-score’ and ‘support’ values for each class as shown below,

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

>>>

>>>
>>>
>>>
>>>

avg

from
from
from
from

iris

X, vy

X_train, X_test, y_train, y_test
test_size=0.2,

# Linear classifier

sklearn
sklearn
sklearn
sklearn

.datasets import load_iris
.model_selection import train_test_split
.linear_model import LogisticRegression
.metrics import classification_report

= load_iris()

= iris.data, iris.target

random_state=23,

stratify=y)

cls = LogisticRegression()
cls.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='12', random_state=None, solver='liblinear', tol=0.0001,

verbose=0, warm_start=False)

cls.predict(X_test)
report = classification_report(y_test, prediction)
print(report) # print classification_report

prediction =
precision
0 1.00
1 0.90
2 0.90
/ total 0.93

recall fl-score

1.00
0.90
0.90

0.93

train_test_split (X, y,

support
1.00 10
0.90 10
0.90 10
0.93 30

13.2.4 Confusion matrix (Binary classification)

Let’s understand the Confusion matrix first, which is the basis for ROC, which can be used with ‘binary (not
Confusion matrix is a 2 X 2 matrix, whose columns are shown in Table 13.2 and

multiclass) classification’.

explained below,

True positive : Actual value is positive, and predicted value is also positive.
False negative : Actual value is positive, and predicted value is negative.
False positive : Actual value is negative, and predicted value is positive.
True negative : Actual value is negative, and predicted value is negative.

Table 13.2: Confusion matrix

Predicted value

Positive

Negative

Actual value

Positive

True Positive

False Negative

Negative

False Positive

True Negative

Note:

performance, these values should be higher than the ‘False negative’ and ‘False positive’ columns.

Clearly the desired results are the ‘True positive’ and ‘True negative’ columns. Therefore, for better

Below is an example of Confusion matrix. Here results have following values
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True positive = 9
True negative = 9
False positive = 1
False negative = 1

>>> from sklearn.datasets import make_blobs

>>> from sklearn.model_selection import train_test_split

>>> from sklearn.linear_model import LogisticRegression

>>> from sklearn.metrics import confusion_matrix

>>>

>>> X, y = make_blobs(centers=2, random_state=0)

>>>

>>> X_train, X_test, y_train, y_test = train_test_split(X, v,

test_size=0.2,

random_state=23,

S stratify=y)

>>>

>>> # Linear classifier

... cls = LogisticRegression()

>>> cls.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='12', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)

>>> prediction = cls.predict(X_test)

>>> c_matrix = confusion_matrix(y_test, prediction)

>>> print(c_matrix) # print confusion_matriz

[[9 1]

[1 9]]

13.2.5 Area under ROC (AUC)

ROC is the plot between the ‘true positive rate’ and ‘false positive rate’, which are defined as below,

e True positive rate = (True positive) / (True positive + False negative)
e False positive rate = (False positive) / (False positive + True negative)

Note: ROC and AUC are used for ‘binary (not multiclass) classification’ problem; and ‘AUC = 1’ represents the

perfect model,

>>> import numpy as np
>>> from sklearn.datasets import make_blobs
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>>
>>> X, y = make_blobs(centers=2, random_state=0)
>>>
>>> # use KNeighborsClasstifier for classification
... classifier = LogisticRegression()
>>>
>>> # cross-validation
scores = cross_val_score(classifier,

Xy,
20 c cv=7, scoring="roc_auc")
>>>

>>> print("Cross validation scores:", scores)
Cross validation scores: [ 1. 1. 0.97959184 0.91836735 0.97959184 1.
= ]

>>> print("Mean={0:0.4f}, Var={1:0.4f}".format(

(continues on next page)

88

PythonDSP



http://pythondsp.readthedocs.io/en/latest/pythondsp/toc.html

W N

o

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
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(continued from previous page)

np.mean(scores),
S np.var(scores)))
Mean=0.9825, Var=0.0008

13.3 Performance of regression problem

The code used in this section is discussed in Chapter 4.

13.3.1 MAE, MSE and R2

Note:

o By default, Scikit library calculates the ‘r2 score’ as shown in Lines 44-46. The ‘r2_score’ has the values
between 0 (no fit) and 1 (perfect fit).

o Mean absolute error (MAE) is the sum of the ‘absolute differences’ between the predicted and the actual
values, and calculated at Lines 48-50.

e Mean square error (MSE) is the sum of squares of the errors, where errors are the differences between
the ‘predicted’ and ‘actual” values. This is calculated at Lines 53-55.

>>> import numpy as np

>>> from sklearn.model_selection import train_test_split

>>> from sklearn.linear_model import LinearRegression

>>> from sklearn.metrics import mean_squared_error, mean_absolute_error
>>> from sklearn.metrics import r2_score

>>>

>>> N = 100 # 100 samples

>>> x = np.linspace(-3, 3, N) # coordinates

>>> noise_sample = np.random.RandomState(20) # constant random value
>>> # growing sinusoid with random fluctuation

sine_wave = x + np.sin(4#*x) + noise_sample.uniform(N)

>>>
>>> # convert features in 2D format i.e. list of list
... features = x[:, np.newaxis]
>>>
>>> # save sine wave in variable 'targets’
... targets = sine_wave
>>>
>>> # split the training and test data
. train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. if we put 10 then accuracy will be 1.0
# in this example
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature
>>>
>>> # training using 'training data’
. regressor = LinearRegression()
>>> regressor.fit(train_features, train_targets) # fit the model for training data
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>>

(continues on next page)
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(continued from previous page)

>>>

>>> # predict the 'target' for 'test data’
prediction_test_targets = regressor.predict(test_features)

>>> test_accuracy = regressor.score(test_features, test_targets)

>>> print("Accuracy for test data:", test_accuracy)

Accuracy for test data: 0.822872868183

>>>

>>> r2_score = r2_score(test_targets, prediction_test_targets)
>>> print("r2_score: ", r2_score)

r2_score: 0.822872868183

>>>

>>> mean_absolute_error = mean_absolute_error(test_targets, prediction_test_targets)
>>> print(”mean_absolute_error: "', mean_absolute_error)
mean_absolute_error: 0.680406590952

>>>

>>>

>>> mean_squared_error = mean_squared_error(test_targets, prediction_test_targets)
>>> print("mean_squared_error: ", mean_squared_error)
mean_squared_error: 0.584535345592

13.3.2 Problem with cross-validation

Below is the issue with ‘regressor-performances’ with ‘cross-validation’ method,

Error:

e Mean score for ‘r2’ is calculated as ‘-7.7967’, which is negative. Note that, the negative value is not
possible for ‘r2’ score.

o Similarly, replace ‘r2’ with ‘neg mean squared error’ and ‘neg mean absolute error’, and it may give
some undesired results.

e Please clarify the reason.

>>> import numpy as np

>>> from sklearn.model_selection import cross_val_score

>>> from sklearn.model_selection import KFold

>>> from sklearn.linear_model import LinearRegression

>>>

>>> N 100 # 100 samples

>>> x = np.linspace(-3, 3, N) # coordinates

>>> noise_sample = np.random.RandomState(20) # constant random value
>>> # growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

>>>
>>>
>>> # convert features in 2D format i.e. list of list
... features = x[:, np.newaxis]

>>>
>>> # save sine wave in variable 'targets’
... targets = sine_wave

>>>
>>> # cross-validation

... regressor = LinearRegression()
>>>
>>> cv = KFold(n_splits=10, random_state=7)

>>> scores = cross_val_score(regressor, features, targets, cv=cv,
S scoring="r2")

>>>

(continues on next page)
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Chapter 13. Performance analysis of models

(continued from previous page)

>>> print("Cross validation scores:", scores)

Cross validation scores: [-13.91006325 -20.21043299

-1.92292726 -3.30936741 -3.30936741 -1.92292726

0.36952646 -20.21043299 -13.91006325]

>>> print("Mean={0:0.4f}, Var={1:0.4f}".format(
np.mean(scores),

S np.var(scores)))

Mean=-7.7967, Var=62.5597

0.36952646
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Chapter 14

Quick reference guide

14.1 Introduction

In previous chapters, we saw several examples of machine learning methods. In this chapter, we will summarize
those methods along with several other useful ways to analyze the data.

14.2 Understand the data

When we get the data, we need to see the data and it’s statistics. Then we need to perform certain clean/transform
operations e.g. filling the null values etc. In this section, we will see several steps which may be useful to understand
the data,

14.2.1 Load the data and add headers

Although we can use Python or Numpy to load the data, but it is better to use Pandas library to load the data.

e Add header to data : In the below code, the first 29 rows are skipped as these lines do not contain samples
but the information about the each sample.

>>> import pandas as pd
>>>
>>> # create header for dataset

. header = ['age','bp','sg','al’, ','pc', 'pcc’,
'ba', 'bgr','bu','sc','sod', 'pot', 'hemo’', 'pcv',
'wbcc', 'rbec', 'htn','dm','cad’, 'appet', 'pe', 'ane’,
'classification']

su', 'rbc

>>>
>>> # read the dataset
. df_kidney = pd.read_csv("data/chronic_kidney_disease.arff",
header=None, # use header=0 to replace the existing header
skiprows=29, # skip first 29 rows
names=header

ca )

>>>

>>> df_kidney.shape # shape of data : 400 rows and 25 columns
(400, 25)

e Replace existing header from the data

>>> import pandas as pd
>>> # new headers

(continues on next page)
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(continued from previous page)

. header = ["channel", "area", "fresh", "milk", "grocery",

C "frozen", "detergent", "delicatessen"]

>>>

>>> # replace existing headers

. df _whole_sale = pd.read_csv("data/Wholesale customers data.csv",

header=0, # replace exzisting header; use this or below
# skiprows=1, # skip the first row i.e. header
names=header # use new header

)

>>>

>>> df_whole_sale.shape # shape of data: 440 rows and 8 columns
(440, 8)

>>>

>>> df _whole_sale.head(3) # show first three rows
channel area fresh milk grocery frozen detergent delicatessen

0 2 3 12669 9656 7561 214 2674 1338
1 2 3 7057 9810 9568 1762 3293 1776
2 2 3 6353 8808 7684 2405 3516 7844
>>>

>>> df _whole_sale.tail(2) # show last two rows

channel area fresh milk grocery frozen detergent delicatessen
438 1 3 10290 1981 2232 1038 168 2125
439 1 3 2787 1698 2510 65 477 52

14.2.2 Check for the null values

e Check if the null value exist,

>>> df _kidney.isnull().sum()
age 0

bp

sg

al

su

rbc

pc

pcc

ba

bgr

bu

sc

sod

pot

hemo

pcv

wbcc

rbcc

htn

dm

cad

appet

pe

ane
classification
dtype: int64

O O O OO, OO OO0 OO0OO0OO0OO0OO0OO0OOOO0OOoOOoOOo

e Check the location of null value
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>>> df _kidney[df_kidney.dm.isnull()]
age bp sg al su rbc pc pcc ba bgr \
369 75 70 1.020 O O normal normal notpresent notpresent 107

R pcv  wbcc rbcc htn  dm cad appet pe ane classification
369 R 46 10300 4.8 no NaN no no good no no

[1 rows x 25 columns]

>>>

>>> df _kidney[df_kidney.dm.isnull()].iloc[:, 0:2] # display only two columns
age bp

369 75 70

14.2.3 Check the data types

Sometimes the datatypes are not correctly read by the Pandas, therefore it is better to check the data types of
each columns.

e In the below results are all the types are ‘object’ (not numeric), because samples have ‘?’ in it, therefore we
need to replace the ‘7’ values with some other values,

>>> df_kidney.dtypes

age object
bp object
sg object
al object
su object
rbc object
pc object
pcc object
ba object
bgr object
bu object
sc object
sod object
pot object
hemo object
pcv object
wbcc object
rbcc object
htn object
dm object
cad object
appet object
pe object
ane object
classification object

dtype: object

e If we perform the ‘conversion’ operation at this moment, then error will be generate due to ‘7’ in the data,

>>> df_kidney.bgr = pd.to_numeric(df_kidney.bgr)
Traceback (most recent call last):
ValueError: Unable to parse string "?" at position 1

e Replace the ‘7" with ‘NaN’ value using ‘replace’ command; and change the ‘type’ of ‘bgr’ column,

>>> import numpy as np
>>> df _kidney = df_kidney.replace('?', np.nan)
>>> df_kidney.bgr = pd.to_numeric(df_kidney.bgr)

(continues on next page)
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>>> df_kidney.dtypes

...]
ba object
bgr float64
[...]
classification object

dtype: object

e Next, we can drop or fill the ‘NaN’ values. In the below code we dropped the NaN values,

>>> df _kidney.isnull() .sum() # check the Nall

age 9
bp 12
sg 47
[...]

classification 0
dtype: int64

>>>

>>> # drop the Nal
>>> df _kidney = df_kidney.dropna(axis=0, how="any")

>>>

>>> df _kidney.isnull() .sum() # check Nall again
age 0

bp 0

sg 0

[...]

classification 0

dtype: int64

14.2.4 Statistics of the data

o The ‘describe’ can be used to see the statistics of the data.

>>> df_whole_sale.describe()

channel area fresh milk grocery \
count 440.000000 440.000000 440.000000 440.000000 440.000000
mean 1.322727 2.543182  12000.297727  5796.265909  7951.277273
std 0.468052 0.774272  12647.328865  7380.377175  9503.162829
min 1.000000 1.000000 3.000000 55.000000 3.000000
25% 1.000000 2.000000 3127.750000  1533.000000  2153.000000
50% 1.000000 3.000000 8504.000000  3627.000000  4755.500000
75% 2.000000 3.000000  16933.750000  7190.250000 10655.750000
max 2.000000 3.000000 112151.000000 73498.000000 92780.000000
frozen detergent delicatessen

count 440.000000 440.000000 440.000000
mean 3071.931818  2881.493182 1524.870455

std 4854.673333  4767.854448  2820.105937
min 25.000000 3.000000 3.000000
257 742.250000 256.750000 408.250000
50% 1526.000000 816.500000 965.500000
75% 3554.250000  3922.000000 1820.250000

max 60869.000000 40827.000000 47943.000000

e See output of first 2 columns only,

>>> df_whole_sale.iloc[:, 0:2].describe()
channel area
count 440.000000 440.000000

(continues on next page)
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(continued from previous page)

mean 1.322727 2.543182
std 0.468052 0.774272
min 1.000000 1.000000
257, 1.000000 2.000000
50% 1.000000 3.000000
75% 2.000000 3.000000
max 2.000000 3.000000

>>> df_whole_sale.describe() .iloc[:,0:2]

channel area
count 440.000000 440.000000
mean 1.322727 2.543182
std 0.468052 0.774272
min 1.000000 1.000000
25% 1.000000 2.000000
50% 1.000000 3.000000
75% 2.000000 3.000000
max 2.000000 3.000000

e Display the output of specific-columns,

>>> df_whole_sale[['milk', 'fresh']].describe()

milk fresh
count 440.000000 440.000000
mean 5796.265909 12000.297727
std 7380.377175 12647 .328865
min 55.000000 3.000000
25% 1533.000000 3127.750000
50% 3627.000000 8504.000000
75% 7190.250000 16933.750000

max 73498.000000 112151.00000

14.2.5 Output distribution for classification problem

It is better to see the distributions of the outputs for the classification problem. In the below output, we can see
that we have more data for ‘no chronic kidney disease (nockd)’ than ‘chronic kidney disease (ckd)’,

>>> df _kidney.groupby("classification").size()
classification

ckd 43

notckd 114

dtype: int64

14.2.6 Correlation between features

It is also good see the correlation between the features. In the below results we can see that the correlation of
‘milk’ is higher with ‘grocery’ and ‘detergent’, which indicates that customers who are buying ‘milk’ are more likely
to buy ‘grocery’ and ‘detergent’ as well. See Chapter 10 for more details about this relationship.

>>> df _whole_sale[['fresh', 'milk', 'grocery', 'frozen',
'detergent', 'delicatessen']].corr()
fresh milk  grocery frozen detergent delicatessen
fresh 1.000000 0.100510 -0.011854 0.345881 -0.101953 0.244690
milk 0.100510 1.000000 0.728335 0.123994 0.661816 0.406368
grocery -0.011854 0.728335 1.000000 -0.040193  0.924641 0.205497
frozen 0.345881 0.123994 -0.040193 1.000000 -0.131525 0.390947

(continues on next page)
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detergent -0.101953 0.661816 0.924641 -0.131525
delicatessen 0.244690 0.406368 0.205497 0.390947

1.000000
0.069291

0.069291
1.000000

14.3 Visualizing the data

In the tutorial, we already saw several data-visualization techniques such as ‘histogram’ and ‘scatter plot’ etc. In
this section, we will summarize these techniques.

Table 14.1: Types of plots

Type Example
Univariate Histogram, Density plot, Box and Whisker plot
Multivariate | Scatter plot , Correlation matrix plot

The plots can be divided into two categories as shown in Table 14.1. These plots are described below,

14.3.1 Univariate plots

The univariate plots are the plots which are used to visualize the data independently. In this section we will some
of the important univariate plots,

14.3.1.1 Histogram

Histograms are the quickest way to visualize the distributions of the data as shown below,

>>> import matplotlib.pyplot as plt
>>> df_whole_sale.hist()

array([[<matplotlib.axes._subplots.AxesSubplot object at Oxa7d6afédc>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa7aaOc2c>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa7a4d6cc>],
[<matplotlib.axes._subplots.AxesSubplot object at 0xa7al038c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa79c8bac>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa79c85ec>],
[<matplotlib.axes._subplots.AxesSubplot object at 0xa798b96c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa796912c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa78b754c>]], dtype=object)

>>> plt.show()

14.3.1.2 Density Plots

Density plots can be seen as smoothed Histogram as shown below,

>>> df _whole_sale.plot(kind='density', sharex=False, subplots=True, layout=(3,3))

array([[<matplotlib.axes._subplots.AxesSubplot object at Oxa8eOOeec>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa794c6cc>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa7flaa6c>],
[<matplotlib.axes._subplots.AxesSubplot object at Oxa7a2acac>,
<matplotlib.axes._subplots.AxesSubplot object at O0xa8c23b4c>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa8c2342c>],
[<matplotlib.axes._subplots.AxesSubplot object at Oxa7ad8aac>,
<matplotlib.axes._subplots.AxesSubplot object at Oxab7adbcc>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa8dd364c>]], dtype=object)

>>> plt.show()
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Fig. 14.2: Density plot of wholesale data
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14.3.1.3 Box and Whisker plot

Box and Whisker plots draws a line at the median-value and a box around the 25th and 75th percentiles.

>>> df _whole_sale.plot(kind='box', sharex=False, subplots=True, layout=(3,3))

channel Axes(0.125,0.653529;0.227941x0.226471)
area Axes(0.398529,0.653529;0.227941x0.226471)
fresh Axes(0.672059,0.653529;0.227941x0.226471)
milk Axes(0.125,0.381765;0.227941x0.226471)
grocery Axes(0.398529,0.381765;0.227941x0.226471)
frozen Axes(0.672059,0.381765;0.227941x0.226471)
detergent Axes(0.125,0.11;0.227941x0.226471)
delicatessen Axes(0.398529,0.11;0.227941x0.226471)

dtype: object
>>> plt.show()
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Fig. 14.3: Box and Whisker plot of wholesale data

14.3.2 Multivariate plots:

The multivariate plots are the plots which are used to visualize the relationship between two or more data.

14.3.2.1 Scatter plot

Important: Note that we need to convert the numpy-array into Pandas DataFrame for plotting it using Pandas.
This is applicable to both ‘univariate’ and ‘multivariate’ plots

e Below is the code to convert the ‘numpy array’ into ‘DataFrame’,
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>>> from sklearn.datasets import load_iris

>>> iris = load_iris()

>>> features, targets = iris.data, iris.target
>>> type(features)

<class 'numpy.ndarray'>

>>>

>>> import pandas as pd

>>> df _features = pd.DataFrame(features) # convert to DataFrame
>>> type(df_features)

<class 'pandas.core.frame.DataFrame'>

>>> df _features.head()

0 1 2 3
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

e Now, we can plot the scatter-plot as below,

>>> from pandas.plotting import scatter_matrix

>>> scatter_matrix(df_features)

array([[<matplotlib.axes._subplots.AxesSubplot object at Oxa8166a6c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa747948c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa7437f2c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa745d08c>],
[<matplotlib.axes._subplots.AxesSubplot object at Oxa73ac44c>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa73ac48c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa73b842c>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa7353acc>],
[<matplotlib.axes._subplots.AxesSubplot object at Oxa73126ac>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa72c6b2c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa728bd2c>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa723d32c>],
[<matplotlib.axes._subplots.AxesSubplot object at Oxa7lfe6bac>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa71b07ec>,
<matplotlib.axes._subplots.AxesSubplot object at Oxa71d24ec>,
<matplotlib.axes._subplots.AxesSubplot object at 0xa71243cc>]],
dtype=object)

>>>  plt.show()

Note: We can plot the multicolor ‘Scatter plot’ and ‘Histogram’ as show in Section 12.2, which is easier to
visualize as compare to single color plots.

For colorful scatter matrix plot, we can use below code,

>>> scatter_matrix(df_features, c=iris.target) # colorful scatter plot

14.3.2.2 Correlation matrix plot

e Below is the code, which plots the correlation values of the data, which is known as correlation-matrix plot,

>>> corr_whole_sale = df_whole_sale[['fresh', 'milk', 'grocery', 'frozen',
'detergent', 'delicatessen']].corr()

>>> plt.matshow(corr_whole_sale)

<matplotlib.image.AxesImage object at 0xa697f64c>

>>> plt.show()

e Also, we can add ‘colorbar’ to see the relationship between the color and the correlation values,
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Fig. 14.4: Scatter plot for iris data
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Fig. 14.5: Correlation-matrix plot for the wholesale data
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>>>

plt.matshow(corr_whole_sale, vmin=-1, vmax=1)

<matplotlib.image.AxesImage object at 0xabd9270c>

>>>

plt.colorbar ()

<matplotlib.colorbar.Colorbar object at 0xa5d928ec>

>>>

plt.show()
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Fig. 14.6: Correlation-matrix plot with ‘colorbar’ for the wholesale data

e Finally, we can add ‘headers’ to the plot so that it will more readable. Below is the complete code for plotting
the data,

>>>
>>>
>>>
>>>

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# new headers
. header = ["channel", "area", "fresh", "milk", "grocery",
"frozen", "detergent", "delicatessen"]

>>>
>>>

# replace existing headers

. df _whole_sale = pd.read_csv("data/Wholesale customers data.csv",

>>>
>>>
>>>
>>>
>>>

header=0, # replace exzisting header; use this or below
# skiprows=1, # skip the first row i.e. header
names=header # use new header

names = ['fresh', 'milk', 'grocery', 'frozen', 'detergent', 'delicatessen']
corr_whole_sale = df_whole_sale[names].corr()

(continues on next page)
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(continued from previous page)

>>> # plot the data

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111)

>>> corr_plot = ax.matshow(corr_whole_sale, vmin=-1, vmax=1)
>>> fig.colorbar(corr_plot)

>>> ticks = np.arange(0,6,1) # total 6 items
>>> ax.set_xticks(ticks)

>>> ax.set_yticks(ticks)

>>> ax.set_xticklabels(names)

>>> ax.set_yticklabels(names)

>>> plt.show()

fresh milk grocery frozen detergent delicatessen
1.00
fresh
0.75
milk 0.50
0.25
grocery
0.00
frozen
—-0.25
detergent —0.50
-0.75
delicatessen
-1.00

Fig. 14.7: Correlation-matrix plot with ‘colorbar’ and ‘tick-name’ for the wholesale data

Note: From the correlation-matrix plot it is quite clear that the people are buying the ‘grocery’ and ‘detergent’
together.

See Chapter 10 for more details about these relationships, where scatter plot is used to visualize the relationships.

14.4 Preprocessing of the data

In Chapter 8, we saw the examples of preprocessing of the data and saw the performance improvement in the
model. Further, we learn that the some of the algorithm are sensitive to statistics of the features, e.g. PCA
algorithm gives more weight age to the feature which has high variances. In the other words, the feature with high
variance will dominate the performance of the PCA. In this section, we will summarize some of the preprocessing
methods.
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14.4.1 Statistics of data

e Let’s read the samples from the ‘Whole sale data’ first, and we will preprocess this data in this section,

>>> import pandas as pd

>>>
>>> # new headers
. header = ["channel", "area", "fresh", "milk", "grocery",
R "frozen", "detergent", "delicatessen"]
>>>

>>> # replace exzisting headers
. df _whole_sale = pd.read_csv("data/Wholesale customers data.csv",
header=0, # replace exzisting header; use this or below
# skiprows=1, # skip the first row i.e. header
names=header # use new header

e Next see the mean and variance of the each features,

>>> # mean and variance
import numpy as np
>>> np.mean(df_whole_sale)

channel 1.322727
area 2.543182
fresh 12000.297727
milk 5796.265909
grocery 7951.277273
frozen 3071.931818
detergent 2881.493182
delicatessen 1524 .870455
dtype: float64

>>>

>>> np.var(df_whole_sale)
channel 2.185744e-01
area 5.981353e-01
fresh 1.595914e+08
milk 5.434617e+07
grocery 9.010485e+07
frozen 2.351429e+07
detergent 2.268077e+07
delicatessen 7.934923e+06

dtype: float64

14.4.2 StandardScaler

We used the ‘StandardScaler’ in Chapter 8 and saw the performance improvement in the model with it. It sets
the ‘mean = 0’ and ‘variance = 1’ for all the features,

e Now, process the data using StandardScaler,

>>> # preprocessing StandardScaler : mean=0, var=I

. from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(df_whole_sale)
>>> df _temp = scaler.transform(df_whole_sale)

Also, we can combine the above two steps (i.e. fit and transform) into one step as below,

>>> # preprocessing StandardScaler : mean=0, var=I
. from sklearn.preprocessing import StandardScaler
>>> df _temp = StandardScaler().fit_transform(df_whole_sale)
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o Note that the type of the ‘df temp’ is ‘numpy.ndarray’, therefore we need to loop through each column

to calculate mean and variance as shown below,

>>> type(df_temp) # numpy array
<class 'numpy.ndarray'>
>>>
>>> # mean and var of each column
. for i in range(df_temp.shape[1]):
print("row {0}: mean={1:<5.2f} var={2:<5.2f}".format(i,
np.mean(df_templ[:,i]),
np.var(df _temp[:,i])

)
)
row 0: mean=0.00 var=1.00
row 1: mean=0.00 var=1.00
row 2: mean=-0.00 var=1.00
row 3: mean=-0.00 var=1.00
row 4: mean=-0.00 var=1.00
row 5: mean=0.00 var=1.00
row 6: mean=0.00 var=1.00
row 7: mean=-0.00 var=1.00

e Also, we can convert the numpy-array to Pandas-DataFrame and then calculate the mean and variance,

>>> # convert numpy-array to Pandas-dataframe
. df = pd.DataFrame(df_temp, columns=header)

>>>

>>> type(df) # Pandas DataFrame

<class 'pandas.core.frame.DataFrame'>

>>>

>>> np.mean(df) # mean = 0
channel -2.523234e-18
area 2.828545e-16
fresh -3.727684e-17
milk -8.815549e-18
grocery -5.197665e-17
frozen 3.587724e-17
detergent 2.618250e-17

delicatessen -2.508450e-18
dtype: float64

>>>

>>> np.var(df)
channel 1.0
area 1.0
fresh 1.0
milk 1.0
grocery 1.0
frozen 1.0
detergent 1.0
delicatessen 1.0

dtype: float64

14.4.3 MinMax scaler

MinMax scaler scales the features in the range (0 to 1) i.e. minimum and maximum values are scaled to 0 and 1

respectively.

>>> from sklearn.preprocessing import MinMaxScaler
>>> df _temp = MinMaxScaler().fit_transform(df_whole_sale)
>>> df = pd.DataFrame(df_temp, columns=header)

(continues on next page)
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>>> np.min(df)

channel 0.0
area 0.0
fresh 0.0
milk 0.0
grocery 0.0
frozen 0.0
detergent 0.0
delicatessen 0.0
dtype: float64

>>> np.max(df)

channel 1.0
area 1.0
fresh 1.0
milk 1.0
grocery 1.0
frozen 1.0
detergent 1.0
delicatessen 1.0

dtype: float64

14.4.4 Normalizer

Normalizer process the row such that the sum of each row is ‘1’, as shown in below code,

>>>
>>>
>>>

>>>
>>>

row
row
row
row
row
row

— o WN e O

from sklearn.preprocessing import Normalizer
df _temp = Normalizer().fit_transform(df_whole_sale)
df = pd.DataFrame(df_temp, columns=header)

# check the sum of each row
for i in range(df_temp.shape[0]):
print("row {0}: sum={1:0.2f}".format(
i, # row number
np.sqrt (np. cumsum(df _temp[i, :J**2) [-1])

sum=1.00
sum=1.00
sum=1.00
sum=1.00
sum=1.00
sum=1.00

14.5 Feature selection

In Chatper 7, we saw an example of feature selection, where the PCA analysis is done to reduce the dimension of
the features.

Note:

While collecting the data, our aim is to collect the data without thinking the relationship between the

‘features’ and the ‘targets’. It is possible that some of these data has no impact on the target e.g. ‘First name’ of
the person has no relationship with the ‘chronic kidney disease’. If we use this feature, i.e. First name, to predict

the ‘chronic kidney disease’, then we will have the wrong results.

Feature selection is the process of ‘removing’ or ‘giving less weight’ to irrelevant or partially relevant features. In
this way we can achieve following,
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1. Reduce overfitting: as the partially relevant data is removed from the dataset.
2. Reduce training time: as we have less features after feature selection.

14.5.1 SelectKBest

The ‘SelectKBest’ class can be used to find the best ‘K’ features from the dataset. In the below code, the

‘new_features’ contains the last two columns of the ‘features’,

>>> from sklearn.datasets import load_iris

>>> iris = load_iris()

>>> features, targets = iris.data, iris.target

>>>

>>> from sklearn.feature_selection import SelectKBest

>>> selector = SelectKBest (k=2)

>>> selector.fit(features, targets)

SelectKBest (k=2, score_func=<function f_classif at 0xb3cd49bc>)
>>> new_features = selector.transform(features)

>>> print(new_features[0:5, :]1) # selected last 2 columns

[[ 1.4 0.2]
[ 1.4 0.2]
[ 1.3 0.2]
[ 1.5 0.2]
[ 1.4 0.2]]

>>> print (features[0:5, :])
[[ 5.1 3.5 1.4 0.2]

[ 4.9 3. 1.4 0.2]
[ 4.7 3.2 1.3 0.2]
[ 4.6 3.1 1.5 0.2]
[56. 3.6 1.4 0.2]]

14.5.2 Recursive Feature Elimination (RFE)

RFE recursively checks the accuracy of the model and removes attributes which result in lower accuracy,

>>> from sklearn.datasets import load_iris

>>> iris = load_iris()

>>> features, targets = iris.data, iris.target

>>>

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_selection import RFE

>>> model = LogisticRegression()

>>> selector = RFE(model, 2)

>>> fit = selector.fit(features, targets)

>>> new_features = fit.transform(features)

>>> print(new_features[0:5, :]1) # selected 2nd and 4th column

[[ 3.5 0.2]
[ 3. 0.2]
[ 3.2 0.2]
[ 3.1 0.2]
[ 3.6 0.2]]1

>>> print(features[0:5, :])
[[ 5.1 3.5 1.4 0.2]

[ 4.9 3. 1.4 0.2]
[ 4.7 3.2 1.3 0.2]
[ 4.6 3.1 1.5 0.2]
[ 5. 3.6 1.4 0.2]]
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14.5.3 Principal component analysis (PCA)

Please see the Chatper 7 where PCA is discussed in detail. Note that, it does not select the features but transform
the features.

14.6 Algorithms

In this section, we will see some of the widely use algorithms for the ‘classification’ and ‘regression’ problems.

Important: Note that all the models do not work well in all the cases. Therefore, we need to check the
performance of various machine learning algorithms before finalizing the model.

14.6.1 Classification algorithms
Table 14.2 shows some of the widely used classification algorithms. We already see the examples of ‘Logistic

Regression (Chapter 3)’, ‘K-nearest neighbor (Chapter 2)’ and ‘SVM (Chapter 11)’. In this section we will discuss
LDA, Naive Bayes and Regression tree algorithms.

Table 14.2: Classification algorithms

Type Algorithm

Linear Logistic Regression, Linear Discriminant Analysis (LDA)
Non-linear | K-nearest neighbor, Support vector machines (SVM),
Naive Bayes, Decision Tree

14.6.1.1 Linear Discriminant Analysis (LDA)

The below code is same as Listing 3.4 but LDA is used instead of ‘K-nearest’ and ‘LogisticRegression’ algorithms,

# rock_mine2.py
# 'R': Rock, 'M': Mine

import numpy as np

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

f = open("data/sonar.all-data", 'r')
data = f.read()
f.close()

data = data.split() # split on \n

# save data as list 2.e. list of list will be created
data_list = []
for d in data:

# split on comma

row = d.split(",")

data_list.append(row)

# exiract targets
row_sample, col_sample = len(data_list), len(data_list[0])

# features : last column t.e. target value will be removed form the dataset

(continues on next page)
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(continued from previous page)

features = np.zeros((row_sample, col_sample-1), float)
# target : store only last column
targets = [] # targets are 'R’ and 'M'

for i, data in enumerate(data_list):
targets.append(datal[-1])
features[i] = datal[:-1]

# print(targets)

# print(features)

# split the training and test data

train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. 1f we put 10 then accuracy will be 1.0
# in this ezample
random_state=23,
# keep same proportion of 'target' in test and target data
stratify=targets

# select classifier
classifier = LinearDiscriminantAnalysis()

# training using 'training data’
classifier.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'training data’

prediction_training_targets = classifier.predict(train_features)
self_accuracy = accuracy_score(train_targets, prediction_training_targets)
print ("Accuracy for training data (self accuracy):", self_accuracy)

# predict the 'target' for 'test data'’

prediction_test_targets = classifier.predict(test_features)
test_accuracy = accuracy_score(test_targets, prediction_test_targets)
print ("Accuracy for test data:", test_accuracy)

e Below is the results for above code,

$ python rock_mine2.py
Accuracy for training data (self accuracy): 0.885542168675
Accuracy for test data: 0.809523809524

Note: Both LogisticRegression and LinearDiscriminantAnalysis algorithms assume that input features have
Gaussian distributions.

14.6.1.2 Naive Bayes

It assumes that all the features are independent of each other and have Gaussian distribution. Below is the example
of the Naive Bayes algorithm,

# multiclass_ez.py

import numpy as np
from sklearn.datasets import load_iris

(continues on next page)
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from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

# select classifier
classifier = GaussianNB()

# cross-validation

scores = cross_val_score(classifier, features, targets, cv=3)
print("Cross validation scores:", scores)

print("Mean score:", np.mean(scores))

e Below is the results for above code,

$ python multiclass_ex.py
Cross validation scores: [ 0.92156863 0.90196078 0.97916667]
Mean score: 0.934232026144

14.6.1.3 Decision Tree Classifier

It creates a binary decision tree from the training data to minimize the cost function,

# multiclass_ez.py

import numpy as np

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score

# create object of class 'load_iris'
iris = load_iris()

# save features and targets from the 'iris'
features, targets = iris.data, iris.target

# select classifier
classifier = DecisionTreeClassifier()

# cross-validation

scores = cross_val_score(classifier, features, targets, cv=3)
print("Cross validation scores:", scores)

print("Mean score:", np.mean(scores))

e Below is the output for above code,

$ python multiclass_ex.py
Cross validation scores: [ 0.98039216 0.92156863 1.]
Mean score: 0.96732026143

14.6.2 Regression algorithms

Table 14.3 shows some of the widely used regression algorithms. We already see the examples of ‘Linear regression
(Chapter 3)’. Also we saw the examples of ‘K-nearest neighbor (Chapter 2)’, ‘SVM (Chapter 11)’” and Decision Tree
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14.6. Algorithms

(Section 14.6.1.3) for ‘classification problems; in this section we will use these algorithms for regression problems.
Further, we will discuss ‘Ridge’, ‘LASSO’ and ‘Elastic-net’ algorithms.

Table 14.3: Regression algorithms

Type Algorithm
Linear Linear regression, Ridge, LASSO, Elastic-net
Non-linear | K-nearest neighbor, Support vector machines (SVM), Decision Tree

14.6.2.1 Ridge regression

It is the extended version of the Linear regression, where the ridge coefficients minimize a penalized residual sum
of square known as L2 norm.

# regression_ezx.py

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge

N 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4#x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

# save sine wave in variable 'targets'’
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. 21f we put 10 then accuracy will be 1.0
# in this example
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = Ridge()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print("Accuracy for test data:", test_accuracy)

e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.82273039102
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14.6.2.2 LASSO regression

It is the extended version of the Linear regression, where the ridge coefficients minimize the sum of absolute values
which is known as L1 norm.

# regression_ezx.py

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso

N 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

# save sine wave in vartable 'targets'’
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. @f we put 10 then accuracy will be 1.0
# in this ezample
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data'’
regressor = Lasso()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data'’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print ("Accuracy for test data:", test_accuracy)

e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.70974672729

14.6.2.3 Elastic-net regression

It minimizes both the LL1 norm and L2 norm,

# regression_ezx.py
import numpy as np
from sklearn.model_selection import train_test_split

from sklearn.linear_model import ElasticNet

N = 100 # 100 samples

(continues on next page)
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x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

# save sine wave in variable 'targets'
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. <f we put 10 then accuracy will be 1.0
# in this exzample
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = ElasticNet()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data'’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print("Accuracy for test data:", test_accuracy)

e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.744348295083

14.6.2.4 Support vector machines (SVM)

Note: Note that SVR is used for regression problem, whereas SVC was used in classification problem. Same is
applicable for ‘Decision tree’ and ‘K-nearest neighbor’ algorithms.

# regression_ex.py

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR

N
X

100 # 100 samples

np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

(continues on next page)
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# save sine wave in variable 'targets'’
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. @1f we put 10 then accuracy will be 1.0
# in this example
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = SVR()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print("Accuracy for test data:", test_accuracy)

e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.961088256595

14.6.2.5 Decision tree regression

# regression_ex.py

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor

N = 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4*x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

# save sine wave in variable 'targets'
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. if we put 10 then accuracy will be 1.0
# in this exzample

(continues on next page)
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random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = DecisionTreeRegressor ()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print ("Accuracy for test data:", test_accuracy)

e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.991442971888

14.6.2.6 K-nearest neighbor regression

# regression_ezx.py

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor

N 100 # 100 samples

x = np.linspace(-3, 3, N) # coordinates

noise_sample = np.random.RandomState(20) # constant random value
# growing sinusoid with random fluctuation

sine_wave = x + np.sin(4#x) + noise_sample.uniform(N)

# convert features in 2D format i.e. list of list
features = x[:, np.newaxis]

# save sine wave in variable 'targets'’
targets = sine_wave

# split the training and test data
train_features, test_features, train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
# random but same for all run, also accuracy depends on the
# selection of data e.g. @f we put 10 then accuracy will be 1.0
# in this ezample
random_state=23,
# keep same proportion of 'target' in test and target data
# stratify=targets # can not used for single feature

# training using 'training data’
regressor = KNeighborsRegressor ()
regressor.fit(train_features, train_targets) # fit the model for training data

# predict the 'target' for 'test data’
prediction_test_targets = regressor.predict(test_features)
test_accuracy = regressor.score(test_features, test_targets)
print ("Accuracy for test data:", test_accuracy)
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e Below is the output for above code,

$ python regression_ex.py
Accuracy for test data: 0.991613506388
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