

DarkSUSY trunk

Manual and long description of routines

Created automatically by headers2tex.pl Wed Jun 28 16:00:58 2006

http://www.physto.se/~edsjo/darksusy

Paolo Gondolo^{a*}, Joakim Edsjö^{b†}, Lars Bergström^{b‡}, Piero Ullio^{c§}, Mia Schelke^{d¶} and Edward A. Baltz^{e∥}

 a Utah

^b Department of Physics, Stockholm University, SCFAB, SE-106 91 Stockholm, Sweden ^c SISSA, via Beirut 4, 34014 Trieste, Italy

^d Torino

^e SLAC

^{*}E-mail address: gondolo@mppmu.mpg.de

 $^{^{\}dagger}\text{E-mail}$ address: edsjo@physto.se

[‡]E-mail address: lbe@physto.se

[§]E-mail address: ullio@he.sissa.it

 $[\]P E\text{-mail address: schelke} @...$

Abstract

DarkSUSY is a program package for supersymmetric dark matter calculations. This manual describes the theretical background as well as details about the actual routines. Everything is not covered, but it should hopefully prove useful if you need more information than in our published articles.

Contents

1	Intr	roduction	19
2	Ger	neral remarks on notation	21
3	ac:	Accelerator bounds	23
	3.1	Accelerator bounds	23
	3.2	Routine headers – fortran files	23
		dsacbnd.f	23
		dsacbnd1.f	24
		dsacbnd2.f	24
		dsacbnd3.f	25
		dsacbnd4.f	25
		dsacbnd5.f	26
		dsacbnd6.f	27
		dsacset.f	28
		dsbsgamma.f	28
		dsbsgf1.f	28
		dsbsgf2.f	28
		dsbsgf3.f	28
		dsbsgf4.f	28
		dsgm2muon.f	29
		dswexcl.f.	29
4	an:	Annihilation cross sections (general, χ^0 and χ^{\pm})	31
	4.1	Annihilation cross sections – theory	31
		4.1.1 Annihilation cross sections	31
		4.1.2 Coannihilation diagrams	31
		4.1.3 Neutralino and chargino annihilation	32
		4.1.4 Squark-squark annihilation	33
		4.1.5 Squark-neutralino annihilation	37
		4.1.6 Squark-chargino annihilation	37
		4.1.7 Degrees of freedom	38
	4.2	Annihilation routines - general remarks	38
		4.2.1 General routines	39
		4.2.2 Neutralino and chargino (co)annihilation cross sections	39
	4.3	Routine headers – fortran files	39
		dsanalbe.f	39
		dsanclearaa.f	39
		dsandwdcos.f	39
		dsandwdcoscc.f	40
		dsandwdcosen f	41

	dsandwdcosd.f	41
	dsandwdcosnn.f	41
	dsandwdcoss.f	42
	dsandwdcosy.f	42
	dsankinvar.f	43
	dsanset.f	43
	dsansumaa f	43
	dsantuce f	43
	deanturen f	40
	deanturn f	40
		44
	dsantures.r	44
	dsanwriteaa.f	44
	dsanwx.f	44
	dsanwxint.f	45
	dssigmav.f \ldots	45
_		. –
5 ar	11: Annihilation cross sections (1-loop)	47
5.	1 Annihilation cross sections at 1-loop – general	47
5.2	2 Routine headers – fortran files	47
	dsanggim.f.	47
	dsanggimpar.f	47
	dsanggre.f	48
	dsanggrepar.f	48
	dsanglglim.f	49
	dsanglglre.f	49
	dsanzg.f	49
	dsanzgpar.f	50
	dsdilog f	50
	dsdilogn f	51
	dsflc1 f	51
	doff1c9 f	51
	$d_{\alpha}d_{\alpha}d_{\alpha}d_{\alpha}d_{\alpha}d_{\alpha}d_{\alpha}d_{\alpha}$	51
	$dSll2C1.1 \dots $	51
		92 50
	dsfl3c1.f	52
	dsfl3c2.t	52
	dsfl4c1.f	52
	dsfl4c2.f	53
	dsi_12.f	53
	$dsi_13.f.$	53
	dsi_14.f	53
	dsi_22.f	54
	dsi_23.f	54
	$dsi_24.f$	54
	$dsi_32.f$	54
	dsi 33 f	54
	dsi 34 f	55
	dsi 41 f	55
	dei 49 f	55
	uo1_44.1	00 EF
	usnp2.1	00 50
	usj_1.1	56
	(ISJ_2.I	56
	dsj_3.1	56

CONTENTS

	dslp2.f	6
	dspi1.f	57
	dspiw2.f	57
	dspiw2i.f.	57
	dspiw3.f	57
	dspiw3i f	18
	dependence f	2
	derength f	:0
	denominal f	20
		10
	dssic1.f	19 19
	dsslc2.1	,9
	dssubka.f	9
	dssubkb.f \ldots \ldots \ldots \ldots \ldots \ldots 5	9
	dssubkc.f $\ldots \ldots \ldots$	i 0
	dsti_214.f	50
	dsti_224.f	50
	dsti_23.f	50
	dsti_33.f	j 1
	dsti 5 f	31
anst	tu: t , u and s diagrams for ff -annihilation 6	3
61	Annihilation amplitudes for fermion-fermion annihilation	33
6.2	Routine headers – fortran files	3
0.2	dependent f	;2
	dependition of the second se	30 34
	deanaffan f	24 24
		₹4 34
	dsansfisvs.f	14 14
	dsansffsvv.f	i 4
	dsansffvff.f6	55
	dsansffvss.f	55
	dsansffvsv.f	55
	dsansffvvs.f	55
	dsansffvvv.f	i6
	dsantfffss.f	i6
	dsantfffssex.f	i6
	dsantfffssin.f.	i7
	dsantfffsv.f	;7
	dsantfffsvin f	;7
	deputifier f	37
	dsantfffusar f	20
		00 00
		10
		18
	dsantfflvvin.f	18
	dsantfisff.f	<i>i</i> 9
	dsanufffss.f	;9
	dsanufffssin.f	<i>i</i> 9
	dsanufffsv.f	'0
	dsanuffsvin.f	'0
	dsanufffvs.f	'0
	dsanufffvv.f	'0
	dsanufffvvex.f	1
	dsanufffvvin.f	1
	· · · · · · · · · · · · · · · · · · ·	_

CO	NT	EN	TS
~ ~			

7 as: Annihilation cross sections (with sfermions) 73 7.1 Annihilation cross sections with sfermions - general 73 7.2 Routine headers 73 dsaschicasea.f 73 dsaschicasea.f 73 dsaschicasec.f 74 dsaschicasec.f 75 dsaschicasec.f 75 dsaschicasec.f 76 dsaschicasec.f 76 dsaschicasec.f 76 dsaschicasec.f 76 dsaschizero.f 76 dsaschizero.f 76 dsaschizero.f 76 dsasfercol.f 76 dsasfercol.f 77 dsasfercol.f 78 dsasfercol.f 78 dsasfercol.f 79 dsasferol.f 79 dsasferol.f 79 dsasferol.f 79 dsasferol.f 79 dsasferol.f 79 dsasferol.f 79 dsasforlo.f 79 dsasforlo.f 79 dsasforlo.f 79			dsanuffsff.f
7.1 Annihilation cross sections with sfermions – general 73 7.2 Routine headers – fortran files. 73 dsaschicasech f. 73 dsaschicasech f. 73 dsaschicasech f. 74 dsaschicasech f. 75 dsaschicasech f. 75 dsaschicasech f. 75 dsaschicasech f. 76 dsasdepro.f. 76 dsasdepro.f. 77 dsasdefer.d. 77 dsasfer.ol.f. 77 dsasfercol.f. 78 dsasfercol.f. 78 dsasffol. 79 dsasffol. 79 dsasffol.f. 79 dsasglpbl.f. 79 dsasglpbl.f. 80 dsasglpbl.f. 82 dsasglpbl.f. 82 dsasffol.f. 82 dsaskinset1.f. 83 dsasglpbl.f. 83	7	as:	Annihilation cross sections (with sfermions) 73
7.2 Routine headers – fortran files 73 dsaschicasca.f 73 dsaschicasc.f 73 dsaschicasc.f. 74 dsaschicasc.f. 75 dsaschicasc.f. 75 dsaschicasc.f. 75 dsaschicasc.f. 76 dsaschicasc.f. 76 dsaschicasc.f. 76 dsaschicasc.f. 76 dsaschicasc.f. 76 dsaschizero.f. 76 dsasdepro.f. 76 dsasder.f. 77 dsasfercol.f. 77 dsasfercol.f. 78 dsasfercol.f. 78 dsasfer.f. 79 dsasfer.f.		7.1	Annihilation cross sections with sfermions – general
		7.2	Routine headers – fortran files
			dsaschicasea.f
			dsaschicaseb.f
$\begin{array}{ccccccc} dsaschizero.f. & $			dsaschicasec.f
$\begin{array}{cccccc} dsaschizero.f. & 76 \\ dsascolzet.f. & 76 \\ dsasdepro.f. & 76 \\ dsasdwcossfst.f. & 77 \\ dsasfer.d. & 77 \\ dsasfer.d. & 77 \\ dsasfer.d. & 77 \\ dsasfer.d. & 78 \\ dsasfer.ol.f. & 78 \\ dsasfer.el. & 78 \\ dsasfer.el. & 78 \\ dsasfer.el. & 79 \\ dsasff.d. & 79 \\ dsasff.d. & 79 \\ dsasgbgb.f. & 79 \\ dsasgbgb.exp.f. & 80 \\ dsasgbgb.exp.f. & 81 \\ dsaskinset.f. & 83 \\ dsaskinset.f. & 83 \\ dsaskinset.f. & 83 \\ dsaskinset.f. & 83 \\ dsaskinset.f. & 84 \\ dsaskinset.f. & 83 \\ dsaskinset.f. & 84 \\ dsaskinset.f. & 84 \\ dsaskinset.f. & 84 \\ dsaskinset.f. & 84 \\ dsassccsSVHb.f. & 84 \\ dsassccsSVHb.f. & 84 \\ dsassccsSVHb.f. & 85 \\ dsassccsSVHb.f. & 85 \\ dsassccsTCH.f. & 86 \\ dsassccsCTCH.f. & 87 \\ dsassccsCTCH.f. & 86 \\ dsassccsCTCH.f. &$			dsaschicased.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsaschizero.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsascolset.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasdepro.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasdwdcossfchi.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasdwdcossfsf.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasfer f
disasfercol.f78disasfercol.f78disasfercol.f78disasfercol.f79disasffcol.f79disasfgoblexp.f79disasgbgblexp.f80disasgbgblexp.f81disasgbgblexp.f82disaskinset.f83disaskinset.f83disaskinset.f83disaskinset.f84disasscesSHffb.f84disasscesSHffb.f85disasscesSVffb.f85disasscesTCffb.f85disasscesTCffb.f86disassceclf.f86disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f86disasscelf.f87disasscelf.f898.1 $b \rightarrow s\gamma$ - theory898.2 $b \rightarrow s\gamma$ - routines898.3 Routine headers - fortran files90disbsgalpha3it.f90disbsgalpha3it.f90disbsgalpha3it.f90disbsgalpha3it.f90disbsgalpha3it.f90disbsgalpha3it.f90 <t< td=""><td></td><td></td><td>dsasfercode f</td></t<>			dsasfercode f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasfercol f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			deasfore f 78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			daasfaraaal f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasferecon
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasffeel f 70
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasgogo.i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
			dsasgbgb2exp.f
dsashbb.f.82dsaskinset.f83dsaskinset.f83dsaskinset2.f.84dsaskinset3.f.84dsaskinset3.f.84dsasccsSHfb.f84dsasccsSSHfb.cl.f85dsassccsSVfb.f.85dsassccsTCfb.f.85dsassccsTCfb.f.86dsassccsTCffcol.f86dsassccsCVffb.cl.f86dsassccsCVffb.cl.f86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.86dsassccsCVffb.f.87dsassccvUff.f.86dsassccvUffcol.f87dsassfercode.f.898.1 $b \rightarrow s\gamma$ - theory898.2 $b \rightarrow s\gamma$ - routines898.3Routine headers - fortran files90dsbsgalph3.f.90dsbsgalph3.f.90dsbsgalph3.f.90dsbsgalph3.f.90dsbsgalph3.f.90dsbsgalph3.f.90dsbsgalph3.f.90<			dsasgbhb.f
dsaskinset.f83dsaskinset1.f83dsaskinset2.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f84dsaskinset3.f85dsasscscSVffb.f85dsasscscSVffb.f85dsasscscTCffb.f85dsasscscTCffb.f86dsasscscTCffcol.f86dsasscscUCffcl.f86dsasscscUCffcl.f87dsassccuCffcol.f87dsaswcomp.f87staswcomp.f898.1 $b \rightarrow s\gamma$ - theory8.2 $b \rightarrow s\gamma$ - routines8.3Routine headers - fortran files90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f90dsbsgalph3.f<			dsashbhb.t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsaskinset.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsaskinset1.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsaskinset2.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsaskinset $3.f.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasphghb.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscsSHffb.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscsSHffbcol.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscsSVffb.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscssSVffbcol.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscsTCffb.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscsTCffbcol.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscTCff.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscTCffcol.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsasscscUCff.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsassescUCffcol.f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dsassfercode.f
			dsaswcomp f
8.1 $b \rightarrow s\gamma$ - theory	8	bsg:	$b \rightarrow s \gamma$ 89
8.2 $b \rightarrow s\gamma$ – routines		8.1	$b \rightarrow s\gamma$ - theory
8.3 Routine headers – fortran files 90 dsbsgalpha3.f 90 dsbsgalpha3int.f 90 dsbsgammafull.f 90 dsbsgat0.f 90		8.2	$b \rightarrow s\gamma$ - routines
dsbsgalpha3.f 90 dsbsgalpha3int.f 90 dsbsgammafull.f 90 dsbsgat0.f 90		8.3	Routine headers – fortran files
dsbsgalpha3int.f		0.0	dsbsgalpha3.f
dsbsgammafull.f			dshsgalpha3int f
dsbsgat0.f			dshsgammafull f
			dsbsgat0.f

CONTENTS

dsbsgat1.f	91
dsbsgbofe.f	91
dsbsgc41h2.f.	91
dsbsgc41susy.f	92
dsbsgc70h2.f.	92
dsbsgc70susy.f	92
dsbsgc71chisusy.f	92
dsbsgc71h2.f	93
dsbsgc71phi1susy.f	93
dsbsgc71phi2susy.f	93
dsbsgc71wsusy.f	94
dsbsgc80h2.f.	94
dsbsgc80susy.f	94
dsbsgc81chisusy.f	94
dsbsgc81h2.f	95
dsbsgc81phi1susy.f	95
dsbsgc81phi2susy.f	95
dsbsgc81wsusy.f	96
dsbsgckm.f	96
dsbsgd1td.f	96
dsbsgd2d.f	96
dsbsgd2td.f	97
dsbsgd7chi1.f	97
dsbsgd7chi2.f	97
dsbsgd7h.f	97
dsbsgd8chi1.f	98
dsbsgd8chi2.f	98
dsbsgd8h.f	98
dsbsgeb.f	98
dsbsgechi.f	99
dsbsgeh.f	99
dsbsget0.f	99
dsbsgf71.f	99
dsbsgf72.f	100
dsbsgf73.f	100
dsbsgf81.f	100
dsbsgf82.f	100
dsbsgf83.f	101
dsbsgft0.f	101
dsbsgft1.f	101
dsbsgfxy.f	102
dsbsgg.f	102
dsbsgg7chi2.f	102
dsbsgg7chij1.f	102
dsbsgg7h.f	103
dsbsgg7w.f	103
dsbsgg8chi2.f	103
dsbsgg8chij1.f	103
dsbsgg8h.f	104
dsbsgg8w.f	104
dsbsggxy.f	104
dsbsgh1x.f	105

	dsbsgh2xv.f
	dshsgh3x f
	dshsghd f
	debeghtd f
	debagke f
	usbsgkc.1
	dsDsgKt.I
	dsDsgmtmuw.f
	dsbsgmtmuwint.f
	dsbsgri.f
	dsbsgud.f
	dsbsgutd.f
	dsbsgwud.f
	dsbsgwxy.f
	dsbsgyt.f
	dsphi22a.f
	dsphi22b.f
	dsphi27a.f
	dsphi27b.f
9 db:	Anti-deuteron fluxes from the halo 111
9.1	Anti-deuteron fluxes from annihilation in the halo
9.2	Routine headers – fortran files
	dsdbsigmavdbar.f
	dsdbtd15.f
	dsdbtd15beu f
	dsdbtd15beucl f
	dsdbtd15beuckn f 113
	dedbtd15boum f 113
	dsdbtd15comp f 114
	dsdbtd15comp.1
	dadbtd15mf
	dsdbtd15x.1
10 dd•	Direct detection 117
10 44.	Direct detection _ theory 117
10.1	Direct detection routing 110
10.2	Bouting headers fortran fles
10.5	dadddn1 f
	dadddp 2 f 120
	dadda2 f
	usuuuno
	dsddeta.f
	dsddffsd.f
	dsddffsi.f
	dsddgpgn.f
	dsddlim.f
	dsddlimits.f
	dsddneunuc.f
	dsddo.f
	dsddset.f
	dsddsigmaff.f
	dsddsigsi.f

dsddvearth.f		. 124
11 op: Positron fluxos from the halo		195
11 1 Positrons from the halo – theory		125
11.1 1 Dropagation and the interstellar flux	• • •	. 125
11.1.2 Solar modulation	• • •	120
11.2 Positrons from the halo – routines		127
11.2 Positions from the field Fouriers	•••	127
dsembø f		127
dsepbg.f		. 127
dsepdiff.f		. 128
dsepdsigv_de.f		. 128
dsepeecut.f		. 129
dsepeeuncut.f		. 129
dsepf.f		. 129
dsepfrsm.f		. 129
dsepgalpropdiff.f		. 130
dsepgalpropig.f		. 130
dsepgalpropig2.f		. 130
dsepgalpropline.f		. 130
dsephalodens2.f		. 130
dsepideltavint.f		. 131
dsepimage_sum.f		. 131
dsepipol.f		. 131
$\operatorname{dsepkt.f}$. 132
dsepktdiff.f		. 132
dsepktig.f		. 132
dsepktig2.f.		. 132
dsepktline.f \ldots		. 133
dseploghalodens2.f \ldots		. 133
$dsepmake_tables.f \ldots \ldots$. 133
dsepmake_tables2.f		. 134
dsepmsdiff.f		. 134
dsepmsig.f		. 134
dsepmsig2.f		. 135
dsepmsline.f		. 135
dsepmstable.f \ldots		. 135
dseprsm.f		. 135
dsepset.f \ldots		. 136
dsepsigvdnde.f		. 136
dsepspec.f		. 136
dseptab.f		. 137
dsepvvcut.f		. 137
dsepvvuncut.f		. 137
dsepwcut.f		. 137
dsepwuncut.f		. 138
dsgalpropig.t		. 138
dsgalpropug2.t		. 138
dsgalpropset.f		. 139

12 ep2	Positron fluxes from the halo (alternative solution)	141
12.1	Routine headers – fortran files	141
	dsepintgreen.f	141
	dsepspecm.f	141
	dsepvofeps.f	142
13 ge:	General routines	143
13.1	General routines	143
13.2	Routine headers – fortran files	143
	cosd.f	143
	dsabsq.f	143
	dsbessei0.f	143
	dsbessei1.f	143
	dsbessek0.f	144
	dsbessek1.f	144
	dsbessek2.f	144
	dsbessjw.f	144
	dscharadd.f	144
	dsf2s.f	145
	$dsf_int.f$	145
	dsf_int2.f	145
	dshiprecint3.f	145
	dshunt.f	145
	dsi2s.f	146
	dsi_trim.f	146
	dsidtag.f	146
	dsisnan.f	146
	dsquartic.f	146
	dsrnd1.f	146
	dsrndlin.f	146
	dsrndlog.f	146
	dsrndsgn.f	146
	dswrite.f	147
	erf.f	147
	erfc.f	147
	sind.f	147
	spline.f.	147
	splint.f	147
14 ha:	Halo annihilation yields	149
14.1	Annihilation in the halo, yields – theory	149
	14.1.1 Monte Carlo simulations	149
14.2	Routine headers – fortran files	149
	dshacom.f	149
	dshadec.f	149
	dshadydth.f	150
	dshadyh.f	150
	dshaemean.f	150
	dshaifind.f	150
	dshainit.f	151
	dshapbyieldf.f	151
	dshawspec.f	151

	dshayield.f
	dshayield_int.f
	dshayielddec.f
	dshayieldf.f
	dshayieldfth.f
	dshayieldget.f
	dshayieldh.f
	dshayieldh2.f
	dshayieldh3.f
	dshayieldh4.f
15 hm:	Halo models 157
15.1	Halo models – theory \dots
150	15.1.1 Rescaling of the neutralino density
15.2	Halo model – routines
15.3	Routine headers – fortran files
	dshmabgrho.f
	dshmaxiprob.f
	dshmaxirho.f
	dshmboerrho.f
	dshmboerrhoaxi.f
	dshmburrho.f
	dshmdfisotr.f
	dshmdfisotrnum.f
	dshmhaloprof.f
	dshmj.f
	dshmjave.f
	dshmjavegc.f
	dshmjavepar1.f
	dshmjavepar2.f
	dshmjavepar3.f
	dshmjavepar4.f
	dshmjavepar5.f
	dshmjpar1.f
	dshmn03rho.f
	dshmnumrho.f
	dshmrescale_rho.f
	dshmrho.f
	dshmrho2cylint.f
	dshmset.f
	dshmsphrho.f
	dshmudf.f
	dshmudfearth.f
	dshmudfearthtab.f
	dshmudfgauss.f
	dshmudfiso.f
	dshmudfnum.f
	dshmudfnumc.f
	dshmudftab.f
	dshmvelearth.f

α	171	T	L.I.	١T	т	1C
$\mathcal{O}\mathcal{O}$	/1 N	T	\mathbf{L}	. V	T	D

16 hr:	Halo rates from annihilation 1	175
16.1	Gamma rays from the halo – theory	175
	16.1.1 $\chi\chi \to \gamma\gamma$	176
	16.1.2 $\chi\chi \to Z\gamma$	177
	16.1.3 Gamma rays with continuum energy spectrum	178
	16.1.4 Sources and fluxes	178
16.2	Neutrinos from halo – theory	179
16.3	Routine headers – fortran files	180
	dshaloyield.f	180
	dshaloyielddb.f	180
	dshrdbardiff.f	180
	dshrdbdiff0.f	181
	dshrgacdiffsusy.f	181
	dshrgacont.f	182
	dshrgacontdiff.f	182
	dshrgacsusy.f	183
	dshrgaline.f	183
	dshrgalsusy.f	184
	dshrmudiff.f	184
	dshrmuhalo.f	185
	dshrpbardiff.f	185
	dshrpbdiff0.f	186
	dsnsigvgacdiff.f	186
	dsnsigvgacont.t	187
	dsnsigvgaline.f	187
17 ini:	Initialization routines	189
17 ini: 17.1	Initialization routines I Initialization routines	L 89 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I	L 89 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I	189 189 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I	189 189 189 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsinit.f I	189 189 189 189 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsinit.f I dsival.f I	189 189 189 189 189 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsinit.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I	189 189 189 189 189 189 189 189
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsinit.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I	 189 189 189 189 189 189 189 190 190
17 ini: 17.1 17.2	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dslval.f 1	 189 189 189 189 189 189 189 190 190 190
17 ini: 17.1 17.2	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dsreadpar.f 1	189 189 189 189 189 189 189 190 190 190 190
17 ini: 17.1 17.2	Initialization routines I Initialization routines I Routine headers – fortran files I dsfval.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I	 189 189 189 189 189 189 190 190 190 190
17 ini: 17.1 17.2	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dsreadpar.f 1	<pre>189 189 189 189 189 189 189 189 189 190 190 190 190</pre>
 17 ini: 17.1 17.2 18 mu: 18.1 	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dsreadpar.f 1 Muon neutrino yields from annihilation in the Sun/Earth 1 Muon yields from annihilation in the Earth/Sun – theory 1	<pre>L89 189 189 189 189 189 189 189 190 190 190 190 L91 191</pre>
17 ini: 17.1 17.2 18 mu: 18.1	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dslval.f 1 dsreadpar.f 1 Muon neutrino yields from annihilation in the Sun/Earth 1 Muon yields from annihilation in the Earth/Sun – theory 1 18.1.1 Monte Carlo simulations 1 Det in the last of the file 1	<pre>L89 189 189 189 189 189 189 189 190 190 190 190 L91 191 191</pre>
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines I Routine headers – fortran files I dsfval.f I dsfval.f I dsival.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I dslowcase.f I dslval.f I dslowcase.f I dslowcase.f I dslowcase.f I dslowcase.f I dslowcase.f I dstreadpar.f I Muon yields from annihilation in the Sun/Earth I Muon yields from annihilation in the Earth/Sun – theory I 18.1.1 Monte Carlo simulations I Routine headers – fortran files I l f	<pre>L89 189 189 189 189 189 189 189 190 190 190 190 L91 191 191 192</pre>
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dslval.f 1 dsreadpar.f 1 Muon neutrino yields from annihilation in the Sun/Earth 1 Muon yields from annihilations 1 Nuon yields from annihilations 1 Routine headers – fortran files 1 Nuoin headers – fortran files 1 dsmucom.f 1 dsmucom.f 1	L89 189 189 189 189 189 189 190 190 190 190 L91 191 191 192 192
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines 1 Initialization routines 1 Routine headers – fortran files 1 dscval.f 1 dsfval.f 1 dsinit.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dsival.f 1 dskillsp.f 1 dslowcase.f 1 dslval.f 1 dsreadpar.f 1 Muon neutrino yields from annihilation in the Sun/Earth 1 Muon yields from annihilations 1 Nuon yields from annihilations 1 Routine headers – fortran files 1 dsmucom.f 1 dsmudydth.f 1	<pre>L89 189 189 189 189 189 189 189 190 190 190 190 L91 191 191 192 192 192</pre>
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsinit.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I dslval.f I dslowcase.f I dslval.f I Muon neutrino yields from annihilation in the Sun/Earth I Muon yields from annihilation in the Earth/Sun – theory I 18.1.1 Monte Carlo simulations I Routine headers – fortran files I dsmucom.f I dsmudydth.f I dsmuemean.f I	L89 L89 189 189 189 189 190 190 190 190 191 191 192 192 192
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsfval.f I dsival.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I dsreadpar.f I Muon neutrino yields from annihilation in the Sun/Earth I Muon yields from annihilation in the Earth/Sun – theory I 8.1.1 Monte Carlo simulations I Routine headers – fortran files I dsmucom.f I dsmudydth.f I dsmutind.f I dsmutind.f I	189 189 189 189 189 189 190 190 190 190 191 190 191 192 192 192 192 192
17 ini: 17.1 17.2 18 mu: 18.1 18.2	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dsfval.f I dsfval.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I dslowcase.f I dslval.f I Muon neutrino yields from annihilation in the Sun/Earth I Muon yields from annihilation in the Earth/Sun – theory I 81.1 Monte Carlo simulations I Routine headers – fortran files I dsmucom.f I I dsmuemean.f I I dsmuifind.f I I dsmuifield f I I	189 189 189 189 189 189 190 190 190 190 190 191 190 192 192 192 192 192 192 192 192 192 193 193
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines Routine headers – fortran files Routine headers – fortran files dscval.f dscval.f dsinit.f dsinit.f dsinit.f dsival.f dsival.f dskillsp.f dsival.f dslowcase.f dslowcase.f dslval.f dsreadpar.f Muon neutrino yields from annihilation in the Sun/Earth I Muon yields from annihilations much second Routine headers – fortran files dsmuch second dsmudydth.f dsmudydth.f dsmuifind.f dsmuifind.f dsmuifi.f dsmuifi.f dsmuifi.f dsmuifi.f dsmuifi.f dsmuifi.f	 L89 189 189 189 189 190 190 190 190 191 192 192 192 192 192 192 192 193 193 193
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines Routine headers – fortran files Routine headers – fortran files dscval.f dscval.f dsinit.f dsinit.f dsinit.f dsival.f dsival.f dskillsp.f dsival.f dskillsp.f dslowcase.f dslowcase.f dslowcase.f dsreadpar.f dslowcase.f Muon neutrino yields from annihilation in the Sun/Earth 1 Muon yields from annihilations fortran files Routine headers – fortran files dsmucom.f dsmudydth.f dsmudydth.f dsmuifind.f dsmuifind.f dsmuifind.f dsmuyield.f dsmuyield.int.f dsmuyield.f	L89 189 189 189 189 189 190 190 190 190 L91 191 192 192 192 192 193 193 193 194
 17 ini: 17.1 17.2 18 mu: 18.1 18.2 	Initialization routines I Initialization routines I Routine headers – fortran files I dscval.f I dstval.f I dsival.f I dsival.f I dsival.f I dsival.f I dsival.f I dsival.f I dskillsp.f I dslowcase.f I dslval.f I Muon neutrino yields from annihilation in the Sun/Earth I Muon yields from annihilation in the Earth/Sun – theory I 18.1.1 Monte Carlo simulations I Routine headers – fortran files I dsmucom.f I dsmudydth.f I dsmuifind.f I dsmuyield.f I dsmuyield.f I	 L89 189 189 189 189 190 190 190 190 191 192 192 192 192 192 193 193 194
17 ini: 17.1 17.2 18 mu: 18.1 18.2	Initialization routines I Initialization routines	L89 189 189 189 189 189 190 190 190 190 190 190 191 190 192 192 192 192 193 193 194 194 194

	dsmuyieldh2.f	194
	dsmuyieldh3.f	195
	dsmuyieldh4.f	195
	•	
19 nt:	Neutrino and muon rates from annihilation in the Sun/Earth	197
19.1	Neutrinos from the Sun and Earth – theory	197
	19.1.1 Neutrino yield from annihilations	197
	19.1.2 Evolution of the number density in the Earth/Sun	198
	19.1.3 Approximate capture rate expressions	199
	19.1.4 Earth and Sun composition	200
	19.1.5 More accurate capture rate expressions	201
	19.1.6 Accurate capture rates in the Earth for general velocity distributions	201
	19.1.7 Accurate capture rates for the Earth for a Maxwell-Boltzmann velocity distri	bution 203
	19.1.8 A possible new population of neutralinos	204
	19.1.9 Effects of WIMP diffusion in the solar system	205
19.2	Neutrinos from Sun and Earth – routines	205
19.3	Routine headers – fortran files	207
	dsai.f	207
	dsaip.f	207
	dsatm_mu.f	207
	dsbi.f	207
	dsbip.f	207
	dsff.f	208
	dsff2.f	208
	dsff3.f	208
	dsfff2 f	208
	dsfff3.f	208
	dsgauss1.f	208
	dshiprecint.f	208
	dshiprecint2 f	208
	dshonda f	200
	dshiff f	200
	dsntannrate f	209
	dsntcancom f	200
	dentcapeerth f	210
	dentcapearth? f	210 210
	dentcapearthfull f	210 210
	dentcapearthnum f	210 911
	denteapoarthnumi f	211 919
	denteapearthtab f	212 919
	denteapear file	212 919
	danteengunnum f	212 913
	danteengunnumi f	210 019
	danteengunteh f	210 019
	dentecipt f	215 914
	dentecint? f	214 914
	dantegint f	214 914
	usinusinusi	214 914
	ushiteshine2.1	214 914
	dentetableet f	214 215
	dentetabread f	$210 \\ 015$
	usinicialiteau.i	210 915
		$_{210}$

dsntdiffrates.f	 216
dsntdkannrate.f	 216
dsntdkcapea.f	 217
dsntdkcapeafull.f	 217
dsntdkcapearth.f	 218
dsntdkcom.f	 218
dsntdkfbigu.f	 218
dsntdkfoveru.f	 218
dsntdkgtot10.f	 218
dsntdkka.f	 219
dsntdkyf.f	 219
dsntdqagse.f.	 219
dsntdqagseb.f	 222
dsntdgk21.f	 225
dsntdgk21b.f	 226
dsntearthdens.f	 227
dsntearthdenscomp.f	 228
dsntearthmass.f	 229
dsntearthmassint.f	 229
dsntearthne.f	 229
dsntearthpot.f	229
dsntearthpotint f	 230
dsntearthyesc.f	 230
dsntedfunc.f	 230
dsntepfunc.f	 230
dsntfoveru.f	 230
dsntfoveruearth.f	 231
dsntismbkg.f.	 231
dsntismrd.f	 231
dsntlitlf e.f	231
dsntlitlf s.f.	 232
dsntmoderf.f.	 232
dsntmuonvield.f	 232
dsntnuism.f	 233
dsntnusun.f	 233
dsntrates.f	 233
dsntse.f	234
dsntsefull.f.	 234
dsntset f	234
dsntspfunc.f	 234
dsntss f	 234
dsntsunbkg.f	 235
dsntsuncdens.f	 235
dsntsuncdensint f	 235
dsntsuncdfunc f	 236
dsntsundens f	 236
dsntsundenscomp f	 236
dsntsunmass f	 237
dsntsunmfrac f	 237
dsntsunne f	 237
dsntsunne2x f	 238
dsntsunpot f	 238
astro-attpout	 -00

	dsntsunpotint.f 238 dsntsunread.f 239 dsntsunvesc.f 239 dsntsunx2z.f 239 dsntsunz2x.f 239
20 pb:	Antiproton fluxes from the halo 241
20.1	Antiprotons – theory
	20.1.1 The Antiproton Source Function
	20.1.2 Propagation model
20.0	20.1.3 Solar Modulation
20.2	Antiprotons from the halo – routines
20.3	Routine headers – fortran files
	dspbaddterm.i
	dephotoparge.
	dephouparts.
	dephauparm f 246
	depheherper1 f 246
	dspheharpar? f 246
	dspbgalpropdiff f
	dsphgalpropig f 247
	dspbgalpropig2.f
	dspbkdiff.f
	dspbkdiffm.f
	dspbset.f
	dspbsigmavpbar.f
	dspbtd15.f
	dspbtd15beu.f
	dspbtd15beucl.f
	dspbtd15beuclsp.f.
	dspbtd15beum.f
	dspbtd15char.f
	dspbtd15comp.f
	dspbtd15point.f
	dspbtd15x.f
	dspbtpb.f
21 rd:	Relic density routines (general) 253
21.1	Relic density – theoretical background
	21.1.1 The Boltzmann equation and thermal averaging
	21.1.2 Review of the Boltzmann equation with coannihilations
	21.1.3 Thermal averaging
	21.1.4 Internal degrees of freedom
	21.1.5 Reformulation of the Boltzmann equation
21.2	Relic density – numerical integration of the density equation
21.3	Relic density – routines
	21.3.1 Neutralino relic density \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 267
	21.3.2 General relic density routines $\ldots \ldots 267$
	21.3.3 Brief description of the internal routines
21.4	Routine headers – fortran files
	dsrdaddpt.f

	dsrdcom.f	271
	dsrddof150.f	271
	dsrddpmin.f	271
	dsrdens.f	271
	dsrdeqn.f	272
	dsrdfunc.f	272
	dsrdfuncs.f	273
	dsrdlny.f	273
	dsrdnormlz.f	273
	dsrdqad.f	274
	dsrdgrkck.f	274
	dsrdrhs.f	274
	dsrdspline.f	275
	dsrdstart.f	275
	$\operatorname{dsrdtab}$.f	275
	dsrdthav.f	276
	dsrdthclose.f.	276
	dsrdthlim.f	276
	dsrdthtest.f	276
	dsrdwdwdcos.f	277
	dsrdwfunc.f	277
	dsrdwintp.f	277
	dsrdwintpch f	$\frac{-}{277}$
	dsrdwintprint f	277
	dsrdwintepinten f	278
	dsrdwprint f	278
	dsrdwps f	278
		210
22 rge:	mSUGRA interface (Isasugra) to DarkSUSY 2	101
22.1	mSUGRA (ISASUGRA) interface to DarkSUSY	201
		281 281
22.2	Routine headers – fortran files	281 281 281
22.2	Routine headers – fortran files	281 281 281 281
22.2	Routine headers – fortran files	281 281 281 281 282
22.2	Routine headers – fortran files	281 281 281 281 281 282 282
22.2	Routine headers – fortran files	281 281 281 281 282 282 282 282
22.2	Routine headers – fortran files	281 281 281 281 282 282 282 282 282
22.2	Routine headers – fortran files	281 281 281 281 282 282 282 282 282 282
22.2	Routine headers – fortran files	281 281 281 282 282 282 282 282 282 282
22.2 23 rn:	Routine headers – fortran files	281 281 281 282 282 282 282 282 282 283 283
22.2 23 rn: 23.1	Routine headers – fortran files	 281 281 281 281 282 282 282 282 282 283 285
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	281 281 281 281 282 282 282 282 282 282
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	 281 281 281 281 282 282 282 282 283 285 285 285
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	 281 281 281 281 282 282 282 282 283 285 285 285 285 286
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	 281 281 281 281 281 282 282 282 283 285 285 285 286 286
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	 281 281 281 281 281 282 282 282 283 285 285 285 286 286 286 286
22.2 23 rn: 23.1 23.2	Routine headers – fortran files	 281 281 281 281 281 282 282 282 282 283 285 285 285 286 286 286
22.2 23 rn: 23.1 23.2 24 su:	Routine headers – fortran files	 281 281 281 281 281 281 281 281 282 282 282 283 285 285 285 285 285 285 286 286 286 286 286 286 288
22.2 23 rn: 23.1 23.2 24 su: 24.1	Routine headers – fortran files	 281 281 281 281 281 281 282 282 282 282 283 285 285 285 285 286 286 286 286 289 289
22.2 23 rn: 23.1 23.2 24 su: 24.1	Routine headers – fortran files dsgive_model_isasugra.f dsisasugra_check.f dsisasugra_darksusy.f dsmodelsetup_isasugra.f dsisasugra.f dsrge_isasugra.f dsisasugra.f dsmodelsetup_of neutralinos (wrapper for rd routines) 2 Relic density of neutralinos dsisasugra.f Relic density of neutralinos dsisasugra.f dsrdomega.f dsisasugra.f dsrdomega.f dsisasugra.f dsrdomega.f dsisasugra.f dsrdures.f dsisasugra.f dsrdwrate.f dsisasugra.f Querysymmetric model masses, vertices etc Supersymmetric model 24.1.1	 281 281 281 281 281 282 282 282 282 283 285 285 286 286 286 286 289 289 289
22.2 23 rn: 23.1 23.2 24 su: 24.1	Routine headers – fortran files 1 dsgive_model_isasugra.f 1 dsisasugra_darksusy.f 1 dsmodelsetup_isasugra.f 1 dsrge_isasugra.f 1 dsrge_isasugra.f 1 dsrge_isasugra.f 1 dsrge_isasugra.f 1 dsrge_isasugra.f 1 dsrge_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrde 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 dsrege_isasugra.f 1 Relic density of neutralinos (wrapper for rd routines) 2 Relic density of neutralinos 1 dsrdomega.f 1 dsrdomega.f 1 dsrdwrate.f 1 dsrdwrate.f 1 dsupersymmetric model 1 24.1.1 Parameters 24.1.2 Mass spectrum	 281 281 281 281 281 282 282 282 282 283 285 285 285 285 286 286 286 286 289 289 289 289
22.2 23 rn: 23.1 23.2 24 su: 24.1	Routine headers – fortran files	 281 281 281 281 281 282 282 282 282 283 285 285 285 286 286 286 286 289 289 292

CONTENTS

24.2	General supersym	metry –	routi	nes																		295
24.3	Routine headers –	fortran	files																			297
	dsb0loop.f																					297
	dschasct.f																					297
	dsfevnhiggsfast.f																					297
	dsfindmtmt.f																					298
	dsg0loop.f																					298
	dsg4set f		• •			• •	• •		•••					·	•••	•		•	•		•	298
	dsg4set12 f		• •			• •	• •		• •					·	•••	•		•	•		•	298
	dsg4set1234 f		• •		•••	• •	•••	•••	•••	•••	• •	•	•••	·	•••	•	• •	·	•	• •	·	299
	dsg/set13 f		•••	•••	•••	•••	•••	•••	•••	•••	• •	•	•••	·	• •	•	• •	·	•	• •	·	200
	dsg/set23 f		•••	•••	•••	•••	•••	•••	•••	•••	• •	•	•••	·	• •	•	• •	·	•	• •	·	200
	dsg/sot34 f		• •		• •	• •	• •	• •	• •	•••	• •	•	• •	·	•••	•	• •	·	•	• •	·	200
	dag4set54.1		• •		• •	• •	•••	•••	•••	•••	• •	•	• •	·	•••	•	•••	·	•	•••	·	299
	dsg4setc.1		• •		• •	• •	• •	• •	• •	•••	• •	•	• •	·	•••	•	• •	·	·	• •	·	299
	dsg4setc12.1		• •		• •	• •	• •	• •	• •	• •	• •	•	• •	·	•••	•	• •	•	•	•••	·	299
	asg4setc1234.1.		• •		• •	•••	• •	•••	• •	• •	• •	•	•••	·	•••	•	• •	·	·	• •	·	300
	dsg4setc13.f		• •		• •	• •	•••	• •	• •	• •	• •	• •	• •	·	•••	•	• •	·	·	• •	·	300
	dsg4setc23.f		• •		• •	• •	• •	• •	• •	•••	• •	•	•••	·	•••	•	• •	·	·	•••	·	300
	dsg4setc34.f		• •		• •	•••	• •	• •	•••	• •	• •	•	•••	·	•••	•		·	•	• •	·	300
	dsgive_model.f		• •		• •	• •	• •	• •	• •	•••	• •	•	• •	·	•••	•	• •	·	·	• •	·	300
	dshgfu.f		•••		• •	• •	• •	• •	•••	• •	• •	•	•••	•	•••	•		•	•	• •	•	301
	dshigferqcd.f		•••		• •	• •	• •	• •	•••	•••	• •	•	•••	•	•••	•		•	•	• •	•	301
	dshigsct.f		•••									• •		•		•		•	•		•	301
	dshigwid. f $\ .$											•				•		•	•			302
	$dshlf2.f \ldots \ldots \ldots$											•				•						302
	dshlf3.f											•						•				302
	dsmodelsetup. f $% = \int ds \left[ds \left[\int ds \left[d$																					302
	dsmqpole1loop.f .																					303
	dsneusct. f $\ .$																					303
	dspole.f \ldots																					303
	dsprep.f																					303
	dsqindx.f																					304
	dsralph3.f																					304
	dsralph31loop.f .																					304
	dsrghm.f																					304
	dsrma.f																					304
	dsrmalloop.f																					304
	dssettopmass.f																					304
	dssfesct.f																					304
	dsspectrum f		• •			• •	• •		• •					·	•••	•		•	•		•	305
	dssuconst f		• •		• •	•••	• •	• •	•••	• •	• •	•••	•••	•	•••	•	•••	•	•	•••	•	305
	dssusv f		•••		• •	•••	• •	•••	•••	• •	• •	•••	•••	•	•••	•	•••	•	•	•••	•	305
	deverty f		•••		• •	• •	• •	• •	• •	• •	• •	•••	• •	•	•••	•	•••	•	•	• •	•	305
	dsvortx1 f		• •	•••	• •	• •	• •	• •	• •	•••	• •	•	• •	·	•••	•	• •	·	•	• •	·	306
	devorty? f		•••		• •	• •	• •	•••	• •	• •	• •	•	• •	·	•••	•	• •	·	•	•••	·	306
	dambuone f		• •		• •	• •	•••	• •	• •	•••	• •	•	•••	·	•••	•	•••	·	·	•••	·	000 207
	dawapaatawa f		•••		•••	• •	• •	•••	• •	• •	• •	•	•••	·	•••	•	• •	•	•	• •	•	307 207
	uswspectrum.r.		• •		• •	• •	• •	• •	• •	•••	• •	•	•••	·	•••	•	• •	•	·	•••	·	307
	aswunpn.t		• •		• •	• •	• •	• •	•••	• •	• •	•	• •	·	•••	•	• •	•	•	• •	•	307
	aswvertx.t		• •		• •	• •	•••	•••	• •	•••	• •	•	•••	·	•••	•	• •	•	•	• •	·	307
	g4p.t											•		•		•						308

25 suspect: mSUGRA interface (suspect) to DarkSUSY	309
25.1 Routine headers – fortran files	309
dssuspecterr.f \ldots	309
$dssuspectsugra.f.\ldots$	309
suspect2.f	310
26 yearn: CEBN routines needed by DarkSUSY	313
26 1 Routine headers – fortran files	313
besi064 f	313
bsir364.f	313
dbzeiv.f	313
ddilog.f	314
dgadap.f	314
drkstp.f	314
eisrs1.f	315
gpindp.f	315
mtlprt.f	316
tql2.f	316
tred2.f	316
27 xcmlib: CMLIB routines needed by DarkSUSY	317
27.1 Routine headers – fortran files	317
d1mach.f.	317
dqagse.f	317
dqagseb.f	320
dqelg.t	323
dqk21.t	324
dqk21b.f	325
dqpsrt.f	326
28 xfeynhiggs: FeynHiggs interface to DarkSUSY	329
28.1 Routine headers – fortran files	329
dsfeynhiggs.f	329
dsfeynhiggsdummy.f	330
FeynHiggsSub_ds.f	330
$Hhmasssr2_ds.f$	331
20 yhdeenyy HDeeny interface to DarkSUSV	222
29 Xindecay: Indecay interface to DarkSOSI	222
29.1 Routine neaders – fortrait mes	222
usinecay.i	222
пассаул	000
Acknowledgements	337
Bibliography	337

Chapter 1 Introduction

DarkSUSY is a set of Fortran routine to make calculations for supersymmetric dark matter in the Minimal Supersymmetric Standard Model, the MSSM. The physics involved is covered in the DarkSUSY paper [1]. In this manual we will mainly cover the more techincal aspects of DarkSUSY, i.e. how to call different subroutines and how to change switches and options. We will only briefly review the necessary physics involved when needed and refer the reader to [1] and the original papers behind DarkSUSY [2] for more details. If you use DarkSUSY please consider the original physics work behind and give proper credit to [1] and the relevant references in [2]. If you use non-standard options, e.g. a different propagation model for antiprotons, please remember to give proper credit to that model.

Chapter 2

General remarks on notation

In an attempt to keep this manual reasonably easy to follow we will need to specify our notation. We will use the following convention for fonts,

Convention for fonts

text	This font is used for normal text.
variable	This font is used for variables or other things in the code that is mentioned.
routine	This font is used for subroutine or function names or for header file names.
dump	This font will be used for screen dumps of outputs.
input	This font will be used for user input, i.e. where you are supposed to write
-	something.

Subroutines and functions will be described with the following structure

subroutine example(in1,in2,in3,in4,in5,in6,in7,out1)

Sui		zampr	c(m1,m2,m3,m4,m3,m0,m1,0001)
	Purpose:		Here the routine will be explained.
	Inputs:		
	in1	i	This is an input argument, declared as integer.
	in2	r	This is an input argument, declared as real.
	in3	r8	This is an input argument, declared as real*8.
	in4	с	This is an input argument, declared as complex.
	in5	c16	This is an input argument, declared as complex*16.
	in6	ch2	This is an input argument, declared as character*2.
	in7	ch*	This is an input argument, declared as character*(*).
	Outputs		
	out1	r8	This is an output argument, declared as $real*8$

where the shorthand notation for the type of the arguments is indicated. For functions, the type is indicated on the first line,

r8

Purpose:		Here the function will be explained.
Inputs:		
arg	i	This is an input argument, declared as integer.

i.e., in this case the function is declared as real*8.

The subroutines always reside in a file with the same name as the subroutine/function. Routines that belong together are put in separate subdirectories in the src directory. The different subdirectories are

Subdirectories in src/

ac	accelerator constraints
an	driver routines for neutralino and chargino annihilation

an1l	1-loop neutralino annihilation amplitudes
anstu	tree-level neutralino and chargino annihilation amplitudes
dd	direct detection and neutralino scattering
ер	positron fluxes from the halo
ge	general routines
ha	yields of halo annihilation products (from Pythia simulations in vacuum)
hm	halo models
hr	driver routines for rates from the halo
ini	initialization routines
mu	neutrino and muon yields from the neutralino annihilations in the Earth/Sun
	(from Pythia simulations in medium)
nt	driver routines for rates and fluxes in neutrino telescopes
pb	antiprotons from annihilation in the halo
rd	relic density routines (general)
rn	driver routines for neutralino relic density
su	general MSSM routines, couplings, masses, etc.
xcern	routines from CERNLIB
xcmlib	routines from CMLIB

Common blocks are all declared in header files in the inc directory. When discussing switches and parameters in common blocks we will, instead of describing the common blocks in detail, mention which header file they reside in. If you want to access these variables, you should then include the corresponding header file. E.g., it can look like this

	Example	parameters	in	headerfile.h
--	---------	------------	----	--------------

Purpose:		Description of this set of variables.
par1	r8	Description of a real*8 parameter.

Chapter 3

src/ac: Accelerator bounds

3.1 Accelerator bounds

DarkSUSY contains a set of routines to check if a given model is excluded by accelerator constraints. These routines are called **dsacbnd[number]**. The policy is that when we update DarkSUSY with new accelerator constraints, we keep the old routine, and add a new routine with the last number incremented by one. Which routine that is called is determined by calling **dsacset** with a tag determining which routine to call. To check the accelerator constraints, then call **dsacbnd** which calls the right routine for you. Upon return, **dsacbnd** returns an exclusion flag, excl. If zero, the model is OK, if non-zero, the model is excluded. The cause for the exclusion is coded in the bits of excl according to table 3.1

	excl		
Bit set	Octal value	Decimal value	Reason for exclusion
0	1	1	Chargino mass
1	2	2	Gluino mass
2	4	4	Squark mass
3	10	8	Slepton mass
4	20	16	Invisible Z width
5	40	32	Higgs mass
6	100	64	Neutralino mass
7	200	128	$b ightarrow s \gamma$
8	400	256	ρ parameter

Table 3.1: The bits of excl are set to indicate by which process this particular model is excluded. Check if a bit is set with btest(excl,bit).

3.2 Routine headers – fortran files

dsacbnd.f

c-----

c This is a wrapper routine which selects which accelerator constraint

c routine, dsacbnd* to call. Whenever the accelerator constraints are

c upgraded, a new function dsacbnd*.f is created, meaning that all old

```
с
   versions are kept for backward checks. The user can select which
   routine to use with a call to dsacset.
с
с
  Available options (in the call to dsacset) are:
с
     pdg2002c = default, these are the latest implemented
с
                      accelerator bounds
с
     pdg2002b
с
     pdg2002
с
    pdg2000
с
    mar2000
с
    pdg1999
с
c-----
    subroutine dsacbnd(excl)
```

dsacbnd1.f

24

subroutine dsacbnd1(excl)

```
c_____
      ------
                                            _____
c check if accelerator data exclude the present point.
c output:
с
   excl - code of the reason for exclusion (integer); 0 if allowed
c common:
   'dssusy.h' - file with susy common blocks
С
c author: paolo gondolo 1994-1999
c history:
    940407 first version paolo gondolo
С
с
    950323 update paolo gondolo
    971200 partial update joakim edsjo
с
    980428 update joakim edsjo
с
    990719 update paolo gondolo
С
C------
```

dsacbnd2.f

	subrou	tine	dsacbno	l2(excl))
c_					
с	check if	acce	lerator	data ez	xclude the present point.
с	output:				
с	excl -	code	of the	reason	for exclusion (integer); 0 if allowed
с	if not	allo	wed, the	e reason	ns are coded as follows
С	dsbit	set	dec.	oct.	reason
с					
с		0	1	1	chargino mass
с		1	2	2	gluino mass
с		2	4	4	squark mass
с		3	8	10	slepton mass
с		4	16	20	invisible z width
с		5	32	40	higgs mass
с		6	64	100	neutralino mass
с		7	128	200	b -> s gamma
с		8	256	400	rho parameter
с	common:				

```
'dssusy.h' - file with susy common blocks
С
c author: paolo gondolo 1994-1999
c history:
    940407 first version paolo gondolo
с
    950323 update paolo gondolo
с
   971200 partial update joakim edsjo
с
    980428 update joakim edsjo
с
    990719 update paolo gondolo
с
с
    000310 update piero ullio
    000424 added delrho joakim edsjo
с
C------
```

dsacbnd3.f

```
subroutine dsacbnd3(excl)
c_____
c check if accelerator data exclude the present point.
c output:
   excl - code of the reason for exclusion (integer); 0 if allowed
с
   if not allowed, the reasons are coded as follows
с
с
    dsbit set dec. oct. reason
     _____
             ____
                  ____
С
         0 1
                    1 chargino mass
С
              2
                    2 gluino mass
С
          1
          2
              4
                    4 squark mass
С
              8 10 slepton mass
с
          3
             16 20 invisible z width
          4
с
                   40 higgs mass
         5
              32
с
                   100 neutralino mass
          6
              64
с
                  200 b -> s gamma
          7
             128
с
         8 256 400 rho parameter
С
c common:
   'dssusy.h' - file with susy common blocks
с
c author: paolo gondolo 1994-1999
c history:
с
   940407 first version paolo gondolo
с
    950323 update paolo gondolo
   971200 partial update joakim edsjo
С
   980428 update joakim edsjo
с
   990719 update paolo gondolo
с
   000310 update piero ullio
с
    000424 added delrho joakim edsjo
С
    000904 update according to pdg2000 lars bergstrom
С
    010214 mh2 limits corrected, joakim edsjo
с
```

dsacbnd4.f

subroutine dsacbnd4(excl)

```
c check if accelerator data exclude the present point.
```

```
c output:
```

excl - code of the reason for exclusion (integer); 0 if allowed С if not allowed, the reasons are coded as follows С dsbit set dec. oct. reason с _____ ____ ____ _____ с с 0 1 1 chargino mass 2 gluino mass 1 2 с 4 4 squark mass 2 С 10 slepton mass 20 invisible z v 40 higgs mass 8 3 с 16 с 4 invisible z width 5 32 с 6 64 100 neutralino mass с 7 128 200 b -> s gamma с 8 256 400 rho parameter с c common: 'dssusy.h' - file with susy common blocks С c author: paolo gondolo 1994-1999 c history: c 940407 first version paolo gondolo с 950323 update paolo gondolo c 971200 partial update joakim edsjo 980428 update joakim edsjo с 990719 update paolo gondolo с 000310 update piero ullio с с 000424 added delrho joakim edsjo 000904 update according to pdg2000 lars bergstrom с 010214 mh2 limits corrected, joakim edsjo с 020927 higgs limits update according to pdg2002 mia schelke с 021001 susy part. mass limits update to pdg2002 je/ms с C-----

dsacbnd5.f

subroutine dsacbnd5(excl)

```
C_____
                                         _____
c check if accelerator data exclude the present point.
c output:
  excl - code of the reason for exclusion (integer); 0 if allowed
с
с
  if not allowed, the reasons are coded as follows
    dsbit set dec. oct. reason
С
     _____ ____
                  ____
                        _____
с
              1
                   1 chargino mass
         0
с
              2
         1
                    2 gluino mass
С
         2
              4
                    4 squark mass
С
С
         3
              8 10 slepton mass
         4
             16 20 invisible z width
С
с
         5
             32
                   40 higgs mass
         6
              64
                  100 neutralino mass
С
                  200 b -> s gamma
            128
          7
с
            256 400 rho parameter
         8
с
c common:
   'dssusy.h' - file with susy common blocks
С
c author: paolo gondolo 1994-1999
```

С	history:	
с	940407	first version paolo gondolo
с	950323	update paolo gondolo
с	971200	partial update joakim edsjo
с	980428	update joakim edsjo
с	990719	update paolo gondolo
с	000310	update piero ullio
с	000424	added delrho joakim edsjo
с	000904	update according to pdg2000 lars bergstrom
с	010214	mh2 limits corrected, joakim edsjo
с	020927	higgs limits update according to pdg2002 mia schelke
с	021001	susy part. mass limits update to pdg2002 je/ms
c==	============	

dsacbnd6.f

	subroutine dsacbnd6(excl)				
c_					
С	check if accelerator data exclude the present point.				
С	output:				
С	excl - code of the reason for exclusion (integer); 0 if allowed				
С	11 not allowed, the reasons are coded as follows				
с	dsbit set dec. oct. reason				
c c	 0 1 1 chargino mass				
c	1 2 2 gluino mass				
c	2 4 4 squark mass				
c	3 8 10 slepton mass				
c	4 16 20 invisible z width				
с	5 32 40 higgs mass				
с	6 64 100 neutralino mass				
с	7 128 200 b -> s gamma				
с	8 256 400 rho parameter				
с	common:				
с	'dssusy.h' - file with susy common blocks				
с	author: paolo gondolo 1994-1999				
с	history:				
с	940407 first version paolo gondolo				
с	950323 update paolo gondolo				
С	971200 partial update joakim edsjo				
С	980428 update joakim edsjo				
С	990719 update paolo gondolo				
с	000310 update piero ullio				
С	000424 added delrho joakim edsjo				
С	000904 update according to pdg2000 lars bergstrom				
С	010214 mh2 limits corrected, joakim edsjo				
С	020927 higgs limits update according to pdg2002 mia schelke				
С	021001 susy part. mass limits update to pdg2002 je/ms				
С	031204 standard model higgs like mh2 limit for msugra models				
C=					

dsacset.f

dsbsgamma.f

subroutine dsbsgamma(ratio,flag)

```
c____
                          ------
c b -> s + gamma branching ratio
c common:
с
   'dssusy.h' - file with susy common blocks
c input:
   flag : 0 no qcd correction -- 1 qcd corrections
С
c output:
   ratio : branching ratio
с
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994,1995
    28-nov-94 formulas in bertolini et al, nucl phys b353 (1991) 591
С
    modified: joakim edsjo, 2000-09-03, vertices from dsvertx.f
с
    correctly implemented
с
```

dsbsgf1.f

dsbsgf2.f

function dsbsgf2(x)

dsbsgf3.f

function dsbsgf3(x)

dsbsgf4.f

function dsbsgf4(x)

28

dsgm2muon.f

```
function dsgm2muon()
c supersymmetric contribution to (g-2)_muon
c output:
c gm2amp : susy contribution to g-2 amplitude = (g-2)/2
c according to T Moroi hep-ph/9512396 v3
c (T. Moroi, PRD 1996; (E) 1997)
c author: paolo gondolo 2001-02-08
c reference: e a baltz and p gondolo, hep-ph/0102147
```

dswexcl.f

subroutine dswexcl(unit,excl)

CHAPTER 3. AC: ACCELERATOR BOUNDS

Chapter 4

src/an: Annihilation cross sections (general, χ^0 and χ^{\pm})

4.1 Annihilation cross sections – theory

For the relic density calculations, we need all possible (co)annihilation cross sections between neutralinos, charginos and sfermions.

4.1.1 Annihilation cross sections

We have calculated all two-body final state cross sections at tree level for involving netralinos, charginos, sneutrinos, sleptons and squarks in the initial state. A complete list is given below.

Since we have so many different diagrams contributing, we have to use some method where the diagrams can be calculated efficiently. To achive this, we calculate the diagrams with general expressions for vertices, masses etc so that they can be reused for other processes. How we do this in practice differs a bit between different sets of annihilation diagrams.

For neutralino-neutralino, neutralino-chargino and chargino-chargino annihilation, we classify the diagrams according to their topology (s-, t- or *u*-channel) and to the spin of the particles involved. We then compute the helicity amplitudes for each type of diagram analytically with REDUCE [71] using general expressions for the vertex couplings.

The strength of the helicity amplitude method is that the analytical calculation of a given type of diagram has to be performed only once and the sum of the contributing diagrams for each set of initial and final states can be done numerically afterwards.

For the diagrams involving sfermions, FORM is used to analytically calculate the amplitudes. This output is then converted into Fortran with a PERL script, form2f [173].

4.1.2 Coannihilation diagrams

All Feynman diagrams for which we calculate the annihilation cross section are listed in the coming sections. s(x), t(x) and u(x) denote a tree-level Feynman diagram in which particle x is exchanged in the s-, t- and u-channel respectively.

The convention used in this list of included coannihilation diagrams is that if a sfermion is denoted \tilde{f} , then it's antiparticle is denoted \tilde{f}^* .

4.1.3 Neutralino and chargino annihilation

Indices i, j, k run from 1 to 4, and indices c, d, e from 1 to 2. $u, \tilde{u}, d, \tilde{d}, \nu, \tilde{\nu}, \ell, \tilde{\ell}, f$ and \tilde{f} are generic notations for up-type quarks, up-type squarks, down-type quarks, down-type squarks, neutrinos, sneutrinos, leptons, sleptons, fermions and sfermions. A sum of diagrams over (s)fermion generation indices and over the neutralino and chargino indices k and e is understood (no sum over indices i, j, c, d).

Neutralino-neutralino annihilation

Initial state	Final state	Feynman diagrams
	$H_1H_1, H_1H_2, H_2H_2, H_3H_3$	$t(\chi_k^0), u(\chi_k^0), s(H_{1,2})$
	H_1H_3, H_2H_3	$t(\chi_k^0), u(\chi_k^0), s(H_3), s(Z^0)$
	H^-H^+	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2}), s(Z^0)$
	$Z^0 H_1, Z^0 H_2$	$t(\chi_k^0), u(\chi_k^0), s(H_3), s(Z^0)$
$\chi_i^0 \chi_j^0$	$Z^{0}H_{3}$	$t(\chi_k^0), u(\chi_k^0), s(H_{1,2})$
0	W^-H^+, W^+H^-	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2,3})$
	$Z^{0}Z^{0}$	$t(\chi_k^0), u(\chi_k^0), s(H_{1,2})$
	W^-W^+	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2}), s(Z^0)$
	$far{f}$	$t(\tilde{f}_{L,R}), u(\tilde{f}_{L,R}), s(H_{1,2,3}), s(Z^0)$

Neutralino-chargino annihilation

Initial state	Final state	Feynman diagrams
	H^+H_1, H^+H_2	$t(\chi_k^0), u(\chi_e^+), s(H^+), s(W^+)$
	H^+H_3	$t(\chi_k^0), u(\chi_e^+), s(W^+)$
	W^+H_1, W^+H_2	$t(\chi_k^0), u(\chi_e^+), s(H^+), s(W^+)$
	W^+H_3	$t(\chi_k^0), u(\chi_e^+), s(H^+)$
$\chi_c^+ \chi_i^0$	H^+Z^0	$t(\chi_k^0), u(\chi_e^+), s(H^+)$
	γH^+	$t(\chi_c^+), s(H^+)$
	W^+Z^0	$t(\chi_k^0), u(\chi_e^+), s(W^+)$
	γW^+	$t(\chi_c^+), s(W^+)$
	$u ar{d}$	$t(\tilde{d}_{L,R}), u(\tilde{u}_{L,R}), s(H^+), s(W^+)$
	$ u ar{\ell}$	$t(\tilde{\ell}_{L,R}), u(\tilde{\nu}_L), s(H^+), s(W^+)$

Chargino-chargino annihilation

Initial state	Final state	Feynman diagrams
	$H_1H_1, H_1H_2, H_2H_2, H_3H_3$	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2})$
	H_1H_3, H_2H_3	$t(\chi_e^+), u(\chi_e^+), s(H_3), s(Z^0)$
	H^+H^-	$t(\chi_k^0), s(H_{1,2}), s(Z^0, \gamma)$
	Z^0H_1,Z^0H_2	$t(\chi_e^+), u(\chi_e^+), s(H_3), s(Z^0)$
	Z^0H_3	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2})$
	H^+W^-, W^+H^-	$t(\chi_k^0), s(H_{1,2,3})$
$\chi_c^+ \chi_d^-$	$Z^{0}Z^{0}$	$t(\chi_e^+), u(\chi_e^+), s(H_{1,2})$
	W^+W^-	$t(\chi_k^0), s(H_{1,2}), s(Z^0, \gamma)$
	$\gamma\gamma$ (only for $c = d$)	$t(\chi_c^+), u(\chi_c^+)$
	$Z^0\gamma$	$t(\chi_d^+), u(\chi_c^+)$
	$u ar{u}$	$t(\tilde{d}_{L,R}), s(H_{1,2,3}), s(Z^0, \gamma)$
	$ u \overline{ u}$	$t(\tilde{\ell}_{L,R}), s(Z^0)$
	$ar{d}d$	$t(\tilde{u}_{L,R}), s(H_{1,2,3}), s(Z^0, \gamma)$
	$ar{\ell}\ell$	$t(\tilde{\nu}_L), s(H_{1,2,3}), s(Z^0, \gamma)$
	H^+H^+	$t(\chi_k^0), u(\chi_k^0)$
$\chi_c^+ \chi_d^+$	H^+W^+	$t(\chi^0_k), u(\chi^0_k)$
~	W^+W^+	$t(\chi_k^0), u(\chi_k^0)$

4.1.4 Squark-squark annihilation

We will here denote squarks as \tilde{q}_a^i and \tilde{q}_b^j where *i* and *j* are the family indices and *a* and *b* are the mass eigenstate indices (running from 1 to 2). *k* and *l* will also be used as family indices for processes including more squarks. Colour indices are suppressed. \tilde{u}^i is used as a generic notation for any up-type squark where *i* denotes the family index. Down-type squarks are denoted analogously.

Note that we will not (except in rare occations) show processes for $\tilde{\nu}$ and $\tilde{\ell}$ separately since they can easily be obtained from the squark processes by replacing \tilde{u} with $\tilde{\nu}$ and \tilde{d} with $\tilde{\ell}$ (and noting that we only have one mass eigenstate for the $\tilde{\nu}$. Also note that the $\tilde{\nu} - \tilde{\ell}$ -sector is assumed not to be flavour-changing.

Initial state	Final state	Diagrams	Note
$ ilde{d}^i_a ilde{d}^{i*}_b$	$\gamma\gamma, Z\gamma$	$t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i), p$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	ZZ	$t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i), p, s(H_1, H_2)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	W^-W^+	$p, s(H_1, H_2, Z, \gamma), t(\tilde{u}_{1,2}^k)$	Only $k = i$ at present
$ ilde{d}^i_a ilde{d}^{i*}_b$	ZH_2, ZH_1	$t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i), s(Z,H_3)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	ZH_3	$t(\tilde{d}_{1,2}^{i}), u(\tilde{d}_{1,2}^{i}), s(H_1, H_2)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	$\gamma H_2, \gamma H_1, \gamma H_3$	$t(ilde{d}^{i}_{1,2}), u(ilde{d}^{i}_{1,2})$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	H_2H_2, H_1H_1, H_1H_2	$t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i), p, s(H_1, H_2)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	H_2H_3, H_1H_3	$s(Z, H_3), t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	H_3H_3	$s(H_1, H_2), p, t(\tilde{d}_{1,2}^i), u(\tilde{d}_{1,2}^i)$	
$ ilde{d}^i_a ilde{d}^{i*}_b$	W^-H^+	$s(H_1, H_2, H_3), t(\tilde{u}_{1,2}^k)$	Only $k = i$ at present
$ ilde{d}^i_a ilde{d}^{i*}_b$	H^-H^+	$s(H_1, H_2, Z, \gamma), p, t(\tilde{u}_{1,2}^k)$	Only $k = i$ at present
$ ilde{d}^i_a ilde{d}^{i*}_b$	$f\bar{f} \ (f \neq d^i)$	$s(H_1^{\star}, H_2^{\star}, H_3^{\star}, Z, \gamma^{\star}, g^{\ddagger}), t(\chi_c^+)^{\dagger}$	†) Only if $f = u^k$ (only
			$k = i$ at present), \star) Not
			for $f = \nu$, ‡) Only for
~, ~,			squarks/quarks
$d^i_a d^{i*}_b$	$d^i d^i$	$s(H_1,H_2,H_3,Z,\gamma,g^{\dagger}),t(ilde{\chi}^0_k, ilde{g}^{\dagger})$	†) Only for squarks
$ ilde{d}^i_a ilde{d}^{i*}_b$	Zg	$t(ilde{d}^{i}_{1,2}), u(ilde{d}^{i}_{1,2}), p$	Only for squarks
$ ilde{d}^i_a ilde{d}^{i*}_b$	gg	$t(\tilde{d}^i_{1,2}), u(\tilde{d}^i_{1,2}), s(g), p$	Only for squarks
$ ilde{d}^i_a ilde{d}^{i*}_b$	$g\gamma$	$t(\tilde{d}^{i}_{1,2}), u(\tilde{d}^{i}_{1,2}), p$	Only for squarks
$ ilde{d}^i_a ilde{d}^{i*}_b$	gH_1, gH_2, gH_3	$t(\tilde{d}^{i}_{1,2}), u(\tilde{d}^{i}_{1,2})$	Only for squarks

$\tilde{d}^i_a \tilde{d}^{i*}_b$ annihilation

 $\tilde{d}_a^i \tilde{d}_b^{j*}$ annihilation $(i \neq j)$

Initial state	Final state	Diagrams	Note
$\tilde{d}^i_a \tilde{d}^{j*}_b$	W^+W^-	$t(\tilde{u}_{1,2}^k)^\dagger$	Not included at present
$ ilde{d}^i_a ilde{d}^{j*}_b$	W^+H^-	$t(\tilde{u}_{1,2}^{k'})^{\dagger}$	Not included at present
$ ilde{d}^i_a ilde{d}^{j*}_b$	H^+H^-	$t(\tilde{u}_{1,2}^{k})^{\dagger}$	Not included at present
$ ilde{d}^i_a ilde{d}^{*j}_b$	$d^i ar d^j$	$t(ilde{\chi}^0_k, ilde{g}^\dagger)$	†) Only for squarks
$ ilde{d}^i_a ilde{d}^{*j}_b$	$u^k \bar{u}^l$	$t(\tilde{\chi}_c^+)$	Only $k = i, l = j$ at present

$\tilde{d}^i_a \tilde{d}^i_b$ annihilation

Initial state	Final state	Diagrams	Note
$ ilde{d}^i_a ilde{d}^i_b$	$d^i d^i$	$t(\tilde{\chi}^0_k, \tilde{g}^\dagger), u(\tilde{\chi}^0_k, \tilde{g}^\dagger)$	†) Only for squarks

$\tilde{d}_a^i \tilde{d}_b^j$ annihilation $(i \neq j)$

Initial state	Final state	Diagrams	Note
$ ilde{d}^i_a ilde{d}^j_b$	$d^i d^j$	$t(\tilde{\chi}_k^0, \tilde{g}^\dagger)$	†) Only for squarks

$\tilde{u}^i_a \tilde{u}^{i*}_b$ annihilation

4.1. A	ANNIHILATION	CROSS	SECTIONS -	THEORY
--------	--------------	-------	------------	--------

Initial state	Final state	Diagrams	Note
$\tilde{u}^i_a \tilde{u}^{i*}_b$	$\gamma\gamma^{\dagger},Z\gamma^{\dagger}$	$t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i), p$	†) Not for $\tilde{\nu}$
$\tilde{u}^i_a \tilde{u}^{i*}_b$	ZZ	$t(\tilde{u}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i}), p, s(H_1, H_2)$	
$\tilde{u}^i_a \tilde{u}^{i*}_b$	W^-W^+	$p, s(H_1, H_2, Z, \gamma^{\dagger}), u(\tilde{d}_{1,2}^k)$	Only $k = i$ at present, \dagger) Not
· · ·		· · · · · · · · · · ·	for $\tilde{\nu}$
$\tilde{u}_a^i \tilde{u}_b^{i*}$	ZH_2, ZH_1	$t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i), s(Z, H_3^i)$	†) Not for $\tilde{\nu}$
$ ilde{u}_a^i ilde{u}_b^{i*}$	ZH_3	$t(\tilde{u}_{1,2}^i)^\dagger, u(\tilde{u}_{1,2}^i)^\dagger, s(H_1, H_2)$	†) Not for $\tilde{\nu}$
$\tilde{u}^i_a \tilde{u}^{i*}_b$	$\gamma H_2^\dagger, \gamma H_1^\dagger, \gamma H_3^\dagger$	$t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i)$	†) Not for $\tilde{\nu}$
$ ilde{u}_a^i ilde{u}_b^{i*}$	H_2H_2, H_1H_1, H_1H_2	$t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i), p, s(H_1, H_2)$	
$\tilde{u}_a^i \tilde{u}_b^{i*}$	H_2H_3, H_1H_3	$s(Z, H_3^{\dagger}), t(\tilde{u}_{1,2}^i)^{\dagger}, u(\tilde{u}_{1,2}^i)^{\dagger}$	†) Not for $\tilde{\nu}$
$\tilde{u}_a^i \tilde{u}_b^{i*}$	H_3H_3	$s(H_1, H_2), p, t(\tilde{u}_{1,2}^i)^{\dagger}, u(\tilde{u}_{1,2}^i)^{\dagger}$	†) Not for $\tilde{\nu}$
$\tilde{u}_a^i \tilde{u}_b^{i*}$	W^-H^+	$s(H_1, H_2, H_3^{\dagger}), u(\tilde{d}_{1,2}^k)$	Only $k = i$ at present, †) Not
			for $\tilde{\nu}$
$\tilde{u}_a^i \tilde{u}_b^{i*}$	H^+H^-	$s(H_1, H_2, Z, \gamma^{\dagger}), p, t(d_{1,2}^k)$	Only $k = i$ at present, \dagger) Not
~i ~i*	$e\overline{e}$ (e (i)		for $\tilde{\nu}$
$u_a^* u_b^{**}$	$ff \ (f \neq u^{\circ})$	$s(H_1^{\wedge}, H_2^{\wedge}, H_3^{+}^{\wedge}, Z, \gamma^{+}^{\wedge}, g^*), t(\chi_c^{+})^{\wedge}$	†) Not for ν , *) If $f = d^n$
			(only $k = i$ at present), \ddagger)
			Only for squarks/quarks, \times)
~i ~i*	i_ii	$(\mathbf{U}^{\times} \mathbf{U}^{\times} \mathbf{U}^{\times} \mathbf{U}^{\times} \mathbf{Z} \mathbf{a}^{\times} \mathbf{a}^{\ddagger}) t(\tilde{\mathbf{x}}^{0} \tilde{\mathbf{a}}^{\ddagger})$	Not for ν
$u_a u_b$	u u	$S(\Pi_1, \Pi_2, \Pi_3, Z, \gamma, g^{-}), \iota(\chi_k, g^{+})$	\times) Not for ν , \pm) Only for
$\tilde{u}^i \tilde{u}^{i*}_i$	Za	$t(\tilde{u}_{1,2}^i)$ $u(\tilde{u}_{1,2}^i)$ n	Only for squarks
$\tilde{u}_a^i \tilde{u}_b^{i*}$	29	$t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i), p$ $t(\tilde{u}_{1,2}^i), u(\tilde{u}_{1,2}^i), s(a), n$	Only for squarks
$\tilde{a}^{i} \tilde{a}^{i*}$	99 90	$t(\tilde{u}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i}), s(g), p$	Only for squarks
$u_a u_b$ $\tilde{a}^i \tilde{a}^{i*}$	$g\gamma$	$(u_{1,2}), u(u_{1,2}), p$ $t(\tilde{\omega}^i), u(\tilde{\omega}^i)$	Only for generic
$u_a u_b$	$g\pi_1,g\pi_2,g\pi_3$	$\iota(u_{1,2}), u(u_{1,2})$	Only for squarks

$\tilde{u}_a^i \tilde{u}_b^{j*}$ annihilation $(i \neq j)$

Initial state	Final state	Diagrams	Note
$\tilde{u}^i_a \tilde{u}^{j*}_b$	W^+W^-	$t(\tilde{d}_{1,2}^k)^\dagger$	Not included at present, \dagger) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{u}^{j*}_b$	W^+H^-	$t(\tilde{d}_{1,2}^{k'})^{\dagger}$	Not included at present, †) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{u}^{j*}_b$	H^+H^-	$t(ilde{d}^{k'}_{1,2})^{\dagger}$	Not included at present, †) Not for $\tilde{\ell}$
$\tilde{u}^i_a \tilde{u}^{j*}_b$	$u^i \bar{u}^j$	$t(ilde{\chi}_k^0,g^\dagger)$	†) Only for squarks
$\tilde{u}^i_a \tilde{u}^{j*}_b$	$d^k \overline{d}^l$	$t(\tilde{\chi}_c^+)$	Only $k = i, l = j$ at present

$\tilde{u}^i_a \tilde{u}^i_b$ annihilation

Initial state	Final state	Diagrams	Note
$ ilde{u}^i_a ilde{u}^i_b$	$u^i u^i$	$t(\tilde{\chi}^0_k, \tilde{g}^\dagger), u(\tilde{\chi}^0_k, \tilde{g}^\dagger)$	†) Only for squarks

$\tilde{u}_a^i \tilde{u}_b^j$ annihilation $(i \neq j)$

Initial state	Final state	Diagrams	Note
$\tilde{u}_a^i \tilde{u}_b^j$	$u^i u^j$	$t(ilde{\chi}^0_k, ilde{g}^\dagger)$	†) Only for squarks

Initial state	Final state	Diagrams	Note
$\tilde{u}^i_a \tilde{d}^{i*}_b$	H^+H_1, H^+H_2	$t(\tilde{d}_{1,2}^i), u(\tilde{u}_{1,2}^i), p, s(W^+, H^+)$	
$ ilde{u}^i_a ilde{d}^{i*}_b$	H^+H_3	$t(\tilde{d}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i})^{\dagger}, p, s(W^{+})$	†) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{d}^{i*}_b$	γH^+	$t(\tilde{u}_{1,2}^{i})^{\dagger}, u(\tilde{d}_{1,2}^{i}), s(H^{+})$	†) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{d}^{i*}_b$	ZH^+	$t(\tilde{u}_{1,2}^{i}), u(\tilde{d}_{1,2}^{i}), s(H^{+})$	
$ ilde{u}^i_a ilde{d}^{i*}_b$	W^+H_1, W^+H_2	$t(\tilde{d}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i}), s(W^+, H^+)$	
$ ilde{u}^i_a ilde{d}^{i*}_b$	W^+H_3	$t(\tilde{d}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i})^{\dagger}, s(H^{+})$	†) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{d}^{i*}_b$	$W^+\gamma$	$t(\tilde{d}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i})^{\dagger}, s(W^{+}), p$	†) Not for $\tilde{\ell}$
$ ilde{u}^i_a ilde{d}^{i*}_b$	W^+Z	$t(\tilde{d}_{1,2}^{i}), u(\tilde{u}_{1,2}^{i}), s(W^+), p$	
$ ilde{u}^i_a ilde{d}^{i*}_b$	$u^k \overline{d}^l$	$s(H^+, W^+)^{\star}, t(\tilde{\chi}^0_m, \tilde{g}^{\dagger})\delta^{ik}\delta^{il}$	†) Not for $\tilde{\ell}, \star$) Only $k = l$
. ~.		~	at present
$\tilde{u}^i_a d^{i*}_b$	W^+g	$t(d_{1,2}^i), u(\tilde{u}_{1,2}^i), p$	Only for squarks
$ ilde{u}^i_a ilde{d}^{i*}_b$	gH^+	$t(\tilde{u}_{1,2}^i), u(\tilde{d}_{1,2}^i)$	Only for squarks

$\tilde{u}^i_a \tilde{d}^{i*}_b$	annihilation
~a~b	

 $\tilde{u}_a^i \tilde{d}_b^{j*}$ annihilation $(i \neq j)$

For squarks we can have the following processes

Initial state	Final state	Diagrams	Note
$ ilde{u}^i_a ilde{d}^{j*}_b$	H^+H_1, H^+H_2	$t(\tilde{d}_{1,2}^j), u(\tilde{u}_{1,2}^i), p, s(W^+, H^+)$	Not included at present
$ ilde{u}^i_a ilde{d}^{ ilde{j}*}_b$	H^+H_3	$t(\tilde{d}_{1,2}^{j'}), u(\tilde{u}_{1,2}^{i'}), p, s(W^+)$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	$H^+\gamma$	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(H^+)$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	H^+Z	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(H^+)$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	W^+H_1, W^+H_2	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(W^+, H^+)$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	W^+H_3	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(H^{+})$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	$W^+\gamma$	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(W^{+}), p$	Not included at present
$ ilde{u}^i_a ilde{d}^{j*}_b$	W^+Z	$t(\tilde{d}_{1,2}^{j}), u(\tilde{u}_{1,2}^{i}), s(W^{+}), p$	Not included at present
$\tilde{u}_a^i \tilde{d}_b^{j*}$	$u^k \overline{d}^l$	$s(H^+, W^+)^{\dagger}, t(\tilde{\chi}^0_m, \tilde{g})\delta^{ik}\delta^{jl}$	†) Not included at present

whereas for sneutrinos and sleptons, we can only have the process

Initial state	Final state	Diagrams	Note
$ ilde{ u}^i ilde{\ell}^{j*}_b$	$ u^i ar{\ell}^j$	$t(\tilde{\chi}_k^0)$	

$\tilde{u}^i_a \tilde{d}^i_b$ annihilation

Initial state	Final state	Diagrams	Note
$ ilde{u}^i_a ilde{d}^i_b$	$u^k d^l$	$t(\tilde{\chi}_m^0, \tilde{g}^{\dagger}) \delta^{ik} \delta^{il}, u(\tilde{\chi}_c^+)^{\star}$	†) Only for squarks, \star) Only $i = k = l$ at present

$\tilde{u}_a^i \tilde{d}_b^j$ annihilation $(i \neq j)$

Initial state	Final state	Diagrams	Note
$ ilde{u}^i_a ilde{d}^j_b$	$u^k d^l$	$t(\tilde{\chi}^0_m, \tilde{g}^{\dagger}) \delta^{ik} \delta^{jl}, u(\tilde{\chi}^+_c)^{\times \star}$	†) Only for squarks, \times)
			For $\tilde{\nu}\tilde{\ell}$ only when $i =$
			$l, j = k, \star$) Only included
			when $i = l, j = k$ at
			present
4.1.5 Squark-neutralino annihilation

We will here denote squarks as \tilde{u}_a^i and \tilde{d}_a^i where *i* is the family index and *a* is the mass eigenstate index (running from 1 to 2).

$\tilde{u}_a^i \tilde{\chi}_j^0$ annihilation

Initial state	Final state	Diagrams	Note
$\tilde{u}_a^i \tilde{\chi}_j^0$	γu^i	$s(u^i), t(\tilde{u}^i_{1,2})$	Only for squarks
$ ilde{u}^i_a ilde{\chi}^0_j$	Zu^i	$s(u^{i}), t(\tilde{u}_{1,2}^{i}), u(\tilde{\chi}_{k}^{0})$	
$ ilde{u}^i_a ilde{\chi}^{\dot{0}}_i$	$H_1 u^i, H_2 u^i$	$s(u^{i})^{\dagger}, t(\tilde{u}_{1,2}^{i}), u(\tilde{\chi}_{k}^{0})$	†) Only for squarks
$ ilde{u}^i_a ilde{\chi}^0_i$	$H_3 u^i$	$s(u^{i})^{\dagger}, t(\tilde{u}_{1,2}^{i})^{\dagger}, u(\tilde{\chi}_{k}^{0})$	†) Only for squarks
$ ilde{u}^i_a ilde{\chi}^{\dot{0}}_i$	$W^+ d^k$	$s(u^{i}), t(\tilde{d}^{k}_{1,2}), u(\tilde{\chi}^{+}_{c})$	Only $k = i$ at present,
5)	$\tilde{u}_a^{i*}\tilde{\chi}_j^0 \to W^- \bar{d}^k$ in the
~i~0	TT 1h	(i) $(\tilde{i}h)$ $(\tilde{z}h)$	code
$\tilde{u}_a^i \tilde{\chi}_j^0$	H^+d^{κ}	$s(u^{i}), t(d_{1,2}^{\kappa}), u(\tilde{\chi}_{c}^{+})$	Only $k = i$ at present,
			$\tilde{u}_a^{i*}\tilde{\chi}_j^0 \to H^- d^{\kappa}$ in the
$ ilde{u}^i ilde{v}^0$	au^i	$e(u^i) + (\tilde{u}^i)$	code
$u_a \chi_j$	yu	$s(u), \iota(u_{1,2})$	

$ilde{d}^i_a ilde{\chi}^0_j$ annihilation

Initial state	Final state	Diagrams	Note
$ ilde{d}^i_a ilde{\chi}^0_j$	γd^i	$s(d^i), t(\tilde{d}^i_{1,2})$	
$ ilde{d}^i_a ilde{\chi}^0_j$	Zd^i	$s(d^{i}), t(\tilde{d}^{i}_{1,2}), u(\tilde{\chi}^{0}_{k})$	
$ ilde{d}^i_a ilde{\chi}^0_j$	$H_1 d^i, H_2 d^i$	$s(d^{i}), t(\tilde{d}^{i}_{1,2}), u(\tilde{\chi}^{0}_{k})$	
$ ilde{d}^i_a ilde{\chi}^{ar{0}}_j$	$H_3 d^i$	$s(d^{i}), t(\tilde{d}^{i}_{1,2}), u(\tilde{\chi}^{0}_{k})$	
$ ilde{d}^i_a ilde{\chi}^{0}_j$	$W^- u^k$	$s(d^{i}), t(\tilde{u}_{1,2}^{k}), u(\tilde{\chi}_{c}^{+})$	Only $k = i$ at present
$ ilde{d}^i_a ilde{\chi}^{0}_j$	$H^- u^k$	$s(d^i), t(\tilde{u}_{1,2}^k), u(\tilde{\chi}_c^+)$	Only $k = i$ at present
$ ilde{d}^i_a ilde{\chi}^{ar{0}}_j$	gd^i	$s(d^{i}), t(\tilde{d}^{i}_{1,2})$	

4.1.6 Squark-chargino annihilation

We will here denote squarks as \tilde{q}_a^i where *i* is the family index and *a* is the mass eigenstate index (running from 1 to 2).

$\tilde{u}_a^i \tilde{\chi}_c^+$ annihilation

Initial state	Final state	Diagrams	Note
$\tilde{u}_a^i \tilde{\chi}_c^+$	$W^+ u^k$	$t(\tilde{d}_{1,2}^l), u(\tilde{\chi}_c^0)\delta^{ik}$	Only $k = l = i$ at present
$\tilde{u}^i_a \tilde{\chi}^+_c$	$H^+ u^k$	$t(\tilde{d}_{1,2}^{l}), u(\tilde{\chi}_{c}^{0})\delta^{ik}$	Only $k = l = i$ at present

Initial state	Final state	Diagrams	Note
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$Z \bar{d}^k$	$s(\overline{d}^k), t(\tilde{u}_{1,2}^i), u(\tilde{\chi}_c^+)$	Only $k = i$ at present
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	γd^k	$s(\bar{d}^k), t(\tilde{u}_{1,2}^i)^{\dagger}, u(\tilde{\chi}_c^+)$	Only $k = i$ at present, \dagger) Only for squarks
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$H_1 \bar{d}^k, H_2 \bar{d}^k$	$s(\bar{d}^k), t(\tilde{u}_{1,2}^i), u(\tilde{\chi}_c^+)$	Only $k = i$ at present
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$H_3 \overline{d}^k$	$s(\bar{d}^k), t(\tilde{u}_{1,2}^i)^{\dagger}, u(\tilde{\chi}_c^+)$	Only $k = i$ at present, \dagger) Only for squarks
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$W^+ \bar{u}^k$	$s(d^l), u(ilde{\chi}^0_c)\delta^{ik}$	Only $k = l = i$ at present
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$H^+ \bar{u}^k$	$s(d^l), u(ilde{\chi}^0_c) \delta^{ik}$	Only $k = l = i$ at present
$\tilde{u}_a^{i*}\tilde{\chi}_c^+$	$g \bar{d}^k$	$s(d^k), t(\tilde{u}^i_a)$	Only $k = i$ at present, only for squarks

$\tilde{u}_a^{i*}\tilde{\chi}_c^+$ annihilation

$\tilde{d}^i_a \tilde{\chi}^+_c$ annihilation

Initial state	Final state	Diagrams	Note
$\tilde{d}^i_a \tilde{\chi}^+_c$	Zu^k	$s(u^k), t(\tilde{d}^i_{1,2}), u(\tilde{\chi}^+_c)$	Only $k = i$ at present
$ ilde{d}^i_a ilde{\chi}^+_c$	γu^k	$s(u^k)^{\dagger}, t(\tilde{d}^i_{1,2}), u(\tilde{\chi}^+_c)$	Only $k = i$ at present, \dagger) Only for squarks
$ ilde{d}^i_a ilde{\chi}^+_c$	$H_1 u^k, H_2 u^k$	$s(u^k)^{\dagger}, t(\tilde{d}^i_{1,2}), u(\tilde{\chi}^+_c)$	Only $k = i$ at present, \dagger) Only for squarks
$\tilde{d}^i_a \tilde{\chi}^+_c$	$H_3 u^k$	$s(u^k)^{\dagger}, t(\tilde{d}^i_{1,2}), u(\tilde{\chi}^+_c)$	Only $k = i$ at present, \dagger) Only for squarks
$ ilde{d}^i_a ilde{\chi}^+_c$	$W^+ d^k$	$s(u^l), u(\tilde{\chi}^0_c) \delta^{ik}$	Only $k = l = i$ at present
$\tilde{d}^i_a \tilde{\chi}^+_c$	H^+d^k	$s(u^l), u(\tilde{\chi}^0_c) \delta^{ik}$	Only $k = l = i$ at present
$ ilde{d}^i_a ilde{\chi}^+_c$	gu^k	$s(u^k), t(\tilde{d}^i_a)$	Only $k = i$ at present, only for squarks

 $\tilde{d}_a^{i*}\tilde{\chi}_c^+$ annihilation

Initial state	Final state	Diagrams	Note
$\tilde{d}_a^{i*}\tilde{\chi}_c^+$	$W^+ \bar{d}^k$	$t(\tilde{u}_{1,2}^l), u(\tilde{\chi}_c^0)\delta^{ik}$	Only $k = l = i$ at present
$\tilde{d}_a^{i*}\tilde{\chi}_c^+$	$H^+ \overline{d}^k$	$t(\tilde{u}_{1,2}^l), u(\tilde{\chi}_c^0)\delta^{ik}$	Only $k = l = i$ at present

4.1.7 Degrees of freedom

We have to be careful with the internal degrees of freedom, g, of the particles. We can either treat e.g. a χ_i^+ and a χ_i^- as two separate particles with two degrees of freedom each, or we can treat them as one particle χ_i^{\pm} with four degrees of freedom. The latter approach has an advantage that we simplify our expressions for the effective annihilation cross sections when coannihilations are needed. Hence, we use that approach here. For a more detailed discussion about this, see Section 21.1.4.

4.2 Annihilation routines - general remarks

The annihilation cross section routines is divided into several parts, mostly for historical reasons. The layout is roughly as follows:

- src/an Here we keep the main routins for both neutralino- neutralino annihilation cross sections and the effective annihilation cross section in the relic density calculations. The steering routines for neutralino and chargino coannihilations are also kept here.
- src/anstu Here keep the t-, u- and s- diagram expressions for fermion-fermion coannihilations (i.e. neutralino and chargino coannihilations).

src/as Here all the coannihilation cross sections including sfermions are kept.

We will here describe the src/an-routines.

4.2.1 General routines

The general routine to call for an effective annihilation cross section (to be used for relic density calculations) is **dsanwx**, which returns the invariant annihilation rate (integrated over $\cos \theta$). The actual cross section, differential in $\cos \theta$ is calculated by **dsandwdcos** which includes all the coannihilations needed. This is set up in **rn/dsrdomega** which determines which coannhilating particles to include.

For other applications where the annihilation rate is needed, e.g. annihilation in the galactic halo, one can call the specific annihilation rate routine directly. The main one is **dsandwdcosnn** for neutralino-neutralino annihilation. To simplify this task, we supply a routine **dssigmav** which calls **dsandwdcosnn** for neutralino-neutralino annihilation at zero relative velocity and returns the result, either as the total annihilation cross section, or the cross section for a specific channel. See the header of **dssigmav** for details.

4.2.2 Neutralino and chargino (co)annihilation cross sections

The routines **dsandwdcosnn**, **dsandwdcoscn** and **dsandwdcoscc** calculate the annihilation cross sections (returning the invariant annihilation rate) for neutralino-neutralino, neutralino-chargino and chargino-chargino annihilations. Which particles the cross section is calculated for is given by particle indices as defined in **inc/dssusy.h**.

All the annihilation routines return the invariant rate instead of the cross section. The invariant annihilation rate between particle i and j is defined as

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2} = 4E_i E_j \sigma_{ij} v_{ij}.$$
(4.1)

See chapter 21 for more details.

4.3 Routine headers – fortran files

dsanalbe.f

subroutine dsanalbe(alph,bet)

dsanclearaa.f

subroutine dsanclearaa

dsandwdcos.f

function dsandwdcos(p,costheta)

```
c_____
```

```
c annihilation differential invariant rate.
```

c input:

```
c p - initial cm momentum (real) for lsp annihilations
c costheta - cosine of c.m. annihilation angle
c common:
c 'dssusy.h' - file with susy common blocks
c Output:
```

$$\frac{dW_{ij}}{d\cos\theta}$$

where

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2} = 4E_i E_j \sigma_{ij} v_{ij}$$

```
c The returned dW/dcos(theta) is unitless
c uses dsandwdcosnn, dsandwdcoscn and dsandwdcoscc and
c routines in src/as
c called by dsanwx.
c author: joakim edsjo (edsjo@physto.se)
c date: 96-02-21
c modified: 97-05-12 Joakim Edsjo (edsjo@physto.se)
c modified: 01-01-30 paolo gondolo (paolo@mamma-mia.phys.cwru.edu)
c modified: 02-03-09 Joakim Edsjo (edsjo@physto.se)
c modified: 06-02-22 Paolo Gondolo (paolo@physics.utah.edu)
```

dsandwdcoscc.f

```
function dsandwdcoscc(p,costheta,kp1,kp2)
```

```
C_____
c annihilation differential invariant rate between particle kp1
c and kp2 where kp1 and kp2 are charginos
c input:
  p - initial cm momentum (real)
с
с
   costheta - cosine of c.m. annihilation angle
  kp1 - particle code, particle 1
с
  kp2 - particle code, particle 2
с
c common:
   'dssusy.h' - file with susy common blocks
С
    'diacom.h' - file with kinematical variables
С
c Output:
```

$$\frac{dW_{ij}}{d\cos\theta}$$

where

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2m_j^2} = 4E_iE_j\sigma_{ij}v_{ij}$$

- c The returned dW/dcos(theta) is unitless
 c uses dsanclearaa,dsansumaa
- c called by dsandwdcos.
- c author: joakim edsjo (edsjo@physto.se)
- c date: 96-08-06
- c modified: 01-09-12

dsandwdcoscn.f

```
function dsandwdcoscn(p,costheta,kp1,kp2)
```

```
c_____
c annihilation differential invariant rate between particle kp1
c and kp2 where kp1 is a chargino and kp2 is a neutralino.
c input:
  p - initial cm momentum (real)
с
   costheta - cosine of c.m. annihilation angle
с
  kp1 - particle code, particle 1
С
  kp2 - particle code, particle 2
С
c common:
с
   'dssusy.h' - file with susy common blocks
   'diacom.h' - file with kinematical variables
С
c Output:
```

```
\frac{dW_{ij}}{d\cos\theta}
```

where

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2m_j^2} = 4E_iE_j\sigma_{ij}v_{ij}$$

```
c The returned dW/dcos(theta) is unitless
c uses dsanclearaa,dsansumaa
c called by dsandwdcos.
c author: joakim edsjo (edsjo@physto.se)
c date: 96-08-06
c modified: 01-09-12
```

dsandwdcosd.f

function dsandwdcosd(costheta)

dsandwdcosnn.f

function dsandwdcosnn(p,costheta,kp1,kp2)

```
c_____
```

```
c Annihilation differential invariant rate between particle {\tt kp1}
```

```
c \  and kp2 where kp1 and kp2 are neutralinos
```

```
c Input:
```

c p - initial cm momentum (real) c costheta - cosine of c.m. annihilation angle c kp1 - particle code for particle 1 c kp2 - particle code for particle 2 c common: c 'dssusy.h' - file with susy common blocks c 'diacom.h' - file with kinematical variables c Output:

$$\frac{dW_{ij}}{d\cos\theta}$$

where

42

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2} = 4E_i E_j \sigma_{ij} v_{ij}$$

dsandwdcoss.f

function dsandwdcoss(costheta)

dsandwdcosy.f

function dsandwdcosy(y)

43

dsankinvar.f

subroutine dsankinvar(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanset.f

subroutine dsanset(c)
c...set parameters for annihilation routines
c... c - character string specifying choice to be made
c...author: joakim edsjo, 2001-09-12

dsansumaa.f

real*8 function dsansumaa()

dsantucc.f

subroutine dsantucc(p,ind1,ind2)

dsantucn.f

subroutine dsantucn(p,ind1,ind2)

c routine to check when t- or u-resonances occur.

```
c called by dwdcosopt.
c author: joakim edsjo (edsjo@physto.se)
c date: 97-09-17
```

dsantunn.f

subroutine dsantunn(p,ind1,ind2)

```
C_____
              _____
                               _____
c routine to check if t- or u-resonances occur for neutralino-neutralino
c annihilation
c called by dwdcosopt.
c author: joakim edsjo (edsjo@physto.se)
c date: 97-09-17
C------
```

dsantures.f

integer function dsantures(kp1,kp2,kp3,kp4,p)

```
C-----
c determine if t- or u-resonances can occur for a given 2 \rightarrow 2
c scattering. if t_max>0 or u_max>0, then tures=1, otherwise tures=0
c author: joakim edsjo, edsjo@physto.se
c date: 97-09-17
C------
```

dsanwriteaa.f

subroutine dsanwriteaa

```
C_____
                   -------
c write out the amplitude matrix
 author: joakim edsjo (edsjo@physto.se) 95-10-25
с
c called by: different routines during debugging
```

dsanwx.f

real*8 function dsanwx(p)

C_____

```
_____
c Neutralino self-annihilation invariant rate.
c Input:
   p - initial cm momentum (real) for lsp annihilations
с
  Common:
С
   'dssusy.h' - file with susy common blocks
С
c Output
```

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \sum_{ij} \sqrt{\frac{[s - (m_i - m_j)^2][s - (m_i + m_j)^2]}{s(s - 4m_1^2)}} \frac{g_i g_j}{g_1^2} W_{ij}$$

where the p's are the momenta, the g's are the internal degrees of freedom, the m's are the masses and W_{ij} is the invariant annihilation rate for the included subprocess.

dsanwxint.f

function dsanwxint(p,a,b)

```
C_____
c neutralino self-annihilation invariant rate integrated between
c cos(theta)=a and cos(theta)=b.
c input:
  p - initial cm momentum (real) for lsp annihilations
С
С
   integration limits a and b
c common:
  'dssusy.h' - file with susy common blocks
с
c uses dsabsq.
c called by wx.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994
c modified slightly by joakim edsjo (edsjo@physto.se) 96-04-10
```

dssigmav.f

```
*** function dssigmav returns the annihilation cross section
*** sigma v at p=0 for neutralino-neutralino annihilation.
*** if partch=0, the full sigma v is obtained and if partch>0, the
*** cross section to channel partch is obtained, where is defined
*** as follows:
***
***
    partch process
***
            _____
***
         0 All processes, i.e. the full annihilation cross section
***
         1 H1 H1
***
         2 H1 H2
         3 H2 H2
***
        4 H3 H3
***
        5 H1 H3
***
           H2 H3
***
         6
            H- H+
***
         7
        8 H1 Z
***
***
        9 H2 Z
       10 H3 Z
***
***
        11 W- H+ and W+ H-
           Z0 Z0
        12
***
            W+ W-
***
        13
***
        14
            nu_e nu_e-bar
***
        15
            e+ e-
        16 nu_mu nu_mu-bar
***
***
        17 mu+ mu-
```

```
***
        18 nu_tau nu_tau-bar
        19 tau+ tau-
***
        20 u u-bar
***
        21 d d-bar
***
***
        22 c c-bar
        23 s s-bar
***
        24 t t-bar
***
        25 b b-bar
***
***
        26 gluon gluon (1-loop)
***
        27 q q gluon (not implemented yet, put to zero)
        28 gamma gamma (1-loop)
***
        29 Z gamma (1-loop)
***
***
*** Units of returned cross section: cm<sup>-3</sup> s<sup>-1</sup>
```

```
function dssigmav(partch)
```

Chapter 5

src/an11: Annihilation cross sections (1-loop)

5.1 Annihilation cross sections at 1-loop – general

The annihilation cross sections at 1-loop that we have implemented in DarkSUSY are those to $\gamma\gamma$, $Z\gamma$ and gg. The derivation of these is described in the works [?, 175].

To see how these routines are called, see the file src/an/dsandwdcosnn.f where the $\gamma\gamma$, $Z\gamma$ and gg contributions are added to the annihilation cross section at the end.

5.2 Routine headers – fortran files

dsanggim.f

С this subroutine gives the imaginary part of the amplitude of the С С process of neutralino annihilation into two photons in the limit С of vanishing relative velocity of the neutralino pair С 1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27 С с imres: imaginary part с imfbxg: contribution from diagram 1a divided by imres с imftxg: contribution from diagrams 1c & 1d divided by imres с imgbxg: contribution from diagram 3a divided by imres с с author: piero ullio (piero@tapir.caltech.edu) С С c_____

subroutine dsanggim(imres)

dsanggimpar.f

this subroutine gives the imaginary part of the amplitude of the С process of neutralino annihilation into two photons in the limit С of vanishing relative velocity of the neutralino pair С с 1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27 с с see header of dsanggim.f for details с с с author: piero ullio (piero@tapir.caltech.edu) с c_____

subroutine dsanggimpar(imres,imfbx,imftx,imgbx)

dsanggre.f

48

C-----С this subroutine gives the real part of the amplitude of the с process of neutralino annihilation into two photons in the limit с с of vanishing relative velocity of the neutralino pair с 1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27 с с С reres: real part С refbxg: contribution from diagram 1a & 1b divided by reres reftxg: contribution from diagrams 1c & 1d divided by reres С rehbxg: contribution from diagram 2a & 2b divided by reres с rehtxg: contribution from diagrams 2c & 2d divided by reres с regbxg: contribution from diagram 3a - 3c & 4a -4b divided by с С reres с author: piero ullio (piero@tapir.caltech.edu) с С c_____

subroutine dsanggre(reres)

dsanggrepar.f

С this subroutine gives the imaginary part of the amplitude of the С process of neutralino annihilation into two photons in the limit С с of vanishing relative velocity of the neutralino pair с 1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27 с с see header of dsanggre.f for details С с author: piero ullio (piero@tapir.caltech.edu) С

5.2. ROUTINE HEADERS – FORTRAN FILES

c c_____

subroutine dsanggrepar(reres,refbx,reftx,rehbx,rehtx,regbx)

dsanglglim.f

С this subroutine gives the imaginary part of the amplitude of the с process of neutralino annihilation into two gluons in the limit с с of vanishing relative velocity of the neutralino pair с 1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27 С с imres: imaginary part С С author: piero ullio (piero@tapir.caltech.edu) с C_____

subroutine dsanglglim(imres)

dsanglglre.f

```
С
  this subroutine gives the real part of the amplitude of the
С
  process of neutralino annihilation into two gluons in the limit
С
с
  of vanishing relative velocity of the neutralino pair
с
  1. bergstrom & p. ullio, nucl. phys. b 504 (1997) 27
С
с
 reres: real part
с
с
 author: piero ullio (piero@tapir.caltech.edu)
с
С
C_____
```

subroutine dsanglglre(reres)

dsanzg.f

_____ _____ С this subroutine gives the real and imaginary parts of the с amplitude of the process of neutralino annihilation into с one photon and one \boldsymbol{z} boson in the limit of vanishing relative С velocity of the neutralino pair с с p. ullio & l. bergstrom, phys. rev. d 57 (1998) 1962 С С the present version assumes equal sfermion mass eigenstates in с

```
fermion - sfermion loop diagrams
с
С
   imres: imaginary part
С
   imfbxz: contribution to imres from diagram 1a - 1c divided by
с
с
    imres
  imftxz: contribution to imres from diagrams 1e - 1h divided by
с
С
    imres
С
  imgbxz: contribution to imres from diagram 3a & 3b divided by
с
     imres
  reres: real part
с
  refbxz: contribution to reres from diagram 1a - 1d divided by
С
С
    reres
  reftxz: contribution to reres from diagrams 1e - 1h divided by
с
С
    reres
  rehbxz: contribution to reres from diagram 2a - 2d divided by
С
с
    reres
  rehtxz: contribution to reres from diagrams 2e - 2h divided by
с
С
    reres
с
  regbxz: contribution from diagram 3a - 3f & 4a -4f divided by
    reres
с
с
   author: piero ullio (piero@tapir.caltech.edu)
С
с
c_____
```

subroutine dsanzg(reres,imres)

dsanzgpar.f

50

```
C-----
с
  this subroutine gives the real and imaginary parts of the
С
с
  amplitude of the process of neutralino annihilation into
  one photon and one z boson in the limit of vanishing relative
С
  velocity of the neutralino pair
с
с
с
  p. ullio & l. bergstrom, phys. rev. d 57 (1998) 1962
с
  see header of dsanzg.f for details
с
с
  author: piero ullio (piero@tapir.caltech.edu)
с
С
C_____
         _____
```

subroutine dsanzgpar(imres,imfbx,imftx,imgbx,reres,refbx,reftx, & rehbx,rehtx,regbx)

dsdilog.f

```
c c c dsdilogarithm function
```

```
c argument should be between -1 and 1
c
c author: lars bergstrom (lbe@physto.se)
c
c______
```

real*8 function dsdilog(x)

dsdilogp.f

real*8 function dsdilogp(x)

dsfl1c1.f

real*8 function dsfl1c1(r1,r2,r3,r4,r5)

dsfl1c2.f

```
c
c
c auxiliary function used in:
c dsti_5.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dsfl1c2(r1,r2,r3,r4,r5)

dsfl2c1.f

c author: piero ullio (piero@tapir.caltech.edu) c c ______

real*8 function dsfl2c1(r1,r2,r3,r4,r5)

dsfl2c2.f

```
c
c
c
auxiliary function used in:
c dsti_5.f
c
author: piero ullio (piero@tapir.caltech.edu)
c
c______
```

real*8 function dsfl2c2(r1,r2,r3,r4,r5)

dsfl3c1.f

real*8 function dsfl3c1(r1,r2,r3,r4,r5)

dsfl3c2.f

```
c
c
c auxiliary function used in:
c dsti_5.f
c author: piero ullio (piero@tapir.caltech.edu)
c c_____
```

real*8 function dsfl3c2(r1,r2,r3,r4,r5)

dsfl4c1.f

```
c author: piero ullio (piero@tapir.caltech.edu)
c
c______
```

real*8 function dsfl4c1(r1,r2,r3,r4,r5)

dsfl4c2.f

```
c c c auxiliary function used in:
c dsti_5.f c c author: piero ullio (piero@tapir.caltech.edu)
c c_____
```

real*8 function dsfl4c2(r1,r2,r3,r4,r5)

dsi_12.f

real*8 function dsi_12(r1,r2)

$dsi_13.f$

real*8 function dsi_13(r1,r2,r3)

dsi_14.f

```
c-----c
c auxiliary function used in:
c dsanzgpar.f dsi_13.f
c
c author: piero ullio (piero@tapir.caltech.edu)
```

c c_____

real*8 function dsi_14(r1,r2,r3,r4)

 $dsi_22.f$

```
c-----c
c auxiliary function used in:
c not used, this is equivalent to dspiw2.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dsi_22(r1,r2)

$dsi_23.f$

real*8 function dsi_23(r1,r2,r3)
No header found.

$dsi_24.f$

real*8 function dsi_24(r1,r2,r3,r4)
No header found.

$dsi_32.f$

real*8 function dsi_32(r1,r2)

$dsi_33.f$

```
c
c
c auxiliary function used in:
c dsanzgpar.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dsi_33(r1,r2,r3)

dsi_34.f

real*8 function dsi_34(r1,r2,r3,r4)

$dsi_41.f$

```
c -----c c c auxiliary function used in: c dsanzgpar.f c author: piero ullio (piero@tapir.caltech.edu) c c c______
```

real*8 function dsi_41(a,b,c)

$dsi_42.f$

```
c
c
c auxiliary function used in:
c dsanzgpar.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dsi_42(a,b,d,c)

dsilp2.f

real*8 function dsilp2(x)

dsj_1.f

```
c -----c c c auxiliary function used in: c dsanzgpar.f c c author: piero ullio (piero@tapir.caltech.edu) c c ______
```

real*8 function dsj_1(a,b)

dsj_2.f

```
c -----c c c auxiliary function used in: c dsanzgpar.f c author: piero ullio (piero@tapir.caltech.edu) c c ______
```

real*8 function dsj_2(b,c)

dsj_3.f

real*8 function dsj_3(a,b,c)

dslp2.f

```
c-----c
c auxiliary function used in:
c dsi_14.f dsi_24.f dsi_34.f dsilp2.f dsti_5.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dslp2(c1,c2)

c this function compute the integral between 0 and 1 of $1/x*\log(1+c1*x+c2*x**2)$

dspi1.f

real*8 function dspi1(a,b)

dspiw2.f

```
c-----c
c auxiliary function used in:
c dsanglglre.f dsrepfbox.f dsrepgh.f dsrepw.f
c author: piero ullio (piero@tapir.caltech.edu)
c c______
```

real*8 function dspiw2(a,b)

dspiw2i.f

real*8 function dspiw2i(x)

dspiw3.f

real*8 function dspiw3(a,b)

dspiw3i.f

```
c -----c c c auxiliary function used in: c dspiw3.f c c author: piero ullio (piero@tapir.caltech.edu) c c ______
```

real*8 function dspiw3i(x)

dsrepfbox.f

real*8 function dsrepfbox(a,b,sq,dq,signm)

dsrepgh.f

real*8 function dsrepgh(a,b,sq,dq,signm)

dsrepw.f

real*8 function dsrepw(a,b,sq,dq,signm)

dsslc1.f

real*8 function dsslc1(r1,r2,r3)
c this function gives the coefficient c1 of slog

dsslc2.f

real*8 function dsslc2(r1,r2,r3)
c this function gives the coefficient c2 of slog

dssubka.f

real*8 function dssubka(r,delta)

dssubkb.f

subroutine dssubkb(r1,r2,delta,res1,res2)

dssubkc.f

subroutine dssubkc(r1,delta,res1,res2)

$dsti_214.f$

```
c
c
c auxiliary function used in:
c dsanzgpar.f
c author: piero ullio (piero@tapir.caltech.edu)
c c_____
```

real*8 function dsti_214(r1,r2,r3,r4)

$dsti_224.f$

real*8 function dsti_224(r1,r2,r3,r4)

$dsti_23.f$

real*8 function dsti_23(r1,r2,r3)

dsti_33.f

```
c -----c 
c 
auxiliary function used in:
c dsanzgpar.f
c 
author: piero ullio (piero@tapir.caltech.edu)
c 
c______
```

real*8 function dsti_33(r1,r2,r3)

dsti_5.f

real*8 function dsti_5(r1,r2,r3,r4,r5)

Chapter 6

src/anstu: t, u and s diagrams for ff-annihilation

6.1 Annihilation amplitudes for fermion-fermion annihilation

In this directory, all the helicity amplitudes needed for neutralino-neutralino, neutralino-chargino and chargino-chargino annihilation are calculated. The helicity amplitudes have been calculated with general expressions for vertices, masses etc. in **Reduce** and converted to Fortran files. The calculation of these are described in more detail in [35].

Each routine here adds the contribution to the helicity amplitudes from one particular diagram and the sum over contributed diagrams is done in the routines **an/dsandwdcosnn**, **an/dsandwdcoscn** and **an/dsandwdcoscc**. The naming convention for the routines here is the following: The first part of the routine name is **dsan** to indicate that they deal with annihilations in DarkSUSY. The next character tells which kind of process it is *s*-, *t*- or *u*-channel and the next two caracters tell which initial state particles we have (**f** for fermion), the next character is the kind of propagating particle (**f** for fermion, **s** for scalar and **v** for vector boson), and finally, the last two characters tell the kind of final state particles. So, to take an example, the routine **dsansffsvv** calculates the helicity amplitudes for annihilation of two fermions to two vector bosons via *s*-channel exchange of a scalar. There are also a few special cases (routines ending in **ex** or **in**) for diagrams with clashing arrows.

6.2 Routine headers – fortran files

dsansffsff.f

subroutine dsansffsff(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffsss.f

****	******************	****
***	subroutine dsansffsss	***
***	fermion + fermion -> scalar + scalar in	***
***	s-channel scalar exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	*****************	****

subroutine dsansffsss(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffssv.f

****	***************************************				
***	subroutine dsansffssv	***			
***	<pre>fermion + fermion -> scalar + gauge boson in</pre>	***			
***	s-channel scalar exchange (index k)	***			
***	1 - arrow in, 2 - arrow out, k intermediate	***			
***	this code is computer generated by reduce	***			
***	and gentran.	***			
***	author: joakim edsjo, edsjo@physto.se	***			
****	*****************				

subroutine dsansffssv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffsvs.f

subroutine dsansffsvs(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffsvv.f

****	***************************************			
***	subroutine dsansffsvv	***		
***	<pre>fermion + fermion -> gauge boson + gauge boson in</pre>	***		
***	s-channel scalar exchange (index k)	***		
***	1 - arrow in, 2 - arrow out, k intermediate	***		
***	this code is computer generated by reduce	***		

6.2. ROUTINE HEADERS – FORTRAN FILES

***	and gent	tran.			***
***	author:	joakim	edsjo,	edsjo@physto.se	***
***	*******	******	******	*****	************

subroutine dsansffsvv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffvff.f

****	<*************************************	***
***	subroutine dsansffvff	***
***	fermion + fermion -> fermion + fermion in	***
***	s-channel gauge boson exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	·*************************************	***

subroutine dsansffvff(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffvss.f

****	***************************************	***
***	subroutine dsansffvss	***
***	fermion + fermion -> scalar + scalar in	***
***	s-channel gauge boson exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	**********************	***

subroutine dsansffvss(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffvsv.f

****	***************************************	****
***	subroutine dsansffvsv	***
***	fermion + fermion -> scalar + gauge boson in	***
***	s-channel gauge boson exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
>	****	****

subroutine dsansffvsv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffvvs.f

>	*******************	***
***	subroutine dsansffvvs	***
***	fermion + fermion -> scalar + gauge boson in	***

subroutine dsansffvvs(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsansffvvv.f

subroutine dsansffvvv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffss.f

subroutine dsantfffss(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffssex.f

*** subroutine dsantfffssex	***	
*** fermion + fermion -> scalar + scalar in	***	
*** t-channel fermion exchange (index k)	***	
*** label 3 & 4 exchanged compared to tfffss	***	
*** 1 - arrow in, 2 - arrow out, k intermediat	e ***	
*** this code is computer generated by reduce	***	
*** and gentran.	***	
<pre>*** author: joakim edsjo, edsjo@physto.se</pre>	***	
***************************************	*****	

subroutine dsantfffssex(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffssin.f

```
*** subroutine dsantfffssin
                                     ***
*** fermion + fermion -> scalar + scalar in
                                     ***
*** t-channel fermion exchange (index k)
                                     ***
*** 1 - arrow in, 2 - arrow out, k intermediate ***
*** both fermion arrows point inwards
                                     ***
*** this code is computer generated by reduce
                                     ***
*** and gentran.
                                     ***
*** author: joakim edsjo, edsjo@physto.se
                                     ***
```

subroutine dsantfffssin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffsv.f

subroutine dsantffsv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffsvin.f

****	***************************************	****
***	subroutine dsantfffsvin	***
***	<pre>fermion + fermion -> scalar + gauge boson in</pre>	***
***	t-channel fermion exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	both fermion arrows point inwards	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	***************************************	****

subroutine dsantffsvin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffvs.f

subroutine dsantfffvs(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantffvsex.f

******* subroutine dsantffvsex *** *** fermion + fermion -> gauge boson + scalar in *** *** t-channel fermion exchange (index k) *** *** 1 - arrow in, 2 - arrow out, k intermediate *** *** label 3 & 4 exchanged compared to tfffsv *** *** this code is computer generated by reduce *** *** *** and gentran. *** author: joakim edsjo, edsjo@physto.se ***

subroutine dsantfffvsex(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffvv.f

***	subroutine dsantfffvv	***	
***	<pre>fermion + fermion -> gauge boson + gauge boson in</pre>	***	
***	t-channel fermion exchange (index k)	***	
***	1 - arrow in, 2 - arrow out, k intermediate	***	
***	this code is computer generated by reduce	***	
***	and gentran.	***	
***	author: joakim edsjo, edsjo@physto.se	***	
****	**********************		

subroutine dsantfffvv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantffvvex.f

*** subroutine dsantfffvvex >	***
<pre>*** fermion + fermion -> gauge boson + gauge boson in ></pre>	***
*** t-channel fermion exchange (index k) ,	***
*** 1 - arrow in, 2 - arrow out, k intermediate ,	***
*** label 3 & 4 exchanged compared to tfffvv ,	***
*** this code is computer generated by reduce ,	***
*** and gentran.	***
<pre>*** author: joakim edsjo, edsjo@physto.se</pre>	***
***************************************	***

subroutine dsantfffvvex(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantfffvvin.f

***	t-channel fermion exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	both fermion arrows point inwards	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	******	****

subroutine dsantfffvvin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsantffsff.f

***	***************************************	****
***	subroutine dsantffsff	***
***	fermion + fermion -> fermion + fermion in	***
***	t-channel scalar exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
***	******************	****

subroutine dsantffsff(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffss.f

subroutine dsanufffss(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffssin.f

****** ******* subroutine dsanufffssin *** *** fermion + fermion -> scalar + scalar in *** *** u-channel fermion exchange (index k) *** *** 1 - arrow in, 2 - arrow out, k intermediate *** *** both fermion arrows point inwards *** *** this code is computer generated by reduce *** *** and gentran. *** *** author: joakim edsjo, edsjo@physto.se *** ******

subroutine dsanufffssin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffsv.f

subroutine dsanufffsv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffsvin.f

*** subroutine dsanufffsvin	***
*** fermion + fermion -> scalar + gauge boson in	***
<pre>*** u-channel fermion exchange (index k)</pre>	***
*** 1 - arrow in, 2 - arrow out, k intermediate	***
<pre>*** both fermion arrows point inwards</pre>	***
*** this code is computer generated by reduce	***
*** and gentran.	***
*** author: joakim edsjo, edsjo@physto.se	***
********	****

subroutine dsanufffsvin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffvs.f

*** subroutine dsanufffvs	***	
*** fermion + fermion -> scalar + gauge boson in	***	
<pre>*** u-channel fermion exchange (index k)</pre>	***	
*** 1 - arrow in, 2 - arrow out, k intermediate	***	
*** this code is computer generated by reduce	***	
*** and gentran.	***	
<pre>*** author: joakim edsjo, edsjo@physto.se</pre>	***	
***************************************	****	

subroutine dsanufffvs(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffvv.f

6.2. ROUTINE HEADERS – FORTRAN FILES

subroutine dsanufffvv(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffvvex.f

***	subroutine dsanufffvvex	***	
***	<pre>fermion + fermion -> gauge boson + gauge boson in</pre>	***	
***	u-channel fermion exchange (index k)	***	
***	label 3 & 4 exchanged compared to ufffvv	***	
***	1 - arrow in, 2 - arrow out, k intermediate	***	
***	this code is computer generated by reduce	***	
***	and gentran.	***	
***	author: joakim edsjo, edsjo@physto.se	***	
****	******		

subroutine dsanufffvvex(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanufffvvin.f

***	subroutine dsanufffvvin	***
***	<pre>fermion + fermion -> gauge boson + gauge boson in</pre>	***
***	u-channel fermion exchange (index k)	***
***	1 - arrow in, 2 - arrow out, k intermediate	***
***	both fermion arrows point inwards	***
***	this code is computer generated by reduce	***
***	and gentran.	***
***	author: joakim edsjo, edsjo@physto.se	***
****	*******************	***

subroutine dsanufffvvin(p,costheta,kp1,kp2,kpk,kp3,kp4)

dsanuffsff.f

***************************************	*****
*** subroutine dsanuffsff	***
*** fermion + fermion -> fermion + fermion in	***
*** u-channel scalar exchange (index k)	***
*** 1 - arrow in, 2 - arrow out, k intermediate	***
*** this code is computer generated by reduce	***
*** and gentran.	***
*** author: joakim edsjo, edsjo@physto.se	***

subroutine dsanuffsff(p,costheta,kp1,kp2,kpk,kp3,kp4)
Chapter 7

src/as: Annihilation cross sections (with sfermions)

7.1 Annihilation cross sections with sfermions – general

In this directory, all the (co)annihilation cross sections involving one or more sfermions in the initial state are calculated. The code here is based upon the work described in [177]. All the cross sections are calculated with Form and converted to Fortran with a script **form2f** [173].

The main routines here are

Routine	Purpose
dsasdwdcossfsf	Calculates the invariant annihilation rate between two sfermions in the initial
	state.
dsasdwdcossfchi	Calculates the invariant annihilation rate between one sfermion and one fermion
	(neutralino or chargino) in the iniital state.

7.2 Routine headers – fortran files

dsaschicasea.f

```
c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.34, October 8, 2001, edsjo@physto.se)
c....Template file for dsaschicasea begins here
*** SUBROUTINE dsaschicasea
                                                      ***
*** computes dW_{ij}/dcostheta
                                                      ***
***
*** sfermion(i) + neutralino(j)/chargino^+(j)
                                                      ***
*** -> gauge-boson + fermion
                                                      ***
***
                                                      ***
*** The sfermion must be the first mentioned
*** particle (kp1) and the neutralino/chargino
                                                      ***
*** the other (kp2) -- not the opposite.
                                                      ***
*** For the final state the gauge boson must be mentioned ***
```

***	first (i.e. kp3) and next the fermion (kp4)	***
***	not the opposite.	***
***		***
***		***
***	Author:Mia Schelke, schelke@physto.se	***
***	Date: 01-10-05	***
***	QCD included: 02-03-21	***
***	comment added by Piero Ullio, 02-07-01	***
****	***********************	***

***** Note that it is assumed that coupling constants that do
***** not exist have already been set to zero!!!!!
***** Thus, many of the coefficients defined in this code
***** simplify when the diagrams contain sneutrinos
***** or neutrinos.

subroutine dsaschicasea(kp1,kp2,kp3,kp4,par)

dsaschicaseb.f

c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.34, October 8, 2001, edsjo@physto.se)
c....Template file for dsaschicaseb begins here

```
*** SUBROUTINE dsaschicaseb
                                                   ***
*** computes dW_{ij}/dcostheta
                                                   ***
***
                                                   ***
*** anti-sfermion(i) + neutralino(j)/chargino^+(j)
                                                   ***
*** -> gauge-boson + anti-fermion
                                                   ***
***
                                                   ***
*** The anti-sfermion must be the first mentioned
                                                   ***
*** particle (kp1) and the neutralino/chargino
                                                   ***
*** the other (kp2) -- not the opposite.
                                                   ***
*** For the final state the gauge boson must be mentioned ***
*** first (i.e. kp3) and next the anti-fermion (kp4) --
                                                   ***
*** not the opposite.
                                                   ***
***
                                                   ***
***
                                                   ***
*** Author:Mia Schelke, schelke@physto.se
                                                   ***
*** Date: 01-10-03
                                                   ***
*** QCD included: 02-03-21
                                                   ***
*** comment added by Piero Ullio, 02-07-01
                                                   ***
***** Note that it is assumed that coupling constants that do
```

***** not exist have already been set to zero!!!!! ***** Thus, many of the coefficients defined in this code ***** simplify when the diagrams contain sneutrinos ***** or neutrinos.

subroutine dsaschicaseb(kp1,kp2,kp3,kp4,par)

dsaschicasec.f

c...This subroutine is automatically generated from form output by c...parsing it through form2f (version 1.34, October 8, 2001, edsjo@physto.se) c....Template file for dsaschicasec begins here ******* SUBROUTINE dsaschicasec *** *** computes dW_{ij}/dcostheta *** *** *** *** sfermion(i) + neutralino(j)/chargino^+(j) *** *** -> higgs-boson + fermion *** *** *** *** The sfermion must be the first mentioned *** *** particle (kp1) and the neutralino/chargino *** *** the other (kp2) -- not the opposite. *** *** For the final state the higgs boson must be mentioned *** *** first (i.e. kp3) and next the fermion (kp4) --*** *** not the opposite. *** *** *** *** *** *** Author:Mia Schelke, schelke@physto.se *** *** Date: 01-10-10 *** *** Trivial color factors included: 02-03-21 *** ***** Note that it is assumed that coupling constants that do ***** not exist have already been set to zero!!!!! ***** Thus, many of the coefficients defined in this code ***** simplify when the diagrams contain sneutrinos ***** or neutrinos.

subroutine dsaschicasec(kp1,kp2,kp3,kp4,par)

dsaschicased.f

c...This subroutine is automatically generated from form output by c...parsing it through form2f (version 1.34, October 8, 2001, edsjo@physto.se) c....Template file for dsaschicased begins here

*** SUBROUTINE dsaschicased *** *** computes dW_{ij}/dcostheta *** *** *** *** anti-sfermion(i) + neutralino(j)/chargino^+(j) *** *** -> higgs-boson + anti-fermion *** *** *** *** The anti-sfermion must be the first mentioned *** *** particle (kp1) and the neutralino/chargino *** *** the other (kp2) -- not the opposite. *** *** For the final state the higgs boson must be mentioned *** *** first (i.e. kp3) and next the anti-fermion (kp4) --*** *** not the opposite. ***

```
*** *** ***

*** Author:Mia Schelke, schelke@physto.se ***

*** Date: 01-10-11 ***

*** Trivial color factors included: 02-03-21 ***
```

```
***** Note that it is assumed that coupling constants that do
***** not exist have already been set to zero!!!!!
***** Thus, many of the coefficients defined in this code
***** simplify when the diagrams contain sneutrinos
***** or neutrinos.
```

subroutine dsaschicased(kp1,kp2,kp3,kp4,par)

dsaschizero.f

****	·*************************************	****
***	SUBROUTINE dsaschizero	***
***	computes dW_{ij}/dcostheta	***
***	<pre>sfermion(i) + neutralino(j) -> gamma/gluon + fermion</pre>	***
***	ampl2 obtained with sum over physical polarizations	***
***		***
***	input askin variables: p12,costheta	***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 02-06-13	***

SUBROUTINE dsaschizero(kp1,kp2,kp3,kp4,result)

dsascolset.f

subroutine dsascolset(type)
No header found.

dsasdepro.f

```
*** FUNCTION dsasdepro
                                       ***
*** computes the denominator of a propagator
                                       ***
***
                                       ***
*** input: mom2 is S,T,U;
                                       ***
*** kkpp is the number of the particle in the propagator
                                       ***
*** AUTHOR: Piero Ullio, ullio@sissa.it
                                       ***
*** Date: 01-02-28
                                       ***
```

complex*16 function dsasdepro(mom2,kkpp)

dsasdwdcossfchi.f

***	computes dW_{ij}/dcostheta	***
***	<pre>for sfermion(1) + neutralino(2) (or chargino(2))</pre>	***
***	<pre>plus sfermion(1) + neutralino(2) (or chargino(2))</pre>	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-11-04	***
***	Modified: Joakim Edsjo, Mia Schelke	***
***	to include gluon final states, 2002-03-21	***
***	Modified: Piero Ullio	***
***	to switch to ampl2 with physical polarizations, 02-07-01	***
***	***********	*****

real*8 function dsasdwdcossfchi(p,costhe,kp1,kp2)

dsasdwdcossfsf.f

****	***************************************	***
***	SUBROUTINE dsasdwdcossfsf	***
***	computes dW_{ij}/dcostheta	***
***	<pre>for sfermion(1) + antisfermion(2) plus sfermion(1) + sfermion(2)</pre>	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-08-10	***
***	modified: Joakim Edsjo, Mia Schelke to include squarks with	***
***	gauge and Higgs boson final states and gluons	***
***	02-05-22	***
***	bug with switching of initial states fixed 020613 (edsjo)	***
***	modified: Piero Ullio	***
***	02-03-22	***
***	modified: Piero Ullio	***
***	02-07-01	***

real*8 function dsasdwdcossfsf(p,costhe,kp1,kp2)

dsasfer.f

***********		****
***	SUBROUTINE dsasfer	***
***	computes dW_{ij}/dcostheta	***
***	<pre>sfermion(i) + antisfermion(j)</pre>	***
***	-> fermion(k1) + antifermion(k2)	***
***	version to be used if i or j has non-zero lepton #	***
***		***
***	input askin variables: p12,costheta	***
***	kpk1 and kpk2 are the fermion code	***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-08-10	***

SUBROUTINE dsasfer(kpi,kpj,kpk1,kpk2,result)

dsasfercode.f

*** SUBROUTINE dsasfercode	***	
*** finds fermion kfer in a given family iifamv	***	
*** chow variable equal to	***	
*** 'same' : routine returns fermion code for the	***	
*** particles with the same iifamv	***	
*** 'diff' : routine returns fermion code for the	***	
<pre>*** particles with the same iifamv+1 or iifamv-1</pre>	***	
***	***	
*** AUTHOR: Piero Ullio, ullio@sissa.it	***	
*** Date: 01-08-09	***	

subroutine dsasfercode(chow,iifamv,kfer)

dsasfercol.f

****	***************************************	***	
***	SUBROUTINE dsasfercol *	***	
***	computes dW_{ij}/dcostheta *	***	
***	<pre>sfermion(i) + antisfermion(j)</pre>	***	
***	-> fermion(k1) + antifermion(k2)	***	
***	version to be used if i or j are both squarks	***	
***	د	***	
***	input askin variables: p12,costheta	***	
***	kpk1 and kpk2 are the fermion code	***	
***	AUTHOR: Piero Ullio, ullio@sissa.it	***	
***	Date: 01-08-10	***	
****	***************************************		

SUBROUTINE dsasfercol(kpi,kpj,kpk1,kpk2,result)

dsasfere.f

****	***********************	*****
***	SUBROUTINE dsasfere	***
***	computes dW_{ij}/dcostheta	***
***	<pre>sfermion(i) + sfermion(j)</pre>	***
***	-> fermion(k1) + fermion(k2)	***
***	version to be used if i or j has non-zero lepton #	***
***		***
***	input askin variables: p12,costheta	***
***	kpk1 and kpk2 are the fermion code	***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-08-10	***
****	*****	*****

SUBROUTINE dsasfere(kpi,kpj,kpk1,kpk2,result)

dsasferecol.f

***	SUBROUTINE dsasferecol	***	
***	computes dW_{ij}/dcostheta	***	
***	<pre>sfermion(i) + sfermion(j)</pre>	***	
***	-> fermion(k1) + fermion(k2)	***	
***	version to be used if i or j are both squarks	***	
***		***	
***	input askin variables: p12,costheta	***	
***	kpk1 and kpk2 are the fermion code	***	
***	AUTHOR: Piero Ullio, ullio@sissa.it	***	
***	Date: 01-08-10	***	
****	*************************		

SUBROUTINE dsasferecol(kpi,kpj,kpk1,kpk2,result)

dsasff.f

```
*** SUBROUTINE dsasff
                                           ***
*** computes the amplitude squared of the process
                                           ***
*** scalar(1) + scalar(2) -> fermion(3) + fermion(4)
                                           ***
***
                                           ***
*** input:
                                           ***
*** asparmass, askin, askinder variables
                                           ***
*** complex vectors ASxpl(i), ASxpr(i), ASyl, ASyr
                                           ***
*** AUTHOR: Piero Ullio, ullio@sissa.it
                                           ***
*** Date: 01-02-28
                                           ***
```

SUBROUTINE dsasff(ampl2)

dsasffcol.f

```
***********
*** SUBROUTINE dsasffcol
                                               ***
*** computes the amplitude squared of the process
                                               ***
*** scalar(1) + scalar(2) -> fermion(3) + fermion(4)
                                               ***
***
                                               ***
*** input:
                                               ***
*** asparmass, askin, askinder variables
                                               ***
*** complex vectors:
                                               ***
***
    ASxplc(j,i), ASxprc(j,i), ASylc(j), ASyrc(j)
                                               ***
*** AUTHOR: Piero Ullio, ullio@sissa.it
                                               ***
*** Date: 01-02-28
                                               ***
******
```

SUBROUTINE dsasffcol(ampl2)

dsasgbgb.f

c...This subroutine is automatically generated from form output by c...parsing it through form2f (version 1.35, May 23, 2002, edsjo@physto.se) c....Template file for dsasgbgb begins here

```
*** SUBROUTINE dsasgbgb
                                                       ***
*** computes dW_{ij}/dcostheta
                                                       ***
***
                                                       ***
*** sfermion(i) + anti-sfermion(j)
                                                       ***
*** -> MASSIVE gauge-boson + MASSIVE gauge-boson
                                                       ***
***
                                                       ***
*** for one massive and one massless gb use dsasgbgb1exp
                                                       ***
*** for two massless gb use code dsasgbgb2exp
                                                       ***
***
                                                       ***
*** The first mentioned particle (kp1) will be taken as
                                                       ***
*** a sfermion and the second particle (kp2) as an
                                                       ***
*** anti-sfermion -- not the opposite.
                                                       ***
***
                                                       ***
*** When kp1 and kp2 have different
                                                       ***
*** weak isospin (T^3=+,-1/2), then kp1 must be an
                                                       ***
*** up-type-sfermion and kp2 a down-type-anti-sfermion.
                                                       ***
***
                                                       ***
*** When one gauge boson have electric charge while the
                                                       ***
*** other is neutral, then the charged one must be
                                                       ***
*** mentioned first (kp3) and then the neutral one (kp4)
                                                       ***
*** -- not the opposite.
                                                       ***
***
                                                       ***
*** Author:Mia Schelke, schelke@physto.se
                                                       ***
*** Date: 01-10-23 rewritten:02-03-12
                                                       ***
*** QCD included: 02-03-20
                                                       ***
*** Ghost term excluded: 02-05-22
                                                       ***
*** rewritten: 02-07-04 (now only massive gb)
                                                       ***
*** added flavour changing charged exchange for W^-W^+:
                                                       ***
*** added by Mia Schelke 2005-06-14
                                                       ***
*** terms rearranged by Paolo Gondolo, 2005-06
                                                       ***
```

subroutine dsasgbgb(kp1,kp2,kp3,kp4,par)

dsasgbgb1exp.f

```
c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.35, May 23, 2002, edsjo@physto.se)
c....Template file for dsasgbgb1exp begins here
*** SUBROUTINE dsasgbgb1exp
                                                     ***
*** computes dW_{ij}/dcostheta
                                                     ***
***
                                                     ***
*** sfermion(i) + anti-sfermion(j)
                                                     ***
*** -> massive gauge-boson + massless gauge-boson
                                                     ***
***
                                                     ***
***
                                                     ***
*** The first mentioned particle (kp1) will be taken as
                                                     ***
*** a sfermion and the second particle (kp2) as an
                                                     ***
```

```
*** anti-sfermion -- not the opposite.
                                                       ***
***
                                                       ***
*** When kp1 and kp2 have different
                                                       ***
*** weak isospin (T^3=+,-1/2), then kp1 must be an
                                                       ***
*** up-type-sfermion and kp2 a down-type-anti-sfermion.
                                                       ***
***
                                                       ***
*** NOTE: for the gauge bosons, the MASSIVE must be
                                                       ***
*** mentioned first (kp3) and then the MASSLESS one (kp4)
                                                       ***
*** -- not the opposite.
                                                       ***
***
                                                       ***
*** Author:Mia Schelke, schelke@physto.se
                                                       ***
*** Date: 01-10-23 rewritten:02-03-12
                                                       ***
*** QCD included: 02-03-20
                                                       ***
*** rewritten: 02-07-04 (to have exactly one massless gb)
                                                       ***
*** explicite pol. vectors introduced: 02-07-05
                                                       ***
*** sum over massless pol. moved from
                                                       ***
*** fortran to form: 02-07-09
                                                       ***
***
                                                       ***
```

subroutine dsasgbgb1exp(kp1,kp2,kp3,kp4,par)

dsasgbgb2exp.f

c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.35, May 23, 2002, edsjo@physto.se)
c....Template file for dsasgbgb2exp begins here

*********	***************************************	****
*** SUBROUT	INE dsasgbgb2exp	***
*** computes	s dW_{ij}/dcostheta	***
***		***
*** sfermior	n(i) + anti-sfermion(j)	***
*** -> gluor	n+gluon, photon+photon, photon+gluon	***
***		***
*** The firs	st mentioned particle (kp1) will be taken as	***
*** a sfermi	ion and the second particle (kp2) as an	***
*** anti-sfe	ermion not the opposite.	***
***		***
***		***
***		***
*** Author:N	<pre>fia Schelke, schelke@physto.se</pre>	***
*** Date: 02	2-05-21	***
*** Rewritte	en: 02-07-03 (to have exactly two massless gb)	***
*** explicit	te pol. vectors introduced: 02-07-08	***
*** sum over	r pol. moved from fortran to form: 02-07-09	***
*** two colo	our factors(c.f.) made complex: 02-07-10	***
(+these d	c.f. changed for g+g as ggg vertex code changed)
***		***
*********	******	****

subroutine dsasgbgb2exp(kp1,kp2,kp3,kp4,par)

dsasgbhb.f

```
*** SUBROUTINE dsasgbhb
                                                   ***
*** computes dW_{ij}/dcostheta
                                                  ***
*** up-sfermion(i) + down-antisfermion(j) ->
                                                  ***
      gauge boson + Higgs boson
***
                                                   ***
*** ampl2 obtained summing over physical polarizations
                                                  ***
***
                                                   ***
*** input askin variables: p12,costheta
                                                  ***
***
     iifam(1),iifam(2),mass1,mass2
                                                  ***
*** AUTHOR: Piero Ullio, ullio@sissa.it
                                                   ***
*** Date: 02-06-13
                                                   ***
*** This routine has been compared with the routine of
                                                  ***
*** Mia Schelke and the agreement is perfect, except in
                                                   ***
*** the low-p limit (due to widths in propagators)
                                                   ***
*** as expected.
                                                   ***
*** added flavour changing charged exchange for W^-H^+:
                                                  ***
*** added by Mia Schelke 2006-06-07
                                                  ***
```

SUBROUTINE dsasgbhb(kp1,kp2,kp3,kp4,result)

dsashbhb.f

```
c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.35, May 23, 2002, edsjo@physto.se)
c....Template file for dsashbhb begins here
*** SUBROUTINE dsashbhb
                                                         ***
*** computes dW_{ij}/dcostheta
                                                         ***
***
                                                         ***
*** sfermion(i) + anti-sfermion(j)
                                                         ***
*** -> higgs-boson + higgs-boson
                                                         ***
***
                                                         ***
*** The first mentioned particle (kp1) will be taken as
                                                         ***
*** a sfermion and the second particle (kp2) as an
                                                         ***
*** anti-sfermion -- not the opposite.
                                                         ***
***
                                                         ***
*** When kp1 and kp2 have different
                                                         ***
*** weak isospin (T^3=+,-1/2), then kp1 must be an
                                                         ***
*** up-type-sfermion and kp2 a down-type-anti-sfermion.
                                                         ***
***
                                                         ***
*** For the cases with one charged and one neutral higgs
                                                         ***
*** in the final state, the charged higgs must be
                                                         ***
*** mentioned first (i.e. kp3) and next the neutral
                                                         ***
*** higgs-boson (kp4) -- not the opposite.
                                                         ***
***
                                                         ***
***
                                                         ***
*** Author:Mia Schelke, schelke@physto.se
                                                         ***
*** Date: 01-10-19
                                                         ***
*** Rewritten: 02-07-03 (because FORM input file now
                                                         ***
```

***	only gives the amplitude)	***
***	added flavour changing charged exchange for H ⁺ H ⁻ :	***
***	added by Mia Schelke 2006-06-08	***
****	************************	***
***		***
***	NOTE: The FORM input file only gives the amplitude	***
***	not the amplitude squared	***
***	THE FOLLOWING THEREFORE HAS TO BE CHANGED BY HAND	***
***	after running of the PERL script	***
***		***
***	the form result should be denoted amplitude instead	***
***	of dsashbhbas	***
***	the amplitude squared calculation should be added	***
***	the lines are written in the end of	***
***	the template file	***
****	***********	***

subroutine dsashbhb(kp1,kp2,kp3,kp4,par)

dsaskinset.f

****	***************************************	****
***	subroutine dsaskinset	***
***	set askinder variables: the kinematic variables and	***
***	the scalar products of the four vectors	***
***	p(1), $p(2)$, $k(3)$ and $k(4)$ related by	***
***	p(1) + p(2) = k(3) + k(4)	***
***	in the center of mass frame	***
***	input: asparmass, askin variables	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-02-28	***
****	************************	****

subroutine dsaskinset

dsaskinset1.f

subroutine dsaskinset1

dsaskinset2.f

***************************************	****
*** subroutine dsaskinset2	***
*** sets: k34, ek3, ek4, Tvar, Uvar	***
*** you must call dsaskinset1 before calling dsaskinset2	***
<pre>*** input: mass3, mass4, costheta</pre>	***
***	***
*** AUTHOR: Piero Ullio, ullio@sissa.it	***
*** Date: 01-02-28	***
***************************************	****

subroutine dsaskinset2

dsaskinset3.f

***	subroutine dsaskinset3	***	
***	sets the scalar products of the four vectors	***	
***	p(1), p(2), k(3) and k(4) related by	***	
***	p(1) + p(2) = k(3) + k(4)	***	
***	in the center of mass frame	***	
***	you must call dsaskinset1 and dsaskinset2	***	
***	before calling dsaskinset3	***	
***		***	
***	AUTHOR: Piero Ullio, ullio@sissa.it	***	
***	Date: 01-02-28	***	
****	***************************************		

subroutine dsaskinset3

dsasphghb.f

c...This subroutine is automatically generated from form output by
c...parsing it through form2f (version 1.35, May 23, 2002, edsjo@physto.se)
c....Template file for dsasphghb begins here

subroutine dsasphghb(kp1,kp2,kp3,kp4,par)

dsasscscsSHffb.f

******* SUBROUTINE dsasscscsSHffb *** *** computes ASx and ASy coefficients for *** *** scalar(1) + scalar*(2) -> fermion(3) + fermionbar(4) *** *** for a Higgs boson in the S channel *** *** *** *** AUTHOR: Piero Ullio, ullio@sissa.it *** *** Date: 01-03-03 ***

SUBROUTINE dsasscscsSHffb(kp1,kp2,kp3,kp4,kph)

dsasscscsSHffbcol.f

***	SUBROUTINE dsasscscsSHffbcol	***
***	computes ASx and ASy coefficients for	***
***	$scalar(1) + scalar*(2) \rightarrow fermion(3) + fermionbar(4)$	***
***	for a Higgs boson in the S channel	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-03-03	***

SUBROUTINE dsasscssSHffbcol(kp1,kp2,kp3,kp4,kph)

dsasscscsSVffb.f

***	SUBROUTINE dsasscscsSVffb	***
***	computes ASx and ASy coefficients for	***
***	<pre>scalar(1) + scalar*(2) -> fermion(3) + fermionbar(4)</pre>	***
***	for a vector boson in the S channel	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-03-03	***
****	***************************************	***

SUBROUTINE dsasscscsSVffb(kp1,kp2,kp3,kp4,kpv)

dsasscscsSVffbcol.f

***	***************************************	*****
***	SUBROUTINE dsasscscsSVffbcol	***
***	computes ASx and ASy coefficients for	***
***	$scalar(1) + scalar*(2) \rightarrow fermion(3) + fermionbar(4)$	***
***	for a vector boson in the S channel	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-03-03	***
***	***************************************	*****

SUBROUTINE dsasscssSVffbcol(kp1,kp2,kp3,kp4,kpv)

dsasscscsTCffb.f

*** SUBROUTINE dsasscscsTCffb	***	
*** computes ASx and ASy coefficients for	***	
<pre>*** scalar(1) + scalar*(2) -> fermion(3) + fermionbar(4)</pre>	***	
*** for a neutralino or chargino in the T channel	***	
***	***	
*** AUTHOR: Piero Ullio, ullio@sissa.it	***	
*** Date: 01-03-03	***	

SUBROUTINE dsasscscsTCffb(kp1,kp2,kp3,kp4,kpchi)

dsasscscsTCffbcol.f

***	*******	****
***	SUBROUTINE dsasscscsTCffbcol	***
***	computes ASx and ASy coefficients for	***
***	$scalar(1) + scalar*(2) \rightarrow fermion(3) + fermionbar(4)$	***
***	for a neutralino or chargino in the T channel	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***
***	Date: 01-03-03	***
***	*****	****

SUBROUTINE dsasscscsTCffbcol(kp1,kp2,kp3,kp4,kpchi)

dsasscscTCff.f

***	SUBROUTINE dsasscscTCff	***	
***	computes ASx and ASy coefficients for	***	
***	$scalar(1) + scalar(2) \rightarrow fermion(3) + fermion(4)$	***	
***	for a neutralino or chargino in the T channel	***	
***		***	
***	AUTHOR: Piero Ullio, ullio@sissa.it	***	
***	Date: 01-03-03	***	
****	***************************************		

SUBROUTINE dsasscscTCff(kp1,kp2,kp3,kp4,kpchi)

dsasscscTCffcol.f

```
*** SUBROUTINE dsasscscTCffcol
                                        ***
*** computes ASx and ASy coefficients for
                                        ***
*** scalar(1) + scalar(2) -> fermion(3) + fermion(4)
                                        ***
*** for a neutralino or chargino in the T channel
                                        ***
***
                                        ***
*** AUTHOR: Piero Ullio, ullio@sissa.it
                                        ***
*** Date: 01-03-03
                                        ***
```

SUBROUTINE dsasscscTCffcol(kp1,kp2,kp3,kp4,kpchi)

dsasscscUCff.f

***	SUBROUTINE dsasscscTCff	***
***	computes ASx and ASy coefficients for	***
***	$scalar(1) + scalar(2) \rightarrow fermion(3) + fermion(4)$	***
***	for a neutralino or chargino in the U channel	***
***		***
***	AUTHOR: Piero Ullio, ullio@sissa.it	***

7.2. ROUTINE HEADERS – FORTRAN FILES

*** Date: 01-03-03 ***

SUBROUTINE dsasscscUCff(kp1,kp2,kp3,kp4,kpchi)

dsasscscUCffcol.f

***	SUBROUTINE dsasscscTCffcol	***	
***	computes ASx and ASy coefficients for	***	
***	$scalar(1) + scalar(2) \rightarrow fermion(3) + fermion(4)$	***	
***	for a neutralino or chargino in the U channel	***	
***		***	
***	AUTHOR: Piero Ullio, ullio@sissa.it	***	
***	Date: 01-03-03	***	

SUBROUTINE dsasscscUCffcol(kp1,kp2,kp3,kp4,kpchi)

dsassfercode.f

*** SUBROUTINE dsassfercode	***	
*** finds sfermions ksfer1,ksfer2 in a given family iifamv	***	
*** chow variable equal to	***	
*** 'same' : routine returns sfermion code for the	***	
*** particles with the same iifamv	***	
*** 'diff' : routine returns sfermion code for the	***	
*** particles with the same iifamv+1 or iifamv-1	***	
***	***	
*** AUTHOR: Piero Ullio, ullio@sissa.it	***	
*** Date: 01-08-09	***	

subroutine dsassfercode(chow,iifamv,ksfer1,ksfer2)

dsaswcomp.f

subroutine dsaswcomp(p,costheta,kp1,kp2,dwbsmax,dmbsmax)

Chapter 8

src/bsg: $b \rightarrow s\gamma$

8.1 $b \rightarrow s\gamma$ – theory

The rare decay $b \to s\gamma$ can have large contributions from loops of suersymmetric particles and one therefore has to check that a particular supersymmetric model does not violate the observed branching ratio for b decay to $s\gamma$. In DarkSUSY we have several expressions for calculations of the $b \to s\gamma$ decay. In **ac**/, some older obsolte expressions are found (kept only for historical reasons). In this directory, **bsg**/, we have our best implementation of the $b \to s\gamma$ decay.

Our estimate of this process includes the complete next-to-leading order (NLO) correction for the SM contribution and the dominant NLO corrections for the SUSY term. The NLO QCD SM calculation is performed following the analysis in Ref. [178], modified according to [179], and gives a branching ratio BR[$B \to X_s \gamma$] = 3.72×10^{-4} for a photon energy greater than $m_b/20$. In the SUSY contribution, we include the NLO contributions in the two Higgs doublet model, following [180], and the corrections due to SUSY particles. The latter are calculated under the assumption of minimal flavour violation, with the dominant LO contributions from Ref. [181], and with the NLO QCD term with expressions of [182] modified in the large tan β regime according to [181]. In the mSUGRA framework (see, e.g., [183]), the largest discrepancy between the LO and the NLO SUSY corrections are found for sign $\mu > 0$, large tan β and low values of $m_{1/2}$: in this case the SUSY contribution to the decay rate is negative, and the discrimination of models based on the NLO analysis is less restrictive than the one in the LO analysis. We will assume as allowed range of branching ratios $2.0 \times 10^{-4} \leq BR[B \to X_s \gamma] \leq 4.6 \times 10^{-4}$, which is obtained adding a theoretical uncertainty of $\pm 0.5 \times 10^{-4}$ to the experimental value quoted by the Particle Data Group 2002 [184].

8.2 $b \rightarrow s\gamma$ - routines

The main routine is **dsbsgammafull** which returns the $b \rightarrow s\gamma$ branching ratio. The routine can calculate either only the standard model contribution or also include the SUSY contribution (which is of course the default when this routine is called from **dsacbnd**). The reaming (large) set or routines are the various contributions to the decay as given in the references listed above.

8.3 Routine headers – fortran files

dsbsgalpha3.f

function dsbsgalpha3(m)

*	The coupling constant alpha_3 evaluated at the scale m	*	
*	using nf effective quark flavours (usually taken to be nf=5)	*	
*	Uses eq. (42) of Ciuchini et al. hep-ph/9710335	*	
*	for the calculation of b> s gamma	*	
*	Note: This routines is strictly speaking only valid for mass scales	*	
*	between mb and mt where nf=5 should be used.	*	
*	author:Mia Schelke, schelke@physto.se, 2003-04-03	*	
**	***************************************		

dsbsgalpha3int.f

function dsbsgalpha3int(al,mstart,m,nf)

dsbsgammafull.f

subroutine dsbsgammafull(ratio,flag)

dsbsgat0.f

function dsbsgat0(x,flag)

dsbsgat1.f

dsbsgbofe.f

dsbsgc41h2.f

function dsbsgc41h2()

dsbsgc41susy.f

function dsbsgc41susy()

dsbsgc70h2.f

function dsbsgc70h2()

dsbsgc70susy.f

function dsbsgc70susy()

dsbsgc71chisusy.f

function dsbsgc71chisusy()

*	The next to leading order contribution to	*	
*	the Wilson coefficient C_7 from chargino (susy)	*	
*	Eq (13) of Ciuchini et al.,	*	
*	hep-ph/9806308	*	
*	for the calculation of b> s gamma	*	
*	author:Mia Schelke, schelke@physto.se, 2003-04-08	*	
**	***************************************		

dsbsgc71h2.f

function dsbsgc71h2() ! (muw)

dsbsgc71phi1susy.f

function dsbsgc71phi1susy()

dsbsgc71phi2susy.f

function dsbsgc71phi2susy()

dsbsgc71wsusy.f

function dsbsgc71wsusy()

dsbsgc80h2.f

function dsbsgc80h2()

dsbsgc80susy.f

function dsbsgc80susy()

*	The leading order contribution to the Wilson coefficient C_8	*	
*	from susy	*	
*	Eq (31) of Degrassi et al., hep-ph/0009337	*	
*	Differs from dsbsgc70susy only by a few changes described p.11	*	
*	for the calculation of b> s gamma	*	
*	author:Mia Schelke, schelke@physto.se, 2003-04-04	*	
**	***************************************		

dsbsgc81chisusy.f

function dsbsgc81chisusy()

dsbsgc81h2.f

function dsbsgc81h2() ! (muw)

*	The next to leading order contribution to the Wilson coefficient $\ensuremath{\mathtt{C}}\xspace_{-}$.8*	
*	from the two-Higgs doublet model	*	
*	Eq. (59) of Ciuchini et al.,	*	
*	hep-ph/9710335	*	
*	for the calculation of b $>$ s gamma	*	
*	The input parameter muw=\mu_W is the matching scale	*	
*	author:Mia Schelke, schelke@physto.se, 2003-03-31	*	
**	***************************************		

dsbsgc81phi1susy.f

function dsbsgc81phi1susy()

dsbsgc81phi2susy.f

function dsbsgc81phi2susy()

dsbsgc81wsusy.f

dsbsgckm.f

function dsbsgckm()

dsbsgd1td.f

function dsbsgd1td(x1)

dsbsgd2d.f

function dsbsgd2d()

*	Function \Delta^(2)_d (with d=b) in app A p. 17 of	*
*	Ciuchini et al., hep-ph/9806308	*
*	Note that we have inserted d=b	*
*	for the calculation of b> s gamma	*
*	author:Mia Schelke, schelke@physto.se, 2003-04-07	*
**	***************************************	**

dsbsgd2td.f

function dsbsgd2td(famd)

dsbsgd7chi1.f

function dsbsgd7chi1(x)

<pre>* Function \Delta_7^{\chi,1} eq (20) of</pre>	*	
* Ciuchini et al., hep-ph/9806308	*	
* for the calculation of b> s gamma	*	
* author:Mia Schelke, schelke@physto.se, 2003-04-08	*	
*******	*****	

dsbsgd7chi2.f

function dsbsgd7chi2(x)

*	Function \Delta_7^{\chi,2} eq (20) of	*	
*	Ciuchini et al., hep-ph/9806308	*	
*	for the calculation of b> s gamma	*	
*	author:Mia Schelke, schelke@physto.se, 2003-04-08	*	
**	***************************************		

dsbsgd7h.f

function dsbsgd7h(y)

dsbsgd8chi1.f

function dsbsgd8chi1(x)

dsbsgd8chi2.f

function dsbsgd8chi2(x)

dsbsgd8h.f

function dsbsgd8h(y)

dsbsgeb.f

function dsbsgeb()

**	·*************************************	**
*	Function \epsilon_b in (10) of Degrassi et al.,	*
*	hep-ph/0009337	*
*	for the calculation of b> s gamma	*

dsbsgechi.f

function dsbsgechi(y)

*	Function E_\chi(y) in (11) of Ciuchini et al.,	*
*	hep-ph/9806308	*
*	y must be a positive number	*
*	for the calculation of b> s gamma	*
*	author:Mia Schelke, schelke@physto.se, 2003-04-04	*
**	***************************************	*

dsbsgeh.f

function dsbsgeh(y)

dsbsget0.f

function dsbsget0(x,flag)

dsbsgf71.f

function dsbsgf71(y)

dsbsgf72.f

function dsbsgf72(y)

*	Function $F_7(2)(y)$ in (54) of Ciuchini et al.,	*
*	hep-ph/9710335	*
*	y must be a positive number	*
*	for the calculation of b> s gamma	*
*	author:Mia Schelke, schelke@physto.se, 2003-03-31	*
**	***************************************	*

dsbsgf73.f

function dsbsgf73(y)

dsbsgf81.f

function dsbsgf81(y)

dsbsgf82.f

function dsbsgf82(y)

dsbsgf83.f

function dsbsgf83(y)

* Function F_8 ⁽³⁾ (y) in (22) of Degrassi et al.,	*	
* hep-ph/0009337	*	
* y must be a positive number	*	
* for the calculation of b> s gamma	*	
* author:Mia Schelke, schelke@physto.se, 2003-04-0)3 *	

dsbsgft0.f

function dsbsgft0(x,flag)

dsbsgft1.f

function dsbsgft1(x,flag)

dsbsgfxy.f

function dsbsgfxy(x,y)

```
dsbsgg.f
```

function dsbsgg(t)

dsbsgg7chi2.f

function dsbsgg7chi2(x)

dsbsgg7chij1.f

function dsbsgg7chij1(x,j)

Function $G^{chi,1}_7(x)$ in eq. (15) of	*	
Ciuchini et al., hep-ph/9806308	*	
The expression has been extended to large tanbe, by replacing	*	
ln(m^2(kgluin)/m^2(\chi_j)) by ln((mu_w)^2)/m^2(\chi_j))	*	
as explained in Degrassi et al., hep-ph/0009337 p.11	*	
The input, j, is the nb of the chargino, it must be 1 or 2	*	
for the calculation of b> s gamma	*	
author:Mia Schelke, schelke@physto.se, 2003-04-07	*	
***************************************	****	

dsbsgg7h.f

function dsbsgg7h(y)

dsbsgg7w.f

function dsbsgg7w(x)

*	Function G^W_7(x) in eq. (27) of	*				
*	Ciuchini et al., hep-ph/9806308	*				
*	for the calculation of b> s gamma	*				
*	author:Mia Schelke, schelke@physto.se, 2003-04-08	*				

dsbsgg8chi2.f

function dsbsgg8chi2(x)

dsbsgg8chij1.f

function dsbsgg8chij1(x,j)

dsbsgg8h.f

function dsbsgg8h(y)

dsbsgg8w.f

function dsbsgg8w(x)

dsbsggxy.f

function dsbsggxy(x,y)

dsbsgh1x.f

function dsbsgh1x(x)

dsbsgh2xy.f

function dsbsgh2xy(x,y)

dsbsgh3x.f

function dsbsgh3x(x)

dsbsghd.f

function dsbsghd()

*	Function H_d (with d=b) in app A p. 16 of	*				
*	Ciuchini et al., hep-ph/9806308	*				
*	Note that we have inserted d=b	*				
*	for the calculation of b> s gamma	*				
*	author:Mia Schelke, schelke@physto.se, 2003-04-08	*				

dsbsghtd.f

function dsbsghtd(famd)

dsbsgkc.f

	function dsbsgkc()						

*	Program that calculates K_c in (3.7) of Gambino and Misiak,	*					
*	Nucl. Phys. B611 (2001) 338	*					
*	for the calculation of b> s gamma	*					
*	author:Mia Schelke, schelke@physto.se, 2003-03-25	*					

dsbsgkt.f

dsbsgmtmuw.f

function dsbsgmtmuw(m)

dsbsgmtmuwint.f

function dsbsgmtmuwint(mtstart,mstart,m,nf)

dsbsgri.f

function dsbsgri(famd)

dsbsgud.f

function dsbsgud()

*	Function U_d (with d=b) in app A p. 15-6 of	*					
*	Ciuchini et al., hep-ph/9806308	*					
*	Note that we have inserted d=b	*					
*	for the calculation of b> s gamma	*					
*	author:Mia Schelke, schelke@physto.se, 2003-04-08	*					

dsbsgutd.f

function dsbsgutd(famd)

dsbsgwud.f

function dsbsgwud(famu,famd)

dsbsgwxy.f

function dsbsgwxy(x,y)

dsbsgyt.f

function dsbsgyt(m)

dsphi22a.f

		functi	lon dsphi22	2a(†	t)							

*	The	first	integrand	of	\phi_2	2 in	(E.2)	of	Gambino	and	Misiak,	*
dsphi22b.f

function dsphi22b(t)		

* The 2nd integrand of \phi_22 in (E.2) of Gambino and Misiak,	*	
* Nucl. Phys. B611 (2001) 338	*	
* for the calculation of b> s gamma	*	
* author:Mia Schelke, schelke@physto.se, 2003-03-10	*	

dsphi27a.f

function dsphi27a(t)		

* The first integrand of \phi_27 in (E.3) of Gambino and Misiak,	*	
* Nucl. Phys. B611 (2001) 338	*	
* for the calculation of b> s gamma	*	
* author:Mia Schelke, schelke@physto.se, 2003-03-10	*	

dsphi27b.f

function dsphi27b(t)		

* The 2nd integrand of \phi_27 in (E.3) of Gambino and Misiak,	*	
* Nucl. Phys. B611 (2001) 338	*	
* for the calculation of b> s gamma	*	
* author:Mia Schelke, schelke@physto.se, 2003-03-10	*	

 $C\!HAPT\!E\!R \; 8. \ BSG: B \to S\gamma$

Chapter 9

src/db: Anti-deuteron fluxes from the halo

9.1 Anti-deuteron fluxes from annihilation in the halo

The anti-deuteron fluxes are calculated here following the approach of [185]. This means that we calculate the anti-deuteron fluxes based on a merging model of antiprotons and antineutrons in quark jets. Apart from this, the anti-deuterons are propagated in the same way as antiprotons.

9.2 Routine headers – fortran files

dsdbsigmavdbar.f

```
real*8 function dsdbsigmavdbar(en)
c total inelastic cross section dbar + h
c Yad.Fiz.14:134-136,1971
c check Review of Particle Properties of 1992, rev [9] in DFS
```

dsdbtd15.f

real*8 function dsdbtd15(tp,howinp)

```
*** function dsdbtd15 is the containment time in 10<sup>15</sup> sec
***
     input:
       tp - kinetic energy per nucleon in gev
***
       how - 1 calculate t_diff only for requested momentum
***
            2 tabulate t_diff for first call and use table for
***
***
              subsequent calls
            3 as 2, but also write the table to disk as dbtd.dat
***
***
            4 read table from disk on first call, and use that for
***
              subsequent calls
***
     output:
       t_diff in units of 10^15 sec
***
*** calls dsdbtd15x for the actual calculation.
*** author: joakim edsjo (edsjo@physto.se)
*** uses piero ullios propagation routines.
```

dsdbtd15beu.f

real*8 function dsdbtd15beu(td)

dsdbtd15beucl.f

```
*** function that gives the dbar diffusion time per unit volume
*** (units of 10<sup>15</sup> sec kpc<sup>-3</sup>) for a dbar point source located
*** at rcl, zcl, thetacl (in the cylidrical framework with the sun
*** located at r=r_0, z=0 theta=0) and some small "angular width"
*** deltathetacl which makes the routine converge much faster
*** rcl, zcl, thetacl and deltathetacl are in the dspb_clcom.h common
*** blocks and must be before calling this routine. rcl and zcl are in
*** kpc, thetacl and deltathetacl in rad.
*** numerical convergence gets slower for rcl->0 or zcl->0
***
*** it assumes the diffusion model in:
     bergstrom, edsjo & ullio, ajp 526 (1999) 215
***
*** inputs:
***
       td - dbar kinetic energy (gev)
***
*** the conversion from this source function to the local dbar flux
*** is the same as for dsdbtd15beu(td), except that dsdbtd15beucl(td)
*** must be multiplied by:
       int dV (rho_cl(\vec{x}_cl)/rho0)**2
***
***
     where the integral is over the volume of the clump,
     rho_cl(\vec{x}_cl) is the density profile in the clump
***
***
     and the local halo density rhoO is the normalization scale used
***
     everywhere
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

9.2. ROUTINE HEADERS - FORTRAN FILES

real*8 function dsdbtd15beucl(td)

dsdbtd15beuclsp.f

```
*** function which makes a tabulation of dsdbtd15beucl as function
*** the distance between source and observer L, and neglecting the
*** weak dependence of dsdbtd15beucl over the vertical coordinate for
*** the source zcl
***
*** for every td dsdbtd15beuclsp is tabulated on first call in L, with
*** L between:
      Lmin=0.9d0*(r_0-pbrcy) and
***
***
      Lmax=1.1d0*dsqrt((r_0+pbrcy)**2+pbzcy**2)
*** and stored in spline tables.
***
*** pbrcy and pbzcy in kpc are passed through a common block in
*** dspb_clcom.h and should be set before the calling this routine.
***
*** there is no internal check to verify whether between to consecutive
*** calls, with the same td, pbrcy and pbzcy, or halo parameters, or
*** propagation parameters are changed. If this is done make sure,
*** before calling this function, to reinitialize to zero the integer
*** parameter clspset in the common block:
***
***
       real*8 tdsetup
***
       integer clspset
***
       common/clspsetcom/tdsetup,clspset
***
*** input: L in kpc, td in GeV
*** output in 10^15 s kpc^-3
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

real*8 function dsdbtd15beuclsp(L,td)

dsdbtd15beum.f

*** date: 00-07-13

real*8 function dsdbtd15beum(td)

dsdbtd15 comp.f

*** function which computes the dbar diffusion time term corresponding
*** to the axisymmetric diffuse source within a cylinder of radius
*** pbrcy and height 2* pbzcy.
*** This routine assumes also that the Green function of
*** the diffusion equation dsdbtd15beuclsp(L,tp) does depend just
*** on kinetic energy tp and distance from the observer L, neglecting
*** a weak dependence on the cylindrical coordinate z.
*** For every tp, dsdbtd15beuclsp is tabulated on first call in L and
*** stored in spline tables.
*** In this function and in dsdbtd15beuclsp, pbrcy and pbzcy in kpc are
*** passed through a common block in dspbcom.h. There is no check
*** in dsdbtd15beuclsp on whether, pbrcy and pbzcy which define the
*** interval of tabulation are changed. Check header dsdbtd15beuclsp
*** for more details on this and other warnings, and how to get the
*** right implementation is such parameters are changed while running
*** our own code
*** After the tabulation, the following integral is performed:

*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp)</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) ***</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** parameter reratio in the dspbcompint1 function)</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** parameter reratio in the dspbcompint1 function) ***</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** *** input: scale in kpc, tp in GeV</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** *** input: scale in kpc, tp in GeV *** output in 10^15 s</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** parameter reratio in the dspbcompint1 function) *** *** input: scale in kpc, tp in GeV *** output in 10^15 s ***</pre>
<pre>*** *** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** parameter reratio in the dspbcompint1 function) *** *** input: scale in kpc, tp in GeV *** output in 10^15 s *** *** author: piero ullio (ullio@sissa.it)</pre>
<pre>*** *** 2 int_0^{pbccy} int_0^{pbrcy} dr r int_0^{2\pi} dphi *** (dshmaxirho(r,zint)/rho0)^2 * dsdbtd15beuclsp(L(z,r,theta),tp) *** *** The triple integral is splitted into a double integral on r and *** theta, this result is tabulated in z and then this integral is *** performed. The tabulation in z has at least 100 points on a *** regular grid between 0 and pbzcy (this is set by the parameter *** incompnpoints in the dspbcompint1 function), however points are *** added as long as the values of the function in two nearest *** neighbour points differs more than 10% (this is set by the *** parameter reratio in the dspbcompint1 function) *** *** input: scale in kpc, tp in GeV *** output in 10^15 s *** *** author: piero ullio (ullio@sissa.it) *** date: 04-01-22</pre>

real*8 function dsdbtd15comp(tp)

dsdbtd15point.f

```
*** source located at the galactic center but then weighting it with
*** the emission over a whole cylinder of radius scale and
*** height 2*scale, i.e. rho2int (to be given in kpc<sup>3</sup>).
*** The goodness of the approximation should be checked by comparing
      dsdbtd15point(rho2int,db) with
***
      dsdbtd15comp(db) for different value of db and scale,
***
*** and depending on the halo profile chosen and level of precision
*** required. The comparison has to be performed but setting
*** rho2int=dshmrho2cylint(scale,scale) and each
*** pbrcy and pbzcy pair equal to scale before calling dspbtd15comp,
*** possibly resetting the parameter clspset as well, see the header
*** of the function dspbtd15beuclsp
***
*** input: rho2int=dshmrho2cylint(scale,scale) in kpc^3, db in GeV
*** output in 10<sup>15</sup> s
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

real*8 function dsdbtd15point(rho2int,db)

dsdbtd15x.f

```
real*8 function dsdbtd15x(tp)
*** antideuteron propagation according to various models
*** dspbtd15x is containment time in 10<sup>15</sup> sec
*** inputs:
***
      tp - kinetic energy per nucleon (gev)
*** from common blocks
***
      pbpropmodel - 2 bergstrom, edsjo, ullio diffusion
***
                 3 bergstrom, edsjo, ullio diffusion
***
                    but with the DC-like setup as in moskalenko
                    et al. ApJ 565 (2002) 280
***
***
*** author: paolo gondolo 99-07-13
*** modified: piero ullio 00-07-13
```

Chapter 10

src/dd: Direct detection

10.1 Direct detection – theory

(WE MUST DECIDE WHAT TO INCLUDE IN THE DIRECT DETECTION ROU-TINES. PRESENTLY, ONLY THE NEUTRALINO-PROTON AND NEUTRALINO-NEUTRON CROSS SECTIONS SHOULD BE MADE AVAILABLE. ALTHOUGH THE CROSS SECTIONS OFF NUCLEI ARE ON THE AGENDA, DO WE REALLY WANT TO MENTION THEM HERE? (PG))

If neutralinos are indeed the CDM needed on galaxy scales and larger, there should be a substantial flux of these particles in the Milky Way halo. Since the interaction strength is essentially given by the same weak couplings as, e.g., for neutrinos there is a non-negligible chance of detecting them in low-background counting experiments [78]. Due to the large parameter space of MSSM, even with the simplifying assumptions above, there is a rather wide span of predictions for the event rate in detectors of various types. It is interesting, however, that the models giving the largest rates are already starting to be probed by present direct detection experiments [46, 79].

The rate for direct detection of galactic neutralinos, integrated over deposited energy assuming no energy threshold, is

$$R = \sum_{i} N_{i} n_{\chi} \langle \sigma_{i\chi} v \rangle, \qquad (10.1)$$

where N_i is the number of nuclei of species *i* in the detector, n_{χ} is the local galactic neutralino number density, $\sigma_{i\chi}$ is the neutralino-nucleus elastic cross section, and the angular brackets denote an average over *v*, the neutralino speed relative to the detector as described in Section 15.1.

In DarkSUSY, the basic quantities computed are the neutralino-nucleon cross sections, which are free of complications related to nuclear structure, and various experimental details like energy threshold, efficiencies etc. However, as a crude estimate of the expected rates in realistic detectors, the total neutralino-nucleus scattering rates can be obtained for ⁷⁶Ge, Al₂O₃ (sapphire) and NaI. Usually, it is the spin-independent interaction that gives the most important contribution in target materials such as Na, Cs, Ge, I, or Xe, due to the enhancement caused by the coherence of all nucleons in the target nucleus.

The neutralino-nucleus elastic cross section can be written as

$$\sigma_{i\chi} = \frac{1}{4\pi v^2} \int_0^{4m_{i\chi}^2 v^2} \mathrm{d}q^2 G_{i\chi}^2(q^2), \qquad (10.2)$$

where $m_{i\chi}$ is the neutralino-nucleus reduced mass, q is the momentum transfer and $G_{i\chi}(q^2)$ is the

effective neutralino-nucleus vertex. We write

$$G_{i\chi}^2(q^2) = A_i^2 F_S^2(q^2) G_S^2 + 4\Lambda_i^2 F_A^2(q^2) G_A^2, \qquad (10.3)$$

which shows the coherent enhancement factor A_i^2 for the spin-independent cross section (often Λ_i^2 is written as $\lambda^2 J(J+1)$). We assume gaussian nuclear form factors [80] (WE ARE NOT CURRENTLY PROVIDING FORM FACTORS. (PG)) COMMENT #1: Use better form factors?

$$F_S(q^2) = F_A(q^2) = \exp(-q^2 R_i^2 / 6\hbar^2), \qquad (10.4)$$

$$R_i = (0.3 + 0.89A_i^{1/3}) \text{fm}, \tag{10.5}$$

which should provide us with a good approximation of the integrated detection rate [83], in which we are only interested. (To obtain the differential rate with reasonable accuracy, better approximations are needed [84].)

Using heavy-squark effective lagrangians [85], we get

$$G_S = \sum_{q=u,d,s,c,b,t} \langle \bar{q}q \rangle \left(\sum_{h=H_1,H_2} \frac{g_{h\chi\chi}g_{hqq}}{m_h^2} - \frac{1}{2} \sum_{k=1}^6 \frac{g_{L\tilde{q}_k\chi q}g_{R\tilde{q}_k\chi q}}{m_{\tilde{q}_k}^2} \right)$$
(10.6)

and

$$G_A = \sum_{q=u,d,s} \Delta q \left(\frac{g_{Z\chi\chi}g_{Zqq}}{m_Z^2} + \frac{1}{8} \sum_{k=1}^6 \frac{g_{L\tilde{q}_k\chi q}^2 + g_{R\tilde{q}_k\chi q}^2}{m_{\tilde{q}_k}^2} \right).$$
(10.7)

The g's are elementary vertices involving the particles indicated by the indices, and they read

$$g_{h\chi\chi} = \begin{cases} (gZ_{\chi2} - g_yZ_{\chi1}) (-Z_{\chi3}\cos\alpha + Z_{\chi4}\sin\alpha), & \text{for } H_1, \\ (gZ_{\chi2} - g_yZ_{\chi1}) (Z_{\chi3}\sin\alpha + Z_{\chi4}\cos\alpha), & \text{for } H_2, \end{cases}$$
(10.8)

$$g_{hqq} = \begin{cases} -Y_q \cos \alpha / \sqrt{2}, & \text{for } H_1, \\ +Y_q \sin \alpha / \sqrt{2}, & \text{for } H_2, \end{cases}$$
(10.9)

$$g_{Z\chi\chi} = \frac{g}{2\cos\theta_W} \left(Z_{\chi 3}^2 - Z_{\chi 4}^2 \right)$$
(10.10)

$$g_{Zqq} = -\frac{g}{2\cos\theta_W} T_{3q}, \tag{10.11}$$

$$g_{L\tilde{q}_k\chi q} = g_{LL}\Gamma^{kq}_{QL} + g_{RL}\Gamma^{kq}_{QR}, \qquad (10.12)$$

$$g_{R\tilde{q}_k\chi q} = g_{LR}\Gamma^{kq}_{QL} + g_{RR}\Gamma^{kq}_{QR}, \qquad (10.13)$$

with

$$g_{LL} = -\frac{1}{\sqrt{2}} \left(T_{3q} g Z_{\chi 2} + \frac{1}{3} g_y Z_{\chi 1} \right), \qquad (10.14)$$

$$g_{RR} = \sqrt{2}e_q g_y Z_{\chi 1}, \tag{10.15}$$

$$g_{LR} = g_{RL} = \begin{cases} -Y_q Z_{\chi 3}, & \text{for } q = u, c, t, \\ -Y_q Z_{\chi 4}, & \text{for } q = d, s, b, \end{cases}$$
(10.16)

and

$$Y_q = \begin{cases} m_q/v_2, & \text{for } q = u, c, t, \\ m_q/v_1, & \text{for } q = d, s, b. \end{cases}$$
(10.17)

Defining (N = n, p)

$$f_{Tq}^{N} \equiv \frac{\langle N | m_q \bar{q}q | N \rangle}{m_N},\tag{10.18}$$

we take in DarkSUSY the numerical values [86]

$$f_{Tu}^{p} = 0.023, \qquad f_{Td}^{p} = 0.034,
 f_{Tc}^{p} = 0.0595, \qquad f_{Ts}^{p} = 0.14,
 f_{Tt}^{p} = 0.0595, \qquad f_{Tb}^{p} = 0.0595$$
(10.19)

and

$$f_{Tu}^{n} = 0.019, \qquad f_{Td}^{n} = 0.041,$$

$$f_{Tc}^{n} = 0.0592 \qquad f_{Ts}^{n} = 0.14,$$

$$f_{Tt}^{n} = 0.0592, \qquad f_{Tb}^{n} = 0.0592.$$
(10.20)

For the quark contributions to the nucleon spin we take [87]

$$\Delta u = 0.77, \qquad \Delta d = -0.40, \qquad \Delta s = -0.12.$$
 (10.21)

However, the older set of data [88]

$$\Delta u = 0.77, \qquad \Delta d = -0.49, \qquad \Delta s = -0.15$$
 (10.22)

can optionally be used.

Moreover, we take for the Λ factors

$$\Lambda_{\rm Al}^2 = 0.087, \qquad \Lambda_{\rm Na}^2 = 0.041 \quad \text{and} \quad \Lambda_{\rm I}^2 = 0.007,$$
 (10.23)

according to the odd-group model [89].

COMMENT #2: Change our direct detection routines?

10.2Direct detection – routines

subroutine dsddneunuc(sigsip,sigsin,sigsdp,sigsdn) Calculate the

Purpose:		Calculate the spin-independent and spin-dependent scattering cross sections for
		neutralinos on neutrons and protons.
Output:		
sigsip	r8	The spin-independent neutralino-proton scattering cross section, $\sigma_{\chi p}^{SI}$, in units of cm ³ s ⁻¹ .
sigsin	r8	The spin-independent neutralino-neutron scattering cross section, $\sigma_{\chi n}^{SI}$, in units of cm ³ s ⁻¹ .
sigsip	r8	The spin-dependent neutralino-proton scattering cross section, $\sigma_{\chi p}^{SD}$, in units of cm ³ s ⁻¹ .
sigsin	r8	The spin-dependent neutralino-neutron scattering cross section, $\sigma_{\chi n}^{SD}$, in units of cm ³ s ⁻¹ .

Routine headers – fortran files 10.3

dsdddn1.f

```
function dsdddn1(ms,mq,mx)
С
       auxiliary function replacing the propagator for heavy squarks in
с
       the drees-nojiri treatment of neutralino-nucleon scattering
с
       a^2-b^2 terms
с
      dsdddn1 = 3/2 mq<sup>2</sup> I1 - mq<sup>2</sup> mx<sup>2</sup> I3
С
с
```

dsdddn2.f

```
function dsdddn2(ms,mq,mx)
c
c
auxiliary function replacing the propagator for heavy squarks in
the drees-nojiri treatment of neutralino-nucleon scattering
a^2+b^2 terms
c dsdddn2 = I5 + 2 mx^2 I4 - 3 I2
c
```

dsdddn3.f

```
function dsdddn3(ms,mq,mx)
c
auxiliary function replacing the propagator for heavy squarks in
the drees-nojiri treatment of neutralino-nucleon scattering
twist-2 a^2-b^2 terms
dsdddn3 = - mq^2 mx^2 I3
c
```

dsdddn4.f

function dsdddn4(ms,mq,mx)
c
c
auxiliary function replacing the propagator for heavy squarks in
the drees-nojiri treatment of neutralino-nucleon scattering
twist-2 a^2+b^2 terms
dsdddn4 = I5 + 2 mx^2 I4
c

dsdddrde.f

```
subroutine dsdddrde(t,e,n,a,z,stoich,rsi,rsd,modulation)
```

```
c_____
c differential recoil rate
c common:
   'dssusy.h' - file with susy common blocks
с
c input:
С
   e : real*8
                       : nuclear recoil energy in keV
                       : number of nuclear species
с
   n : integer
   a : n-dim integer array : atomic numbers
с
   z : n-dim integer array : charge numbers
С
   stoich : n-dim integer array : stoichiometric coefficients
С
   t : real*8 : time in days from 12:00UT Dec 31, 1999
С
  modulation : integer : 0=no modulation 1=annual modulation
С
     with no modulation (ie without earth velocity), t is irrelevant
с
c output:
   rsi : real*8 : spin-independent differential rate
с
   rsd : real*8 : spin-dependent differential rate
с
c units: counts/kg-day-keV
c author: paolo gondolo (paolo@physics.utah.edu) 2004
```

dsddeta.f

```
subroutine dsddeta(vmin,t,eta)
```

```
C_____
c eta function entering the differential rate: eta = \inf {f(v)/v} d^3 v
с
c Truncated Maxwellian.
с
c input:
 vmin : minimum velocity to deposit energy e, in km/s
С
   vmin=sqrt(M*E/2/mu^2)
С
c t : time, in fraction of the year
c output:
  eta : in (km/s)^{-1}
с
c authors: paolo gondolo (paolo@physics.utah.edu) 2004
с
        piero ullio (ullio@sissa.it) 2004
C------
```

dsddffsd.f

subroutine dsddffsd(q,a,z,s00,s01,s11,j)

```
C_____
                                              _____
c Spin-dependent structure functions for direct detection.
c input:
  q : real*8 : momentum transfer in GeV ( q=sqrt(M*E/2/mu<sup>2</sup>) )
с
   a : integer : atomic number
с
  z : integer : charge number
с
c output:
с
 s00, s01, s11 : the spin-dependent structure functions S_{00}(q),
      S_{01}(q), S_{11}(q) as defined by Engel, PRL
С
   j : total nuclear spin
С
c author: paolo gondolo (paolo@physics.utah.edu) 2004
c modified: pg 040605 switched s01 and s11 in Na-23
C------
```

dsddffsi.f

```
subroutine dsddffsi(q,a,z,ff)
C_____
                                    _____
c Spin-independent form factor for direct detection.
c input:
  q : real*8 : momentum transfer in GeV ( q=sqrt(M*E/2/mu<sup>2</sup>) )
С
   a : integer : atomic number
с
  z : integer : charge number
С
c output:
  ff : |F(q)|^2, the square of the form factor
С
c author: paolo gondolo (paolo@physics.utah.edu) 2004
C------
```

dsddgpgn.f

subroutine dsddgpgn(gps,gns,gpa,gna)

c_____

dsddlim.f

```
function dsddlim(mx,iexp)
с
      limits on scattering cross section on nucleons from
с
      direct dark matter searches
с
С
      input: mx - wimp mass
с
             iexp - experiment
с
с
                     1 = future cawo_4 cresst
                     2 = future genius
с
с
                     3 = dama 1997, plb389, 757
с
      output: dsddlim - upper limit or sensitivity limit on wimp-nucleon
                       spin-independent cross section in pb
с
                       (returns 10<sup>99</sup> if no limit)
c
с
с
      author: paolo gondolo 1999
С
```

dsddlimits.f

real*8 function dsddlimits(mx,type)

dsddneunuc.f

dsddo.f

```
function dsddo(k,z,qsq)
c     k=0 0g, k=1 0u, k=2 0d, ..... k=6 0b
c     z=1 proton, z=2 neutron
```

dsddset.f

subroutine dsddset(sisd,cs)
c...set parameters for scattering cross section
c... c - character string specifying choice to be made
c...author: paolo gondolo 2000-07-07

dsddsigmaff.f

```
subroutine dsddsigmaff(e,n,a,z,siff,sdff)
C_____
                                                 _____
c neutralino nucleus cross sections times form factors.
c NOTE: the spin-dependent cross section is available only for a
       limited number of nuclei
с
c common:
  'dssusy.h' - file with susy common blocks
С
c input:
  e : real*8
с
                      : nuclear recoil energy in keV
                      : number of nuclear species
  n : integer
С
   a : n-dim integer array : atomic numbers
С
С
   z : n-dim integer array : charge numbers
c output:
c siff : n-dim real*8 array : spin-independent cross
         section times form factor
с
c sdff : n-dim real*8 array : spin-dependent cross
         section times form factor
с
  units: cm^2
с
c author: paolo gondolo (paolo@physics.utah.edu) 2004
c modified: pg 040605 added missing factor of 4 in spin-dependent
```

dsddsigsi.f

subroutine dsddsigsi(n,a,z,si)

```
c_____
```

```
c neutralino nucleus cross section.
```

c common:

```
'dssusy.h' - file with susy common blocks
с
c input:
  n : number of nuclear species
с
  a : n-dim integer array with atomic numbers
с
   z : n-dim integer array with charge numbers
с
c output:
  si : n-dim real*8 array with spin-independent cross sections
с
   units: cm^2
с
c author: paolo gondolo (paolo@physics.utah.edu) 2004
C------
```

dsddvearth.f

```
subroutine dsddvearth(t,vearth)
c
c speed of the earth relative to the galaxy in km/s at
c time t in days from 12:00 UT Dec 31, 1999
c
c formulas from Green, astro-ph/0304446, originally by Lewin and Smith
c
```

```
124
```

Chapter 11

src/ep: Positron fluxes from the halo

11.1 Positrons from the halo – theory

Neutralino annihilations in the halo will give rise to positrons either directly or from decaying mesons in hadron jets. We thus expect to get both monochromatic positrons (at an energy of m_{χ}) from direct annihilation into e^+e^- and continuum positrons from the other annihilation channels. In general, the branching ratio for annihilation directly into e^+e^- is rather small due to the helicity-flip suppression $\propto m_e$ for S-wave annihilation in the halo, but for some classes of models one can still obtain a large enough branching ratio for the line to be observable.

The computation of the positron flux from neutralino annihilations used in DarkSUSY resembles the calculation of the antiproton flux, with some important changes due to other mechanisms of energy loss with different energy dependence. Due to the fact that energy losses for positrons are more rapid than for antiprotons, the computed signal is less sensitive to the global structure of the dark matter halo. (On the other hand, it is more sensitive to possible local sources of background, such as supernova remnants etc.)

The calculation of the neutralino-induced positron flux performed in DarkSUSY follows the analysis in [121]. For continuum positrons, we have again simulated the decay and/or hadronization with the Lund Monte Carlo PYTHIA as described in section ??. We have included all two-body final states in DarkSUSY (except the three lightest quarks which are completely negligible) at tree level and the $Z\gamma$ [176] and gg [112] final states which arise at one-loop level.

11.1.1 Propagation and the interstellar flux

We consider a standard diffusion model, somewhat less sophisticated than in the case of antiprotons, for the propagation of positrons in the galaxy. Charged particles move under the influence of the galactic magnetic field. For the relevant energies the magnetic gyroradii of the particles are quite small. However, the magnetic field is tangled, and even with small gyroradii, particles can jump to nearby field lines which will drastically alter their courses. This entire process can be modeled as a random walk, which can be described by a diffusion equation.

Positron propagation is complicated by the fact that light particles lose energy quickly due to inverse Compton and synchrotron processes. Diffuse starlight and the Cosmic Microwave Background (CMB) both contribute appreciably to the energy loss rate of high energy electrons and positrons via inverse Compton scattering. Electrons and positrons also lose energy by synchrotron radiation as they spiral around the galactic magnetic field lines.

Our detailed treatment of positron diffusion employed in DarkSUSY is as follows. First define

a dimensionless energy variable $\varepsilon = E/(1 \text{ GeV})$, and the dimensionless mass $\tilde{m}_{\chi} = m_{\chi}/(1 \text{ GeV})$. The standard diffusion-loss equation for the space density of cosmic rays per unit energy, $dn/d\varepsilon$, is then given by

$$\frac{\partial}{\partial t}\frac{dn}{d\varepsilon} = \vec{\nabla} \cdot \left[K(\varepsilon, \vec{x})\vec{\nabla}\frac{dn}{d\varepsilon} \right] + \frac{\partial}{\partial\varepsilon} \left[b(\varepsilon, \vec{x})\frac{dn}{d\varepsilon} \right] + Q(\varepsilon, \vec{x}), \tag{11.1}$$

where K is the diffusion constant, b is the energy loss rate and Q is the source term. We consider only steady state solutions, setting the left hand side of Eq. (11.1) to zero.

We assume that the diffusion constant K is constant in space throughout a "diffusion zone", but it may vary with energy. At energies above a few GeV, we can represent the diffusion constant as a power law in energy [123],

$$K(\varepsilon) = K_0 \varepsilon^{\alpha} \approx 3 \times 10^{27} \varepsilon^{0.6} \text{cm}^2 \text{ s}^{-1}.$$
(11.2)

However, at energies below about 3 GeV, there is a cutoff in the diffusion constant that can be modeled as

$$K(\varepsilon) = K_0 \left[C + \varepsilon^{\alpha} \right] \approx 3 \times 10^{27} \left[3^{0.6} + \varepsilon^{0.6} \right] \text{ cm}^2 \text{ s}^{-1}.$$
 (11.3)

Both of these models for the diffusion constant can be used in DarkSUSY but the second expression is the default.^{*} The function $b(\varepsilon)$ represents the (time) rate of energy loss. We allow energy loss via synchrotron emission and inverse Compton scattering. The rms magnetic field in the diffusion zone is about 3 μ G, an energy density of about 0.2 eV cm⁻³. We allow inverse Compton scattering on both the cosmic microwave background and diffuse starlight, which have energy densities of 0.3 and 0.6 eV cm⁻³ respectively. These two processes combined give an energy loss rate [125]

$$b(\varepsilon)_{e^{\pm}} = \frac{1}{\tau_E} \varepsilon^2 \approx 10^{-16} \varepsilon^2 \,\mathrm{s}^{-1},\tag{11.4}$$

where we have neglected the space dependence of the energy loss rate. Lastly, the function Q is the source of positrons in units of cm⁻³ s⁻¹.

We model the diffusion zone as a slab of thickness 2L. We fix L to be 3 kpc, which fits observations of the cosmic ray flux [123]. We impose free escape boundary conditions, namely that the cosmic ray density drops to zero on the surfaces of the slab, which we let be the planes $z = \pm L$. We neglect the radial boundary usually considered in diffusion models. This is justified when the sources of cosmic rays are nearer than the boundary, as is usually the case with galactic sources. We will see that the positron flux at Earth, especially at higher energies, mostly originates within a few kpc and hence this approximation is well justified in our case. (This is different from the case of antiprotons, where the flux from the Galactic center can be very important at the Earth's location [108].) The spatial part of the Green's function is performed once, independently of the supersymmetric model, yielding an energy dependent diffusion time

$$\tau_D(\varepsilon, \varepsilon') = \frac{1}{4K_0 \Delta v} \sum_{n=-\infty}^{\infty} \sum_{\pm} \operatorname{erf}\left(\frac{(-1)^n L + 2Ln \pm z}{\sqrt{4K_0 \tau_E \Delta v}}\right) \times$$

$$\int_0^{\infty} dr' \, r' f(r') I_0\left(\frac{2rr'}{4K_0 \tau_E \Delta v}\right) \exp\left(\frac{r^2 + r'^2}{4K_0 \tau_E \Delta v}\right) \theta(\Delta v),$$
(11.5)

where f(r) is the effective halo profile squared, and the expression is evaluated for r and z appropriate for the observer. The function $v(\varepsilon)$ depends on the diffusion model: the default model has $v(\varepsilon) = C/\varepsilon + \varepsilon^{\alpha-1}/(1-\alpha)$. The function τ_D is the effective diffusion time for particles emitted at energy ε' and observed at energy ε . Of course if the observed energy is larger than the emitted energy, $\tau_D = 0$. The spatial integrand is smooth, and is computed for a range of values, equally spaced in $\log(\Delta v)$ for use in DarkSUSY. Likewise, the series of image charges used in the Green's

^{*}In fact, a third option can be chosen in DarkSUSY as well, employing the propagation model of [124].

function converges rapidly, and with the range of Δv values we are concerned with, need not be taken past $n = \pm 10$. The total positron spectrum is now given by

$$\frac{dn}{d\varepsilon} = n_0^2 \langle \sigma v \rangle_{\text{tot}} \frac{1}{\varepsilon^2} \left\{ B_{\text{line}} \tau_D\left(\varepsilon, \tilde{m}_{\chi}\right) + \int_{\varepsilon}^{\tilde{m}_{\chi}} d\varepsilon' \left. \frac{d\phi}{d\varepsilon} \right|_{\text{cont.}} \tau_D(\varepsilon, \varepsilon') \right\},\tag{11.6}$$

where B_{line} is the branching ratio directly to e^+e^- , and $d\phi/d\varepsilon|_{\text{cont.}}$ is the spectrum of continuum positrons per annihilation. Remembering that this is an expression for the number density of positrons, the flux is given by

$$\frac{d\Phi}{d\varepsilon} = \frac{\beta c}{4\pi} \frac{dn}{d\varepsilon} \simeq \frac{c}{4\pi} \frac{dn}{d\varepsilon},\tag{11.7}$$

where βc is the velocity of a positron of energy ε . For the energies we are interested in, $\beta c \simeq c$ is a very well justified approximation.

11.1.2 Solar modulation

Again there is a complication in that interactions with the solar wind and magnetosphere, solar modulation, alter the spectrum. This can be neglected at high energies, but at energies below about 10 GeV, the effects of solar modulation become important. However, its effects can be reduced by considering the positron fraction, $e^+/(e^+ + e^-)$, instead of the absolute positron fluxes. This is possible to obtain from DarkSUSY, since included in the package is an estimate of the background e^+ and e^- flux taken from [126].

11.2 Positrons from the halo – routines

.....

11.3 Routine headers – fortran files

dsembg.f

real*8 function dsembg(egev)

dsepbg.f

real*8 function dsepbg(egev)

dsepdiff.f

***	************************
***	function dsepdiff calculates the differential flux of
***	positrons for the energy egev as a result of
***	neutralino annihilation in the halo.
***	input: egev - positron energy in gev
***	how = 1 - dsepsigvdnde is used directly
***	2 - dsepsigvdnde is tabulated on first call, and then
***	interpolated. (default)
***	dhow = 2 - diffusion model is tabulated on first call, and then
***	interpolated
***	3 - as 2, but also write the table to disk at the
***	first call
***	4 - read table from disk on first call, and use that for
***	subsequent calls. If the file does not exist, it will
***	be created (as in 3). (default)
***	units: gev^-1 cm^-2 sec^-1 sr^-1
***	author: e.a. baltz (eabaltz@astron.berkeley.edu)
***	joakim edsjo, edsjo@physto.se
***	date: jun-02-98
***	modified: 99-07-02 paolo gondolo : order of calls to hrsetup
***	modified: 01-10-19 add moskalenko + strong option (eab)
***	modified: 04-01-27 J. Edsjo: added file handling (dhow=3,4)
***	***************************************

real*8 function dsepdiff(egev,how,dhow)

dsepdsigv_de.f

```
c this function is [d<sigma velocity>/de](v)
real*8 function dsepdsigv_de(v,vmin)
```

dsepeecut.f

dsepeeuncut.f

dsepf.f

dsepfrsm.f

real*8 function dsepfrsm(epfr,eep,qa)

dsepgalpropdiff.f

real*8 function dsepgalpropdiff(egev)

dsepgalpropig.f

```
real*8 function dsepgalpropig(eep)
No header found.
```

dsepgalpropig2.f

real*8 function dsepgalpropig2(eep)
No header found.

dsepgalpropline.f

real*8 function dsepgalpropline(egev)

dsephalodens2.f

dsepideltavint.f

dsepimage_sum.f

dsepipol.f

real*8 function dsepipol(eep)

dsepkt.f

real*8 function dsepkt(ea,eb,istat)

dsepktdiff.f

real*8 function dsepktdiff(egev)

dsepktig.f

real*8 function dsepktig(eep)

dsepktig2.f

real*8 function dsepktig2(x)

dsepktline.f

real*8 function dsepktline(egev)

dseploghalodens2.f

dsepmake_tables.f

subroutine dsepmake_tables

dsepmake_tables2.f

dsepmsdiff.f

real*8 function dsepmsdiff(egev)

dsepmsig.f

real*8 function dsepmsig(eep)

dsepmsig2.f

real*8 function dsepmsig2(x)

dsepmsline.f

real*8 function dsepmsline(egev)

dsepmstable.f

dseprsm.f

real*8 function dseprsm(eep)

dsepset.f

subroutine dsepset(c)
c...set parameters for positron routines
c... c - character string specifying choice to be made
c...author: joakim edsjo, 2000-07-09
c...modified: paolo gondolo, 2000-07-19
c... joakim edsjo, 2000-08-15

dsepsigvdnde.f

real*8 function dsepsigvdnde(eep)

dsepspec.f

```
*** positron propagation routines.
*** author: e.a. baltz (eabaltz@astron.berkeley.edu)
*** modified slightly by joakim edsjo (edsjo@physto.se)
*** date: jun-02-98
*** modified: jun-09-98
***
           jul-06-99 paolo gondolo - calls to dshunt, ee, vv
*** Modified: Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
           in annihilation rate added
*** real*8 function dsepspec calculates the differential positron
*** spectrum from neutralino annihilation in the halo.
*** input: e - positron kinetic energy in gev
***
         mchi - neutralino mass in gev
         sigvline - <sigma v>_e+e- in cm<sup>3</sup> s<sup>-1</sup>
***
         sigvdnde(eep) - <sigma v> dn/de in cm<sup>3</sup> s<sup>-1</sup> gev<sup>-1</sup>
***
***
         ee - r8 function that gives energy as a fcn of v
```

11.3. ROUTINE HEADERS - FORTRAN FILES

real*8 function dsepspec(e,mchi,sigvline,sigvdnde,ee,vv,metric)

dseptab.f

subroutine dseptab(em,npts)

dsepvvcut.f

dsepvvuncut.f

dsepwcut.f

dsepwuncut.f

dsgalpropig.f

real*8 function dsgalpropig(eep,pbar)

dsgalpropig2.f

real*8 function dsgalpropig2(x,pbar)

dsgalpropset.f

subroutine dsgalpropset(c)
c...set parameters for positron routines
c... c - character string specifying choice to be made
c...author: joakim edsjo, 2006-02-21

Chapter 12

src/ep2: Positron fluxes from the halo (alternative solution)

12.1 Routine headers – fortran files

dsepintgreen.f

```
real*8 function dsepintgreen(DeltaV)
******
***
                                                      ***
*** function which gives the integral over volume of the
                                                      ***
*** positron green function times dsephaloterm (which is the ***
*** square of the density normalized to the local halo
                                                      ***
*** density for a smooth halo profile, i.e. for hclumpy = 1, ***
*** and the density probability of clumps normalized to the ***
*** local halo density for a clumpy halo, i.e. hclumpy = 2) ***
*** as a function of:
                                                      ***
     DeltaV = 4 * KO * tau_E * deltav in units of kpc**2
***
                                                      ***
*** i.e. of a given deltav = v(Eps)- v(Epsprime) this should ***
*** be called with:
                                                      ***
***
    DeltaV=4.0d0*k27*tau16*deltav*10.d0/kpc**2
                                                      ***
*** where kpc=3.08567802d0 and the 10/kpc**2 converts from
                                                      ***
*** units of 10**43 cm**2 to units of kpc**2
                                                      ***
***
                                                      ***
*** Author: Piero Ullio
                                                      ***
*** Date: 2004-02-03
                                                      ***
```

dsepspecm.f

	real*8 function dsepspecm(eps,how)	

***		***
***	function which computes the differential flux of	***
***	positrons for the energy eps as a result of	***

```
*** neutralino annihilation in the halo.
                                                        ***
*** input: eps - positron energy in gev
                                                        ***
***
          how = 2 - diffusion model is tabulated on first
                                                        ***
***
                   call, and then interpolated
                                                        ***
               3 - as 2, but also write the table to disk ***
***
                   at the first call
***
                                                        ***
               4 - read table from disk on first call, and ***
***
***
                   use the subsequent calls. If the file
                                                        ***
***
                   does not exist, it will be created
                                                        ***
                   (as in 3). (default)
***
                                                        ***
                                                        ***
***
*** rescaling is not included
                                                        ***
***
                                                        ***
*** Author: Piero Ullio
                                                        ***
*** Date: 2004-02-03
                                                        ***
*** Modified: Joakim Edsjo, modifications to file loading
                                                        ***
```

dsepvofeps.f

*** *** *** functions which give conversions between the variables *** *** eps - u - v for the positron flux calculation *** *** the conversion between eps and v and viceversa is done *** *** through a tabulation, to reset this tabulation *** *** reinitialize the variable vofeset *** *** *** *** Author: Piero Ullio *** *** Date: 2004-02-03 ***

real*8 function dsepuofeps(eps)
c this is the definition of the function u(eps)
c u = int_eps^epsmax depsp 1/(tau*b(epsp))
c NOTE: this assumes u=1/eps, change this when you implement the general
c formula

Chapter 13

src/ge: General routines

13.1 General routines

In **ge**/, we collect routines that are of general interest to many other routines in DarkSUSY. E.g., we have routins to find elements in arrays (used for interpolation), Bessel functions, error functions, spline routines, etc.

13.2 Routine headers – fortran files

cosd.f

function cosd(x)
No header found.

dsabsq.f

function dsabsq(z)

dsbessei0.f

dsbessei1.f

```
real*8 function dsbessei1(x)
c exp(-|x|) i1(x)
```

dsbessek0.f

*		
*		
*		
*		

* * * * *		

real*8 function dsbessek0(x)

dsbessek1.f

***	function dsbessek1 returns the value of the modified bes	sel	***
***	function of the second kind of order 1 times exp(x).	**:	*
***	works for positive real x	**:	*
***	coefficients from abramovitz and stegun.	**:	*
***	e-mail: edsjo@physto.se	***	
***	date: 98-04-29	**:	*

real*8 function dsbessek1(x)

dsbessek2.f

***	function bessk2 returns the value of the modified bessel	***
***	function of the second kind of order 2 times exp(x)	***
***	works for positive real x	***
***	recurrence relation	***
***	e-mail: gondolo@mppmu.mpg.de	***
***	date: 00-07-07	***

real*8 function dsbessek2(x)

dsbessjw.f

c....Various bessel functions
c....from P. Ullio

real*8 function dsbessjw(n,x)

dscharadd.f
subroutine dscharadd(str,add)

dsf2s.f

character*12 function dsf2s(x) No header found.

$dsf_int.f$

dsf_int2.f

real*8 function dsf_int2(f,a,b,eps)

dshiprecint3.f

subroutine dshiprecint3(fun,lowlim,upplim,result)
No header found.

dshunt.f

dsi2s.f

```
character*8 function dsi2s(x)
No header found.
```

dsi_trim.f

function dsi_trim(s)
No header found.

dsidtag.f

character*12 function dsidtag() No header found.

dsisnan.f

dsquartic.f

```
subroutine dsquartic(a3,a2,a1,a0,z1,z2,z3,z4)
```

```
c______
c analytic solution of z<sup>4</sup> + a3 z<sup>3</sup> + a2 z<sup>2</sup> + a1 z + a0 = 0
```

```
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994
```

C------

dsrnd1.f

function dsrnd1(idum)

dsrndlin.f

```
function dsrndlin(idum,a,b)
No header found.
```

dsrndlog.f

```
function dsrndlog(idum,a,b)
No header found.
```

dsrndsgn.f

```
function dsrndsgn(idum)
No header found.
```

dswrite.f

```
subroutine dswrite(level,opt,message)
```

erf.f

function erf(x)
No header found.

erfc.f

function erfc(x)
No header found.

sind.f

function sind(x)
No header found.

spline.f

SUBROUTINE spline(x,y,n,yp1,ypn,y2)
c spline routine, double precision

splint.f

```
SUBROUTINE splint(xa,ya,y2a,n,x,y) c spline routine, double precision
```

CHAPTER 13. GE: GENERAL ROUTINES

Chapter 14

src/ha: Halo annihilation yields

14.1 Annihilation in the halo, yields – theory

Here we calculate yields from annihilation in the halo.

14.1.1 Monte Carlo simulations

We need to evaluate the yield of different particles per neutralino annihilation. The hadronization and/or decay of the annihilation products are simulated with PYTHIA [90] 6.154. The simulations are done for a set of 18 neutralino masses, $m_{\chi} = 10, 25, 50, 80.3, 91.2, 100, 150, 176, 200, 250, 350, 500, 750, 1000, 1500, 2000, 3000$ and 5000 GeV. We tabulate the yields and then interpolate these tables in DarkSUSY.

The simulations are here simpler than those for annihilation in the Sun/Earth since we don't have a surrounding medium that can stop the annihilation products. We here simulate for 8 'fundamental' annihilation channels $c\bar{c}$, $b\bar{b}$, $t\bar{t}$, $\tau^+\tau^-$, W^+W^- , Z^0Z^0 , gg and $\mu^+\mu^-$. Compared to the simulations in the Earth and the Sun, we now let pions and kaons decay and we also let antineutrons decay to antiprotons. For each mass we simulate 2.5×10^6 annihilations and tabulate the yield of antiprotons, positrons, gamma rays (not the gamma lines), muon neutrinos and neutrino-to-muon conversion rates and the neutrino-induced muon yield, where in the last two cases the neutrino-nucleon interactions has been simulated with PYTHIA as outlined in section 18.1.1

With these simulations, we can calculate the yield for any of these particles for a given MSSM model. For the Higgs bosons, which decay in flight, an integration over the angle of the decay products with respect to the direction of the Higgs boson is performed. Given the branching ratios for different annihilation channels it is then straightforward to compute the muon flux above any given energy threshold and within any angular region around the Sun or the center of the Earth.

14.2 Routine headers – fortran files

dshacom.f

No header found.

dshadec.f

*** fltype and fi

subroutine dshadec(yieldk,fltyp,fi)

dshadydth.f

real*8 function dshadydth(cth)

dshadyh.f

real*8 function dshadyh(cth)

dshaemean.f

real*8 function dshaemean(e0,m0,m1,m2)

dshaifind.f

***	routine to find the index of an entry	***	
***	the closest lowest hit is given	***	
***	author: joakim edsjo (edsjo@physics.berkeley.edu)	***	

*** date: 98-01-26

dshainit.f

subroutine dshainit initializes and loads (from disk) the common *** block variables needed by the other halo yield routines. yieldk is *** *** the yield type (51,52 or 53 (or 151, 152, 153)) for positron yields, cont. gamma or muon neutrino yields respectively. *** *** yieldk is used to check that the provided data file is of the *** correct type. if yieldk=51,52 or 53 integrated yields are loaded and if yieldk =151, 152 or 153, differential yields are loaded. *** *** author: joakim edsjo *** edsjo@physto.se date: 96-10-23 (based on dsmuinit.f version *** 3.21)modified: 98-01-26 ***

subroutine dshainit(yieldk)

dshapbyieldf.f

```
*** function dshapbyieldf gives the distributions of antiprotons for
                                                        ***
*** basic annihilation channels chi=1-8. parameterizations to the
                                                    ***
*** distributions are used.
                                                     ***
*** input: mx - neutralino mass (gev)
                                                     ***
        tp - antiproton kinetic energy (gev)
***
                                                     ***
        chi - annihilation channel, 1-8, (short version)
***
                                                    ***
*** output: differential distribution, p-bar gev^-1 annihilation^-1 ***
*** author: joakim edsjo, edsjo@physto.se
                                                    ***
*** date: 1998-10-27
                                                    ***
```

real*8 function dshapbyieldf(mx,tp,chi)

dshawspec.f

subroutine dshawspec(f,a,b,n)

dshayield.f

**** function dshayield calculates the yield above threshold *** or the differential flux, for the *** fluxtype given by yieldk, according to the following table. *** *** particle integrated yield differential yield *** ----------_____ *** positron 51 151 152 *** cont. gamma 52 *** nu_mu and nu_mu-bar 53 153 *** antiproton 54 154 *** cont. gamma w/o pi0 55 155 *** nu_e and nu_e-bar 56 156 *** nu_tau and nu_tau-bar 57 157 *** pi0 58 158 *** nu_mu and nu_mu-bar 71 171 (same as 53/153) *** muons from nu at creation 72 172 *** muons from nu at detector 73 173 *** *** channels ch=1-14 are supported. *** The annihilation channels are *** ch = 1 - c c-bar*** 2 - b b-bar 3 - t t-bar *** 4 - tau+ tau-*** 5 - W+ W-*** 6 - ZO ZO *** *** 7 - H1 H3 8 - ZO H1 *** 9 - ZO H2 *** *** 10 - W+- H-+ *** 11 - H2 H3 12 - gluon gluon *** 13 - mu+ mu-*** 14 - ZO gamma *** *** *** the units are (annihilation)**-1 *** for the differential yields, the units are the same plus gev**-1. *** *** note. The correct data files need to be loaded. This is handled by *** a call to dshainit. It is done automatically here upon first call. *** *** author: joakim edsjo (edsjo@physics.berkeley.edu) *** date: 98-01-26 *** modified: 98-02-18

real*8 function dshayield(mneu,emuthr,ch,yieldk,istat)

dshayield_int.f

real*8 function dshayield_int(f,a,b)

```
c_____
```

```
c integrate function f between a and b
```

c input

dshayielddec.f

real*8 function dshayielddec(eh,hno,emuth,yieldk,istat)

dshayieldf.f

>	******	*******	******	******
***	function dshayieldf calcul	ates the y	yield above threshol	d (or differential
***	at that energy) for the an	nihilation	n channel ch and the	!
***	fluxtype given by yieldk,	according	to the following ta	ble.

***	particle integrated	yield	differential yield	

***	positron	51	151	
***	cont. gamma	52	152	
***	nu_mu and nu_mu-bar	53	153	
***	antiproton	54	154	
***	cont. gamma w/o piO	55	155	
***	nu_e and nu_e-bar	56	156	
***	nu_tau and nu_tau-bar	57	157	
***	piO	58	158	
***	nu_mu and nu_mu-bar	71	171	(same as 53/153)
***	muons from nu at creation	72	172	
***	muons from nu at detector	73	173	

***	only channels chi = 1-8 ar	e supporte	ed.	
***	chi = 1 - c c - bar			
***	2 - b b-bar			
***	3 - t t-bar			
***	4 - tau+ tau-			
***	5 - W+ W-			
***	6 - ZO ZO			
***	7 - mu+ mu-			
***	8 - gluon gluon			
***	units: (annihilation)**-1	integrate	ed	
***	units: gev**-1 (annihilati	.on)**1 dif	fferential	

***	Note: if this routine is c	alled dire	ectly, without calli	ng dshayield
***	first, one needs to load t	he correct	t yield tables manua	lly first

real*8 function dshayieldf(mneu,emuthr,ch,yieldk,istat)

dshayieldfth.f

dshayieldget.f

real*8 function dshayieldget(zi,mxi,ch,fi,ftype,istat)

dshayieldh.f

real*8 function dshayieldh(eh,emuth,hno,yieldk,istat)

dshayieldh2.f

*** function dshayieldh2 calculates the yield above threshold (yieldk=1) or the

*** differential yield (yieldk=2) from a given higgs

*** boson decaying in flight, the energy of the higgs boson should be given

real*8 function dshayieldh2(eh,emuth,hno,yieldk,istat)

dshayieldh3.f

real*8 function dshayieldh3(eh,emuth,hno,yieldk,istat)

dshayieldh4.f

real*8 function dshayieldh4(eh,emuth,hno,yieldk,istat)

Chapter 15

src/hm: Halo models

15.1 Halo models – theory

All the dark matter detection rates depend in one way or another on the properties of the Milky Way dark matter halo. We will here outline the halo model that by default is included with DarkSUSY.

The mass distribution in the Milky Way and the relative importance of its three components, the bulge, the disk and the halo, are poorly constrained by available observational data. Although the dynamics of the satellites of the galaxy clearly indicates the presence of a non-luminous matter component, a discrimination among the different radial dark matter halo profiles proposed in the literature is not possible at the time being [127]. One approach is to assume that dark matter profiles are of a universal functional form and to infer the Milky Way dark matter distribution from the results of N-body simulations of hierarchical clustering in cold dark matter cosmologies. The predicted profiles in these scenarios have been tested to a sample of dark matter dominated dwarf and low-surface brightness galaxies which provide the best opportunities to test the spatial distribution of dark matter. Actually this field of research is in rapid evolution and slightly discrepant results have recently been presented [113, 128, 129, 130].

In DarkSUSY, we include a dark matter halo profile of the form

$$\rho(r) \propto \frac{1}{(r/a)^{\gamma} \left[1 + (r/a)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}.$$
(15.1)

With this family of profiles, we have a parameterization of most spherically symmetric profiles in the literature. In Table 15.1 we list the corresponding values of α , β and γ for some popular profiles.

One should keep in mind that some of these profiles are very steep at the center of the galaxy which might be in conflict with observations. In fact, this is a topic under rapid evolution at present. Some researchers have taken the view that the steep profiles seen in simulations are impossible to

Model	$(lpha,eta,\gamma)$	$a \ (kpc)$
Isothermal sphere [129]	(2, 2, 0)	
Kravtsov et al. [129]	(2, 3, 0.2 - 0.4)	
Navarro, Frenk and White [113]	(1, 3, 1)	
Moore et al. [130]	(?,?,?)	

Table 15.1: Different halo dark matter profiles and their corresponding parameters. **COMMENT** #4: Include *a*-values here as well?!?

match with observations, and therefore drastic modifications of the cold dark matter scenario have been proposed. Examples are self-interacting [136] or strongly self-annihilating [137] dark matter models. None of these proposals can be made to work in MSSM models, so we do not consider them in DarkSUSY. It should also be noted that there could be other, astrophysics-related solutions to these problems, which involve the interplay between the baryons and the dark matter.

Our galactocentric distance R_0 is not entirely known. Estimates for R_0 range from 7.1 kpc to 8.5 kpc [145, 144, ?] and in DarkSUSY we use $R_0 = 8.5$ kpc as a default. **COMMENT #5: Check** R_0 **default. (JE)** We also choose the modified isothermal distribution as a default, but this can be changed by the user.

As a further uncertainty, it is unknown precisely how the black hole at the galactic center would have interacted with the halo neutralino distribution. In fact, there are indications that a profile more singular than NFW would cause a very steep cusp (a "spike") near the Galactic center, with a high enough density that even the flux of neutrinos from that population could be detected [138]. If this really exists, essentially all MSSM models may already be excluded through the non-detection of radio emission from electrons and positrons generated in the annihilations [139]. It should be noted though that these estimates involve many uncertainties.

We only consider spherical profiles; introducing a flattening parameter may enhance the value of the flux but the effect is not expected to be dramatic for this neutralino detection method and we prefer not to introduce another factor of uncertainty.

We also need to specify the normalization constant of the halo profile, which we choose as the value of the halo density ρ_0 at our galactocentric distance R_0 , the core radius a and R_0 . One should keep in mind that there is correlation between the allowed values of a and ρ_0 and the chosen halo profile [176, 140] due to constraints on e.g. the total mass of the galaxy within 100 pc and the dark matter contribution to the local rotation curve. In Table ?? we list typical values of a and ρ_0 that we have chosen based on these constraints for the different profiles. For more details about these arguments, see [176, 140]. The DarkSUSY default value for ρ_0 is 0.3 GeV/cm³.

Usually, the local galactic dark matter velocity distribution is taken to be a truncated gaussian, which in the detector frame moving at speed v_O relative to the galactic halo reads

$$f(v) = \frac{1}{\mathcal{N}_{\rm cut}} \frac{v^2}{uv_O \sigma} \left\{ \exp\left[-\frac{(u - v_O)^2}{2\sigma^2}\right] - \exp\left[-\frac{\min(u + v_O, v_{\rm cut})^2}{2\sigma^2}\right] \right\}$$
(15.2)

for $v_{\rm esc} < v < \sqrt{v_{\rm esc}^2 + (v_O + v_{\rm cut})^2}$ and zero otherwise, with $u = \sqrt{v^2 + v_{\rm esc}^2}$ and

$$\mathcal{N}_{\rm cut} = \frac{v_{\rm cut}}{\sigma} \exp\left(-\frac{v_{\rm cut}^2}{2\sigma^2}\right) - \sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\frac{v_{\rm cut}}{\sqrt{2\sigma}}\right).$$
(15.3)

As default, we have taken the halo line-of-sight (one-dimensional) velocity dispersion $\sigma = 120 \text{ km/s}$,^{*} the galactic escape speed $v_{\text{cut}} = 600 \text{ km/s}$, the relative Earth-halo speed $v_O = 264 \text{ km/s}$ (a yearly average) and the Earth escape speed $v_{\text{esc}} = 11.9 \text{ km/s}$. These parameters can be changed by the user. In some instances, like neutralino capture in the Earth, the user can specify an arbitrary velocity distribution by providing a subroutine.

15.1.1 Rescaling of the neutralino density

It is natural to assume that the neutralinos make up most of the dark matter in our galaxy. One may therefore only consider MSSM models which are cosmologically interesting, i.e. where the neutralinos can make up a major fraction of the dark matter in the Universe without overclosing it. This range is usually chosen to be $0.025 < \Omega_{\chi}h^2 < 1$. However, the user may want to either enlarge or narrow this range. If, as is perhaps most natural, the neutralino alone contributes the major fraction of non-baryonic dark matter in the Universe, one may want to refer to the current

^{*}Other authors write $\exp(-3v^2/2\overline{v}^2)$, in which case $\overline{v} = \sqrt{3\sigma}$.

values of cosmological parameters and fix $\Omega_{\chi}h^2$ to be in the interval between, say 0.1 and 0.3. If there are other components of the dark matter, one may want to tolerate smaller numbers. If one makes use of the poor knowledge of how galaxy halos were formed, all the range down to 0.025 may be taken as acceptable. However, if $\Omega_{\chi}h^2$ drops below 0.025, it cannot account for all the dark matter associated with galaxy halos. A frequently used recipe is then to rescale the estimated local dark matter density $\rho_0 \sim 0.3 \text{ GeV/cm}^3$ by $\Omega_{\chi} h^2 / 0.025$, giving a lower local density in the form of neutralinos. Although this may seem a harmless procedure, one should keep in mind that it is very ad hoc and that it may overestimate the preponderance of models with large direct detection rates. This is because of the general result that $\Omega_{\chi}h^2 \sim 1/\sigma_{ann}v$, and crossing symmetry generally relates a large annihilation cross section to a large scattering cross section. (For indirect detection in the halo, the effect is moderated by the fact that the rates are proportional to the square of the density, which thus involves the square of the rescaling factor.) In DarkSUSY, the user can set the value of the local dark matter density (the default is 0.3 GeV/cm^3) and determine whether rescaling is to be used or not, and in that case the lowest tolerable $\Omega_{\chi}^{\min}h^2$ below which rescaling should take place. If rescaling is used, all output detection rates are computed with the rescaled value when appropriate.

15.2 Halo model – routines

The most important routine is dshmset which sets the chosen halo profile.

15.3 Routine headers – fortran files

```
dshmabgrho.f
```

```
**********
*** dark matter halo density profile in case of the
                                                      ***
*** (alphah, beta, gamma) zhao model.
                                                      ***
*** it is a double power law profile, where - gamma is
                                                      ***
       the slope towards the galactic centre, - beta is
       the slope at large galactocentric distances and
                                                      ***
       alphah determines the width of the transition zone. ***
***
        e.g.: modified isothermal sphere profile = (2,2,0);
                                                      ***
             nfw profile = (1,3,1);
                                                      ***
             moore et al. profile = (1.5,3,1.5)
***
                                                      ***
***
                                                      ***
*** radialdist = galactocentric distance in kpc
*** ah = length scale in kpc
*** rhoref = dark matter density in gev/cm**3 at the
*** galactocentric distance Rref (in kpc)
***
*** Author: Piero Ullio (ullio@sissa.it)
                                                      ***
*** Date: 2004-01-12
                                                      ***
```

real*8 function dshmabgrho(radialdist)

dshmaxiprob.f

>	*******	********	***********	********	*******	***
***	axisymmetric	probability	distribution	function	for	***

```
*** equal and small (i.e. unresolved) dark matter clumps
                                                        ***
***
                                                        ***
*** Input: radcoord = radial coordinate in kpc
                                                        ***
***
           vertcoord = vertical coordinate in kpc
                                                        ***
           in a cylindrical coordinate system centered in
***
                                                        ***
***
           the Galactic Center
                                                        ***
*** Output: dshmaxiprob in GeV/cm<sup>3</sup>, i.e. for the moment
                                                        ***
***
           the normalization has to be such that
                                                        ***
***
           dshmaxiprob(r_0,0.d0)=local halo density=rho0
                                                        ***
                                                        ***
***
*** Author: Piero Ullio (ullio@sissa.it)
                                                        ***
                                                        ***
*** Date: 2004-01-12
```

real*8 function dshmaxiprob(radcoord,vertcoord)

dshmaxirho.f

```
*** axisymmetric dark matter halo density profile
                                                 ***
***
                                                 ***
*** Input: radcoord = radial coordinate in kpc
                                                 ***
         vertcoord = vertical coordinate in kpc
***
                                                 ***
         in a cylindrical coordinate system centered in
***
                                                 ***
***
         the Galactic Center
                                                 ***
*** Output: dshmaxirho = density in GeV/cm<sup>3</sup>
                                                 ***
    e.g.: local halo density = rho0 = dshmaxirho(r_0,0.d0) ***
***
***
                                                 ***
*** Author: Piero Ullio (ullio@sissa.it)
                                                 ***
*** Date: 2004-01-12
                                                 ***
```

real*8 function dshmaxirho(radcoord,vertcoord)

dshmboerrho.f

The density profile of de Boer et al. consists of a dark matter halo with the following ingredients:

- a triaxial smooth halo,
- an inner ring at about 4.15 kpc with a density falling off as $\rho \sim e^{-|z|/\sigma_{z,1}}$; $\sigma_{z,1} = 0.17$ kpc, and

• an outer ring at about 12.9 kpc with a density falling off as $\rho \sim e^{-|z|/\sigma_{z,2}}$; $\sigma_{z,2} = 1.7$ kpc.

real*8 function dshmboerrho(x,y,z)

dshmboerrhoaxi.f

```
*** A symmetrized (avergaed over phi) version of de Boers profile
*** as reported in astro-ph/0508617.
*** The profile has a triaxial smooth halo and two
*** rings of dark matter.
***
*** Input: r - cylindrical radius from galactic center (kpc)
        z - height above galactic plane (kpc)
***
***
        how - 1: returns the average <rho> over phi
***
             2: returns the average sqrt(<rho^2>) suitable
                for symmetrization for annihilation rates (like pbar)
***
*** The paramters of the profile are set in dshmset.
*** Author: Joakim Edsjo, edsjo@physto.se
*** Date: 2005-12-08
```

real*8 function dshmboerrhoaxi(r,z,how)

dshmburrho.f

```
*** dark matter halo density profile in case of the
                                              ***
*** burkert model.
                                              ***
***
                                              ***
*** radialdist = galactocentric distance in kpc
                                              ***
*** ah = length scale in kpc
                                              ***
*** rhoref = dark matter density in gev/cm**3 at the
                                              ***
*** galactocentric distance Rref (in kpc)
                                              ***
***
                                              ***
*** Author: Piero Ullio (ullio@sissa.it)
                                              ***
*** Date: 2004-01-12
                                              ***
```

real*8 function dshmburrho(radialdist)

dshmdfisotr.f

***		***	
***	halo local velocity distribution function DF(\vec{v})	***	
***	for the case of an isotropic distribution, i.e. for	***	
***	$DF(\langle vec{v} \rangle) = DF(\langle vec{v} \rangle) = DF(v)$	***	

```
***
                                                      ***
*** dshmDFisotr is normalized such that
                                                      ***
*** int d^3v DF(v) = 4 pi int_0^\infty dv v^2 DF(v) = 1
                                                      ***
***
                                                      ***
*** Input: |\vec{v}| = Speed in km/s
                                                      ***
*** Output: DF(|\vec{v}|) in (km/s)^(-3)
                                                      ***
***
                                                      ***
*** Calls other routines depending of choice of velocity
                                                      ***
*** distribution function (as set by isodf in the common
                                                      ***
*** blocks in dshmcom.h)
                                                      ***
***
                                                      ***
*** Author: Piero Ullio
                                                      ***
*** Date: 2004-01-30
                                                      ***
```

real*8 function dshmDFisotr(v)

dshmdfisotrnum.f

```
***
                                                       ***
*** halo local velocity distribution function DF(\vec{v})
                                                       ***
*** for the case of an isotropic distribution, i.e. for
                                                        ***
        DF(\langle vec{v} \rangle) = DF(\langle vec{v} \rangle) = DF(v)
                                                       ***
***
*** as loaded from table in file provided by user
                                                       ***
***
                                                       ***
*** on first call the function loads from file a table of
                                                        ***
*** values and then interpolates between them.
                                                       ***
***
                                                       ***
*** the file name is set by the isodfnumfile variable
                                                       ***
*** it is assumed that this file has no header and v DF(v)
                                                       ***
*** are given with the format 1000 below
                                                       ***
***
                                                       ***
*** to reload a (different) file the int. flag dfisonumset
                                                       ***
*** into the DFisosetcom common block has to be manually
                                                       ***
*** reset to 0
                                                       ***
***
                                                        ***
*** v in km s**-1
                                                        ***
*** DF(v) in km**-3 s**3
                                                        ***
***
                                                       ***
*** Author: Piero Ullio
                                                       ***
*** Date: 2004-01-30
                                                       ***
```

real*8 function dshmDFisotrnum(v)

dshmhaloprof.f

***	***		
*** mod: 04-01-12 pu, this is obsolete and should not	***		
*** be used anymore !!!!!!!!!!!!	***		

```
***
***
*** dark matter halo density profile
                                                           ***
*** it assumes that the halo
                                                           ***
***
     1) is spherically symmetric
                                                           ***
     2) has a double power law profile: the
***
                                                           ***
        (alphah, beta, gamma) zhao model, where - gammah is ***
***
***
        the slope towards the galactic centre, - beta is
                                                           ***
***
        the slope at large galactocentric distances and
                                                           ***
***
        alphah determines the width of the transition zone. ***
        e.g.: modified isothermal sphere profile = (2,2,0); ***
***
              nfw profile = (1,3,1);
***
                                                           ***
***
              moore et al. profile = (1.5,3,1.5)
                                                           ***
***
                                                           ***
*** rr = galactocentric distance in kpc
                                                           ***
*** a = length scale in kpc
                                                           ***
*** r_0 = galactocentric distance of the sun in kpc
                                                           ***
*** rho0 = local dark matter density (=val(r_0)) in gev/cm**3***
***
                                                           ***
*** the profile is truncated at 10**-5 kpc assuming
                                                           ***
*** val(rr<10**-5 kpc) = val(rr=10**-5 kpc)
                                                           ***
***
                                                           ***
*** author: piero ullio (piero@tapir.caltech.edu)
                                                           ***
*** date: 00-07-13
                                                           ***
```

subroutine dshmhaloprof(rr,val)

dshmj.f

```
*** function dshmj: line of sight integral which enters in the ***
*** computation of the gamma-ray and neutrino fluxes from
                                                    ***
*** pair annihilations of wimps in the halo.
                                                    ***
***
                                                    ***
*** see definition in e.g. bergstrom et al.,
                                                    ***
*** phys. rev d59 (1999) 043506
                                                    ***
*** in case of the many unresolved clump scenario the term
                                                    ***
*** fdelta is factorized out
                                                    ***
***
                                                    ***
*** it is valid for a spherical dark matter halo
                                                    ***
*** psi0 is the angle between direction of observation
                                                    ***
*** and the direction of the galactic center; cospsi0 is
                                                    ***
*** its cosine.
                                                    ***
***
                                                    ***
*** author: piero ullio (piero@tapir.caltech.edu)
                                                    ***
*** date: 00-07-13
                                                    ***
```

real*8 function dshmj(cospsi0in)

dshmjave.f

```
*** function dshmjave: average over the solid angle
                                                     ***
*** delta (sr) of the function dshmj(cospsi0)
                                                     ***
                                                     ***
***
*** dshmj is the line of sight integral which enters in the
                                                     ***
*** computation of the gamma-ray and neutrino fluxes from
                                                     ***
*** pair annihilations of wimps in the halo.
                                                     ***
***
                                                     ***
*** see definition in e.g. bergstrom et al.,
                                                     ***
***
    phys. rev. d59 (1999) 043506
                                                     ***
*** in case of the many unresolved clump scenario the term
                                                     ***
*** fdelta is factorized out
                                                     ***
***
                                                     ***
*** it is valid for a spherical dark matter halo
                                                     ***
*** psi0 is the angle between direction of observation
                                                     ***
*** and the direction of the galactic center; cospsi0 is
                                                     ***
*** its cosine.
                                                     ***
***
                                                     ***
*** author: piero ullio (piero@tapir.caltech.edu)
                                                     ***
*** date: 00-07-13
                                                     ***
```

real*8 function dshmjave(cospsi0in,deltain)

dshmjavegc.f

```
*** function dshmjavegc: average over the solid angle
                                                     ***
*** delta (sr) of the function dshmj(cospsi0) in case of the ***
*** galactic center
                                                      ***
***
                                                      ***
*** dshmj is the line of sight integral which enters in the
                                                     ***
*** computation of the gamma-ray and neutrino fluxes from
                                                     ***
*** pair annihilations of wimps in the halo.
                                                      ***
***
                                                      ***
*** see definition in e.g. bergstrom et al.,
                                                     ***
*** phys. rev. d59 (1999) 043506
                                                     ***
*** in case of the many unresolved clump scenario the term
                                                      ***
*** fdelta is factorized out
                                                      ***
***
                                                     ***
*** it is valid for a spherical dark matter halo
                                                     ***
*** psi0, which must be 0.d0 is the angle between direction ***
*** of observation and the direction of the galactic center; ***
*** cospsi0 is its cosine.
                                                     ***
***
                                                      ***
*** author: piero ullio (piero@tapir.caltech.edu)
                                                      ***
*** date: 00-07-13
                                                     ***
```

real*8 function dshmjavegc(cospsi0in,deltain)

dshmjavepar1.f

real*8 function dshmjavepar1(rrtmp)

dshmjavepar2.f

****	***************************************	**	
***	function integrated in dshmjavepar1 *	**	
***	*	**	
***	author: piero ullio (piero@tapir.caltech.edu) *	**	
***	date: 00-07-13 *	**	
***	mod: 04-01-13 pu *	**	

real*8 function dshmjavepar2(cospsi)

dshmjavepar3.f

*** function integrated in dsh	njavegc ***	
***	***	
*** author: piero ullio (piero	<pre>@tapir.caltech.edu) ***</pre>	
*** date: 00-07-13	***	

real*8 function dshmjavepar3(cospsiin)

dshmjavepar4.f

****	***************************************	***	
***	function integrated in dshmjavepar3	***	
***		***	
***	author: piero ullio (piero@tapir.caltech.edu)	***	
***	date: 00-07-13	***	

real*8 function dshmjavepar4(rrin)

dshmjavepar5.f

real*8 function dshmjavepar5(rrin)

dshmjpar1.f

***************************************	*****
*** function integrated in dshmj	***
***	***
<pre>*** author: piero ullio (piero@tapir.caltech.edu)</pre>	***
*** date: 00-07-13	***
*** mod: 04-01-13 pu	***
***************************************	****

real*8 function dshmjpar1(rr)

dshmn03rho.f

***************************************	:**
*** dark matter halo density profile in case of the *	**
*** navarro et al. (2003) model. *	**
*** *	**
*** radialdist = galactocentric distance in kpc *	**
*** anO3 = length scale in kpc *	**
*** rhoref = dark matter density in gev/cm**3 at the *	**
*** galactocentric distance Rref (in kpc) *	**
*** *	**
*** Author: Piero Ullio (ullio@sissa.it) *	**
*** Date: 2004-01-12 *	**
***************************************	**

real*8 function dshmn03rho(radialdist)

dshmnumrho.f

```
*** dark matter halo density profile in case of the
                                       ***
*** profile is loaded from a file.
                                       ***
***
                                       ***
*** radialdist = galactocentric distance in kpc
                                       ***
***
                                       ***
*** Author: Piero Ullio (ullio@sissa.it)
                                       ***
*** Date: 2004-01-12
                                       ***
```

real*8 function dshmnumrho(radialdist)

dshmrescale_rho.f

```
subroutine dshmrescale_rho(oh2,oh2min)
No header found.
```

dshmrho.f

```
*** dark matter halo density profile
                                             ***
***
                                             ***
*** Input: r = galactocentric distance in kpc
                                             ***
*** Output: dshmrho = density in GeV/cm<sup>3</sup>
                                             ***
***
                                             ***
*** links to dshmsphrho where the profile is calculated
                                             ***
*** Author: Joakim Edsjo
                                             ***
*** Date: 2000-09-02
                                             ***
*** mod: 04-01-13 pu
                                             ***
```

real*8 function dshmrho(r)

dshmrho2cylint.f

```
*** function which gives the integral of the square of the
*** axisymmetric density profile dshmaxirho, normalized to the local
*** halo density, over a cylindrical volume of radius rmax and height
*** 2*zmax, in the frame with the galactic center as its origin,
***
    i.e.:
***
        2 \pm int_{-zmax}^{+zmax} dz
***
             * int_0^{rmax} dr * r (dshmaxirho(r,zint)/rho0)^2
         = 2 \pi * 2 int_0^{+zmax} dz
***
             * int_0^{rmax} dr * r (dshmaxirho(r,zint)/rho0)^2
***
***
*** zmax and rmax in kpc
*** dshmrho2cylint in kpc<sup>3</sup>
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

real*8 function dshmrho2cylint(rmax,zmax)

dshmset.f

```
*** a few sample cases are given; specified values of the
                                                    ***
*** local halo density 'rho0' and of the length scale
                                                    ***
*** parameter 'a' should be considered just indicative
                                                    ***
***
                                                    ***
*** author: piero ullio (piero@tapir.caltech.edu)
                                                    ***
*** date: 00-07-13
                                                    ***
*** small modif: paolo gondolo 00-07-19
                                                    ***
*** mod: 03-11-19 je, 04-01-13 pu
                                                    ***
```

dshmsphrho.f

```
*** spherically symmetric dark matter halo density profile
                                                  ***
***
                                                  ***
*** Input: radialdist = radial coordinate in kpc
                                                  ***
***
          in a spherically symmetric coordinate system
                                                  ***
***
          centered in the Galactic Center
                                                  ***
***
          if radialdist lower than the cut radius rhcut,
                                                  ***
***
          radialdist is shifted to rhcut
                                                  ***
*** Output: dshmsphrho = density in GeV/cm<sup>3</sup>
                                                  ***
     e.g.: local halo density = rho0 = dshmsphrho(r_0)
***
                                                  ***
***
                                                  ***
*** Author: Piero Ullio (ullio@sissa.it)
                                                  ***
*** Date: 2004-01-12
                                                  ***
```

real*8 function dshmsphrho(radialdist)

dshmudf.f

```
*** Dark matter halo velocity profile.
                                                           ***
*** This routine gives back u*DF(u) in units of (km/s)^(-2)
                                                           ***
***
                                                           ***
      u is the modulus of \vec{u} = \vec{v} - \vec{v}_{MY}
***
                                                           ***
***
      with \vec{v} the 3-d velocity of a WIMP in the
                                                           ***
***
      galactic frame, and \vec{v}_{MY} the projection on
                                                           ***
***
      the frame you are considering
                                                           ***
***
                                                           ***
      DF(u) = int dOmega DF(\langle vec{v} \rangle), where
                                                           ***
***
***
      DF(\vec{v}) is the halo local velocity distribution
                                                           ***
      function in the galactic frame
***
                                                           ***
***
                                                           ***
*** Note: u*DF(u) is the same as f(u)/u, where f(u) is the
                                                           ***
*** one-dimensional distribution function as defined in e.g. ***
*** Gould, ApJ 321 (1987) 571.
                                                           ***
***
                                                           ***
*** Note: it is also the same as the one-dimensional
                                                           ***
*** distribution function g(u) as defined in, e.g.,
                                                           ***
*** Ullio & Kamionkowski, JHEP ....
                                                           ***
***
                                                           ***
```

```
***
*** dshmuDF is normalized such that
*** int_0^\infty u*dshmuDF du = int_0^\infty u^2 DF(u) du =
                                                       ***
*** int_0^\infty f(u) du = 1
                                                       ***
***
                                                       ***
*** Input: u = Speed in km/s
                                                       ***
*** Output: u*DF(u) in (km/s)^(-2)
                                                       ***
***
                                                       ***
*** Calls other routines depending of choice of velocity
                                                       ***
*** distribution function (as set by veldf in the common
                                                       ***
*** blocks in dshmcom.h)
                                                       ***
*** Author: Joakim Edsjo
                                                       ***
*** Date: 2004-01-29
                                                       ***
```

real*8 function dshmuDF(u)

dshmudfearth.f

```
*** Dark matter halo velocity profile as seen from the
                                                        ***
*** Earth. Compared to dshmuDF, this routine also includes
                                                        ***
*** the possibility to use distribution functions where
                                                        ***
*** solar system diffusion is included.
                                                        ***
***
                                                        ***
*** This routine gives back u*DF(u) in units of (km/s)^(-2) ***
*** DF(u) = int dOmega DF(abs(v)) where DF(abs(v-vector)) is ***
*** the three-dimensional distribution function in the halo ***
*** and v = v_us + u with u being the velocity relative us
                                                        ***
*** (Earth/Sun).
                                                        ***
*** Note: u*DF(u) is the same as f(u)/u, where f(u) is the
                                                        ***
*** one-dimensional distribution function as defined in e.g. ***
*** Gould, ApJ 321 (1987) 571.
                                                        ***
***
                                                        ***
*** dshmuDF is normalized such that
                                                        ***
*** int_0^\infty u*dshmuDF du = int_0^\infty u^2 DF(u) du =
                                                       ***
*** int_0^\infty f(u) du = 1
                                                        ***
***
                                                        ***
*** Input: u = Speed in km/s
                                                        ***
*** Output: u*DF(u) in (km/s)^(-2)
                                                        ***
***
                                                        ***
*** Calls other routines depending of choice of velocity
                                                        ***
*** distribution function (as set by veldfearth in the
                                                    ***
*** common blocks in dshmcom.h)
                                                        ***
*** Author: Joakim Edsjo
                                                        ***
*** Date: 2004-01-29
                                                        ***
```

real*8 function dshmuDFearth(u)

dshmudfearthtab.f

```
*** (same as dshmudfearth.f), but reads it from a file.
*** The file should have two header lines (with arbitrary content)
*** and then lines with two columns each with u and u*DF(u).
*** u should be in units of km/s and u*DF(u) (or f(u)/u) in units
*** of (km/s)^(-2).
***
*** The file loaded is given by the option type.
*** Some possible types are velocity distributions as obtained from
*** numerical simulations of WIMP propagation in the solar system
*** including solar capture.
***
*** For the simulations made by Johan Lundberg, see astro-ph/0401113,
*** available options are
      type = 1, reads file <ds-root>/dat/vdfearth-sdbest.dat :
***
        best estimate of distribution at Earth from numerical sims
***
      type = 2, reads file <ds-root>/dat/vdfearth-sdconserv.dat :
***
        conservative estimate, only including free orbits and
***
         jupiter-crossing orbits
***
***
      type = 3, reads file <ds-root>/dat/vdfearth-sdultraconserv.dat :
***
        ultraconservative estimate, only including free orbits
***
     type = 4, reads file <ds-root>/dat/vdfearth-sdgauss.dat :
        as if Earth was in free space, i.e. gaussian approx.
***
     Note: tot.txt is the best estimate of the distribution at Earth
***
***
      and should be used as a default
***
*** There are also other options, like
***
      type = 5, read a user-supplied file with file name given
       by udfearthfile in dshmcom.h. If you change the file or
***
       for any other reason want to reload it here, you have to
***
       set the flag udfearthload to true, in which case it will
***
***
       be loaded here on next call.
*** Input: velocity relative to earth [ km s<sup>-1</sup>]
*** Output: f(u) / u [ (km/s)^(-2) ]
*** Date: January 30, 2004
```

real*8 function dshmuDFearthtab(u,type)

dshmudfgauss.f

real*8 function dshmuDFgauss(u)

dshmudfiso.f

>	****	****
***		***
***	function which gives u*DF(u) where:	***
***		***
***	u is the modulus of $vec{u} = vec{v} - vec{v}_{ob}$	***
***	with \vec{v} the 3-d velocity of a WIMP in the	***
***	galactic frame, and \vec{v}_{ob} the projection on	***
***	the frame you are considering	***
***		***
***	$DF(u) = int dOmega DF(\langle vec{v} \rangle), where$	***
***	<pre>DF(\vec{v}) is the halo local velocity distribution</pre>	***
***	function in the galactic frame	***
***		***
***	the function implemented here is valid for:	***
***	a) an isothermal sphere profile	***
***	b) an isotropic profile, i.e.	***
***	$DF(\langle vec{v} \rangle) = DF(\langle vec{v} \rangle)$	***
***	condition b) implies that the integral is performed by	***
***	setting \vec{v} ^2 = u^2 + \vec{v}_ob ^2	***
***	+ 2*cos(alpha)* \vec{v}_ob *u	***
***	and then integrating in d(cos(alpha))	***
***		***
***	u in km s**-1	***
***	u*DF(u) in km**-2 s**2	***
***		***
***	Author: Piero Ullio	***
***	Date: 2004-01-29	***
>	**********************	****

real*8 function dshmuDFiso(u)

dshmudfnum.f

```
***********
***
                                                           ***
*** function which gives u*DF(u) where:
                                                           ***
***
                                                           ***
      u is the modulus of \vec{u} = \vec{v} - \vec{v}_{ob}
***
                                                           ***
      with vec{v} the 3-d velocity of a WIMP in the
***
                                                           ***
***
      galactic frame, and \vec{v}_{ob} the projection on
                                                           ***
      the frame you are considering
***
                                                           ***
***
                                                           ***
***
      DF(u) = int dOmega DF(\langle vec{v} \rangle), where
                                                           ***
***
      DF(\vec{v}) is the halo local velocity distribution
                                                           ***
      function in the galactic frame
***
                                                           ***
***
                                                           ***
*** on first call the function loads from file a table of
                                                           ***
*** values and then interpolates between them.
                                                           ***
***
                                                           ***
*** the file name is set by the udfnumfile variable
                                                           ***
*** it is assumed that this file has no header and u uDF(u) ***
```

```
*** are given with the format 1000 below
                                                     ***
***
                                                    ***
*** to reload a (different) file the integer flag uDFnumset
                                                    ***
*** into the uDFnumsetcom common block has to be manually
                                                    ***
*** reset to 0
                                                     ***
***
                                                     ***
*** u in km s**-1
                                                     ***
*** u*DF(u) in km**-2 s**2
                                                     ***
***
                                                     ***
*** Author: Piero Ullio
                                                    ***
*** Date: 2004-01-30
                                                    ***
```

real*8 function dshmuDFnum(u)

dshmudfnumc.f

```
***
                                                              ***
*** function which gives u*DF(u) where:
                                                              ***
***
                                                              ***
       u is the modulus of \sqrt{vec{u}} = \sqrt{vec{v}_{ob}}
***
                                                              ***
***
       with \vec{v} the 3-d velocity of a WIMP in the
                                                              ***
       galactic frame, and \vec{v}_{ob} the projection on
***
                                                              ***
***
       the frame you are considering
                                                              ***
***
                                                              ***
       DF(u) = int dOmega DF(\langle vec{v} \rangle), where
                                                              ***
***
***
       DF(\vec{v}) is the halo local velocity distribution
                                                              ***
***
       function in the galactic frame
                                                              ***
***
                                                              ***
*** on first call the function tabulates uDF(u) and saves
                                                              ***
*** the tabulated values in the file whose name is set by
                                                              ***
*** the udfnumfile variable in dshmcom.h
                                                              ***
*** interpolation between tabulated values are then used
                                                              ***
*** the tabulation has at least 200 points, and more points
                                                              ***
*** are added if there are jumps in u*DF which are more than ***
                                                              ***
*** 10%; this can be adjusted by changing the reratio
*** variable which is hard coded in the file
                                                              ***
***
                                                              ***
*** the implementation is valid only for an isotropic
                                                              ***
*** profile, i.e. for
                                                              ***
          DF(\langle vec{v} \rangle) = DF(\langle vec{v} \rangle)
***
                                                              ***
*** with the integral performed by setting
                                                              ***
***
          |vec{v}|^2 = u^2 + |vec{v}_{ob}|^2
                                                              ***
                           + 2*cos(alpha)*|\vec{v}_ob|*u
***
                                                              ***
*** and then integrating in d(cos(alpha))
                                                              ***
***
                                                              ***
*** u in km s**-1
                                                              ***
*** u*DF(u) in km**-2 s**2
                                                              ***
***
                                                              ***
*** Author: Piero Ullio
                                                              ***
*** Date: 2004-01-30
                                                              ***
```

real*8 function dshmuDFnumc(u)

dshmudftab.f

```
*** dshmudftab returns the halo velocity distribution
*** (same as dshmudf.f), but reads it from a file.
*** The file should have two header lines (with arbitrary content)
*** and then lines with two columns each with u and u*DF(u).
*** u should be in units of km/s and u*DF(u) (or f(u)/u) in units
*** of (km/s)^(-2).
***
*** The file loaded is given by the option type.
*** Some possible types are velocity distributions as obtained from
*** numerical simulations of WIMP propagation in the solar system
*** including solar capture.
***
*** Available options
***
     type = 1, read a user-supplied file with file name given
      by udffile in dshmcom.h. If you change the file or
***
***
      for any other reason want to reload it here, you have to
***
      set the flag udfload to true, in which case it will
      be loaded here on next call.
***
***
*** Input: velocity relative to earth [ km s<sup>-1</sup>]
*** Output: f(u) / u [ (km/s)^(-2) ]
*** Date: January 30, 2004
```

real*8 function dshmudftab(u,type)

dshmvelearth.f

subroutine dshmvelearth(tdays) No header found.

Chapter 16

src/hr: Halo rates from annihilation

16.1 Gamma rays from the halo – theory

Among the yields of pair annihilations of halo dark matter particles, the role played by gammarays could be a major one. Unlike the cases involving charged particles, for gamma-rays it is straightforward to relate the distribution of sources and the expected flux at the earth. Most flux estimated can be obtained just by summing over the contributions along lines of sight (or better, geodesics): gamma-rays have a low enough cross section on gas and dust and therefore the Galaxy is essentially transparent to them (except perhaps in the innermost part, very close to the region where a massive black hole is inferred); absorption by starlight and infrared background becomes effecient only for very far away sources (redshift larger than about 1).

It follows that in case the gamma-ray signal is detectable, this might be the only chance for mapping the fine structure of a dark halo, with a much better resolution for inomogenities (clumps) with respect what is accevable through dynamical measurements or lensing effects. Turning the latter argument around, if the fine structure of the Galactic halo is clumpy, or if a large density enhancement is present towards the Galactic center, as seen in N-body simulations of dark matter halos, this dark matter detection tecnique is much more promising than indicated by the earliest estimates in which smooth non-singular halo scenarios were considered (recall that the fluxes per unit volume are proportional to the square of the dark matter density locally in space).

A further reason to examine in details this detection methods is that we are approaching what will probably be the golden age for gamma-ray observations, with a several new experiments that are going to map the gamma-ray sky. These experiments will have unprecendented sensitivities and cover an energy range, namely 10 GeV – few hundred GeV, in which very scarce data are available at the time being and which may turn out to be the most interesting for dark matter detection. The hypothesis of a gamma-ray signal from neutralino annihilations will be tested for both by the upcoming space experiments (GLAST, AMS, AGILE) and by the new generation of ground-based air cherenkov telescopes (ACTs) being built (Magic, Hess, Veritas).

The bulk of the gamma-ray yield from neutralino annihilations arise in the decay of neutral pions produced in the fragmetation processes initiated by tree level final states [148, 73, 155] (analogously to the other halo signals, in DarkSUSY we include all tree level final states and make use of a Monte Carlo simulation for fragmentation and decay processes, see Section ??). Unfortunately the π^0 intermediate state is common to other astrophysical processes, and this may turn out to be a limiting factor to disentangle dark matter sources. At the same time, however, a relevant gamma-ray contribution may arise directly (at one-loop level) in two body final states; although such photons are much fewer than those from π^0 decays they have a much better signature: neutralinos annihilating in the galactic halos move with a velocity of the order $v/c \sim 10^{-3}$, hence these outgoing photons (as any particle in any of the allowed two body final states) will then be nearly monochromatic, with energy of the order of the neutralino mass[149, 150, 151, 112, 110, 73]. There is no other known astrophysical source with such a signature: the detection of a line signal out of a spectrally smooth gamma-ray background would be a spectacular confirmation of the existence of dark matter in form of exotic massive particles.

If dark matter is in form of neutralinos, there are two processes givin rise to line signals, the annihilation into two photons and into one photon and a Z boson. Both of them are included in the DarkSUSY package, as well as the contribution with a continuum energy spectrum. We review them briefly here, focussing first on annihilation rates and giving then expressions for gamma-ray fluxes.

16.1.1 $\chi \chi \rightarrow \gamma \gamma$

In DarkSUSY the full expression for the annihilation cross section of the process

$$\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to \gamma + \gamma \tag{16.1}$$

is computed at full one loop level, in the limit of vanishing relative velocity of the neutralino pair, i.e. the case of interest for neutralinos in galactic halos; the outgoing photons have an energy equal to the mass of χ_1^0 :

$$E_{\gamma} = M_{\chi}.\tag{16.2}$$

The neutralino pair must be in an S wave state with pseudoscalar quantum numbers; projecting out of the amplitude the ${}^{1}S_{0}$ state simplifies the calculation, and a further simplification is obtained by computing the amplitude in the non linear gauge defined in [152], which is a slight variant of the usual linear R-gauge (or 't Hooft gauge).

The amplitude of the annihilation process can be factorized in the form

$$\mathcal{A} = \frac{e^2}{2\sqrt{2}\pi^2} \epsilon \left(\epsilon_1, \epsilon_2, k_1, k_2\right) \tilde{\mathcal{A}}$$
(16.3)

where ϵ_1 , ϵ_2 and k_1 , k_2 are respectively the polarization tensors and the momenta of the two outgoing photons. The cross section is then given, as a function of $\tilde{\mathcal{A}}$, by the formula

$$v\sigma_{2\gamma} = \frac{\alpha^2 M_{\chi}^2}{16\pi^3} \left| \tilde{\mathcal{A}} \right|^2 \quad . \tag{16.4}$$

The total amplitude is implemented in DarkSUSY as the sum of the contributions obtained from four different classes of diagrams:

$$\tilde{\mathcal{A}} = \tilde{\mathcal{A}}_{f\tilde{f}} + \tilde{\mathcal{A}}_{H^+} + \tilde{\mathcal{A}}_W + \tilde{\mathcal{A}}_G,$$

where the indices label the particles in the internal loops, i.e., respectively, fermions and sfermions, charged Higgs and charginos, W-bosons and charginos, and, in the gauge we chose, charginos and Goldstone bosons. For every \mathcal{A} term, real and imaginary parts are splitted; the full set of analytic formulas are given in [112], following the notation of [168], where some of the contributions were first computed. They are rather lengthy expressions with non trivial dependences on various combinations of parameters in the MSSM. We reproduce here, as an example, the formulas for the diagrams with W bosons and charginos, which, in most cases, give the dominant contribution to the cross section as discovered in [112]. The sum over χ_i^+ includes the two chargino eigenstates:

$$Re \tilde{\mathcal{A}}_{W} = \sum_{\chi_{i}^{+}} \frac{1}{M_{\chi}^{2}} \left[2 \frac{(a-b) S_{\chi W}}{1+a-b} I_{1}(a,b) + \frac{S_{\chi W} - 2\sqrt{a} D_{\chi W}}{1-a-b} I_{1}(a,1) \right]$$

16.1. GAMMA RAYS FROM THE HALO – THEORY

$$+ \left(2 \frac{S_{\chi W} - 2\sqrt{a} D_{\chi W}}{1 - a - b} - \frac{3 S_{\chi W} - 4\sqrt{a} D_{\chi W}}{1 - b}\right) I_2(a, b) + \left(\frac{(2 + b) S_{\chi W} - 4\sqrt{a} D_{\chi W}}{1 - b} - 2 \frac{(1 - a + b) S_{\chi W}}{1 + a - b}\right) I_3(a, b) \right]$$
(16.5)

$$Im \tilde{\mathcal{A}}_{W} = -\pi \sum_{\chi_{i}^{+}} \frac{1}{M_{\chi}^{2}} \left(2 \frac{(a-b) S_{\chi W}}{1+a-b} \right) \cdot \\ \cdot \log \left(\frac{1+\sqrt{1-b/a}}{1-\sqrt{1-b/a}} \right) \theta \left(1 - m_{W}^{2} / M_{\chi}^{2} \right)$$
(16.6)

where we defined:

$$a = \frac{M_{\chi_1^0}^2}{M_{\chi_i^+}^2} \qquad b = \frac{m_W^2}{M_{\chi_i^+}^2}$$

$$S_{\chi W} = \frac{1}{2} \left(g_{W1i}^L g_{W1i}^{L*} + g_{W1i}^R g_{W1i}^{R*} \right) \qquad D_{\chi W} = \frac{1}{2} \left(g_{W1i}^L g_{W1i}^{R*} + g_{W1i}^R g_{W1i}^{L*} \right)$$

and the functions $I_1(a, b)$, $I_2(a, b)$ and $I_3(a, b)$, which arise from the loop integrations, are given by:

$$I_1(a,b) = \int_0^1 \frac{dx}{x} \log\left(\left|\frac{4ax^2 - 4ax + b}{b}\right|\right)$$
(16.7)

$$I_2(a,b) = \int_0^1 \frac{dx}{x} \log\left(\left|\frac{-ax^2 + (a+b-1)x + 1}{ax^2 + (-a+b-1)x + 1}\right|\right)$$
(16.8)

$$I_3(a,b) = \int_0^1 \frac{dx}{x} \log\left(\left| \frac{-ax^2 + (a+1-b)x + b}{ax^2 + (-a+1-b)x + b} \right| \right).$$
(16.9)

 $I_1(a, b)$ is the well known three point function that appears in triangle diagrams; it is an analytic function of a/b. $I_2(a, b)$ and $I_3(a, b)$ may be expressed in terms of dilogarithms. In DarkSUSY, they are computed in the integral form as, for any physically interesting value of the parameters a and b, the integrands are smooth functions of x.

The branching ratio for neutralino annihilations into 2γ is typically not larger than 1%, with the largest values of $v\sigma_{2\gamma}$, for neutralinos with a cosmologically significant relic aboundance, in the range 10^{-29} – 10^{-28} cm³s⁻¹. Such values may be large enough for the discovery of this signal in upcoming measurements; at the same time it should be kept in mind that very low values for the cross section are feasible as well.

16.1.2 $\chi \chi \rightarrow Z \gamma$

The process of neutralino annihilation into a photon and a Z^0 boson [110]

$$\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to \gamma + Z^0 \tag{16.10}$$

also gives a nearly monochromatic line (with a small smearing caused by the finite width of the Z^0 boson), with energy

$$E_{\gamma} = M_{\chi} - \frac{m_Z^2}{4 M_{\chi}}.$$
 (16.11)

The steps followed in DarkSUSY to compute the cross section are essentially the same as those described for the 2γ case. Again the total amplitude is obtained by summing the contribution from four classes of diagrams and by splitting for each of them real and imaginary parts. The analytic formulas were derived in [110], and are much less compact than those obtained for the process of neutralino annihilation into two photons.

The maximum value of $v\sigma_{Z\gamma}$, for neutralinos with a cosmologically significant relic aboundance, is around $2 \cdot 10^{-28}$ cm³s⁻¹ and occurs for a nearly pure Higgsinos. In the heavy mass range, the value of $v\sigma_{Z\gamma}$ reaches a plateau of around $0.6 \cdot 10^{-28}$ cm³s⁻¹. This interesting effect of a non-diminishing cross section with higgsino mass (which is due to a contribution to the real part of the amplitude) is also valid for the 2γ final state in the corresponding limit, with a value of $1 \cdot 10^{-28}$ cm³s⁻¹ [112]. Since the gamma-ray background drops rapidly with increasing photon energy, these processes may be interesting for detecting dark matter neutralinos near the upper range of allowed neutralino masses.

Whenever the lightest neutralino contain a significant Wino or Higgsino component the value of $v\sigma_{Z\gamma}$ maybe as large as, or even larger than, twice the value of $v\sigma_{2\gamma}$. It is therefore usually not a good approximation to neglect the $Z\gamma$ state compared to 2γ .

16.1.3 Gamma rays with continuum energy spectrum

The advantage with the gamma-ray lines discussed in the previous Sections is the distinctive spectral signature, which has no plausible astrophysical counterpart.

Compared to the monochromatic flux, the gamma-ray flux produced in π^0 decays is much larger but has less distinctive features. The photon spectrum in the process of a pion decaying into 2γ is, independent of the pion energy, peaked at half of the π^0 mass, about 70 MeV, and symmetric with respect to this peak if plotted in logarithmic variables. Of course, this is true both for pions produced in neutralino annihilations and, e.g., for those generated by cosmic ray protons interacting with the interstellar medium.

When considered together with to the cosmic ray induced Galactic gamma-ray background, the neutralino induced signal looks like a component analogous to the secondary flux due to nucleon nucleon interactions: it is drowned into the Bremsstrahlung component at low energy, while it may be the dominant contribution at energies above 1 GeV or so. In fact, if the exotic component is indeed significant an option to disentangle it would be to search for a break in the energy spectrum at about the neutralino mass, where the line feature might be present as well: while the maximal energy for a photon emitted in neatralino pair annihilations is equal to the neutralino mass, the component from cosmic ray protons extends to much higher energies, essentially with the same spectral index as for the proton spectrum (the role played by the third main background component, inverse Compton emission, has still to settled at the time being and may worsen the problem of discrimitation against background).

Besides this (weak) spectral feature, another way to disentangle the dark matter signal may be to exploit a directional signature: data with a wide angular coverage should be analyzed to seach for a gamma-ray flux component following the shape and density profile of the dark halo, including eventual contributions from clumps.

16.1.4 Sources and fluxes

Given a density distribution of dark matter neutralinos along some line of sight l, the monochromatic gamma-ray flux per unit solid angle in that direction is:

$$\frac{d\Phi_{\gamma}(\psi)}{d\Omega} = \frac{N_{\gamma} v \sigma_{X^{0}\gamma}}{4\pi M_{\chi}^{2}} \int_{line \ of \ sight} \rho_{\chi}^{2}(l) \ dl(\psi) , \qquad (16.12)$$

where ψ is an angle to label the direction of observation and where $N_{\gamma} = 2$ for $\chi \chi \to \gamma \gamma$, $N_{\gamma} = 1$ for $\chi \chi \to Z \gamma$. Analogously, the gamma-ray flux with continuum energy spectrum is obtained

16.2. NEUTRINOS FROM HALO – THEORY

by replacing $N_{\gamma} v \sigma_{X^0 \gamma}$ with $\sum_f dN_{\gamma}^f/dE v \sigma_f$, where the sum is over all tree level final states. Separating the dependence on the dark matter distribution from the part which is related to values of the cross section and the neutralino mass, we rewrite Eq. (16.12) as:

$$\frac{d\Phi_{\gamma}(\psi)}{d\Omega} \simeq 1.87 \cdot 10^{-11} \left(\frac{N_{\gamma} \, v \sigma_{X^0 \gamma}}{10^{-29} \, \mathrm{cm}^3 \mathrm{s}^{-1}}\right) \left(\frac{10 \, \mathrm{GeV}}{M_{\chi}}\right)^2 \cdot J\left(\psi\right) \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1} \,, \tag{16.13}$$

where we have defined the dimensionless function

$$J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \cdot \left(\frac{1}{0.3 \,\mathrm{GeV/cm^3}}\right)^2 \int_{line \ of \ sight} \rho_{\chi}^2(l) \ dl(\psi) \ . \tag{16.14}$$

The relevant quantity for a measurement is, rather than $J(\psi)$, the integral of $J(\psi)$ over the solid angle given by the angular acceptance $\Delta\Omega$ of a detector which is pointing in the direction ψ . Defining:

$$\langle J(\psi) \rangle_{\Delta\Omega} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega' J(\psi') , \qquad (16.15)$$

the flux measured in a detector is:

$$\Phi_{\gamma}(\psi, \Delta\Omega) = 1.87 \cdot 10^{-11} \left(\frac{N_{\gamma} \, v \sigma_{X^0 \gamma}}{10^{-29} \, \mathrm{cm}^3 \mathrm{s}^{-1}} \right) \left(\frac{10 \, \mathrm{GeV}}{M_{\chi}} \right)^2 \langle J(\psi) \rangle_{\Delta\Omega} \times \Delta\Omega \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1} \, . \tag{16.16}$$

Finally, the formalism we introduced can be used also to estimate the flux in the simple case of a single source which, for the given detector, can be approximated as point-like (see examples below). If such source is in the direction ψ at a distance d, Eq. (16.15) becomes:

$$\langle J(\psi) \rangle_{\Delta\Omega} = \frac{1}{8.5 \,\mathrm{kpc}} \cdot \left(\frac{1}{0.3 \,\mathrm{GeV/cm^3}}\right)^2 \cdot \frac{1}{d^2} \cdot \frac{1}{\Delta\Omega} \int d^3r \,\rho_{\chi}^2(\vec{r}) \tag{16.17}$$

where the integral is over the extention of the source (much smaller than d).

Several targets have been discussed as sources of gamma-rays from the annihilation of dark matter particles. An obvious source is the dark halo of our own galaxy [153] and in particular the Galactic center, as the dark matter density profile is expected, in most models, to be picked towards it, possibly with huge enhancements close to te central black hole. The Galactic center is an ideal target for both ground- and space-based gamma-ray telescopes. As satellite experiments have much wider field of views and will provide a full sky coverage, they will test the hypothesis of gamma-rays emitted in clumps of dark matter which may be present in the halo [154, 155, 114, 156]. Another possibility which has been considered is the case of gamma-ray fluxes from external nearby galaxies [157]. Furthermore, it has been proposed to search for an extragalactic flux originated by all cosmological annihilations of dark matter particles [158, 159].

DarkSUSY is suitable to compute the gamma-ray flux from all these (and possibly other) sources. Two cases are fully included in the package: assuming neutralinos are smoothly distributed in the Galactic halo with ρ_{χ} equal to the dark matter density profile, in DarkSUSY Eq. 16.15 is computed for a specified halo profile and any given ψ and $\Delta\Omega$ [73]. The second option deals with the case of a portion of dark matter being in the form of clumps, each of which is treated as a non-resolvable source in the detector, distributed in the Galaxy according to a probability distribution which follows the dark matter density profile (see [114] for details). It is straightforward to extend this to all other astrophysical sources; in case of cosmological sources one has just to pay attention to include redshift effects and absoption on starlight and infrared background, see [159].

16.2 Neutrinos from halo – theory

Usually, the flux of neutrinos from annihilation of neutralinos in the Milky Way halo is too small to be detectable, but for some clumpy or cuspy models, it might be detectable. The calculation of the neutrino-flux follows closely the calculation of the continuous gamma ray flux, with the main addition that neutrino interactions close to the detector are also included. Hence, both the neutrino flux and the neutrino-induced muon flux can be obtained. The neutrino to muon conversion rate in the Earth can also be obtained.

16.3 Routine headers – fortran files

dshaloyield.f

```
function dshaloyield gives the total yield of positrons, cont. gammas
***
***
     or neutrinos coming from neutralino annihilation in the halo
***
     the yields are given as number / annihilation. the energy egev
     is the threshold for integrated yields and the energy for
***
     differential yields. the yields are
***
       yieldk = 51: integrated positron yields
***
       yieldk = 52: integrated cont. gammas
***
       yieldk = 53: integrated muon neutrinos
***
       yieldk = 54: integrated antiproton yields
***
***
       yieldk = 71: integrated neutrino yields (same as 53)
       yieldk = 72: integrated muon yields at creation
***
       yieldk = 73: integrated muon yields in ice
***
***
       yieldk = above+100: differential in energy
*** the annihilation branching ratios and
*** higgs parameters are extracted from susy.h and by calling dsandwdcosnn
*** if istat=1 upon return,
*** some inaccesible parts the differential muon spectra has been wanted,
*** and the returned yield should then be treated as a lower bound.
*** if istat=2 energetically forbidden annihilation channels have been
*** wanted. if istat=3 both of these things has happened.
*** author: joakim edsjo edsjo@physics.berkeley.edu
*** date: 98-01-29
*** modified: 98-04-15
```

real*8 function dshaloyield(egev,yieldk,istat)

dshaloyielddb.f

real*8 function dshaloyielddb(egev,yieldk,istat)

dshrdbardiff.f

real*8 function dshrdbardiff(td,solarmod,how)
```
******
*** function dshrdbardiff calculates the differential flux of
*** antideuterons for the antideuteron kinetic energy per nucleon td
*** as a result of neutralino annihilation in the halo.
*** compared to dshrdbdiff0, dshrdbardiff uses the rescaled local density
    input:
***
***
      td - antideuteron kinetic energy per nucleon in gev
***
      solarmod - 0 no solar modulation
***
                1 solar modulation a la perko
      how - 1 calculate t_diff only for requested momentum
***
***
           2 tabulate t_diff for first call and use table for
***
             subsequent calls
            3 as 2, but also write the table to disk as pbtd.dat
***
             at the first call
***
            4 read table from disk on first call, and use that for
***
             subsequent calls
***
*** units: gev^-1 cm^-2 s^-1 sr^-1
*** author: 00-07-19 paolo gondolo
```

dshrdbdiff0.f

real*8 function dshrdbdiff0(td,solarmod,how)

```
*** function dshrdbdiff0 calculates the differential flux of
*** antideuterons for the kinetic energy per nucleon td as a result of
*** neutralino annihilation in the halo.
*** dshrdbdiff0 uses the unrescaled local density
*** see dshrdbardiff for rescaling the local density
***
    input:
      td - antideuteron kinetic energy per nucleon in gev
***
      solarmod - 0 no solar modulation
***
      how - 1 calculate t_diff only for requested momentum
***
***
            2 tabulate t_diff for first call and use table for
***
             subsequent calls
***
           3 as 2, but also write the table to disk as pbtd.dat
             at the first call
***
***
            4 read table from disk on first call, and use that for
***
             subsequent calls
*** units: gev^-1 cm^-2 s^-1 sr^-1
*** author: joakim edsjo
*** date: 98-02-10
*** modified: joakim edsjo, edsjo@physto.se
*** modified: 98-07-13, 00-07-19 paolo gondolo
```

dshrgacdiffsusy.f

```
*** function dshrgacdiffsusy gives the susy dependent term in the
*** flux of gamma-rays with continuum energy spectrum per gev
*** at the energy egam (gev) from neutralino annihilation in the halo.
***
*** dshrgacdiffsusy in unit of gev<sup>-1</sup>
***
*** the flux in a solid angle delta in the direction psi0 is given by:
***
     cm^-2 s^-1 sr^-1 * dshrgacdiffsusy(egam,istat)
***
     * dshmjave(cospsi0,delta) * delta (in sr)
***
*** the flux per solid angle in the direction psiO is given by:
***
     cm^-2 s^-1 sr^-1 * dshrgacdiffsusy(egam,istat)
***
     * dshmj(cospsi0)
***
*** in case of a clumpy halo the factor fdelta has to be added
***
*** author: joakim edsjo, edsjo@physto.se
*** modified: piero ullio (piero@tapir.caltech.edu) 00-07-13
***
             Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
             in annihilation rate added
```

real*8 function dshrgacdiffsusy(egam,istat)

dshrgacont.f

real*8 function dshrgacont(egath,jpsi,istat) *** function dshrgacont gives the flux of gamma-rays with continuum energy spectrum above the threshold egath (gev) from neutralino *** *** annihilation in the halo. *** *** jpsi is the value of the integral of rho² along the line of sight, and can be obtained with a call to dshmj. jpsi can also be *** the averaged value of j over a solid angle delta, obtained with a *** *** call to dshmjave. *** dshrgacont uses the rescaled local density, while j uses the *** *** unrescaled local density *** dshrgacont in units of cm⁻² s⁻¹ sr⁻¹ *** *** in case of a clumpy halo the factor fdelta has to be added *** *** author: paolo gondolo (gondolo@mppmu.mpg.de) 00-07-19 ***

dshrgacontdiff.f

```
energy spectrum per gev at the energy egam (gev) from neutralino
***
***
     annihilation in the halo.
***
***
     jpsi is the value of the integral of rho<sup>2</sup> along the line of
     sight, and can be obtained with a call to dshmj. jpsi can also be
***
     the averaged value of j over a solid angle delta, obtained with a
***
***
     call to dshmjave.
***
***
     dshrgacontdiff uses the rescaled local density, while j uses the
     unrescaled local density
***
***
***
     dshrgacontdiff in units of cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>
***
***
     in case of a clumpy halo the factor fdelta has to be added
***
     author: paolo gondolo (gondolo@mppmu.mpg.de) 00-07-19
***
```

dshrgacsusy.f

```
*** function dshrgacsusy gives the susy dependent term in the
*** flux of gamma-rays with continuum energy spectrum above the
*** threshold egath (gev) from neutralino annihilation in the halo.
***
*** dshrgacsusy is dimensionless
***
*** the flux in a solid angle delta in the direction psi0 is given by:
***
    cm^-2 s^-1 sr^-1 * dshrgacsusy(egath,istat)
     * dshmjave(cospsi0,delta) * delta (in sr)
***
***
*** the flux per solid angle in the direction psiO is given by:
***
    cm^-2 s^-1 sr^-1 * dshrgacsusy(egath,istat)
     * dshmj(cospsi0)
***
***
*** in case of a clumpy halo the factor fdelta has to be added
***
*** author: joakim edsjo, edsjo@physto.se
*** modified: piero ullio (piero@tapir.caltech.edu) 00-07-13
***
            Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
            in annihilation rate added
```

real*8 function dshrgacsusy(egath,istat)

dshrgaline.f

```
jpsi is the value of the integral of rho<sup>2</sup> along the line of
***
***
     sight, and can be obtained with a call to dshmj. jpsi can also be
     the averaged value of j over a solid angle delta, obtained with a
***
***
     call to dshmjave.
***
***
     dshrgaline uses the rescaled local density, while j uses the
     unrescaled local density
***
***
***
     dshrgaline in units of cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>
***
     in case of a clumpy halo the factor fdelta has to be added
***
***
***
     author: paolo gondolo (gondolo@mppmu.mpg.de) 00-07-19
```

dshrgalsusy.f

```
*** subroutine dshrgalsusy gives the susy dependent term in the
*** flux of monoenergetic gamma-rays from neutralino annihilation
*** in the halo.
***
*** dshrgalsusy is dimensionless
***
*** the flux in a solid angle delta in the direction psi0 is given by:
     cm^-2 s^-1 sr^-1 * gagarate (or gazrate)
***
***
     * dshmjave(cospsi0,delta) * delta (in sr)
***
*** the flux per solid angle in the direction psiO is given by:
***
     cm^-2 s^-1 sr^-1 * gagarate (or gazrate)
     * dshmj(cospsi0)
***
***
*** in case of a clumpy halo the factor fdelta has to be added
***
*** author: joakim edsjo, edsjo@physto.se
*** modified: piero ullio (piero@tapir.caltech.edu) 00-07-13
           Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
***
           in annihilation rate added
```

subroutine dshrgalsusy(gagarate,gazrate)

dshrmudiff.f

real*8 function dshrmudiff(jpsi,emu,dnsigma,istat)

dshrmuhalo.f

```
*** function dshrmuhalo calculates the flux of diffuse neutrino-
*** induced muons from neutralino annihilation in the halo.
*** the flux given, is the total flux above a given threshold.
*** there are some approximations going on for the higgses assuming
*** de/dx for muons are constant to simplify the integration. the
*** errors for this shouldn't be too big.
*** units: km<sup>-2</sup> yr<sup>-1</sup> sr<sup>-1</sup> (if jpsi is given as 1st arg.)
         km^-2 yr^-1
                       (if jpsi*delta is given as 1st arg.)
***
*** dnsigma is also returned, which is the dimensionless number
*** N_mu * (sigma v) / (10^-29 cm^3 s^-1)
*** author: joakim edsjo, edsjo@physto.se
*** date: 98-05-07
*** modified: 00-09-03
***
            Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
           in annihilation rate added
```

real*8 function dshrmuhalo(jpsi,eth,dnsigma,istat)

dshrpbardiff.f

real*8 function dshrpbardiff(tp,solarmod,how)

```
*** function dshrpbardiff calculates the differential flux of
*** antiprotons for the antiproton kinetic energy tp as a result of
*** neutralino annihilation in the halo.
*** compared to dshrpbdiff0, dshrpbardiff uses the rescaled local density
***
     input:
***
       tp - antiproton kinetic energy in gev
       solarmod - 0 no solar modulation
***
***
                 1 solar modulation a la perko
       how - 1 calculate t_diff only for requested momentum
***
            2 tabulate t_diff for first call and use table for
***
***
              subsequent calls
            3 as 2, but also write the table to disk as pbtd.dat
***
              at the first call
***
***
            4 read table from disk on first call, and use that for
```

dshrpbdiff0.f

real*8 function dshrpbdiff0(tp,solarmod,how)

```
*** function dshrpbdiffO calculates the differential flux of
*** antiprotons for the antiproton kinetic energy tp as a result of
*** neutralino annihilation in the halo.
*** dshrpbdiff0 uses the unrescaled local density
*** see dshrpbardiff for rescaling the local density
***
     input:
      tp - antiproton kinetic energy in gev
***
***
       solarmod - 0 no solar modulation
                1 solar modulation a la perko
***
       how - 1 calculate t_diff only for requested momentum
***
***
            2 tabulate t_diff for first call and use table for
              subsequent calls
***
            3 as 2, but also write the table to disk as pbtd.dat
***
***
              at the first call
            4 read table from disk on first call, and use that for
***
***
             subsequent calls
*** units: gev^-1 cm^-2 s^-1 sr^-1
*** author: joakim edsjo
*** date: 98-02-10
*** modified: joakim edsjo, edsjo@physto.se
*** modified: 98-07-13, 00-07-19 paolo gondolo
***
            Joakim Edsjo (edsjo@physto.se) 03-01-21, factor of 1/2
***
            in annihilation rate added
```

dsnsigvgacdiff.f

subroutine dsnsigvgacdiff(ega,nsigvgacdiff)

dsnsigvgacont.f

subroutine dsnsigvgacont(egath,nsigvgacont)

dsnsigvgaline.f

subroutine dsnsigvgaline(nsigvgaga,nsigvgaz)

Chapter 17

src/ini: Initialization routines

17.1 Initialization routines

Before DarkSUSY is used for some calculations, it needs to be initialized. This is done with a call to **dsinit**. This routine makes sure that all standard parameters are defined, such as standard model parameters and particle codes. It also calls the different **ds*set** routines with the argument **default**. E.g., the halo model is set to the default choice with a call to **dshmset**('default'). Analogously, all other routines with a **ds*set** routine is also called to set them up to the default model/parameters.

This means that the call to **dsinit** should be the first call in any program using DarkSUSY. Any calls the user makes to other routines, either to calculte things or select a different model (e.g. a different halo model) should come after the call to **dsinit**.

17.2 Routine headers – fortran files

dscval.f

function dscval(a) No header found.

dsfval.f

function dsfval(a) No header found.

dsinit.f

subroutine dsinit No header found.

dsival.f

```
function dsival(a)
No header found.
```

dskillsp.f

```
function dskillsp(a1,a2)
No header found.
```

dslowcase.f

subroutine dslowcase(a) No header found.

dslval.f

function dslval(a) No header found.

dsreadpar.f

subroutine dsreadpar(unit)
No header found.

Chapter 18

src/mu: Muon neutrino yields from annihilation in the Sun/Earth

18.1 Muon yields from annihilation in the Earth/Sun – theory

We need to take into account all processes that yield muon neutrinos from annihilation in the Earth/Sun.

18.1.1 Monte Carlo simulations

We need to evaluate the yield of different particles per neutralino annihilation. The hadronization and/or decay of the annihilation products are simulated with PYTHIA [90] 6.154 and we here describe how the simulations are done. For annihilation in the Sun/Earth the simulations are done for a set of 18 neutralino masses, $m_{\chi} = 10, 25, 50, 80.3, 91.2, 100, 150, 176, 200, 250, 350, 500, 750, 1000, 1500, 2000, 3000 and 5000 GeV. We tabulate the yields and then interpolate these tables in DarkSUSY.$

We are mainly interested in the flux of high energy muon neutrinos and neutrino-induced muons at a neutrino telescope. We simulate 6 'fundamental' annihilation channels, $c\bar{c}$, $b\bar{b}$, $t\bar{t}$, $\tau^+\tau^-$, $W^+W^$ and Z^0Z^0 for each mass (where kinematically allowed) above. The lighter leptons and quarks don't contribute significantly and can safely be neglected. **COMMENT #6: Include** gg? Pions and kaons get stopped before they decay and are thus made stable in the PYTHIA simulations so that they don't produce any neutrinos. For annihilation channels containing Higgs bosons, we can calculate the yield from these fundamental channels by letting the Higgs bosons decaying in flight (see below). We also take into account the energy losses of *B*-mesons in the Sun and the Earth by following the approximate treatment of [91] but with updated *B*-meson interaction cross sections as given in [76]. We also take neutrino-interactions on the way out of the Sun into account by considering the charged-current interaction as a neutrino-loss and the neutral current interactions are simulated with PYTHIA. The neutrino-nucleon charged current interactions close to the detector are also simulated with PYTHIA and finally the multiple Coulomb scattering of the muon on its way to the detector is calculated using distributions from [55]. We have used the ??? structure functions in these simulations. For more details on these simulations, see [92, 93].

COMMENT #7: Structure functions?

For each annihilation channel and mass we simulate 1.25×10^6 annihilations and tabulate the

final results as a neutrino-yield, neutrino-to-muon conversion rate and a muon yield differential in energy and angle from the center of the Sun/Earth. We also tabulate the integrated yield above a given threshold and below an open-angle θ . We assumed throughout that the surrounding medium is water with a density of 1.0 g/cm³. Hence, the neutrino-to-muon conversion rates have to be multiplied by the density of the medium. In the muon fluxes, the density cancels out (to within a few percent). **COMMENT #8: Neutrino-nucleon cross sections? COMMENT #9: Simulate for rock?**

With these simulations, we can calculate the yield for any of these particles for a given MSSM model. For the Higgs bosons, which decay in flight, an integration over the angle of the decay products with respect to the direction of the Higgs boson is performed. Given the branching ratios for different annihilation channels it is then straightforward to compute the muon flux above any given energy threshold and within any angular region around the Sun or the center of the Earth.

18.2 Routine headers – fortran files

dsmucom.f

No header found.

dsmudydth.f

real*8 function dsmudydth(th)

dsmuemean.f

real*8 function dsmuemean(e0,m0,m1,m2)

dsmuifind.f

subroutine dsmuifind(value,array,ipl,ii,imin,imax)

dsmuinit.f

subroutine dsmuinit(flxk)

dsmuyield.f

*** function yield calculates the yield above threshold (flxk=1,2 or 3) *** or the differential yield (flxk=101, 102 or 103) from a given *** annihilation channel. channels ch=1-14 are supported. *** Note. Gluons (channel 12) are not included yet, this channel *** returns a zero yield. Channel 13 (mu+ mu-) never yields anything, *** but is included for compatibility with the halo annihilation routines. *** if flxk = 1 or 101 - neutrino yields are given 2 or 102 - muon distributions at creation are given *** *** 3 or 103 - muon yields at the detector are given *** the units are 1e-30 m**-2 (annihilation)**-1 for 1 and 3, and *** 1e-30 m**-3 (annihilation)**-1 for 2. *** For the differential yields, the units are the same plus *** gev**-1 degree**-1. *** *** author: joakim edsjo (edsjo@physics.berkeley.edu) *** date: 1995 *** modified: dec 03, 1997

real*8 function dsmuyield(mneu,emuthr,thmax,ch,wh,flxk,istat)

dsmuyield_int.f

dsmuyieldf.f

& yieldv, istat)

dsmuyieldfth.f

*** function phiith integrates dsmudydth over the angle theta.
<pre>*** it is the yield from particle 1 (which decays from m0)</pre>
*** that is calculated. particle one corresponds to channel ch.
*** units: 1.0e-30 m**-2 (annihilation)**-1

<pre>real*8 function dsmuyieldfth(e0,m0,mp1,mp2,emuthr,thmax,ch,wh, & yieldk,yieldv,istat)</pre>

dsmuyieldh.f

& yieldv,istat)

dsmuyieldh2.f

```
real*8 function dsmuyieldh2(eh,emuth,thmax,hno,wh,
& yieldk,yieldv,istat)
```

dsmuyieldh3.f

real*8 function dsmuyieldh3(eh,emuth,thmax,hno,wh, & yieldk,yieldv,istat)

dsmuyieldh4.f

real*8 function dsmuyieldh4(eh,emuth,thmax,hno,wh,
& yieldk,yieldv,istat)

 $196 CHAPTER \ 18. \ MU: MUON \ NEUTRINO \ YIELDS \ FROM \ ANNIHILATION \ IN \ THE \ SUN/EARTH$

Chapter 19

src/nt: Neutrino and muon rates from annihilation in the Sun/Earth

19.1 Neutrinos from the Sun and Earth – theory

There are several indirect methods for detection of neutralinos. One of the most promising [94] is to make use of the fact that scattering of halo neutralinos by the Sun and the planets, in particular the Earth, during the several billion years that the Solar system has existed, will have trapped these neutralinos within these astrophysical bodies. Being trapped within the Solar or terrestrial material, they will sink towards the center, where a considerable enrichment and corresponding increase of annihilation rate will occur.

Searches for neutralino annihilation into neutrinos will be subject to extensive experimental investigations in view of the new neutrino telescopes (AMANDA, IceCube, Baikal, NESTOR, ANTARES) planned or under construction [95]. A high-energy neutrino signal in the direction of the centre of the Sun or Earth is an excellent experimental signature which may stand up against the background of neutrinos generated by cosmic-ray interactions in the Earth's atmosphere.

There are several different approximations one could do, or processes to include when calculating the capture rates in the Earth/Sun and many of these are coded into DarkSUSY. The default in DarkSUSY is always to use the best calculations available, but more approximate (older) routines are also available, as well as more speculative signals, like the Damour-Krauss signal (not included by default). If you want to use something else than the defaults, or want to call more internal rotuines (more internal than dsntrates or dsntdiffrates), you should read the following sections carefully.

19.1.1 Neutrino yield from annihilations

The differential neutrino flux from neutralino annihilation is

$$\frac{dN_{\nu}}{dE_{\nu}} = \frac{\Gamma_A}{4\pi D^2} \sum_f B_{\chi}^f \frac{dN_{\nu}^f}{dE_{\nu}}$$
(19.1)

where Γ_A is the annihilation rate, D is the distance of the detector from the source (the central region of the Earth or the Sun), f is the neutralino pair annihilation final states, and B_{χ}^{f} are the branching ratios into the final state f. dN_{ν}^{f}/dE_{ν} are the energy distributions of neutrinos generated by the final state f and are obtained from the PYTHIA simulations described in section ??.

In comparison with calculations using the results of [91] (e.g. [96]), this Monte Carlo treatment of the neutrino propagation through the Sun does not need the simplifying assumptions previously made, namely neutral currents are no more assumed to be much weaker than charged currents and energy loss is no more considered continuous.

The neutrino-induced muon flux may be detected in a neutrino telescope by measuring the muons that come from the direction of the centre of the Sun or Earth. For a shallow detector, this usually has to be done in the case of the Sun by looking (as always the case for the Earth) at upward-going muons, since there is a huge background of downward-going muons created by cosmic-ray interactions in the atmosphere. There is always in addition a more isotropic background coming from muon neutrinos created on the other side of the Earth in such cosmic-ray events (and also from cosmic-ray interactions in the outer regions of the Sun). The flux of muons at the detector is given by

$$\frac{dN_{\mu}}{dE_{\mu}} = N_A \int_{E_{\mu}^{\rm th}}^{\infty} dE_{\nu} \int_0^{\infty} d\lambda \int_{E_{\mu}}^{E_{\nu}} dE'_{\mu} P(E_{\mu}, E'_{\mu}; \lambda) \frac{d\sigma_{\nu}(E_{\nu}, E'_{\mu})}{dE'_{\mu}} \frac{dN_{\nu}}{dE_{\nu}}, \qquad (19.2)$$

where λ is the muon range in the medium (ice or water for the large detectors in the ocean or at the South Pole, or rock which surrounds the smaller underground detectors), $d\sigma_{\nu}(E_{\nu}, E'_{\mu})/dE'_{\mu}$ is the weak interaction cross section for production of a muon of energy E'_{μ} from a parent neutrino of energy E_{ν} , and $P(E_{\mu}, E'_{\mu}; \lambda)$ is the probability for a muon of initial energy E'_{μ} to have a final energy E_{μ} after passing a path–length λ inside the detector medium. E^{th}_{μ} is the detector threshold energy, which for "small" neutrino telescopes like Baksan, MACRO and Super-Kamiokande is around 1 GeV. Large area neutrino telescopes in the ocean or in Antarctic ice typically have thresholds of the order of tens of GeV, which makes them sensitive mainly to heavy neutralinos (above 100 GeV) [97].

The integrand in Eq. (19.2) is weighted towards high neutrino energies, both because the cross section σ_{ν} rises approximately linearly with energy and because the average muon energy, and therefore the range λ , also grow approximately linearly with E_{ν} . Therefore, final states which give a hard neutrino spectrum (such as heavy quarks, τ leptons and W or Z bosons) are usually more important than the soft spectrum arising from light quarks and gluons.

19.1.2 Evolution of the number density in the Earth/Sun

Neutralinos are steadily being trapped in the Sun or Earth by scattering, whereas annihilations take them away. Let N(t) be the total number of neutralinos trapped, at time t, in the core of, for example, the Earth. The annihilation rate of neutralino pairs can be written as

$$\Gamma_a(t) = \frac{1}{2} C_a N^2(t) .$$
(19.3)

The evolution of N(t) is the result of the competition between capture and annihilation:

$$\frac{dN}{dt} = C_c(t) - C_a N^2 \tag{19.4}$$

The constant C_c is the capture rate, and C_a entering equations (19.3) and (19.4) is linked to the annihilation cross-section σ_a , and to some effective volumes V_j , j = 1, 2, taking into account the quasi-thermal distribution of neutralinos in the Earth core:

$$C_a = \langle \sigma_a \, v \rangle \, \frac{V_2}{V_1^2} \,, \tag{19.5}$$

$$V_j \simeq 2.3 \times 10^{25} \left(\frac{j \, m_X}{10 \, \text{GeV}}\right)^{-3/2} \, \text{cm}^3 \,.$$
 (19.6)

This has the solution for the annihilation rate implemented in DarkSUSY

$$\Gamma_A = \frac{C_c}{2} \tanh^2\left(\frac{t}{\tau}\right),\tag{19.7}$$

where the equilibration time scale $\tau = 1/\sqrt{C_c C_a}$. In most cases for the Sun, and in the cases of observable fluxes for the Earth, τ is much smaller than a few billion years, and therefore equilibrium is often a good approximation ($\dot{N}(t) = 0$). This means that it is the capture rate which is the important quantity that determines the neutrino flux. However, in the program we keep the exact formula (19.7), with some modifications discussed in Sec. 19.1.8).

19.1.3 Approximate capture rate expressions

The capture rate induced by scalar (spin-independent) interactions between the neutralinos and the nuclei in the interior of the Earth or Sun is the most difficult one to compute, since it depends sensitively on the Higgs mass, form factors, and other poorly known quantities. However, this spin-independent capture rate calculation is the same as for direct detection treated in Section ??. Therefore, there is a strong correlation between the neutrino flux expected from the Earth (which is mainly composed of spin-less nuclei) and the signal predicted in direct detection experiments [97, 98]. It seems that even the large (kilometer-scale) neutrino telescopes planned, when searching for neutralino annihilation in the Earth, will not be competitive with the next generation of direct detection experiments when it comes to detecting neutralino dark matter. However, the situation concerning the Sun is more favourable. Due to the low counting rates for the spin-dependent interactions in terrestrial detectors, high-energy neutrinos from the Sun constitute a competitive and complementary neutralino dark matter search. Of course, even if a neutralino is found through direct detection, it will be extremely important to confirm its identity and investigate its properties through indirect detection. In particular, the mass can be determined with reasonable accuracy by looking at the angular distribution of the detected muons [99, 100].

For the Sun, dominated by hydrogen, the axial (spin-dependent) cross section is important and relatively easy to compute. A reasonably good approximation is given by [3]

$$\frac{C_{\odot}^{\rm sd}}{(1.3 \cdot 10^{23} \,\mathrm{s}^{-1}) \,(270 \,\mathrm{km}\,\mathrm{s}^{-1}/\bar{v})} = \left(\frac{\rho_{\chi}}{0.3 \,\,\mathrm{GeV}\,\mathrm{cm}^{-3}}\right) \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right) \left(\frac{\sigma_{p\chi}^{\rm sd}}{10^{-40} \,\,\mathrm{cm}^2}\right) \tag{19.8}$$

where $\sigma_{p\chi}^{\rm sd}$ is the cross section for neutralino-proton elastic scattering via the axial-vector interaction, \bar{v} is the dark-matter velocity dispersion, and ρ_{χ} is the local dark matter mass. The capture rate in the Earth is dominated by scalar interactions, where there may be kinematic and other enhancements, in particular if the mass of the neutralino almost matches one of the heavy elements in the Earth. For this case, a more detailed analysis is called for, which is available in [80] with convenient approximations in [3]. In fact, also for the Sun the spin-independent contribution can be important, in particular iron may contribute non-negligibly. For the Sun, the approximation in [3] is also available,

$$\frac{C_{\odot}^{\rm si}}{(4.8 \cdot 10^{22} \,\mathrm{s}^{-1}) \,(270 \,\mathrm{km}\,\mathrm{s}^{-1}/\bar{v})} = \left(\frac{\rho_{\chi}}{0.3 \,\mathrm{GeV}\,\mathrm{cm}^{-3}}\right) \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right) \times \sum_{A} \left(\frac{\sigma_{A}^{\rm si}}{10^{-40} \,\mathrm{cm}^{2}}\right) F_{A}(m_{\chi}) f_{A} \phi_{A} S\left(m_{\chi}/m_{A}\right)/m_{A},$$
(19.9)

where f_A is the mass fraction of element A and ϕ_A is the typical gravitational potential (relative to the surface) for that element. I.e. an element that is concentrated in the core will have a higher ϕ_A than an element at the surface. A is the atomic number of the element and M_A is its mass. The factor S is a kinematical suppression factor [3, 161]. In the next subsection we will go through the compositions of the Earth/Sun that we use.

The approximate capture rate expressions above are coded into the routines dsntcapsun and dsntcapearth. More accurate expressions will follow in the coming subsections.

		Average pa	rameters
Element	Mass number (A)	f_i	ϕ_i
Hydrogen, H	1	0.670	3.15
Helium-4, ⁴ He	4	0.311	3.40
Carbon, C	12	0.00237	2.85
Nitrogen, N	14	0.00188	3.83
Oxygen, O	16	0.00878	3.25
Neon, Ne	20	0.00193	3.22
Magnesium, Mg	24	0.000733	3.22
Silicon, Si	28	0.000798	3.22
Sulphur, S	32	0.000550	3.22
Iron, Fe	56	0.00142	3.22

Table 19.1: The composition of the Sun with average parameters to be used in the approximative relations given in [3]. These values are updated with the solar model of [190] and differs slightly from the values used in [3].

	Mass	Mass fraction		Average p	arameters
Element	number (A)	Core	Mantle	f_i	ϕ_i
Oxygen, O	16	0.0	0.440	0.298	1.20
Silicon, Si	28	0.06	0.210	0.162	1.24
Magnesium, Mg	24	0.0	0.228	0.154	1.20
Iron, Fe	56	0.855	0.0626	0.319	1.546
Calcium, Ca	40	0.0	0.0253	0.0171	1.20
Phosphor, P	30	0.002	0.00009	0.00071	1.56
Sodium, Na	23	0.0	0.0027	0.00183	1.20
Sulphur, S	32	0.019	0.00025	0.0063	1.59
Nickel, Ni	59	0.052	0.00196	0.0181	1.57
Aluminum, Al	27	0.0	0.0235	0.0159	1.20
Chromium, Cr	52	0.009	0.0026	0.0047	1.44

Table 19.2: The composition of the Earth's core and mantle. The core mass fractions are from [172][Table 4] and the mantle mass fractions are from [172][Table 2]. The average mass fractions and potentials in the last two columns are weighted averages assuming a core mass of $1.93 \cdot 10^{24}$ kg and a mantle mass of $4.04 \cdot 10^{24}$ kg with average potentials (relative to the surface) of 1.6 in the core and 1.2 in the mantle [80].

19.1.4 Earth and Sun composition

When the capture rates are calculated, we need to know the composition and density of the Earth/Sun as a function of depth.

In [3] they used average mass fractions and potentials for the location of the various elements in the Sun. We have updated these to the BP2000 [190] values instead, as given in Table 19.1

For the Earth, we have also implemented more accurate density profiles and more up-to date chemical distributions within the Earth. We use the estimates for the Earth composition given in [172][Table 2 for the mantle and Table 4 for the core]. In Table 19.2 we list these values together with the average parameters f_i and ϕ_i that should be used in the expressions for the approximate capture rates in the previous section. Note that using these average parameters instead of integrating over the full radius is equivalent to putting all the elements of the give type at the gravitational potential ϕ_i .

We also need the density profile of the Earth, and for this we use the values in [107]. Using this density profile, we can calculate the gravitational potential, $\phi(r)$ inside the Earth and from this one

Figure 19.1: In a) the density profile and in b) the escape velocity in the Earth is shown.

the escape velocity v inside the Earth,

$$v = 11.2 \sqrt{\frac{\phi(r)}{\phi(R_{\oplus})}} \text{ km/s.}$$
(19.10)

In Fig. 19.1 we show the density profile and escape velocity inside the Earth.

19.1.5 More accurate capture rate expressions

Another complicating factor when calculating the capture rates is the integration over the velocity distribution. In [80], parts of the integrations are performed analytically for a Gaussian veolocity distributions. These expressions are also coded in DarkSUSY for the Earth and give a more accurate calculation of the capture rate in the Earth than the approximations given above. The routine dsntcapearth2 performs these calculations for the Earth.

19.1.6 Accurate capture rates in the Earth for general velocity distributions

If one wants even more accurate and general expressions for the capture rates in the Sun/Earth, we have also implemented the full expressions in [80], but without assuming that the velocity distribution is a Gaussian (or Maxwell-Boltzmann). These routines are now the default in DarkSUSY.

We will here outline how these expressions look like for the Earth and how they can be used both for a Maxwell-Boltzmann distribution and for a general velocity distribution. The expressions will of course look analogously for the Sun. We start with the general case and study the special case of a Maxwell-Boltzmann distribution in the next section.

We will divide the Earth into shells and calculate the capture from element i in each shell individually. At the end we will integrate over all the shells and sum over all the elements in the

Earth. The capture rate from element i per unit shell volume is given by [80][Eq. (2.8)]

$$\frac{dC_i}{dV} = \int_0^{u_{max}} du \frac{f(u)}{u} w \Omega_{v,i}^-(w)$$
(19.11)

where f(u) is the velocity distribution (normalized such that $\int_0^\infty f(u) = n_{\chi}$ where n_{χ} is the number density of WIMPs. The expression $\Omega^-_{v,i}(w)$ is related to the probability that we scatter to orbits below the escape velocity. w is the velocity at the given shell and it is related to the velocity at infinity u and the escape velocity v by

$$w = \sqrt{u^2 + v^2}.$$
 (19.12)

The upper limit of integration is a priori set to $u_{max} = \infty$, but we will see below that due to kinematical reasons we can set it to a lower value (Eq. (19.17) below). If we allow for a form factor suppression of the form [80][Eq. (A3)]

$$|F(q^2)|^2 = \exp\left(-\frac{\Delta E}{E_0}\right) \tag{19.13}$$

with [80][Eq. (A4)]

$$E_0 = \frac{3\hbar^2}{2m_\chi R^2}$$
(19.14)

we can evaluate $w\Omega_{v,i}^{-}(w)$ and arrive at the expression [80][Eq. (A6)]

$$w\Omega_{v,i}^{-}(w) = \sigma_i n_i \frac{\mu_+^2}{\mu} 2E_0 \left[e^{-\frac{m_\chi u^2}{2E_0}} - e^{-\frac{\mu}{\mu_+^2} m_\chi \frac{u^2 + v^2}{2E_0}} \right] \Theta\left(\frac{\mu}{\mu_+^2} - \frac{u^2}{u^2 + v^2}\right)$$
(19.15)

where we have introduced

$$\mu = \frac{m_{\chi}}{m_i} \quad ; \quad \mu_{\pm} = \frac{\mu \pm 1}{2} \tag{19.16}$$

with m_i the mass of element *i*. The Heaviside step function Θ plays the role of only including WIMPs that can scatter to a velocity lower then the escape velocity *v*. To simplify our calculations we can drop this step function in Eq. (19.15) and instead set the upper limit of integration in Eq. (19.11) to

$$u_{max} = \sqrt{\frac{\mu}{\mu_-^2}} v \tag{19.17}$$

We also need the scattering cross section on element i, which can be written as [3][Eq. (9-25)]

$$\sigma_i = \sigma_p A_i^2 \frac{(m_\chi m_i)^2}{(m_\chi + m_i)^2} \frac{(m_\chi + m_p)^2}{(m_\chi m_p)^2}$$
(19.18)

where A_i is the atomic number of the element, m_p is the proton mass and σ_p is the scattering cross section on protons.

We now have what we need to calculate the capture rate. In Eq. (19.11) we integrate over the velocity for our chosen velocity distribution. We then integrate this equation over the radius of the Earth and sum over all the different elements in the Earth,

$$C = \int_0^{R_{\oplus}} dr \sum_i \frac{dC_i}{dV} 4\pi r^2 \tag{19.19}$$

Note that we have not assumed anything special about our velocity distribution, it doesn't even have to be isotropic since the distribution of elements evenly in the shells will make an anisotropic distribution on average to behave as an isotropic one. The routines that calculate the capture rates with these general (and accurate) expressions are dsntcapearthnum and dsntcapsunnum. As these calculations are somewhat time-consuming, we have also added a possibility to tabulate the result and interpolate in these tables. To use (or create, if the table files are missing) instead call dsntcapearthtab and dsntcapsuntab. These last two routines are the default in DarkSUSY. The velocity distribution used is determined by a switch when the halo model is set (i.e. when dshmset is called).

19.1.7 Accurate capture rates for the Earth for a Maxwell-Boltzmann velocity distribution

We will here give some more information on how the approximations introduced in the beginning of this chapter are derived from the general expressions in the preceeding section.

If the velocity distribution is of Maxwell-Boltzmann type we can greatly simplify our expressions above as we can perform the integration over velocity analytically. The integration over radius can also be further simplified by using the average mass fractions f_i and potentials ϕ_i in Tables 19.1– 19.2.

If the velocity distribution in the halo is Maxwell-Boltzmann, it looks like

$$f_h(u)du = n_\chi \frac{4}{\sqrt{\pi}} \left(\frac{3}{2}\right)^{\frac{3}{2}} \frac{u^2}{\bar{v}^3} e^{-\frac{3}{2}\frac{u^2}{\bar{v}^2}} du$$
(19.20)

where \bar{v} is the three-dimensional velocity dispersion and n_{χ} is the number density of WIMPs in the halo. However, the solar system moves through the halo with a velocity v_* and the distribution on observer with this velocity through the halo will see is

$$f_*(u) = f_h(u)e^{-\frac{3}{2}\frac{v_*^2}{\bar{v}^2}}\frac{\sinh\left(\frac{3uv_*}{\bar{v}^2}\right)}{\frac{3uv_*}{\bar{v}^2}} = n_\chi \sqrt{\frac{3}{2\pi}}\frac{u}{\bar{v}v_*} \left[e^{-\frac{3}{2}\frac{(u-v_*)^2}{\bar{v}^2}} - e^{-\frac{3}{2}\frac{(u+v_*)^2}{\bar{v}^2}}\right]$$
(19.21)

Now one would naively believe that this is not the distribution that an observer at the Earth will see. First of all, the Earth is moving with respect to the Sun and secondly, the WIMPs have gained speed by the gravitational attraction of the Sun when they reach the Earth. Both of these arguments are true and the distribution of WIMPs in the halo will not look like Eq. (19.21) to an observer on the Earth. However, Gould [104] showed that WIMPs from the halo can diffuse into the solar system due to gravitational interactions with the planets and this distribution of WIMPs will roughly look like as if the Earth was in free space moving through the halo with the velocity of the solar system, i.e. Eq. (19.21). We will later scrutinize this statement, as it turns out that it does not quite hold, but as a first guess it is a reasonable approximation. For the Sun, though, the velocity distribution give above is the correct one for a Maxwell-Boltzmann distribution.

With the distribution Eq. (19.21) we can analytically perform the integration over velocity in Eq. (19.11). After some algebra we arrive at [80][Eq. (A10)]

$$\frac{dC_i}{dV} = \left(\frac{8}{3\pi}\right)^{\frac{1}{2}} \frac{\sigma_i n_i n_\chi \bar{v}}{2b\eta} \\
\left[\frac{e^{-a\hat{\eta}^2}}{\sqrt{1+a}} \left[2\widetilde{\operatorname{erf}}(\hat{\eta}) - \widetilde{\operatorname{erf}}(\hat{A}_+) + \widetilde{\operatorname{erf}}(\hat{A}_-)\right] \\
-\frac{e^{-b\tilde{\eta}^2}}{\sqrt{1+b}} e^{-(a-b)A^2} \left[2\widetilde{\operatorname{erf}}(\check{\eta}) - \widetilde{\operatorname{erf}}(\check{A}_+) + \widetilde{\operatorname{erf}}(\check{A}_-)\right]\right]$$
(19.22)

where erf is the modified error function,

$$\widetilde{\operatorname{erf}}(x) = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad ; \qquad \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy. \tag{19.23}$$

Following Gould [80], we have in Eq. (19.22) introduced the following shorthand notation:

$$\eta = \sqrt{\frac{3}{2} \frac{v_{\pm}^{2}}{v^{2}}} ; \quad a = \frac{m_{c}hi\bar{v}^{2}}{3E_{0}} ; \quad b = \frac{\mu}{\mu_{\pm}^{2}} a$$

$$\hat{\eta} = \frac{\eta}{\sqrt{1+a}} ; \quad \check{\eta} = \frac{\eta}{\sqrt{1+b}}$$

$$A^{2} = \frac{3}{2} \frac{v^{2}}{v^{2}} \frac{\mu}{\mu_{\pm}^{2}} ; \quad \hat{A} = A\sqrt{1+a} ; \quad \check{A} = A\sqrt{1+b}$$

$$\hat{A}_{\pm} = \hat{A} \pm \hat{\eta} ; \quad \check{A}_{\pm} = \check{A} \pm \check{\eta}$$

$$(19.24)$$

If we wish, we can now integrate Eq. (19.22) over radius just like in the previous section, but we can without loosing too much accuracy, replace this integration with a sum over the elements in the Earth with their respective typical location. I.e. we can write

$$C = \sum_{i} \frac{dC_i}{dV} \frac{1}{n_i} \frac{f_i M_{\oplus}}{m_i}$$
(19.25)

where we instead of the number density n_i use the total number of atoms of the given type $f_i M_{\oplus}/m_i$. Note that for each element in the sum we should evaluate this expression at the given typical gravitational potential ϕ_i of the element, i.e. with the escape velocity given by Eq. (19.10). The mass fractions f_i and typical potentials ϕ_i are listed in Table 19.2 (and analogously in Table 19.1 for the Sun). This approximation introduces an error of no more than about 1–2% for a Maxwell-Boltzmann distribution^{*}

The capture rate evaluated with the expressions shown here are encoded into the routine dsntcapearth2. Note that we have not coded the corresponding approximate expressions for the Sun. Instead, as given in the preceeding section, we now have more accurate expressions for both the Sun and the Earth.

19.1.8 A possible new population of neutralinos

Recently, it has been shown that the scattering process in the Sun can populate orbits which subsequently result in a bound Solar System population of WIMPs [101, 102] and which can be comparable in spectral density, in the region of the Earth, to the Galactic halo WIMP population. This new population consists of WIMPs that have scattered in the outer layers of the Sun and due to perturbations by the other planets (mainly Venus and Jupiter) evolve into bound orbits which do not cross the Sun but do cross the Earth's orbit. This population of WIMPs should have a completely different velocity distribution than halo WIMPs and will thus have quite different capture probabilities in the Earth. The predicted WIMP abundance, and spectrum, relevant for direct detection have been calculated in [101, 102], where it was shown that although the total rates may not change by a large amount, there could be a striking directional effect, which could be of impoertance once detectors with directional sensitivity are built. Also for capture in the Earth, and the predicted indirect neutrino signature, there are poissibly large effects, incorporated as an optional choice in DarkSUSY, coming from this new population [77]. (Other studies of solar system populations of WIMPs can be found in [103, 104]. See also the comments in [105] about the uncertainties involved in estimating these effects.)

The enhancement caused by the new population is only important for neutralino mass less than 150 - 170 GeV (the exact number depending on details about the angular momentum distribution [77]).

Following the notation of [101, 102] one can write the contribution from the new population of neutralinos to the usual halo neutralino density as

$$\delta_E \equiv \frac{n(a_1)}{n_X} \equiv \frac{\text{(secondary) neutralino density at the Earth}}{\text{halo neutralino density at infinity}}, \qquad (19.26)$$

^{*}Note that it is not advisable to use this approximation for general velocity distributions. If one e.g. has a lower limit on possible velocities, u_{min} , for heavy WIMPs capture will then only be possible very close to the central core. Replacing the actual distribution of potentials $\phi(r)$ with the typical value ϕ_i may then introduce larger errors. We will encounter these kind of distributions shortly.

where

$$\delta_E = \frac{5.44 \times 10^{36}}{(v_o/220 \,\mathrm{km \, s}^{-1})} \times g_{\rm tot} \,\mathrm{GeV \, cm}^{-2} = \frac{0.212}{(v_o/220 \,\mathrm{km \, s}^{-1})} g_{\rm tot}^{(-10)} \,. \tag{19.27}$$

Here, $g_{\text{tot}}^{(-10)} \equiv 10^{10} g_{\text{tot}} (\text{GeV})^3$, and $g_{\text{tot}} = \sum_A (f_A/m_A) \sigma_A \phi_A^s$, where f_A is the mass fraction of element A in the Sun, and ϕ_A^s is the surface value of the capture function on the element of mass number A in the Sun [102].

The scattering rate of neutralinos in the outer layers of the Sun (which causes the fast halo neutralinos to lose enough energy to enter bound orbits close to the Earth's orbit) is proportional to $\sigma_A \phi_A^s$, which can be calculated once the parameters of the SUSY neutralino in question are fixed. (For the elemental abundances in the Sun, we use the compilation in [106].)

The values of $g_{tot}^{(-10)}$ can in some cases approach unity. The spread is very large, however, and some models give orders of magnitude smaller values. As would be expected, the models with the highest values of $g_{tot}^{(-10)}$ are the same models which give high scattering rates in direct detection experiments. As mentioned, the integrated effect of the new population in direct experiments is not very prominent (see refs. [101, 102]). On the other hand, they can imply a large effect on indirect detection neutrino rates.

The total capture rate is computed according to the formulas in [77], which take into account that the annihilation rates from the earth will, in general depend on time in a different way than the simple result in Eq. (19.7).

Due to this nonlinear nature of the capture rate, there is no simple scaling of the computed detection rates with the local halo density. Therefore, it is advisable that the user rescales the local halo density (see section 15.1.1) before calculating the rates in neutrino telescopes.

The new population can cause an increase of the detection rates by as much as a factor of 100 when the neutralino mass is less than around 150 GeV.

19.1.9 Effects of WIMP diffusion in the solar system

As the Earth has a rather low escape velocity, the Earth will only be able to capture WIMPs that have a rather low velocity with respect to the Earth. However, WIMPs from the halo have gained speed in the gravitational potential from the Sun and will essentially be impossible to capture by the Earth. Hence, the Earth will only capture WIMPs that have diffused around in the solar system (by gravitational interactions with the other planets). Gould showed [187] that effectively this diffusion will lead to the same phase space distribution at the Earth as if the Earth was in free space (i.e. neglecting the solar potential). However, numerical simulations of asteroids showed that they are thrown into the Sun due to perturbations of the orbits by other planets, see e.g. [188]. These analyses led to worried that maybe the population of WIMPs diffusing around in the solar system is not as big as thought [189]. In [186], Lundberg and Edsjö investigated this issue with detailed numerical simulations of WIMP orbits in the solar system, showing that the annihilation rate in the Earth is typically reduced by up to two orders of magnitude. In DarkSUSY, we include these results for the neutrino rates from the Earth by using the velocity distribution at the Earth (as obtained in [186]). This velocity distribution is then used as input for our numerical capture rate routines instead of the usual approximation of using the halo velocity distribution directly. Using these new velocity distributions for the Earth is the default in DarkSUSY.

19.2 Neutrinos from Sun and Earth – routines

COMMENT #10: NOTE: This section is not up-to date with the current DarkSUSY release.

This set of routines contain routines to calculate the neutrino-induced muon flux from the Earth and the Sun in various models. It also includes routines that calculate the neutrino-induced muon flux from other sources, like the Sun's atmosphere, the Earth's atmosphere .

COMMENT #11: (include these???)

206 CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

There are three different methods of calculation available (determined by ntcalcmet in dsntcom.h). Method 1 uses the approximate formulae for the capture rates in the Earth/Sun from the Jungman, Kamionkowski and Griest review [3]. Method 2, uses the same expression for the Sun, but the full expression from Gould [169] for capture in the Earth (this is the default). Method 3, finally, is the same as 2, but it also includes capture in the Earth from the Damour-Krauss population of WIMPs that have scattered in the outscirts of the Sun. The easiest way to select method is by calling dsntset, with the argument 'jkg' for method 1, 'gould' or 'default' for method 2 and 'dk' for method 3. A call to dsntset('default') is made in dsinit, but can be changed by the user by calling dsntset after dsinit.

To calculate the neutrino-induced muon flux from the Earth, you call

	sul	proutine	dsntrates(emuth,t	hmax,rty	pe,rateea,	ratesu,istat)
--	-----	----------	------------	---------	----------	------------	---------------

Purpose:		Calculate the rate of neutrinos or neutrino-induced muons in a neutrino tele- scope from neutralino annihilation in the Earth and the Sun
Input:		
emuth	r8	The neutrino or muon energy threshold in GeV.
thmax	r8	The half-aperture opening angle (in degrees) towards the center of the Sun or the Earth (i.e. the flux will be summed in a cone towards the center of the Sun or the Earth, where the top-angle of the cone is 2*thmax).
rtype	i	Type of flux to calculate:
		=1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km^{-2} yr ⁻¹ .
		-2. Heat motion conversion rate (muons and anti-muons summed) in units of km ⁻³ yr ⁻¹
Quitmuit		=3: muon flux (muons and anti-muons summed) in units of $\text{km}^{-2} \text{ yr}^{-1}$.
ourpui.	r8	The rate from neutraline annihilation in the Earth in the above units
ratesu	r8	The rate from neutralino annihilation in the Sun in the above units.
istat	i0	-0: Everything went OK
15101	1	$\neq 0$: Some of the tables of neutrino or muon yields had to be used outside their
		tabulated regions. Extrapolations have been used.
subroutine dsr	ntdiff	rates(emu,theta,rtype,rateea,ratesu,istat)
Durnogoi		Calculate the differential rate of neutrinos or neutrino-induced muons in a neu-
1 urpose.		trino telescope from neutralino annihilation in the Earth and the Sun.
Input:		trino telescope from neutralino annihilation in the Earth and the Sun.
Input: emu	r8	trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV.
Input: emu theta	r8 r8	The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth.
Input: emu theta rtype	r8 r8 i	The neutrino or muon energy in GeV.The angle (in degrees) from the center of the Sun or the Earth.Type of flux to calculate:
Input: emu theta rtype	r8 r8 i	trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km ⁻² yr^{-1} GeV ⁻¹ degrees ⁻¹ .
Input: emu theta rtype	r8 r8 i	The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km ⁻³ yr ⁻¹ GeV ⁻¹ degrees ⁻¹ .
Input: emu theta rtype	r8 r8 i	trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km ⁻³ yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =3: muon flux (muons and anti-muons summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ .
Input: emu theta rtype Output:	r8 r8 i	trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km ⁻³ yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =3: muon flux (muons and anti-muons summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ .
Input: emu theta rtype Output: rateea	r8 r8 i	 trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km⁻² yr⁻¹ GeV⁻¹ degrees⁻¹. =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km⁻³ yr⁻¹ GeV⁻¹ degrees⁻¹. =3: muon flux (muons and anti-muons summed) in units of km⁻² yr⁻¹ GeV⁻¹ degrees⁻¹. =3: muon flux (muons and anti-muons summed) in units of km⁻² yr⁻¹ GeV⁻¹ The rate from neutralino annihilation in the Earth in the above units.
Input: emu theta rtype Output: rateea ratesu	r8 r8 i r8 r8	 trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km⁻² yr⁻¹ GeV⁻¹ degrees⁻¹. =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km⁻² yr⁻¹ GeV⁻¹ degrees⁻¹. =3: muon flux (muons and anti-muons summed) in units of km⁻² yr⁻¹ GeV⁻¹ degrees⁻¹. The rate from neutralino annihilation in the Earth in the above units. The rate from neutralino annihilation in the Sun in the above units.
Input: emu theta rtype Output: rateea ratesu istat	r8 r8 i r8 r8 i	trino telescope from neutralino annihilation in the Earth and the Sun. The neutrino or muon energy in GeV. The angle (in degrees) from the center of the Sun or the Earth. Type of flux to calculate: =1: muon neutrino-flux (neutrino and anti-neutrino summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =2: neutrino-to-muon conversion rate (muons and anti-muons summed) in units of km ⁻³ yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . =3: muon flux (muons and anti-muons summed) in units of km ⁻² yr ⁻¹ GeV ⁻¹ degrees ⁻¹ . The rate from neutralino annihilation in the Earth in the above units. The rate from neutralino annihilation in the Sun in the above units. =0: Everything went OK.

19.3 Routine headers – fortran files

dsai.f

```
real*8 function dsai(x)
c dsairy function
c lb 990224
```

dsaip.f

```
real*8 function dsaip(x)
c dsairy function derivative
c lb 990224
```

dsatm_mu.f

```
real*8 function dsatm_mu(e_mu,c_th,flt)
gives muon flux from atmospheric neutrinos. uses dshonda.f and
с
    dsgauss1.f.
с
    based on the approximation in gaisser and stanev prd30 (1984) 985.
с
с
   variables:
    e_mu muon energy in gev
с
    c_th cosine of zenith angle
С
    fltype - 1 flux of muons in units of cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> gev<sup>-1</sup>
С
             2 cont. event rates in units of cm<sup>-3</sup> s<sup>-1</sup> sr<sup>-1</sup> gev<sup>-1</sup>
с
С
    output is dn/de_mu in muons per cm**2(3) per sec per sr per gev
С
    1. bergstrom 1996-09-02
С
    modified by j. edsjo (edsjo@physto.se)
с
    date: jun-03-98
с
С
```

dsbi.f

real*8 function dsbi(x)
c dsairy function
c lb 990224

dsbip.f

real*8 function dsbip(x)

c dsairy function derivative

c 1b 990224

208CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

dsff.f

```
real*8 function dsff(x)
No header found.
```

dsff2.f

real*8 function dsff2(x)
No header found.

dsff3.f

```
real*8 function dsff3(x)
No header found.
```

dsfff2.f

```
real*8 function dsfff2(x)
No header found.
```

dsfff3.f

real*8 function dsfff3(x)
No header found.

dsgauss1.f

subroutine dsgauss1(f,a,b,result,eps,lambda)

dshiprecint.f

subroutine dshiprecint(fun,foveru,lowlim,upplim,result)

dshiprecint2.f

subroutine dshiprecint2(fun,foveru,lowlim,upplim,result)

dshonda.f

```
real*8 function dshonda(nu_type,e_nu,c_th)
с
    gives atmospheric neutrino flux according to m. dshonda et al.,
с
    phys. rev. d52 (1995) 4985, by interpolating their tables iv
с
    and v in log(e_nu) and cos_theta.
С
с
    variables:
с
           nu_type - type of neutrino:
с
с
           nu_type=1 muon neutrino
с
```

```
nu_type=2 muon antineutrino
С
                 nu_type=3 electron antineutrino (not yet implemented)
С
                 nu_type=4 electron antineutrino (not yet implemented)
С
с
С
                 e_nu - neutrino energy in gev
С
                 c_th - cosine of zenith angle
с
с
      output: dshonda returns neutrino differential flux dn_nu/de in units
с
              of cm<sup>(-2)</sup>sec<sup>(-1)</sup>sr<sup>(-1)</sup>gev<sup>(-1)</sup>.
с
      allowed energy range: 1 gev to 3.9 tev (above 3.1 tev extrapolation
с
      is made)
с
с
      lars bergstrom 1996-09-02
С
С
С
```

dslnff.f

real*8 function dslnff(x)
No header found.

dsntannrate.f

```
subroutine dsntannrate(mx,sigsip,sigsdp,sigma_v,arateea,
    & aratesu)
C____
с
     wimp annihilation rate in the sun and in the earth
С
     in units of 10<sup>24</sup> annihilations per year
с
с
     also gives the capture rate and the annih/capt equilibration time
с
с
    november, 1995
с
    uses routines by p. gondolo and j. edsjo
с
    modified by 1. bergstrom and j. edsjo and p. gondolo
с
    capture rate routines are written by 1. bergstrom
с
    input: mx
с
                   - wimp mass
            sigsip - spin-indep wimp-proton cross section in cm<sup>2</sup>
с
            sigsdp - spin-dep wimp-proton cross section in cm<sup>2</sup>
с
            sigma_v - wimp self-annihilation cross section in cm<sup>3</sup>/s
с
с
            rescale - rescale factor for local density
    output: arateea - 10^24 annihilations per year, earth
с
            aratesu - 10^24 annihilations per year, sun
с
    slightly modified by j. edsjo.
с
    modified by j. edsjo 97-05-15 to match new inv. rate convention
с
    modified by j. edsjo 97-12-03 to match muflux3.21 routines.
с
    modified by p. gondolo 98-03-04 to detach it from susy routines.
С
с
```

dsntcapcom.f

No header found.

dsntcapearth.f

real*8 function dsntcapearth(mx,sigsi)

c-----

-	
с	capture rate in the earth
с	based on jungman, kamionkowski, griest review
с	mx: neutralino mass
с	sigsi: spin independent cross section in units of cm ²
с	vobs: average halo velocity
с	lars bergstrom 1995-12-14
c	

dsntcapearth2.f

real*8 function dsntcapearth2(mx,sigsi)
c------

```
capture rate in the earth
с
      uses the full routines instead of jkg (as in dsntcapearth).
С
c *** full: use formulas by gould as reported in jkg
С
С
     mx: neutralino mass
     sigsi: spin independent cross section in units of cm<sup>2</sup>
С
     vbar: 3D WIMP velocity dispersion in the halo
с
     vstar: Sun's velocity through the halo
с
     lars bergstrom 1998-09-15
с
c-----
```

dsntcapearthfull.f

real*8 function dsntcapearthfull(mx,sigsi,v_star,v_bar,rho_x) C----capture rate in the earth С c *** full: use formulas by gould ap.j. 321 (1987) 571 mass fractions and phi_i from jkg review С mx: neutralino mass С sigsi: spin independent cross section in units of cm² С v_star: solar system velocity through halo (220 km/s in standard case) С v_bar: 3D velocity dispersion of wimps (270 km/s in standard case) С rho_x: local wimp density (units of gev/cm**3) с lars bergstrom 1998-09-21 с Modified by J. Edsjo, 2003-11-22 с c References: gould: Gould ApJ 321 (1987) 571 C-----

dsntcapearthnum.f

>	************************************	
***	dsntcapearthnum calculates the capture rate at present.	
***	Intead of using the assumptions of Gould (i.e. capture as in	
***	free space), a tabulted velocity distribution based on detailed	
***	numerical simulations of Johan Lundberg is used.	
***	A numerical intregration has to be performed instead of the	
***	convenient expressions in jkg.	
***	Input: mx = neutralino mass in GeV	
***	sigsi = spin-independent scattering cross section in cm ²	
***	type = type of velocity distribution	
***	1 = best estimate of distribution at Earth form numerical sims	
***	2 = conservative estimate, only including free orbits and	
***	jupiter-crossing orbits	
***	3 = ultraconservative estimate, only including free orbits	
***	4 = as if Earth was in free space, i.e. with a Gaussian	
***	(Gaussian provided by dsntsdfoveru)	
***	5 = as if Earth was in free space, i.e. with a Gaussian	
***	(Gaussian provided by dsntdkfoverugauss)	
***	6 = Damour-Krauss population (this is per gtot10), i.e.	
***	multiply with gtot10 to get the full capture rate	
***	Note: 1 is the best estimate of the distribution at Earth	
***	and should be used as a default	
***	author: joakim edsjo (edsjo@physto.se)	
***	date: July 10, 2003	

	real*8 function dsntcapearthnum(mx,sigsi)	

212CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

dsntcapearthnumi.f

```
c dsntcapearthnumi.f:
*** dsntcapearthnumi gives the capture rate of neutralinos in the earth
*** given a specified velocity distribution. the integrations over
*** the earth's radius and over the velocity distribution are
*** performed numerically
*** input: mx [ gev ]
         sigsi [ cm<sup>2</sup>]
***
***
         foveru [ cm<sup>-3</sup> (cm s<sup>-1</sup>)<sup>-2</sup> ] external function f(u)/u with
           velocity u [ km s<sup>-1</sup> ] as argument.
***
***
        vt (velocity type): 1=general type, 2=DK-type (i.e. only
***
           include non-zero parts )
*** output: capture rate [ s^-1 ]
*** l.b. and j.e. 1999-04-06
*** Modified by Joakim Edsjo 2003-07-10 to allow for arbitrary external
*** velocity distributions foveru.
```

real*8 function dsntcapearthnumi(mx,sigsi,foveru,vt)

dsntcapearthtab.f

real*8 function dsntcapearthtab(mx,sigsi)

dsntcapsun.f

	real*8 function dsntcapsun(mx,sigsi,sigsd)
c	
с	capture rate in the sun
с	based on jungman, kamionkowski, griest review
с	mx: neutralino mass
с	sigsi: spin independent cross section in units of cm ²
с	sigsd: spin dependent cross section in units of cm ²
с	vobs: average halo velocity
с	output:
с	capture rate in s^-1
с	lars bergstrom 1995-12-12

19.3. ROUTINE HEADERS – FORTRAN FILES

c-----

dsntcapsunnum.f

```
*** dsntcapsunnum calculates the capture rate at present.
*** Instead of using the approximations in jkg, i.e. a gaussian
*** velocity distribution and approximating all elements as being
*** at their typical radius, we here integrate numerically over
*** the actual velocity distribution and over the Sun's radius.
*** The velocity distribution used is the one set up by the
*** option veldf in dshmcom.h (see src/hm/dshmudf.f for details)
*** Input: mx = neutralino mass in GeV
***
         sigsi = spin-independent scattering cross section (cm<sup>2</sup>)
         sgisd = spin-dependent scattering cross section on protons (cm<sup>2</sup>)
***
*** author: joakim edsjo (edsjo@physto.se)
*** date: 2003-11-26
real*8 function dsntcapsunnum(mx,sigsi,sigsd)
```

dsntcapsunnumi.f

```
c dsntcapsunnumi.f:
*** dsntcapsunnumi gives the capture rate of neutralinos in the sun
*** given a specified velocity distribution. the integrations over
*** the sun's radius and over the velocity distribution are
*** performed numerically
*** input: mx [ gev ]
***
       sigsi [ cm^2 ]
***
        sgisd [ cm<sup>2</sup>]
         foveru [ cm<sup>-3</sup> (cm s<sup>-1</sup>)<sup>-2</sup> ] external function f(u)/u with
***
          velocity u [ km s<sup>-1</sup> ] as argument.
***
*** Author: Joakim Edsjo
*** Date: 2003-11-26
******
```

real*8 function dsntcapsunnumi(mx,sigsi,sigsd,foveru)

dsntcapsuntab.f

real*8 function dsntcapsuntab(mx,sigsi,sigsd)

dsntceint.f

real*8 function dsntceint(r,foveru)

dsntceint2.f

c... c...auxiliary function for inner integrand c...input: velocity relaitve to earth in km/s c...output: integrand in cm⁻⁴ c...We here follow the analysis in Gould, ApJ 321 (1987) 571 and more c...specifically the more general expressions in appendix A. real*8 function dsntceint2(u,foveru)

dsntcsint.f

real*8 function dsntcsint(r,foveru)

dsntcsint2.f

```
c...
c...auxiliary function for inner integrand
c...input: velocity relaitve to sun in km/s
c...output: integrand in cm<sup>-4</sup>
c...We here follow the analysis in Gould, ApJ 321 (1987) 571 and more
c...specifically the more general expressions in appendix A.
        real*8 function dsntcsint2(u,foveru)
```

dsntctabcreate.f

subroutine dsntctabcreate(wh,i)

dsntctabget.f

real*8 function dsntctabget(wh,st,mx)

dsntctabread.f

subroutine dsntctabread(wh,i,file)

dsntctabwrite.f

subroutine dsntctabwrite(wh,i,file)

216CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

*** Modified: 2004-02-01

dsntdiffrates.f

```
subroutine dsntdiffrates(emu,theta,rtype,rateea,
    & ratesu, istat)
c_____
С
            neutralino branching ratios
С
            and capture rate in the sun
С
            muon flux calculated
С
   november, 1995
с
С
    uses routines by p. gondolo and j. edsjo
с
    modified by 1. bergstrom and j. edsjo
    capture rate routines are written by 1. bergstrom
с
    input: emu - muon (neutrino) energy in gev
с
            theta - muon (neutrino) angle from the center of the earth/sun
с
с
                    in degrees
            rtype - 1 = neutrino flux, km<sup>-2</sup> yr<sup>-1</sup> gev<sup>-1</sup> degree<sup>-1</sup>
С
                      2 = contained events km^{-3} yr^{-1} gev^{-1} degree^{-1}
С
                      3 = through-going events km<sup>-2</sup> yr<sup>-1</sup> gev<sup>-1</sup> degree<sup>-1</sup>
с
    hidden input: ntcalcmet - 1 use jkg approximations
с
                              2 use jkg for sun, full gould for earth
с
с
                              3 use jkg for sun, full gould+dk for earth
                              4 use full numerical calculations for Sun, Earth
с
    output: rateea - events from earth ann. km<sup>2</sup>-2(-3) yr<sup>-1</sup> gev<sup>-1</sup> deg<sup>-1</sup>
с
            ratesu - events from sun ann. per km<sup>-2(-3)</sup> yr<sup>-1</sup> gev<sup>-1</sup> deg<sup>-1</sup>
с
    slightly modified by j. edsjo.
с
    modified by j. edsjo 97-05-15 to match new inv. rate convention
С
с
    modified by j. edsjo 97-12-03 to match muflux3.21 routines.
    modified by p. gondolo 98-03-04 to detach dsntannrate from susy
с
    routines.
С
    modified by j. edsjo 98-09-07 to fix istat bug.
с
с
    modified by j. edsjo 98-09-23 to use damour-krauss distributions
с
      and full earth formulas.
   modified by j. edsjo 99-03-17 to include better damour-krauss
с
      velocity distributions and numerical capture rate integrations
с
      for these non-gaussian distributions
с
с
```

dsntdkannrate.f
```
also gives the capture rate and the annih/capt equilibration time
с
С
    november, 1995
С
    uses routines by p. gondolo and j. edsjo
с
    modified by 1. bergstrom and j. edsjo and p. gondolo
с
    capture rate routines are written by 1. bergstrom
С
    input: m_x
                   - wimp mass
С
            sigsip - spin-indep wimp-proton cross section in cm<sup>2</sup>
с
            sigsdp - spin-dep wimp-proton cross section in cm<sup>2</sup>
с
            sigma_v - wimp self-annihilation cross section in cm<sup>3</sup>/s
с
            rescale - rescale factor for local density
С
    output: arateea - 10<sup>24</sup> annihilations per year, earth
С
            aratesu - 10^24 annihilations per year, sun
с
            aratedk - 10<sup>24</sup> annihilations per year, earth including dk
С
    slightly modified by j. edsjo.
С
    modified by j. edsjo 97-05-15 to match new inv. rate convention
С
    modified by j. edsjo 97-12-03 to match muflux3.21 routines.
с
    modified by p. gondolo 98-03-04 to detach it from susy routines.
С
с
    added damour-krauss population 1.bergstrom 98-09-15
    added better damour-krauss velocity distribution and numerical
с
с
      integration of the capture rate for these non-gaussian
      distributions. j. edsjo 99-03-17.
С
C______
```

dsntdkcapea.f

		real*8 function dsntdkcapea(mx,sigsi,sigsd)
c-		
с		capture rate in the earth
с		low-velocity population described by damour and krauss (1998)
с	***	<pre>simple version: only change vobs -> v_dk \sim 3*v_esc_earth</pre>
с	***	in a factor (9.22) in jkg
с		based on jungman, kamionkowski, griest review
с		mx: neutralino mass
с		sigsi: spin independent cross section in units of cm ²
с		vobs: average halo velocity
с		lars bergstrom 1998-09-15
<u>-</u>		

dsntdkcapeafull.f

```
real*8 function dsntdkcapeafull(mx,sigsi,sigsd)
c-----
        capture rate in the earth
с
        low-velocity population described by damour and krauss (1998)
с
c *** full: use formulas by gould as reported in jkg
с
      mx: neutralino mass
с
       sigsi: spin independent cross section in units of cm<sup>2</sup>
с
      vobs: average halo velocity
С
    lars bergstrom 1998-09-15
С
c-----
                    _____
```

218CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

dsntdkcapearth.f

dsntdkcom.f

No header found.

dsntdkfbigu.f

dsntdkfoveru.f

real*8 function dsntdkfoveru(u)

dsntdkgtot10.f

real*8 function dsntdkgtot10(mx,sigsi,sigsd)
c------

dsntdkka.f

dsntdkyf.f

```
real*8 function dsntdkyf(xi,xf)
c y_f according to damour (gamma^{tot}_a = \half\alpha y_f^2 )
c lb 1998-02-24
```

dsntdqagse.f

```
* nist guide to available math software.
* fullsource for module dqagse from package cmlib.
* retrieved from camsun on wed oct 8 08:26:30 1997.
                                _____
     subroutine dsntdqagse(f,foveru,
    &
       a,b,epsabs,epsrel,limit,result,abserr,neval,
    1
       ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqagse
c***date written 800101
                          (yymmdd)
c***revision date 830518
                          (yymmdd)
c***category no. h2a1a1
c***keywords (end point) singularities, automatic integrator,
             extrapolation, general-purpose, globally adaptive
С
c***author piessens, robert, applied math. and progr. div. -
            k. u. leuven
с
           de doncker, elise, applied math. and progr. div. -
С
            k. u. leuven
с
c***purpose the routine calculates an approximation result to a given
           definite integral i = integral of f over (a,b),
с
           hopefully satisfying following claim for accuracy
с
            abs(i-result).le.max(epsabs,epsrel*abs(i)).
с
c***description
С
        computation of a definite integral
С
        standard fortran subroutine
с
```

220CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

```
real*8 version
С
С
         parameters
с
с
          on entry
             f
с
                    - real*8
                      function subprogram defining the integrand
с
                      function f(x). the actual name for f needs to be
с
с
                      declared e x t e r n a l in the driver program.
с
                    - real*8
с
             а
                      lower limit of integration
С
с
                    - real*8
с
             b
                      upper limit of integration
С
с
             epsabs - real*8
С
                      absolute accuracy requested
с
с
             epsrel - real*8
с
                      relative accuracy requested
с
                      if epsabs.le.0
                      and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
с
                      the routine will end with ier = 6.
С
с
с
             limit - integer
                      gives an upperbound on the number of subintervals
с
                      in the partition of (a,b)
с
с
          on return
с
             result - real*8
с
                      approximation to the integral
С
с
             abserr - real*8
с
                      estimate of the modulus of the absolute error,
с
                      which should equal or exceed abs(i-result)
с
с
с
             neval - integer
                      number of integrand evaluations
с
С
с
             ier
                    - integer
                      ier = 0 normal and reliable termination of the
с
                               routine. it is assumed that the requested
с
                               accuracy has been achieved.
с
                      ier.gt.0 abnormal termination of the routine
с
                               the estimates for integral and error are
с
                               less reliable. it is assumed that the
с
                               requested accuracy has not been achieved.
С
С
             error messages
                          = 1 maximum number of subdivisions allowed
с
                               has been achieved. one can allow more sub-
С
с
                               divisions by increasing the value of limit
с
                               (and taking the according dimension
с
                               adjustments into account). however, if
```

c c		this yields no improvement it is advised to analyze the integrand in order to
с		determine the integration difficulties. if
с		the position of a local difficulty can be
с		determined (e.g. singularity,
С		discontinuity within the interval) one
С		will probably gain from splitting up the
С		interval at this point and calling the
С		integrator on the subranges. if possible,
С		an appropriate special-purpose integrator
С		should be used, which is designed for
с		handling the type of difficulty involved.
с	=	2 the occurrence of roundoff error is detec-
с		ted, which prevents the requested
С		tolerance from being achieved.
с		the error may be under-estimated.
с	=	3 extremely bad integrand behaviour
С		occurs at some points of the integration
С		interval.
С	=	4 the algorithm does not converge.
С		roundoff error is detected in the
С		extrapolation table.
с		It is presumed that the requested
С		torerance cannot be achieved, and that the
с		returned result is the best which can be
c	_	obtailled.
c	=	5 the integral is probably divergent, or
C		divergence can occur with any other value
C		of ior
C	=	6 the input is invalid because
C	_	ensabe le 0 and
C		epsaus.ie. v and epsaus.ie. v and ensrel 1t max(50*rel mach acc. 0.5d-28)
C C		result abserr neval last rlist(1)
c		iord(1) and elist(1) are set to zero
c		alist(1) and $blist(1)$ are set to a and b
c		respectively.
c		
C	alist - real*	8
C	vecto	r of dimension at least limit. the first
C	last	elements of which are the left end points
с	of the	e subintervals in the partition of the
с	given	integration range (a,b)
с	0	
с	blist - real*	8
с	vecto	r of dimension at least limit, the first
с	last	elements of which are the right end points
с	of the	e subintervals in the partition of the given
с	integ	ration range (a,b)
с		
с	rlist - real*	8
с	vecto	r of dimension at least limit, the first

```
last elements of which are the integral
С
с
                      approximations on the subintervals
С
             elist - real*8
с
                      vector of dimension at least limit, the first
с
                       last elements of which are the moduli of the
С
                      absolute error estimates on the subintervals
с
с
с
             iord
                  - integer
                      vector of dimension at least limit, the first k
с
                      elements of which are pointers to the
С
                      error estimates over the subintervals,
с
                      such that elist(iord(1)), ..., elist(iord(k))
с
                      form a decreasing sequence, with k = last
с
                      if last.le.(limit/2+2), and k = limit+1-last
С
                      otherwise
С
с
С
             last - integer
с
                      number of subintervals actually produced in the
                      subdivision process
с
c***references (none)
c***routines called d1mach,dqelg,dqk21,dqpsrt
c***end prologue dqagse
```

dsntdqagseb.f

```
* nist guide to available math software.
* fullsource for module dqagse from package cmlib.
* retrieved from camsun on wed oct 8 08:26:30 1997.
                _____
* =====
                               _____
     subroutine dsntdqagseb(f,foveru,
    & a,b,epsabs,epsrel,limit,result,abserr,neval,
       ier,alist,blist,rlist,elist,iord,last)
    1
c***begin prologue dqagse
c***date written 800101
                         (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a1
c***keywords (end point) singularities, automatic integrator,
            extrapolation, general-purpose, globally adaptive
С
c***author piessens, robert, applied math. and progr. div. -
            k. u. leuven
С
С
          de doncker, elise, applied math. and progr. div. -
            k. u. leuven
С
c***purpose the routine calculates an approximation result to a given
           definite integral i = integral of f over (a,b),
С
           hopefully satisfying following claim for accuracy
с
           abs(i-result).le.max(epsabs,epsrel*abs(i)).
с
c***description
с
        computation of a definite integral
с
```

```
standard fortran subroutine
С
         real*8 version
С
С
         parameters
с
с
          on entry
             f
                     - real*8
с
                      function subprogram defining the integrand
с
                       function f(x). the actual name for f needs to be
с
с
                      declared e x t e r n a l in the driver program.
с
                    - real*8
с
             а
                      lower limit of integration
с
с
                    - real*8
             b
С
                      upper limit of integration
с
с
             epsabs - real*8
С
                      absolute accuracy requested
с
с
             epsrel - real*8
                      relative accuracy requested
с
с
                      if epsabs.le.0
                      and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
С
                      the routine will end with ier = 6.
с
с
             limit - integer
С
                      gives an upperbound on the number of subintervals
с
                       in the partition of (a,b)
с
с
          on return
с
             result - real*8
с
                       approximation to the integral
с
с
             abserr - real*8
С
                       estimate of the modulus of the absolute error,
С
с
                      which should equal or exceed abs(i-result)
с
             neval - integer
С
                      number of integrand evaluations
с
с
с
             ier
                    - integer
                       ier = 0 normal and reliable termination of the
с
                               routine. it is assumed that the requested
с
                               accuracy has been achieved.
с
                       ier.gt.0 abnormal termination of the routine
с
                               the estimates for integral and error are
С
                               less reliable. it is assumed that the
с
                               requested accuracy has not been achieved.
с
             error messages
С
                           = 1 maximum number of subdivisions allowed
с
с
                               has been achieved. one can allow more sub-
с
                               divisions by increasing the value of limit
с
                               (and taking the according dimension
```

adjustments into account). however, if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties. if
the position of a local difficulty can be
determined (e.g. singularity.
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges if negsible
integrator on the subranges. If possible,
an appropriate special-purpose integrator
snould be used, which is designed for
handling the type of difficulty involved.
= 2 the occurrence of roundoff error is detec-
ted, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
= 3 extremely bad integrand behaviour
occurs at some points of the integration
interval.
= 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table.
it is presumed that the requested
tolerance cannot be achieved and that the
returned result is the best which can be
obtained result is the best which can be
obtaineu.
= 5 the integral is probably divergent, or
slowly convergent. It must be noted that
divergence can occur with any other value
of ier.
= 6 the input is invalid, because
<pre>= 6 the input is invalid, because epsabs.le.0 and</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28).</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1),</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero.</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively.</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively.</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last_elements of which are the left end points</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (2 b)</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b)</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) bligt = meal*8</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 real*8</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first lost elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first lost elements of which are the left end points vector of dimension at least limit, the first lost elements of which are the left end points vector of dimension at least limit, the first lost elements of which are the left end points vector of dimension at least limit, the first lost elements of which are the left end points vector of dimension at least limit, the first lost elements of which are the left end points lost elements of which are the left end points elements el</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first last elements of which are the right end points last elements of which are the right end points real*8 vector of dimension at least limit, the first last elements of which are the right end points last elements of which are the right end points</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first last elements of which are the right end points of the subintervals in the partition of the given</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first last elements of which are the right end points of the subintervals in the partition of the given integration range (a,b)</pre>
<pre>= 6 the input is invalid, because epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - real*8 vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - real*8 vector of dimension at least limit, the first last elements of which are the right end points of the subintervals in the partition of the given integration range (a,b)</pre>

с		vector of dimension at least limit, the first
с		last elements of which are the integral
с		approximations on the subintervals
с		
с	elist	- real*8
с		vector of dimension at least limit, the first
с		last elements of which are the moduli of the
с		absolute error estimates on the subintervals
с		
с	iord	- integer
с		vector of dimension at least limit, the first k
с		elements of which are pointers to the
с		error estimates over the subintervals,
с		<pre>such that elist(iord(1)),, elist(iord(k))</pre>
с		form a decreasing sequence, with $k = last$
с		if last.le.(limit/2+2), and $k = limit+1-last$
с		otherwise
с		
с	last	- integer
с		number of subintervals actually produced in the
с		subdivision process
c***reference	es (non	e)
c***routines	called	d1mach,dqelg,dqk21,dqpsrt
c***end prolo	ogue dq	agse
с		

```
dsntdqk21.f
```

```
subroutine dsntdqk21(f,foveru,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk21
c***date written 800101
                            (yymmdd)
c***revision date 830518
                            (yymmdd)
c***category no. h2a1a2
c***keywords 21-point gauss-kronrod rules
c***author piessens, robert, applied math. and progr. div. -
             k. u. leuven
с
           de doncker, elise, applied math. and progr. div. -
с
             k. u. leuven
с
c***purpose to compute i = integral of f over (a,b), with error
                            estimate
с
                        j = integral of abs(f) over (a,b)
с
c***description
С
С
           integration rules
с
           standard fortran subroutine
           real*8 version
с
С
с
           parameters
            on entry
с
                      - real*8
              f
С
                        function subprogram defining the integrand
С
                        function f(x). the actual name for f needs to be
с
```

```
declared e x t e r n a l in the driver program.
С
с
С
                      - real*8
               а
                        lower limit of integration
с
с
                      - real*8
               b
с
                        upper limit of integration
с
с
с
             on return
               result - real*8
с
                        approximation to the integral i
с
с
                        result is computed by applying the 21-point
                        kronrod rule (resk) obtained by optimal addition
с
                        of abscissae to the 10-point gauss rule (resg).
с
С
               abserr - real*8
с
                        estimate of the modulus of the absolute error,
с
с
                        which should not exceed abs(i-result)
с
с
               resabs - real*8
                        approximation to the integral j
с
С
               resasc - real*8
с
С
                        approximation to the integral of abs(f-i/(b-a))
                        over (a,b)
С
c***references (none)
c***routines called d1mach
c***end prologue dqk21
с
```

dsntdqk21b.f

```
subroutine dsntdqk21b(f,foveru,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk21
c***date written 800101
                            (yymmdd)
c***revision date 830518
                            (yymmdd)
c***category no. h2a1a2
c***keywords 21-point gauss-kronrod rules
c***author piessens, robert, applied math. and progr. div. -
              k. u. leuven
с
            de doncker, elise, applied math. and progr. div. -
с
             k. u. leuven
с
c***purpose to compute i = integral of f over (a,b), with error
                            estimate
С
                        j = integral of abs(f) over (a,b)
с
c***description
С
            integration rules
с
            standard fortran subroutine
с
с
           real*8 version
с
с
           parameters
```

19.3. ROUTINE HEADERS – FORTRAN FILES

с	on entry	
с	f -	real*8
с		function subprogram defining the integrand
с		function $f(x)$. the actual name for f needs to be
с		declared e x t e r n a l in the driver program.
с		
с	a -	real*8
с		lower limit of integration
с		
с	b –	real*8
с		upper limit of integration
с		
с	on return	
с	result -	real*8
с		approximation to the integral i
с		result is computed by applying the 21-point
с		kronrod rule (resk) obtained by optimal addition
с		of abscissae to the 10-point gauss rule (resg).
с		
с	abserr -	real*8
с		estimate of the modulus of the absolute error,
с		which should not exceed abs(i-result)
с		
с	resabs -	real*8
с		approximation to the integral j
с		
с	resasc -	real*8
с		approximation to the integral of abs(f-i/(b-a))
с		over (a,b)
c***reference	es (none)	
c***routines called d1mach		
c***end prolo	ogue dqk21	
с		

dsntearthdens.f

с	program test
с	implicit none
с	integer i
с	real*8 radius,dsntearthdens,dsntearthmassint,dsntearthmass,
с	& dsntearthpotint,dsntearthpot,tmp,dsntearthvesc,
с	& dsntearthdenscomp
с	real*8 depth(42)
с	data depth/0.0d0,3.0d0,15.0d0,24.0d0,80.0d0,
с	& 219.99d0,220.0d0,399.99d0,400.0d0,500.0d0,
с	& 600.0d0,669.99d0,670.0d0,770.0d0,1000.0d0,
с	<pre>& 1250.0d0,1500.0d0,1750.0d0,2000.0d0,2250.0d0,</pre>
с	& 2500.0d0,2750.0d0,2899.99d0,2900.0d0,3000.0d0,
с	& 3250.0d0,3500.0d0,3750.0d0,4000.0d0,4250.0d0,
с	& 4500.0d0,4750.0d0,5000.0d0,5149.99d0,5150.0d0,
с	& 5250.0d0,5500.0d0,5750.0d0,6000.0d0,6250.0d0,
с	& 6371.0d0,6379.0d0/ ! in km

```
С
       do i=42,1,-1
сc
         radius=max((6378.140-depth(i))*1.0d3,0.0d0)
сс
сс
         write(*,*) radius,dsntearthpotint(radius)
       enddo
сс
С
      do i=0,1100
с
        radius=dble(i)/dble(1000.0d0)*6378.14d0*1.0d3
с
с
        write(*, '(10(x,e12.6))') radius,dsntearthdens(radius),
     & dsntearthmassint(radius)/1.0d24,
с
    & dsntearthmass(radius)/1.0d24,
С
     & dsntearthpotint(radius), dsntearthpot(radius),
С
          dsntearthvesc(radius)
с
     &
с
        write(*,'(10(x,e12.6))') radius,
с
     &
          dsntearthdenscomp(radius, 16),
с
     &
          dsntearthdenscomp(radius,24),
с
     &.
          dsntearthdenscomp(radius,28),
с
с
     &.
          dsntearthdenscomp(radius,56)
     enddo
с
с
      end
С
```

real*8 function dsntearthdens(r)

dsntearthdenscomp.f

```
*** dsntearthdenscomp gives the number density of nucleons of mass
*** number a per cm<sup>3</sup>
*** input: radius - in meters
***
        mass number - 16 for o
                     24 for mg
***
***
                     28 for si
                     56 for fe JE UPDATE!
***
*** the radius should be given in m and the density is returned in
*** g/cm^3
*** author: joakim edsjo
*** date: april 6, 1999
*** Updated with new values by J. Edsjo, 2003-11-21
```

19.3. ROUTINE HEADERS – FORTRAN FILES

real*8 function dsntearthdenscomp(r,a)

dsntearthmass.f

real*8 function dsntearthmass(r)

dsntearthmassint.f

real*8 function dsntearthmassint(r)

dsntearthne.f

real*8 function dsntearthne(r)

dsntearthpot.f

230CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

real*8 function dsntearthpot(r)

dsntearthpotint.f

real*8 function dsntearthpotint(r)

dsntearthvesc.f

real*8 function dsntearthvesc(r)

dsntedfunc.f

```
**************************
real*8 function dsntedfunc(r)
```

dsntepfunc.f

 real*8 function dsntepfunc(r)

dsntfoveru.f

real*8 function dsntfoveru(u)

dsntfoveruearth.f

real*8 function dsntfoveruearth(u)

dsntismbkg.f

*** dsntismbkg calculats the differential background of muons cosmic *** ray interactions with the interstellar medium. *** the muon neutrino fluxes are from *** g. ingelman and m. thunman, hep-ph/9604286. *** input: emu - muon energy in gev *** *** fltype = 1 - flux of muons *** 2 - contained event rate *** rdelta = column density in units of nucleons / cm² kpc/cm *** output: muon flux in units of gev⁻¹ km⁻²(3) yr⁻¹ sr⁻¹ *** *** partly based on routines by 1. bergstrom. *** author: j. edsjo (edsjo@physto.se) *** date: 1998-09-20

real*8 function dsntismbkg(emu,flt,rdelta)

dsntismrd.f

real*8 function dsntismrd(b,psi)

dsntlitlf_e.f

real*8 function dsntlitlf_e(mx,vbar)

```
c______c
c dsntlitlf_e is used by capearth to calculate the capture rate
c in the earth.
c mx is the neutralino mass in gev
c written by 1. bergstrom 1995-12-12
c
c______c
```

dsntlitlf_s.f

```
real*8 function dsntlitlf_s(mx,vbar)
c-----
c dsntlitlf_s used by capsun
c mx: neutralino mass
c lars bergstrom 1995-12-12
c------
```

dsntmoderf.f

	real*8 function dsntmoderf(x)
с	
с	error function
с	modified by 1. bergstrom 98-09-15
с	modified by p. gondolo 2000-07-19
с	see test output below
с	used for damour-krauss calculations
c	

dsntmuonyield.f

```
*** function dsntmuonyield gives the total yield of muons above threshold for
*** a given neutralino mass or the differential muon yield for a given
*** energy and a given angle. put yieldk=3 for integrated yield above
*** given thresholds and put yieldk=103 for differntial yield.
*** the annihilation branching ratios and
*** higgs parameters are extracted from susy.h and by calling dsandwdcosnn
*** wh='su' corresponds to annihilation in the sun and wh='ea' corresponds
*** to annihilation in the earth. if istat=1 upon return,
*** some inaccesible parts the differential muon spectra has been wanted,
*** and the returned yield should then be treated as a lower bound.
*** if istat=2 energetically forbidden annihilation channels have been
*** wanted. if istat=3 both of these things has happened.
*** units: 1.0e-30 m**-2 (annihilation)**-1 for integrated yield.
          1.0e-30 m**-2 gev**-1 (degree)^-1 (annihilation)**-1 for
***
***
         differential yield.
*** author: joakim edsjo edsjo@physto.se
*** date: 96-03-19
*** modified: 96-09-03 to include new index order
*** modified: 97-12-03 to include new muyield routines (v3.21)
```


real*8 function dsntmuonyield(emuth0,thmax,wh,yieldk,istat)

dsntnuism.f

```
real*8 function dsntnuism(enu)
c... with enu in gev, the flux is returned in units o
c... gev^-1 cm^-2 s^-1 sr^-1
```

dsntnusun.f

```
real*8 function dsntnusun(enu)
c... with enu in gev, the flux is returned in units of gev^-1 cm^-2 s^-1
```

dsntrates.f

```
subroutine dsntrates(emuth0,thmax0,rtype,rateea,
    & ratesu, istat)
c_____
С
           neutralino branching ratios
С
           and capture rate in the sun
с
           muon flux calculated
с
    november, 1995
с
    uses routines by p. gondolo and j. edsjo
С
С
    modified by 1. bergstrom and j. edsjo
    capture rate routines are written by 1. bergstrom
с
    input: emuth0 - muon energy threshold in gev
с
           thmax0 - muon angel cut in degrees
с
                 - 2 = contained events km^{-3} yr^{-1}
с
           rtype
С
                    3 = through-going events km<sup>2</sup>-2 yr<sup>2</sup>-1
    hidden input: ntcalcmet - 1 use jkg approximations
с
                           2 use jkg for sun, full gould for earth
с
                           3 use jkg for sun, full gould+dk for earth
с
                           4 use full numerical calculations for Sun, Earth
с
    output: rateea - events from earth ann. per km<sup>2</sup>(3) per yr
с
           ratesu – events from sun ann. per km^2(3) per yr
С
    slightly modified by j. edsjo.
с
    modified by j. edsjo 97-05-15 to match new inv. rate convention
с
    modified by j. edsjo 97-12-03 to match muflux3.21 routines.
С
    modified by p. gondolo 98-03-04 to detach dsntannrate from susy
С
    routines.
С
    modified by j. edsjo 98-09-07 to fix istat bug.
С
    modified by j. edsjo 98-09-23 to use damour-krauss distributions
с
      and full earth formulas.
С
    modified by j. edsjo 99-03-17 to include better damour-krauss
с
с
      velocity distributions and numerical capture rate integrations
      for these non-gaussian distributions
С
С
```

dsntse.f

dsntsefull.f

real*8 function dsntsefull(mx,m_a,v_star,v_bar,phi)
c----c the gould function for capture in the earth, as given by the expression

dsntset.f

```
subroutine dsntset(c)
c...set parameters for neutrino telescope routines
c... c - character string specifying choice to be made
c...author: joakim edsjo, 2000-08-16
```

dsntspfunc.f

dsntss.f

```
real*8 function dsntss(x,vbar)
c-----
c dsntss used by capsun and litlf_s
c x=mx/m(i)
c lars bergstrom 1995-12-12
c------
```

dsntsunbkg.f

```
*** dsntsunbkg calculats the differential background of muons cosmic
*** ray interactions in the sun's corona. the muon neutrino fluxes are from
*** g. ingelman and m. thunman, prd 54 (1996) 4385.
***
    input:
***
      emu - muon energy in gev
      fltype = 1 - flux of muons
***
***
             2 - contained event rate
***
    output:
     muon flux in units of gev^-1 km^-2(3) yr^-1
***
*** partly based on routines by 1. bergstrom.
*** author: j. edsjo (edsjo@physto.se)
*** date: 1998-06-03
```

real*8 function dsntsunbkg(emu,flt)

dsntsuncdens.f

*** This routine uses a derived column density from the BP2000 model *** The data in sdcens() is calculated by dsntsunread.f. *** dsntsuncdens gives the column density in the Sun from the *** centre out the tha given radius r (in meters). *** The radius should be given in m and the column density is returned in *** g/cm^2 *** if type = 'N', the total column density (up to that r) is calculated *** = 'p', the column density on protons is calculated *** = 'n', the column density on neutrons is calculated *** *** Author: Joakim Edsjo, edsjo@physto.se *** Date: 2005-11-25

real*8 function dsntsuncdens(r,type)

dsntsuncdensint.f

236CHAPTER 19. NT: NEUTRINO AND MUON RATES FROM ANNIHILATION IN THE SUN/EARTH

real*8 function dsntsuncdensint(r,type)

dsntsuncdfunc.f

*** dsntsuncdfunc returns the density of protons, neutrons or the total *** density depending on the common block variable cdt. If cdt='N': the total density is returned *** *** cdt='p': the density in protons is returned cdt='n': the density in neutrons is returned *** *** the radius should be given in m and the density is returned in *** g/cm^3. *** This routine is used by dsntsuncdensint to calculate the column *** density in the Sun. *** *** Author: Joakim Edsjo, edsjo@physto.se *** Date: 2005-11-24

real*8 function dsntsuncdfunc(r)

dsntsundens.f

real*8 function dsntsundens(r)

dsntsundenscomp.f

real*8 function dsntsundenscomp(r,itype)

dsntsunmass.f

real*8 function dsntsunmass(r)

dsntsunmfrac.f

*** dsntsunmfrac gives the mass fraction of element i (see dsntsunread.f *** for definition of i) as a function of the solar radius r. *** the radius should be given in m and returned is the mass fraction. *** *** Element mass fractions up to 016 are from the standard *** solar model BP2000 of Bahcall, Pinsonneault and Basu, *** ApJ 555 (2001) 990. *** The mass fractions for heavier elements are from N. Grevesse and *** A.J. Sauval, Space Science Reviews 85 (1998) 161 normalized such that *** their total mass fractions matches that of the heavier elements in *** the BP2000 model. *** *** Author: Joakim Edsjo, edsjo@physto.se *** Date: 2003-11-26

real*8 function dsntsunmfrac(r,itype)

dsntsunne.f

real*8 function dsntsunne(r)

dsntsunne2x.f

real*8 function dsntsunne2x(ne)

dsntsunpot.f

*** This routine uses a derived potential from the BP2000 model *** The data in sdphi() is calculated by dsntsunread.f. *** dsntsunpot gives the potential in the Sun as a function of radius *** the radius should be given in m and the potential is returned in *** m^2 s^-2 *** Density and element mass fractions up to 016 are from the standard *** solar model BP2000 of Bahcall, Pinsonneault and Basu, *** ApJ 555 (2001) 990. *** The mass fractions for heavier elements are from N. Grevesse and *** A.J. Sauval, Space Science Reviews 85 (1998) 161 normalized such that *** their total mass fractions matches that of the heavier elements in *** the BP2000 model. *** *** Author: Joakim Edsjo, edsjo@physto.se *** Date: 2003-11-26

real*8 function dsntsunpot(r)

dsntsunpotint.f

real*8 function dsntsunpotint(r)

dsntsunread.f

subroutine dsntsunread

dsntsunvesc.f

real*8 function dsntsunvesc(r)

```
dsntsunx2z.f
```

```
*** The Sun routines uses different variables to describe position
*** in the Sun:
    r: radius (in meters)
***
                            [0, r_sun]
     x: radius in units of r_sun [0,1]
***
      z: fraction of total column density traversed [0,1]
***
***
         the column density is either of p or n or the total
         and the totals are stored in cd_sun
***
***
*** This routine converts from x to z (in p, n or total)
***
*** Inputs
***
        x = radius in units of r_sun [0,1]
      type = 'N', the total column density (up to that r) is calculated
***
***
          = 'p', the column density on protons is calculated
          = 'n', the column density on neutrons is calculated
***
***
```

real*8 function dsntsunx2z(x,type)

```
dsntsunz2x.f
```

```
*** The Sun routines uses different variables to describe position
*** in the Sun:
***
    r: radius (in meters)
                           [0,r_sun]
***
    x: radius in units of r_sun [0,1]
     z: fraction of total column density traversed [0,1]
***
         the column density is either of p or n or the total
***
         and the totals are stored in cd_sun
***
***
*** This routine converts from z (in p, n or total) to x
***
*** Inputs
***
   z = fraction of total column density (for chosen type) that
             has been traversed from the centre of the Sun
***
     type = 'N', the total column density (up to that r) is calculated
***
         = 'p', the column density on protons is calculated
***
***
          = 'n', the column density on neutrons is calculated
***
*** Outputs
***
        x = radius in units of r_sun [0,1] that corresponds to the
***
           supplied z value
***
*** Author: Joakim Edsjo, edsjo@physto.se
*** Date: 2005-11-25
```

real*8 function dsntsunz2x(z,type)

Chapter 20

src/pb: Antiproton fluxes from the halo

20.1 Antiprotons – theory

Neutralinos can annihilate each other in the halo producing leptons, quarks, gluons, gauge bosons and Higgs bosons. The quarks, gauge bosons and Higgs bosons will decay and/or form jets that will give rise to antiprotons (and antineutrons which decay shortly to antiprotons). Since antiprotons are not very abundant in the Universe, this could in principle be a good signature for supersymmetric dark matter. However, the cosmic rays (mainly protons) may produce secondary antiprotons in collisions with the interstellar medium, giving an important background. It was hoped that the difference in kinematics between such secondary antiprotons and the primary ones generated in neutralino annihilations would give an unambiguous signature at low antiproton energy. However, recent calculations indicate that other effects spoil this picture to a large degree [108, 109]. It still remains true, however, that present measurements and upper limits to the antiproton flux may be used as a constraint to rule out some MSSM configurations with large rates.

Unfortunately, there is a larger uncertainty in limits thus obtained than, for example, for the signal from neutrinos from the Earth and Sun. This is due to the severe astrophysical uncertainties about the phase space structure of the dark matter halo, in particular the density profile towards the Galactic center. This uncertainty will plague all indirect detection signals from the halo: antiprotons, positrons and gamma-rays. Therefore, the limits that can be put generally involve a combination of MSSM and halo model parameters, and are therefore of limited use constraining the MSSM alone.

At tree level the relevant final states for \bar{p} production are $q\bar{q}$, $\ell\bar{\ell}$, W^+W^- , Z^0Z^0 , W^+H^- , ZH_1^0 , ZH_2^0 , $H_1^0H_3^0$ and $H_2^0H_3^0$. We have included in DarkSUSY all the heavier quarks (c, b and t), gauge bosons and Higgs boson final states. In addition, we have included the $Z\gamma$ ([110]) and the 2 gluon ([111]; [112]) final states which occur at one loop-level.

The hadronization and/or decay of all final states (including) gluons is simulated with PYTHIA as described in section ??. A word of caution should be raised, however, that antiproton data is not very abundant, in particular not at the lowest antiproton lab energies which tend to dominate the signal. Therefore an uncertainty in normalization, probably of the order of a factor 2, cannot be excluded at least in the low energy region.

20.1.1 The Antiproton Source Function

The source function $Q_{\bar{p}}^{\chi}$ gives the number of antiprotons per unit time, energy and volume element produced in annihilation of neutralinos locally in space. It is given by

$$Q_{\bar{p}}^{\chi}(T,\vec{x}) = (\sigma_{\rm ann}v) \left(\frac{\rho_{\chi}(\vec{x})}{m_{\chi}}\right)^2 \sum_f \frac{dN^f}{dT} B^f$$
(20.1)

where T is the \bar{p} kinetic energy. For a given annihilation channel f, B^f and dN^f/dT are, respectively, the branching ratio and the fragmentation function, and $(\sigma_{ann}v)$ is the annihilation rate at v = 0(which is very good approximation since the velocity of the neutralinos in the halo is so low). As dark matter neutralinos annihilate in pairs, the source function is proportional to the square of the neutralino number density $n_{\chi} = \rho_{\chi}/m_{\chi}$. Assuming that most of the dark matter in the Galaxy is made up of neutralinos and that these are smoothly distributed in the halo, one can directly relate the neutralino number density to the dark matter density profile in the galactic halo ρ . Although what is implemented is a smooth distribution of dark matter particles in the halo, an extension to a clumpy distribution is potentially interesting as well ([114]; [115]).

20.1.2 Propagation model

In the absence of a well established theory to describe the interactions of charged particles with the magnetic field of the Galaxy and the interstellar medium, the propagation of cosmic rays has generally been treated by postulating a semiempirical model and fitting the necessary set of unknown parameters to available data. A common approach is to use a diffusion approximation defined by a transport equation and an appropriate choice of boundary conditions (see e.g. [116]; [117] and references therein).

We have chosen to compute the propagation of cosmic rays in the Galaxy by means of a transport equation of the diffusion type (see [116]; [117]). In the case of a stationary solution, the number density N of a stable cosmic ray species whose distribution of sources is defined by the function of energy and space $Q(E, \vec{x})$, is given by:

$$\frac{\partial N(E,\vec{x})}{\partial t} = 0 = \nabla \cdot (D(R,\vec{x}) \nabla N(E,\vec{x})) - \nabla \cdot (\vec{u}(\vec{x}) N(E,\vec{x})) - p(E,\vec{x}) N(E,\vec{x}) + Q(E,\vec{x}) \quad . \quad (20.2)$$

On the right hand side of Eq. (20.2) the first term implements the diffusion approximation for a given diffusion coefficient D, generally assumed to be a function of rigidity R, while the second term describes a large-scale convective motion of velocity \vec{u} . The third term is added to take into account losses due to to collisions with the interstellar matter. It is a very good approximation to include in this term only the interactions with interstellar hydrogen, in this case p is given by:

$$p(E, \vec{x}) = n^{H}(\vec{x}) v(E) \sigma_{cr p}^{\text{in}}(E)$$
(20.3)

where n^H is the hydrogen number density in the Galaxy, v is the velocity of the cosmic ray particle considered 'cr', while $\sigma_{cr\,p}^{in}$ is the inelastic cross section for cr-proton collisions.

The propagation region is assumed to have a cylindrical symmetry: the Galaxy is split into two parts, a disk of radius R_h and height $2 \cdot h_g$, where most of the interstellar gas is confined, and a halo of height $2 \cdot h_h$ and the same radius. We assume that the diffusion coefficient is isotropic with possibly two different values in the disk and in the halo, reflecting the fact that in the disk there may be a larger random component of the magnetic fields. The spatial dependence is then:

$$D(\vec{x}) = D(z) = D_g \,\theta(h_g - |z|) + D_h \,\theta(|z| - h_g) \quad . \tag{20.4}$$

Regarding the rigidity dependence, we consider the same functional form as in [118] and [119]:

$$D_l(R) = D_l^0 \left(1 + \frac{R}{R_0} \right)^{0.6}$$
(20.5)

where l = g, h.

The convective term has been introduced in Eq. (20.2) to describe the effect of particle motion against the wind of cosmic rays leaving the disk, assuming a galactic wind of velocity

$$\vec{u}(\vec{x}) = (0, 0, u(z)) \tag{20.6}$$

where

$$u(z) = \operatorname{sign}(z) u_h \theta(|z| - h_g) \quad . \tag{20.7}$$

An analytic solution is possible also in the case of a linearly increasing wind ([115]). The distribution of gas in the Galaxy is for convenience assumed to have the very simple z dependence

$$n^{H}(\vec{x}) = n^{H}(z) = n_{g}^{H} \theta(h_{g} - |z|) + n_{h}^{H} \theta(|z| - h_{g})$$
(20.8)

where $n_h \ll n_q$ (in practice, $n_h = 0$ is taken) and an average in the radial direction is performed.

As boundary condition, it is usually assumed that cosmic rays can escape freely at the border of the propagation region, i.e.

$$N(R_h, z) = N(r, h_h) = N(r, -h_h) = 0$$
(20.9)

as the density of cosmic rays is assumed to be negligibly small in the intergalactic space.

The cylindrical symmetry and the free escape at the boundaries makes it possible to solve in DarkSUSY the transport equation expanding the number density distribution N in a Fourier-Bessel series:

$$N(r,z,\theta) = \sum_{k=0}^{\infty} \sum_{s=1}^{\infty} J_k\left(\nu_s^k \frac{r}{R_h}\right) \cdot \left[M_s^k(z)\cos(k\theta) + \tilde{M}_s^k(z)\sin(k\theta)\right]$$
(20.10)

which automatically satisfies the boundary condition at $r = R_h$, ν_s^k being the s-th zero of J_k (the Bessel function of the first kind and of order k). In the same way the source function can be expanded as:

$$Q(r,z,\theta) = \sum_{k=0}^{\infty} \sum_{s=1}^{\infty} J_k\left(\nu_s^k \frac{r}{R_h}\right) \cdot \left[Q_s^k(z)\cos(k\theta) + \tilde{Q}_s^k(z)\sin(k\theta)\right]$$
(20.11)

where

$$Q_{s}^{k}(z) = \frac{2}{R_{h}^{2} J_{k+1}^{2}(\nu_{s}^{k})} \int_{0}^{R_{h}} dr' r' J_{k} \left(\nu_{s}^{k} \frac{r'}{R_{h}}\right) \frac{1}{\alpha_{k} \pi} \int_{-\pi}^{\pi} d\theta' \cos(k\theta') Q(r', z, \theta') \quad .$$
(20.12)

The equation relevant for the propagation in the z direction is [108]:

$$\frac{\partial}{\partial z}D(z)\frac{\partial}{\partial z}M_s^k(z) - D(z)\left(\frac{\nu_s^k}{R_h}\right)^2 M_s^k(z) - \frac{\partial}{\partial z}\left(u(z)M_s^k(z)\right) - p(z)M_s^k(z) + Q_s^k(z) = 0 \quad . \quad (20.13)$$

For $-h_g \leq z \leq h_g$ the solution is given by:

$$M_{s}^{k}(z) = M_{s}^{k}(0)\cosh(\lambda_{g}^{ks}z) - \frac{1}{D_{g}\lambda_{g}^{ks}}\int_{0}^{z} dz'\sinh\left(\lambda_{g}^{ks}(z-z')\right)Q_{s}^{k}(z')$$
(20.14)

where

$$M_{s}^{k}(0) = \frac{1}{\cosh(\lambda_{g}^{ks}h_{g})} \left\{ \frac{I_{H}}{\sinh\left(\lambda_{h}^{ks}(h_{h}-h_{g})\right)} + \frac{D_{h}I_{GS}}{D_{g}\lambda_{g}^{ks}} \left[\gamma_{h} + \lambda_{h}^{ks}\coth\left(\lambda_{h}^{ks}(h_{h}-h_{g})\right)\right] + I_{GC} \right\} \times \left[D_{g}\lambda_{g}^{ks}\tanh\left(\lambda_{g}^{ks}h_{g}\right) + D_{h}\gamma_{h} + D_{h}\lambda_{h}^{ks}\coth\left(\lambda_{h}^{ks}(h_{h}-h_{g})\right)\right]^{-1}$$
(20.15)

with

$$\lambda_g^{ks} = \sqrt{\left(\frac{\nu_s^k}{R_h}\right)^2 + \frac{n_g^H v \sigma_{cr\,p}^{\rm in}}{D_g}}, \quad \lambda_h^{ks} = \sqrt{\left(\frac{\nu_s^k}{R_h}\right)^2 + \frac{n_h^H v \sigma_{cr\,p}^{\rm in}}{D_h} + \gamma_h^2}, \quad \gamma_h = \frac{u_h}{2\,D_h} \quad (20.16)$$

and

$$I_{H} = \int_{h_{g}}^{h_{h}} dz' \sinh\left(\lambda_{h}^{ks}(h_{h}-z')\right) \exp\left(\gamma_{h}(h_{g}-z')\right) \cdot \frac{Q_{s}^{k}(z')+Q_{s}^{k}(-z')}{2}$$

$$I_{GS} = \int_{0}^{h_{g}} dz' \sinh\left(\lambda_{g}^{ks}(h_{g}-z')\right) \cdot \frac{Q_{s}^{k}(z')+Q_{s}^{k}(-z')}{2}$$

$$I_{GC} = \int_{0}^{h_{g}} dz' \cosh\left(\lambda_{g}^{ks}(h_{g}-z')\right) \cdot \frac{Q_{s}^{k}(z')+Q_{s}^{k}(-z')}{2}.$$
(20.17)

In DarkSUSY we have also as an option included the propagation models by Chardonnay et al. [166] and Bottino et al. [167].

20.1.3 Solar Modulation

A complication when comparing predictions of a theoretical model with data on cosmic rays taken at Earth is given by the solar modulation effect. During their propagation from the interstellar medium through the solar system, charged particles are affected by the solar wind and tend to lose energy. The net result of the modulation is a shift in energy between the interstellar spectrum and the spectrum at the Earth and a substantial depletion of particles with non-relativistic energies.

The simplest way to describe the phenomenon is the analytical force-field approximation by Gleeson & Axford [160] for a spherically symmetric model. The prescription of this effective treatment is that, given an interstellar flux at the heliospheric boundary, $d\Phi_{\rm b}/dT_{\rm b}$, the flux at the Earth is related to this by

$$\frac{d\Phi_{\oplus}}{dT_{\oplus}}(T_{\oplus}) = \frac{p_{\oplus}^2}{p_{\rm b}^2} \frac{d\Phi_{\rm b}}{dT_{\rm b}}(T_{\rm b})$$
(20.18)

where the energy at the heliospheric boundary is given by

$$E_{\rm b} = E_{\oplus} + |Ze|\phi_F \tag{20.19}$$

and p_{\otimes} and $p_{\rm b}$ are the momenta at the Earth and the heliospheric boundary respectively. Here *e* is the absolute value of the electron charge and *Z* the particle charge in units of *e* (e.g. Z = -1 for antiprotons).

An alternative approach is to solve numerically the propagation equation of the spherically symmetric model ([120]): the solar modulation parameter one has to introduce with this method roughly corresponds to ϕ_F as given above. When computing solar modulated antiproton fluxes, the two treatments seem not to be completely equivalent in the low energy regime. Keeping this in mind, we have anyway implemented the force field approximation in DarkSUSY avoiding the CPU time-consuming problem of having to solve a partial differential equation for each supersymmetric model.

20.2 Antiprotons from the halo – routines

.....

20.3 Routine headers – fortran files

dspbaddterm.f

real*8 function dspbaddterm(k,nusk,Jklocal,Jkplus1squared)

dspbbeupargc.f

real*8 function dspbbeupargc(z)

dspbbeupargs.f

real*8 function dspbbeupargs(z)

dspbbeuparh.f

real*8 function dspbbeuparh(z)

dspbbeuparm.f

246

real*8 function dspbbeuparm(r)

dspbcharpar1.f

real*8 function dspbcharpar1(x)

dspbcharpar2.f

real*8 function dspbcharpar2(y)

dspbgalpropdiff.f

real*8 function dspbgalpropdiff(egev)

dspbgalpropig.f

```
real*8 function dspbgalpropig(eep)
No header found.
```

dspbgalpropig2.f

real*8 function dspbgalpropig2(eep)
No header found.

dspbkdiff.f

real*8 function dspbkdiff(rig,n)

dspbkdiffm.f

real*8 function dspbkdiffm(beta,rig,n)

dspbset.f

```
subroutine dspbset(c)
c...set parameters for antiproton routines
c... c - character string specifying choice to be made
c...author: paolo gondolo 1999-07-14
```

dspbsigmavpbar.f

```
real*8 function dspbsigmavpbar(en)
c total inelastic cross section pbar + h
c tan and ng, j.phys.g 9 (1983) 227. formula 3.7
```

dspbtd15.f

```
real*8 function dspbtd15(tp,howinp)
```

```
*** function dspbtd15 is the containment time in 10<sup>15</sup> sec
     input:
***
***
      tp - antiproton kinetic energy in gev
      how - 1 calculate t_diff only for requested momentum
***
           2 tabulate t_diff for first call and use table for
***
***
             subsequent calls
***
           3 as 2, but also write the table to disk as
             pbtd-<mode>-<haloid>.dat
***
***
           4 read table from disk on first call, and use that for
***
             subsequent calls
***
     output:
***
      t_diff in units of 10^15 sec
*** calls dspbtd15x for the actual calculation.
*** author: joakim edsjo (edsjo@physto.se)
*** uses piero ullios propagation routines.
*** date: dec 16, 1998
*** modified: 98-07-13 paolo gondolo
```

dspbtd15beu.f

real*8 function dspbtd15beu(tp)

dspbtd15beucl.f

```
*** (units of 10^15 sec kpc^-3) for an antiproton point source located
*** at rcl, zcl, thetacl (in the cylidrical framework with the sun
*** located at r=r_0, z=0 theta=0) and some small "angular width"
*** deltathetacl which makes the routine converge much faster
*** rcl, zcl, thetacl and deltathetacl are in the dspbcom.h common
*** blocks and must be before calling this routine. rcl and zcl are in
*** kpc, thetacl and deltathetacl in rad.
*** numerical convergence gets slower for rcl->0 or zcl->0
***
*** it assumes the diffusion model in:
     bergstrom, edsjo & ullio, ajp 526 (1999) 215
***
*** inputs:
***
       tp - antiproton kinetic energy (gev)
***
*** the conversion from this source function to the local antiproton flux
*** is the same as for dspbtd15beu(tp), except that dspbtd15beucl(tp)
*** must be multiplied by:
***
       int dV (rho_cl(\vec{x}_cl)/rho0)**2
***
     where the integral is over the volume of the clump,
    rho_cl(\vec{x}_cl) is the density profile in the clump
***
***
    and the local halo density rho0 is the normalization scale used
***
     everywhere
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

real*8 function dspbtd15beucl(tp)

dspbtd15beuclsp.f

```
*** function which makes a tabulation of dspbtd15beucl as function
*** the distance between source and observer L, and neglecting the
*** weak dependence of dspbtd15beucl over the vertical coordinate for
*** the source zcl
***
*** for every tp dspbtd15beuclsp is tabulated on first call in L, with
*** L between:
      Lmin=0.9d0*(r_0-pbrcy) and
***
      Lmax=1.1d0*dsqrt((r_0+pbrcy)**2+pbzcy**2)
***
*** and stored in spline tables.
***
*** pbrcy and pbzcy in kpc are passed through a common block in
*** dspbcom.h and should be set before the calling this routine.
***
*** there is no internal check to verify whether between to consecutive
*** calls, with the same tp, pbrcy and pbzcy, or halo parameters, or
*** propagation parameters are changed. If this is done make sure,
*** before calling this function, to reinitialize to zero the integer
*** parameter clspset in the common block:
***
```

real*8 function dspbtd15beuclsp(L,tp)

dspbtd15beum.f

*** function called in dspbtd15x *** it gives the antiproton diffusion time in units of 10¹⁵ sec *** it assumes the diffusion model in: bergstrom, edsjo & ullio, ajp 526 (1999) 215 *** *** but with the DC-like setup as in moskalenko et al. ApJ 565 (2002) 280 *** *** inputs: tp - antiproton kinetic energy (gev) *** *** *** author: piero ullio (piero@tapir.caltech.edu) *** date: 00-07-13

real*8 function dspbtd15beum(tp)

dspbtd15char.f

real*8 function dspbtd15char(tp)

dspbtd15comp.f

```
*** function which computes the pbar diffusion time term corresponding
*** to the axisymmetric diffuse source within a cylinder of radius
*** pbrcy and height 2* pbzcy.
*** This routine assumes also that the Green function of
*** the diffusion equation dspbtd15beuclsp(L,tp) does depend just
*** on kintic energy tp and distance from the observer L, neglecting
*** a weak dependence on the cylindrical coordinate z.
*** For every tp, dspbtd15beuclsp is tabulated on first call in L and
*** stored in spline tables.
*** In this function and in dspbtd15beuclsp, pbrcy and pbzcy in kpc are
*** passed through a common block in dspbcom.h. There is no check
*** in dspbtd15beuclsp on whether, pbrcy and pbzcy which define the
*** interval of tabulation are changed. Check header dspbtd15beuclsp
*** for more details on this and other warnings, and how to get the
*** right implementation is such parameters are changed while running
*** our own code
*** After the tabulation, the following integral is performed:
***
*** 2 int_0^{pbzcy} int_0^{pbrcy} dr r int_0^{2\pi} dphi
***
       (dshmaxirho(r,zint)/rho0)^2 * dspbtd15beuclsp(L(z,r,theta),tp)
***
*** The triple integral is splitted into a double integral on r and
*** theta, this result is tabulated in z and then this integral is
*** performed. The tabulation in z has at least 100 points on a
*** regular grid between 0 and pbzcy (this is set by the parameter
*** incompnpoints in the dspbcompint1 function), however points are
*** added as long as the values of the function in two nearest
*** neighbour points differs more than 10% (this is set by the
*** parameter reratio in the dspbcompint1 function)
***
*** input: scale in kpc, tp in GeV
*** output in 10<sup>15</sup> s
***
*** author: piero ullio (ullio@sissa.it)
*** date: 04-01-22
```

real*8 function dspbtd15comp(tp)

dspbtd15point.f

real*8 function dspbtd15point(rho2int,tp)

dspbtd15x.f

real*8 function dspbtd15x(tp) *** antiproton propagation according to various models *** dspbtd15x is containment time in 10¹⁵ sec *** inputs: *** tp - antiproton kinetic energy (gev) *** from common blocks *** pbpropmodel - 0 leaky box with energy dependent esc. time 1 chardonnet et al diffusion *** *** 2 bergstrom, edsjo, ullio diffusion *** 3 bergstrom, edsjo, ullio diffusion but with the DC-like setup as in moskalenko *** et al. ApJ 565 (2002) 280 *** *** author: paolo gondolo 99-07-13 *** modified: piero ullio 00-07-13 *** modified: piero ullio 04-01-22

dspbtpb.f

real*8 function dspbtpb(tp)
Chapter 21

src/rd: Relic density routines (general)

21.1 Relic density – theoretical background

21.1.1 The Boltzmann equation and thermal averaging

Griest and Seckel [171] have worked out the Boltzmann equation when coannihilations are included. We start by reviewing their expressions and then continue by rewriting them into a more convenient form that resembles the familiar case without coannihilations. This allows us to use similar expressions for calculating thermal averages and solving the Boltzmann equation whether coannihilations are included or not. The implementation in DarkSUSY is based upon the work done in [35]. We will later in this chapter, for the sake of clarification, assume that we work with supersymmetric dark matter with the lightest neutralino being the LSP. The routines here are completely general though and the interface between supersymmetry and the relic density routines is handled by the routines in **src/rn**.

21.1.2 Review of the Boltzmann equation with coannihilations

Consider annihilation of N supersymmetric particles χ_i (i = 1, ..., N) with masses m_i and internal degrees of freedom (statistical weights) g_i . Also assume that $m_1 \leq m_2 \leq \cdots \leq m_{N-1} \leq m_N$ and that *R*-parity is conserved. Note that for the mass of the lightest neutralino we will use the notation m_{χ} and m_1 interchangeably.

The evolution of the number density n_i of particle i is

$$\frac{dn_i}{dt} = -3Hn_i - \sum_{j=1}^N \langle \sigma_{ij} v_{ij} \rangle \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right)
- \sum_{j \neq i} \left[\langle \sigma'_{Xij} v_{ij} \rangle \left(n_i n_X - n_i^{\text{eq}} n_X^{\text{eq}} \right) - \langle \sigma'_{Xji} v_{ij} \rangle \left(n_j n_X - n_j^{\text{eq}} n_X^{\text{eq}} \right) \right]
- \sum_{j \neq i} \left[\Gamma_{ij} \left(n_i - n_i^{\text{eq}} \right) - \Gamma_{ji} \left(n_j - n_j^{\text{eq}} \right) \right].$$
(21.1)

The first term on the right-hand side is the dilution due to the expansion of the Universe. H is the Hubble parameter. The second term describes $\chi_i \chi_j$ annihilations, whose total annihilation cross section is

$$\sigma_{ij} = \sum_{X} \sigma(\chi_i \chi_j \to X).$$
(21.2)

The third term describes $\chi_i \rightarrow \chi_j$ conversions by scattering off the cosmic thermal background,

$$\sigma'_{Xij} = \sum_{Y} \sigma(\chi_i X \to \chi_j Y)$$
(21.3)

being the inclusive scattering cross section. The last term accounts for χ_i decays, with inclusive decay rates

$$\Gamma_{ij} = \sum_{X} \Gamma(\chi_i \to \chi_j X).$$
(21.4)

In the previous expressions, X and Y are (sets of) standard model particles involved in the interactions, v_{ij} is the 'relative velocity' defined by

$$v_{ij} = \frac{\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2}}{E_i E_j}$$
(21.5)

with p_i and E_i being the four-momentum and energy of particle *i*, and finally n_i^{eq} is the equilibrium number density of particle χ_i ,

$$n_i^{\rm eq} = \frac{g_i}{(2\pi)^3} \int d^3 \mathbf{p}_i f_i$$
(21.6)

where \mathbf{p}_i is the three-momentum of particle *i*, and f_i is its equilibrium distribution function. In the Maxwell-Boltzmann approximation it is given by

$$f_i = e^{-E_i/T}.$$
 (21.7)

The thermal average $\langle \sigma_{ij} v_{ij} \rangle$ is defined with equilibrium distributions and is given by

$$\langle \sigma_{ij} v_{ij} \rangle = \frac{\int d^3 \mathbf{p}_i d^3 \mathbf{p}_j f_i f_j \sigma_{ij} v_{ij}}{\int d^3 \mathbf{p}_i d^3 \mathbf{p}_j f_i f_j}$$
(21.8)

Normally, the decay rate of supersymmetric particles χ_i other than the lightest which is stable is much faster than the age of the universe. Since we have assumed *R*-parity conservation, all of these particles decay into the lightest one. So its final abundance is simply described by the sum of the density of all supersymmetric particles,

$$n = \sum_{i=1}^{N} n_i.$$
 (21.9)

For n we get the following evolution equation

$$\frac{dn}{dt} = -3Hn - \sum_{i,j=1}^{N} \langle \sigma_{ij} v_{ij} \rangle \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right)$$
(21.10)

where the terms on the second and third lines in Eq. (21.1) cancel in the sum.

The scattering rate of supersymmetric particles off particles in the thermal background is much faster than their annihilation rate, because the scattering cross sections σ'_{Xij} are of the same order of magnitude as the annihilation cross sections σ_{ij} but the background particle density n_X is much larger than each of the supersymmetric particle densities n_i when the former are relativistic and the latter are non-relativistic, and so suppressed by a Boltzmann factor. In this case, the χ_i distributions remain in thermal equilibrium, and in particular their ratios are equal to the equilibrium values,

$$\frac{n_i}{n} \simeq \frac{n_i^{\rm eq}}{n^{\rm eq}}.\tag{21.11}$$

254

We then get

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{\rm eff} v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$
(21.12)

where

$$\langle \sigma_{\text{eff}} v \rangle = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}}.$$
(21.13)

21.1.3 Thermal averaging

So far the reviewing. Now let's continue by reformulating the thermal averages into more convenient expressions.

We rewrite Eq. (21.13) as

$$\langle \sigma_{\text{eff}} v \rangle = \frac{\sum_{ij} \langle \sigma_{ij} v_{ij} \rangle n_i^{\text{eq}} n_j^{\text{eq}}}{n_{\text{eq}}^2} = \frac{A}{n_{\text{eq}}^2}.$$
 (21.14)

For the denominator we obtain, using Boltzmann statistics for f_i ,

$$n^{\rm eq} = \sum_{i} n_i^{\rm eq} = \sum_{i} \frac{g_i}{(2\pi)^3} \int d^3 p_i e^{-E_i/T} = \frac{T}{2\pi^2} \sum_{i} g_i m_i^2 K_2\left(\frac{m_i}{T}\right)$$
(21.15)

where K_2 is the modified Bessel function of the second kind of order 2.

The numerator is the total annihilation rate per unit volume at temperature T,

$$A = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle n_i^{\text{eq}} n_j^{\text{eq}} = \sum_{ij} \frac{g_i g_j}{(2\pi)^6} \int d^3 \mathbf{p}_i d^3 \mathbf{p}_j f_i f_j \sigma_{ij} v_{ij}$$
(21.16)

It is convenient to cast it in a covariant form,

$$A = \sum_{ij} \int W_{ij} \frac{g_i f_i d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \frac{g_j f_j d^3 \mathbf{p}_j}{(2\pi)^3 2E_j}.$$
(21.17)

 W_{ij} is the (unpolarized) annihilation rate per unit volume corresponding to the covariant normalization of 2*E* colliding particles per unit volume. W_{ij} is a dimensionless Lorentz invariant, related to the (unpolarized) cross section through^{*}

$$W_{ij} = 4p_{ij}\sqrt{s\sigma_{ij}} = 4\sigma_{ij}\sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2} = 4E_i E_j \sigma_{ij} v_{ij}.$$
 (21.18)

Here

$$p_{ij} = \frac{\left[s - (m_i + m_j)^2\right]^{1/2} \left[s - (m_i - m_j)^2\right]^{1/2}}{2\sqrt{s}}$$
(21.19)

is the momentum of particle χ_i (or χ_j) in the center-of-mass frame of the pair $\chi_i \chi_j$.

Averaging over initial and summing over final internal states, the contribution to W_{ij} of a general *n*-body final state is

$$W_{ij}^{n-\text{body}} = \frac{1}{g_i g_j S_f} \sum_{\text{internal d.o.f.}} \int |\mathcal{M}|^2 (2\pi)^4 \delta^4 (p_i + p_j - \sum_f p_f) \prod_f \frac{d^3 \mathbf{p}_f}{(2\pi)^3 2E_f},$$
(21.20)

where S_f is a symmetry factor accounting for identical final state particles (if there are K sets of N_k identical particles, k = 1, ..., K, then $S_f = \prod_{k=1}^K N_k$!). In particular, the contribution of a two-body final state can be written as

$$W_{ij\to kl}^{2-\text{body}} = \frac{p_{kl}}{16\pi^2 g_i g_j S_{kl} \sqrt{s}} \sum_{\text{internal d.o.f.}} \int \left| \mathcal{M}(ij \to kl) \right|^2 d\Omega,$$
(21.21)

255

^{*}The quantity w_{ij} in Ref. [65] is $W_{ij}/4$.

where p_{kl} is the final center-of-mass momentum, S_{kl} is a symmetry factor equal to 2 for identical final particles and to 1 otherwise, and the integration is over the outgoing directions of one of the final particles. As usual, an average over initial internal degrees of freedom is performed.

We now reduce the integral in the covariant expression for A, Eq. (21.17), from 6 dimensions to 1. Using Boltzmann statistics for f_i (a good approximation for $T \leq m$)

$$A = \sum_{ij} \int g_i g_j W_{ij} e^{-E_i/T} e^{-E_j/T} \frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2E_j},$$
(21.22)

where \mathbf{p}_i and \mathbf{p}_j are the three-momenta and E_i and E_j are the energies of the colliding particles. Following the procedure in Ref. [68] we then rewrite the momentum volume element as

$$d^{3}\mathbf{p}_{i}d^{3}\mathbf{p}_{j} = 4\pi|\mathbf{p}_{i}|E_{i}dE_{i} 4\pi|\mathbf{p}_{j}|E_{j}dE_{j} \frac{1}{2}d\cos\theta \qquad (21.23)$$

where θ is the angle between \mathbf{p}_i and \mathbf{p}_j . Then we change integration variables from E_i , E_j , θ to E_+ , E_- and s, given by

$$\begin{cases} E_{+} = E_{i} + E_{j} \\ E_{-} = E_{i} - E_{j} \\ s = m_{i}^{2} + m_{j}^{2} + 2E_{i}E_{j} - 2|\mathbf{p}_{i}||\mathbf{p}_{j}|\cos\theta, \end{cases}$$
(21.24)

whence the volume element becomes

$$\frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2E_j} = \frac{1}{(2\pi)^4} \frac{dE_+ dE_- ds}{8},\tag{21.25}$$

and the integration region $\{E_i \ge m_i, E_j \ge m_j, |\cos \theta| \le 1\}$ transforms into

$$s \ge (m_i + m_j)^2,$$
 (21.26)

$$E_+ \ge \sqrt{s},\tag{21.27}$$

$$\left| E_{-} - E_{+} \frac{m_{j}^{2} - m_{i}^{2}}{s} \right| \le 2p_{ij} \sqrt{\frac{E_{+}^{2} - s}{s}}.$$
(21.28)

Notice now that the product of the equilibrium distribution functions depends only on E_+ and not E_- due to the Maxwell-Boltzmann approximation, and that the invariant rate W_{ij} depends only on s due to the neglect of final state statistical factors. Hence we can immediately integrate over E_- ,

$$\int dE_{-} = 4p_{ij}\sqrt{\frac{E_{+}^2 - s}{s}}.$$
(21.29)

The volume element is now

$$\frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2E_j} = \frac{1}{(2\pi)^4} \frac{p_{ij}}{2} \sqrt{\frac{E_+^2 - s}{s}} dE_+ ds$$
(21.30)

We now perform the E_+ integration. We obtain

$$A = \frac{T}{32\pi^4} \sum_{ij} \int_{(m_i + m_j)^2}^{\infty} ds g_i g_j p_{ij} W_{ij} K_1\left(\frac{\sqrt{s}}{T}\right)$$
(21.31)

where K_1 is the modified Bessel function of the second kind of order 1.

We can take the sum inside the integral and define an effective annihilation rate $W_{\rm eff}$ through

$$\sum_{ij} g_i g_j p_{ij} W_{ij} = g_1^2 p_{\text{eff}} W_{\text{eff}}$$
(21.32)

with

$$p_{\text{eff}} = p_{11} = \frac{1}{2}\sqrt{s - 4m_1^2}.$$
 (21.33)

In other words

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \sum_{ij} \sqrt{\frac{[s - (m_i - m_j)^2][s - (m_i + m_j)^2]}{s(s - 4m_1^2)}} \frac{g_i g_j}{g_1^2} W_{ij}.$$
 (21.34)

Because $W_{ij}(s) = 0$ for $s \leq (m_i + m_j)^2$, the radicand is never negative.

In terms of cross sections, this is equivalent to the definition

$$\sigma_{\rm eff} = \sum_{ij} \frac{p_{ij}^2}{p_{11}^2} \frac{g_i g_j}{g_1^2} \sigma_{ij}.$$
(21.35)

Eq. (21.31) then reads

$$A = \frac{g_1^2 T}{32\pi^4} \int_{4m_1^2}^{\infty} ds p_{\text{eff}} W_{\text{eff}} K_1\left(\frac{\sqrt{s}}{T}\right)$$
(21.36)

This can be written in a form more suitable for numerical integration by using p_{eff} instead of s as integration variable. From Eq. (21.33), we have $ds = 8p_{\text{eff}}dp_{\text{eff}}$, and

$$A = \frac{g_1^2 T}{4\pi^4} \int_0^\infty dp_{\text{eff}} p_{\text{eff}}^2 W_{\text{eff}} K_1\left(\frac{\sqrt{s}}{T}\right)$$
(21.37)

with

$$s = 4p_{\rm eff}^2 + 4m_1^2 \tag{21.38}$$

So we have succeeded in rewriting A as a 1-dimensional integral.

From Eqs. (21.37) and (21.15), the thermal average of the effective cross section results

$$\langle \sigma_{\rm eff} v \rangle = \frac{\int_0^\infty dp_{\rm eff} p_{\rm eff}^2 W_{\rm eff} K_1\left(\frac{\sqrt{s}}{T}\right)}{m_1^4 T \left[\sum_i \frac{g_i}{g_1} \frac{m_i^2}{m_1^2} K_2\left(\frac{m_i}{T}\right)\right]^2}.$$
(21.39)

This expression is very similar to the case without coannihilations, the differences being the denominator and the replacement of the annihilation rate with the effective annihilation rate. In the absence of coannihilations, this expression correctly reduces to the formula in Gondolo and Gelmini [68].

The definition of an effective annihilation rate independent of temperature is a remarkable calculational advantage. As in the case without coannihilations, the effective annihilation rate can in fact be tabulated in advance, before taking the thermal average and solving the Boltzmann equation.

In the effective annihilation rate, coannihilations appear as thresholds at \sqrt{s} equal to the sum of the masses of the coannihilating particles. We show an example in Fig. 21.1 where it is clearly seen that the coannihilation thresholds appear in the effective invariant rate just as final state thresholds do. For the same example, Fig. 21.2 shows the differential annihilation rate per unit volume dA/dp_{eff} , the integrand in Eq. (21.37), as a function of p_{eff} . We have chosen a temperature $T = m_{\chi}/20$, a typical freeze-out temperature. The Boltzmann suppression contained in the exponential decay of K_1 at high p_{eff} is clearly visible. At higher temperatures the peak shifts to the right and at lower temperatures to the left. For the particular model shown in Figs. 21.1–21.2, the relic density results $\Omega_{\chi}h^2 = 0.030$ when coannihilations are included and $\Omega_{\chi}h^2 = 0.18$ when they are not. Coannihilations have lowered $\Omega_{\chi}h^2$ by a factor of 6.

Figure 21.1: The effective invariant annihilation rate W_{eff} as a function of p_{eff} for an example model. The final state threshold for annihilation into W^+W^- and the coannihilation thresholds, as given by Eq. (21.34), are indicated. The $\chi_2^0\chi_2^0$ coannihilation threshold is too small to be seen.

Figure 21.2: Total differential annihilation rate per unit volume dA/dp_{eff} for the same model as in Fig. 21.1, evaluated at a temperature $T = m_{\chi}/20$, typical of freeze-out. Notice the Boltzmann suppression at high p_{eff} .

21.1.4 Internal degrees of freedom

If we look at Eqs. (21.34) and (21.39) we see that we have a freedom on how to treat particles degenerate in mass, e.g. a chargino can be treated either

- a) as two separate species χ_i^+ and χ_i^- , each with internal degrees of freedom $g_{\chi^+} = g_{\chi^-} = 2$, or,
- b) as a single species χ_i^{\pm} with $g_{\chi^{\pm}} = 4$ internal degrees of freedom.

Of course the two views are equivalent, we just have to be careful including the g_i 's consistently whichever view we take. In a), we have the advantage that all the W_{ij} that enter into Eq. (21.34) enter as they are, i.e. without any correction factors for the degrees of freedom. On the other hand we get many terms in the sum that are identical and we need some book-keeping machinery to avoid calculating identical terms more than once. On the other hand, with option b), the sum over W_{ij} in Eq. (21.34) is much simpler only containing terms that are not identical (except for the trivial identity $W_{ij} = W_{ji}$ which is easily taken care of). However, the individual W_{ij} will be some linear combinations of the more basic W_{ij} entering in option a), where the coefficients have to be calculated for each specific type of initial condition.

Below we will perform this calculation to show how the W_{ij} look like in option b) for different initial states. We will use a prime on the W_{ij} when they refer to these combined states to indicate the difference.

Neutralino-chargino annihilation

The starting point is Eq. (21.34) which we will use to define the W_{ij} in option b) such that W_{eff} is the same as in option a). Eq. (21.39) is then guaranteed to be the same in both cases since the sum in the denominator is linear in g_i .

Now consider annihilation between χ_i^0 and χ_c^+ or χ_c^- . The corresponding terms in Eq. (21.34) does for option a) read

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \frac{p_{ic}}{p_{11}} \frac{2 \cdot 2}{2^2} \left[W_{\chi_i^0 \chi_c^+} + W_{\chi_i^0 \chi_c^-} + \underbrace{W_{\chi_c^+ \chi_i^0}}_{W_{\chi_i^0 \chi_c^+}} + \underbrace{W_{\chi_c^- \chi_i^0}}_{W_{\chi_i^0 \chi_c^-}} \right] \\ = 2 \frac{p_{ic}}{p_{11}} \left[W_{\chi_i^0 \chi_c^+} + \underbrace{W_{\chi_i^0 \chi_c^-}}_{W_{\chi_i^0 \chi_c^+}} \right] = 4 \frac{p_{ic}}{p_{11}} W_{\chi_i^0 \chi_c^+}$$
(21.40)

For option b), we instead get

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \frac{p_{ic}}{p_{11}} \frac{2 \cdot 4}{2^2} \left[W'_{\chi_i^0 \chi_c^\pm} + \underbrace{W'_{\chi_c^\pm \chi_i^0}}_{W'_{\chi_c^0 \chi_c^\pm}} \right] = 4 \frac{p_{ic}}{p_{11}} W'_{\chi_i^0 \chi_c^\pm}$$
(21.41)

Comparing Eq. (21.41) and Eq. (21.40) we see that they are indentical if we make the identification

$$W'_{\chi_i^0\chi_c^{\pm}} \equiv W_{\chi_i^0\chi_c^{\pm}} \tag{21.42}$$

Chargino-chargino annihilation

First consider the case where we include the terms in the sum for which we have annihilation between χ_c^+ or χ_c^- and χ_d^+ or χ_d^- with $c \neq d$.

In option a), the corresponding terms in Eq. (21.34) reads

$$\begin{split} W_{\text{eff}} &= \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_{igj}}{g_{1}^{2}} W_{ij} \\ &= \frac{p_{cd}}{p_{11}} \frac{2 \cdot 2}{2^{2}} \bigg[W_{\chi_{c}^{+} \chi_{d}^{+}} + W_{\chi_{c}^{+} \chi_{d}^{-}} + W_{\chi_{c}^{-} \chi_{d}^{+}} + W_{\chi_{c}^{-} \chi_{d}^{-}} \\ &+ \underbrace{W_{\chi_{d}^{+} \chi_{c}^{+}}}_{W_{\chi_{c}^{+} \chi_{d}^{+}}} + \underbrace{W_{\chi_{d}^{+} \chi_{c}^{-}}}_{W_{\chi_{c}^{-} \chi_{d}^{-}}} + \underbrace{W_{\chi_{d}^{-} \chi_{c}^{-}}}_{W_{\chi_{c}^{-} \chi_{d}^{-}}} \bigg] \\ &= 2 \frac{p_{cd}}{p_{11}} \bigg[W_{\chi_{c}^{+} \chi_{d}^{+}} + W_{\chi_{c}^{+} \chi_{d}^{-}} + \underbrace{W_{\chi_{c}^{-} \chi_{d}^{-}}}_{W_{\chi_{c}^{+} \chi_{d}^{-}}} + \underbrace{W_{\chi_{c}^{-} \chi_{d}^{-}}}_{W_{\chi_{c}^{+} \chi_{d}^{-}}} \bigg] \\ &= 4 \frac{p_{cd}}{p_{11}} \bigg[W_{\chi_{c}^{+} \chi_{d}^{+}} + W_{\chi_{c}^{+} \chi_{d}^{-}} \bigg] \end{split}$$
(21.43)

In option b), the corresponding terms would instead read

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij} = \frac{p_{cd}}{p_{11}} \frac{4 \cdot 4}{2^2} \left[W'_{\chi_c^{\pm} \chi_d^{\pm}} + \underbrace{W'_{\chi_d^{\pm} \chi_c^{\pm}}}_{W'_{\chi_c^{\pm} \chi_d^{\pm}}} \right] = 8 \frac{p_{cd}}{p_{11}} W'_{\chi_c^{\pm} \chi_d^{\pm}}$$
(21.44)

Comparing Eq. (21.43) and Eq. (21.44) we see that they are identical if we make the following identification

$$W'_{\chi_c^{\pm}\chi_d^{\pm}} \equiv \frac{1}{2} \left[W_{\chi_c^{+}\chi_d^{+}} + W_{\chi_c^{+}\chi_d^{-}} \right]$$
(21.45)

For clarity, let's also consider the case where c = d. In option a), the terms in W_{eff} are

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \frac{p_{cc}}{p_{11}} \frac{2 \cdot 2}{2^2} \left[W_{\chi_c^+ \chi_c^+} + W_{\chi_c^+ \chi_c^-} + \underbrace{W_{\chi_c^- \chi_c^+}}_{W_{\chi_c^+ \chi_c^-}} + \underbrace{W_{\chi_c^- \chi_c^-}}_{W_{\chi_c^+ \chi_c^+}} + \underbrace{W_{\chi_c^- \chi_c^-}}_{W_{\chi_c^+ \chi_c^+}} \right]$$

$$= 2 \frac{p_{cc}}{p_{11}} \left[W_{\chi_c^+ \chi_c^+} + W_{\chi_c^+ \chi_c^-} \right]$$
(21.46)

In option b), the corresponding term would instead read

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij} = \frac{p_{cc}}{p_{11}} \frac{4 \cdot 4}{2^2} W'_{\chi_c^{\pm} \chi_c^{\pm}} + = 4 \frac{p_{cc}}{p_{11}} W'_{\chi_c^{\pm} \chi_c^{\pm}}$$
(21.47)

Comparing Eq. (21.46) and Eq. (21.47) we see that they are identical if we make the following identification

$$W'_{\chi_c^{\pm}\chi_c^{\pm}} \equiv \frac{1}{2} \left[W_{\chi_c^{+}\chi_c^{+}} + W_{\chi_c^{+}\chi_c^{-}} \right]$$
(21.48)

i.e. the same identification as in the case $c \neq d$.

Neutralino-sfermion annihilation

For each sfermion we have in total four different states, \tilde{f}_1 , \tilde{f}_2 , \tilde{f}_1^* and \tilde{f}_2^* . Of these, the \tilde{f}_1 and \tilde{f}_2 in general have different masses and have to be treated separately. Considering only one mass eigenstate \tilde{f}_k , option a) then means that we treat \tilde{f}_k and \tilde{f}_k^* as two separate species with $g_i = 1$ degree of freedom each, whereas option b) means that we treat them as one species \tilde{f}'_k with

 $g_i = 2$ degrees of freedom. As before, the prime indicates that we mean both the particle and the antiparticle state.

Note, that for squarks we also have the number of colours $N_c = 3$ to take into account. In option a) we should choose to treat even colour state differently, i.e. $g_i = 1$, whereas $g_i = 6$ in case b). The expressions would be the same as above except that both the expression in a) and b) would be multiplied by the colour factor $N_c = 3$. The expression relating case a) and case b) is thus unaffected by this colour factor. Note however, that in option b) we take the average over the squark colours (or in this case calculate it only for one colour. See sections 21.1.4 and 21.1.4 below for more details.

For option a), Eq. (21.34) then reads

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} = \frac{p_{ik}}{p_{11}} \frac{2 \cdot 1}{2^2} \left[W_{\chi_i^0 \tilde{f}_k} + W_{\chi_i^0 \tilde{f}_k^*} + \underbrace{W_{\tilde{f}_k \chi_i^0}}_{W_{\chi_i^0 \tilde{f}_k}} + \underbrace{W_{\tilde{f}_k^* \chi_i^0}}_{W_{\chi_i^0 \tilde{f}_k^*}} \right]$$
$$= \frac{p_{ik}}{p_{11}} \left[W_{\chi_i^0 \tilde{f}_k} + \underbrace{W_{\chi_i^0 \tilde{f}_k^*}}_{W_{\chi_i^0 \tilde{f}_k}} \right] = 2 \frac{p_{ik}}{p_{11}} W_{\chi_i^0 \tilde{f}_k}$$
(21.49)

whereas for option b), Eq. (21.34) reads

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij} = \frac{p_{ik}}{p_{11}} \frac{2 \cdot 2}{2^2} \left[W'_{\chi_i^0 \tilde{f'}_k} + \underbrace{W'_{\tilde{f'}_k \chi_i^0}}_{W'_{\chi_i^0 \tilde{f'}_k}} \right] = 2 \frac{p_{ik}}{p_{11}} W'_{\chi_i^0 \tilde{f'}_k}$$
(21.50)

Comparing Eq. (21.50) and Eq. (21.49) we see that they are indentical if we make the identification

$$W'_{\chi_i^0 \tilde{f'}_k} \equiv W_{\chi_i^0 \tilde{f}_k} \tag{21.51}$$

For clarity, for squarks the corresponding expression would be

$$W'_{\chi^0_i \tilde{q'}_k} \equiv \frac{1}{3} \sum_{a=1}^3 W_{\chi^0_i \tilde{q}^a_k}$$
(21.52)

where a is a colour index.

Chargino-sfermion annihilation

In option a) the chargino has $g_i = 2$ and the sfermion has $g_i = 1$ degrees of freedom, whereas in option b), the chargino has $g_i = 4$ and the sfermion has $g_i = 2$ degrees of freedom

For option a), Eq. (21.34) then reads

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij} g_{igg}}{p_{11}} W_{ij}$$

$$= \frac{p_{ck}}{p_{11}} \frac{2 \cdot 1}{2^2} \left[W_{\chi_c^+ \tilde{f}_k} + W_{\chi_c^+ \tilde{f}_k^*} + W_{\chi_c^- \tilde{f}_k} + W_{\chi_c^- \tilde{f}_k^*} \right]$$

$$= \frac{p_{ck}}{p_{11}} \left[W_{\chi_c^+ \tilde{f}_k} + W_{\chi_c^+ \tilde{f}_k^*} + W_{\chi_c^- \tilde{f}_k} + W_{\chi_c^- \tilde{f}_k^*} + W_{\chi_c^- \tilde{f}_k^*} \right] = 2 \frac{p_{ck}}{p_{11}} \left[W_{\chi_c^+ \tilde{f}_k} + W_{\chi_c^+ \tilde{f}_k^*} + W_{\chi_c^- \tilde{f}_k^*} + W_{\chi_c^- \tilde{f}_k^*} \right]$$
(21.53)

In option b), Eq. (21.34) reads

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij} = \frac{p_{ck}}{p_{11}} \frac{4 \cdot 2}{2^2} \left[W'_{\chi_c^{\pm} \tilde{f}'_k} + \underbrace{W'_{\tilde{f}'_k \chi_c^{\pm}}}_{W'_{\chi_c^{\pm} \tilde{f}'_k}} \right] = 4 \frac{p_{ck}}{p_{11}} W'_{\chi_c^{\pm} \tilde{f}'_k}$$
(21.54)

Comparing Eq. (21.54) and Eq. (21.53) we see that they are indentical if we make the identification

$$W'_{\chi_c^{\pm}\tilde{f}'_k} \equiv \frac{1}{2} \left[W_{\chi_c^{+}\tilde{f}_k} + W_{\chi_c^{+}\tilde{f}_k^{*}} \right]$$
(21.55)

For clarity, for squarks the corresponding expression would be

$$W'_{\chi_c^+ \tilde{q'}_k} \equiv \frac{1}{2} \frac{1}{3} \sum_{a=1}^3 \left[W_{\chi_c^+ \tilde{q}_k^a} + W_{\chi_c^+ \tilde{q}_k^{a*}} \right]$$
(21.56)

where a is a colour index.

Sfermion-sfermion annihilation

First consider the case where we have annihilation between sfmerions of different types, i.e. annihilation between \tilde{f}_k or \tilde{f}_k^* and \tilde{f}_l or \tilde{f}_l^* .

For option a), Eq. (21.34) then reads

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_{i}g_{j}}{g_{1}^{2}} W_{ij}$$

$$= \frac{p_{kl}}{p_{11}} \frac{1 \cdot 1}{2^{2}} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} \right]$$

$$= \frac{1}{2} \frac{p_{kl}}{p_{11}} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} + W_{\tilde{f}_{k}^{*}\tilde{f}_{l}^{*}} \right] = \frac{p_{kl}}{p_{11}} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{*}} \right]$$
(21.57)

In option b) we would get

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij}$$

= $\frac{p_{kl}}{p_{11}} \frac{2 \cdot 2}{2^2} \left[W'_{\tilde{f}'_k \tilde{f}'_l} + \underbrace{W'_{\tilde{f}'_l \tilde{f}'_k}}_{W'_{\tilde{f}'_k \tilde{f}'_l}} \right] = 2 \frac{p_{kl}}{p_{11}} \left[W'_{\tilde{f}'_k \tilde{f}'_l} \right]$ (21.58)

Comparing Eq. (21.58) and Eq. (21.57) we see that they are indentical if we make the identification

$$W'_{\tilde{f}'_{k}\tilde{f}'_{l}} \equiv \frac{1}{2} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{*}} \right]$$
(21.59)

It is easy to show that this relation holds true even if k = l.

Squark-squark annihilation

Even though we treated sfermion-sfermion annihilation in the previous subsection, squarks have colour which can complicate things, so let's for clarity consider squarks separately.

Let's denote the squarks \tilde{q}_k^a where *a* is now a colour index. In option a) we will let each colour be a seprate species, which means that $g_i = 1$ in this case. In option b) we will instead have $g_i = 6$.

In option a) we would have

$$\begin{split} W_{\text{eff}} &= \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_{i}g_{j}}{g_{1}^{2}} W_{ij} \\ &= \frac{p_{kl}}{p_{11}} \frac{1 \cdot 1}{2^{2}} \sum_{a,b=1}^{3} \left[W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b}} + W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b*}} + W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}} + W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}} + W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}} + W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b*}} \right] \\ &+ \underbrace{W_{\tilde{q}_{l}^{a}\tilde{q}_{k}^{b}}}_{W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b}}} + \underbrace{W_{\tilde{q}_{l}^{a*}\tilde{q}_{k}^{b}}}_{W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b*}}} + \underbrace{W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}}}_{W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b*}}} \right] \\ &= \frac{1}{2} \frac{p_{kl}}{p_{11}} \sum_{a,b=1}^{3} \left[W_{\tilde{q}_{k}^{a}\tilde{f}_{l}^{b}} + W_{\tilde{q}_{k}^{a}\tilde{f}_{l}^{b*}} + \underbrace{W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}}}_{W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b*}}} + \underbrace{W_{\tilde{q}_{k}^{a*}\tilde{q}_{l}^{b}}}_{W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b}}} \right] = \frac{p_{kl}}{p_{11}} \sum_{a,b=1}^{3} \left[W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b}} + W_{\tilde{q}_{k}^{a}\tilde{q}_{l}^{b}} \right] 1.60 \end{split}$$

In option b) we would get

$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W'_{ij}$$

= $\frac{p_{kl}}{p_{11}} \frac{6 \cdot 6}{2^2} \left[W'_{\tilde{q'}_k \tilde{q'}_l} + \underbrace{W'_{\tilde{q'}_l \tilde{q'}_k}}_{W'_{\tilde{q'}_k \tilde{q'}_l}} \right] = 18 \frac{p_{kl}}{p_{11}} \left[W'_{\tilde{q'}_k \tilde{q'}_l} \right]$ (21.61)

Comparing Eq. (21.61) and Eq. (21.60) we see that they are indentical if we make the identification

$$W'_{\tilde{q'}_k\tilde{q'}_l} \equiv \frac{1}{2} \frac{1}{9} \sum_{a,b=1}^3 \left[W_{\tilde{q}^a_k\tilde{q}^b_l} + W_{\tilde{q}^a_k\tilde{q}^{b*}_l} \right]$$
(21.62)

i.e. we get the same relation as for other sfermions, the only difference being that we in option b) should also take the average over the colour states.

Sfermion-squark annihilation

For clarity, if we have annihilation between a non-coloured sfermion and a squark, we would in the same way as in the previous subsection get

$$W'_{\tilde{f}'_{k}\tilde{q}'_{l}} \equiv \frac{1}{2} \frac{1}{3} \sum_{b=1}^{3} \left[W_{\tilde{f}_{k}\tilde{q}_{l}^{b}} + W_{\tilde{f}_{k}\tilde{q}_{l}^{b*}} \right]$$
(21.63)

Summary of degrees of freedom

We have found above the following relations between option b) and option a),

$$\begin{array}{lll} W'_{\chi_{i}^{0}\chi_{j}^{\pm}} &\equiv & W_{\chi_{i}^{0}\chi_{j}^{+}} = W_{\chi_{i}^{0}\chi_{j}^{-}} &, \quad \forall \ i = 1, \dots, 4, \ j = 1, 2 \\ W'_{\chi_{i}^{\pm}\chi_{j}^{\pm}} &\equiv & \frac{1}{2} \left[W_{\chi_{i}^{\pm}\chi_{j}^{+}} + W_{\chi_{i}^{\pm}\chi_{j}^{-}} \right] = \frac{1}{2} \left[W_{\chi_{i}^{-}\chi_{j}^{-}} + W_{\chi_{i}^{-}\chi_{j}^{+}} \right] &, \quad \forall \ i = 1, 2, \ j = 1, 2 \\ W'_{\chi_{i}^{0}\tilde{f}'_{k}} &\equiv & W_{\chi_{i}^{0}\tilde{f}_{k}} &, \quad \forall \ i = 1, \dots, 4, \ k = 1, 2 \\ W'_{\chi_{c}^{\pm}\tilde{f}'_{k}} &\equiv & \frac{1}{2} \left[W_{\chi_{c}^{\pm}\tilde{f}_{k}} + W_{\chi_{c}^{\pm}\tilde{f}_{k}^{+}} \right] &, \quad \forall \ c = 1, 2, \ k = 1, 2 \\ W'_{\tilde{f}'_{k}\tilde{f}'_{l}} &\equiv & \frac{1}{2} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{+}} \right] &, \quad \forall \ k = 1, 2, \ l = 1, 2 \\ W'_{\tilde{f}'_{k}\tilde{f}'_{l}} &\equiv & \frac{1}{2} \left[W_{\tilde{f}_{k}\tilde{f}_{l}} + W_{\tilde{f}_{k}\tilde{f}_{l}^{+}} \right] &, \quad \forall \ k = 1, 2, \ l = 1, 2 \end{array}$$

We don't list all the possible cases with squarks explicitly, the principle being that we in option b) should take the *average* over the squark colour states (see the squark-squark entry in the list above).

We will choose option b) and the code (dsandwdcoscn, dsandwdcoscn, dsasdwdcossfsf and dsasdwdcossfchi) should thus return W' as defined above. Note again that squarks are assumed to have $g_i = 6$ degrees of freedom in this convention and the summing over colours should also be taken into account in the code.

21.1.5 Reformulation of the Boltzmann equation

We now follow Gondolo and Gelmini [68] to put Eq. (21.12) in a more convenient form by considering the ratio of the number density to the entropy density,

$$Y = \frac{n}{s}.$$
(21.65)

Consider

$$\frac{dY}{dt} = \frac{d}{dt} \left(\frac{n}{s}\right) = \frac{\dot{n}}{s} - \frac{n}{s^2} \dot{s}$$
(21.66)

where dot means time derivative. In absence of entropy production, $S = R^3 s$ is constant (*R* is the scale factor). Differentiating with respect to time we see that

$$\dot{s} = -3\frac{\dot{R}}{R}s = -3Hs \tag{21.67}$$

which yields

$$\dot{Y} = \frac{\dot{n}}{s} + 3H\frac{n}{s}.$$
(21.68)

Hence we can rewrite Eq. (21.12) as

$$\dot{Y} = -s \langle \sigma_{\text{eff}} v \rangle \left(Y^2 - Y_{\text{eq}}^2 \right).$$
(21.69)

The right-hand side depends only on temperature, and it is therefore convenient to use temperature T instead of time t as independent variable. Defining $x = m_1/T$ we have

$$\frac{dY}{dx} = -\frac{m_1}{x^2} \frac{1}{3H} \frac{ds}{dT} \langle \sigma_{\text{eff}} v \rangle \left(Y^2 - Y_{\text{eq}}^2 \right).$$
(21.70)

where we have used

$$\frac{1}{\dot{T}} = \frac{1}{\dot{s}}\frac{ds}{dT} = -\frac{1}{3Hs}\frac{ds}{dT}$$
(21.71)

which follows from Eq. (21.67). With the Friedmann equation in a radiation dominated universe

$$H^2 = \frac{8\pi G\rho}{3},$$
 (21.72)

where G is the gravitational constant, and the usual parameterization of the energy and entropy densities in terms of the effective degrees of freedom g_{eff} and h_{eff} ,

$$\rho = g_{\text{eff}}(T) \frac{\pi^2}{30} T^4, \quad s = h_{\text{eff}}(T) \frac{2\pi^2}{45} T^3,$$
(21.73)

we can cast Eq. (21.70) into the form [68]

$$\frac{dY}{dx} = -\sqrt{\frac{\pi}{45G}} \frac{g_*^{1/2} m_1}{x^2} \langle \sigma_{\rm eff} v \rangle \left(Y^2 - Y_{\rm eq}^2 \right)$$
(21.74)

where Y_{eq} can be written as

$$Y_{\rm eq} = \frac{n_{\rm eq}}{s} = \frac{45x^2}{4\pi^4 h_{\rm eff}(T)} \sum_i g_i \left(\frac{m_i}{m_1}\right)^2 K_2\left(x\frac{m_i}{m_1}\right), \qquad (21.75)$$

using Eqs. (21.15), (21.65) and (21.73).

The parameter $g_*^{1/2}$ is defined as

$$g_*^{1/2} = \frac{h_{\text{eff}}}{\sqrt{g_{\text{eff}}}} \left(1 + \frac{T}{3h_{\text{eff}}} \frac{dh_{\text{eff}}}{dT} \right)$$
(21.76)

For g_{eff} , h_{eff} and $g_*^{1/2}$ we use the values in Ref. [68] with a QCD phase-transition temperature $T_{QCD} = 150$ MeV. Our results are insensitive to the value of T_{QCD} , because due to a lower limit on the neutralino mass the neutralino freeze-out temperature is always much larger than T_{QCD} .

To obtain the relic density we integrate Eq. (21.79) from x = 0 to $x_0 = m_{\chi}/T_0$ where T_0 is the photon temperature of the Universe today. The relic density today in units of the critical density is then given by

$$\Omega_{\chi} = \rho_{\chi}^0 / \rho_{\rm crit} = m_{\chi} s_0 Y_0 / \rho_{\rm crit} \tag{21.77}$$

where $\rho_{\text{crit}} = 3H^2/8\pi G$ is the critical density, s_0 is the entropy density today and Y_0 is the result of the integration of Eq. (21.79). With a background radiation temperature of $T_0 = 2.726$ K we finally obtain

$$\Omega_{\chi} h^2 = 2.755 \times 10^8 \frac{m_{\chi}}{\text{GeV}} Y_0.$$
(21.78)

21.2 Relic density – numerical integration of the density equation

Let us write the evolution equation for the density,

$$\frac{dY}{dx} = -\sqrt{\frac{\pi}{45G}} \frac{g_*^{1/2} m_1}{x^2} \langle \sigma_{\rm eff} v \rangle \left(Y^2 - Y_{\rm eq}^2 \right)$$
(21.79)

as

$$\frac{dY}{dx} = \lambda (Y^2 - q^2), \qquad (21.80)$$

where λ contains the annihilation rate and q represents the thermal-equilibrium density.

This equation is stiff and an explicit method, like Euler or Runge-Kutta, fails to converge. To obtain a numerical solution, we use an adaptive implicit trapezoidal method which we explain in the

following. Basically we discretize the equation first with a trapezoidal then with an Euler method, and adapt the step size according to the difference in the updated function values.

For simplicity we denote the right hand wide of eq. (21.80) as f(x). We further write $f_i = f(x_i)$ and similarly for the other functions $\lambda(x)$ and q(x). Given $Y_i = Y(x_i)$ we find $Y_{i+1} = Y(x_{i+1})$ with $x_{i+1} = x_i + h$ as follows.

First we discretize the evolution equation as

$$Y_{i+1} - Y_i = h \frac{f_i + f_{i+1}}{2}.$$
(21.81)

We insert

$$f_i = \lambda_i \left(Y_i^2 - q_i^2 \right),$$
 (21.82)

$$f_{i+1} = \lambda_{i+1} \left(Y_{i+1}^2 - q_{i+1}^2 \right), \qquad (21.83)$$

and solve the resulting quadratic equation for Y_{i+1} to obtain

$$Y_{i+1} = \frac{c}{1 + \sqrt{1 + uc}},\tag{21.84}$$

where

$$c = 2Y_i + u \left[(q_{i+1}^2 + \rho q_i^2) - \rho Y_i^2 \right], \qquad (21.85)$$

$$u = h\lambda_{i+1}, (21.86)$$

$$\rho = \lambda_i / \lambda_{i+1}. \tag{21.87}$$

In the expression for c we have explicitly indicated the order of evaluation which we found avoids round-off errors. If in eq. (21.84) 1 + uc is negative, we simply reduce the step h to h/2 and try again.

Secondly we discretize the evolution equation as

$$Y_{i+1} - Y_i = h f_{i+1}. (21.88)$$

We insert the expression for f_{i+1} and solve the quadratic equation for Y_{i+1} to obtain

$$Y_{i+1}' = \frac{1}{2} \frac{c'}{1 + \sqrt{1 + uc'}},\tag{21.89}$$

where

$$c' = 4\left(Y_i + uq_{i+1}^2\right). \tag{21.90}$$

Again if in eq. (21.89) 1 + uc' < 0, we reduce the step h to h/2 and try again.

We then adapt the step size according to the relative difference of Y_{i+1} and Y'_{i+1} ,

$$d = \left| \frac{Y_{i+1} - Y'_{i+1}}{Y_{i+1}} \right|.$$
(21.91)

If the difference is larger than a prefixed ϵ , set at 0.01, we reduce the step size h to $hs/\sqrt{\epsilon}$ but never to less than h/10. s is a safety factor set to 0.9. If $d < \epsilon$, we increase the step size by a factor $s/\sqrt{\epsilon}$ but never by more than a factor of 5. We do not allow the step size to become smaller than $h_{\min} = 10^{-9}$. Error code 5 is reported if this happens. Error code 4 occurs when x_{i+1} is numerically equal to x_i because of round-off. Error code 6 occurs when the number of steps exceeds a maximum of 100000. Finally the initial step size is taken to be 0.01.

21.3 Relic density – routines

In src/rd, the general relic density routines are found. These routines can be used for any dark matter candidate and the interface to neutralino dark matter is in src/rn. We will first discuss how the routines for neutralino relic density are used and then how the general routines work.

21.3.1 Neutralino relic density

function dsrdomega(coann,fast,xf,ierr,iwar,nfc)

Calculate the relic density of the lightest neutralino, possibly including coanni-Purpose: hilations between different neutralinos, neutralinos and charginos and between charginos. Input: =1: include coannihilations between neutralino-neutralino, neutralino-chargino coann i and chargino-chargino. =2: do not include coannihilations. i =1: Do a faster calculation, with slightly less accuracy in the numerical integrafast tions and only including coannihilations (if coann=1) with other particles up to 1.3 times heavier than the lightest neutralino. =2: Do a more accurate calculation, with higher accuracy in the numerical integrations and including coannihilations (if coann=1) with other particles up to 2.1 times heavier than the lightest neutralino. Output: xf r8 x is defined as $x = m_{\chi}/T$ and xf is the x at which freeze-out occurs (defined as the temperature at which the number density is a factor of two higher than the equilibrium density). COMMENT #12: Check! i. =0: Calculation went OK. ierr \neq 0: Somethig went wrong. **COMMENT #13: Describe!** iwar i =0: Calculation went OK. \neq 0: A slight inaccuracy may have occured at a resonance or threshold for numerical reasons. Usually, this doesn't affect the result, but one should keep it in mind in case the returned relic density seems strange. nfc The number of points (in p_{eff}) at which the cross section was evaluated. i subroutine **dsrdwrate**(unit1,unit2,ich) Writes a table of the partial annihilation rates $W_F(p, \cos \theta)$ into each final chan-Purpose: nel F as a function of the center-of-mass momentum p and at $\cos\theta = 0.1$ to unit2. Inputs: unit1 i What is this? Unit number to write output to. unit2 i ich What initial state channel to use: i =1: neutralino-neutralino annihilation

- =2: neutralino-chargino coannihilation
- =3: chargino-chargino coannihilations.
- *Comment:* Only annihilation between the *lightest* neutralinos and charginos are included.

21.3.2 General relic density routines

The routine that performs the actual relic density calculation is

subroutines dsrdens(w	vx,ncoann,mcoann,dof,nrs,rr	n,rw,nt,tm,oh2,tf,ierr,iwar)
-----------------------	-----------------------------	------------------------------

Purpose:	Calculate the relic density of a dark matter candidte.	
Input:		

r8

	wx	r8	User-defined function that returns the effective invariant annihilation rate, $W_{\rm eff}$,
			as a function of the effective momentum p_{eff} . The function has to be declared
			external in the calling routine.
	ncoann	i	Number of particles that coannihilate.
	mcoann	r8	An array with the masses (in GeV) that can coannihilate.
	dof	r8	Number of internal degrees of freedom for the coannihilating particles.
	nrs	i	Number of resonances.
	rm	r8	An array with the masses of the resonances (in GeV).
	rw	r8	An array with the widths of the resonances (in GeV).
	nt	i	Number of thresholds.
	tm	r8	An array with the \sqrt{s} (in GeV) at which the thresholds occur.
Ou	tput:		
	oh2	r8	The relic density, Ωh^2 where h is the Hubble constant in units of 100 km s ⁻¹
			Mpc^{-1} .
	tf	r8	The temperature (in GeV) at which the freeze-out occured. Freeze-out is defined
			to occur when the number density is 2 times the equilibrium density.
	ierr	i	=0: Calculation went OK.
			$\neq 0$: Somethig went wrong. COMMENT #14: Describe!
	iwar	i	=0: Calculation went OK.
			\neq 0: A slight inaccuracy may have occured at a resonance or threshold for
			numerical reasons. Usually, this doesn't affect the result, but one should keep
			it in mind in case the returned relic density seems strange.

It is up to the user to prepare the input function and arrays accordingly before calling the routine. All internal settings of the relic density routines are set in common blocks in dsrdcom.h. The most important parameters that can be changed by the user are

Important parameters in dsrdcom.h

Purpose:		Provide a set of parameters, with which the internal behaviour of the relic
		density routines can be changed.
Parameters		
tharsi	i	Size of the coannihilation, resonance and threshold arrays (default=50). Increase this size if you have more than 50 coannihilating particles, more than 50 resonances or more than 50 thresholds.
rdluerr	i	Logical unit number where error messages are printed.
rdtag c*1	12	Idtag that is printed in case of errors.
cosmin r	8	
waccd r	8	
dpminr r	8	
dpthr r	8	
wdiffr r	8	
wdifft r	8	
hstep r	8	

When the relic density has been calculated, the integer variable copart in dsandwcom.h is set to indicate which coannihilating particles that have been included in the calculation. In Table 21.1, the meaning if this variable is shown.

21.3.3Brief description of the internal routines

Below, the remaining routines related to the relic density calculation are briefly mentioned. For more details, we refer to the routines themselves.

Routine	Purpose
dsrdaddpt	To add one point in the W_{eff} - p_{eff} table.

copart			PAW va	ariables	
Bit set	Octal value	Decimal value	cop1 bit	cop2 bit	Particle
0	1	1	0	_	$\tilde{\chi}_1^0$
1	2	2	1	_	$ ilde{\chi}^0_2$
2	4	4	2	-	$ ilde{\chi}^0_3$
3	10	8	3	-	$ ilde{\chi}_4^0$
4	20	16	4	_	$\tilde{\chi}_1^{\pm}$
5	40	32	5	_	$\tilde{\chi}_2^{\pm}$
6	100	64	6	_	\tilde{e}_1
7	200	128	7	-	$ ilde{\mu}_1$
8	400	256	8	_	$ ilde{ au}_1$
9	1000	512	9	_	\tilde{e}_2
10	2000	1024	10	_	$ ilde{\mu}_2$
11	4000	2048	11	_	$ ilde{ au}_2$
12	10000	4096	12	_	$\tilde{\nu}_e$
13	20000	8192	13	_	$ ilde{ u}_{\mu}$
14	40000	16384	14	_	$\tilde{ u}_{ au}$
15	100000	32768	_	0	\tilde{u}_1
16	200000	65536	_	1	\tilde{c}_1
17	400000	131072	_	2	${ ilde t}_1$
18	1000000	262144	_	3	\tilde{u}_2
19	2000000	524288	_	4	\tilde{c}_2
20	4000000	1048576	-	5	\tilde{t}_2
21	10000000	2097152	_	6	\widetilde{d}_1
22	20000000	4197304	_	7	\tilde{s}_1
23	40000000	8388608	_	8	$ ilde{b}_1$
24	100000000	16777216	_	9	\tilde{d}_2
25	200000000	33554432	_	10	\tilde{s}_2
26	400000000	67108864	_	11	\tilde{b}_2

Table 21.1: The bits of copart are set to indicate which initial states that are included in the coannihilation calculation. In the output file *.omegaco, the value of copart is written in octal format. In PAW cop1 and cop2 are available. Check if a bit is set with btest(cop1,bit).

dsrdcom	To initialize parameters in the common blocks in $dsrdcom.h.$ If you want to change these parameters yourself, include $dsrdcom.h$ in your code and change the parameters you want.
dsrddof150	To prepare a table of the degrees of freedom as a function of the temperature in the early Universe.
dsrddpmin	To return the allowed minimal distance in $p_{\rm eff}$ between two points in the $W_{\rm eff}$ - $p_{\rm eff}$ plane. The returned value depends on if there is a resonance present or not at the given $p_{\rm eff}$.
dsrdeqn	To solve the relic density equation by means of an implicit trapezoidal method with adaptive stepsize and termination.
dsrdfunc	To return the invariant annihilation rate times the thermal distribution.
dsrdfuncs	To provide dsrdfunc in a form suitable for numerical integration.
dsrdlny	To return $\ln(W_{\text{eff}}$ for a given p_{eff} .
dsrdnormlz	To return a unit vector in a given direction.
dsrdqad	To calculate the relic density with a quick-and-dirty method. It uses the ap-

	proximative expressions in Kolb & Turner with the cross section expaned in \boldsymbol{v}
dsrdqrkck	To numerically integrate a function with a Runge-Kutta method
dsrdrhs	To calculate terms on the right-hand side in the Boltzmann equation.
dsrdspline	To set up the table W_{eff} - p_{eff} for spline interpolation.
dsrdstart	To sort and store information about coannihilations, resonances and thresholds in common blocks.
dsrdtab	To set up the table W_{eff} - p_{eff} .
dsrdthav	To calculate the thermally averaged annihilation cross section at a given temperature.
dsrdthclose	???COMMENT #15: What does this function do?
dsrdthlim	To determine the end-points for the thermal average integration.
dsrdthtest	To check if a given entry in the W_{eff} - p_{eff} table is at a threshold.
dsrdwdwdcos	To write out a table of $dW_{\rm eff}/d\cos\theta$ as a function of $\cos\theta$ for a given $p_{\rm eff}$.
dsrdwfunc	To write out dsrdfunc for a given $x = m_{\chi}/T$.
dsrdwintp	To return the invariant rate $W_{\rm eff}$ for any given $p_{\rm eff}$ by performing a spline interpolation in the $W_{\rm eff}$ - $p_{\rm eff}$ table.
dsrdwintpch	To check the spline interpolation in the $W_{\rm eff}\text{-}p_{\rm eff}$ table and compare with a linear interpolation.
dsrdwintrp	To write out a table of the invariant rate $W_{\rm eff}$ and some internal integration variables and expressions.
dsrdwres	To write out the table W_{eff} - p_{eff} .

Below are brief descriptions of routines in src/rn not mentioned above

Routine	Purpose
dsrdres	To prepare the array of resonances needed before the call to dsrdens.
dsrdthr	To prepare the array of thresholds needed before the call to dsrdens.

21.4 Routine headers – fortran files

dsrdaddpt.f

	<pre>subroutine dsrdaddpt(wrate,pres,deltap)</pre>
c_	
с	add a point in rdrate table
с	input:
с	wrate - invariant annihilation rate (real, external)
с	pres - momentum of the point to add
с	deltap - scaling factor used in dsrdtab
с	pmax - maximum p used in dsrdtab (from common block)
с	common:
с	'dsrdcom.h' - included common blocks
с	used by dsrdtab
с	author: joakim edsjo (edsjo@physto.se)
с	modified: 01-01-31 paolo gondolo (paolo@mamma-mia.phys.cwru.edu)
c=	

dsrdcom.f

No header found.

dsrddof150.f

subroutine dsrddof150

dsrddpmin.f

real*8 function dsrddpmin(p,dpmin)

dsrdens.f

```
subroutine dsrdens(wrate,npart,mgev,dof,nrs,rm,rw,
    & nt,tm,oh2,tf,ierr,iwar)
C_____
c present density in units of the critical density times the
    hubble constant squared.
с
c input:
    wrate - invariant annihilation rate (real, external)
с
    npart - number of particles coannihilating
с
    mgev - relic and coannihilating mass in gev
С
         - internal degrees of freedom of the particles
    dof
с
          - number of resonances to take special care of
с
    nrs
    rm
          - mass of resonances in gev
С
С
    rw
          - width of resonances in gev
  nt
         - number of thresholds to take special care of
С
           do not include coannihilation thresholds (that's automatic)
С
    tm
         - sqrt(s) of the thresholds in gev
с
c output:
    oh2
         - relic density parameter times h**2 (real*8)
с
          - freeze-out temperature in gev (real*8)
с
    tf
   ierr - error code (integer)
С
    dsbit 0 (1) = array capacity exceeded. increase nrmax in dsrdcom.h
С
          1 (2) = a zero vector is given to dsrdnormlz.
с
```

<pre>c 3 (8) = stepsize smaller than minimum hmin in dsrdeqn c 4 (16) = too many steps in dsrdeqn c 5 (32) = step size underflow in dsrdqrkck c 6 (64) = step size smaller than miminum in dsrdqrkck c 7 (128) = too many steps in dsrdqrkck c 8 (256) = gpindp integration failed in dsrdthav 9 (512) = threshold array too small. increase tharsi in dsrdcom.h c iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: naclo gondolo (gondolo@lpthe jussien fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	2	<pre>(4) = step size underflow in dsrdeqn</pre>
<pre>c 4 (16) = too many steps in dsrdeqn c 5 (32) = step size underflow in dsrdqrkck c 6 (64) = step size smaller than miminum in dsrdqrkck c 7 (128) = too many steps in dsrdqrkck c 8 (256) = gpindp integration failed in dsrdthav 9 (512) = threshold array too small. increase tharsi in dsrdcom.h c iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: nacle gondole (gondole@lnthe inssien fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	3	(8) = stepsize smaller than minimum hmin in dsrdeqn
<pre>c 5 (32) = step size underflow in dsrdqrkck c 6 (64) = step size smaller than miminum in dsrdqrkck c 7 (128) = too many steps in dsrdqrkck c 8 (256) = gpindp integration failed in dsrdthav c 9 (512) = threshold array too small. increase tharsi in dsrdcom.h c iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: naclo gondolo (gondolo@lnthe inssien fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	4	<pre>(16) = too many steps in dsrdeqn</pre>
<pre>c 6 (64) = step size smaller than miminum in dsrdqrkck c 7 (128) = too many steps in dsrdqrkck c 8 (256) = gpindp integration failed in dsrdthav 9 (512) = threshold array too small. increase tharsi in dsrdcom.h c iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	5	<pre>(32) = step size underflow in dsrdqrkck</pre>
<pre>c 7 (128) = too many steps in dsrdqrkck c 8 (256) = gpindp integration failed in dsrdthav c 9 (512) = threshold array too small. increase tharsi in dsrdcom.h iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussiew fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	6	(64) = step size smaller than miminum in dsrdqrkck
<pre>c 8 (256) = gpindp integration failed in dsrdthav 9 (512) = threshold array too small. increase tharsi in dsrdcom.h iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: nacle gendele (gendele@lnthe jussien fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	7	(128) = too many steps in dsrdqrkck
<pre>c 9 (512) = threshold array too small. increase tharsi in dsrdcom.h iwar - warning code (integer) dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	8	(256) = gpindp integration failed in dsrdthav
<pre>c iwar - warning code (integer) c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondalo (gondalo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	9	(512) = threshold array too small. increase tharsi in dsrdcom.h
<pre>c dsbit 0 (1) = a difference of >5waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	iwar -	warning code (integer)
<pre>c and w_linear is obtained due to delta_p<dpmin. c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </dpmin. </pre>	с	dsbit	0 (1) = a difference of >5waccd in the ratio of w_spline
<pre>c 1 (2) = a difference of >10waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </pre>	с		and w_linear is obtained due to delta_p <dpmin.< td=""></dpmin.<>
<pre>c and w_linear is obtained due to delta_p<dpmin. c 2 (4) = a difference of >15waccd in the ratio of w_spline and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </dpmin. </pre>	с	1	(2) = a difference of >10waccd in the ratio of w_spline
<pre>c 2 (4) = a difference of >15waccd in the ratio of w_spline</pre>	с		and w_linear is obtained due to delta_p <dpmin.< td=""></dpmin.<>
<pre>c and w_linear is obtained due to delta_p<dpmin. c 3 (8) = wimp too heavy, d.o.f. table needs to be extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</dpmin. </pre>	с	2	(4) = a difference of >15waccd in the ratio of w_{spline}
<pre>c 3 (8) = wimp too heavy, d.o.f. table needs to be c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paplo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с		and w_linear is obtained due to delta_p <dpmin.< td=""></dpmin.<>
<pre>c extended to higher temperatures. now the solution c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с	3	(8) = wimp too heavy, d.o.f. table needs to be
<pre>c is started at a higher x than xinit (=2). c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с		extended to higher temperatures. now the solution
<pre>c 4 (16) = spline interpolated value too high (overflow) during c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с		is started at a higher x than xinit (=2).
<pre>c check of interpolation accuracty (dsrdwintpch) c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с	4	(16) = spline interpolated value too high (overflow) during
<pre>c common: c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с		check of interpolation accuracty (dsrdwintpch)
<pre>c 'dsrdcom.h' - included common blocks c uses dsrdtab, dsrdeqn. c authors: paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and</pre>	с	common:	
c uses dsrdtab, dsrdeqn.	с	'dsrdcom	n.h' - included common blocks
c suthors, paolo gondolo (gondolo@lpthe jussieu fr) 1994-1996 and	с	uses dsrdt	cab, dsrdeqn.
e authors. paoro gonatro (gonatroerpthe. Jussieu. 11) 1554 1556 and	с	authors: p	oaolo gondolo (gondolo@lpthe.jussieu.fr) 1994-1996 and
c joakim edsjo (edsjo@physto.se) 30-april-98	с	j	joakim edsjo (edsjo@physto.se) 30-april-98

dsrdeqn.f

```
subroutine dsrdeqn(wrate,x0,x1,y1,xf,nfcn)
C_____
                                                ___
c solve the relic density evolution equation by means of an implicit
   trapezoidal method with adaptive stepsize and termination.
С
c input:
С
   wrate - invariant annihilation rate (real, external)
  x0 - initial mass/temperature (real)
с
  x1 - final mass/temperature (real)
с
  y1 - final number/entropy densities (real)
с
  nfcn - number of calls to wrate (integer)
с
c common:
  'dsrdcom.h' - included common blocks
с
c uses dsrdrhs.
c called by dsrdens.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994-1996
c modified: joakim edsjo (edsjo@physto.se) 961212
с
          Paolo Gondolo, factor added 2003
C-----
```

dsrdfunc.f

```
function dsrdfunc(u,x,wrate)
```

c_____

```
c invariant annihilation rate times thermal distribution.
c when integrated over u, the effective thermal average times
c m_chi^2 is obtained.
c input:
  u - integration variable (real)
С
  x - mass/temperature (real)
С
   wrate - invariant annihilation rate (real, external)
с
c common:
с
   'dsrdcom.h' - included common blocks
c called by dsrdrhs, wirate, dsrdwintrp.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994-1996
c modified: joakim edsjo (edsjo@physto.se) 98-04-29
```

dsrdfuncs.f

function dsrdfuncs(u)

```
c______
c 10^15 * dsrdfunc.
c input:
c u - integration variable
c uses dsrdfunc
c used for gaussian integration with gadap.f
c author: joakim edsjo (edsjo@physto.se)
c date: 97-01-17
```

dsrdlny.f

dsrdnormlz.f

subroutine dsrdnormlz(x,y,nx,ny)

dsrdqad.f

```
subroutine dsrdqad(wrate,mgev,oh2,ierr)
C_____
                                                 -----
c present density in units of the critical density times the
    hubble constant squared. quick and dirty method
с
c input:
   wrate - invariant annihilation rate (real, external)
с
  mgev - relic and coannihilating mass in gev
С
c output:
   oh2 - relic density parameter times h**2 (real)
С
    ierr - error code (integer)
с
c common:
с
   'dsrdcom.h' - included common blocks
c uses dsrdtab, dsrdeqn.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994-1996
c modified: joakim edsjo (edsjo@physto.se) 97-05-12
```

dsrdqrkck.f

subroutine dsrdqrkck(f,p,wrate,x1,x2,s)

```
c_____
c numerical integration with runge-kutta method.
c input:
c f - integrand (real, external)
c p - parameter mass/temperature (real)
 wrate - invariant rate (real, external)
с
  x1 - lower limit (real)
С
   x2 - upper limit (real)
С
c output:
   s - integral (real)
С
c common:
   'dsrdcom.h' - included common blocks
с
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994
C------
```

dsrdrhs.f

```
subroutine dsrdrhs(x,wrate,lambda,yeq,nfcn)
c____
         _____
c adimensional annihilation rate lambda in the boltzmann equation
    y' = -lambda (y**2-yeq**2) and equilibrium dm density in units
с
    of the entropy density.
с
c input:
   x - mass/temperature (real)
с
    wrate - invariant annihilation rate (real)
с
c output:
   lambda - adimensional parameter in the evolution equation (real)
с
    yeq - equilibrium number/entropy densities (real)
с
```

274

dsrdspline.f

subroutine dsrdspline

C-----

dsrdstart.f

subroutine dsrdstart(npart,mgev,dof,nrs,rm,rw,nt,tm)

dsrdtab.f

c joakim edsjo (edsjo@physto.se) 06-march-98

dsrdthav.f

```
real*8 function dsrdthav(x,wrate)
```

```
c the thermal average of the effective annihilation cross section.
c input:
   x - mass/temperature (real)
С
   wrate - invariant annihilation rate (real)
С
c output:
  dsrdthav - thermal averged cross section
С
c common:
   'dsrdcom.h' - included common blocks
с
c uses qrkck or dgadap.
c called by dsrdrhs
c author: joakim edsjo (edsjo@physto.se) 98-05-01
```

dsrdthclose.f

real*8 function dsrdthclose(p)

dsrdthlim.f

subroutine dsrdthlim

dsrdthtest.f

logical function dsrdthtest(i)

C___

dsrdwdwdcos.f

subroutine dsrdwdwdcos(p,n)

dsrdwfunc.f

dsrdwintp.f

function dsrdwintp(p)

```
c______
c interpolation of tabulated invariant rate.
c input:
c p - initial cm momentum (real)
c common:
c 'dsrdcom.h' - included common blocks
c called by dsrdfunc.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994
```

dsrdwintpch.f

subroutine dsrdwintpch(p,wspline,wlin)

dsrdwintprint.f

subroutine dsrdwintprint(unit)

dsrdwintrp.f

```
subroutine dsrdwintrp(wrate,unit)
c_____
                   _____
                                      _____
c write out a table of
  initial cm momentum p
с
c invariant annihilation rate w
  integration variable u
С
  integrand f
С
  interpolated integrand g
с
с
   interpolation relative error f/g-1
c input:
  unit - logical unit to write on (integer)
с
  wrate - invariant annihilation rate (real, external)
С
c common:
С
   'dssusy.h' - file with susy common blocks
  'dsrdcom.h' - included common blocks
С
c uses dsrdtab,dsrdfunc
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994
C------
```

dsrdwprint.f

dsrdwres.f

C_____

c write out dsrdtab and check the interpolation routine

278

Chapter 22

src/rge: mSUGRA interface (Isasugra) to DarkSUSY

22.1 mSUGRA (ISASUGRA) interface to DarkSUSY

If Isasugra is available, DarkSUSY can use Isasugra to generate mSUGRA models. In src/rge/, routines are available to transfer the mSUGRA parameters from DarkSUSY to Isasugra, call Isasugra and then transfer back the results to DarkSUSY. The philosophy of this interface is that whenever a user uses Isasugra, we should use all the results of Isasugra also in DarkSUSY. That means that instead of calculating the mass spectrum from the low-energy parameters obtained from Isasugra, we extract the masses and mixings from Isasugra.

22.2 Routine headers – fortran files

dsgive_model_isasugra.f

```
subroutine dsgive_model_isasugra(m0,mhf,a0,sgnmu,tgbeta)
c-----
с
    To specify the supersymmetric parameters of a model.
с
с
    Inputs:
       m0 - m0 parameter (GeV)
С
       mhf - m_{1/2} parameter (GeV)
С
       a0 - trilinear term (GeV)
С
       sgnmu - sign of mu (+1.0d0 or -1.0d0)
С
       tgbeta - ratio of Higgs vacuum expecation values, tan(beta)
с
С
    Outputs:
       The common blocks are set corresponding to the values above
с
с
    Author: Joakim Edsjo, edsjo@physto.se
       2002-03-12
С
  _____
                  _____
c-
```

dsisasugra_check.f

	<pre>subroutine dsisasugra_check(valid)</pre>
c=	
с	This routine checks that the neutralino, chargino and neutralino
с	mixing matrices extracted from ISASUGRA are consistent with the
с	DarkSUSY convention. It does this by checking that they really
с	do diagonlize the mass matrices. If any inconsistencies (apart
с	from small numerical differences are found), an error message
с	is written.
с	Author: J. Edsjo and M. Schelke, 2002-12-03
~-	

dsisasugra_darksusy.f

dsmodelsetup_isasugra.f

	subroutine dsmodelsetup_isasugra
C==	
с	replacement for dsmodelsetup for using ISASUGRA
с	author: E.A.Baltz, 2001 eabaltz@alum.mit.edu
c==	

dsrge_isasugra.f

```
subroutine dsrge_isasugra(unphys,valid)
C------
c interface to ISASUGRA (ISAJET 7.74) routines for SUSY spectra
c author: E.A.Baltz, 2001 eabaltz@alum.mit.edu
С
c if valid is non-zero, the model is no good
  the valid flag is equal to the isasugra nogood flag:
С
c valid reason for model being bad
        _____
С
С
    1 TACHYONIC PARTICLES
     2 NO EW SYMMETRY BREAKING
С
     3 M(H_P)^2<0
с
     4 YUKAWA>10
С
     5 Z1SS NOT LSP
с
     7 XT EWSB IS BAD
с
     8 MHL^2<0
с
    9 if in our check any Higgs mass is NaN
с
c The following are not set, but can be set by uncommenting
```

22.2. ROUTINE HEADERS – FORTRAN FILES

dssusy_isasugra.f

	<pre>subroutine dssusy_isasugra(unphys,valid)</pre>
c	
с	replacement for dssusy for using ISASUGRA RGE evolution
с	author: E.A. Baltz, 2001 eabaltz@alum.mit.edu
c====	

Chapter 23

src/rn: Relic density of neutralinos (wrapper for rd routines)

23.1 Relic density of neutralinos

The relic density routines in **src/rd** solve the Boltzmann equation for any cold dark matter particle and it is up to us to tell it what kind of particles that can participate in coannihilations and what the effective annihilation rate is. This set-up for neutralino dark matter is done in **dsrdomega**. This routine is therefor the main routine the user should call, when the relic density of neutralinos is wanted.

What it does internally is the following:

- It determines which particles that can coannihilate (based on their mass differences) and puts these particles into a common block for the annihilation rate routines (**dsanwx**) and an array for the relic density routines. The relic density routines need to know their masses and internal degrees of freedom.
- It checks where we have resonances and thresholds and adds these to an array, which is passed to the relic density routines. The relic density routines then use this knowledge to make sure the tabulation of the cross section and the integrations are performed correctly at these difficult points.
- It then calls the relic density routines to calculate the relic density.

The returned value is $\Omega_{\chi} h^2$.

23.2 Routine headers – fortran files

dsrdomega.f

```
***
     omtype = 0 - no coann
***
              1 - include all relevant coannihilations (charginos,
                 neutralinos and sleptons)
***
***
              2 - include only coannihilations betweeen charginos
                 and neutralinos
***
              3 - include only coannihilations between sfermions
***
                 and the lightest neutralino
***
     fast = 0 - standard accurate calculation (accuracy better than 1%)
***
***
              1 - faster calculation: (recommended unless extreme accuracy
                 is needed).
***
                 * requires less accuracy in tabulation of w_eff
***
              2 - quick and dirty method, i.e. expand the annihilation
***
                 cross section in x (not recommended)
***
*** output:
     ierr = error from dsrdens or dsrdqad
***
*** authors: joakim edsjo, paolo gondolo
*** date: 98-03-03
*** modified: 98-03-03
***
             99-07-30 pg
***
             02-02-27 joakim edsjo: including sfermion coanns
***
            06-02-22 paolo gondolo: streamlined inclusion of coanns
```

dsrdres.f

subroutine dsrdres(npart,mgev,nres,rgev,rwid)

dsrdthr.f

subroutine dsrdthr(npart,mgev,nth,thgev)

dsrdwrate.f

288CHAPTER 23. RN: RELIC DENSITY OF NEUTRALINOS (WRAPPER FOR RD ROUTINES)
Chapter 24

src/su: General SUSY model setup: masses, vertices etc

24.1 Supersymmetric model

We will here review the definition of the MSSM as given in [1].

24.1.1 Parameters

In our notation, the superpotential and the soft supersymmetry-breaking scalar potential minimal supersymmetric standard model (MSSM) with R-parity conservation [4] read respectively

$$W = \epsilon_{ij} \left(-\hat{\mathbf{e}}_{R}^{*} \mathbf{h}_{E} \hat{\mathbf{l}}_{L}^{i} \hat{H}_{1}^{j} - \hat{\mathbf{d}}_{R}^{*} \mathbf{h}_{D} \hat{\mathbf{q}}_{L}^{i} \hat{H}_{1}^{j} + \hat{\mathbf{u}}_{R}^{*} \mathbf{h}_{U} \hat{\mathbf{q}}_{L}^{i} \hat{H}_{2}^{j} - \mu \hat{H}_{1}^{i} \hat{H}_{2}^{j} \right), \qquad (24.1)$$

$$V_{\text{soft}} = \epsilon_{ij} \left(-\tilde{\mathbf{e}}_{R}^{*} \mathbf{A}_{E} \mathbf{h}_{E} \tilde{\mathbf{l}}_{L}^{i} H_{1}^{j} - \tilde{\mathbf{d}}_{R}^{*} \mathbf{A}_{D} \mathbf{h}_{D} \tilde{\mathbf{q}}_{L}^{i} H_{1}^{j} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{A}_{U} \mathbf{h}_{U} \tilde{\mathbf{q}}_{L}^{i} H_{2}^{j} - B \mu H_{1}^{i} H_{2}^{j} \right)$$

$$+ h.c.)$$

$$+ H_{1}^{i*} m_{1}^{2} H_{1}^{i} + H_{2}^{i*} m_{2}^{2} H_{2}^{i}$$

$$+ \tilde{\mathbf{q}}_{L}^{i*} \mathbf{M}_{Q}^{2} \tilde{\mathbf{q}}_{L}^{i} + \tilde{\mathbf{l}}_{L}^{i*} \mathbf{M}_{L}^{2} \tilde{\mathbf{l}}_{L}^{i} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{M}_{U}^{2} \tilde{\mathbf{u}}_{R} + \tilde{\mathbf{d}}_{R}^{*} \mathbf{M}_{D}^{2} \tilde{\mathbf{d}}_{R} + \tilde{\mathbf{e}}_{R}^{*} \mathbf{M}_{E}^{2} \tilde{\mathbf{e}}_{R}. \qquad (24.2)$$

Here *i* and *j* are SU(2) indices ($\epsilon_{12} = +1$), h's, A's and M's are 3×3 matrices in generation space, and the other boldface letters are vectors in generation space.

The current version of DarkSUSY uses only a restricted set of parameters. Namely the number of free parameters (a grand total of 124 [9]) is reduced by setting the off-diagonal elements of the **A**'s and **M**'s to zero and imposing CP conservation (except in the CKM matrix).

24.1.2 Mass spectrum

For easy reference, we now give the particle mass matrices, together with our convention for the mixing matrices.

Concerning the Higgs sector, we choose as independent parameters $\tan \beta$ and the mass m_A of the CP-odd Higgs boson. The code provides six options for the calculation of the Higgs masses: higloop=0: tree level formulas; higloop=1: the effective potential approach in [10, 11] (correcting the sign of μ in eq. (4) of [11]); higloop=2: the effective potential approach in [12] with addition

		Higgs bose	on	
Channel	H_{1}^{0}	H_{2}^{0}	H_{3}^{0}	H^+
i=	j=1	j=2	j=3	j=4
1	$c\bar{c}$	$c\bar{c}$	$c\bar{c}$	$u \overline{d}$
2	$b\overline{b}$	$b\overline{b}$	$b\overline{b}$	$u\bar{s}$
3	$t\overline{t}$	$t\overline{t}$	$t\overline{t}$	$u\bar{b}$
4	$\tau^+\tau^-$	$\tau^+\tau^-$	$\tau^+\tau^-$	$c ar{d}$
5	W^+W^-	W^+W^-	-	$c\bar{s}$
6	Z^0Z^0	Z^0Z^0	_	$c\overline{b}$
7	_	$H_{1}^{0}H_{1}^{0}$	_	$t \bar{d}$
8	$H_{2}^{0}H_{2}^{0}$	_	_	$t\bar{s}$
9	$H_{3}^{0}H_{3}^{0}$	$H_{3}^{0}H_{3}^{0}$	_	$tar{b}$
10	H^+H^-	H^+H^-	_	$\nu_e e^+$
11	_	_	ZH_1^0	$ u_{\mu}\mu^{+}$
12	_	_	ZH_2^0	$\nu_{\tau}\tau^+$
13	ZH_3^0	ZH_3^0	_	$W^{+}H_{1}^{0}$
14	W^+H^-/W^-H^+	$W^{+}H^{-}/W^{-}H^{+}$	W^+H^-/W^-H^+	$W^{+}H_{2}^{0}$
15	$\mu^+\mu^-$	$\mu^+\mu^-$	$\mu^+\mu^-$	$W^{+}H_{3}^{0}$
16	$s\bar{s}$	$s\bar{s}$	$s\bar{s}$	_
17	gg	gg	gg	_
18	$\gamma\gamma$	$\gamma\gamma$	$\gamma\gamma$	_
19	$Z^0\gamma$	$Z^0\gamma$	$Z^0\gamma$	_
20	$ ilde{f} ilde{f}'$	${\widetilde f}{\widetilde f}'$	$ ilde{f} ilde{f}'$	${ ilde f}{ ilde f}'$

Table 24.1: Higgs partial widths hdwidth(i,j). Index i refers to the decay channel and index j to the Higgs boson. All widths are given in GeV. Note that typically we have that $m_{H_2} < m_{H_3} < m_{H^+} < m_{H_1}$ so many of these decay channels are not kinematically allowed, but included for completeness. If the HDECAY interface is used, the channels where $m_{H_2} < m_{H_3} < m_{H^+} < m_{H_1}$ is not satisfied are not included. Channels 16–19 are only included if HDECAY is used.

of D-terms and correction of some signs and numerical factors; higloop=3: the analytical approximations to the RGE-improved effective potential in [13]; higloop=4: the pole mass calculation in [14]; higloop=5: FeynHiggs (requires FeynHiggs to be installed) [163]; higloop=6: FeynHiggsFast (default) [164].

The masses of the Higgs bosons are obtained from

$$\mathcal{M}_{44}^{2} = \begin{pmatrix} m_{Z}^{2} \cos^{2}\beta + m_{A}^{2} \sin^{2}\beta + \Delta_{11} & -\sin\beta\cos\beta(m_{Z}^{2} + m_{A}^{2}) + \Delta_{12} \end{pmatrix}$$
(24.3)

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2} + \Delta_{\pm}.$$
(24.4)

The quantities Δ_{ij} and Δ_{\pm} are the one-loop radiative corrections, calculated acording to the value of higloop as described above. Diagonalization of \mathcal{M}_{H}^{2} gives the two CP-even Higgs boson masses,

of highoop as described above. Diagonalization of \mathcal{M}_{H}^{2} gives the two CP-even Higgs boson masses, $m_{H_{1,2}}$, and their mixing angle α ($-\pi/2 < \alpha < 0$). For higloop=4, the pole masses are then obtained solving $m_{H_{i}}^{2\text{pole}} = m_{H_{i}}^{2} + \prod_{ii}(m_{H_{i}}^{2\text{pole}}) - \prod_{ii}(0)$, where $\prod_{ii}(p^{2})$ is $H_{i}H_{i}$ the self-energy. In this case, $m_{H_{3}}$ is the pole mass and m_{A} is the running mass.

The Higgs widths are calculated at tree level, but with QCD corrections [165]. The decays to supersymmetric particles are also included in the total width, so the sum of the partial widths in Table 24.1 does not necessarily sum up to the total width given in width(k). The loop corrections are also available via an interface to HDECAY.

The neutralinos $\tilde{\chi}_i^0$ are linear combinations of the neutral gauginos \tilde{B} , \tilde{W}_3 and of the neutral

higgsinos \tilde{H}_1^0 , \tilde{H}_2^0 . In this basis, we write their mass matrix as

$$\mathcal{M}_{\tilde{\chi}^{0}_{1,2,3,4}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & +m_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & +m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ -m_{Z}s_{W}c_{\beta} & +m_{Z}c_{W}c_{\beta} & \delta_{33} & -\mu \\ +m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & \delta_{44} \end{pmatrix},$$
(24.5)

with $c_W = \cos \theta_W$, $s_W = \sin \theta_W$, $c_\beta = \cos \beta$, and $s_\beta = \sin \beta$. Here δ_{33} and δ_{44} are radiative corrections important when two higgsinos are close in mass. Their explicit expressions are from ref. [15]. To neglect these radiative corrections set neuloop=0 instead of neuloop=1 (default). The neutralino mass eigenstates are written as

$$\tilde{\chi}_i^0 = N_{i1}\tilde{B} + N_{i2}\tilde{W}^3 + N_{i3}\tilde{H}_1^0 + N_{i4}\tilde{H}_2^0.$$
(24.6)

The phases of N_{ij} are chosen so that the neutralino masses $m_{\tilde{\chi}_i^0} \ge 0$.

The charginos are linear combinations of the charged gauge bosons \tilde{W}^{\pm} and of the charged higgsinos H_1^- , H_2^+ . Their mass matrix,

$$\mathcal{M}_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}m_W \sin\beta \\ \sqrt{2}m_W \cos\beta & \mu \end{pmatrix}, \qquad (24.7)$$

is diagonalized by the following linear combinations

$$\tilde{\chi}_{i}^{-} = U_{i1}\tilde{W}^{-} + U_{i2}\tilde{H}_{1}^{-},$$

$$\tilde{\chi}_{i}^{+} = V_{i1}\tilde{W}^{+} + V_{i2}\tilde{H}_{1}^{+}.$$
(24.8)
(24.9)

$$\tilde{\zeta}_{i}^{+} = V_{i1}\tilde{W}^{+} + V_{i2}\tilde{H}_{1}^{+}.$$
(24.9)

We choose det(U) = 1 and $U^* \mathcal{M}_{\tilde{\chi}^{\pm}} V^{\dagger} = diag(m_{\tilde{\chi}^{\pm}_1}, m_{\tilde{\chi}^{\pm}_2})$ with non-negative chargino masses $m_{\tilde{\chi}_i^\pm} \ge 0.$

When discussing the squark mass matrix including mixing, it is convenient to choose a basis where the squarks are rotated in the same way as the corresponding quarks in the standard model. We follow the conventions of the particle data group [32] and put the mixing in the left-handed *d*-quark fields, so that the definition of the Cabibbo-Kobayashi-Maskawa matrix is $\mathbf{K} = \mathbf{V}_1 \mathbf{V}_2^{\dagger}$ where \mathbf{V}_1 (\mathbf{V}_2) rotates the interaction left-handed *u*-quark (*d*-quark) fields to mass eigenstates. For sleptons we choose an analogous basis, but due to the masslessness of neutrinos no analog of the CKM matrix appears.

We then obtain the general $6 \times 6 \tilde{u}$ - and \tilde{d} -squark mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} \mathbf{M}_{Q}^{2} + \mathbf{m}_{u}^{\dagger}\mathbf{m}_{u} + D_{LL}^{u}\mathbf{1} & \mathbf{m}_{u}^{\dagger}(\mathbf{A}_{U}^{\dagger} - \mu^{*}\cot\beta) \\ (\mathbf{A}_{U} - \mu\cot\beta)\mathbf{m}_{u} & \mathbf{M}_{U}^{2} + \mathbf{m}_{u}\mathbf{m}_{u}^{\dagger} + D_{RR}^{u}\mathbf{1} \end{pmatrix},$$
(24.10)

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} \mathbf{K}^{\dagger} \mathbf{M}_{Q}^{2} \mathbf{K} + \mathbf{m}_{d} \mathbf{m}_{d}^{\dagger} + D_{LL}^{d} \mathbf{1} & \mathbf{m}_{d}^{\dagger} (\mathbf{A}_{D}^{\dagger} - \mu^{*} \tan \beta) \\ (\mathbf{A}_{D} - \mu \tan \beta) \mathbf{m}_{d} & \mathbf{M}_{D}^{2} + \mathbf{m}_{d}^{\dagger} \mathbf{m}_{d} + D_{RR}^{d} \mathbf{1} \end{pmatrix},$$
(24.11)

and the general sneutrino and charged slepton mass matrices

$$\mathcal{M}_{\tilde{\nu}}^2 = \mathbf{M}_L^2 + D_{LL}^{\nu} \mathbf{1} \tag{24.12}$$

$$\mathcal{M}_{\tilde{e}}^{2} = \begin{pmatrix} \mathbf{M}_{L}^{2} + \mathbf{m}_{e}\mathbf{m}_{e}^{\dagger} + D_{LL}^{e}\mathbf{1} & \mathbf{m}_{e}^{\dagger}(\mathbf{A}_{E}^{\dagger} - \mu^{*}\tan\beta) \\ (\mathbf{A}_{E} - \mu\tan\beta)\mathbf{m}_{e} & \mathbf{M}_{E}^{2} + \mathbf{m}_{e}^{\dagger}\mathbf{m}_{e} + D_{RR}^{e}\mathbf{1} \end{pmatrix}.$$
(24.13)

Here

$$D_{LL}^{f} = m_Z^2 \cos 2\beta (T_{3f} - e_f \sin^2 \theta_w), \qquad (24.14)$$

$$D_{RR}^{f} = m_Z^2 \cos 2\beta e_f \sin^2 \theta_w. \tag{24.15}$$

In the chosen basis, $\mathbf{m}_u = \operatorname{diag}(m_u, m_c, m_t), \ \mathbf{m}_d = \operatorname{diag}(m_d, m_s, m_b) \ \text{and} \ \mathbf{m}_e = \operatorname{diag}(m_e, m_\mu, m_\tau).$

ν_e	knue,knu(1)	γ	kgamma	$\tilde{\chi}_i^0$	$kn(i) \ i = 1 \dots 4$	\tilde{u}_1	ksu(1), ksqu(1)
e	ke,kl(1)	W^{\pm}	kw	$\tilde{\chi}_k^{\pm}$	$kcha(k) \ k = 1, 2$	\tilde{u}_2	ksu(2),ksqu(4)
$ u_{\mu}$	knumu,knu(2)	Z^0	kz	\tilde{g}	kgluin	\tilde{d}_1	ksd(1),ksqd(1)
μ	kmu,kl(2)	g	kgluon	$\tilde{\nu}_e$	ksnue,ksnu(1)	\tilde{d}_2	ksd(2),ksqd(4)
ν_{τ}	knutau,knu(3)			\tilde{e}_1	kse(1),ksl(1)	\tilde{c}_1	ksc(1), ksqu(2)
au	ktau,kl(3)			\tilde{e}_2	kse(2),ksl(4)	\tilde{c}_2	ksc(2),ksqu(5)
u	ku,kqu(1)	H^0	kh1	$ ilde{ u}_{\mu}$	ksnumu,ksnu(2)	\tilde{s}_1	kss(1), ksqd(2)
d	kd,kqd(1)	h^0	kh2	$ ilde{\mu}_1$	ksmu(1),ksl(2)	\tilde{s}_2	kss(2), ksqd(5)
c	kc,kqu(2)	A^0	kh3	$ ilde{\mu}_2$	ksmu(2),ksl(5)	\tilde{b}_1	ksb(1), ksqd(3)
s	ks,kqd(2)	H^{\pm}	khc	$\tilde{\nu}_{\tau}$	ksnuta,ksnu(3)	\tilde{b}_2	ksb(2),ksqd(6)
b	kb,kqd(3)	G^0	kgold0	$ ilde{ au}_1$	kstau(1),ksl(3)	\tilde{t}_1	kst(1), ksqu(3)
t	kt,kqu(3)	G^{\pm}	kgoldc	$\tilde{ au}_2$	kstau(2),ksl(6)	\tilde{t}_2	kst(2), ksqu(6)

Table 24.2: Particle codes (synonyms are separated by commas).

The slepton and squark mass eigenstates \tilde{f}_k ($\tilde{\nu}_k$ with k = 1, 2, 3 and \tilde{e}_k , \tilde{u}_k and \tilde{d}_k with $k = 1, \ldots, 6$) diagonalize the previous mass matrices and are related to the current sfermion eigenstates $\tilde{\mathbf{f}}_L$ and $\tilde{\mathbf{f}}_R$ via (a = 1, 2, 3)

$$\tilde{f}_{La} = \sum_{k=1}^{6} \tilde{f}_k \Gamma_{FL}^{*ka}, \qquad (24.16)$$

$$\tilde{f}_{Ra} = \sum_{k=1}^{6} \tilde{f}_k \Gamma_{FR}^{*ka}.$$
(24.17)

The squark and charged slepton mixing matrices $\Gamma_{UL,R}$, $\Gamma_{DL,R}$ and $\Gamma_{EL,R}$ have dimension 6×3 , while the sneutrino mixing matrix $\Gamma_{\nu L}$ has dimension 3×3 .

This version of DarkSUSY allows only for diagonal matrices \mathbf{A}_U , \mathbf{A}_D , \mathbf{A}_E , \mathbf{M}_Q , \mathbf{M}_U , \mathbf{M}_D , \mathbf{M}_E , and \mathbf{M}_L . This ansatz, while not being the most general one, implies the absence of tree-level flavor changing neutral currents in all sectors of the model. In this case, the squark mass matrices can be diagonalized analytically. For example, for the top squark one has, in terms of the top squark mixing angle $\theta_{\tilde{t}}$,

$$\Gamma_{UL}^{\tilde{t}_1\tilde{t}} = \Gamma_{UR}^{\tilde{t}_2\tilde{t}} = \cos\theta_{\tilde{t}}, \qquad \Gamma_{UL}^{\tilde{t}_2\tilde{t}} = -\Gamma_{UR}^{\tilde{t}_1\tilde{t}} = \sin\theta_{\tilde{t}}.$$
(24.18)

Special values of the sfermion masses can be set with the parameters msquarks, and msleptons. If msquarks=msleptons=0, the sfermion masses are obtained with the diagonalization described above. If msquarks>0 (or msleptons>0), all squark masses are set to msquarks (or all slepton masses to msleptons). Finally, if msquarks<0 (or msleptons<0), the squark (or slepton) masses are set equal to the neutralino mass but never less than |msquarks| (or |msleptons|). This is to provide the lightest possible sfermions compatible with a neutralino LSP. In all of these cases, there is no mixing between sfermions.

The particle masses are available in an array mass(p), where p is the particle code from table 24.1.2. Similarly, particle decay width are available as width(p), but currently only the width of the Higgs bosons are calculated, the other particles having fictitious widths of 1 or 5 GeV (for the sole purpose of regularizing annihilation amplitudes close to poles).

24.1.3 Three-particle vertices

We define three-particle vertices $gl(i,j,k) = g_{ijk}^L$ and $gr(i,j,k) = g_{ijk}^R$ as follows. We adopt the convention that the order of the particles in the indices is the order in which they appear in the

corresponding lagrangian term, so the last particle is always entering. If there are charged particles in the vertex, they are both assumed positively charged, and the particle that exits the vertex is indexed before the particle that enters.

• Three scalar bosons:

$$\mathcal{L}_{\text{int}} = g_{\phi_i \phi_j \phi_k} m_W \phi_i \phi_j \phi_k \tag{24.19}$$

where ϕ_i is a Higgs or a Goldstone boson. In this case, gl=gr=g. Available vertices are $\phi_i\phi_j\phi_k = H_i^0H_j^0H_k^0$, $H_i^0H^-H^+$, $H_i^0A^0A^0$, $H_i^0G^0G^0$, $H_i^0G^-G^+$, $H_i^0G^-H^+$, $H_i^0G^-G^+$, $A^0G^-H^+$, $A^0G^0H_i^0$, and permutations.

• Two scalar and one vector bosons:

$$\mathcal{L}_{\text{int}} = g_{V\phi_1\phi_2} V^{\mu} \phi_1 i \overleftrightarrow{\partial}_{\mu} \phi_2.$$
(24.20)

Available vertices are $V\phi_1\phi_2 = Z^0H_i^0A^0$, $Z^0H^-H^+$, γH^-H^+ , $W^-H^+A^0$, $W^-H^+H_i^0$, and permutations.

• One scalar and two vector bosons:

$$\mathcal{L}_{\rm int} = g_{\phi V_1 V_2} m_W g_{\mu\nu} \phi V_1^{\mu} V_2^{\nu} \tag{24.21}$$

Available vertices are $\phi V_1 V_2 = H_i^0 W^- W^+$, $H_i^0 Z^0 Z^0$.

• Three vector bosons:

$$ig_{V_1V_2V_3}\left[(k_1 - k_3)_{\nu}g_{\mu\lambda} + (k_3 - k_2)_{\mu}g_{\lambda\nu} + (k_2 - k_1)g_{\mu\nu}\right]$$
(24.22)

with all momenta incoming and assigned as $V_1^{\mu}(k_1)$, $V_2^{\nu}(k_2)$ and $V_3^{\lambda}(k_3)$. Available vertices are $Z^0W^-W^+$ and γW^-W^+ .

1

• One scalar boson and two Dirac fermions:

$$\mathcal{L}_{\text{int}} = \phi \overline{\psi}_1 (g^L_{\phi\psi_1\psi_2} P_L + g^R_{\phi\psi_1\psi_2} P_R) \psi_2 \tag{24.23}$$

Available vertices are $\phi \psi_1 \psi_2 =$

• One vector boson and two Dirac fermions:

$$\mathcal{L}_{\text{int}} = V_{\mu}\overline{\psi}_{1}\gamma^{\mu}(g_{V\psi_{1}\psi_{2}}^{L}P_{L} + g_{V\psi_{1}\psi_{2}}^{R}P_{R})\psi_{2}$$
(24.24)

Available vertices are $V\psi_1\psi_2 =$

• One scalar boson, one Dirac and one Majorana fermion:

$$\mathcal{L}_{\text{int}} = \phi \overline{\psi} (g_{\phi\psi\chi}^L P_L + g_{\phi\psi\chi}^R P_R) \chi$$
(24.25)

Available vertices are $\phi \psi \chi =$

• One vector boson, one Dirac and one Majorana fermion:

$$\mathcal{L}_{\text{int}} = V_{\mu} \overline{\psi} \gamma^{\mu} (g_{V\psi\chi}^{L} P_{L} + g_{V\psi\chi}^{R} P_{R}) \chi \qquad (24.26)$$

Available vertices are $V\psi\chi =$

• One scalar boson and two Majorana fermions:

$$\mathcal{L}_{\text{int}} = \tag{24.27}$$

Available vertices are...

• One vector boson and two Majorana fermions:

$$\mathcal{L}_{\text{int}} = \tag{24.28}$$

Explicit expressions for the coupling constants g_{ijk} can be obtained in [4], with radiative corrections to trilinear scalar couplings in [33]. We have rederived from the superpotential all vertices we have implemented.

Implemented vertices: those listed above plus $Z^0 W^{\pm} W^{\mp}$, $Z^0 H_i^0 H_i^0$, $W^{\pm} H^{\mp} A^0$, $W^{\pm} H^{\mp} H_i^0$, $H_i^0 W^{\pm} W^{\mp}$, $H_i^0 Z^0 Z^0$, $Z^0 A^0 H$, $H_i^0 A^0 A^0$, $A^0 ff$, $H_i^0 ff$, $Z^0 ff$, $Z^0 \tilde{\chi}^0 \chi^0$, $H_i^0 \tilde{\chi}^0 \tilde{\chi}^0$, $Z^0 \tilde{\chi}^0 \tilde{\chi}^0$, $W^{\mp} \tilde{\chi}^0 \tilde{\chi}^{\pm}$, $H^{\mp} \tilde{\chi}^0 \tilde{\chi}^{\pm}$, $\tilde{q} \tilde{g} q$, $\tilde{f} \tilde{\chi}^0 f$, $H_i^0 \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$, $A^0 \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$, $W^{\pm} ff'$, $H^{\pm} ff'$, $\gamma W^{\pm} W^{\mp}$, $\gamma H^{\pm} H^{\mp}$, $Z^0 \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$, $\gamma \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$, γff , GHH, GGH, $G^{\mp} \tilde{\chi}^0 \tilde{\chi}^{\pm}$.

In appendix ??, most of the Feynman rules and the explicit expressions for the g's are found.

24.1.4 Accelerator bounds

Accelerator bounds can be checked by a call to dsacbnd(p), where p=0 checks all implemented bounds, p=1 leaves out the bound from $b \to s\gamma$, and p=2 checks only $b \to s\gamma$. The accelerator bounds implemented in version 3.10.2 (July 1999) are listed in table 24.3. The branching ratio BR $(b \to s\gamma)$ is calculated to 1-loop using the expressions in ref. [16], including or not including 1-loop QCD corrections according to the switch bsgqcd (=0 without, =1 with [default]).

Table 24.3: Accelerator bounds implemented in version 3.10.2 (July 1999) **COMMENT #17:** Update? Include? Throw away?

Bound	Ref.
$m_{H^{\pm}} > 59.5 \text{GeV}$	[17]
$m_h > [82.5 + 10.5 \sin^2(\beta - \alpha)] \text{GeV}$	[18]
$m_{\tilde{\chi}_{2}^{+}} > 91 \text{GeV} \text{ if } m_{\tilde{\chi}_{1}^{0}} - m_{\tilde{\chi}_{2}^{+}} > 4 \text{GeV}$	[19]
$m_{\tilde{\chi}_{1}^{+}}^{2} > 64 \text{GeV} \text{ if } m_{\tilde{\chi}_{1}^{0}}^{2} > 43 \text{ GeV} \text{ and } m_{\tilde{\chi}_{1}^{+}}^{2} > m_{\tilde{\chi}_{2}^{0}}^{2}$	[20]
$m_{\tilde{\chi}_2^+} > 47 \text{GeV} \text{ if } m_{\tilde{\chi}_1^0} > 41 \text{GeV}$	[21]
$m_{\tilde{\chi}_1^+}^2 > 99 \text{GeV}$	[22]
$m_{\tilde{\chi}_1^0} > 23 \text{GeV} \text{ if } \tan \beta > 3$	[23]
$m_{\tilde{\chi}_1^0} > 20 \text{GeV} \text{ if } \tan \beta > 2$	[23]
$m_{\tilde{\chi}_1^0}^{\gamma} > 12.8 \text{GeV} \text{ if } m_{\tilde{\nu}} < 200 \text{GeV}$	[24]
$m_{\tilde{\chi}_1^0} > 10.9 { m GeV}$	[25]
$m_{\tilde{\chi}^0_2}^{n} > 44 \text{GeV}$	[26]
$m_{\tilde{\chi}^0_2} > 102 \mathrm{GeV}$	[26]
$m_{\tilde{\chi}_4^0} > 127 \text{GeV}$	[23]
$m_{\tilde{g}} > 212 \text{GeV} \text{ if } m_{\tilde{q}_k} < m_{\tilde{g}}$	[27]
$m_{\tilde{g}} > 162 \text{GeV}$	[28]
$m_{\tilde{q}_k} > 90 \text{GeV} \text{ if } m_{\tilde{g}} < 410 \text{GeV}$	[29]
$m_{\tilde{q}_k} > 176 \text{GeV} \text{ if } m_{\tilde{g}} < 300 \text{GeV}$	[27]
$m_{\tilde{q}_k} > 224 \text{GeV} \text{ if } m_{\tilde{g}} > m_{\tilde{g}}$	[30]
$m_{\tilde{e}} > 78 \text{GeV} \text{ if } m_{\tilde{\chi}_1^0} < 73 \text{GeV}$	[31]
$m_{\tilde{\mu}} > 71 \text{GeV} \text{ if } m_{\tilde{\chi}_1^0} < 66 \text{GeV}$	[31]
$m_{\tilde{\tau}} > 65 \text{GeV} \text{ if } m_{\tilde{\chi}_1^0} < 55 \text{GeV}$	[31]
$m_{\tilde{\nu}} > 44.4 \text{GeV}$	[32]
$1 \times 10^{-4} < \mathrm{BR}(b \to s\gamma) < 4 \times 10^{-4}$	[32]
$\Gamma_{Z}^{\rm inv} < 502.4 {\rm MeV}$	[32]

24.2 General supersymmetry – routines

Input parameters, options, results, etc. are contained in common blocks in the file dssusy.h, which the user has to include. The input parameters are (a = 1, 2, 3)

 $\begin{array}{ll} \mathsf{ma}=m_A, & \mathsf{tanbe}=\tan\beta, & \mathsf{mu}=\mu, & \mathsf{m1}=M_1, \\ \mathsf{m2}=M_2, & \mathsf{m3}=M_3, & \mathsf{asofte}(a)=A_{Eaa}, & \mathsf{asoftu}(a)=A_{Uaa}, \\ \mathsf{asoftd}(a)=A_{Daa}, & \mathsf{mass2q}(a)=M_{Qaa}^2, & \mathsf{mass2l}(a)=M_{Laa}^2, & \mathsf{mass2u}(a)=M_{Uaa}^2, \\ \mathsf{mass2d}(a)=M_{Daa}^2, & \mathsf{mass2e}(a)=M_{Eaa}^2. \end{array}$

The options are (see previous subsections for a description) higloop choice of tree-level or radiatively corrected Higgs boson masses; neuloop choice of tree-level or radiatively corrected neutralino masses; msquarks,msleptons choice of squark and slepton masses.

To initialize DarkSUSY for a new model, you should call

subroutine dssusy(unphys, hwarning)

Purpose:	To calculate the particle spectrum, widths and couplings.
Output:	
unphys i	non-zero if the model is unphysical
hwarning i	non-zero if the Higgs code has issued a warning.

which calculates couplings, masses and some basic cross sections.

The following subroutines specify the values of the model parameters, and read/write them to a file. The user should create his own versions by editing a copy of them. Please call them with a different name.

subroutine **dsgive_model**(mu,m2,ma,tanbe,msq,atm,abm)

	-	
Purpose:		Set the MSSM parameters as specified by the arguments.
Inputs:		
mu	r8	The μ parameter in GeV.
m2	r8	The M_2 parameter in GeV.
ma	r8	The mass of the CP-odd Higgs boson, m_A in GeV.
tanbe	r8	aneta.
msq	r8	Sets \mathbf{M}^Q , etc. to a common mass scale m_0 in GeV.
atm	r8	Sets A_t in units of m_0 (range: $-3 - 3$).
abm	r8	Sets A_b in units of m_0 (range: $-3 - 3$).
subroutine ds	rndm	_model(mftyp)
Purpose:		Sets the susy parameters in a random way. Parameter ranges and probability
τ ,		distributions are set inside.
Inputs:		
mftyp	I	=1: M_1 is related to M_2 through GUT relations.
		=2: M_1 and M_2 are generated independently.
function rndu	ni(ise	r8 r8
Purpose:		To give a random number uniformly distributed between a and b .
Inputs:		
iseed	i	Seed for the random number generator. Must be a negative number at the first
		call and should not be changed from call to call.
а	r8	Lower limit of returned number.
b	r8	Upper limit of returned number.
function rndlo	og (ise	r8 r8
Purpose:		To give a random number logarithmically distributed between a and b .
Inputs:		
iseed	i	Seed for the random number generator. Must be a negative number at the first

i Seed for the random number generator. Must be a negative number at the first call and should not be changed from call to call.

a b	r8 r8	Lower limit of returned number. Upper limit of returned number.		
function rndsg	n (ise	ed) r8		
Purpose:	•	Returns ± 1 with equal probability.		
Inputs: iseed	i	Seed for the random number generator. Must be a negative number at the first call and should not be changed from call to call.		
subroutine writ	.e_m	odel(lunit,mftyp)		
Purpose:		Writes out the model parameters to the file opened as unit lunit (formatted).		
Inputs:				
lunit mftyp	i i	Unit number to write output to. =1: Only M_2 is written since M_1 is related to M_2 through GUT relations. =2: Both M_1 and M_2 are written.		
subroutine read	d_mo	del (lunit,nmodel,mftyp)		
Purpose:		Reads in the model parameters from the file opened as unit unit (formatted).		
Inputs:				
lunit	i	Unit number to read from.		
nmodel	i	=0: The next model is read.		
ma fits con	:	=n: Only the n:th model is read. 1. Only M is read since M is related to M through CUT relations		
тнур	I	=1: Only M_2 is read since M_1 is related to M_2 through GOT relations. =2: Both M_1 and M_2 are read.		
The follow	ing s	ubroutines are useful in the analysis.		
subroutine wid	tag(unit)		
Purpose:		Write the model identification tag to unit unit.		
unit	i	Unit number to write to.		
subroutine wsp	octm	(unit)		
Purpose: Inputs:		Write the particle mass spectrum and mixing matrices to unit unit.		
unit	i	Unit number to write to.		
subroutine wve	ertx()	unit)		
Purpose:		Write all non-vanishing three-particle vertices to unit unit.		
Inputs:				
unit	i	Unit number to write to.		
subroutine wur	<mark>ւթհ</mark> (ւ	unit)		
Purpose:		Write the reason for which the model is not physically acceptable (tachyons,		
_		etc.) to unit unit.		
Inputs:		TT '. 1		
unit	I	Unit number to write to.		
subroutine wex	cl(ur	nit)		
Purpose:		Write the reason(s) for which the model is experimentally excluded to unit unit.		
Inputs:		The it must be to muite to		
unit	I	Unit number to write to.		
subroutine dsw	hwa	r(unit)		
Purpose:		Write the reason(s) for which the Higgs calculation issued warnings to unit unit.		
<i>inputs:</i> unit	i	Unit number to write to.		

24.3 Routine headers – fortran files

dsb0loop.f

dschasct.f

subroutine dschasct

dsfeynhiggsfast.f

```
subroutine dsfeynhiggsfast(hwar,HM,mh,hc,halpha,drho,
    & ATop, ABot, inmt, inmb, my, M2, mqtl, mqtr, mqbl, mqbr,
    & mgluino,mh3,tanb)
с
   _____
c --
c Implementation of FeynHiggsFast in DarkSUSY by J. Edsjo 2000-04-25
с
c All names of subroutines and functions that clashed with the
c full FeynHiggs names have _fast appended to them. In most cases,
c they are probably the same routines though, but to be on the
c safe side, the names were changed.
c Output: mh is lighter scalar Higgs mass, HM is heavier Higgs mass
c _____
с
     FeynHiggsFast
с
С
     _____
С
       Calculation of the masses of the neutral CP-even
с
      Higgs bosons in the MSSM
с
с
      Author: Sven Heinemeyer
с
с
      Based on hep-ph/9903404
С
       by S. Heinemeyer, W. Hollik, G. Weiglein
С
с
```

```
In case of problems or questions,
С
      contact Sven Heinemeyer :-)
С
      email: Sven.Heinemeyer@desy.de
с
с
      FeynHiggs homepage:
с
      http://www-itp.physik.uni-karlsruhe.de/feynhiggs/
С
с
c -----
с
c Warnings implemented by J. Edsjo, 2000-04-25
с
                Bit Value
с
c Bits of hwar:
                0 - 1: Potential numerical problems at 1-loop
                1 - 2: Potential numerical problems at 2-loop
с
                2 - 4: Error with not used H2 mass expression 1-loop
С
                3 - 8: Error with not used H2 mass expression 2-loop
с
                4 - 16: Error with not used H2 mass expression 2-loop
с
                5 - 32: 1-loop Higgs sector not OK
с
с
                6 - 64: 2-loop Higgs sector not OK
                7 - 128: Stop or sbottom masses not OK
с
    _____
c-
```

dsfindmtmt.f

subroutine dsfindmtmt No header found.

dsg0loop.f

function dsg0loop(qsq,m1sq,m2sq)
a loop function

dsg4set.f

с

dsg4set12.f

dsg4set1234.f

```
subroutine dsg4set1234(kp1,kp2,kp3,kp4,rvrtx,ivrtx)
```

c_____

```
c auxiliary subroutine to dsvertx for quartic couplings
c set the value of the 4-particle vertex to vrtx=rcrtx+I*ivrtx
```

```
c case of four neutral particles
```

```
c author: paolo gondolo (pxg26@po.cwru.edu) 2001
```

C------

dsg4set13.f

subroutine dsg4set13(kp1,kp2,kp3,kp4,rvrtx,ivrtx)

c_____

```
c auxiliary subroutine to dsvertx for quartic couplings
```

c set the value of the 4-particle vertex to vrtx=rcrtx+I*ivrtx

```
c case of two neutral particles (1 and 3)
```

```
c author: paolo gondolo (pxg26@po.cwru.edu) 2001
```

dsg4set23.f

subroutine dsg4set23(kp1,kp2,kp3,kp4,rvrtx,ivrtx)

```
c_____
```

```
\ensuremath{\mathsf{c}} auxiliary subroutine to dsvertx for quartic couplings
```

c set the value of the 4-particle vertex to vrtx=rcrtx+I*ivrtx

- c case of two neutral particles (2 and 3)
- c author: paolo gondolo (pxg26@po.cwru.edu) 2001

dsg4set34.f

subroutine dsg4set34(kp1,kp2,kp3,kp4,rvrtx,ivrtx)

```
c_____
```

```
c auxiliary subroutine to dsvertx for quartic couplings
```

```
c set the value of the 4-particle vertex to vrtx=rcrtx+I*ivrtx
```

c case of two neutral particles (3 and 4)

```
c author: paolo gondolo (pxg26@po.cwru.edu) 2001
```

C------

dsg4setc.f

subroutine dsg4setc(kp1,kp2,kp3,kp4,vrtx)

c_____

 $\ensuremath{\mathsf{c}}$ auxiliary subroutine to dsvertx for quartic couplings

```
c set the value of the 4-particle vertex to vrtx
```

c author: paolo gondolo (pxg26@po.cwru.edu) 2001

C------

dsg4setc12.f

subroutine dsg4setc12(kp1,kp2,kp3,kp4,vrtx)

c auxiliary subroutine to dsvertx for quartic couplings

c set the value of the 4-particle vertex to vrtx

c case of two neutral particles (1 and 2)

c author: paolo gondolo (pxg26@po.cwru.edu) 2001

C------

dsg4setc1234.f

300

dsg4setc13.f

subroutine dsg4setc13(kp1,kp2,kp3,kp4,vrtx)

dsg4setc23.f

subroutine dsg4setc23(kp1,kp2,kp3,kp4,vrtx)

dsg4setc34.f

dsgive_model.f

```
subroutine dsgive_model(amu,am2,ama,atanbe,amsq,atm,abm)
c-----c
```

```
To specify the supersymmetric parameters of a model.
с
     Inputs:
С
        amu - mu parameter (GeV)
с
        am2 - M2 parameter (GeV)
с
        ama - Mass of the CP-odd Higgs boson A (or H3)
с
        atanbe - ratio of Higgs vacuum expecation values, tan(beta)
с
        amsq - common sfermion mass scale, M_sq_tilde (GeV)
С
с
        atm - trilinear term in units of amsq, top sector
с
        atb - trilinear term in units of amsq, bottom sector
    Outputs:
с
        The common blocks are set corresponding to the values above
С
     Author: Paolo Gondolo, gondolo@mppmu.mpg.de
с
с
     Date: 2000
     Modified: Joakim Edsjo, edsjo@physto.se
с
         2001-02-13 - setting of idtag taken away
с
```

dshgfu.f

C

dshigferqcd.f

subroutine dshigferqcd

dshigsct.f

subroutine dshigsct(unphys, hwarning)

```
1 brignole-ellis-ridolfi-zwirner eff. pot.
С
            2 drees-nojiri eff. pot.
С
            3 carena-espinosa-quiros-wagner rg-impr. eff. pot.
С
                  (uses subh.f.)
с
            4 carena-quiros-wagner impr. eff. pot.
с
                  (uses subhpole2.f)
с
            5 use FeynHiggs by Heinemeyer, Hollik and Weiglein
с
               requires full FeynHiggs to be installed (see below)
с
с
            6 use FeynHiggsFast by Heinemeyer, Hollik and Weiglein
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994,1995
c modified by: joakim edsjo, edsjo@physto.se, 2000-09-01
c modified by: paolo gondolo, 1999-2000
C------
```

dshigwid.f

302

subroutine dshigwid c_____ c common: 'dssusy.h' - file with susy common blocks с c needs chasct, neusct, sfesct, higsct, vertx. c merging of dshwidths and dshigferqcd c author: Piero Ullio (ullio@sissa.it) 020917 partly based on dshwidth by P. Gondolo and J. Edsjo С formulas from higgs hunters guide, С Djouadi, Spira and Zerwas, hep-ph/9511344 с с and Spira, hep-ph/9705337 c================ ______

dshlf2.f

function dshlf2(x,y)
c paolo gondolo

dshlf3.f

```
function dshlf3(p2,y1,y2)
c paolo gondolo
```

dsmodelsetup.f

subroutine dsmodelsetup(unphys,hwarning)

```
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994,1995
```

dsmqpole1loop.f

real*8 function dsmqpole1loop(mqmq)
No header found.

dsneusct.f

subroutine dsneusct

```
c_____
c neutralino masses and mixings. base is b-ino, w3-ino, h1-ino, h2-ino.
С
 common:
   'dssusy.h' - file with susy common blocks
С
c uses quartic.
c called by susyin or mrkin.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994,1995
c history:
     940528 readability improvement (pg)
с
     950316 order by increasing mass (pg)
с
с
     951110 positive mass convention (pg)
     970211 loop corrections via switch neuloop (joakim edsjo)
с
     990724 drop v1,v2 and change mass scale to max(mz,m1,m2,mu) (pg)
С
C------
```

dspole.f

dsprep.f

*** subroutine dsprep calculates different frequently used cross *** sections, annihilation branching ratios and sets different common block variable when a new model has been defined. this routine *** hasto be called before the relic density or any rates are *** *** calculated and is called from dssusy. *** *** author: joakim edsjo edsjo@physics.berkeley.edu *** date: 98-02-27 *** modified: 99-02-23 pg, 00-08-09 je

subroutine dsprep

dsqindx.f

```
function dsqindx(kp1,kp2,kp3,kp4)
c______c auxiliary function to dsvertx for quartic couplings
c author: paolo gondolo (pxg26@po.cwru.edu) 2001
```


dsralph3.f

```
real*8 function dsralph3(mscale)
No header found.
```

dsralph31loop.f

```
real*8 function dsralph31loop(mscale)
No header found.
```

dsrghm.f

dsrmq.f

real*8 function dsrmq(mscale,kpart)
No header found.

dsrmq1loop.f

```
real*8 function dsrmq1loop(mscale,kpart)
No header found.
```

dssettopmass.f

```
subroutine dssettopmass(mtoppole)
No header found.
```

dssfesct.f

```
msleptons>0 : all squark masses equal to msleptons, no mixing
с
    msleptons<0 : all squark masses = max(lsp,-msleptons), no mixing</pre>
С
c common:
    'dssusy.h' - file with susy common blocks
с
c called by susyin.
c needs neusct.
 author: paolo gondolo 1994-1999
с
с
     981000 correction to diagonalization of mass matrices
с
     941100 addition of generation-mixing for squarks
     950100 correction to charged slepton mass matrix
с
     990715 pg options msquarks and msleptons added
с
     990724 pg drop chankowski constants
с
с
     020219 pg better reporting of unphys
     020405 pg matrix diagonalization rewritten to handle degenerate case
С
```

dsspectrum.f

dssuconst.f

subroutine dssuconst

dssusy.f

subroutine dssusy(unphys,hwarning)

dsvertx.f

subroutine dsvertx

·_____

c some couplings used in DarkSUSY

dsvertx1.f

subroutine dsvertx1

```
C_____
c some couplings used in neutralino-neutralino, neutralino-chargino
c and chargino-chargino annihilation.
c common:
   'dssusy.h' - file with susy common blocks
С
c called by susyin.
c needs neusct, chasct, sfesct, higsct.
c author: paolo gondolo (gondolo@lpthe.jussieu.fr) 1994-1999
c history:
    951110 complex vertex constants
С
    970213 joakim edsjo
с
с
    990724 paolo gondolo trilinear higgs and goldstone couplings
    020710 Joakim Edsjo, chargino-(up-squark)-(down-quark) sign-change
с
    020903 Mia Schelke, Higgs-squark-squark, A-terms sign-change
с
C-----
с
c vertices included:
с
    z-w-w, z-h-h, w-h-a, w-h-h, h-w-w, h-z-z, z-a-h, h-h-h, h-a-a,
с
    h-h-h, a-f-f, h-f-f, z-f-f, a-n-n, h-n-n, z-n-n, w-n-c, h-n-c,
     squark-gluino-quark, sf-n-f, h-c-c, a-c-c, squark-squark-higgs,
С
     w-f-f', h-f-f', gamma-w-w, gamma-h-h, z-c-c, gamma-c-c
С
с
     gamma-f-f
с
     gld-h-h, gld-gld-h, gld-n-c
     Z-f~-f~, gamma-f~-f~, gluon-f~-f~
с
С
```

dsvertx3.f

```
С
c vertices included:
     Z-f~-f~, gamma-f~-f~, gluon-f~-f~, W-f~-F~, h-f~-f~
с
c quartic vertices included:
     Z-Z-h-h, W-W-h-h, Z-W-h-h, W-W-f~-f~,
С
     gamma-gamma-f~-f~, Z-Z-f~-f~, gamma-Z-f~-f~, gamma-W-f~-F~,
с
     gluon-gluon-f~-f~, gluon-W-f~-F~, gluon-gamma-f~-f~, gluon-Z-f~-f~,
С
     h-h-f~-f~, h-goldstone-f~-f~, goldstone-goldstone-f~-f~,
с
с
     h-h-h, h-h-h-goldstone, h-h-goldstone-goldstone,
     h-goldstone-goldstone, 4 x goldstone
С
с
```

dswhwarn.f

```
subroutine dswhwarn(unit, hwarning)
```

dswspectrum.f

dswunph.f

subroutine dswunph(unit,unphys)

dswvertx.f

g4p.f

function g4p(kp1,kp2,kp3,kp4)

c_____

c function returning the 4-particle vertex

c author: paolo gondolo (pxg26@po.cwru.edu) 2001

C-----

Chapter 25

src/suspect: mSUGRA interface (suspect) to DarkSUSY

25.1 Routine headers – fortran files

dssuspecterr.f

subroutine dssuspecterr(unit,unphys,errmess)

dssuspectsugra.f

subroutine dssuspectsugra(unphys,errmess)

C_____ c interface subroutine between Suspect & Darksusy in mSUGRA case c this routine should be called instead of dssusy с c call for each given set of mSUGRA variables: mOvar, mhfvar, aOvar, tgbetavar, sgnmuvar С c given in the sugrainput common block; additional standard inputs for c Suspect are set in this routine as specified in the body below. с c if error checks in Suspect are all ok, the routine sets up: c 1) SM inputs in Darksusy according to SM standard inputs in Suspect 2) Darksusy SUSY variables and soft terms с c 3) full mass spectrum and mixing matrices according to Suspect output c 4) global constants needed to run Darksusy (relic density + detection rates + constraint checks), set with dssuconst С c 5) interaction vertices, set with dsvertx

suspect2.f

```
subroutine SUSPECT2(iknowl,input,ichoice,errmess)
c VERSION 2.002
c: last changes : September 10 2001
c J.-L. Kneur, A. Djouadi, G. Moultaka
c see home page:
c http://www.lpm.univ-montp2.fr:7082/~kneur/
c for manual, updated info and maintenance
с
c Calculates the MSSM mass spectrum (charginos, neutralinos,
c squarks, sleptons and Higgs bosons (h,H,A,H+));
c including RG evolution of parameters, with different
c options on models, approximations used, etc (see below).
  (with some routines taken from
С
С
  already existing codes, in particular Higgs masses from
  M. Carena, C. Quiros, C. Wagner available routine;
С
c some Higgs-related routines also common with "HDECAY" code.)
c EXAMPLE OF CALL: SEE THE ACCOMPANYING FILE suspect2_call.f
c where new (2) version options and detailed calling examples are
c given
c-----
c * Notations, definitions, analytic expressions based (mostly) on
   a mixture of: ** Castano, Ramond, Piard Phys. Rev. D49(1994)4882.
С
              ** Barger, Berger, Ohmann Phys. Rev. D49(1994)4908.
С
c EXCEPT for some SIGN CONVENTIONS changed (see conventions below!)
c-----DEFINITION OF PARAMETERS AND CONVENTIONS USED ----
                                              c INPUT parameters: there are 3 CLASS of "input" parameters
c 1) *** OPTION FLAG PARAMETERS (driven from input file) ***
c =ICHOICE(1--10) (see suspect2_call.f for more explanations)
С
c 2) 'Standard Model" parameters (not to be changed normally)
```

```
C ALFINV:
           1/ALPHA(MZ): QED Coupling (at MZ scale, MSbar scheme)
c (reference latest value is ALFINV = 127.938)
C SW2:
       sin^2(theta)_W(MZ) in the MSbar scheme
c (reference value: SW2= .23117 for MTOP =175 GeV)
C ALPHAS: VALUE FOR ALPHA_S(M_Z) (at the MZ scale)
c (reference value: ALPHAS= .119 )
C MT:
       TOP POLE MASS (reference value is MT= 174.3 GeV)
c MB:
       BOttom pole mass (ref. value 4.62 GeV)
c MC:
       Charm pole mass (ref. value 1.4 GeV)
С
c 3) MSSM models physical parameters:
c m0, m1/2, A0, tan(beta), sign(MU) in minimal SUGRA;
c or arbitrary soft-breaking terms in non-universal models
c (see input file suspect2.in for more details and examples)
c **** IMPORTANT: MU SIGN (AND OTHER) CONVENTIONS ***** :
c \, 1) WE DEFINE THE SUPERPOTENTIAL with the sign of MU conventions \,
c as: W = MU (H_u . H_d) +.. =(def)= MU *eps(i,j) H^i_u H^j_d +..;
  eps(1,2) = 1 = -eps(2,1)
с
c where H_u, H_d are chiral (Higgs, Higgsinos)_u,d SUPERfields;
c 2) WE DEFINE the susy-breaking MU-term in the scalar potential
c with the convention: V = B * MU eps(i,j) h^i_u * h^j_d (h_u,d are now
c ordinary scalar fields, h_u=(h^1_u, h^2_u)=(h^{+}_u, h^0_u),
c h_d=(h^1_d, h^2_d)=(h^0_d, h^{-}_d)
С
  MU signs in relevant terms then follow as:
С
с
c -Sfermions: mixing terms = m_LR = A_i - MU *(TBETA or 1/TBETA)
c where A_i = A_b, A_tau or A_top
  - Chargino: +MU in mass matrix mixing terms
с
  - Neutralinos: -MU in mass matrix mixing terms;
С
c - ALSO, Higgs potential minimization condition
c (radiative SU(2)xU(1) breaking) takes then the following form:
c MZ<sup>2</sup>/2 =(m1<sup>2</sup> - m2<sup>2</sup> * tbeta<sup>2</sup>)/(tbeta<sup>2</sup> -1)
  B* MU = (m1^2+m2^2)/2 * sin(2 beta)
С
c (where m1^2 =(m_phi_d)^2 +MU^2 +one-loop corrections
         m2^2 =(m_phi_u)^2 +MU^2 +one-loop corrections )
с
с
   OTHER RELEVANT CONVENTIONS :
c 3) sign of M1,M2,M3: -M_i * Gbar G in Lagrangien (i.e.
   ''normal" fermion mass signs), where G,Gbar are gaugino fields.
С
c 4) TGBETA = vu/vd (Q=MZ); (INPUT);
c 5) v = sqrt(vu<sup>2</sup>+vd<sup>2</sup>) = 1/sqrt(2*sqrt(2)*GF) =174.** GeV
    i.e. MW^2 = g2^2 * v^2/2 and there are NO 1/sqrt(2)
С
     factor in phi_u,d: <phi_u> = vu ; <phi_d> = vd
С
С
c --
c Main RG relevant variables:
c y(n) = vector containing all (RG evolving) parameters,
c at various possible scales depending on evolution stages.
c n = number of RG-evolved parameters (may be different from
```

```
c the initial free parameters)
c Those RG-evolving, scale-dependent parameters are:
c y(1) = g1^2 U(1) gauge coupling
c y(2) = g2^2
                SU(2)_L gauge coupling
c y(3) = g3<sup>2</sup> = 4*pi*alphas SU(3) gauge coupling
С
c y(4) = Y_tau tau Yukawa coupling
c y(5) = Y_b
                 bottom Yukawa coupling
c y(6) = Y_top top Yukawa coupling
С
c y(7) = Ln(vu) Logarithm of vu
c y(8) = Ln(vd) Logarithm of vd
С
c y(9) = A_{tau}
c y(10)= A_b
c y(11)=A_top
С
c y(12) = (m_phi_u)^2 scalar phi_u "mass" term (in potential)
c y(13) = (m_phi_d)^2 scalar phi_d "mass" term (in potential)
с
c y(14) = MTAUR<sup>2</sup> right-handed Stau Lagrangian mass<sup>2</sup> term
c y(15) = MSL<sup>2</sup> left-handed Stau lagrangian mass<sup>2</sup> term
c y(16) = MBR<sup>2</sup> right-handed Sbottom lagrangian mass<sup>2</sup> term
c y(17) = MTR<sup>2</sup> right-handed Stop Lagrangian mass<sup>2</sup> term
c y(18) = MSQ<sup>2</sup> left-handed Stop Lagrangian mass<sup>2</sup> term
С
c y(19) = B The (dimensionful) B parameter in scalar mixing
с
c y(20) = Ln(M1) Log of Bino mass term
c y(21) = Ln(M2) Log of Wino mass term
c y(22) = Ln(M3) Log of gluino mass term
С
c y(23) = Ln(MU) Log of the MU parameter, as defined above.
С
c y(24) = MER<sup>2</sup> right-handed Selectron(Smuon) Lagrangian mass<sup>2</sup>
c y(25) = MEL<sup>2</sup> left-handed Selctron(Smuon) Lagrangian mass<sup>2</sup>
c y(26) = MDR<sup>2</sup> right-handed Sdown(Sstrange) Lagrangian mass<sup>2</sup>
c y(27) = MUR<sup>2</sup> right-handed Sup(Scharm) Lagrangian mass<sup>2</sup>
c y(28) = MUQ<sup>2</sup> left-handed Sup(Scharm) Lagrangian mass<sup>2</sup>
С
c PROGRAM COMMAND LINES START HERE
```

Chapter 26

src/xcern: CERN routines needed by DarkSUSY

26.1 Routine headers – fortran files

besj064.f

*

```
* $Id: besj064.F,v 1.1.1.1 1996/04/01 15:01:59 mclareni Exp $
*
* $Log: besj064.F,v $
* Revision 1.1.1.1 1996/04/01 15:01:59 mclareni
* Mathlib gen
*
FUNCTION DBESJ0(X)
```

bsir364.f

```
*
*
* $Id: bsir364.F,v 1.1.1.1 1996/04/01 15:02:07 mclareni Exp $
*
* $Log: bsir364.F,v $
* Revision 1.1.1.1 1996/04/01 15:02:07 mclareni
* Mathlib gen
*
*
FUNCTION DBSIR3(X,NU)
```

dbzejy.f

SUBROUTINE DBZEJY(A,N,MODE,REL,X)

C Computes the first n positive (in the case Jo'(x) the first n C non-negative) zeros of the Bessel functions

```
С
                Ja(x), Ya(x), Ja'(x), Ya'(x),
С
      where a \ge 0 and ' = d/dx.
С
С
      Based on Algol procedures published in
С
С
      N.M. TEMME, An algorithm with Algol 60 program for the compu-
С
      tation of the zeros of ordinary Bessel functions and those of
С
      their derivatives, J. Comput. Phys. 32 (1979) 270-279, and
С
С
      N.M. TEMME, On the numerical evaluation of the ordinary Bessel
С
      function of the second kind, J. Comput. Phys. 21 (1976) 343-350.
```

ddilog.f

CDECK	ID>, DDILOG.
	DOUBLE PRECISION FUNCTION DDILOG(X)
С	
С	FROM CERN PROGRAM LIBRARY
С	

dgadap.f

```
с
   one- and two-dimensional adaptive gaussian integration routines.
с
С
subroutine dgadap(a0,b0,f,eps0,sum)
с
                  - integrate a function f(x)
   purpose
С
с
   method
                  - adaptive gaussian
с
   usage
                  - call gadap(a0,b0,f,eps,sum)
   parameters a0
                  - lower limit (input, real)
с
                  - upper limit (input, real)
             b0
с
с
             f
                  - function f(x) to be integrated. must be
                    supplied by the user. (input, real function)
с
             eps0 - desired relative accuracy. if sum is small eps
С
                    will be absolute accuracy instead. (input, real)
с
             sum
                  - calculated value for the integral (output, real)
с
                  - single (see below)
   precision
с
   req'd prog's
                  - f
С
                  - t. johansson, lund univ. computer center, 1973
С
   author
с
   reference(s)
                  - the australian computer journal,3 p.126 aug. -71
с
c made real*8 by j. edsjo 97-01-17
```

drkstp.f

```
SUBROUTINE DRKSTP(N,H,X,Y,SUB,W) No header found.
```

eisrs1.f

CDECK	ID>, EISRS1.
	SUBROUTINE EISRS1(NM,N,AR,WR,ZR,IERR,WORK)
С	ALL EIGENVALUES AND CORRESPONDING EIGENVECTORS OF A REAL
С	SYMMETRIC MATRIX
С	FROM CERN PROGRAM LIBRARY
С	

gpindp.f

8pm	apii	
	real*8	<pre>function gpindp(a,b,epsin,epsout,func,iop)</pre>
С		
С	paramet	ers
с		
С	a	= lower boundary
с	b	= upper boundary
с	epsin	= accuracy required for the approximation
с	epsout	= improved error estimate for the approximation
С	func	= function routine for the function func(x).to be de-
С		clared external in the calling routine
c c	iop	<pre>= option parameter , iop=1 , modified romberg algorithm,</pre>
с		iop=2 . modified romberg algorithm.
с		cosine transformed case
с		iop=3 , modified clenshaw-curtis al
с		gorithm
с		5
с	paramet	ers in common block / gpint /
с	-	
с	tend	= upper bound for value of integral
с	umid	= lower bound for value of integralc
с	n	= the number of integrand values used in the calculation
с	line	= line no in romberg table (related to n through
с		n-1=2**(line-1) , applicable only for iop=1 or 2)
с	iout	= element no in line (applicable only for iop=1 or 2)
С	jop	= option parameter , jop=0 , no printing of intermediate
С		calculations
С		jop=1 , print intermediate calcula-
С		tions
с	kop	= option parameter , kop=0 , no time estimate
с		kop=1 , estimate time
с	t	= time used for calculation in msec.
с		
с	integra	tion parameters
С		
с	nupper	= 9 , corresponds to 1024 sub-intervals for the unfolded
С		integral.the max.no of function evaluations thus beeing
С		1025.the highest end-point approximation is thus using
с		1024 intervals while the highest mid-point approxima-
с		tion is using 512 intervals.
С		

c input/output parameters
c

mtlprt.f

*
*
* Dummy routine to easily integrate bsir364.f with DarkSUSY
* Author: Joakim Edsjo, edsjo@physto.se
* Date: September 13, 2000
*
SUBROUTINE MTLPRT(NAME,ERC,TEXT)

tql2.f

CDECK ID>, TQL2. SUBROUTINE TQL2(NM,N,D,E,Z,IERR) C FROM CERN PROGRAM LIBRARY

tred2.f

CDECK ID>, TRED2. SUBROUTINE TRED2(NM,N,A,D,E,Z) C FROM CERN PROGRAM LIBRARY

Chapter 27

src/xcmlib: CMLIB routines needed by DarkSUSY

27.1 Routine headers – fortran files

d1mach.f

real*8 function d1mach(i)

dqagse.f

```
* _____
* nist guide to available math software.
* fullsource for module dqagse from package cmlib.
* retrieved from camsun on wed oct 8 08:26:30 1997.
_____
                                              _____
     subroutine dqagse(f,a,b,epsabs,epsrel,limit,result,abserr,neval,
       ier,alist,blist,rlist,elist,iord,last)
    1
c***begin prologue dqagse
c***date written 800101
                         (yymmdd)
c***revision date 830518
                         (yymmdd)
c***category no. h2a1a1
c***keywords (end point) singularities, automatic integrator,
            extrapolation, general-purpose, globally adaptive
с
c***author piessens, robert, applied math. and progr. div. -
С
            k. u. leuven
с
          de doncker, elise, applied math. and progr. div. -
С
            k. u. leuven
c***purpose the routine calculates an approximation result to a given
           definite integral i = integral of f over (a,b),
С
           hopefully satisfying following claim for accuracy
с
           abs(i-result).le.max(epsabs,epsrel*abs(i)).
с
c***description
с
        computation of a definite integral
с
```

```
standard fortran subroutine
С
         real*8 version
С
С
с
         parameters
          on entry
с
             f
                    - real*8
С
                      function subprogram defining the integrand
с
                      function f(x). the actual name for f needs to be
с
с
                      declared e x t e r n a l in the driver program.
с
                    - real*8
с
             а
с
                      lower limit of integration
с
                    - real*8
с
             h
                      upper limit of integration
с
с
             epsabs - real*8
С
с
                      absolute accuracy requested
с
             epsrel - real*8
с
                      relative accuracy requested
с
                      if epsabs.le.0
                      and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
С
                      the routine will end with ier = 6.
с
с
             limit - integer
с
                      gives an upperbound on the number of subintervals
С
                      in the partition of (a,b)
с
с
          on return
с
             result - real*8
С
с
                      approximation to the integral
с
             abserr - real*8
с
                      estimate of the modulus of the absolute error,
С
с
                      which should equal or exceed abs(i-result)
с
             neval - integer
с
                      number of integrand evaluations
с
с
с
             ier
                    - integer
                      ier = 0 normal and reliable termination of the
с
                              routine. it is assumed that the requested
с
с
                              accuracy has been achieved.
                      ier.gt.0 abnormal termination of the routine
с
                               the estimates for integral and error are
с
                              less reliable. it is assumed that the
С
                              requested accuracy has not been achieved.
С
             error messages
с
                          = 1 maximum number of subdivisions allowed
С
с
                              has been achieved. one can allow more sub-
с
                              divisions by increasing the value of limit
с
                               (and taking the according dimension
```

с			adjustments into account). however, if
с			this yields no improvement it is advised
с			to analyze the integrand in order to
с			determine the integration difficulties. if
с			the position of a local difficulty can be
с			determined (e.g. singularity,
с			discontinuity within the interval) one
с			will probably gain from splitting up the
с			interval at this point and calling the
с			integrator on the subranges. if possible,
с			an appropriate special-purpose integrator
с			should be used, which is designed for
с			handling the type of difficulty involved.
с		= 2	the occurrence of roundoff error is detec-
с			ted, which prevents the requested
с			tolerance from being achieved.
с			the error may be under-estimated.
с		= 3	extremely bad integrand behaviour
с			occurs at some points of the integration
с			interval.
с		= 4	the algorithm does not converge.
с			roundoff error is detected in the
с			extrapolation table.
с			it is presumed that the requested
с			tolerance cannot be achieved, and that the
с			returned result is the best which can be
с			obtained.
с		= 5	the integral is probably divergent, or
с			slowly convergent. it must be noted that
с			divergence can occur with any other value
с			of ier.
с		= 6	the input is invalid, because
с			epsabs.le.0 and
с			epsrel.lt.max(50*rel.mach.acc.,0.5d-28).
с			result, abserr, neval, last, rlist(1),
с			iord(1) and elist(1) are set to zero.
с			alist(1) and blist(1) are set to a and b
с			respectively.
с			
с	alist -	real*8	
с		vector o	of dimension at least limit, the first
с		last e	elements of which are the left end points
с		of the s	subintervals in the partition of the
с		given ir	tegration range (a,b)
с			
с	blist -	real*8	
с		vector o	of dimension at least limit, the first
с		last ϵ	elements of which are the right end points
с		of the s	subintervals in the partition of the given
с		integrat	cion range (a,b)
с			
с	rlist -	real*8	

320	C	CHAPTER 27. XCMLIB: CMLIB ROUTINES NEEDED BY DARKSUSY
с		vector of dimension at least limit, the first
с		last elements of which are the integral
с		approximations on the subintervals
с		
с	elist	- real*8
с		vector of dimension at least limit, the first
с		last elements of which are the moduli of the
с		absolute error estimates on the subintervals
с		
с	iord	- integer
с		vector of dimension at least limit, the first k
с		elements of which are pointers to the
с		error estimates over the subintervals,
с		<pre>such that elist(iord(1)),, elist(iord(k))</pre>
с		form a decreasing sequence, with $k = last$
с		if last.le.(limit/2+2), and k = limit+1-last
с		otherwise
с		
с	last	- integer
с		number of subintervals actually produced in the
с		subdivision process
c***referenc	es (no	ne)
c***routines	called	d1mach,dqelg,dqk21,dqpsrt
c***end prol	ogue d	qagse
с		

dqagseb.f

```
* nist guide to available math software.
* fullsource for module dqagse from package cmlib.
* retrieved from camsun on wed oct 8 08:26:30 1997.
_____
     subroutine dqagseb(f,a,b,epsabs,epsrel,limit,result,abserr,neval,
       ier,alist,blist,rlist,elist,iord,last)
    1
c***begin prologue dqagse
c***date written 800101
                        (yymmdd)
c***revision date 830518
                        (vymmdd)
c***category no. h2a1a1
c***keywords (end point) singularities, automatic integrator,
            extrapolation, general-purpose, globally adaptive
с
c***author piessens, robert, applied math. and progr. div. -
            k. u. leuven
С
          de doncker, elise, applied math. and progr. div. -
С
           k. u. leuven
С
c***purpose the routine calculates an approximation result to a given
           definite integral i = integral of f over (a,b),
С
           hopefully satisfying following claim for accuracy
с
           abs(i-result).le.max(epsabs,epsrel*abs(i)).
с
c***description
с
       computation of a definite integral
с
```

```
standard fortran subroutine
С
         real*8 version
С
С
         parameters
с
с
          on entry
             f
                     - real*8
с
                      function subprogram defining the integrand
с
                       function f(x). the actual name for f needs to be
с
с
                      declared e x t e r n a l in the driver program.
с
                    - real*8
с
             а
                      lower limit of integration
с
с
                    - real*8
             b
С
                      upper limit of integration
с
с
             epsabs - real*8
С
                      absolute accuracy requested
с
с
             epsrel - real*8
                      relative accuracy requested
с
с
                      if epsabs.le.0
                      and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
С
                      the routine will end with ier = 6.
с
с
             limit - integer
С
                      gives an upperbound on the number of subintervals
с
                       in the partition of (a,b)
с
с
          on return
с
             result - real*8
с
                       approximation to the integral
с
с
             abserr - real*8
С
                       estimate of the modulus of the absolute error,
С
с
                      which should equal or exceed abs(i-result)
с
             neval - integer
С
                      number of integrand evaluations
с
с
с
             ier
                    - integer
                       ier = 0 normal and reliable termination of the
с
                               routine. it is assumed that the requested
с
                               accuracy has been achieved.
с
                       ier.gt.0 abnormal termination of the routine
с
                               the estimates for integral and error are
С
                               less reliable. it is assumed that the
с
                               requested accuracy has not been achieved.
с
             error messages
С
                           = 1 maximum number of subdivisions allowed
с
с
                               has been achieved. one can allow more sub-
с
                               divisions by increasing the value of limit
с
                               (and taking the according dimension
```

с		adjustments into account). however, if
с		this yields no improvement it is advised
с		to analyze the integrand in order to
с		determine the integration difficulties. if
c		the position of a local difficulty can be
c c		determined (e.g. singularity
C C		discontinuity within the interval) one
C		will probably goin from colitting up the
C		will probably gain from spittling up the
С		interval at this point and calling the
С		integrator on the subranges. if possible,
С		an appropriate special-purpose integrator
С		should be used, which is designed for
С		handling the type of difficulty involved.
С	= 2	the occurrence of roundoff error is detec-
С		ted, which prevents the requested
с		tolerance from being achieved.
с		the error may be under-estimated.
с	= 3	extremely bad integrand behaviour
с		occurs at some points of the integration
с		interval.
с	= 4	the algorithm does not converge.
с		roundoff error is detected in the
c		extrapolation table.
c		it is presumed that the requested
c		tolerance cannot be achieved and that the
c		returned result is the best which can be
c		obtained
C C	= 5	the integral is probably divergent or
c c	0	slowly convergent it must be noted that
c c		divergence can occur with any other value
c c		of jor
C C	- 6	the input is invalid because
C	- 0	che input is invalid, because
6		epsads.ie.0 and
С		epsrel.it.max(50*rel.mach.acc.,0.5d-28).
С		result, abserr, neval, last, riist(1),
С		lord(1) and elist(1) are set to zero.
С		allst(1) and blist(1) are set to a and b
С		respectively.
с		
с	alist - real*8	
С	vector	of dimension at least limit, the first
с	last	elements of which are the left end points
с	of the	subintervals in the partition of the
с	given i	ntegration range (a,b)
с		
с	blist - real*8	
с	vector	of dimension at least limit, the first
с	last	elements of which are the right end points
с	of the	subintervals in the partition of the given
с	integra	tion range (a,b)
с		
с	rlist - real*8	

с		vector of dimension at least limit, the first		
с		last elements of which are the integral		
с		approximations on the subintervals		
с				
с	elist -	real*8		
с		vector of dimension at least limit, the first		
с		last elements of which are the moduli of the		
с		absolute error estimates on the subintervals		
с				
с	iord -	integer		
с		vector of dimension at least limit, the first \boldsymbol{k}		
с		elements of which are pointers to the		
с		error estimates over the subintervals,		
с		<pre>such that elist(iord(1)),, elist(iord(k))</pre>		
с		form a decreasing sequence, with $k = last$		
с		if last.le.(limit/2+2), and k = limit+1-last		
с		otherwise		
с				
с	last -	integer		
с		number of subintervals actually produced in the		
с		subdivision process		
c***references (none)				
c***routines called d1mach,dqelg,dqk21b,dqpsrt				
c***end prologue dqagse				
C				

dqelg.f

```
subroutine dqelg(n,epstab,result,abserr,res3la,nres)
c***begin prologue dqelg
c***refer to dqagie,dqagoe,dqagpe,dqagse
c***routines called d1mach
c***revision date 830518
                          (yymmdd)
c***keywords convergence acceleration, epsilon algorithm, extrapolation
c***author piessens, robert, applied math. and progr. div. -
             k. u. leuven
с
           de doncker, elise, applied math. and progr. div. -
с
             k. u. leuven
с
c***purpose the routine determines the limit of a given sequence of
             approximations, by means of the epsilon algorithm of
с
            p.wynn. an estimate of the absolute error is also given.
с
            the condensed epsilon table is computed. only those
с
            elements needed for the computation of the next diagonal
С
С
            are preserved.
c***description
с
            epsilon algorithm
С
           standard fortran subroutine
с
           real*8 version
с
с
           parameters
С
                     - integer
с
              n
```

324	CHAI	PTER 27. XCMLIB: CMLIB ROUTINES NEEDED BY DARKSUSY
с		epstab(n) contains the new element in the
с		first column of the epsilon table.
с		•
с	epstab -	real*8
с	-	vector of dimension 52 containing the elements
с		of the two lower diagonals of the triangular
с		epsilon table. the elements are numbered
с		starting at the right-hand corner of the
с		triangle.
с		
с	result -	real*8
с		resulting approximation to the integral
с		
с	abserr -	real*8
с		estimate of the absolute error computed from
с		result and the 3 previous results
с		
с	res3la -	real*8
с		vector of dimension 3 containing the last 3
с		results
с		
с	nres -	integer
с		number of calls to the routine
с		(should be zero at first call)
c***end prolog	gue dqelg	
С		

```
dqk21.f
```

```
subroutine dqk21(f,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk21
c***date written 800101
                            (yymmdd)
c***revision date 830518
                            (yymmdd)
c***category no. h2a1a2
c***keywords 21-point gauss-kronrod rules
c***author piessens, robert, applied math. and progr. div. -
с
             k. u. leuven
с
           de doncker, elise, applied math. and progr. div. -
             k. u. leuven
с
c***purpose to compute i = integral of f over (a,b), with error
с
                            estimate
                        j = integral of abs(f) over (a,b)
с
c***description
С
с
            integration rules
            standard fortran subroutine
с
           real*8 version
с
с
            parameters
с
с
            on entry
                      - real*8
              f
С
                       function subprogram defining the integrand
с
```
```
function f(x). the actual name for f needs to be
С
                        declared e x t e r n a l in the driver program.
С
С
                      - real*8
с
               а
                        lower limit of integration
с
С
                      - real*8
               b
с
с
                        upper limit of integration
с
             on return
с
               result - real*8
с
                        approximation to the integral i
С
с
                        result is computed by applying the 21-point
                        kronrod rule (resk) obtained by optimal addition
С
                        of abscissae to the 10-point gauss rule (resg).
С
с
               abserr - real*8
С
                        estimate of the modulus of the absolute error,
С
с
                        which should not exceed abs(i-result)
с
               resabs - real*8
с
                        approximation to the integral j
С
с
с
               resasc - real*8
                        approximation to the integral of abs(f-i/(b-a))
с
                        over (a,b)
С
c***references (none)
c***routines called d1mach
c***end prologue dqk21
с
```

dqk21b.f

```
subroutine dqk21b(f,a,b,result,abserr,resabs,resasc)
c***begin prologue dqk21b
c***date written 800101
                            (yymmdd)
c***revision date 830518
                            (yymmdd)
c***category no. h2a1a2
c***keywords 21-point gauss-kronrod rules
c***author piessens, robert, applied math. and progr. div. -
              k. u. leuven
с
            de doncker, elise, applied math. and progr. div. -
с
С
             k. u. leuven
c***purpose to compute i = integral of f over (a,b), with error
                            estimate
с
                        j = integral of abs(f) over (a,b)
с
c***description
с
            integration rules
с
            standard fortran subroutine
с
            real*8 version
С
с
```

С	parameters		
С	on entry		
с	f -	real*8	
с		function subprogram defining the integrand	
с		function $f(x)$. the actual name for f needs to be	
с		declared e x t e r n a l in the driver program.	
с			
с	a -	real*8	
с		lower limit of integration	
с			
с	b –	real*8	
с		upper limit of integration	
с			
с	on return		
с	result -	real*8	
с		approximation to the integral i	
с		result is computed by applying the 21-point	
с		kronrod rule (resk) obtained by optimal addition	
с		of abscissae to the 10-point gauss rule (resg).	
с			
с	abserr -	real*8	
с		estimate of the modulus of the absolute error,	
с		which should not exceed abs(i-result)	
с			
с	resabs -	real*8	
с		approximation to the integral j	
с			
с	resasc -	real*8	
с		approximation to the integral of abs(f-i/(b-a))	
с		over (a,b)	
c***referenc	es (none)		
c***routines called d1mach			
c***end prol	ogue dqk211.	b	
С			

dqpsrt.f

```
subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax)
c***begin prologue dqpsrt
c***refer to dqage,dqagie,dqagpe,dqawse
c***routines called (none)
c***revision date 810101
                           (yymmdd)
c***keywords sequential sorting
c***author piessens, robert, applied math. and progr. div. -
с
             k. u. leuven
           de doncker, elise, applied math. and progr. div. -
с
             k. u. leuven
с
c***purpose this routine maintains the descending ordering in the
            list of the local error estimated resulting from the
с
            interval subdivision process. at each call two error
с
            estimates are inserted using the sequential search
С
            method, top-down for the largest error estimate and
с
```

326

```
bottom-up for the smallest error estimate.
с
c***description
С
            ordering routine
с
            standard fortran subroutine
с
            real*8 version
с
с
            parameters (meaning at output)
с
с
               limit - integer
                        maximum number of error estimates the list
с
                        can contain
С
с
                     - integer
с
               last
                        number of error estimates currently in the list
С
С
               maxerr - integer
С
                        maxerr points to the nrmax-th largest error
С
                        estimate currently in the list
с
с
с
               ermax - real*8
                        nrmax-th largest error estimate
с
                        ermax = elist(maxerr)
С
с
с
               elist - real*8
                        vector of dimension last containing
с
                        the error estimates
С
С
               iord
                    - integer
С
                        vector of dimension last, the first {\bf k} elements
с
                        of which contain pointers to the error
С
                        estimates, such that
с
                        elist(iord(1)),..., elist(iord(k))
с
                        form a decreasing sequence, with
с
                        k = last if last.le.(limit/2+2), and
с
с
                        k = limit+1-last otherwise
с
               nrmax - integer
с
                        maxerr = iord(nrmax)
С
c***end prologue dqpsrt
с
```

Chapter 28

src/xfeynhiggs: FeynHiggs interface to DarkSUSY

28.1 Routine headers – fortran files

dsfeynhiggs.f

subroutine dsfeynhiggs(hwar,HM,mh,hc,halpha,drho, & ATop, ABot, inmt, inmb, my, M2, mqtl, mqtr, mqbl, mqbr, mgluino,mh3,tanb,inmsbarselec) & c -----c Implementation of FeynHiggs in DarkSUSY by S. Heinemeyer, 06/13/02 с c All names of subroutines and functions that clashed with the c full FeynHiggs names have _fh appended to them. In most cases, c they are probably the same routines though, but to be on the c safe side, the names were changed. c Output: mh is lighter scalar Higgs mass, HM is heavier Higgs mass c -----c ----с FeynHiggs с ======== с с Calculation of the masses of the neutral CP-even С Higgs bosons in the MSSM С С Authors: Sven Heinemeyer (one-, two-loop part, new renormalization) С Andreas Dabelstein (one-loop part) с Markus Frank (new renormalization) с с Based on hep-ph/9803277, hep-ph/9807423, hep-ph/9812472, с hep-ph/9903404, hep-ph/9910283 С by S. Heinemeyer, W. Hollik, G. Weiglein с and on hep-ph/0001002с

```
by M. Carena, H. Haber, S. Heinemeyer, W. Hollik,
С
          C. Wagner and G. Weiglein
С
       new non-log O(alpha_t^2) corrections taken from hep-ph/0112177
с
       by A. Brignole, G. Degrassi, P. Slavich and F. Zwirner
с
с
       new renormalization implemented based on hep-ph/0202166
с
       by M. Frank, S. Heinemeyer, W. Hollik and G. Weiglein
С
с
с
       In case of problems or questions,
       contact Sven Heinemeyer
с
       email: Sven.Heinemeyer@physik.uni-muenchen.de
с
с
       FeynHiggs homepage:
с
       http://www.feynhiggs.de
С
С
с
  _____
С
с
c Warnings implemented by .....
с
с
                  Bit Value
                  0 - 1: Potential numerical problems at 1-loop
c Bits of hwar:
                  1 - 2: Potential numerical problems at 2-loop
с
                  2 - 4: Error with not used H2 mass expression 1-loop
с
                  3 - 8: Error with not used H2 mass expression 2-loop
с
                  4 - 16: Error with not used H2 mass expression 2-loop
с
                  5 - 32: 1-loop Higgs sector not OK
с
                  6 - 64: 2-loop Higgs sector not OK
с
                  7 - 128: Stop or sbottom masses not OK
с
c-
```

dsfeynhiggsdummy.f

330

FeynHiggsSub_ds.f

subroutine feynhiggssub(mh1,mh2,mh12,mh22)

28.1. ROUTINE HEADERS – FORTRAN FILES

Hhmasssr2_ds.f

с	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		
	DOUBLE PRECISION FUNCTION DELTA (EPSILON, MUEE, MASS)		
С			

С

Chapter 29

src/xhdecay: HDecay interface to DarkSUSY

29.1 Routine headers – fortran files

dshdecay.f

subroutine dshdecay

hdecay.f

```
C Modified by Joakim Edsjo 2002-09-12 to interface it with DarkSUSY.
C See README.TXT for more details
С
      Last modification on July 11th 2001 by M.S.
C ------
C _____
С
С
                 *****
С
                 * VERSION 2.0 *
С
                 *********
С
С
С
 This program calculates the total decay widths and the branching
С
 ratios of the C Standard Model Higgs boson (HSM) as well as those
 of the neutral (HL= the light CP-even, HH= the heavy CP-even, HA=
С
С
 the pseudoscalar) and the charged (HC) Higgs bosons of the Minimal
С
 Supersymmetric extension of the Standard Model (MSSM). It includes:
С
```

```
C - All the decay channels which are kinematically allowed and which
   have branching ratios larger than 10**(-4).
С
С
C - All QCD corrections to the fermionic and gluonic decay modes.
   Most of these corrections are mapped into running masses in a
С
С
   consistent way with some freedom for including high order terms.
С
C - Below--threshold three--body decays with off--shell top quarks
С
   or ONE off-shell gauge boson, as well as some decays with one
С
   off-shell Higgs boson in the MSSM.
С
C - Double off-shell decays: HSM,HL,HH --> W*W*,Z*Z* -->4 fermions,
С
   which could be important for Higgs masses close to MW or MZ.
С
C - In the MSSM, the radiative corrections with full squark mixing and
С
    uses the RG improved values of Higgs masses and couplings with the
    main NLO corrections implemented (based on M.Carena, M. Quiros and
С
С
   C.E.M. Wagner, Nucl. Phys. B461 (1996) 407, hep-ph/9508343).
С
C - In the MSSM, all the decays into CHARGINOS, NEUTRALINOS, SLEPTONS
   and SQUARKS (with mixing in the stop and sbottom sectors).
С
С
C - Chargino, slepton and squark loops in the 2 photon decays and squark
С
   loops in the gluonic decays (including QCD corrections).
С
С
C This program has been written by A.Djouadi, J.Kalinowski and M.Spira.
C For details on how to use the program see: Comp. Phys. Commun. 108
C (1998) 56, hep-ph/9704448. For any question, comment, suggestion or
C complaint, please contact us at:
С
           djouadi@lpm.univ-montp2.fr
С
           kalino@fuw.edu.pl
С
          Michael.Spira@cern.ch
C ========= IT USES AS INPUT PARAMETERS:
С
C IHIGGS: =0: CALCULATE BRANCHING RATIOS OF SM HIGGS BOSON
            =1: CALCULATE BRANCHING RATIOS OF MSSM h BOSON
С
С
           =2: CALCULATE BRANCHING RATIOS OF MSSM H BOSON
С
           =3: CALCULATE BRANCHING RATIOS OF MSSM A BOSON
С
           =4: CALCULATE BRANCHING RATIOS OF MSSM H+ BOSON
С
           =5: CALCULATE BRANCHING RATIOS OF ALL MSSM HIGGS BOSONS
С
C TGBET: TAN(BETA) FOR MSSM
C MABEG: START VALUE OF M_A FOR MSSM AND M_H FOR SM
C MAEND: END VALUE OF M_A FOR MSSM AND M_H FOR SM
C NMA: NUMBER OF ITERATIONS FOR M_A
C ALS(MZ): VALUE FOR ALPHA_S(M_Z)
C MSBAR(1): MSBAR MASS OF STRANGE QUARK AT SCALE Q=1 GEV
C MC: CHARM POLE MASS
C MB:
           BOTTOM POLE MASS
```

```
334
```

TOP POLE MASS

C MT:

```
C MTAU:
            TAU MASS
C MMUON: MUON MASS
C ALPH:
           INVERSE QED COUPLING
           FERMI CONSTANT
C GF:
C GAMW:
          W WIDTH
C GAMZ:
          Z WIDTH
           Z MASS
C MZ:
C MW:
           W MASS
       CKM PARAMETER V_US
C VUS:
C VCB:
           CKM PARAMETER V_CB
C VUB/VCB: RATIO V_UB/V_CB
C 1ST AND 2ND GENERATION:
C MSL1: SUSY BREAKING MASS PARAMETERS OF LEFT HANDED SLEPTONS
C MER1:
           SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED SLEPTONS
           SUSY BREAKING MASS PARAMETERS OF LEFT HANDED SUPS
C MQL1:
C MUR1: SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED SUPS
C MDR1: SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED SDOWNS
C 3RD GENERATION:
C MSL: SUSY BREAKING MASS PARAMETERS OF LEFT HANDED STAUS
           SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED STAUS
C MER:
          SUSY BREAKING MASS PARAMETERS OF LEFT HANDED STOPS
C MSQ:
          SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED STOPS
C MUR:
C MDR: SUSY BREAKING MASS PARAMETERS OF RIGHT HANDED SBOTTOMS
        STAU TRILINEAR SOFT BREAKING TERMS
STOP TRILINEAR SOFT BREAKING TERMS.
SBOTTOM TRILINEAR SOFT BREAKING TER
C AL:
C AU:
C AD:
          SBOTTOM TRILINEAR SOFT BREAKING TERMS.
C MU:
          SUSY HIGGS MASS PARAMETER
C M2:
           gaugino MASS PARAMETER.
С
C NNLO (M): =0: USE O(ALPHA_S) FORMULA FOR POLE MASS --> MSBAR MASS
            =1: USE O(ALPHA_S**2) FORMULA FOR POLE MASS --> MSBAR MASS
С
С
C ON-SHELL: =0: INCLUDE OFF_SHELL DECAYS H,A --> T*T*, A --> Z*H,
С
                H \rightarrow W*H+, Z*A, H+ \rightarrow W*A, W*H, T*B
С
            =1: EXCLUDE THE OFF-SHELL DECAYS ABOVE
С
C ON-SH-WZ: =0: INCLUDE DOUBLE OFF-SHELL PAIR DECAYS PHI --> W*W*,Z*Z*
С
            =1: INCLUDE ONLY SINGLE OFF-SHELL DECAYS PHI --> W*W,Z*Z
С
C IPOLE:
            =0 COMPUTES RUNNING HIGGS MASSES (FASTER)
            =1 COMPUTES POLE HIGGS MASSES
С
С
C OFF-SUSY: =0: INCLUDE DECAYS (AND LOOPS) INTO SUPERSYMMETRIC PARTICLES
С
            =1: EXCLUDE DECAYS (AND LOOPS) INTO SUPERSYMMETRIC PARTICLES
С
C INIDEC: =0: PRINT OUT SUMS OF CHARGINO/NEUTRALINO/hdsfermion DECAYS
C
            =1: PRINT OUT INDIVIDUAL CHARGINO/NEUTRALINO/hdsfermion DECAYS
С
C NF-GG: NUMBER OF LIGHT FLAVORS INCLUDED IN THE GLUONIC DECAYS
С
            PHI --> GG* --> GQQ (3,4 OR 5)
С
```

SUBROUTINE HDEC(TGBET)

Acknowledgements

P. Gondolo created DarkSUSY in 1994, took care of its organization, arranged it for release, and prepared the documentation. He contributed [34] the routines on the supersymmetric spectrum and mixing, the original calculation of the neutralino relic density without coannihilations, the direct detection rates and the accelerator bounds. P. Gondolo and J. Edsjö [35] included coannihilations in the relic density routines. J. Edsjö contributed the package for the neutrino-induced muons from the Sun and the Earth [36], and organized the routines for annihilations in the galactic halo, incorporating the code for the gamma-ray continuum by himself, for the antiprotons [37] and the gamma-ray lines [38] by P. Ullio, and for the positrons by E. Baltz [39]. Finally, DarkSUSY includes adapted versions of (1) routines by Carena, Quirós and Wagner on the Higgs boson masses, (2) routines from CMLIB (URL: http://www.netlib.org), specifically dqagse and its dependencies, (3) routines from CERNLIB, specifically gpindp by X and gadap by T. Johansson.

Bibliography

- [1] P. Gondolo, J. Edsjö, L. Bergström, P. Ullio and E.A. Baltz, astro-ph/??????
- [2] The original papers for the different processes in DarkSUSY are

General MSSM, direct detction L. Bergström and P. Gondolo, ???.

Relic density P. Gondolo and G. Gelmini, Nucl. Phys. ???; J. Edsjö and P. Gondolo, Phys. Rev. D?? (1997) ???.

Neutrino telescopes L. Bergström, J. Edsjö and P. Gondolo, Phys. Rev. D?? (????) ???.

Positrons E.A. Baltz and J. Edsjö, Phys. Rev. D?? (????) ???.

Antiprotons L. Bergström, J. Edsjö and P. Ullio, ApJ ??? (????) ???.

Gamma lines L. Bergström and P. Ullio, ???, x2.

Continuous gammas L. Bergström, J. Edsjö and P. Ullio, ???.

- [3] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267 (1996) 195.
- [4] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75; J.F. Gunion and H.E. Haber, Nucl. Phys. B272 (1986) 1 [Erratum: ibid. B402 91993) 567]; H.E. Haber and D. Wyler, Nucl. Phys. B323 (1989) 267.
- [5] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.
- [6] J.F. Gunion and H.E. Haber, Nucl. Phys. B272 (1986) 1 [Erratum: ibid. B402 91993) 567].
- [7] Derived from the rules in Fig. 83 in Ref. [5] or directly from the Lagrangian.
- [8] F. Mandl and G. Shaw, Quantum Field Theory, John Wiley & Sons, 1984.
- [9] S. Dimopoulos and D. Sutter, Nucl. Phys. B465 (1995) 23.
- [10] J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83; ibid. B262 (1991) 477.
- [11] A. Brignole, J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B271 (1991) 123.
- [12] M. Drees, M. Nojiri, Phys. Rev. D45 (1992) 2482.
- [13] M. Carena, Espinosa, M. Quirós, and C. Wagner, Phys. Lett. B355 (1995) 209.
- [14] M. Carena, M. Quirós, and C. Wagner, Nucl. Phys. B461 (1996) 407.
- [15] M. Drees, M. Nojiri, Yamada, (1997) astro-ph/970129
- [16] S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B353 (1991) 591.
- [17] Abbiendi et al. (OPAL Collab.), Europ. Phys. J. C7 (1999) 407.

- [18] Gao and Gay (ALEPH Collab.), in "High Energy Physics 99," Tampere, Finland, July 1999.
- [19] J. Carr et al. (ALEPH Collab.), talk to LEPC, 31 March 1998 (URL: http://alephwww.cern.ch/ALPUB/seminar/carrlepc98/index.html).
- [20] Acciarri et al. (L3 Collab.), Phys. Lett. B377 (1996) 289.
- [21] Decamp et al. (ALEPH Collab.), Phys. Rep. 216 (1992) 253.
- [22] Hidaka, Phys. Rev. D44 (1991) 927.
- [23] Acciarri et al. (L3 Collab.), Phys. Lett. B350 (1995) 109.
- [24] Buskulic et al. (ALEPH Collab.), Zeitschrift für Physik C72 (1996) 549.
- [25] Acciarri et al. (L3 Collab.), Europ. Phys. J. C4 (1998) 207.
- [26] Abbiendi et al. (OPAL Collab.), Europ. Phys. J. C8 (1999) 255.
- [27] Abachi et al. (D0 Collab.), Phys. Rev. Lett. 75 (1995) 618.
- [28] Abe et al. (CDF Collab.), Phys. Rev. D56 (1997) R1357.
- [29] Abe et al. (CDF Collab.), Phys. Rev. Lett. 69 (1992) 3439.
- [30] Abe et al. (CDF Collab.), Phys. Rev. Lett. 76 (1996) 2006.
- [31] Barate et al. (ALEPH Collab.), Phys. Lett. B433 (1998) 176.
- [32] C. Caso et al. (Particle Data Group), Europ. Phys. J. C3 (1998) 1, and 1999 partial update for edition 2000 (URL: http://pdg.lbl.gov)
- [33] H.E. Haber, in *Perspectives on Higgs Physics II*, ed. G. Kane (World Scientific, Singapore, 1997).
- [34] L. Bersgström and P. Gondolo, Astropart. Phys. 5 (1996) 263.
- [35] J. Edsjö and P. Gondolo, Phys. Rev. D56 (1997) 1879.
- [36] J. Edsjö, Diploma Thesis, Uppsala University preprint TSL/ISV-93-0091 (1993); J. Edsjö, Nucl. Phys. Proc. Suppl. 43 (1995) 265; J. Edsjö and P. Gondolo, Phys. Lett. B357 (1995) 595; L. Bergström, J. Edsjö, and P. Gondolo, Phys. Rev. D55 (1997) 1765; ibid. D58 (1998) 103519.
- [37] L. Bergström, J. Edsjö, and P. Ullio, astro-ph/9902012.
- [38] L. Bergström and P. Ullio, Nucl. Phys. B504 (1997) 27; Phys. Rev. D57 (1998) 1962.
- [39] E. Baltz and J. Edsjö, Phys. Rev. D59 (1999) 023511.
- [40] N. Bahcall, J.P. Ostriker, S. Perlmutter and P.J. Steinhardt, Science 284, 1481 (1999).
- [41] L. Bergström, Rep. Prog. Phys. 63 (2000) 793.
- [42] H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
- [43] L.M. Krauss, Nucl. Phys. **B227** (1983) 556.
- [44] J. Ellis et al., Nucl. Phys. **B238** (1984) 453.
- [45] G. Raffelt, Nucl. Phys. Proc. Suppl. 77 (1999) 456.
- [46] L. Bergström and P. Gondolo, Astrop. Phys. 5 (1996) 263.

- [47] H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75; J.F. Gunion and H.E. Haber, Nucl. Phys. B272 (1986) 1 [Erratum-ibid. B402 (1993) 567].
- [48] S. Dimopoulos and D. Sutter, Nucl. Phys. **B465** (1995 23.
- [49] S. Heinemeyer, W. Hollik and G. Weiglein, Comp. Phys. Comm. 124 (2000) 76; hepph/0002213.
- [50] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rev. D58 (1998) 091701; Eur. Phys. J. C9 (1999) 343; Phys. Lett. B455 (1999) 179.
- [51] J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83; ibid. B262 (1991) 477; A. Brignole, J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B271 (1991) 123.
- [52] M. Drees, M.M. Nojiri, D.P. Roy and Y. Yamada, Phys. Rev. **D56** (1997) 276 [hep-ph/9701219].
- [53] D. Pierce and A. Papadopoulos, Phys. Rev. D50 (1994) 565, Nucl. Phys. B430 (1994) 278;
 A.B. Lahanas, K. Tamvakis and N.D. Tracas, Phys. Lett. B324 (1994) 387.
- [54] M. Drees, K. Hagiwara and A. Yamada, Phys. Rev. **D45** (1992) 1725.
- [55] Particle Data Group, D.E. Groom et al, The European Physical Journal C15 (2000) 1.
- [56] S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B353 (1991) 591.
- [57] M. Kado (Aleph Collaboration), Talk given at the XXXVth Recontre de Moriond, CERN/ALEPH PUB-2000-6.
- [58] P. de Bernardis et al. Nature 404 (2000) 995; S. Hanany et al., astro-ph/0005123.
- [59] A. E. Lange et al., astro-ph/0005004 (2000); M. Tegmark and M. Zaldarriaga, astro-ph/0004393 (2000); A. Balbi et al., astro-ph/0005124 (2000); W. Hu, M. Fukugita, M. Zaldarriaga, and M. Tegmark, astro-ph/0006436 (2000); A. Jaffe et al., astro-ph/0007333 (2000); W. Kinney, A. Melchiorri, and A. Riotto, astro-ph/0007375 (2000).
- [60] S. Perlmutter et al., Astrophys. J. 517 (1999) 565; P.M. Garnavich et al., Astrophys. J. 509 (1998) 74.
- [61] K. Griest and D. Seckel, Phys. Rev. D43 (1991) 3191.
- [62] K. Griest, Phys. Rev. D38 (1988) 2357 [erratum ibid D39 (1989) 3802]; J. Scherrer and M.S. Turner, Phys. Rev. D33 (1986) 1585 [erratum ibid D34 (1986) 3263]; M. Srednicki, R. Watkins and K.A. Olive, Nucl. Phys. B310 (1988) 693; K. Griest, M. Kamionkowski and M.S. Turner, Phys. Rev. D41 (1990) 3565; G.B. Gelmini, P. Gondolo, and E. Roulet, Nucl. Phys. B351 (1991) 623; A. Bottino et al., Astropart. Phys. 1 (1992) 61, ibid. 2 (1994) 67; R. Arnowitt and P. Nath, Phys. Lett. B299 (1993) 58, B307 (1993) 403(E), Phys. Rev. Lett. 70 (1993) 3696; H. Baer and M. Brhlik, Phys. Rev. D53 (1996) 597.
- [63] J. McDonald, K.A. Olive and M. Srednicki, Phys. Lett. B283 (1992) 80.
- [64] S. Mizuta and M. Yamaguchi, Phys. Lett. B298 (1993) 120.
- [65] M. Srednicki, R. Watkins and K.A. Olive, Nucl. Phys. B310 (1988) 693.
- [66] M. Drees and M. Nojiri, Phys. Rev. **D47** (1993) 376.
- [67] E.W. Kolb and M.S. Turner, *The Early Universe*, Addison-Wesley (1990).
- [68] P. Gondolo and G. Gelmini, Nucl. Phys. B360 (1991) 145.

- [69] J. Edsjö and P. Gondolo, Phys. Rev. D56 (1997) 1879 [hep-ph/9704361].
- [70] J. Ellis, T. Falk and K. A. Olive, Phys. Lett. B444 (1998) 367; J. Ellis, T. Falk, K. A. Olive and M. Srednicki, Astropart. Phys. 13 (2000) 181.
- [71] REDUCE 3.5. A.C. Hearn, RAND, 1993.
- [72] L. Bergström, J. Edsjö and P. Ullio, astro-ph/9804050, Phys.Rev. D58 (1998) 083507.
- [73] L. Bergström, P. Ullio and J. Buckley, Astrop. Phys. in press, astro-ph/9712318.
- [74] L. Bergström, J. Edsjö and P. Gondolo, Phys. Rev. D55 (1997) 1765.
- [75] J. Edsjö and P. Gondolo, Phys. Lett. **B357** (1995) 595.
- [76] J. Edsjö, PhD Thesis, hep-ph/9704384.
- [77] L. Bergstrom, T. Damour, J. Edsjo, L. M. Krauss and P. Ullio, indirect detection rates," JHEP 9908, 010 (1999) [hep-ph/9905446].
- [78] M.W. Goodman and E. Witten, Phys. Rev. D31 (1985) 3059.
- [79] A. Bottino et al., Phys. Lett. B402 (1997) 113.
- [80] A. Gould, Astrophys. J. **321** (1987) 571.
- [81] A. Gould, Astrophys. J. 368 (1991) 610
- [82] A. Gould, Astrophys. J. 388 (1992) 338.
- [83] J. Ellis and R. Flores, Nucl. Phys. B307 (1988) 883; Phys. Lett B263 (1991) 259.
- [84] J. Engel, Phys. Lett. **B264** (1991) 114.
- [85] K. Griest, Phys. Rev. D28 (1988) 2357; R. Barbieri, M. Frigeni and G.F. Giudice, Nucl. Phys.
 B313 (1989) 725; G. Gelmini, P. Gondolo and E. Roulet, Nucl. Phys. B351 (1991) 623; M. Kamionkowski, Phys. Rev. D44 (1991) 3021; A. Bottino et al., Astropart. Phys. 2 (1994) 77.
- [86] J. Gasser, H. Leutwyler and M.E. Sainio, Phys. Lett. B253 (1991) 252.
- [87] D. Adams et al, Phys. Lett. B357 (1995) 248.
- [88] R.L. Jaffe and A. Manohar, Nucl. Phys. 337 (1990) 509.
- [89] J. Engel and P. Vogel, Phys. Rev. D40 (1989) 3132; J. Engel, S. Pittel and P. Vogel, Int. J. Mod. Phys. E1 (1992) 1.
- [90] T. Sjöstrand, Comm. Phys. Comm. 82 (1994) 74; T. Sjöstrand, PYTHIA 5.7 and JETSET 7.4. Physics and Manual, CERN-TH.7112/93, hep-ph/9508391 (revised version).
- [91] S. Ritz and D. Seckel, Nucl. Phys. B304 (1988) 877.
- [92] J. Edsjö, Diploma Thesis, Uppsala University preprint TSL/ISV-93-0091 (ISSN 0284-2769), can be downloaded from http://www.physto.se/~edsjo/articles/index.html.
 J. Edsjö, in Trends in Astroparticle Physics, Stockholm, Sweden, 1994, eds. L. Bergström,
 - P. Carlson, P.O. Hulth and H. Snellman, Nucl. Phys. (Proc. Suppl.) B43 (1995) 265.
- [93] J. Edsjö and P. Gondolo, Phys. Lett. **B357** (1995) 595.

BIBLIOGRAPHY

- [94] L. Krauss, Cold dark matter candidates and the solar neutrino problem, Harvard preprint HUTP-85/A008a (1985);
 - W.H. Press and D.N Spergel, Astrophys. J. 296 (1985) 679;
 - J. Silk, K. Olive and M. Srednicki, Phys. Rev. Lett. 55 (1985) 257;
 - L. Krauss, M. Srednicki and F. Wilczek, Phys. Rev. D33 (1986) 2079;
 - T. Gaisser, G. Steigman and S. Tilav, Phys. Rev. D34 (1986) 2206;
 - K. Griest and S. Seckel, Nucl. Phys. **B283** (1987) 681, erratum *ibid.* **B296** (1988) 1034;
 - L.M. Krauss, K. Freese, D.N. Spergel and W.H. Press, Astrophys. J. 299 (1985) 1001;
 - J. Hagelin, K. Ng and K. Olive, Phys. Lett. **B180** (1987) 375;
 - K. Freese, Phys. Lett. **B167** (1986) 295;
 - M. Kamionkowski, Phys. Rev. **D44** (1991) 3021;
 - F. Halzen, T. Stelzer and M. Kamionkowski, Phys. Rev. D45 (1992) 4439;
 - A. Bottino, V. de Alfaro, N. Fornengo, G. Mignola and M. Pignone, Phys. Lett. B265 (1991) 57; A. Bottino, N. Fornengo, G. Mignola, L. Moscoso, Astropart. Phys. 3 (1995) 65 [hep-ph/9408391];

R. Gandhi, J.L. Lopez, D.V. Nanopoulos, K. Yuan and A. Zichichi, Phys. Rev. D49 (1994) 3691 [astro-ph/9309048];

L. Bergström, J. Edsjö and P. Gondolo, Phys. Rev. D55 (1997) 1765 [hep-ph/9607237];
 L. Bergstrom, J. Edsjo and P. Gondolo, Phys. Rev. D58, 103519 (1998) [hep-ph/9806293].

- [95] F. Halzen, Comments Nucl. Part. Phys. 22 (1997) 155.
- [96] G.F. Giudice and E. Roulet, Nucl. Phys. **B316** (1989) 429.

F. Halzen, T. Stelzer and M. Kamionkowski, Phys. Rev. D45 (1992) 4439.

M. Drees, G. Jungman, M. Kamionkowski and M.M. Nojiri, Phys. Rev. D49 (1994) 636.

R. Gandhi, J.L. Lopez, D.V. Nanopoulos, K. Yuan and A. Zichichi, Phys. Rev. **D49** (1994) 3691.

A. Bottino, N. Fornengo, G. Mignola and L. Moscoso, Astropart. Phys. 3 (1995) 65.

G. Jungman and M. Kamionkowski, Phys. Rev. D51 (1995) 328.

V. Berezinsky, A. Bottino, J. Ellis, N. Fornengo, G. Mignola and S. Scopel, hep-ph/9603342.

- [97] L. Bergström, J. Edsjö and P. Gondolo, Phys. Rev. D58
- [98] M. Kamionkowski, G. Jungman, K. Griest and B. Sadoulet, Phys. Rev. Lett. 74 (1995) 5174.
- [99] J. Edsjö and P. Gondolo, Phys. Lett. **B357** (1995) 595.
- [100] L. Bergström, J. Edsjö and M. Kamionkowski, Astropart. Phys. 7 (1997) 147.
- [101] T. Damour and L.M. Krauss, Phys. Rev. Lett. 81 (1998) 5726 [astro-ph/9806165].
- [102] T. Damour and L.M. Krauss, Phys. Rev. D59 (1999) 063509 [astro-ph/9807099].
- [103] G. Steigman, C.L. Sarazin, H. Quintana and J. Faulkner, Astrophys. J. 83 (1978) 1050;
 K. Griest, Phys. Rev. D37 (1988) 2703;
 A. Gould, J.A. Frieman and K. Freese, Phys. Rev. D39 (1989) 1029;
 J.I. Collar, Phys. Rev. D59 (1999) 063514 [astro-ph/9808058].
- [104] A. Gould, Astrophys. J. **368** (1991) 610.
- [105] A. Gould and S. M. Khairul Alam, astro-ph/9911288.
- [106] J.N. Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 64 (1992) 885.

- [107] The Earth: its properties, composition, and structure. Britannica CD, Version 99 ©1994– 1999. Encyclopædia Britannica, Inc.
- [108] L. Bergström, J. Edsjö and P. Ullio, Astrophys. J. 526 (1999) 215.
- [109] J.W. Bieber et al., Phys. Rev. Lett. 83 (1999) 674.
- [110] Ullio, P. & Bergström, L. 1998, Phys. Rev., D57, 1962.
- [111] Drees, M., Jungman, G., Kamionkowski, M. & Nojiri, M.M. 1994, Phys. Rev., D49, 636.
- [112] L. Bergström and P. Ullio, Nucl. Phys. B504 (1997) 27; see also Z. Bern, P. Gondolo and M. Perelstein, Phys. Lett. B411 (1997) 86.
- [113] J.F. Navarro, C.S. Frenk and S.D.M. White, Ap. J. 462 (1996) 563.
- [114] Bergström, L., Edsjö, J., Gondolo, P. & Ullio, P. 1999, Phys. Rev., D59, 043506.
- [115] P. Ullio, astro-ph/9904086.
- [116] Berezinskii, V.S., Bulanov, S., Dogiel, V., Ginzburg, V. & Ptuskin, V. 1990, Astrophysics of cosmic rays, North-Holland, Amsterdam.
- [117] Gaisser, T.K. 1990, Cosmic rays and particle physics, Cambridge University Press, Cambridge.
- [118] Chardonnet, P., Mignola, G., Salati, P. & Taillet, R. 1996, Phys. Lett., B384, 161.
- [119] Bottino, A., Donato, F., Fornengo, N. & Salati, P. 1998, Phys. Rev. D58 123503.
- [120] Fisk, L.A. 1971, J. Geophys. Res., 76, 221.
- [121] E.A. Baltz and J. Edsjö, Phys. Rev. **D59** (1999) 023511.
- [122] Bergström, L., Ullio, P. & Buckley, J.H. 1998, Astrop. Phys. 9, 137.
- [123] W.R. Webber, M.A. Lee and M. Gupta, Astrophys. J. 390 (1992) 96.
- [124] M. Kamionkowski and M. S. Turner, Phys. Rev. D43 (1991) 1774.
- [125] M.S. Longair, *High Energy Astrophysics*, (Cambridge University Press, New York, 1994), Vol. 2, Chap. 19.
- [126] I.V. Moskalenko and A.W. Strong, Astrophys. J. 493 (1998) 694.
- [127] W. Dehnen and J. Binney, astro-ph/9612059 (1997).
- [128] R. Carlberg, Astrophys. J. 433 (1994) 468.
- [129] A.V. Kravtsov et al., Ap. J. in press, astro-ph/9708176.
- [130] B. Moore et al., astro-ph/9709051, Astrophys. J. Lett., submitted.
- [131] V.S. Berezinsky, A.V. Gurevich and K.P. Zybin, Phys. Lett. B294 (1992) 221.
- [132] R.A. Flores and J.R. Primack, Astrophys. J. 427 (1994) L1.
- [133] A. Burkert and J. Silk, astro-ph/9707343 (1997).
- [134] T. Fukushige and J. Makino, Astrophys. J. 487 (1997) L9.
- [135] N.W. Evans and J.L. Collett, astro-ph/9702085.

BIBLIOGRAPHY

- [136] D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84 (2000) 3760.
- [137] M. Kaplinghat, L. Knox and M. S. Turner, astro-ph/0005210.
- [138] P. Gondolo and J. Silk, Phys. Rev. Lett. 83 (1999) 1719 [astro-ph/9906391].
- [139] P. Gondolo, hep-ph/0002226.
- [140] P. Ullio, PhD thesis, Physics Department, Stockholm University, 1999.
- [141] C.S. Kochanek, Astrophys. J. 457 (1996) 228.
- [142] D.N.C. Lin, B.F. Jones and A.R. Klemola, Astrophys. J. 439 (1995) 652.
- [143] F.J. Kerr and D. Lynden-Bell, MNRAS 221 (1986) 1023.
- [144] M.J. Reid, ARA&A **31** (1993) 345.
- [145] R.P. Olling and M.R. Merrifield, aspro-ph/9711157, to appear in proceedings of the Workshop on Galactic Halos, Santa Cruz, August 1997 (ASP conference Series).
- [146] K. Kuijken and G. Gilmore Astrophys. J. 367 (1991) L9.
- [147] A. Gould, MNRAS 244 (1990) 25.
- [148] J. Silk and M. Srednicki, Phys. Rev. Lett 53 (1984) 624;
 J. Silk and H. Bloemen, Astrophys. J. 313 (1987) L47;
 S. Rudaz and F.W. Stecker, Astrophys. J. 325 (1988) 16;
 F.W. Stecker and A. Tylka, Astrophys. J. 343 (1989) 169;
 H.-U. Bengtsson, P. Salati and J. Silk, Nucl Phys. B346 (1990) 129;
 E. Diehl, G.L. Kane, C. Kolda and J.D. Wells, Phys. Rev. D52 (1994) 4223;
 P. Chardonnet, P. Salati, J. Silk, I. Grenier, and G. Smoot, Astrophys. J. 454 (1995) 774.
- [149] M. Srednicki, S. Theisen and J. Silk, Phys. Rev. Lett. 56, 263 (1986); Erratum-ibid. 56, 1883 (1986);
 S. Rudaz, Phys. Rev. Lett. 56, 2128 (1986).
- [150] L. Bergström and H. Snellman, Phys. Rev. D37 (1988) 3737;
 S. Rudaz, Phys. Rev. D39 (1989) 3549;
 G.F. Giudice and K. Griest, Phys. Rev. D40 (1989) 2549;
 A. Bouquet, P. Salati and J. Silk, Phys. Rev. D40 (1989) 3168;
 V. Berezinsky, A. Bottino and V. de Alfaro, Phys. Lett. B274 (1992) 122;
 M. Urban et al., Phys. Lett. B293 (1992) 149;
 L. Bergström and J. Kaplan, Astropart. Phys. 2 (1994) 261.
- [151] G. Jungman and M. Kamionkowski, Phys. Rev. **D51** (1995) 3121.
- [152] K. Fujikawa, Phys. Rev. **D7** (1973) 393.
- [153] M.S. Turner, Phys. Rev. D34 (1986) 1921;
 J.R. Ipser and P. Sikivie, Phys. Rev. D35 (1987) 3695;
 K. Freese and J. Silk, Phys. Rev. D40 (1989) 3828;
 V. Berezinsky, A. Bottino and G. Mignola, Phys. Lett. B325 (1994) 136.
- [154] G. Lake, Nature **346** (1990) 39;
 J. Silk and A. Stebbins, Astrophys. J. **411** (1993) 439;
 C. Calcaneo-Roldan and B. Moore, Phys. Rev. **D62** (2000) 123005.
- [155] L. Bergström, J. Edsjö and P. Ullio, Phys. Rev. D 58, (1998) 083507.

- [156] L. Bergström, J. Edsjö and C. Gunnarsson, Phys. Rev. D 63, 083515 (2001).
- [157] E. A. Baltz, C. Briot, P. Salati, R. Taillet and J. Silk, Phys. Rev. D 61, 023514 (2000).
- [158] D.B. Cline and Y.-T. Gao, Astronomy and Astrophys. 231 (1990) L23;
 Y.-T. Gao, F.W. Stecker and D.B. Cline, Astronomy and Astrophys. 249, 1 (1991).
- [159] L. Bergström, J. Edsjö and P. Ullio, Phys. Rev. Lett. (2001) in press.
- [160] Gleeson, L.J. & Axford, W.I. 1967, ApJ, 149, L115.
- [161] M. Kamionkowski, Phys. Rev. **D44** (1991) 3021.
- [162] X. Chen, M. Kamionkowski and X. Zhang, Phys. Rev. D64 (2001) 021302; S. Hofmann, D.J. Schwarz and H. Stocker, Phys. Rev. D64 (2001) 083507.
- [163] Feynhiggs.
- [164] FeynHiggsFast.
- [165] higgsqcd.
- [166] chardonnay.
- [167] bottinopbar.
- [168] linejk.
- [169] Gould321.
- [170] P. Gondolo, private communication.
- [171] K. Griest and D. Seckel, Phys. Rev. D43 (1991) 3191.
- [172] W.F. Mcdonough, Treatise on Geochemistry, Vol 2, Elsevier, 2003. (The values for the Earth composition are very close to those in The Encyclopedia of Geochemistry, Eds. Marshall and Fairbridge, Klower Acadmic Publ, 1998.)
- [173] Perl script form2f to convert from Form output to Fortran output, written by J. Edsjö.
- [174] L. Bergström and P. Ullio, Nucl. Phys. B504 (1997) 27.
- [175] P. Ullio and L. Bergström, Phys. Rev. **D57** (1998) 1962.
- [176] L. Bergström, P. Ullio and J. Buckley, Astrop. Phys. 9 (1998) 137.
- [177] J. Edsjö, ... SFCOANN.
- [178] P. Gambino and M. Misiak, Nucl. Phys. B611 (2001) 338.
- [179] A. J. Buras, A. Czarnecki, M. Misiak and J. Urban, Nucl. Phys. B631 (2002) 219.
- [180] M. Ciuchini, G. Degrassi, P. Gambino and G. F. Giudice, Nucl. Phys. B527 (1998) 21.
- [181] G. Degrassi, P. Gambino and G. F. Giudice, JHEP 0012 (2000) 009.
- [182] M. Ciuchini, G. Degrassi, P. Gambino and G. F. Giudice, Nucl. Phys. B534 (1998) 3.
- [183] K. Okumura and L. Roszkowski, hep-ph/0212007, Proceedings SUSY02.
- [184] K. Hagiwara et al., Phys. Rev. **D66** (2002) 010001.

BIBLIOGRAPHY

- [185] F. Donato, N. Fornengo and P. Salati, Phys. Rev. D62 (2000) 043003.
- [186] J. Lundberg and J. Edsjö, Phys. Rev. D69(2004) 123505. [astro-ph/0401113]
- [187] A. Gould, Gravitational diffusion of solar system WIMPs, Astrophys. J. 368 (1991) 610.
- [188] P. Farinella, C. Froeschlé, C. Froeschlé, R. Gonczi, G. Hahn, A. Morbidelli and G.B. Velsecchi, Asteroids falling into the Sun, Nature 371 (1994) 314).
- [189] A. Gould and S.M.K Alam, Can heavy WIMPs be captured by the Earth?, Astrophys. J. 549 (2001) 72.
- [190] BP2000 solar model.