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1. Introduction 

DNN+NeuroSim is an integrated framework, which is developed in C++ and wrapped by Pytorch and 

TensorFlow,  to emulate the deep neural networks (DNN) inference performance (in V 1.0) or on-chip 

training (to-be-released) performance on the hardware accelerator based on near-memory computing or in-

memory computing architectures. Various device technologies are supported, including SRAM, emerging 

non-volatile memory (eNVM) based on resistance switching (e.g. RRAM, PCM, STT-MRAM), and 

ferroelectric FET (FeFET). SRAM is by nature 1-bit per cell, eNVMs and FeFET in this simulator could 

support either 1-bit or multi-bit per cell. NeuroSim [1] is a circuit-level macro model for benchmarking 

neuro-inspired architectures (including memory array, peripheral logic, and interconnect routing) in terms 

of circuit-level performance metrics, such as chip area, latency, dynamic energy and leakage power. With 

Pytorch and TensorFlow wrapper, DNN +NeuroSim framework can support hierarchical organization from 



the device level (transistors from 130 nm down to 7 nm, eNVM and FeFET device properties) to the circuit 

level (periphery circuit modules such as analog-to-digital converters, ADCs), to chip level (tiles of 

processing-elements built up by multiple sub-arrays, and global interconnect and buffer) and then to the 

algorithm level (different convolutional neural network topologies), enabling instruction-accurate 

evaluation on the inference accuracy as well as the circuit-level performance metrics at the run-time of 

inference. 

The target users for this simulator are circuit/architecture designers who wish to quickly estimate the 

system-level performance with different network and hardware configurations (e.g. device technology 

choices, sequential read-out or parallel read-out, etc).  Different from our earlier released simulators 

(MLP+NeuroSim [2]), where the network was fixed to a 2-layer MLP and executed purely in C++ 

(consumes long run-time), this DNN+NeuroSim framework is an integrated simulator with Pytorch and 

TensorFlow wrapper (i.e. C++ wrapped by python). With the wrapper, users are able to define various 

network structures, precisions of synaptic weights and neural activations, which guarantee efficient 

inference running with the popular machine learning platforms. Meanwhile, the wrapper will automatically 

save the real traces (synaptic weights and neural activations) during the inference, and send to NeuroSim 

for real-time and real-traced hardware estimation. In the released simulator, an 8-layer VGG (VGG-8) 

network for CIFAR-10 dataset is provided as a default model in the wrapper, with 8-bit synaptic weights 

and neural activations, while users could modify the precisions and neural network topologies. The 

hardware parameters (such as technology nodes, memory cell properties, operation modes, and so on) will 

be defined under NeuroSim in Param.cpp.  

 

2. System Requirements (Linux) 

The tool is expected to run in Linux with required system dependencies installed. These include GCC, GNU 

make, GNU C libraries (glibc). We have tested the compatibility of the tool with a few different Linux 

environments, such as (1) Red Hat 5.11 (Tikanga), gcc v4.7.2, glibc 2.5, (2) Red Hat 7.3 (Maipo), gcc 

v4.8.5, glibc v2.1.7, (3) Ubuntu 16.04, gcc v5.4.0, glibc v2.23, and they are all workable. 

※ The tool may not run correctly (stuck forever) if compiled with gcc 4.5 or below, because some C++11 

features are not well supported. 

 

3. Installation and Usage (Linux) 

Step 1: Get the tool from GitHub 

git clone https://github.com/neurosim/DNN_NeuroSim.git 

Step 2: Train the network to get the model for inference 

Step 3: Compile the NeuroSim Code 

make 

Step 4: Run Pytorch/TensorFlow wrapper (integrated with NeuroSim) 

Summary of the useful commands is provided below. It is recommended to execute these commands under 

the tool’s directory. 



Command Description 

make Compile the NeuroSim codes and build the “main” program 

make clean Clean up the directory by removing the object files and the “main” executable 

※ The simulation uses OpenMP for multithreading, and it will use up all the CPU cores by default. 

※ The wrapper is built under the CUDA 9.0 + cuDNN v7.0.5, python2.7 + tensorflow 1.5.0 (GPU) and 

python 3.5 + pytorch 1.0(GPU). 

 

4. Chip Level Architectures 

In this framework, we consider the on-chip memory is sufficient to store synaptic weights of the entire 

neural network, thus the only off-chip memory access is to fetch in the input data. Fig. 1 shows the modeled 

chip hierarchy, where the top level of chip is consist of multiple tiles, global buffer, accumulation units, 

activation units (sigmoid or ReLU), and pooling units. Fig. 1 (b) shows the structure of a tile, which contains 

several processing elements (PEs), tile buffer to load in neural activations, accumulation modules to add up 

partial sums from PEs and output buffer. Similarly, as Fig. 1 (c) shows, a PE is built up by a groups of 

synaptic sub-arrays, PE buffers, accumulation modules and output buffer. In Fig. 1 (d), it shows an example 

 
 

Fig. 1.  The diagram of (a) top level of chip architecture, which contains multiple tiles, global buffer, accumulation 

units, activation units (sigmoid or ReLU) and pooling units; (b) a tile with multiple processing elements (PEs), tile 

buffer to load in activations, accumulation modules to add up partial sums from PEs and output buffer; (c) a PE 

contains a group of synaptic arrays, PE buffer and control units, accumulation modules and output buffer; (d) an 

example of synaptic array based on one-transistor-one-resistor (1T1R) architecture.  



of synaptic sub-array, which is based on one-transistor-one-resistor (1T1R) architecture for eNVMs. At 

sub-array level, the array architecture is different for SRAM or FeFET (not shown in this figure).  

4.1 Interconnect: H-Tree 

To estimate the area, latency, dynamic energy and leakage of interconnect, we assume the routing among 

modules in each hierarchy is based on H-tree structure. According to the interconnect engineering, the wire 

delay could be reduced by introducing repeaters which is used to split the wire into multiple segments. As 

Fig. 2 shows, a wire could be considered as a group of wire segments and repeaters, to find an optimal 

length of wire segment between repeaters, which leads to minimum delay, a VLSI design function [3] is 

introduced as EQ (4.1) shows, where 𝑅 is the resistance of a minimum-sized repeater, 𝐶 is the gate 

capacitance, and diffusion capacitance 𝐶𝑝𝑖𝑛𝑣, 𝑅𝑤 and 𝐶𝑤 are the unit resistance and capacitance of wire, 

respectively.  

𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = √
2𝑅𝐶(1+𝑝𝑖𝑛𝑣)

𝑅𝑤𝐶𝑤
                                                         (4.1) 

The repeater size should use an NMOS transistor width of 

𝑊 = √
𝑅𝐶𝑤

𝑅𝑤𝐶
                                                                   (4.2) 

However, in practice, to limit the energy consumption of interconnect, we may find a semi-optimal design 

option of trade-offs between wire latency and energy. In this framework, we introduce two parameter called 

“globalBusDelayTolerance” (and “localBusDelayTolerance” for global bus and tile/PE local bus 

 
 

Fig. 2.  The diagram of wire with repeaters. 

 
 

Fig. 3.  An example of H-tree for a 4×4 computation-unit array. 



respectively) to find the semi-optimal floorplan of bus with such delay sacrifice, which will be defined in 

param.cpp.  

Fig. 3 shows an example of H-tree structure for 4 × 4 computation units (either tiles or PEs), where the bus 

width connected to each units is assumed to be same. We define the H-tree is built up by multiple stages 

(horizontal and vertical) from the widest (main bus) to the most narrow ones (connected to computation 

units). The wire length decrease by ×2 at each stage from wide to narrow ones, while the sum of bus width 

at each stage is fixed, which equals to the width of main bus. 

4.2 Floorplan of Neural Networks 

To map various neural networks according to the defined chip architecture, it is crucial to follow a certain 

rule which does not violate hardware structure (and data flow) while guarantees high-enough memory 

utilization. We defined an algorithm to automatically generate the floorplan based on two kinds of weight-

mapping methods, which optimize the memory utilization and define the tile size, PE size, number of tiles 

needed, based on user-defined synaptic array size. 

The floorplan starts from tile sizing to PE sizing, while the size of synaptic array is defined by users in 

Param.cpp. With pre-defined network structure and weight mapping method, NeuroSim automatically 

calculate weight-matrix size for each layer (especially for convolutional ones, where 3D kernels will be 

unrolled to 2D matrixes), the tile size firstly is set to a maximum value which could contain the largest 

weight-matrix among all the layers, then NeuroSim calculate the memory utilization (defined as memory 

mapped by synaptic weights / total memory storage on chip), keep decreasing the tile size till NeuroSim 

find a solution with optimal memory utilization. 

To further increase memory utilization and speed up the processing speed of whole network as much as 

possible, weight duplication is introduced to each layer. Since the layer structure (such as input feature size, 

channel depth and kernel size) varies significantly in DNNs, which could occupy various amounts of 

synaptic arrays, it is possible that, the weight of several layers cannot fully fill one PE or even one synaptic 

array, a naïve way to custom-design the hardware is to mix multiple such small layers into one tile (or even 

one PE), however, this could make it complicated to define tile/PE size and number of tiles needed, thus, 

in this framework, we assume one tile is the minimum computation units for each layer, i.e., it is not allowed 

to map more than one layer into one tile, but there could be multiple tiles to map one single layer. 

Hence, similarly, NeuroSim will continue to decide the PE size and possibilities of weight duplication 

among PEs, with pre-defined tile size as discussed above. For example, if the weight-matrix of a specific 

layer is smaller than the tile size (which means the tile cannot be fully filled by one weight-matrix), it is 

possible to duplicate the weight-matrix and fetch in multiple neural activation vectors, thus to speed up the 

process of this layer. In this step, NeuroSim start the PE design with a maximum PE size which equals to 

half of the tile size (to guarantee the exist of defined hierarchy), and decide whether to duplicate the weight-

matrix and how many times of duplication for each layer, then recalculate the memory utilization with 

weight duplication factors, keep decreasing the PE size till NeuroSim find the optimal solution with highest 

memory utilization. 

Finally, weight duplication could be further utilized inside PE, i.e. duplicate weight among synaptic arrays, 

in the similar way as PE design, the only difference is the synaptic array size if fixed. With these three stage 

floorplans, NeuroSim could guarantee high-enough memory utilization, meanwhile optimize the inference 

process speed.  



Table I shows the overall memory utilization of the floorplan algorithm of AlexNet, VGG-16 and ResNet-

34, based on the two supported mapping methods for ImageNet dataset, and the default 8-layer VGG 

network in the simulator for CIFAR-10 dataset. The results were based on assumption that one memory 

cell is sufficient to map one synaptic weight (i.e. an 8-bit cell to map an 8-bit synapse), and synaptic array 

size is 128×128. With various hardware configuration (such as two 4-bit memory cells form one 8-bit 

synaptic weight), the memory utilization could be slightly different.  

Table I Memory Utilization 

Network Conventional Mapping Novel Mapping 

VGG-8 (CIFAR-10) 91.45% 95.23% 

AlexNet 98% 97% 

VGG-16 98.79% 99.24% 

ResNet-34 85.88% 90.13% 

 

4.3 Weight Mapping Methods 

We support two mapping methods in this framework, conventional mapping and novel mapping method 

which was proposed in [4]. Fig. 4 shows the example of conventional mapping for one convolutional layer, 

where each 3D kernel (weight) is unrolled into a long column, since the partial sums in each 3D will be 

summed up to get the final output. Thus, the total kernels in each convolutional layer will form a group of 

such long columns, i.e., a large weight matrix.  

To get the output feature maps (OFMs), as Fig. 3 shows, at first cycle, a part of input feature maps (IFMs) 

(shown in dark blue cube) will be multiplied with each 3D kernels. If we assume a single OFM has size of 

W×W, with channel depth of N, there are N such OFM in total, we call the front OFM as the first OFM, 

and the back one as the Nth OFM. In this way, the sum of dot-products from the first kernel will be the first 

element in the first OFM, the sum of dot-products from the second kernel will be the first element in the 

second OFM, and so on, thus, at the first cycle, we could get the first elements in every OFM from front to 

back (as shown in light green row in size 1×1×N). In the same way, at the second cycle, the kernels will 

“slide over” the inputs with a stride (equals to one in this example), after the dot-product operation, we will 

 
 

Fig. 4.  An example of conventional mapping method of input and weight data. 



get all the second elements in each OFM. Thus, to generate the total OFMs in layer<n>, we need to “slide 

over” the IFMs by W×W times, i.e. we need W×W cycles to finish the computation.  

It should be noted that, in conventional mapping, during the entire operation, a part of the IMFs used in 

earlier cycle will always be reused at current cycle. Considering about the huge amount of dot-product 

operations in convolutional layers, these frequent revisiting of input data from upper-level buffers could 

cause a significant energy and latency waste. Thus, a novel mapping method is introduced to maximize 

input data reuse. 

Fig. 5 shows an example of novel mapping for the same convolutional layer. Instead of unrolling 3D kernels 

into a large matrix, the weights at different spatial location of each kernel are mapped into different sub-

matrices. According to the spatial location of partitioned kernel data in each kernel, we define which group 

of these partitioned kernel data should belong to. Hence, K×K sub-matrices are needed for the kernels 

(whose first and second dimension equal to K and K), since each sub-matrix has size D×N, the size of total 

weight matrix will be K×K×D×N, which equals to the size of unrolled matrix from conventional mapping 

method (as Fig. 3 shows). Similarly, the input data which should be assigned to various spatial location in 

each kernel, will be sent to the corresponding sub-matrix, respectively. Partial sums from sub-matrices 

could be obtained in parallel. Later, an adder tree will be used to sum up the partial sums.  

Hence, such group of sub-arrays with the necessary input and output buffers and accumulation modules can 

be defined as a processing element (PE). The kernels are split into several PEs according to their spatial 

locations, and assign the input data into corresponding ones, it is possible to reuse the input data among 

these PEs, i.e., directly transfer input data among PEs which do not need to revisit upper-level buffers. 

 

5. Circuit Level: Synaptic Array Architectures 

With various device technologies, the chip could operate in different modes, such as digital sequential (row-

by-row) read-out for near-memory computing, or analog parallel read-out for in-memory computing. In the 

simulator, the parameters of synaptic devices and synaptic array modes will be instantiated in param.cpp. 

 
 

Fig. 5.  An example of novel mapping method of input and weight data. 



5.1 Parallel Synaptic Array Architectures 

Fig. 6 and Fig. 7 show three kinds of supported synaptic arrays, which could be used to process analog in-

memory computing. Here are some assumptions that apply to all kinds of array architectures below. The 

higher precision than 1-bit in the input neuron activation is represented by multiple cycles of input voltage 

signals to the row, and no analog voltage is used to represented the input, thus no digital-to-analog converter 

(DAC) is used, as the nonlinearity in I-V curve of eNVMs will introduce distortion in parallel read-out [5]. 

The higher precision than 1-bit in the weight could be represented by a single analog synaptic cell or 

multiple synaptic cell. For example, 8-bit weight could be represented a single 8-bit eNVM cell (assuming 

it is technologically viable), or 2 eNVM cells (4 bits per cell), or 4 eNVM cells (2 bits per cell), or 8 eNVM 

binary cells. In our design, the inference is performed in parallel mode by activating all the rows, while the 

weight update in the training is performed in a row-by-row fashion. It should be noted that as the peripheral 

ADC size is typically much larger than the column pitch of the array, therefore column sharing is used by 

the column mux (e.g. 8 columns share one ADC).  

1) SRAM synaptic array 

Multiple digital SRAM cells can be grouped along the row to represent one weight with higher precision 

than 1-bit, as shown in Fig. 6. The weighted sum and weight update operations are similar to the row-by-

row read and write operations in conventional SRAM for memory, respectively. In sequential-read-out 

mode as Fig. 6 (a) shows, to select a row, the WL is activated through the WL decoder. To access all the 

cells on the selected row, the BLs are pre-charged by the pre-charger and the write driver in weighted sum 

and weight update, respectively. After the memory data are read by the sense amplifier (S/A), the adder and 

register are used to accumulate the partial weighted sum in a row-by-row fashion. In parallel-read-out mode 

as demonstrated in [6], the input vectors will be fetched in via WL switch matrix, the partial-sums will be 

collected along columns simultaneously at one time with high-precision flash-ADCs based on multilevel 

S/A by varying references. In both modes, the adders and shift registers are used to shift and accumulate 

partial sums for multiple cycles of input vectors (which represent MSB to LSB of the analog neural 

activations). 

 

 
 

Fig. 6.  The diagram of SRAM-based (a) sequential-read-out; (b) parallel-read-out synaptic arrays. 



2) Analog eNVM 1T1R synaptic array 

Fig. 7 (a) and (b) shows the structure of 1T1R based eNVM array. The WL controls the gate of the transistor, 

which can be viewed as a switch for the cell. The source line (SL) connects to the source of the transistor. 

The eNVM cell’s top electrode connects to the BL, while its bottom electrode connects to the drain of the 

transistor through a contact via. In such case, the cell area of 1T1R array is then determined by the transistor 

size, which is typically >6F2 depending on the maximum current required to be delivered into the eNVM 

cell. Larger current needs larger transistor gate width/length (W/L). However, conventional 1T1R array is 

not able to perform the parallel weighted sum operation. To solve this problem, we modify the conventional 

1T1R array by rotating the BLs by 90o, which is known as the pseudo-crossbar array architecture, as shown 

in Fig. 8 (b). In weighted sum operation, all the transistors will be transparent when all WLs are turned on. 

Thus, the input vector voltages are provided to the BLs, and the weighted sum currents are read out through 

SLs in parallel. Then the weighted sum currents are digitalized by a current-mode sense amplifier (S/A), 

and a flash-ADC with multilevel S/A by varying references is used.   

3) Analog eNVM crossbar array 

The crossbar array structure has the most compact and simplest array structure for analog eNVM devices 

to form a weight matrix, where each eNVM device is located at the cross point of a word line (WL) and a 

bit line (BL), as shown in Fig. 6 (c). The crossbar array structure can achieve a high integration density of 

4F2/cell (F is the lithography feature size). If the input vector is encoded by read voltage signals, the 

 
 

Fig. 8.  Transformation from (a) conventional 1T1R array to (b) pseudo-crossbar array by 90o rotation of BL to 

enable weighted sum operation. 
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Fig. 7. (a) sequential-read-out and (b) parallel-read-out analog eNVM pseudo-1T1R synaptic arrays; (c) sequential-

read-out and (c) parallel-read-out analog FeFET synaptic arrays;  



weighted sum operation (matrix-vector multiplication) can be performed in a parallel fashion with the 

crossbar array. Here, the crossbar array assumes there is an ideal two-terminal selector device connected to 

each eNVM, which is desired for suppressing the sneak path currents during the row-by-row weight update. 

It should be noted that ideal selector device is still under research and development.  

4) Analog FeFET array 

As shown in Fig. 7 (c) and (d), the analog FeFET array is in the pseudo-crossbar fashion as proposed in [7], 

which is similar to the analog eNVM pseudo-crossbar one. It also has an access transistor for each cell to 

prevent programming on other unselected rows during row-by-row weight update. As FeFET is a three-

terminal device, it needs two separate input signals to be fetched to activate WLs and introduce read 

voltages to RS (read select), respectively, where RS is used to fetch in input vectors as Fig. 9 shown below.  

 

5.2 Array Peripheral Circuits 

The periphery circuit modules used in the synaptic arrays in Fig and Fig. 7 are described below: 

1) Switch matrix 

Switch matrices are used for fully parallel voltage input to the array rows or columns. Fig 10 (a) shows the 

BL switch matrix for example. It consists of transmission gates that are connected to all the BLs, with 

control signals (B1 to Bn) of the transmission gates stored in the registers (not shown here). In the weighted 

 
 

Fig. 10 (a) Transmission gates of the BL switch matrix in the weighted sum operation. A vector of control signals 

(B1 to Bn) from the registers (not shown here) decide the BLs to be connected to either a voltage source or ground. 

(b) Control signals in a bit stream to represent the precision of the input vector. 
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Fig. 9.  Operations of (a) write and (b) read in FeFET cell. 



sum operation, the input vector signal is loaded to B1 to Bn, which decide the BLs to be connected to either 

the read voltage or ground. In this way, the read voltage that is applied at the input of transmission gates 

can pass to the BLs and the weighted sums are read out through SLs in parallel. If the input vector is higher 

than 1 bit, it should be encoded using multiple clock cycles, as shown in Fig 10 (b). The reason why we do 

not use analog voltage to represent the input vector precision is the I-V nonlinearity of eNVM cell, which 

will cause the weighted sum distortion or inaccuracy as discussed above. In the simulator, all the switch 

matrices (slSwitchMatrix, blSwitchMatrix and wlSwitchMatrix) are instantiated from SwitchMatrix 

class in SwitchMatrix.cpp, this module is used in parallel-read-out synaptic arrays 

2) Crossbar WL decoder 

The crossbar WL decoder is modified from the traditional WL decoder. It has an additional feature to 

activate all the WLs for making all the transistors transparent for weighted sum. The crossbar WL decoder 

is constructed by attaching the follower circuits to every output row of the traditional decoder, as shown in 

Fig. 11. If ALLOPEN=1, the crossbar WL decoder will activate all the WLs no matter what input address 

is given, otherwise it will function as a traditional WL decoder. In the simulator, the crossbar WL decoder 

contains a traditional WL decoder (wlDecoder) instantiated from RowDecoder class in RowDecoder.cpp 

and a collection of follower circuits (wlDecoderOutput) instantiated from WLDecoderOutput class in 

WLDecoderOutput.cpp, this module is used in sequential-read-out synaptic arrays 

3) Decoder driver 

The decoder driver helps provide the voltage bias scheme for the write operation when its decoder selects 

the cells to be programmed. As the digital eNVM crossbar array has the write voltage bias scheme for both 

WLs and BLs, it needs the WL decoder driver (wlDecoderDriver) and column decoder driver 

(colDecoderDriver). These decoder drivers can be instantiated from DecoderDriver class in 

DecoderDriver.cpp, this module is used in sequential-read-out synaptic arrays. 

4) New Decoder Driver and Switch Matrix 

One should be noticed that, for eNVM pseudo-crossbar and FeFET synaptic arrays, the WLs and BLs/RSs 

could be controlled by same input signals, but with different voltage values, thus, it could significantly save 

the area for unnecessary BL/RS switch matrix. To achieve this function, there are several extra control gates 

to be added into the WL decoder driver circuits, and into the WL switch matrix. Fig. 14 shows the circuit 

 
 

Fig. 11 Circuit diagram of the crossbar WL decoder. Follower circuit is attached to every row of the decoder to 

enable activation of all WLs when ALLOPEN=1. 
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diagram of new decoder driver and switch matrix for eNVM pseudo-1T1R synaptic array, which could be 

used to control both WL and BL (or RS) at the same time. In Fig. 12 (a), with the input and decoder output, 

both of WL and BL will be controlled, where the WLs will be either activated or not, and the BLs to be 

connected to either the read voltage or ground. Similarly, in Fig. 12 (b), the each single WL switch matrix 

has two extra transmission gates to be used to send two separate voltages into the corresponding WL and 

BL. In FeFET synaptic arrays, the signals connected to BLs in this example, will be connected to RSs. In 

the simulator, the WLNewDecoderDriver (decoder driver) is instantiated from WLNewDecoderDriver 

class in NewDecoderDriver.cpp and the WLNewSwitchMatrix (WL switch matrix) is instantiated from 

WLNewSwitchMatrix class in NewSwitchMatrix.cpp, these new decoder follower and switch matrix are 

used in eNVM pseudo-1T1R and FeFET synaptic arrays. 

5) Multiplexer (Mux) and Mux decoder 

The Multiplexer (Mux) is used for sharing the read periphery circuits among synaptic array columns, 

because the array cell size is much smaller than the size of read periphery circuits and it will not be area-

efficient to put all the read periphery circuits underneath the array. However, sharing the read periphery 

circuits among synaptic array columns inevitably increases the latency of weighted sum as time 

multiplexing is needed, which is controlled by the Mux decoder. In the simulator, the Mux (mux) is 

instantiated from Mux class in Mux.cpp and the Mux decoder (muxDecoder) is instantiated from 

RowDecoder class in RowDecoder.cpp. 

6) Analog-to-digital converter (ADC) 

To read out the partial-sums and further process them in the subsquent logic modules (such as activation 

and pooling), a group of flash-ADCs with multilevel S/A by varying references are used at the end of SLs 

to generate digital outputs. In the simulator, we take a conventional current-sense-amplifier (CSA) as shown 

in Fig. 13, as the unit circuit module, to build up multilevel S/A. To precisely estimate the latency and 

energy of S/A, we run Cadence simulation across technology from 130nm to 7nm, for each technology 

node, we chose reasonable BL current range (considering practical device resistance range), and in the 

range we select multiple specific nodes IBL, detect the latency and power trends of each specific IBL when 

sweeping Iref (i.e. from 0.001×IBL to 1000×IBL). As a detection of multiple experiments based on Cadence 

simulation, when fix IBL and sweep Iref, both latency and energy varies significantly, with various Iref/IBL 

values, when Iref/IBL is approaching to 1, the latency and energy will be the maximum (extremely hard for 

S/A to sense the difference); however, if we fix the Iref/IBL to a minimum value which leads to maximum 

latency and energy, and sweep the IBL, the changes are quite smooth and not significant. 

 
 

Fig. 12 Circuit diagram of (a) decoder follower and (b) WL switch matrix, which are used to control both WLs and 

BLs simultaneously, for pseudo-1T1R synaptic arrays. 



Then, we sweep the technology nodes, at each technology node, we sweep the IBL, and for each IBL, we 

sweep the Iref. We collect all the simulated data from Cadence simulation, then fit the data and build up 

functions of latency and energy in relation with IBL and Iref for each technology node. In this way, in 

NeuroSim, we are able to estimate the latency and energy based on real traces (which gives specific IBL, 

while Iref are automatically defined by NeuroSim according to Ron, Roff, synaptic array size and precision of 

ADC). Fig. 14 shows an example of latency estimation based on the fitting functions, where the blue dots 

are estimated results and red dots are simulated results from Cadence, the fitting function yields reasonable 

mismatch with much faster simulation compared with Cadence. 

To read out the partial-sums in parallel modes, it requires ADC with high enough precision, for example, 

with synaptic array size 128×128, and each cell represents 1-bit synapse, the partial-sums along one column 

 
 

Fig. 13 Schematic of current sense amplifier (CSA). 

 

 
Fig. 14 An example of latency estimation based on fitting functions compared with Cadence results. 



would be 7-bit which is impractical as ADC precision, thus we have to truncate the precision of ADC (for 

partial sums) to minimize the area and energy overhead. 

As Fig. 15 shows, we perform 8-bit inference of VGG-8 network on CIFAR-10 dataset, to investigate the 

effects of truncating ADC precision on the classification accuracy. We set the sub-array size to be 128×128, 

and investigate three schemes with 1-bit cell, 2-bit cell and 4-bit cell. To minimize the ADC truncation 

effects on the partial-sums, we utilize the nonlinear quantization with various quantization edges 

(corresponding to different ADC precision), where the edges are determined according to the distribution 

of partial-sums, as proposed in [8]. Compared to the baseline accuracy (no ADC truncation), the results 

suggest that at least 4-bit ADC is required to prevent significant accuracy degradation. Compared to a prior 

work on binary neural network where 3-bit ADC was reportedly sufficient [8], the results in Fig. 15 surmise 

that higher weight-precision generally requires higher ADC-precision. 

With larger synaptic array size or higher cell precision, higher ADC precision is demanded. For flash-ADC, 

higher than 3-bit may still result in significant area overhead, thus more compact ADC design is still under 

development for future release. 

7) Adder and register 

As mentioned earlier, the adders and registers are used to accumulate the partial weighted sum results during 

the row-by-row weighted sum operation in digital synaptic array architectures. The group of adders is 

instantiated from Adder class in Adder.cpp and the group of registers (dff) is instantiated from DFF class 

in DFF.cpp. 

8) Adder and shift register 

The adder and shift register pair at the bottom of synaptic core performs shift and add of the weighted sum 

result at each input vector bit cycle (B1 to Bn in Fig 10 (b)) to get the final weighted sum. The bit-width of 

the adder and shift register needs to be further extended depending on the precision of input vector. If the 

values in the input vector are only 1 bit, then the adder and shift register pair is not required. In the simulator, 

a collection of the adder and shift register pairs (ShiftAdd) is instantiated from ShiftAdd class in 

ShiftAdd.cpp, where ShiftAdd further contains a group of adders (adder) instantiated from Adder class 

in Adder.cpp and a group of registers (dff) instantiated from DFF class in DFF.cpp. 
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Fig. 15.  Classification accuracy of CIFAR-10 for an 8-bit CNN as a function of the ADC precision for partial sums.  



6. Algorithm Level: PyTorch and TensorFlow Wrapper 

The algorithm we use to get the quantized DNN model for inference is the WAGE from [9]. The 

TensorFlow code is modified based on the author released code at [10]. The Pytorch code realizes the same 

algorithm except that we move the scale term from weight to output to make it more suitable for the 

hardware architecture. We referenced [11] [12] for our Pytorch code. This algorithm could directly train a 

quantized network with user defined bit width for weight, activation, gradient and error.  The partial sum 

quantization (according to ADC precision) is to be released in future version.  

In V1.0, we considered inference with offline training. In general, users could either train the network with 

floating point and find the quantization level with statistics for weight and activation or introduce 

quantization with desired quantization level during training directly. We choose the second scheme using 

WAGE since WAGE quantize both weight and activation using fixed quantization level, which is [-1, 1] 

with scale of 2-b. This mechanism is friendly to hardware implementation, which normally represent data 

use 2’s complimentary. WAGE also apply quantization to gradient and error, which is not necessary for 

inference stage (but maybe useful for online training to be release later). Users could set the bit-width to -

1 to make these two floating-point for inference. Users need to pay attention that some hyper-parameters 

need to be changed if the bit-width is changed for WAGE algorithm.  

The key parameters that will be transferred from the DNN algorithm to NeuroSim are weight precision 

(determining the synaptic weight cell design), partial sum precision (determining the ADC precision), and 

the activation precision (determining the input clock cycle number). For inference, the weight patterns are 

pre-defined by offline training, and they will be transferred to NeuroSim only once (acting as one-time 

programming), and then the input dataset (e.g. 1 test image) is loaded for the hardware performance 

estimation.  

 

7. How to run DNN +NeuroSim 

1) Define Network Structure in NetWork.csv 

Table II NetWork.csv 

 
IFM 

Length 

IFM 

Width 

IFM 

Channel 

Depth 

Kernel 

Length 

Kernel 

Width 

Kernel 

Depth 

Followed 

by pooling 

or not? 

Layer 1 32 32 3 3 3 128 0 

Layer 2 32 32 128 3 3 128 1 

Layer 3 16 16 128 3 3 256 0 

Layer 4 16 16 256 3 3 256 1 

Layer 5 8 8 256 3 3 512 0 

Layer 6 8 8 512 3 3 512 1 

Layer 7 1 1 8192 1 1 1024 0 

Layer 8 1 1 1024 1 1 10 0 
 

Firstly, the users have to define network structure in the NetWork.csv file, such that the NeuroSim will 

process the floorplan and define the hardware design. Taking the default VGG-8 with 8 layers as an 

example, the definition of each cell in the excel table in shown below, in the NetWork.csv file, only the 



numbers are supposed to be filled in, i.e. the texts cannot be written in the file, it is important to accurately 

modify the table to avoid segmentation fault. 

In the default VGG-8 network, layer 1 to layer 6 are convolutional layers, and layer 7 to layer 8 are fully-

connected layers. In the Table II, the dimensions of each layer are defined in different rows, from layer 1 

to layer 8 (row 1 to row 8), while the first three columns (column 1 to column 3) are used to define the 

dimension of input feature maps (IFMs) of each layer. For example, the input image size of layer 1 is 

32×32×3, thus, in first row, the first three cells should be filled by 32, 32 and 3 respectively, which indicated 

the length, width and depth of the IFM. The next three columns (column 4 to column 6) are used to define 

the dimension of kernels. For example, the kernel size of layer 3 is 3×3×128×256 (i.e. each single 3D kernel 

is 3×3×128, the kernel depth is 256), since it is well known that the third dimension of kernel is defined by 

the IFM channel depth, it is not necessary to define the third dimension again, thus, from the Table II, in 

row 3, the fourth, fifth and sixth cell should be filled by 3, 3 and 256, which represent the length, width and 

kernel depth (first, second and fourth dimension of kernel) respectively. One should notice that, the fully-

connected layer can also be represented in the similar way, by considering it as a special convolutional 

layer, which has unit length and width for IFM and kernels. The last column is used to define whether the 

current layer is followed by pooling, it will be read by NeuroSim, and properly estimate the hardware 

performance for pooling function, in this framework, the activation function is considered to be integrated 

in every layer. 

2) Modify the hardware parameters in Param.cpp 

After setting up the network structure, the users need to define the hardware parameters in Param.cpp. In 

this file, the users could define the parameters, such as technology node (technode), device type 

(memcelltype: SRAM, eNVM or FeFET), operation mode (operationmode: parallel or sequential analog, 

synaptic sub-array size (numRowSubArray, numColSubArray), synaptic device precision (cellBit), 

mapping method (conventional or novel), activation type (sigmoid or ReLU), cell height/width in feature 

size (F), clock frequency and so on. 

In this framework, all the hardware parameters that users need to define are summarized in the Param.cpp, 

thus, to successfully run the simulator, the two main files users need to visit are NetWork.csv and 

Param.cpp. 

 
 

Fig. 16 Output of compilation. 



3) Compilation of NeuroSim 

After modifying the NetWork.csv and Param.cpp files, or whenever any change is made in the files, the 

codes have to be recompiled by using make command as stated in Installation and Usage (Linux) section. 

If the compilation is successful, a screenshot like Fig. 16 can be expected. 

4) Run the program with PyTorch/TensorFlow wrapper 

After compilation of NeuroSim, go back to the PyTorch/TensorFlow wrapper, in the wrapper, there is a 

VGG-8 as default, the users can modify their network structures, and run the simulator correspondingly.  

Instructions to run the wrapper:  

 Tensorflow: (https://www.tensorflow.org/) 

o The bitwidth setting is under source/Option.py 

o Train: 

 cd source/ 

 python Top.py (The saveModel path should be set under Option.py) 

o Inference 

o cd source/ 

 python Inference.py (Set the loadModel path the same with the saved one) 

 PyTorch (https://pytorch.org/) 

o The bitwidth could be set use optional parameter 

o Train 

 Python train.py  

 The model will be saved at a hierarchical folders based one the option value.    

 
 

Fig. 17 part of Option.py  

 

 
 

Fig. 18 example of output folder hierarchy 

https://www.tensorflow.org/
https://pytorch.org/


o Inference 

 Python inference.py  

 Set model_path to the saved model *.pth file 

The program will print out the results for each layer of the network during the simulation. The simulation 

will approximately take 5 minutes with a computer workstation (Intel 8-core CPU with 3.2 GHz and NVidia 

Titan V GPU) for the VGG-8 network. Fig. 17 shows an example of final output of an 8-bit VGG-8 

inference for one CIFAR-10 image, based on parallel 1T1R synaptic array, with 2-bit per cell RRAM 

(100KΩ and 10MΩ as Ron and Roff). The output from the simulation include hardware inference accuracy, 

memory utilization, and latency/energy/leakage breakdown for 1-image inference, and the equivalent 

energy efficiency in terms of TOPS/W, and throughput in terms of frames per second (FPS).   

 

  
 

Fig. 20 Example of final output. 

 

 
Fig. 19 example of load path. 



8. Upcoming Version 

Currently, this DNN +NeuroSim V1.0 can only support hardware estimation for on-chip inference, where 

the network is assumed to be processed layer-by-layer, this could cause leakage energy and longer latency, 

pipeline design is to be released in future versions to improve this aspect.  

In addition, the hardware simulation for on-chip training will be supported in the upcoming version.  
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