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1. Introduction 
 
A good introduction to the problem of community detection1 is the following passage from [Fortunato2010]: 

 

The modern science of networks has brought significant advances to our understanding of complex 

systems. One of the most relevant features of graphs representing real systems is community structure, or 

clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same 

cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, 

can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the 

tissues or the organs in the human body. Detecting communities is of great importance in sociology, 

biology and computer science, disciplines where systems are often represented as graphs. 

 

In this document we present the Community Detection Toolbox (CDTB), a MATLAB toolbox which can be 

used to perform community detection. The CDTB contains several functions from the following categories.  

 

1. graph generators; 

2. clustering algorithms; 

2. cluster number selection functions; 

4. clustering evaluation functions. 

 

Furthermore, CDTB is designed in a parametric manner so that the user can add his own functions and 

extensions. 

 

The CDTB can be used in at least three ways. The user can employ the functions from the MATLAB 

command line; or he can write his own code, incorporating the CDTB functions; or he can use the Graphical 

User Interface (GUI) which automates the community detection and includes some data visualization options. 

 

Section 2 of the manual gives "Quick Start" instructions: how to install CDTB and how to run some simple 

examples. Section 3 presents some basic community detection concepts and theory. Section 4 gives more 

details and examples about CDTB and Section 5 gives many examples on the use of GUI. In Section 6 we 

summarize and present our conclusions, including ways in which CDTB can be extended. Three Appendices 

                                                 
1 In the following passage, as well as in the rest of this manual, "graph" is used as a synonym of "network", 
"cluster" as a synonym of "community", "clustering" as a synonym of "community detection". 
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are also included: Appendix A includes additional community detection theory; Appendix B presents some 

bibliography; Appendix C is the Reference for all the CDTB functions. 

 

IMPORTANT!!! The CDTB has been tested on Windows 7 and Matlab R2012a. It should also work on 

Windows XP and Windows 8, and for all recent versions of Matlab. It should also work on other platforms 

(Linux, Mac) with the following exception: the functions GCGloDens, GCQLocDens, GCQDistBased and 

GCQNodMemb call Windows executable programs, so they will not work on other platforms. When you run  

scripts which invoke these functions (e.g., CheckAll01.m) on platforms other than Windows, you will get 

an error message; to circumvent this, simply open these scripts with a text editor and comment out the lines 

invoking the offending functions. 

 

Acknowledgement. We want to thank  J. Hespanha , E. le Martelot  and A. Scherrer for permission to use 

their code in the CDTB. 

  

 

 Marios Mitalidis 

 Thanasis Kehagias 

   Theodoros Gevezes 

 Leonidas Pitsoulis 

  

 Thessaloniki, February 2014 
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2. Quick Start 

2.1 Installation 

Installation of the CDTB is extremely simple. You can download the file CDTB.zip from 

http://mathworks.com. When the download is complete, unzip the file in a folder of your choice. From now on 

we will assume that it is the folder C:\CDTB . When unzipped, the folder will contain several subfolders, e.g., 

C:\CDTB\Algorithms , C:\CDTB\Auxiliary  etc. Now you are ready to go.  

 

2.2 A Simple Demo 

Start MATLAB, go to C:\CDTB  and in the command line type 

 

>> PathAdd  

 

and hit  [Enter] . This will add to the MATLAB Path the subdirectories which contain the MATLAB *.m 

files which do the actual community detection work2. In the command line type 

 

>> CDTBDemo01 

 

and hit  [Enter] . The MATLAB script CDTBDemo01.m will run and in the command window you will get 

a message which says  

 

The NMI metric between V0 and Vest is 1 

 

NMI is the normalized mutual information index of partition (i.e., clustering) similarity. It takes values in the 

interval [0,1]. The maximum value 1 indicates maximum similarity, i.e., identity. The partitions compared are 

V0, the true partition, and Vest, the partition estimated by a modularity maximization algorithm. Hence in this 

experiment Vest is identical to V0, This can also be seen in the plot which MATLAB presented. It looks like 

this 

 

                                                 
2 Note that the new path is not saved, so you must retype PathAdd  every time you start a new MATLAB session. Or, you can go to 
the MATLAB menu File/Set Path  and click the button Save , which will make MATLAB memorize the path for all future 
sessions. 
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Figure 2.1 

The horizontal axis gives the node id. numbers. The demo utilized a Girvan-Newman graph 

[NewmanGirvan2004] with 128 nodes. These nodes originally were partitioned (by their edge patterns) into 

four communities (i.e., clusters) as follows: nodes 1, 2, …, 32 go into community no.1, nodes 33, 34, …, 64 go 

into community no.2 and so on; this partition is V0 and is plotted by the green line in Fig.1. Vest, on the other 

hand, assigns nodes 1, 2, …, 32 to community no.2, nodes 33, 34, …, 64 to community no.3 and so on. While 

the community labels are different between V0 and Vest, the actual division into clusters is the same. In short, 

the modularity maximization algorithm obtained the correct solution, modulo a relabelling of clusters. 

  

2.3 The GUI 

Let us also run a simple demo of the Graphical User Interface (GUI). In the MATLAB command line type 

 

>> gui  

 

and hit  [Enter] . It is important to note that the gui  command, should always be executed from the root 

directory of the CDTB ( i.e. C:\CDTB  ). After executing the command, you will get the following standard 

MATLAB GUI. 
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Figure 2.2 

The GUI, makes it easy to design and perform community detection experiments.  To perform exactly the 

same experiment that CDTBDemo01 performed, do the following. Go to the GUI menu File/Import 

Data . A standard File Dialog will open, like this 

 

Figure 2.3 
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Select the file CDTB01 and click on the Open button. The GUI will change and now look like this: 

 

 

Figure 2.4 

 

Now click on the Run button. A progress bar will flash for a while and then you will get a plot (actually a 

straight line). The GUI has run the experiment specified by the choices appearing in Fig. 2.4. You can access 

these results by selecting the menu option Plot/Results to Command Line : if you switch to the 

MATLAB command line (it is always available, e.g. by [Alt]-[Tab] -ing) you will see that a new variable 

has been loaded in your MATLAB workspace, called Results . We will later discuss which results are 

contained in Results . We can now take a break. 
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3. Basic Theory 
 
In this manual we will use the following mathematical notation. 
 
1) As already mentioned, graph is used as a synonym of network; cluster as a synonym of community; 

clustering as a synonym of community detection. 
2) A graph  ( ),G V E=   consists of a node set  V   and an edge set  E  . The nodes contained in  V   will 

always be labeled as 1, 2, 3, ..., N . The edges contained in  E   indicate which nodes are connected; so if  

( ),x y   is in  E  , then we know that node  x   is connected to nodey . In CDTB we only deal with 

undirected graphs, so  ( ),x y   is the same as  ( ),y x  ; they both tell us that  x   and  y   are connected. 

3) Every graph  G   has an adjacency matrix  A  . If the graph has  N   nodes,  A   is an  N N×   matrix of 0's 
and 1's.  1xyA =   if and only if  ( ),x y E∈  , i.e.,  x   and  y   are connected. Since  ( ) ( ), ,x y y x=  , we see 

that  A   is a symmetric matrix. 
4) A clustering of  ( ),G V E=   is a partition of  V   into sets  1,..., KV V   such that  1 ... KV V V∪ ∪ =  ,  

1 ... KV V∩ ∩ =    and none of 1V ,  ...,  KV   is empty. The sets  1,..., KV V   are the clusters. We write the 

partition as  { }1,..., KV VV ====  . The size of the partition is  K = V  . 

5) Given a graph  ( ),G V E=   and a partition   { }1,..., KV VV ====  , the edges of  G   can be partitioned into sets  

ijE   as follows 

( ),  if and only if  and kl k lx y E x V y V∈ ∈ ∈  

6) In particular, we write  i
k kkE E=   and  e

k l k klE E≠= ∪  . In other words, the set  ikE   contains the internal 

edges of  kV  , with both their ends belonging to the same cluster, while the set  e
kE   contains the external 

edges of  kV  , which have one end in  Vk   and the other end in  V � Vk  , the set of nodes which do not 

belong to  kV  . 

 
By community detection we mean the activity of graph clustering, i.e., of finding a partition  { }1,..., KV VV ====   

of a graph  ( ),G V E=   into clusters; the nodes contained in each cluster must somehow be more related to 

each other than to nodes outside the cluster, thus forming a community. While much has been written about 

graph (or network) communities, no clear and generally accepted definition of what constitutes a community 

is available. Most researchers agree that a community is characterized by dense connectivity between its 

members and sparser connectivity with nodes outside the community [Fortunato2010]. Beyond this 

(somewhat vague) definition communities can be defined in terms of quality functions. A quality function is a 

function  ( ),Q G V   (i.e., it depends on both the graph  G   and the partition V ) the value of which 

characterizes how good  V   is as a partition of  G  . Hence the best decomposition of  G   into communities is 

the partition  { }1 ,..., KV V∗ ∗ ∗=V   which maximizes Q , i.e., ( )arg max ,Q G∗ = VV V . And then good 

communities are the elements of a good  V  , i.e., a V  which achieves a high  ( ),Q G V   score. Obviously this 
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definition of communities depends on the particular quality function  Q   used. A large number of quality 

functions have been proposed (which is a good indication that none of them is entirely satisfactory). The most 

popular quality function is the Girvan-Newman modularity 

( )
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as will be explained in Appendix A. Having chosen a quality function  ( ),Q G V  , community detection is 

equivalent to the maximization of  ( ),Q G V  with respect to  V   (for a particular G ). This is a combinatorial 

problem and becomes increasingly hard as the size of the graph increases (in terms of either the number of 

nodes or the number of edges). Hence a large part of community detection research consists in the 

development of tractable, approximately optimal algorithms for quality function maximization. CDTB 

contains a large number of such algorithms and if the user invents his own quality function and / or 

maximization algorithm he can very easily incorporate these in CDTB. 
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4. CDTB and MATLAB Programming 
 
In this section we discuss the use of CDTB in writing MATLAB code. We start our presentation with an 

example. Recall that in Section 1.2 you typed the command CDTBDemo01 which resulted in MATLAB 

performing and plotting a graph clustering. Here is  the listing of the MATLAB script CDTBDemo01.m (it 

can be found in the folder C:\CDTB ): 

 

01 clear all 

02 clc 

03 [A,V0]=GGGirvanNewman(32,4,13,3,0); 

04 V=GCModulMax1(A); 

05 N=length(V); 

06 K=max(V); 

07 Q1=PSNMI(V,V0); 

08 disp(['The NMI metric between V0 and Vest is ' n um2str(Q1)]); 

09 figure(1); plot([V V0]) 

10 axis([0 N+1 0 K+1]) 

11 xlabel('Node no.') 

12 ylabel('Cluster membership')  

 

The important lines in the above listing are 03 , 04  and 07  and each of them performs a different task. 

Namely: 

 

1. [A,V0]=GGGirvanNewman(32,4,13,3,0) generates a graph (hence the first two letters of 

the function are GG). It is a Girvan-Newman graph; the arguments of the function are various 

parameters of the graph and the output is [A,V0]  where A is the graph adjacency matrix and V0 is the 

generating partition. 

2. V=GCModulMax1(A)  performs graph clustering (hence the first two letters of the function are GC). 

Clustering is performed by modularity maximization. The graph information is supplied to the function 

through its adjacency matrix A previously generated by GGGirvanNewman. The output of the 

function is the modularity optimizing partition V. 

3. Q1=PSNMI(V,V0)  evaluates the obtained clustering by computing the partition similarity (hence 

the first two letters of the function are PS). The particular partition similarity metric used is the 
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Normalized Mutual Information between the generating partition V0 (generated by 

GGGirvanNewman) and the optimizing partition V (generated by GCModulMax1).  

 

The three functions mentioned above are CDTB functions, specified in corresponding *.m  files. They are 

good examples of the types of functions contained in the Toolbox. More specifically, CDTB contains the 

following subfolders: 

 

1. Algorithms  which contains graph clustering algorithms; 

2. Evaluation  which contains evaluation functions; 

3. Graphs  which contains graph generators. 

 

In addition to the above, CDTB also contains the following folders. 

 

1. Auxiliary  contains various auxiliary / utility functions. 

2. Cluster_Number  which contains cluster number selection functions (more on this a little later). 

3. Experiments  which contains some demo files. 

 

The details of these functions (and, in particular, their syntax) are presented in Appendix C (Function 

Reference). In the rest of the current section we will present some general remarks and examples to help the 

user write his own MATLAB programs, using the CDTB functions. We have tried to follow a consistent style 

in the naming, input and output of functions. The two initial function names conform to the following 

conventions. 

 

Initial Letters Functionality 

GG Graph Generator 

GC Graph Clustering 

CN Cluster Number selection 

PS Partition Similarity 

QF Quality Function 

 

Let us now present some additional remarks regarding each function category. 

 

1. Graph Generators. Different graph generators require different graph parameters as input (these are 
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documented in Appendix C) but there is one input which must be specified for every graph generator, namely 

Diag  which indicates whether the adjacency matrix A of the graph will contain zeros or ones in the diagonal 

(these correspond to the absence or presence of self-loops for the graph nodes). The output of all graph 

generators is always the same: [A,V0]  where A is the graph adjacency matrix and V0 is the generating 

partition. When the graph contains N nodes, A is an NxN matrix of 0’s and 1’s (CDTB does not deal with 

weighted or signed graphs) which contains enough information to fully specify the graph. The generating 

partition V0 is an Nx1 vector with the n-th element containing the number of the cluster to which the n-th node 

belongs; V0 is contained in the output so that subsequent partitions of the graph can be compared to the “true” 

partition. 

 

2. Graph Clustering. Every graph clustering function requires as minimum input a description of the graph to 

be clustered. This is given in terms of A, the adjacency matrix. Several algorithms require additional input 

(which is documented in Appendix C). The output of a graph clustering algorithm can take two forms. First, it 

can be a single clustering described by the Nx1 vector V which has the same for as the previously mentioned 

V0. Alternatively, some algorithms output an NxM matrix VV which contains M clusterings, i.e., VV(:,m)  

contains the m-th clustering; this situation occurs when the algorithm computes several different clusterings, 

one for every value of an algorithm parameter. For example, the AFG algorithm is invoked by 

VV=GCAFG(A,Scale) , where Scale  is a vector containing several values of the scale parameter; for 

every such value the AFG algorithm provides a different clustering. 

 

3. Cluster Number Selection. Functions of this type are used when our clustering algorithm provides more 

than one possible clustering (e.g., the AFG previously mentioned algorithm). In this case we want a cluster 

number selection criterion. For example, consider the function Kbst=CNModul(VV,A) ; its first input is the   

NxK matrix VV which contains K clusterings; its second input is A, the adjacency matrix describing the graph. 

These are the two inputs required to compute the Newman-Girvan modularity QNM(V(k),G) for k=1, 2, .., K ; 

the function returns as output the integer kbst  iff V(kbst) is the clustering with highest modularity (with respect 

to the graph G). All cluster number selection functions have the same  input / output structure described above. 

 

4. Partition Similarity. These functions are used to compute the similarity between two clusterings 

(partitions) V1 and V2. Usually (but not necessarily) V1 will be the true partition and V2 will be the one returned 

by the clustering (or cluster number selection) algorithm. 

 

5. Quality function. While partition similarity functions evaluate a partition by comparing it to the true 
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partition, quality functions evaluate a partition V for which the “ground truth” is not known. Hence V is 

evaluated using the information inherent in the graph G or, rather, in its equivalent representation through the 

adjacency matrix A.  

 

This concludes our general description of the various CDTB functions. Let us now present an example which 

utilizes functions from all categories. This example (an extension of the previously considered 

CDTBDemo01.m) is contained in the file CDTBDemo02.m which can be found in the C:\CDTB folder. It 

listing is as follows. 

 

01 clear all; clc 

02 N1=32; K=4; Diag=1; 

03 Scale=[2 1.5 0.5 0.4 0.3 0.2]; 

04 for i=0:8 

05  zi=16-i; 

06  zo=i; 

07 [A,V0]=GGGirvanNewman(N1,K,zi,zo,Diag); 

08 N=length(V0); 

09 VV=GCAFG(A,Scale); 

10 Mbst=CNLocDens(VV,A); 

11 V=VV(:,Mbst); 

12 Q1(i+1,1)=PSNMI(V,V0); 

13 K1(i+1,1)=max(V); 

14 figure(1); plot([V V0]) 

15 axis([0 N+1 0 K1(i+1)+1]) 

16 xlabel('Node no.'); ylabel('Cluster membership') ; pause(0.5); 

18 end 

19 figure(2); plot(Q1); axis([1 9 -0.05 1.05]);  

20 xlabel('zo'); ylabel('NMI(V,V0)') 

21 figure(3); plot(K1); axis([1 9 0 max(K1)]) 

22 xlabel('zo'); ylabel('NMI(V,V0)') 

 

The above script implements an experiment of graph clustering which involves a sequence of Girvan-Newman 

graphs with an increasing number of external edges. We give below comments of the important lines in the 

script. 



 17 

 

02 Here we give the Girvan-Newman graph parameters. 

03 The Scale parameter is used by the AFG algorithm. 

04 The main loop runs on the counter i . 

05 The zi=16-i is the average number of internal edges per node. 

06 The zo=i is the average number of external edges per node. 

07 Here we generate a Girvan-Newman graph with zi, zo edges. 

09 Here we perform the actual clustering with the AFG algorithm. Since the Scale parameter takes 6     

       different values, the output matrix VV contains 6 different clusterings. 

10 The CNLocDens cluster number selection criterion selects the best column Mbst  of VV. 

11 The best clustering VV(:,Mbst)  is stored in V. 

12 The V clustering is compared to the generating clustering V0 via the NMI function. 

18 The main loop is concluded.  

19 Plot the quality of the best clustering for each  z0  value.  

21 Plot the number of clusters in the best clustering for each  z0  value. We see that  

 

In Figure 4.1.a we plot NMI(Vbst,V0) and in Figure 4.1.b the number of clusters in Vbst, both as function of zo, 

the number of outer edges. We see that for high “noise” (high zo values) Vbst has more clusters than  the 

generating partition V0. 
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Figure 4.1 

 

The user can inspect the scripts in the C:\CDTB\Examples  folder to see some additional examples of 

CDTB programming.  
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We conclude this section on CDTB programming by discussing the make function, contained in the 

C:\CDTB\Interface  folder. This function can be used to quickly generate graph clustering experiments. 

Its syntax is   make(Grf,Alg,Cln,Eval,Opt,Var) where 

 

• Grf  is a specification of the graph; 

• Alg is a specification of the graph clustering algorithm; 

• Cln is a specification of the cluster number selection criterion; 

• Eval is a specification of the clustering evaluation function; 

• Opt  is a specification of additional options; 

• Var  is a specification of additional variables. 

 

The above correspond closely to the parameters of the CDTB GUI, which will be discussed in Section 5. For 

more information about the make function, and a complete example you can refer to the make help, which is 

accessed by typing  

 

>> help make  

 

in the MATLAB command line. 
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5. The GUI 

The Community Detection Toolbox provides a GUI to access its capabilities. It has been designed to be user-

friendly, but requires some effort to understand its structure and use it efficiently. Its features are illustrated in 

this section. 

 

 

 

5.1 A Short Description of the GUI 

 

In the MATLAB command line type: 

 

>> gui  

 

The basic window pops up. As mentioned in Section 2.3, the gui  command should always be executed from 

the root directory of the CDTB. 

 

 

Figure 5.1 
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The basic window is divided in three panels (different areas of a MATLAB figure): 

 

1. Functions. This panel is used to specify the functions and their parameters for the experiment. It 

contains the sub-panels Graph, Algorithms, Cluster Number Selection and Evaluation. 

2. Preview. When an experiment is run, its outcome is plotted in this panel. Moreover, the figure can 

be plotted to a separate window from the File/Export Figure  menu or by pressing Ctrl+F. 

3. Messages. In this panel appear messages to the user. 

 

In addition to the three panels, the user has access to four buttons. 

 

1. Options. Used to set several experiment options. 

2. Variables. Variables menu provides a solution for the user to define and use through the execution of 

the experiment, several variables. Although, these variables do not change on every iteration, they are a 

solution to better organize the experiment. 

3. Re-Seed. This is used to reset the MATLAB random number generator. Many of the functions included 

in the Toolbox (especially graph generators) are based on pseudo-random functions. Therefore, in 

order to create the exact same dataset for the experiment, the random seed is needed. Re-Seed changes 

the seed, thus providing a new dataset. 

4. Run. 

 

Finally, the user has access to three menus. 

 

1. File:  this menu contains options for loading and saving experiments.  

2. Plot:  this menu provides data visualization options.  

3. Help:  provides links to help-files 

 

 

5.2 An Illustrative Experiment 

We will now present a detailed example of how to set up a community detection experiment using the GUI.  

 

To be specific, suppose that we want to compare two graph clustering algorithms, Danon's modularity 

maximization algorithm and a variant of spectral clustering. We will apply these algorithms to a family of 

planted partition graphs; for each graph, each algorithm will produce a partition; we will evaluate these 

partitions, plot the average results of each algorithm and will use the plot to compare the two algorithms. 
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To do all of the above we start by typing  

>> gui  

at the MATLAB command line and hitting enter . The basic window pops up. 

 

5.2.1 Determining the Graph Family 
Let us specify the graph family we will use. At the Graphs  sub-panel, click Add to select the Graph 

Generator  function. A new window pops up. 

 

Figure 5.2 

From the drop-down list choose the GGPlantedPartition  graph generator function. This is a standard 

MATLAB function which requires certain inputs; you can see the required inputs and their interpretations in 

the help file on the right side of the window. In the textboxes on the left side of the window, type the following 

values: 

 

NN:  [0 20 40 70]  

pi:  1-parameter  

pe:  parameter  

Diag:    1  

 

and click Done to accept the inputs.  

 

Why did we use the expression parameter  for the pe  value? The reason is that we do not want to use a 

single pe value, but a range of values. As will be seen soon, parameter  is a MATLAB vector which 

contains several pe values (and its value will be determined with the Options  button). The same holds for 
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pi and the expression 1-parameter . By using several (pi, pe) values can evaluate the efficiency of the 

community detection algorithms at various levels of community structure.  

 

5.2.2 Choosing Graph Clustering Algorithms 
 

At the Algorithms  sub-panel, click Add to select the Graph Clustering  function. A new window 

pops up. Select GCDanon from the drop down menu and click Done. Note that the input to this algorithm is 

the adjacency matrix A (generated internally by the Graph Generator  function at every iteration and 

passed to the graph clustering Algorithm); do not change the corresponding input. 

 

 

Figure 5.3 

 

Click Add once again, and select GCSpectralClust1 ; this algorithm uses the internal variable A but also 

requires the user to provide the maximum number of clusters; in the textbox named Kmax  type the value 8 

and then click Done. 

 

5.2.3 Choosing a Cluster Number Selection Criterion 
 

Some graph clustering algorithms automatically determine the optimal number of clusters; this is the case with 

the Danon algorithm. Other algorithms require an additional cluster number selection criterion; this is the case 

with the spectral clustering algorithm. Hence we now go to the Cluster Number Selection  sub-panel, 

click Add, select the CNDistBased  criterion and click Done (the inputs to CNDistBased  are 
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predetermined as A and VV, and should not be changed). 

 

 

Figure 5.4 

 

5.2.4 Choosing the Evaluation Function 
 

At the Evaluation  sub-panel, click Add, select the PSJaccard  evaluation function and click Done. This 

function will evaluate the Jaccard similarity between V (the clustering obtained by the graph clustering 

algorithm) and V0 which is the reference clustering, returned from the Graph Generator function. 

 

Figure 5.5 
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5.2.5 Fixing Options of the Experiment 
 

Finally we can set the parameter  and general options of the experiment. From the GUI's basic window 

click the Options  button, and fill in the textboxes to get the following picture. 

 

 

 

Figure 5.6 

Note that we have specified parameter=0:0.1:0.5 , in MATLAB notation. Iterations  is the number 

of iterations for each value that parameter  takes (after all 15 iterations are completed, the value for this 

point is the mean of the 15 values obtained). Hence, the current experiment will consist of 90 community 

detection runs for each of the two algorithms (why?). 

 

5.2.6 Running  the Experiment 
 

We are now ready to run the experiment. From the main GUI Figure click the Run button. A waitbar appears. 

 

 

Figure 5.7 

 

After the execution of the experiment has finished, a plot of the evaluation for each clustering with respect to 
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the parameter appears in the axes of the Preview panel. You can click Menu: File/Export Figure  or hit 

Ctrl+F  to create a new MATLAB figure with the plot, that enables you to save or edit it accordingly. 

 

Figure 5.8 

 

5.2.7 Specifying Variables 

 

Another feature of the GUI is that you can use the Variables  section, in order to organize the experiment. 

We will define two variables, representing two different Graph vectors (NN as defined in the Graph Generator 

function).  

 

Click the Variables  button, from the main GUI figure. From the figure that pops up, click the Add button 

twice, in order to create two new variables, and set: 

 

Name              Value 

NN1:             [0 20 40 80] 

NN2 :            [0 30 40 100]  

 

Finally, click Done. 
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Figure 5.9 

 

 

We can now edit the Graph Generator function (using the Edit  button), and change the NN value from: [0 20 

40 70] to either: NN1 or NN2 and click Done. 

 

 

Figure 5.10 
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5.2.8 Re-Seeding 

 

As noted earlier, functions returning random values are actually pseudo-random functions. As a result, in order 

to create a dataset, an initial value (the seed) is needed. Re-Seed changes the seed, thus providing a new 

dataset. 

You can optionally select Re-Seed , to change the seed for the random functions. The new seed appears in the 

Messages panel. Click 'Run' to execute the new experiment. 

 

 

5.2.9 Post-Processing 

 

In addition to the plot that appears in the Preview  panel, the GUI has other options to evaluate the results of 

the experiment, as well. These features are described in the current section. 

 

Adjacency Matrices 

From the basic window, click Plot/Adjacency Matrices . A new figure appears, with the adjacency 

matrix A for each iteration point. In this figure, the point (i,j) is painted red if and only if A(i,j) = 1 and blue, 

otherwise. 

 

Figure 5.11 
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Clicking next  enables you to see the various adjacency matrices for the different parameter values. 

 

Graphs 

Apart from the Adjacency Matrix plot, we can get a better intuition about the Graph being clustered, using the 

Plot/Graphs  menu. Note, that this utility can be more useful for small graphs.  

 

In the plot that appears, each dot corresponds to a node, and each line to an edge of the graph. The important 

thing is that each dot is painted according to the cluster that the corresponding node belongs. 

 

Figure 5.12 

 

 

Clustering 

The other two options (All Partitions, Best Partition) create figures of the partition obtained for every 

iteration. More specifically, Plot/All Partitions , shows a XY-plot in which the x-axis values 

represent the id of each node, and the y-axis values represent the cluster, each node belongs in. 
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Figure 5.13 

On the other hand, Plot/Best Partition  plots the obtained clustering in the same figure with the 

reference clustering V0. 

 

Figure 5.14 
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Results to Command Line 

Finally, you can click Plot/Results  to Command Line, in order to copy a struct containing:  

1. data and  

2. results of the experiment 

from the GUI, to the MATLAB command line interface. The stuct returned is 6x2 struct array,   named 

Results  with the following fields: 

• A:  the adjacency matrices 

• V0:  the reference ('best' clustering) 

• V:   the clustering obtained after the cluster number selection 

• VV:   the various clusterings returned from the algorithm 

• CN:  the value returned from the cluster number selection function 

• a:   the value returned from the evaluation function 

 

You can access the struct's data using the following notation: 

 

Results(i,j).field 

 

where: 

• i:  is an index in the range of 1 to number of parameter points 

• j:  is an index from 1 to number of clustering algorithms used  

• field:  is a field from the ones above. 
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6. Conclusion 

 

The Toolbox was design with the intent to be parametric. This means that the user may add and/or remove 

functions to the sub-folders without having to make other changes. As a result, one can easily use new 

algorithms with the Toolbox. However, it should be noted that the functions should satisfy the following 

requirements (otherwise, the GUI will not be able to read the file): 

1. the file must have an .m extension; 

2. the file must start with a line in the format “function out = fun(arg1,arg2,...) ”.  

 

Some compatibility issues have been noticed when trying to import experiment data after changes have been 

made to the Toolbox. The developers have tried to address the problem in the best possible way, however, one 

needs to be aware. 
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A. Some More Theory 
 
Most of the functions included in CDTB are documented in published papers; when this is the case we give 

the relevant references in the Function Reference (Appendix C). However, CDTB includes some functions 

which have not appeared in a generally available publication; this section gives  some elements of the 

motivation behind these functions. 

A.1 Quality Functions 

We propose the use of several quality functions which have not received much attention in the literature. 

Namely, we introduce the following quality functions. 

Global density quality function. This function attempts to quantify the commonly held opinion that 

"communities within networks can loosely be defined as subsets of nodes which are more densely linked, when 

compared to the rest of the network" [Danon2005]. We first define the global internal density and global 

external density as follows. 

QGD
i �G,V� �

�k�1
K �x�Vk

�y�Vk
Axy

�k�1
K |Vk |2

, QGD
e �G,V� �

�k�1
K �x�Vk

�y�V�Vk
Axy

�k�1
K |Vk | � |V � Vk |

.

 

Consider  ( ),i
GDQ G V  : it sums (over all clusters  Vk  ) the inner edges (i.e.,  { },x y   such that both  x   and  y   

belong to the same  kV  ) and divides the sum over the total "area" of all clusters (or, alternatively, over the 

number of all possible internal edges). Two points must be emphasized about this definition of  ( ),i
GDQ G V  . 

First, it is assumed that  1xxA =   for all  x V∈   (i.e., that each node is equipped with a self-loop). Second all 

edges except self-loops are counted twice. Keeping these two things in mind, it is easy to see that  ( ),i
GDQ G V   

always takes values in the interval  [ ]0,1   with  ( ), 1i
GDQ G =V   only when  G   is the union of mutually 

disjoint cliques; these are (reasonably enough) the graphs of perfect community structure. Similar remarks can 

be made  ( ),e
GDQ G V   which also takes values in  [ ]0,1   (and the value 0 is achieved for graph of perfect 

community structure). Now we define the global weighted density ( ),GDQ G V   by 

QGD�G,V� � 1
2
�QGD

i �G,V� � 1 � QGD
e �G,V��.

 

In other words,  ( ),GDQ G V   takes the maximum value of one only for graphs of perfect community structure 

and, more generally, takes values close to one for graphs which have densely connected node subsets. Hence, 

in accordance to the previously cited statement,  ( ),GDQ G V   is a reasonable community function. 
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Local weighted density quality function. Other functions can be used to formalize the idea of densely 

connected node subsets. The local weighted density quality function is defined by  

QLD�G,V� � �
k�1

K
|Vk |
2|V|

� �qi�Vk,G� � 1 � qe�Vk,G��

 

where the local inner and outer densities are defined by   

qi�Vk,G� �
�x�Vk

�y�Vk
Axy

|Vk |2
, qe�Vk,G� �

�x�Vk
�y�V�Vk

Axy

|Vk | � |V � Vk |
.

 

While  LDQ   is defined slightly differently from  GDQ  , they share the same basic motivation. In addition to the 

previously made points about  GDQ  , an additional point to be emphasized for  LDQ   is that the term 

corresponding to each local cluster (local inner density plus local outer antidensity) is weighted by the term  

2
kV

V
 ; this is done because otherwise small dense clusters would influence  the total clustering quality 

disproportionately to their size. 

Distance based quality function. This is defined by  

QDB�G,V� � 1
|V|2

�AG � AV�
 

where  

 is a matrix norm;

: is the adjacency matrix of 

1 if ,  belong to the same cluster (under ),

0 if ,  belong to different clusters (under ).

xy
x V y V

G

B B

A G

x y
A

x y

∈ ∈

=

= 


∑∑

V

V

V

 

The motivation behind this definition is the following. Suppose  V   is the "absolutely true" clustering of  G  ; 

let us interpret this to mean that (i) when  x   and  y   belong to the same cluster they are connected by an edge 

and (ii) when  x   and  y   belong to different clusters they are not connected by an edge. This condition will be 

fully satisfied only by graphs of perfect community structure, in which case the scaling by  2
1

V
  ensures that   

( ), 0DBQ G =V  . When the condition is violated,  ( ),DBQ G V    takes larger values but always in the interval  

[ ]0,1 . 

Node membership quality function. This is defined by  

QNM�G,V� � 1
2|V|

�
x�V

���x,V�x�� � 1 � ��x,V � V�x ���

 



 34 

where  [ ]V x   indicates the cluster to which   x   belongs (i.e.,  [ ]x V x∈  ) and, for every  x V∈   and  A V⊆   

we define the node membership by 

( ) 1
, .xy

y U

x U A
U

µ
∈

= ∑  

Hence  ( ), 1x Uµ =   iff  x   is connected to every  y U∈   and  ( ), 0x Uµ =   iff  x   is connected to no  y A∈   

; for intermediate situations we get  ( ) ( ), 0,1x Uµ ∈  . Consequently,  ( ), 1NMQ G =V   iff every node  x V∈   

has   [ ]( ), 1x V xµ =   (total membership to its own cluster) and  [ ]( ), 0x V V xµ − =   (no membership to the 

rest of the graph); (once again) this is the case only for  graphs of perfect community structure. 

 

The quality functions  GDQ  ,  LDQ  ,  DBQ   and  NMQ   (implemented by the CDTB functions 

Q=QFGloDens(V,A), Q=QFLocDens(V,A), Q=QFDistBased(V,A), Q=QFNodeMemb(V,A) 

respectively) can be used to evaluate the goodness of some clustering  V   of a given graph  G   (with 

adjacency matrix  A  ) or to compare two clusterings,  ′V   and  ′′V  . They can also be used to compute 

clusterings, as will be explained below. 

 

A.2 Graph Clustering Algorithms 

The CDTB provides four functions which perform clustering by optimizing the four quality functions 

presented above. For example, the CDTB function VV=GCGloDens(A,Kmax,Iter) outputs an  N � Kmax    

matrix in which the  K  -th column contains a  K  -clustering of the graph  G   (with adjacency matrix  A  ); 

each such clustering is obtained by a greedy optimization of  QGD  . Similarly, there exists functions 

GCQLocDens, GCQDistBased and GCQNodMemb . 

 

We include these functions in CDTB for experimental purposes. There is an additional issue that must be 

resolved: the nature of  GDQ  ,  LDQ  ,  DBQ   and  NMQ   is such that usually adding more clusters results in better 

values. For example, define  ( ) ( )max ,GD GDF K Q G= V V  ; then, as we have experimentally found,  ( )GDF K   

is an increasing function of  K  . This necessitates the introduction of cluster number selection criterion which 

will filter clusterings with too many clusters. CDTB provides such a function, as will next be discussed. 

 

A.3 Cluster Number Selection Criterion 

Our approach to cluster number selection is based on the idea of cluster validity. In other words, we have 
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observed that in some cases optimizing a quality function Q yields a clustering which yields high Q values but 

fails to satisfy some basic criteria which every clustering should  satisfy, independently of its Q value. 

 

To be specific, consider the following two cluster validity criteria introduced in [Radicchi2004]: 

(A.1)  

 Weak Radicchi Criterion: : ,

 Strong Radicchi Criterion: , : .

k k k k

k k

k xy xy
x V y V x V y V V

k k xy xy
y V y V V

V A A

V x V A A

∈ ∈ ∈ ∈ −

∈ ∈ −

∀ ∈ ≥

∀ ∈ ∈ ≥

∑∑ ∑ ∑

∑ ∑

(WRC) V

(SRC) V ∀∀∀∀
 

Both of these criteria try to capture the idea that there should be more edges inside clusters rather than outside.  

 

Now, WRC is obviously too weak and non-discriminating with respect to individual nodes. In other words, if 

we have a cluster Vk  with high internal edge count (hence satisfying WRC with a large margin)  then we can 

add any extra node u to Vk  and still preserve WRC, even when u is totally disconnected from Vk. 

 

On the other hand, we have found SRC to be too strong and hence leading to the invalidation of many 

reasonable clusterings.  

 

The problem with SRC is that it requires of every node  to have more internal than external connections; but if 

a graph has a very large number of nodes, then any particular node may have very weak connection to any 

external cluster, but still collect a large total number of external edges simply because there exist too many 

clusters.  

 

So we propose and use a new criterion, which is somewhere between WRC and SRC. Namely we introduce: 

 

(A.2)  [ ]( ) [ ]( ) Node Membership Criterion: , : , ,k kV x V x V x x V V xµ µ∀ ∈ ∈ ≥ −(NMC) V ∀∀∀∀  

which uses the previously defined node membership function ( ) 1
, .xy

y U

x U A
U

µ
∈

= ∑  Hence NMC is equivalent 

to  

(A.3)  
[ ] [ ] [ ] [ ]

1 1
, : .k k xy xy

y V x y V V x

V x V A A
V x V V x∈ ∈ −

∀ ∈ ∈ ≥
−∑ ∑V ∀∀∀∀  

Our criterion is similar to the strong Radicchi criterion but somewhat weaker, because of the normalizing 

factors  [ ]
1

V x
  and  [ ]

1
V V x−

 . On the other hand, our criterion is stronger than the weak criterion. We have found 

that it works well in practice, as implemented by the CDTB function Kbst=CNNodMemb(VV,A). This 

function takes as input an  maxN K×   matrix in which the  K  -th column contains a  K  -clustering of the graph  
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G   (with adjacency matrix  A  ); it outputs the integer  bstK   which is the largest  K   value such that the  K  -

th column of VV is a valid clustering (i.e., it satisfies (A.3)). 
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C. Function Reference 
 
In this section, the help-files for the Community Detection Toolbox algorithms are provided. They are 
organized in four sections: Graphs, Algorithms, Cluster Number Selection, Evaluation. 
 
 
 

C.1 Graphs 
 
 
 
 
 
 
 
% function [A,V0]=GGGirvanNewman(N1,K,zi,ze,Diag) 
% Generation of a Girvan Newman graph 
% 
% Creates a classical Girvan-Newman graph; returns its adjacency matrix A 
% and true community membership vector V0. For deta ils see 
% M.E Newman and M. Girvan. "Finding and evaluating  community 
% structure in networks." Physical review E 69.2 (2 004): 026113. 
% 
% INPUT: 
% N1 number of nodes in each community 
% K  number of communities 
% zi number of internal half-edges per node 
% ze number of external half-edges per node 
% Diag:  if Diag=1, use self-loops; if Diag=0, don' t use self-loops 
% 
% OUTPUT: 
% A  adajcency matrix (N-by-N) 
% V0 classification vector (N-by-1) 
% W  permutation matrix (N-by-N) to put the nodes i n order 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 40 

 
 
 
% function [A,V0] = GGPlantedPartition(NN,pi,pe,Diag) 
% Generation of a planted partition graph 
% 
% Creates a planted partition graph, returns its ad jacency matrix. 
% This is the classical planted partition graph, wi th unequal-sized  
% partitions. For detals see A.Condon and R.M. Karp . "Algorithms  
% for graph partitioning on the planted partition m odel.",   
% Randomization, Approximation, and Combinatorial O ptimization.  
% Algorithms and Techniques. Springer Berlin Heidel berg, 1999.  
% 
% INPUT: 
% NN:    vector of  community boundaries 
% pi:    internal edge probability 
% pe:    external edge probability 
% Diag:  if Diag=1, use self-loops; if Diag=0, don' t use self-loops 
% 
% OUTPUT: 
% A  adajcency matrix (N-by-N) 
% V0 classification vector (N-by-1) 
% W  permutation matrix (N-by-N) to put the nodes i n order 
% 
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% 
 
 
 
 
 
 
% function [A,V0] = GGReadEdgeList(EdgeFile,PartitionFile,Diag) 
% Graph Generation from an edge list 
% 
% Reads a graph from edge list file and a partition  from partition  
% membership files  
% 
% INPUT: 
% EdgeFile         filename (string) contains an M- by-2 list   
%                  of edges (as node pairs) 
% PartitionFile    filename (string) contains an N- by-1 list   
%                  of cluster number to which each node belongs 
% Diag:            if Diag=1/0, use/don't use self- loops 
% 
% OUTPUT: 
% A                adajcency matrix (N-by-N) 
% V0               classification vector (N-by-1) 
% 
% EXAMPLE 
% [A,V0]=GGReadEdgeList('e01.txt','v01.txt',0); 
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C.2 Algorithms 
 
 
% function VV= GCAFG(A,Scale) 
% AFG community detection 
% 
% Front end for mscd_afg.m, which is E. le Martelot 's implementation  
% of the community detection method by Arenas, Fern andez, Gomez:  
% A. Arenas, A. Fernandez, and S. Gomez. "Analysis of the  
% structure of complex networks at different resolu tion levels."  
% New Journal of Physics 10.5 (2008): 053039. 
%   
% INPUT 
% A:      adjacency matrix of graph 
% Scale:  a K-by-1 matrix of scale parameters (HIGH -TO-LOW values!!!)  
%         every value yields a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,13,3,0); 
% VV=GCAFG(A,[3.0:-0.5:0.1]); 
 
 
 
 
 
 
 
% function VV= GCDanon(A) 
% Danon algorithm community detection 
% 
% Front end for danon.m, which is E. le Martelot's implementation  
% of Danon's greedy community detection agglomerati ve method: 
% L. Danon, A. Diaz-Guilera, A. Arenas. "The effect  of size heterogeneity  
% on community identification in complex networks."  See Journal  
% of Statistical Mechanics: Theory and Experiment 2 006. 11 (2006): P11010. 
%   
% INPUT 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCDanon(A); 
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% function V=GCGloDens(A,Kmax,Iter) 
% Community detection by global density maximizatio n 
% 
% Graph clustering by stoch. optimization of global  density. 
% For details see the ComDet manual. 
% 
% INPUT 
% A:      adjacency matrix of graph 
% Kmax:   maximum number of clusters to consider 
% Iter:   number of restarts of stochastic opt. 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         under the K-clusters clustering 
% 
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0. 2,0); 
% VV=GCGloDens(A,5,5); 
 
 
 
 
 
 
 
 
 
 
% function VV= GCHSLSW(A,Scale) 
% HSLSW community detection 
% 
% This is a front end for mscd_hslsw.m, which is E.  le Martelot's  
% implementation of the method of Huang et al.: 
% "Towards Online Multiresolution Community Detecti on in Large-Scale  
% Networks",  PloS one 6.8 (2011): e23829. 
% 
% INPUT 
% A:      adjacency matrix of graph 
% Scale:  a K-by-1 matrix of scale parameters (HIGH -TO-LOW values!!!)  
%         every value yields a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCHSLSW(A,[3:-0.5:0.1]); 
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% function VV= GCLFK(A,Scale) 
% LFK community detection 
% 
% This is a front end for mscd_lfk.m, which is E. l e Martelot's  
% implementation of the method of Lancichinetti, Fo rtunato, Kertesz: 
% Lancichinetti, Andrea, Santo Fortunato, and János  Kertész. "Detecting  
% the overlapping and hierarchical community struct ure in complex  
% networks." New Journal of Physics 11.3 (2009): 03 3015. 
% 
% INPUT 
% A:      adjacency matrix of graph 
% Scale:  a K-by-1 matrix of scale parameters (HIGH -TO-LOW values!!!) 
%         every value yields a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCLFK(A,[3:-0.5:0.1]); 
 
 
 
 
 
 
 
 
 
 
 
 
% function V=GCLocDens(A,Kmax,Iter) 
% Community detection by local density maximization  
% 
% Graph clustering by stoch. optimization of local  density. 
% For details see the ComDet manual. 
% 
% INPUT 
% A:      adjacency matrix of graph 
% Kmax:   maximum number of clusters to consider 
% Iter:   number of restarts of stochastic opt. 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         under the K-clusters clustering 
% 
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0. 2,0); 
% VV=GCLocDens(A,5,5); 
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% function VV= GCModulMax1(A) 
% Modularity Maximization community detection 
% 
% This is a front end for cluster_jl.m, A. Scherrer 's implementation  
% of the method of Blondel, Guillaume, Lambiotte an d Lefebvre: 
% "Fast unfolding of community hierarchies in large  networks",  
% http://arxiv.org/abs/0803.0476  
% 
% INPUT 
% A:      Adjacency matrix of graph 
% 
% OUTPUT 
% VV:     N-by-1 matrix, VV(n) is the cluster to wh ich node n belongs  
% 
%   
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,13,3,0); 
% VV=GCModulMax1(A); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% function VV= GCModulMax2(A) 
% Modularity Maximization community detection 
% This is a front end for fast_mo.m, E. le Martelot 's implementation  
% of a fast greedy modularity maximization method 
%   
% INPUT 
% A:      Adjacency matrix of graph 
% 
% OUTPUT 
% VV:     N-ny-1 matrix, VV(n) is the cluster to wh ich node n belongs  
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,12,4,0); 
% VV=GCModulMax2(A); 
% 
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% function VV= GCModulMax3(A) 
% Modularity Maximization community detection 
% This is a front end for fast_newman.m, E. le Mart elot's implementation  
% of Newman's greedy agglomaerative modularity maxi mization method 
% Newman, Mark EJ. "Fast algorithm for detecting co mmunity structure in  
% networks." Physical review E 69.6 (2004): 066133.   
% 
% INPUT 
% A:      Adjacency matrix of graph 
% 
% OUTPUT 
% VV:     N-ny-1 matrix, VV(n) is teh cluster to wh ich node n belongs  
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCModulMax3(A); 
% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% function V=GCNodeMemb(A,Kmax,Iter) 
% Graph clustering by stoch. optimization of partit ion-based-based 
% quality function. For details see the ComDet manu al. 
% This code is experimental and too slow for now (t o be improved) 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Kmax:   maximum number of clusters to consider 
% Iter:   number of restarts of stochastic opt. 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0. 2,0); 
% VV=GCNodeMemb(A,6,100) 
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% function VV= GCReichardt(A,Gamma) 
% Reichardt community detection 
% 
% This is a front end for reichardt.m, which is E. le Martelot's  
% implementation of gamma-modularity maximization. Gamma modularity 
% as defined by Reichardt, Jorg, and Stefan Bornhol dt. "Statistical 
% mechanics of community detection." Physical Revie w E 74.1  
% (2006): 016110. 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Gamma:  a K-by-1 matrix of gamma values, each val ue yields a 
%         a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n  
%         belongs when algorithm uses Gamma(k) 
%   
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCReichardt(A,[3:-0.5:0.1]); 
 
 
 
 
 
 
 
 
 
 
 
 
% function VV= GCRonhovde(A,Gamma) 
% Community detection using Ronhovde et al.'s metho d. This  
% is a front end for ronhovde.m, which is E. le Mar telot's  
% implementation of gamma-modularity maximization, as defined by 
% Ronhovde, Peter, and Zohar Nussinov. "Local resol ution-limit-free  
% Potts model for community detection." Physical Re view E 81.4  
% (2010): 046114. 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Gamma:  a K-by-1 matrix of gamma values, each val ue yields a 
%         a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Gamma(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCRonhovde(A,[0.5:-0.05:0.05]); 
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% function VV=GCSpectralClust1(A,Kmax) 
% 
% Community detection by spectral  clustering. See J. Hespanha's  
% implementation of spectral clustering. For detail s see  
% Joao Hespanha. "An efficient MATLAB Algorithm for  Graph Partitioning".  
% Technical Report, University of California, Oct. 2004.  
% http://www.ece.ucsb.edu/~hespanha/techrep.html. 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Kmax:   max number of clusters  to consider. A cl ustering of K clusters  
%         will be produced for every K in [1:Kmax] 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses a partition of k clus ters 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,13,3,0); 
% VV=GCSpectralClust1(A,6) 
 
 
 
 
 
 
 
 
 
 
 
 
% function VV=GCSpectralClust2(A,Kmax,T) 
% Community detection by spectral  clustering 
% 
% Community detection by spectral  clustering. See for example 
% "J. Shi and J. Malik. Normalized cuts and image s egmentation.  
% IEEE Transactions on Pattern Analysis and Machine  Intelligence 
% 22(8):888–905, 2000." 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Kmax:   maximum number of clusters to consider 
% T:      Number of times to repeat the k-means clu stering, each   
%         with a new set of initial cluster centroi d positions  
%         (option for MATLAB Statistics toolbox kme ans function) 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n   
%         belongswhen algorithm uses Gamma(k) 
%   
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,13,3,0); 
% VV=GCSpectralClust2(A,6,10) 
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% function VV=GCStabilityOpt(A,Scale) 
% Graph clustering by stability optimization.  
% 
% This is a front end for mscd_so.m, which is E. le  Martelot's  
% implementation of Le Martelot and  Hankin's stabi lity optimization  
% method. See "Multi-scale Community Detection usin g Stability as  
% Optimisation Criterion in a Greedy Algorithm, Pro ceedings of  
% KDIR 2011". 
%  
% INPUT 
% A:      adjacency matrix of graph 
% Scale:  a K-by-1 matrix of scale parameters (LOW- TO-HIGH VALUES!!!);  
%         every value yields a clustering 
% 
% OUTPUT 
% VV:     N-ny-K matrix, VV(n,k) is the cluster to which node n belongs  
%         when algorithm uses Scale(k) 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,13,3,0); 
% VV=GCStabilityOpt(A,[0.1:0.4:2.5])
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C.3 Cluster Number Selection 

 
 
% function Kbst=CNDistBased(VV,A) 
% Partition Distance based cluster number selection  
% 
% Cluster number selection performed by finding the  VV column which 
% achieves  highest value of the clustering  qualit y function QFDB  
% (see documentation in Evaluation/QFDB.m) 
%   
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Kbst:   the number of best VV column and so best number of clusters 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNDistBased(VV,A); 
 
 
 
 
 
 
 
 
% function Kbst = CNFixed(VV,K) 
% Cluster Number Selection by fixed number K 
% 
% Cluster Number Selection: let selected Kbst equal  given K 
% This function simply returns the cluster number w hich is  
% input by the user 
% 
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% K:      desired number of clusters 
% 
% OUTPUT 
% Kbst:   K, the input number  
%  
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCAFG(A,[0.2:0.5:2.5]); 
% Kbst=CNFixed(4); 
% V=VV(:,Kbst); 
% Q=PSRelCluNumError(V,V0) 
% Q=PSNMI(V,V0) 
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% function Kbst=CNGloDens(VV,A) 
% Global-density-based cluster number selection 
% 
% Cluster number selection performed by finding the  VV column which 
% achieves  highest value of the global density clu stering  quality  
% function QFGloDens (see documentation in Evaluati on/QFGD.m) 
% 
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Kbst:   the number of best VV column and so best number of clusters 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNGloDens(VV,A); 
 
 
 
 
 
 
 
 
 
 
% function Kbst=CNLocDens(VV,A) 
% Local-density-based cluster number selection 
% 
% Cluster number selection performed by finding the  VV column which 
% achieves  highest value of the local density clus tering  quality  
% function QFLD (see documentation in Evaluation/QF LD.m) 
% 
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Kbst:   the number of best VV column and so best number of clusters 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNLocDens(VV,A); 
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% function Kbst=CNModul(VV,A) 
% Modularity based cluster number selection 
% 
% Cluster number selection performed by finding the  VV column which 
% achieves  highest Newman-Girvan modularity (see E valuation/QFModul.m) 
% 
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Kbst:   the number of best VV column and so best number of clusters 
%  
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,16,0,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
 
 
 
 
 
 
 
 
 
 
 
 
% function Kbst=CNNodMemb(VV,A,m) 
% Cluster Number Selection by node membership  
% 
% Cluster number selection performed by finding the  VV column which 
% achieves  highest value of the node membership cl ustering  quality  
% function QFNM (see documentation in Evaluation/QF NM.m) 
% 
% INPUT 
% VV:     N-by-K matrix of partitions, k-th column describes a partition 
%         of k clusters 
% A:      adjacency matrix of graph 
% m:      internal variable, always set to 1 
% 
% OUTPUT 
% Kbst:   the number of best VV column and so best number of clusters 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNNodMemb(VV,A,1); 
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C.4 Evaluation 
 
 
 
% function Q=PSPSRelCluNumError(V,V0) 
% Relative cluster number error 
% 
% Relative cluster number error: abs(K-K0)/K0 
% Becomes zero when V has the same number of cluste rs as V0 
% 
% INPUT 
% V:        N-by-1 matrix describes test partition 
% V0:        N-by-1 matrix describes reference part ition 
% 
% OUTPUT 
% Q:         The relative Cluster Number error of  V wrt V0 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,12,4,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
 
 
 
 
 
 
 
 
% function Q=PSJaccard(V,V0) 
% Jaccard index 
% 
% Computes the Jaccard index, shows similarity betw een partitions 
% V and V0. Max similarity is 1 and min similarity is 0. See  
% http://en.wikipedia.org/wiki/Jaccard_index 
% 
% INPUT 
% V:        N-by-1 matrix describes 1st partition 
% V0:        N-by-1 matrix describes 2nd partition 
% 
% OUTPUT 
% Q:         The Jaccard similarity between V and V 0 
% 
% EXAMPLE 
% [A,V0]=GGGN(32,4,16,0,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
% Q=PSJaccard(V,V0); 
% 
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% function Q=PSNMI(V,V0) 
% Normalized Mutual Information (NMI) 
% An implementation of Normalized Mutual Informatio n (NMI) 
% by Erwan Le Martelot. The NMI measure shows  
% the similarity between two partitions. Max simila rity is 1 
% and min similarity is 0. For details see Danon, L eon, et al.  
% "Comparing community structure identification." J ournal of  
% Statistical Mechanics: Theory and Experiment 2005 .09 (2005): P09008. 
% 
% INPUT 
% V:        N-by-1 matrix describes 1st partition 
% V0:        N-by-1 matrix describes 2nd partition 
% 
% OUTPUT 
% Q:         The Normalized Mututal Information bet ween V and V0 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,12,4,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
% Q=PSNMI(V,V0); 
% 
 
 
 
 
 
 
 
% function Q=PSRand(V,V0) 
% Rand index 
% 
% Computes the Rand index, which shows similarity b etween two partitions 
% V and V0. Max similarity is 1 and min similarity is 0. See  
% http://en.wikipedia.org/wiki/Rand_index 
% 
% INPUT 
% V:        N-by-1 matrix describes 1st partition 
% V0:        N-by-1 matrix describes 2nd partition 
% 
% OUTPUT 
% Q:         The Rand similarity between V and V0 
% 
% EXAMPLE 
% [A,V0]=GGGN(32,4,16,0,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
% Q=PSRand(V,V0) 
% 
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% function Q=PSPSRelCluNumError(V,V0) 
% Relative cluster number error: abs(K-K0)/K0 
% Becomes zero when V has the same number of cluste rs as V0 
% 
% INPUT 
% V:        N-by-1 matrix describes test partition 
% V0:        N-by-1 matrix describes reference part ition 
% 
% OUTPUT 
% Q:         The relative Cluster Number error of  V wrt V0 
% 
% EXAMPLE 
% [A,V0]=GGGirvanNewman(32,4,12,4,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
% Q=PSRelCluNumError(V,V0); 
% 
 
 
 
 
 
 
 
 
 
 
 
%function Q=QFDistBased(V,A) 
% A partition-distance-based quality function 
% 
% A partition-distance-based quality function 
% For more details see the ComDet Toolbox manual 
% 
% INPUT 
% V:      N-by-1 matrix describes a partition 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Q:      node-membership-based quality function of  V given graph  
%         with adj. matrix A 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCDanon(A); 
% Kbst=CNNM(VV,A); 
% V=VV(:,Kbst); 
% Q=QFDistBased(V,A) 
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% function Q=QFGloDens(V,A) 
% A global-density-based quality function 
% 
% A global-density-based quality function 
% For more details see the ComDet Toolbox manual 
% 
% INPUT 
% V:      N-by-1 matrix describes a partition 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Q:      local-density-based quality function of V  given graph  
%         with adj. matrix A 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCDanon(A); 
% Kbst=CNGloDens(VV,A); 
% V=VV(:,Kbst); 
% Q=QFGloDens(V,A) 
 
 
 
 
 
 
 
 
 
 
% function Q=QFLocDens(V,A) 
% A local-density-based quality function 
% 
% A local-density-based quality function 
% For more details see the ComDet Toolbox manual 
% 
% INPUT 
% V:      N-by-1 matrix describes a partition 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Q:      node-membership-based quality function of  V given graph  
%         with adj. matrix A 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCDanon(A); 
% Kbst=CNNM(VV,A); 
% V=VV(:,Kbst); 
% Q=QFLocDens(V,A) 
 
 
 
 
 
 
 
 
 



 56 

 
 
 
% function Q = QFModul(V,A) 
% Modularity  quality function 
% 
% Computes the classical Newman-Girvan modularity. The code for  
% its evaluation, listed below, was written by E. l e Martelot. 
% See http://en.wikipedia.org/wiki/Modularity_%28ne tworks%29 
%  
% INPUT 
% V:      N-by-1 matrix describes a partition 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Q:      the modularity of V given graph (with adj . matrix) A 
%  
% EXAMPLE 
% [A,V0]=GGGN(32,4,16,0,0); 
% VV=GCAFG(A,[0.2:0.5:1.5]); 
% Kbst=CNModul(VV,A); 
% V=VV(:,Kbst); 
% Q = QFModul(V,A) 
% 
 
 
 
 
 
 
 
 
 
% function Q=QFNodMemb(V,A) 
% A node-membership-based quality function 
% 
% A node-membership-based quality function 
% For more details see the ComDet Toolbox manual 
% 
% INPUT 
% V:      N-by-1 matrix describes a partition 
% A:      adjacency matrix of graph 
% 
% OUTPUT 
% Q:      node-membership-based quality function of  V given graph  
%         with adj. matrix A 
%  
% EXAMPLE 
% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0); 
% VV=GCDanon(A); 
% Kbst=CNNodMemb(VV,A); 
% V=VV(:,Kbst); 
% Q=QFNodMemb(V,A) 
 
 
 

  
 


