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1. Introduction

A good introduction to the problem cémmunity detection® is the following passage from [Fortunato2010]:

The modern science of networks has brought sigmifiadvances to our understanding of complex
systems. One of the most relevant features of gregyresenting real systems is community structure,
clustering, i.e. the organization of vertices instérs, with many edges joining vertices of theesam
cluster and comparatively few edges joining vesgtiotdifferent clusters. Such clusters, or comniesgijt
can be considered as fairly independent comparswdra graph, playing a similar role like, e. e t
tissues or the organs in the human body. Detectingmunities is of great importance in sociology,

biology and computer science, disciplines wheréesys are often represented as graphs.

In this document we present t@®mmunity Detection Toolbox (CDTB), a MATLAB toolbox which can be

used to perform community detection. The CDTB cimistaeveral functions from the following categories

1. graph generators;
2. clustering algorithms;
2. cluster number selection functions;

4. clustering evaluation functions.

Furthermore, CDTB is designed in a parametric marsoethat the user can add his own functions and

extensions.

The CDTB can be used in at least three ways. Tlee cgn employ the functions from the MATLAB
command line; or he can write his own code, incaaping the CDTB functions; or he can use the Gregdhi

User Interface (GUI) which automates the commuaddétection and includes some data visualizatioroopti

Section 2 of the manual gives "Quick Start" instiargs: how to install CDTB and how to run some denp
examples. Section 3 presents some basic commueigctibn concepts and theory. Section 4 gives more
details and examples about CDTB and Section 5 givasy examples on the use of GUI. In Section 6 we

summarize and present our conclusions, includingswia which CDTB can be extended. Three Appendices

! In the following passage, as well as in the réshis manual, "graph” is used as a synonym ofioek",

"cluster" as a synonym of "community"”, "clusteriras’ a synonym of "community detection".
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are also included: Appendix A includes additionamenunity detection theory; Appendix B presents some
bibliography; Appendix C is the Reference for h# CDTB functions.

IMPORTANT!!! The CDTB has been tested on Windows 7 and Matla@1Ra. It should also work on
Windows XP and Windows 8, and for all recent varsiof Matlab. It should also work on other platferm
(Linux, Mac) with the following exception: the futens GCA oDens, GCQLocDens, GCQDI st Based and
GCONodMenb call Windows executable programs, so they wilt work on other platforms. When you run
scripts which invoke these functions (e@eckAl | 01. nm) on platforms other than Windows, you will get
an error message; to circumvent this, simply opesé scripts with a text editor and comment outlithes

invoking the offending functions.

Acknowledgement. We want to thank J. Hespanha , E. le Martelot AanScherrer for permission to use
their code in the CDTB.

Marios Mitalidis
Thanasis Kehagias
Theodoros Gevezes

Leonidas Pitsoulis

Thessaloniki, February 2014



2. Quick Start

2.1 Installation

Installation of the CDTB is extremely simple. Youanc download the file CDTB.zip from

http://mathworks.comWhen the download is complete, unzip the fila folder of your choice. From now on

we will assume that it is the fold€&\CDTB . When unzipped, the folder will contain severdifsiders, e.g.,

C:\CDTB\Algorithms , C:\CDTB\Auxiliary etc. Now you are ready to go.

2.2 A Simple Demo

Start MATLAB, go toC:\CDTB and in the command line type

>> PathAdd

and hit [Enter] . This will add to theVIATLAB Path the subdirectories which contain the MATLAB *.m

files which do the actual community detection wotk the command line type

>> CDTBDemo01

and hit [Enter] . TheMATLAB script CDTBDemoO1.mwill run and in the command window you will get

a message which says

The NMI metric between VO and Vestis 1

NMI is the normalized mutual information index of partition (i.e., clustering) similaritif. takes values in the
interval [0,1]. The maximum value 1 indicates maimsimilarity, i.e., identity. The partitions compd are

Vo, the true partition, andgy; the partition estimated byraodularity maximization algorithm. Hence in this
experiment Vg is identical to \, This can also be seen in the plot which MATLARgented. It looks like
this

2 Note that the new path is not saved, so you naigpePathAdd every time you start a new MATLAB session. Or, yaum go to
the MATLAB menuFile/Set Path and click the buttosave, which will make MATLAB memorize the path for dilture
sessions.
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Figure2.1
The horizontal axis gives the node id. numbers. Tiemo utilized a Girvan-Newman graph
[NewmanGirvan2004] with 128 nodes. These nodedr@ily were partitioned (by their edge patterngpin
four communities (i.e., clusters) as follows: nodes 1, 2, ..., 32rgo community no.1, nodes 33, 34, ..., 64 go
into community no.2 and so on; this partition igsand is plotted by the green line in Fig.ks\Von the other
hand, assigns nodes 1, 2, ..., 32 to community me@es 33, 34, ..., 64 to community no.3 and so onléVh
the communitylabels are different betweengand \ig; the actual division into clusters is the samesHort,

the modularity maximization algorithm obtained timerect solution, modulo a relabelling of clusters.

2.3 The GUI

Let us also run a simple demo of the Graphical Wgerface (GUI). In the MATLAB command line type

>> gui

and hit [Enter] . It is important to note that thgui command, should always be executed from the root
directory of the CDTB ( i.eC:\CDTB ). After executing the command, you will get tloeldwing standard
MATLAB GUI.



Figure2.2
The GUI, makes it easy to design and perform conitydetection experiments. To perform exactly the
same experiment th&DTBDemo01 performed, do the following. Go to the GUI mehile/Import

Data . A standard-ile Dialog will open, like this

=) - |

o] ~msE-
Date modified Type Size
|| CDTBOLmat 17/2/2014 204 pp MAT File 17KB

Flssoftps:  [WATfles Comal)

Figure2.3
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Select the file&CDTBOland click on th®pen button. The GUI will change and now look like this

ol Community Detection Toolbox - TN
File Plot Help £
— Function Preview
— Graph Algorithms
Edit Remove Add Edit Remove 3 Clustering Experiment
: : —— GCModulMax1
GGGirvanNewman GCModulMax1 ] H T T
N1:32 AA ;| S P S
K:4 : : : :
zi 13
e 3 L RO ERs SEECEPPEROOE PR EPPPEEE SEPPTEERRRE,
Diag: 0
T e g
| . Y | N ——
algt = :
— Cluster Number Selecti Evaluatio o
Edit Remove Edit Remove
T LA SR g
CNLocDens PSNMI
W W Vv B .o s e s
AA VO:vo :
. AEEESERESSE: SESSNNPRSS, IREESREESL | NIPESSRESNE [NRESSREAEE
. I R g
0 I I ] ]
0 0.2 04 0.6 0.8 1
parameter
Options Variables | Re-Seed Run
Experiment Completed. L
Random Seed: 70
Export Data to save results. ’_

Figure2.4

Now click on theRun button. Aprogress bar will flash for a while and then you will get a pl(actually a
straight line). The GUI has run the experiment getby the choices appearing in Fig. 2.4. You eaness
these results by selecting the menu optdot/Results to Command Line . if you switch to the
MATLAB command line (it is always available, e.qg: [Alt]-[Tab] -ing) you will see that a new variable
has been loaded in yolWATLAB workspace, called Results . We will later discuss which results are

contained irResults . We can now take a break.
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3. Basic Theory

In this manual we will use the following mathematinotation.

1) As already mentionedgraph is used as a synonym ao&twork; cluster as a synonym otommunity;
clustering as a synonym afommunity detection.

2) Agraph G :(V,E) consists of anode set V and anedge set E . The nodes contained iV will

always be labeled as 1, 2, 3, N,. The edges contained it indicate which nodes are connected; so if

(x, y) isin E , then we know that nodex is connected to node In CDTB we only deal with

undirected graphs, so(x,y) is the same agy, x) ; they both tell us thatx and y are connected.

3) Every graph G has aradjacency matrix A . If the graph hasN nodes, A isan NxN matrix of O's
and 1's. A, =1 if and only if (x,y)OE ,i.e., x and y are connected. Sincéx,y)=(y,x) , we see
that A is asymmetric matrix.

4) A clustering of G=(V,E) is apartition of V into sets V,,...V, such that \,0..0V, =V ,

Vin..nV,= and none oV, ..., V. is empty. The setsV,,...V, are theclusters. We write the
partition as V ={V,,...V} . Thesize of the partition isK =|V/| .
5) Given a graphG=(V,E) and apartition V ={V,,...V,} , the edges ofG can be partitioned into sets
E, as follows
(x,y)OE, if and only ifxOV, and/DV,
6) In particular, we write E, =E,, and ES =0, E, . In other words, the seE, contains thenternal
edges of V, , with both their ends belonging to the same elysthile the setE; contains thexternal

edges of V, , which have one end iV and the other end iV — Vi , the set of nodes which do not
belongtoV, .

By community detection we mean the activity of graph clustering, i.e.finfling a partition V ={Vl,...,VK}

of a graph G =(V,E) into clusters; the nodes contained in each alustest somehow be more related to

each other than to nodes outside the cluster,fthrusing a community. While much has been writteowb
graph (or network) communities, no clear and gdlyeeacepted definition of what constitutes a conmity
is available. Most researchers agree that a contynisicharacterized by dense connectivity betwdsn i
members and sparser connectivity with nodes outside community [Fortunato2010]. Beyond this

(somewhat vague) definition communities can bengefiin terms ofuality functions. A quality function is a

function Q(G,V) (i.e., it depends on both the grapl® and the partitionV) the value of which
characterizes how goo® is as a partition ofG . Hence the best decomposition & into communities is

the partition VD:{VE,...,VKD} which maximizes Q, i.e.V”=argmax, Q(G V). And then good

communities are the elements of a gowd, i.e., aV which achieves a hing(G,V) score. Obviously this
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definition of communities depends on the particidaelity function Q used. A large number of quality

functions have been proposed (which is a good atidic that none of them is entirely satisfactofjfje most

popular quality function is the Girvan-Newman maily

(B _(mY
GV)=)|H~-|—*=
Qe (G:V) ; 2m (ij
where m =%, >,nvA, Iis thetotal degree of cluster Vi . Another reasonable quality function is tbeal
density

K K K K
- 1LV JEV _ 1LV JEVK
Qo 2; N, > *l N IN-N,) |’

as will be explained in Appendix A. Having chosenality function Q(G,V) , community detection is

equivalent to the maximization oQ(G,V) with respect toV (for a particularG). This is a combinatorial

problem and becomes increasingly hard as the siigeograph increases (in terms of either the nunobe
nodes or the number of edges). Hence a large gadommunity detection research consists in the
development of tractablegpproximately optimal algorithms for quality function maximizati. CDTB
contains a large number of such algorithms anchéf tiser invents his own quality function and / or

maximization algorithm he can very easily incorgerthese in CDTB.
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4. CDTB and MATLAB Programming

In this section we discuss the use of CDTB in wgtiMATLAB code. We start our presentation with an
example. Recall that in Section 1.2 you typed tbommandCDTBDemoOlwhich resulted in MATLAB
performing and plotting a graph clustering. Heretle listing of theMATLAB script CDTBDemo01.m (it
can be found in the fold€&:\CDTB ):

01 clear all

02 clc

03 [A,V0]=GGGirvanNewman(32,4,13,3,0);
04 V=GCModulMax1(A);

05 N=length(V);

06 K=max(V);

07 Q1=PSNMI(V,V0);

08 disp(['The NMI metric between VO and Vestis ' n umz2str(Q1)]);
09 figure(1); plot([V V0])

10 axis([O N+1 0 K+1])

11 xlabel('Node no.")

12 ylabel('Cluster membership’)

The important lines in the above listing @8, 04 and07 and each of them performs a different task.

Namely:

1. [AVO]=GGGirvanNewman(32,4,13,3,0) generates a graph (hence the first two letters of
the function areGG). It is a Girvan-Newman graph; the arguments @& thnction are various
parameters of the graph and the outp{iAj¥0] whereA is the graph adjacency matrix avid is the
generating partition.

2. V=GCModulMax1(A) performsgraph clustering (hence the first two letters of the function &€).
Clustering is performed by modularity maximizatidime graph information is supplied to the function
through its adjacency matriA previously generated bGGirvanNewman. The output of the
function is the modularity optimizing partition

3. Q1=PSNMI(V,V0) evaluates the obtained clustering by computingptreition similarity (hence

the first two letters of the function afS). The particular partition similarity metric usésl the
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Normalized Mutual Information between the generating partitioVO (generated by

GGGirvanNewman) and the optimizing partitiow (generated bgsCModulMax1).

The three functions mentioned above are CDTB foneti specified in correspondirfgn files. They are
good examples of the types of functions contaimedhe Toolbox. More specifically, CDTB contains the

following subfolders:

1. Algorithms  which contains graph clustering algorithms;
2. Evaluation  which contains evaluation functions;

3. Graphs which contains graph generators.
In addition to the above, CDTB also contains tH®¥ang folders.

1. Auxiliary contains various auxiliary / utility functions.
2. Cluster_Number  which containgluster number selection functions (more on this a little later).

3. Experiments which contains some demo files.

The details of these functions (and, in particutaeir syntax) are presented in Appendix C (Fumctio
Reference). In the rest of the current section wepnresent some general remarks and exampleslfothe

user write his own MATLAB programs, using the CDTctions. We have tried to follow a consistentesty
in the naming, input and output of functions. Theo tinitial function names conform to the following

conventions.

Initial Letters Functionality

GG Graph Generator

GC Graph Clustering

CN Cluster Number selection
PS Partition Similarity

QF Quality Function

Let us now present some additional remarks reggmeich function category.

1. Graph Generators. Different graph generators require different grggrameters as input (these are

14



documented in Appendix C) but there is one inpuctvimust be specified for every graph generataneig
Diag which indicates whether the adjacency ma#ixof the graph will contain zeros or ones in the dra
(these correspond to the absence or presence fdbma$ for the graph nodes). The outputabf graph
generators is always the samA;\[0] whereA is the graph adjacency matrix alN@ is the generating
partition. When the graph contaifsnodes,A is anNxN matrix of 0’'s and 1's (CDTB does not deal with
weighted or signed graphs) which contains enougbrnmation to fully specify the graph. The genergtin
partitionVO is anNx1 vector with then-th element containing the number of the clustarhach then-th node
belongs;V0 is contained in the output so that subsequenitipag of the graph can be compared to the “true”

partition.

2. Graph Clustering. Every graph clustering function requires as miumminput a description of the graph to
be clustered. This is given in terms Af the adjacency matrix. Several algorithms reqanlditional input
(which is documented in Appendix C). The outpuaajraph clustering algorithm can take two formsstkit

can be a single clustering described byNié vectorV which has the same for as the previously mentioned
V0. Alternatively, some algorithms output &xM matrix VV which containdM clusterings, i.e.VV(:,m)
contains themth clustering; this situation occurs when the athon computes several different clusterings,
one for every value of an algorithm parameter. FExample, the AFG algorithm is invoked by
VV=GCAFG(A,Scale) , whereScale is a vector containing several values of toale parameter; for

every such value the AFG algorithm provides a dhifee clustering.

3. Cluster Number Selection. Functions of this type are used when our clustealgorithm provides more
than one possible clustering (e.g., the AFG preslipmentioned algorithm). In this case we ward wster
number selection criterion. For example, consider the functigbst=CNModul(VV,A) ; its first input is the
NxK matrix VV which containK clusterings; its second inputAs the adjacency matrix describing the graph.
These are the two inputs required to compute thenn-Girvan modularit@u(V¥,G) for k=1, 2, ..K ;

the function returns as output the integlest iff V% is the clustering with highest modularity (wittspect

to the graplG). All cluster number selection functions have shene input / output structure described above.

4. Partition Similarity. These functions are used to compute the sinyildsgtween two clusterings
(partitions)V; andV,. Usually (but not necessarily) will be the true partition and, will be the one returned
by the clustering (or cluster number selectionpatgm.

5. Quality function. While partition similarity functions evaluate arfition by comparing it to the true

15



partition, quality functions evaluate a partitivhfor which the “ground truth” is not known. Henggis
evaluated using the information inherent in thgbr@ or, rather, in its equivalent representation tgfothe

adjacency matri@.

This concludes our general description of the wei@DTB functions. Let us now present an examplehvh
utilizes functions from all categories. This exaep(an extension of the previously considered
CDTBDemo01.m is contained in the fil€EDTBDemo02.m which can be found in th€:\CDTB folder. It

listing is as follows.

01 clear all; clc

02 N1=32; K=4; Diag=1;

03 Scale=[21.50.50.4 0.3 0.2];

04 for i=0:8

05 zi=16-i;

06 zo=i;

07 [AV0]=GGGirvanNewman(N1,K,zi,zo,Diag);
08 N=length(V0);

09 VV=GCAFG(A,Scale);

10  Mbst=CNLocDens(VV,A);

11 V=VV(;,Mbst);

12 QL(i+1,1)=PSNMI(V,V0);

13  Ki(i+1,1)=max(V);

14  figure(); plot([V VOQ])

15  axis([0 N+1 0 K1(i+1)+1])

16 xlabel('Node no."); ylabel(‘Cluster membership’) ; pause(0.5);
18 end

19 figure(2); plot(Q1); axis([1 9 -0.05 1.05]);
20 xlabel('zo'); ylabel('NMI(V,V0)")

21 figure(3); plot(K1); axis([1 9 0 max(K1)])
22 xlabel('zo"); ylabel('NMI(V,V0)")

The above script implements an experiment of gpstering which involves a sequence of Girvan-Newm
graphs with an increasing number of external ed@ésgive below comments of the important linesha t

script.

16



02
03
04
05
06
07
09

10
11
12
18
19
21

Here we give the Girvan-Newman graph parameters.
TheScale parameter is used by the AFG algorithm.

The main loop runs on the counter

The zi=16-i is the average number of internal edges per node.
Thezo=i is the average number of external edges per node.
Here we generate a Girvan-Newman graph wiitlzo edges.

Here we perform the actual clustering with the A&Gorithm. Since th8cale parameter takes 6
different values, the output matki¥/ contains 6 different clusterings.

TheCNLocDens cluster number selection criterion selects the belstmnMbst of VV.

The best clusteringV(;,Mbst) is stored irV.

TheV clustering is compared to the generating clustevidrvia the NMI function.

The main loop is concluded.

Plot the quality of the best clustering for eazh value.

Plot the number of clusters in the best clustefimggach zO value. We see that

In Figure 4.1.a we plot NMW{ps; Vo) and in Figure 4.1.b the number of cluster¥jg both as function of,,

the number of outer edges. We see that for highs&iohigh z, values)V,st has more clusters than the

generating partitioW.

0.9} ] ol
0.8}
0.7}

0.6

NMI(V,V0)

S

>

0.5 A S
s

0.4t z
0.3
0.2

0.1F il 1L

Figure4.1

The user can inspect the scripts in ®&CDTB\Examples folder to see some additional examples of

CDTB programming.
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We conclude this section on CDTB programming bycuksing themake function, contained in the
C:\CDTB\Interface folder. This function can be used to quickly getergraph clustering experiments.

Its syntax is make(Grf,Alg,ClIn,Eval,Opt,Var) where

 Grf s a specification of the graph;

 Alg s a specification of the graph clustering algarith

* CIn s a specification of the cluster number selectioterion;
* Eval is a specification of the clustering evaluationdtion;
 Opt s a specification of additional options;

* Var s a specification of additional variables.
The above correspond closely to the parameteiseo€DTB GUI, which will be discussed in SectionFbr
more information about the make function, and amete example you can refer to the make help, wisich
accessed by typing

>> help make

in the MATLAB command line.

18



5. The GUI

The Community Detection Toolbox provides a GUI toess its capabilities. It has been designed tosbe
friendly, but requires some effort to understasdsiructure and use it efficiently. Its features illustrated in

this section.

5.1 A Short Description of the GUI

In the MATLAB command line type:

>> gui

The basic window pops up. As mentioned in Section 2.3, ¢ command should always be executed from
the root directory of the CDTB.

Figureb.1
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Thebasic window is divided in thregpanels (different areas of a MATLAB figure):

1. Functions. This panel is used to specify the functions drartparameters for the experiment. It
contains thesub-panels Graph, Algorithms, Cluster Number Selection andEvaluation.

2. Preview. When an experiment is run, its outcome is plottethis panel. Moreover, the figure can
be plotted to a separate window from Fhke/Export Figure menu or by pressing Ctrl+F.

3. Messages. In this panel appear messages to the user.

In addition to the three panels, the user has adod®urbuttons.

1. Options. Used to set several experiment options.

2. Variables. Variables menu provides a solution for the ueeddfine and use through the execution of
the experiment, several variables. Although, thes&bles do not change on every iteration, theyaar
solution to better organize the experiment.

3. Re-Seed. This is used to reset the MATLAB random numberegator. Many of the functions included
in the Toolbox (especially graph generators) areetbaon pseudo-random functions. Therefore, in
order to create the exact same dataset for theimegrd, the random seed is needed. Re-Seed changes
the seed, thus providing a new dataset.

4. Run.

Finally, the user has access to thmemus.

1. File this menu contains options for loading and sgé@rperiments.
2. Plot: this menu provides data visualization options.
3. Hdp: provides links to help-files

5.2 An lllustrative Experiment

We will now present a detailed example of how tiougea community detection experiment using the .GUI

To be specific, suppose that we want to compare dgvaph clustering algorithms, Danomtsodularity
maximization algorithm and a variant aectral clustering. We will apply these algorithms to a family of
planted partition graphs, for each graph, each algorithm will produce atipan; we will evaluate these

partitions, plot the average results of each allgoriand will use the plot to compare the two aldponis.
20



To do all of the above we start by typing
>> gui

at the MATLAB command line and hittirgnter . Thebasic window pops up.

5.2.1 Determining the Graph Family
Let us specify the graph family we will use. At tlgaphs sub-panel, clickAdd to select theGraph

Generator function. A new window pops up.
a Function Sefection - OlEN|

— Help

function [A&,V0] = GGPlantedPartition (NN,pi,pe,Diag)
Generation of a planted partition graph

Graph Function
GGPlantedPartiion = Creates a planted partition graph, returns its adjacency matrix. —
This is the classical planted partition graph, with unequal-sized
partitions. For detals see A.Condon and R.M. Farp. "Algorithms
for graph partitioning on the planted partition model.",
NN: [020 40 70] Randomization, Bpproximation, and Combinatorial Optimization.
= Algorithms and Techniques. Springer Berlin Heidelberg, 1993.
P 1-parameter
pe: parameter INBUT :
Diag: 1 NN: vector of community boundaries
pis internal esdge probability
pe: external edge probability
Diag: 4if Diag=l, use self-lcops; if Diag=0, don't use self-loops

OUTPUT:

A adajcency matrix (N-by-N)

V0 classification vector (N-by-1)

W permutation matrix (N-by—-N) to put the nodes in order

EXAMPLE
[R, V0]=GGPlantedPartition([0 10 20 30 40],0.5,0.1,0);

Cancel Dane

Figure5.2
From the drop-down list choose tPlantedPartition graph generator function. This is a standard
MATLAB function which requires certain inputs; yaman see the required inputs and their interpretatio
the help file on the right side of the window. hettextboxes on the left side of the window, typefollowing

values:

NN: [0 2040 70]
pi : 1-parameter
pe: parameter
Diag: 1

and clickDone to accept the inputs.

Why did we use the expressiparameter for thepe value? The reason is that we do not want to use a
single pe value, but a range of values. As will be seen spamameter is a MATLAB vector which

contains severge values (and its value will be determined with @gtions button). The same holds for
21



pi and the expressiohrparameter . By using severalpf , pe) values can evaluate the efficiency of the

community detection algorithms at various levels@ihmunity structure.

5.2.2 Choosing Graph Clustering Algorithms

At the Algorithms  sub-panel, clickAdd to select theGraph Clustering function. A new window
pops up. SeledeCDanonfrom the drop down menu and cli€one. Note that the input to this algorithm is
the adjacency matrix A (generated internally by @mph Generator function at every iteration and

passed to the graph clustering Algorithiig;not change the corresponding input.

5] Function Selection - oEW
— Help I
function VV= GCDanon (&)

Danon algorithm community detesction

Algorithm Function
aCDanon ™ Front end for danon.m, which is E. le Martelot's implementation
of Danon's greedy community detection agglomerative method:
L. Danon, &A. Diaz—Guilera, A. Arenas. "The effect of size heterogsneity
on community identification in complex networks." See Journal
A A of Statistical Mechanics: Theory and Experiment 2006. 11 (2006): P11010.

INPUT
a: adjacency matrix of graph

OUTPUT
vv: N-ny-E matrix, VV(n,k) is the cluster to which node n belongs
when algorithm uses Scale (k)

EXAMPLE
[A, VO] =GGGirvanNewman (32,4,16,0,0);
VV=GCDanon (&) ;

Cancel Done

Figure5.3

Click Add once again, and seleGCSpectralClustl ; this algorithm uses the internal variaBdut also
requires the user to provide the maximum numbetlugdters; in the textbox namédnax type the value 8

and then clickDone.

5.2.3 Choosing a Cluster Number Selection Criterion

Some graph clustering algorithms automatically wheilge the optimal number of clusters; this is theecwith
the Danon algorithm. Other algorithms require aditéahal cluster number selection criterion; this is the case
with the spectral clustering algorithm. Hence weavrgn to theCluster Number Selection sub-panel,

click Add, select theCNDistBased criterion and click Done (the inputs toCNDistBased are
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predetermined as A and VV, adabuld not be changed).

function Ehst=CNDistBased (VV,R)
Partition Distance bassd cluster number sslection

Cluster number selection performed by finding the VV column which
achisves highest value of the clustering quality function QFDB
(see documentation in Evaluation/QFDB.m)

INPUT
Vs N-by-K matrix of partitions, k-th column describes a partition

of k clustexrs
A adjacency matrix of graph

QUTEUT
Fbst: the number of best VV column and so best number of clusters

EXAMPLE

[2,V0]=GGPlantedPartition([0 10 20 30 40],0.9%,0.1,0);
VV=GCRAFG (&, [0.2:0.5:1.5]);

Fbst=CNDistBased (VV,R);

Figure5.4

5.2.4 Choosing the Evaluation Function

At the Evaluation  sub-panel, clickAdd, select the?SJaccard evaluation function and clicRone. This
function will evaluate thelaccard similarity betweenV (the clustering obtained by the graph clustering

algorithm) andv0 which is the reference clustering, returned from&raph Generator function.

function Q=P8Jaccard(V,V0)
Jaccard index

Computes the Jaccard index, shows similarity between partitions
Vv and V0. Max similarity is 1 and min similarity is 0. See
http://en.wikipedia.org/wiki/Jaccard index

INPUT
v: N-by-1 matrix describes lst partition
{*H N-by-1 matrix describes 2Znd partition

OUTPUT

Q: The Jaccard similarity betwsen ¥V and V0

EXAMPLE
[2,V0]=GGEN (32, 4,16,0,0) ;
VV=GCAFG (2, [0.2:0.5:1.5]);
Kbst=CNModul (VV,a) ;
V=VV(:,Kbst);

g=PSJaccazd (V,V0);

Figureb5.5
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5.2.5 Fixing Options of the Experiment

Finally we can set thparameter and general options of the experiment. From thd'sGhésic window

click theOptions button, and fill in the textboxes to get the fallag picture.

n Options Sefection - SEN|
—Help
Cptions Help |
Options seed : numbsr for the initialization of random procssses
Seed: 906 Iterations: number of iteration points
Heratons: parametsr : ths parameter that is changing on svery itsration
. 15 Status? : print experiment's status? (exported script) —
parameter. 0:0.1:05 Invert? : relabel the the nodes of the graph?
Status? Il Errors? : ignore function errors?
Ivert? T Figtitle : the title of the figure
L rlgbyps: & typerof thefigars lengss bR To
lgnore Errors? | Figxlabel : the label of the x-axis
Figtitle Clustering Experiment Figylabel : the label of the y-axis
Fiayne Figlegend : the legend of the figure
Figxlabel
Figylabel
Figlegend
Default Cancel Done
Figure5.6
Note that we have specifigthrameter=0:0.1:0.5 , In MATLAB notation.lterations is the number

of iterations for each value thparameter takes (after all 15 iterations are completed, vakie for this
point is the mean of the 15 values obtained). Hetiwe current experiment will consist of 90 comntyni
detection runs for each of the two algorithmay?).

5.2.6 Running the Experiment

We are now ready to run the experiment. From thie @&l Figure click theRun button. A waitbar appears.

)| Clustering Experiment... = =
Status: 41% - Remaining: 27 sec
I |
Cancel
Figure5.7

After the execution of the experiment has finisheg]ot of the evaluation for each clustering witkpect to
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the parameter appears in the axes of the Previeel.péou can click MenuFile/Export Figure or hit

Ctrl+F to create a neMATLAB figure with the plot, that enables you to savedit it accordingly.

n Community Detection Toalbox - Tl
File Plot Help ¥
— Function: Preview
— Graph Algorith -
Edit Remove Add Edit Remove Clustering Experiment
: o.....|—=— GCDanon
GGPlantedPartition GCSpectralClust1 1 i —— GCSpectralClust?
NN - [0 20 40 70] ACA P : :
pi - 1-parameter Kmax: 8 0.9 Frommmmmem b o o REEEEEEE P LR P -
pe : parameter : Nt ;
Diag - 1 L R R E R R E 11 CEEEETEERY SRR PP PP
07
06
=2 H H
gt [[EEE ] 5 : :
— Cluster Number Selection Evaluatior é’ 25 + R T S
Edit Remove Edit Remove o H H
04 : o
CNDistBased PSJaccard : :
W Vv 03 ' I S
AA V0 VO : !
S—
15 O S—— T R
- R S . I — 4
1 1 1 I
0 0.1 0.2 03 04 05
parameter
Options Variables Re-Seed Run
Experiment Completed. J&y
Random Seed: 740
Export Data to save results. =]

Figureb5.8
5.2.7 Specifying Variables
Another feature of the GUI is that you can use\theables  section, in order to organize the experiment.
We will define two variables, representing two érént Graph vectordNNas defined in the Graph Generator

function).

Click theVariables  button, from the main GUI figure. From the figuhat pops up, click thAdd button

twice, in order to create two new variables, ard se

Nanme Val ue
NN1: [0 20 40 80]
NN2 : [0 30 40 100]

Finally, clickDone.
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[0 20 40 80]
[0 20 30 40 100]

Figureb.9

We can now edit the Graph Generator function (usiilegdit button), and change the NN value from: [0 20
40 70] to eitherNN1or NN2and clickDone.

function [2,V0] = GGElantedPartition (NN,pi,ps,Diag)
Generation of a planted partition graph

Creates a planted partition graph, returns its adjacency matrix.
This is the classical planted partition graph, with unequal-sized
partitions. For detals see A.Condon and R.M. Karp. "Algorithms
for graph partitioning on the planted partition model.",
Randomization, Bpproximation, and Combinatorial Optimizatien.
Blgorithms and Techniques. Springer Berlin Heidelberg, 1995.

vector of community boundaries

internal edge probability

external edge probability

if Diag=1, use self-loops; if Diag=0, don't use self-loops

A adajeency matrix (N-by-N)
V0 classification vector (N-by-1)
W permutation matrix (N-by-N) to put the nodes in order

EXAMPLE
[A,V0]=GGPlantedPartition ([0 10 20 30 40],0.9,0.1,0);

Figure5.10
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5.2.8 Re-Seeding

As noted earlier, functions returning random valaesactually pseudo-random functions. As a resutiyder
to create a dataset, an initial value (the seedeeded. Re-Seed changes the seed, thus providiegva
dataset.

You can optionally seled®e-Seed , to change the seed for the random functions.riEweseed appears in the

Messages panel. Click 'Run’ to execute the newrgwpat.

5.2.9 Post-Processing

In addition to the plot that appears in fieview panel, the GUI has other options to evaluate ¢kalts of

the experiment, as well. These features are destnbthe current section.

Adjacency Matrices
From thebasic window, click Plot/Adjacency Matrices . A new figure appears, with the adjacency
matrix A for each iteration point. In this figuréhe point (i,j) is painted red if and only if Afi,F7 1 and blue,

otherwise.

Adjacency Matrices - “

The adjacency matrix used at parameter value no.3

10 20 30 40 a0 B0 70 a0

previous

Figure5.11
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Clickingnext enables you to see the various adjacency matocéise different parameter values.

Graphs
Apart from the Adjacency Matrix plot, we can gdetter intuition about the Graph being clustereshgithe
Plot/Graphs  menu. Note, that this utility can be more usefuldmall graphs.

In the plot that appears, each dot correspondsntmda, and each line to an edge of the graph. Mipertant

thing is that each dot is painted according tocthster that the corresponding node belongs.
Graph = I:I“

The graph used at parameter value no.1

previous next

Figure5.12

Clustering
The other two optionsA(l Partitions, Best Partition) create figures of the partition obtained for gver
iteration. More specificallyPlot/All Partitions , shows a XY-plot in which the x-axis values

represent the id of each node, and the y-axis sakmresent the cluster, each node belongs in.
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Figure5.13
On the other handplot/Best Partition plots the obtained clustering in the same figuith whe

reference clustering VO.

T | —=— True Partition
—#— Best Partition

Figure5.14
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Resultsto Command Line
Finally, you can clickPlot/Results to Command Line, in order to copy a struct conteyn
1. data and
2. results of the experiment
from the GUI, to the MATLAB command line interfac&€he stuct returned is 6x2 struct array, named

Results  with the following fields:

e A the adjacency matrices

« VO: the reference (‘best’ clustering)

eV the clustering obtained after the cluster nangelection

e VV: the various clusterings returned from theoaithm

« CN: the value returned from the cluster numbezcan function
e a the value returned from the evaluation functio

You can access the struct's data using the folipwotation:

Results(i,j).field

where:
e i is an index in the range of 1 to number of pagter points
LI is an index from 1 to number of clustering algons used
+ field: is a field from the ones above.
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6. Conclusion

The Toolbox was design with the intent to be patamerlhis means that the user may add and/or remov
functions to the sub-folders without having to makéer changes. As a result, one can easily use new
algorithms with the Toolbox. However, it should beted that the functions should satisfy the follogyi
requirements (otherwise, the GUI will not be aloledad the file):

1. the file must have an .m extension;

2. the file must start with a line in the formé&ariction out = fun(argl,arg2,...)
Some compatibility issues have been noticed whgndrto import experiment data after changes haenb

made to the Toolbox. The developers have triedlthess the problem in the best possible way, homwene
needs to be aware.
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A. Some More Theory

Most of the functions included in CDTB are docuneehin published papers; when this is the case we gi
the relevant references in the Function RefereAgppéndix C). However, CDTB includes some functions
which have not appeared in a generally availableligation; this section gives some elements of the
motivation behind these functions.

A.1l Quality Functions

We propose the use of several quality functionsctvtiave not received much attention in the litesatu
Namely, we introduce the following quality functgn

Global density quality function. This function attempts to quantify the commonlgldh opinion that

"communities within networks can loosaly be defined as subsets of nodes which are more densely linked, when
compared to the rest of the network” [Danon2005]. We first define thglobal internal density and global
external density as follows.

K
Zk:1 ervk Zerk Axy

K
Zkzl ZXEVk Zer—vk AXV
pINN TG

o Vil IV = V|

Qe (G.V) = ) & (GV) =

Consider Q;, (G,V) : it sums (over all clusterd/x ) the inner edges (i.e{x,y} such that bothx and vy
belong to the sameV, ) and divides the sum over the total "area" ofcalkters (or, alternatively, over the
number of allpossible internal edges). Two points must be emphasizedtahés definition of Q, (G,V) .
First, it is assumed thatA, =1 for all xOV (i.e., that each node is equipped with a selpjo&econd all
edges except self-loops are counted twice. Keepiege two things in mind, it is easy to see ti@i, (G,V)

always takes values in the intervgD,1] with Qy, (G,V)=1 only when G is the union of mutually

disjoint cliques; these are (reasonably enoughythphs operfect community structure. Similar remarks can

be made Qg, (G,V) which also takes values if0,1] (and the value 0 is achieved for graph of perfect

community structure). Now we define t@bal weighted density Qg (G,V) by

Qen(G,V) = 5[Qsp(G.V) + 1~ Q& (G V)],

In other words, Q, (G,V) takes the maximum value of one only for graphpesfect community structure
and, more generally, takes values close to ongrigrhs which have densely connected node subsetseH

in accordance to the previously cited statemepy, (G,V) is a reasonable community function.
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Local weighted density quality function. Other functions can be used to formalize the idéadensely

connected node subsets. Theal weighted density quality function is defined by

K

\/ .
Quo(G,V) - Z'Z—I\k,'l [0 (Vi ) + 1- (V4. G)]
k=1
where thdocal inner andouter densities are defined by
d(Vi,G) = ZXGVK ZyEVk il 9°*(Vi,G) = ZXEVK ZYEV_VK ol
’ M2 ' Vil = IV = Vi

While Q_, is defined slightly differently fromQ,, , they share the same basic motivation. In addiothe
previously made points aboutQ,, , an additional point to be emphasized fdp , is that the term

corresponding to each local cluster (local innensity plus local outeantidensity) is weighted by the term

Ml

N this is done because otherwise small denseettustvould influence the total clustering quality

disproportionately to their size.
Distance based quality function. This is defined by

Qoe(G,V) = ﬁHAG ~AV

where

EE ZZ‘BXY‘ iS @ matrix norm:

XV yIV

A, :is the adjacency matrix &
_[1 ifx,y belong to the same cluster (undgy
- {0 if X, y belong to different clusters (undé).

The motivation behind this definition is the followg. SupposeV is the "absolutely true" clustering @& ;

let us interpret this to mean that (i) when and y belong to the same cluster they are connectetht®dge
and (ii) when x and y belong to different clusters they an@ connected by an edge. This condition will be

fully satisfied only by graphs of perfect communstyucture, in which case the scaling lﬁ; ensures that

Qs (G,V) =0 . When the condition is violatedQ,, (G,V) takes larger values but always in the interval

[0,1.

Node member ship quality function. This is defined by

Qw(G,V) = ﬁ D[ VIX]) + 1 u(x,V - VIX])]

xeV
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where V[x| indicates the cluster to whichx belongs (i.e.,xOV[x] ) and, for everyxOV and AOV

we define the node membership by

H(xU) = TA,

you

Hence ¢(xU)=1 iff x is connected to everyOU and u(xU)=0 iff x is connected to noyd A
; for intermediate situations we getz(x,U)0(0,1) . Consequently,Q, (G,V)=1 iff every node xOV

has u(xV[x])=1 (total membership to its own cluster) ang(x,V -V[x])=0 (no membership to the

rest of the graph); (once again) this is the cadg for graphs of perfect community structure.

The quality functions Qg , Qp, . Qmp and Q. (implemented by the CDTB functions
Q=QFA oDens(V, A), @QFLocDens(V, A), QFD stBased(V,A), Q&EQFNodeMenb(V, A)

respectively) can be used to evaluate the goodokessme clusteringV of a given graph G (with

adjacency matrix A ) or to compare two clusteringsy’ and V' . They can also be used ¢ompute

clusterings, as will be explained below.

A.2 Graph Clustering Algorithms

The CDTB provides four functions which perform d¢kring by optimizing the four quality functions
presented above. For example, the CDTB funcddnGCA oDens( A, Kmax, | t er) outputs anN x Kmax
matrix in which the K -th column contains aK -clustering of the graphG (with adjacency matrixA );

each such clustering is obtained by a greedy opditicin of Qcp . Similarly, there exists functions

GCQLocDens, GCQDI st Based andGCQNodMenb .

We include these functions in CDTB for experimergalposes. There is an additional issue that mest b

resolved: the nature 0Q,, , Q, . Q,z; and Q,, Iis such that usually adding more clusters resulketter

values. For example, definé, (K)=max, Qs;, (G.V) ; then, as we have experimentally foung,, (K)

is an increasing function oK . This necessitates the introductiorchufster number selection criterion which

will filter clusterings with too many clusters. CBTprovides such a function, as will next be disedss

A.3 Cluster Number Selection Criterion

Our approach to cluster number selection is basethe idea oftluster validity. In other words, we have
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observed that in some cases optimizing a qualitgtfanQ yields a clustering which yields highvalues but

fails to satisfy some basic criteria whievery clustering should satisfy, independently ofQtsalue.

To be specific, consider the following two clustatfidity criteria introduced in [Radicchi2004]:

(WRC) Weak Radicchi CriteriorilV, OV > > A 2> > A/

( A 1) XV yOV, X0V, yOV -V
(SRC) Strong Radicchi CriterioriaV, OV Ox0V, > A 2 > A,
YV YOV =V

Both of these criteria try to capture the idea thate should be more edges inside clusters rdtharoutside.

Now, WRC is obviouslytoo weak and non-discriminating with respect to indual nodes. In other words, if
we have a clustevy with high internal edge count (hence satishWd&C with a large margin) then we can

addany extra nodeai to Vi and still preserv8VRC, even whemu is totally disconnected froivk.

On the other hand, we have fouBRC to betoo strong and hence leading to the invalidation of many

reasonable clusterings.

The problem witltSRC is that it requires of every node to have moterimal than external connections; but if
a graph has a very large number of nodes, therparticular node may have very weak connection § an
external cluster, but still collect a large totalnmber of external edges simply because there ®astmany

clusters.

So we propose and use a new criterion, which issgdmare betweeWRC andSRC. Namely we introduce:

(A.2) (NMC) Node Membership CriteriomV, OV Ox0V, ,u(x V,[x]) > ,u(x V,—V[x])
which uses the previously defined node membershmption ,u(x U) |U| ZAW HenceNM C is equivalent
to
1
(A.3) Ov, Ov,0Ox0v, — :
VOO B T B

Our criterion is similar to the strong Radicchiterion but somewhat weaker, because of the norimgliz

factors and On the other hand, our criterion is strongenttiee weak criterion. We have found

M A Vv V[ o
that it works well in practice, as implemented I tCDTB functionKbst =CNNodMenb( WV, A) . This

function takes as input aftN xK . matrix in which the K -th column contains & -clustering of the graph
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G (with adjacency matrixA ); it outputs the integerK,, which is the largestK value such that theK -

th column ofWV is a valid clustering (i.e., it satisfiea.@)).
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C. Function Reference

In this section, the help-files for the CommunitgtBction Toolbox algorithms are provided. They are
organized in four section&raphs, Algorithms, Cluster Number Selection, Evaluation.

C.1 Graphs

% function [A V0] =G&G rvanNewran( N1, K, zi , ze, Di ag)
% Generation of a Girvan Newman graph
%

% Creates a classical Girvan-Newman graph; returns its adjacency matrix A
% and true community membership vector V0. For deta ils see

% M.E Newman and M. Girvan. "Finding and evaluating community

% structure in networks." Physical review E 69.2 (2 004): 026113.

%

% | NPUT:

% N1 number of nodes in each community

% K number of communities

% zi number of internal half-edges per node

% ze number of external half-edges per node

% Diag: if Diag=1, use self-loops; if Diag=0, don' t use self-loops
%

% OUTPUT:

% A adajcency matrix (N-by-N)

% VO classification vector (N-by-1)

% W permutation matrix (N-by-N) to put the nodes i n order
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

%
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% function [A VO] = GGPl antedPartition(NN, pi, pe, D ag)

% Generation of a planted partition graph

%

% Creates a planted partition graph, returns its ad
% This is the classical planted partition graph, wi

% partitions. For detals see A.Condon and R.M. Karp

% for graph partitioning on the planted partition m

% Randomization, Approximation, and Combinatorial O
% Algorithms and Techniques. Springer Berlin Heidel

%

% | NPUT:

% NN: vector of community boundaries

% pi: internal edge probability

% pe: external edge probability

% Diag: if Diag=1, use self-loops; if Diag=0, don'
%

% OUTPUT:

% A adajcency matrix (N-by-N)

% VO classification vector (N-by-1)

% W permutation matrix (N-by-N) to put the nodes i

%
% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1

%

jacency matrix.
th unequal-sized
. "Algorithms
odel.",
ptimization.
berg, 1999.

t use self-loops

% function [A VO] = GGReadEdgeli st (EdgeFil e, Partiti

% Graph Generation from an edge list

%

% Reads a graph from edge list file and a partition
% membership files

%

% | NPUT:

% EdgeFile filename (string) contains an M-
% of edges (as node pairs)

% PartitionFile filename (string) contains an N-
% of cluster number to which each

% Diag: if Diag=1/0, use/don't use self-

%

% OUTPUT:

% A adajcency matrix (N-by-N)

% VO classification vector (N-by-1)

%
% EXAMPLE
% [A,VO]=GGReadEdgeList('e01.txt', vO1.txt',0);

n order
,0);
onFi |l e, Di ag)

from partition

by-2 list

by-1 list
node belongs
loops



C.2 Algorithms

% function W= GCAFG A, Scal e)

% AFG community detection

%

% Front end for mscd_afg.m, which is E. le Martelot
% of the community detection method by Arenas, Fern
% A. Arenas, A. Fernandez, and S. Gomez. "Analysis
% structure of complex networks at different resolu
% New Journal of Physics 10.5 (2008): 053039.

%

% | NPUT

% A:  adjacency matrix of graph

% Scale: a K-by-1 matrix of scale parameters (HIGH
% every value yields a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,13,3,0);

% VV=GCAFG(A,[3.0:-0.5:0.1));

's implementation
andez, Gomez:
of the

tion levels."

-TO-LOW values!!!)

which node n belongs

% function VW= GCDanon( A)

% Danon algorithm community detection

%

% Front end for danon.m, which is E. le Martelot's

% of Danon's greedy community detection agglomerati
% L. Danon, A. Diaz-Guilera, A. Arenas. "The effect
% on community identification in complex networks."
% of Statistical Mechanics: Theory and Experiment 2
%

% | NPUT

% A:  adjacency matrix of graph

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCDanon(A);

implementation

ve method:

of size heterogeneity
See Journal

006. 11 (2006): P11010.

which node n belongs



% function V=GCd oDens(A, Kmex, | ter)

% Community detection by global density maximizatio
%

% Graph clustering by stoch. optimization of global
% For details see the ComDet manual.

%

% | NPUT

% A:  adjacency matrix of graph

% Kmax: maximum number of clusters to consider
% Iter: number of restarts of stochastic opt.

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% under the K-clusters clustering

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0.
% VV=GCGloDens(A,5,5);

n

density.

which node n belongs

2,0);

% function VW= GCHSLSW A, Scal e)

% HSLSW community detection

%

% This is a front end for mscd_hslsw.m, which is E.
% implementation of the method of Huang et al.:

% "Towards Online Multiresolution Community Detecti
% Networks", PloS one 6.8 (2011): e23829.

%

% | NPUT

% A:  adjacency matrix of graph

% Scale: a K-by-1 matrix of scale parameters (HIGH
% every value yields a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCHSLSW(A,[3:-0.5:0.1]);

le Martelot's

on in Large-Scale

-TO-LOW values!!!)

which node n belongs
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% function VW= GCLFK(A, Scal e)
% LFK community detection
%

% This is a front end for mscd_Ifk.m, which is E. | e Martelot's

% implementation of the method of Lancichinetti, Fo rtunato, Kertesz:

% Lancichinetti, Andrea, Santo Fortunato, and Janos Kertész. "Detecting
% the overlapping and hierarchical community struct ure in complex

% networks." New Journal of Physics 11.3 (2009): 03 3015.

%

% | NPUT

% A:  adjacency matrix of graph

% Scale: a K-by-1 matrix of scale parameters (HIGH -TO-LOW values!!)
% every value yields a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to which node n belongs
% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);
% VV=GCLFK(A,[3:-0.5:0.1]);

% function V=GCLocDens(A, Kmex, | ter)

% Community detection by local density maximization
%

% Graph clustering by stoch. optimization of local density.
% For details see the ComDet manual.

%

% | NPUT

% A:  adjacency matrix of graph

% Kmax: maximum number of clusters to consider
% Iter: number of restarts of stochastic opt.

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to which node n belongs
% under the K-clusters clustering

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0. 2,0);

% VV=GCLocDens(A,5,5);
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% function VV= GCMWbdul Max1( A)

% Modularity Maximization community detection

%

% This is a front end for cluster_jl.m, A. Scherrer
% of the method of Blondel, Guillaume, Lambiotte an
% "Fast unfolding of community hierarchies in large
% http://arxiv.org/abs/0803.0476

%

% | NPUT

% A:  Adjacency matrix of graph

%

% OUTPUT

% VV: N-by-1 matrix, VV(n) is the cluster to wh
%

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,13,3,0);

% VV=GCModulMax1(A);

's implementation
d Lefebvre:
networks",

ich node n belongs

% function VV= GCMWbdul Max2( A)

% Modularity Maximization community detection
% This is a front end for fast_mo.m, E. le Martelot
% of a fast greedy modularity maximization method
%

% | NPUT

% A:  Adjacency matrix of graph

%

% OUTPUT

% VV: N-ny-1 matrix, VV(n) is the cluster to wh
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,12,4,0);

% VV=GCModulMax2(A);

%
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% function VV= GCMVbdul Max3( A)

% Modularity Maximization community detection

% This is a front end for fast_newman.m, E. le Mart
% of Newman's greedy agglomaerative modularity maxi
% Newman, Mark EJ. "Fast algorithm for detecting co
% networks." Physical review E 69.6 (2004): 066133.
%

% | NPUT

% A:  Adjacency matrix of graph

%

% OUTPUT

% VV: N-ny-1 matrix, VV(n) is teh cluster to wh

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCModulMax3(A);

%

elot's implementation
mization method
mmunity structure in

ich node n belongs

% function V=GCNodeMenb( A, Kmax, I ter)

% Graph clustering by stoch. optimization of partit

% quality function. For details see the ComDet manu
% This code is experimental and too slow for now (t
%

% | NPUT

% A:  adjacency matrix of graph

% Kmax: maximum number of clusters to consider
% Iter: number of restarts of stochastic opt.

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.85,0.
% VV=GCNodeMemb(A,6,100)

ion-based-based
al.
0 be improved)

which node n belongs

2,0);
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% function VV= GCRei char dt (A, Gamg)

% Reichardt community detection

%

% This is a front end for reichardt.m, which is E.

% implementation of gamma-modularity maximization.
% as defined by Reichardt, Jorg, and Stefan Bornhol
% mechanics of community detection." Physical Revie
% (2006): 016110.

%

% | NPUT

% A:  adjacency matrix of graph

% Gamma: a K-by-1 matrix of gamma values, each val
% a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% belongs when algorithm uses Gamma(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCReichardt(A,[3:-0.5:0.1]);

le Martelot's
Gamma modularity
dt. "Statistical
wE74.1

ue yields a

which node n

% function VV= GCRonhovde( A Gamma)

% Community detection using Ronhovde et al.'s metho
% is a front end for ronhovde.m, which is E. le Mar

% implementation of gamma-modularity maximization,
% Ronhovde, Peter, and Zohar Nussinov. "Local resol
% Potts model for community detection." Physical Re
% (2010): 046114.

%

% | NPUT

% A:  adjacency matrix of graph

% Gamma: a K-by-1 matrix of gamma values, each val
% a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Gamma(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCRonhovde(A,[0.5:-0.05:0.05]);

d. This

telot's

as defined by
ution-limit-free
view E 81.4

ue yields a

which node n belongs



% function VW=CCSpectral d ust 1( A Kmax)
%

% Community detection by spectral clustering. See
% implementation of spectral clustering. For detalil
% Joao Hespanha. "An efficient MATLAB Algorithm for
% Technical Report, University of California, Oct.

% http://www.ece.ucsb.edu/~hespanha/techrep.html.
%

% | NPUT

% A:  adjacency matrix of graph

% Kmax: max number of clusters to consider. A cl
% will be produced for every K in [1:Kmax]

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses a partition of k clus

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,13,3,0);

% VV=GCSpectralClust1(A,6)

J. Hespanha's

s see

Graph Partitioning".
2004.

ustering of K clusters

which node n belongs
ters

% function VV=CGCSpectral C ust2( A, Kmax, T)
% Community detection by spectral clustering

%

% Community detection by spectral clustering. See
% "J. Shi and J. Malik. Normalized cuts and image s
% IEEE Transactions on Pattern Analysis and Machine
% 22(8):888-905, 2000."

%

% | NPUT

% A: adjacency matrix of graph

% Kmax: maximum number of clusters to consider
% T:  Number of times to repeat the k-means clu
% with a new set of initial cluster centroi

% (option for MATLAB Statistics toolbox kme
%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% belongswhen algorithm uses Gamma(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,13,3,0);

% VV=GCSpectralClust2(A,6,10)

for example
egmentation.
Intelligence

stering, each
d positions
ans function)

which node n
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% function VW=CCStabilityOpt (A, Scal e)
% Graph clustering by stability optimization.

%

% This is a front end for mscd_so.m, which is E. le
% implementation of Le Martelot and Hankin's stabi
% method. See "Multi-scale Community Detection usin
% Optimisation Criterion in a Greedy Algorithm, Pro
% KDIR 2011".

%

% | NPUT

% A:  adjacency matrix of graph

% Scale: a K-by-1 matrix of scale parameters (LOW-
% every value yields a clustering

%

% OUTPUT

% VV: N-ny-K matrix, VV(n,K) is the cluster to

% when algorithm uses Scale(k)

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,13,3,0);

% VV=GCStabilityOpt(A,[0.1:0.4:2.5])
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C.3 Cluster Number Selection

% function Kbst=CNDi st Based( VWV, A

% Partition Distance based cluster number selection
%

% Cluster number selection performed by finding the
% achieves highest value of the clustering qualit

% (see documentation in Evaluation/QFDB.m)

%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column

% of k clusters

% A:  adjacency matrix of graph

%

VV column which
y function QFDB

describes a partition

% OUTPUT

% Kbst: the number of best VV column and so best number of clusters
%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1 ,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNDistBased(VV,A);

% function Kbst = CNFi xed( VWV, K)

% Cluster Number Selection by fixed number K

%

% Cluster Number Selection: let selected Kbst equal given K
% This function simply returns the cluster number w hich is

% input by the user

%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column
% of k clusters

% K:  desired number of clusters

%

% OUTPUT

% Kbst: K, the input number

%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);
% VV=GCAFG(A,[0.2:0.5:2.5]);

% Kbst=CNFixed(4);

% V=VV(;,Kbst);

% Q=PSRelCluNumError(V,V0)

% Q=PSNMI(V,VO0)
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% function Kbst=CNGd oDens(VV, A

% Global-density-based cluster number selection

%

% Cluster number selection performed by finding the
% achieves highest value of the global density clu
% function QFGloDens (see documentation in Evaluati
%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column

% of k clusters

% A:  adjacency matrix of graph

%

% OUTPUT

% Kbst: the number of best VV column and so best
%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNGloDens(VV,A);

VV column which
stering quality
on/QFGD.m)

describes a partition

number of clusters

,0);

% function Kbst=CNLocDens(VV, A

% Local-density-based cluster number selection

%

% Cluster number selection performed by finding the
% achieves highest value of the local density clus

% function QFLD (see documentation in Evaluation/QF

%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column

% of k clusters

% A:  adjacency matrix of graph

%

% OUTPUT

% Kbst: the number of best VV column and so best
%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNLocDens(VV,A);

VV column which
tering quality
LD.m)

describes a partition

number of clusters

,0);



% function Kbst=CNModul (VV, A)

% Modularity based cluster number selection

%

% Cluster number selection performed by finding the
% achieves highest Newman-Girvan modularity (see E
%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column

% of k clusters

% A:  adjacency matrix of graph

%

% OUTPUT

% Kbst: the number of best VV column and so best
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,16,0,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

VV column which
valuation/QFModul.m)

describes a partition

number of clusters

% function Kbst =CNNodMenb(VV, A, nm)

% Cluster Number Selection by node membership

%

% Cluster number selection performed by finding the
% achieves highest value of the node membership cl
% function QFNM (see documentation in Evaluation/QF
%

% | NPUT

% VV: N-by-K matrix of partitions, k-th column

% of k clusters

% A:  adjacency matrix of graph

% m: internal variable, always set to 1

%

% OUTPUT

% Kbst: the number of best VV column and so best
%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNNodMemb(VV,A,1);

VV column which
ustering quality
NM.m)

describes a partition

number of clusters

,0);
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C.4 Evaluation

% function Q=PSPSRel Cl uNuntrror (V, VO)

% Relative cluster number error

%

% Relative cluster number error: abs(K-K0)/KO

% Becomes zero when V has the same number of cluste rsas VO
%

% | NPUT

% V: N-by-1 matrix describes test partition

% VO: N-by-1 matrix describes reference part ition

%

% OUTPUT

% Q: The relative Cluster Number error of V wrt VO
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,12,4,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% function @=PSJaccard(V, VO)

% Jaccard index

%

% Computes the Jaccard index, shows similarity betw een partitions
% V and V0. Max similarity is 1 and min similarity is 0. See
% http://en.wikipedia.org/wiki/Jaccard_index

%

% | NPUT

% V: N-by-1 matrix describes 1st partition

% VO: N-by-1 matrix describes 2nd partition

%

% OUTPUT

% Q: The Jaccard similarity between V and V 0
%

% EXAMPLE

% [A,V0]=GGGN(32,4,16,0,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% Q=PSJaccard(V,V0);

%
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% functi on Q=PSNM (V, VO)

% Normalized Mutual Information (NMI)

% An implementation of Normalized Mutual Informatio
% by Erwan Le Martelot. The NMI measure shows
% the similarity between two partitions. Max simila
% and min similarity is 0. For details see Danon, L
% "Comparing community structure identification." J
% Statistical Mechanics: Theory and Experiment 2005
%

% | NPUT

% V: N-by-1 matrix describes 1st partition

% VO: N-by-1 matrix describes 2nd partition

%

% OUTPUT

% Q: The Normalized Mututal Information bet
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,12,4,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% Q=PSNMI(V,V0);

%

n (NMI)

rity is 1

eon, et al.

ournal of

.09 (2005): P09008.

ween V and VO

% function Q=PSRand(V, VO)

% Rand index

%

% Computes the Rand index, which shows similarity b
% V and V0. Max similarity is 1 and min similarity
% http://en.wikipedia.org/wiki/Rand_index

%

% | NPUT

% V: N-by-1 matrix describes 1st partition

% VO: N-by-1 matrix describes 2nd partition
%

% OUTPUT

% Q: The Rand similarity between V and VO
%

% EXAMPLE

% [A,V0]=GGGN(32,4,16,0,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% Q=PSRand(V,V0)

%

etween two partitions
is 0. See
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% function Q=PSPSRel Cl uNuntrror (V, VO)
% Relative cluster number error: abs(K-K0)/KO

% Becomes zero when V has the same number of cluste

%

% | NPUT

% V: N-by-1 matrix describes test partition
% VO: N-by-1 matrix describes reference part
%

% OUTPUT

% Q: The relative Cluster Number error of
%

% EXAMPLE

% [A,V0]=GGGirvanNewman(32,4,12,4,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% Q=PSRelCluNumError(V,V0);

%

rs as VO

ition

V wrt VO

% unction Q=QFDi st Based(V, A)

% A partition-distance-based quality function

%

% A partition-distance-based quality function

% For more details see the ComDet Toolbox manual
%

% | NPUT

% V: N-by-1 matrix describes a partition

% A:  adjacency matrix of graph

%

% OUTPUT

% Q:  node-membership-based quality function of
% with adj. matrix A

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCDanon(A);

% Kbst=CNNM(VV,A);

% V=VV(;,Kbst);

% Q=QFDistBased(V,A)
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% function @=QFA oDens(V, A

% A global-density-based quality function

%

% A global-density-based quality function

% For more details see the ComDet Toolbox manual
%

% | NPUT

% V:  N-by-1 matrix describes a partition

% A:  adjacency matrix of graph

%

% OUTPUT

% Q: local-density-based quality function of V

% with adj. matrix A

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCDanon(A);

% Kbst=CNGloDens(VV,A);

% V=VV(;,Kbst);

% Q=QFGloDens(V,A)

given graph

,0);

% function @=QFLocDens(V, A

% A local-density-based quality function

%

% A local-density-based quality function

% For more details see the ComDet Toolbox manual
%

% | NPUT

% V:  N-by-1 matrix describes a partition

% A:  adjacency matrix of graph

%

% OUTPUT

% Q:  node-membership-based quality function of
% with adj. matrix A

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCDanon(A);

% Kbst=CNNM(VV,A);

% V=VV(;,Kbst);

% Q=QFLocDens(V,A)
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% function Q = QFModul (V, A
% Modularity quality function
%

% Computes the classical Newman-Girvan modularity.

% its evaluation, listed below, was written by E. |
% See http://en.wikipedia.org/wiki/Modularity %28ne
%

% | NPUT

% V: N-by-1 matrix describes a partition

% A:  adjacency matrix of graph

%

% OUTPUT

% Q:  the modularity of V given graph (with adj
%

% EXAMPLE

% [A,V0]=GGGN(32,4,16,0,0);

% VV=GCAFG(A,[0.2:0.5:1.5]);

% Kbst=CNModul(VV,A);

% V=VV(;,Kbst);

% Q = QFModul(V,A)

%

The code for
e Martelot.
tworks%29

. matrix) A

% function Q=QFNodMenb(V, A)

% A node-membership-based quality function

%

% A node-membership-based quality function

% For more details see the ComDet Toolbox manual
%

% | NPUT

% V:  N-by-1 matrix describes a partition

% A:  adjacency matrix of graph

%

% OUTPUT

% Q:  node-membership-based quality function of
% with adj. matrix A

%

% EXAMPLE

% [A,V0]=GGPlantedPartition([0 10 20 30 40],0.9,0.1
% VV=GCDanon(A);

% Kbst=CNNodMemb(VV,A);

% V=VV(;,Kbst);

% Q=QFNodMemb(V,A)

V given graph

,0);
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