
	TUTORIAL	FOR	MBXASPY	
(Many-Body	XAS	with	Python)	

Yufeng	Liang	

Contents	

1. Installation	
2. Generating	pseudopotentials	and	other	auxiliary	;iles	
3. Running	MBXASPY	

Installation	

(1)		Shirley_XAS	

Shirley_XAS	 is	 a	 software	 package	 for	 simulating	 x-ray	 absorption	 spectra	 using	 the	
excited-state-core-hole	 (XCH)	 approach	 and	 Shirley’s	 optimal	 basis	 functions	 for	 band	
structure	interpolation.	It	is	modi;ied	based	Quantum	Espresso	simulation	package	and	
maintained	 by	 David	 Prendergast’s	 group	 at	 the	 Molecular	 Foundry.	 The	 Shirley_XAS	
provides	 the	 Kohn-Sham	 eigen-energies	 and	 wavefunctions	 as	 the	 input	 for	 the	
determinant	formalism	of	x-ray	spectra.	

Check	out	the	latest	commit	on	the	overlap	branch	(needs)	if	you	have	access	to		
http://trac-foundry2.lbl.gov/git/Shirley:	

git checkout overlap
git pull
make shirley

Or	 you	 may	 do	 module-load	 if	 you	 have	 access	 to	 local	 clusters	 of	 High-Performance	
Computing	at	Berkeley	Lab:	

module load shirley_overlap/QE4.3

(2)	 MBXASPY	

Checkout	the	code	on	github:	

git clone https://github.com/yufengliang/mbxaspy ~/mbxaspy

From	now	on	you	can	 follow	my	updates	by	using	 “git	pull”.	You	will	 see	many	python	
source	codes	with	post;ix	*.py	are	cloned	to	your	speci;ied	directory.		

Python	2.7+	is	required.	

Generate	the	pseudos	and	other	auxiliary	Diles

To	perform	a	typical	core-hole	calculation,	one	needs	pseudopotentials	for	the	unexcited	
atom	and	also	the	core-excited	one.	Here	is	a	list	of	codes	that	are	relevant	for	generating	
pseudopotentials	and	other	auxiliary	;iles:	

1. Vanderbilt	Ultra-Soft	Pseudopotential	code	(based	on	Fortran,	with	D.	P.	Prendergast’s	
developments	for	outputting	intermediate	data	of	atomic	wavefunctions):	

https://github.com/yufengliang/uspp-dgp

This	is	the	main	code	for	generating	pseudopotentials.	
After	git-clone	to	local	and	enter	the	root	folder:	

cd uspp-dgp/Source
make clean
make

to	compile	the	code.	

2. shirley_QE4.3.overlap/upftools/uspp2upf.x	(Fortran)	

For	converting	the	binary	pseudo	;ile	into	a	*.UPF	that	can	be	read	by	Qespresso.	

cd shirley_QE4.3.overlap/upftools
make clean
make

3. shirley_QE4.3.overlap/corerepair_dipole/corevalence_position.x	(Fortran)	

This	code	is	for	generating	the	single-body	matrix	elements	for	the	position	operator.	

cd shirley_QE4.3.overlap/corerepair_dipole
make clean
make

4. mbxaspy/sij.py	(PYTHON)	

If	you	are	only	interested	in	elements	that	will	NOT	be	core-excited,	then	the	;irst	two	will		
do.	

Here	are	steps	for	generating	the	core-hole	pseudos	(Using	C	1s	as	an	example):	

1) 	Obtain	sample	input	;iles	from	uspp-dgp/Work.	In	this	folder,	there	are	a	number	of	
examples	for	generating	pseudos	for	some	common	elements.	For	example:	

cd uspp-dgp/Work/006-C
ls
drwxr-x--- 2 yfliang yfliang 512 Dec 15 11:18 006-C-ca--bm
drwxr-x--- 2 yfliang yfliang 512 Dec 15 11:18 006-C-gpbe--bm
drwxr-x--- 2 yfliang yfliang 4096 Dec 15 11:28 006-C-gpbe--yufengl
drwxr-x--- 2 yfliang yfliang 4096 Dec 15 11:18 006-C-gpbe-1s1--yufengl
drwxr-x--- 2 yfliang yfliang 512 Dec 15 11:18 006-C-gpw-n-campos

The	 naming	 convention	 is:	 “006-C-ca—bm”	 means	 the	 carbon	 pseudo	 generated	 with	
functional	“ca”	(LDA)	by	the	author	“bm”.		
		
2) Make	a	new	working	directory	for	your	ground-state	atom	from	the	sample.	

You	may:	
cp -r 006-C-ca—bm 006-C-pbe-your_name
cd 006-C-pbe-your_name
make clean

If	you	cannot	;ind	the	element	you	want	in	these	samples,	pick	a	similar	element	to	start	
with.	

3) Edit	the	input	;iles	as	needed.			

There	 are	 two	 input	 ;iles:	 c_ae_s2p2.adat	 and	 c_ps.adat.	 The	 former	 is	 for	 all-electron	
calculation	and	the	latter	for	pseudizing.	

c_ae_s2p2.adat	(all-electron)	
 1 1 0 0 0 3 ifae,ifpsp,ifprt,ifplw,ilogd (5i5)
 2 1.50 -2.4 1.6 80 rlogd,emin,emax,nnt (3f10.5,i5)
 3 1.0d-11 1.0d-09 0.5 0 thresh,tol,damp,maxit (2e10.1,f10.5,i5)
 4 C title (a20)
 5 6.0 0.0 0.0 z,xion,exfact (f7.2,2f10.5)
 6 80.0 6.0 59.0 rmax,aasf,bbsf (3f10.5)
 7 3 0 ncspvs,irel (2i5)
 8 100 2. -20.0 nnlz,wwnl,ee (i4,f7.3,f14.6)
 9 200 2. -1.0 nnlz,wwnl,ee (i4,f7.3,f14.6)
 10 210 2. -0.5 nnlz,wwnl,ee (i4,f7.3,f14.6)

Instructions	for	the	bolded	parts:	
line	4:	must	use	*shorthand*	notation	for	element	names	(case-sensitive	!)	
line	5:	exfact	de;ines	the	types	of	the	functional:	0.0:	LDA,	5.0:	GGA-PBE	(recommended)	
line	6,	8-10:	edit	the	z	number	and	atomic	shells	as	needed.	

For	more	information	about	the	all-electron	(AE)	part,	please	see:	
http://physics.rutgers.edu/~dhv/uspp/uspp-736/Doc/INPUT_AE	

c_ps.adat	(generating	pseudos	(GEN))	
 1 0 2 1 1 3 ifae,ifpsp,ifprt,ifplw,ilogd (5i5)
 2 1.50 -2.4 1.6 80 rlogd,emin,emax,nnt (3f10.5,i5)
 3 1.0d-11 1.0d-09 0.5 0 thresh,tol,damp,maxit (2e10.1,f10.5,i5)
 4 C title (a20)
 5 1 2 2 ncores,nvales,nang (3i5)
 6 10.0 20.0 40.0 10.0 besrmax,besemin,besemax,besde (4f10.5)
 7 3 0 0.8 keyps,ifpcor,rinner (2i5,f10.5)
 8 4 1.0 nbeta,rcloc (i5,f10.5)
 9 1.1 1.1 0.0 rc (3f10.5)
 10 0 0 -1.2 2 lll,keyee,eeread,iptype (2i5,f10.5,i5)
 11 0 0 0.2 2 lll,keyee,eeread,iptype (2i5,f10.5,i5)
 12 1 0 -0.6 2 lll,keyee,eeread,iptype (2i5,f10.5,i5)
 13 1 0 0.2 2 lll,keyee,eeread,iptype (2i5,f10.5,i5)
 14 8 10.0 npf,ptryc (i5,f10.5)
 15 2 0 0.0 1 lloc,keyee,eloc,iploctype (2i5,f10.5,i5)
 16 3 8 10.0 ifqopt,nqf,qtryc (2i5,f10.5)
line	4:	shorthand	for	title	
line	5:	ncores	-	#	shells	in	the	core,	nvales	-	#	valence	shells,	nang	-	#		
line	10-13:	edit	these	lines	if	generating	for	a	different	element	(instructions	as	below)	
line	16:	must	be	3	if	GGA-PBE	(exfact	=	5.0	in	the	AE	input.)	

More	instructions:	
http://physics.rutgers.edu/~dhv/uspp/uspp-736/Doc/INPUT_GEN	

4) Generate	the	pseudos:	

Run:	
make clean
make
../../../Bin/runatom.x c_ae_s2p2.adat c_ae_s2p2.out c_ae_s2p2.ae c_ae_s2p2.atwf c_ae_s2p2.logd
dummy
beginning execution pseudopotential program version 7.3.6
 beginning the all electron calculation
completed self-consistent cycle 1 delta = 0.2499440D+01
completed self-consistent cycle 2 delta = 0.1027510D+01
……
completed self-consistent cycle 37 delta = 0.1375697D-08
completed self-consistent cycle 38 delta = 0.7350098D-09
 all electron calculation completed
../../../Bin/runatom.x c_ps.adat c_ps.out c_ae_s2p2.ae c_ps.atwf c_ps.logd c_ps.uspp
beginning execution pseudopotential program version 7.3.6
 beginning the all electron calculation
completed self-consistent cycle 1 delta = 0.6194983D-10
 all electron calculation completed
 constructing ibeta = 1

http://physics.rutgers.edu/~dhv/uspp/uspp-736/Doc/INPUT_AE
http://physics.rutgers.edu/~dhv/uspp/uspp-736/Doc/INPUT_GEN

 constructing ibeta = 2
 constructing ibeta = 3
 constructing ibeta = 4
 construction of qqq and ddd complete
 pseudizing qfuncs for beta= 1
 pseudizing qfuncs for beta= 2
 pseudizing qfuncs for beta= 3
 pseudizing qfuncs for beta= 4
 qfunc pseudized
 transformation of q and d complete
 transformation of qfunc complete
 transformation of qfcoef complete
 fourier transforming the qfunctions
 solving the schroedinger equation
 descreening the potential
 writing the pseudopotential to file
 fourier analysing pseudowavefunctions
 computing the logarithmic derivatives
 beginning search for possible ghost states
 eigensolution in bessel basis with cutoff 20.00
 eigensolution in bessel basis with cutoff 30.00
 eigensolution in bessel basis with cutoff 40.00

And	you	should	be	able	to	see	these	;iles:	
-rw-r----- 1 yfliang yfliang 2237 Dec 15 13:33 Makefile
-rw-r----- 1 yfliang yfliang 1333 Dec 15 13:33 README
-rw-r----- 1 yfliang yfliang 652 Dec 15 13:40 c_ae_s2p2.adat
-rw-rw---- 1 yfliang yfliang 20572 Dec 15 14:03 c_ae_s2p2.ae
-rw-rw---- 1 yfliang yfliang 2040 Dec 15 14:03 c_ae_s2p2.logd
-rw-rw---- 1 yfliang yfliang 90430 Dec 15 14:03 c_ae_s2p2.out
-rw-r----- 1 yfliang yfliang 1104 Dec 15 13:47 c_ps.adat
-rw-rw---- 1 yfliang yfliang 141328 Dec 15 14:03 c_ps.atwf
-rw-rw---- 1 yfliang yfliang 4080 Dec 15 14:03 c_ps.logd
-rw-rw---- 1 yfliang yfliang 600089 Dec 15 14:03 c_ps.out
-rw-rw---- 1 yfliang yfliang 98088 Dec 15 14:03 c_ps.uspp

	c_ae_s2p2.out	 and	 c_ps.out	 are	 the	 corresponding	 output	 for	 the	 c_ae_s2p2.adat	 and	
c_ps.out.	 You	may	 check	 errors	 and	warnings	 in	 these	 ;iles	 if	 there	 is	 any.	 Intermediate	
data	can	also	be	found	therein.	

c_ps.uspp	is	the	binary	pseudo	;ile	and	is	not	human-readable.	Next	we	convert	it	into	an	
UPF.	

5) Convert	the	uspp	to	UPF	

Run	uspp2upf.x	as	follow:	

shirley_QE4.3.overlapo/upftools/usppupf.x		

and	you’ll	see:	
yfliang@edison09:~/PseudoP/uspp-dgp/Work/006-C/006-C-pbe-yufengl> ~/
shirley_QE4.3.overlap/upftools/uspp2upf.x
Input file > c_ps.uspp
Pseudopotential successfully read
Output PP file in UPF format : c_ps.uspp.UPF
*** PLEASE TEST BEFORE USING!!! ***
review the content of the PP_INFO fields

6)	Edit	the	pseudo.table	to	change	the	default	pseudo	or	add	a	new	one	

Edit	SYMBOL	and	MASS	array	if	adding	an	element.	

In	the	pbe	block	(if	[[-z	$1	||	$1	=	'pbe']])	

Edit	the	PSEUDO	to	add	a	new	pseudo.	

If	you	are	not	adding	a	pseudo	for	a	core-excited	atom,	that’s	it.	Below	is	for	adding	a	new	
species	of	excited	atom	(update	soon	…)	

Generate	a	ground-state	and	a	core-excited	pseudo	for	C	routinely	using	executables	in	
uspp-dgp.	Let’s	say	they	are	C.pbe-van.UPF	and	C.pbe-van-1s1.UPF	respectively.		

(2)	
Generate	the	initial-state	single-body	matrix	elements	and	name	it	as:	C.pbe-van.pos

(3)	
In	 the	 pseudo	 output	 ;ile	 *_ps.out,	 we	 have	 access	 to	 transformation	 waves	 in	 the	
“transformed	 atomic	waves	 -	 davegp”	 block.	 Copy	 every	 line	with	 digits	 only	 in	 the	
block	 into	 a	 ;ile	 called	 “valence-gs.dat”	 for	 the	 ground-state,	 and	 “valence-x.dat”	 for	 the	
excited	state.	

(4)	
Run:	

python	/your/path/to/mbxaspy/sij.py	valence-gs.dat	valence-x.dat	

(5)	
Then	 you’ll	 see	 a	 Sij.dat	 ;ile	 in	 plain	 text,	 which	 is	 the	 overlap	 matrix	 for	 the	
transformation	waves.	 Rename	 it	 as	 “C.pbe-van-1s1.sij”	 and	 place	 it	 in	 the	 XCH	pseudo	
library	so	that	mbxaspy	can	;ind	it	when	the	pseudo	“C.pbe-van-1s1.UPF”	is	provided.	

(6)	
For	 sanity	 checks	 of	 the	 transformation	waves,	 they	 are	 plot	 out	 to	 “wave_gs.png”	 and	
“wave_x.png”.		Use	“eog	;ile_name”	to	visualize	them	if	on	a	cluster.	

(7)	 I f	
you	run	sij.py	 for	 the	same	atom,	 then	you	will	see	Sij.dat	contains	essentially	 the	same	
values	as	Q_int	in	the	atom’s	UPF.	

Running	MBXASPY	

Part	1	Extend	the	previous	shirley_xas	calculations	

(1)	Run	 xas.sh,	 ref.sh,	 and	 ana.sh	 routinely.	 You	 can	 use	 the	 shirley_xas	 on	 the	
master	branch	without	the	many-body	XAS	development.	The	new	many-body	
code	is	compatible	with	older	calculations.	

(2)	On	the	overlap	branch,	a	new	script	XAS_mbxas.sh	 is	added.	Cook	up	a	script	
like	this	to	run	it:	

.	$SLURM_SUBMIT_DIR/Input_Block.in	
	$SHIRLEY_ROOT/scripts/arvid/XAS_mbxas.sh

If	the	previous	xas	step	has	;inished,	this	calculation	is	not	expensive	anyway	
and	 takes	 similar	 time	 as	 shirley_xas.x.	 So	 you	 may	 submit	 it	 to	 the	 debug	
queue	in	most	cases	when	all	Shirley	interpolations	are	done.	

This	step	generates:	
*.eigval	
	
	
eigenvalue	;ile	
*.eigvec	
	
	
eigenvector	;ile		<	B_i	|	nk	>	(transposed)	
*.proj	
	
	
projectors	<beta	|	nk	>		
*.xmat	
	
	
single-particle	matrix	elements	<nk	|	r	|phi_c>	
overlap.dat	
	
the	overlap	matrix	<	B_i	|	~B_j	>	

This	 calculation	will	 be	 done	 automatically	 for	 all	 speci;ied	 excited	 atoms	 in	
the	 system	 and	 the	 ground	 state.	 These	 ;iles	 will	 appear	 in	 the	 working	
directories	 for	 the	 excited	 atoms.	 overlap.dat	 is	 also	 produced	 for	 GS-to-GS	
transformation	and	ideally	it	should	be	an	identity	matrix.	

You	 can	 even	 run	mbxas.sh	without	 any	 one	 of	 xas.sh,	 ref.sh,	 and	 ana.sh	 but	
you	won’t	have	access	 to	*.xmat	 for	all	excited	atoms	(;inal	states)	which	are	
not	needed	for	many-body	XAS,	and	you	don’t	have	access	to	energy	shifts	and	
fermi	levels.		

To	automatically	schedule	all	these	calculations,	you	can	alternatively	checkout	
the	xas_script	on	github:	

git	clone	https://github.com/yufengliang/xas_script	~/xas_script	

and	run:	

~/xas_script/setup_mbxas.sh		
	
	
	
(on	NERSC	Edison)	
~/xas_script/setup_mbxas_cori.sh		
	
	
(on	NERSC	Cori)	

to	produce	all	5	scripts:	xas.sh,	ref.sh,	ana.sh,	state.sh,	and	mbxas.sh.	
		

Part	2	mbxaspy

(1)	Cook	up	an	input	;ile	(normally	called	mbxapy.in)	like	this:	

#	initial(ground)-state	
path_i										=							'XAS/tio2/GS'		#	path	
mol_name_i						=							'tio2'																				#	;ile	pre;ix	
#nbnd_i										=																																							#	number	of	initial	orbitals	(not	used	now)	

#	;inal-state	
path_f										=							'XAS/tio2/O5'				#	path	
#path_f										=							'XAS/tio2/GS'				#	path	
mol_name_f						=							'tio2.O05-FCH'																				#	;ile	pre;ix	
#mol_name_f						=							'tio2'																				#	;ile	pre;ix	
#nbnd_f										=																																							#	number	of	;inal	orbitals	(not	used	now)	

xas_arg									=							5																															#	number	of	k	points	along	one	direction	
gamma_only						=	True
 #	
Using	gamma	point	only
nproc_per_pool		=							2																							#	number	of	procs	used	to	process	one	(spin,	k)
;inal_1p																=	True																																																		#	Need	one-body	;inal-state	spectrum	

xi_analysis													=	True																																																	#	print	out	an	analysis	of	the	xi	matrix	
#do_paw_correction							=	False
 #	
do	PAW	corrections	or	not	
spec0_only	=	False			#	only	want	one-body	spectra

#	spectral	
maxfn	=	1												#	calculate	up	to	f^(maxfn)	order	
I_thr	=	1e-3									#	throw	away	transitions	that	are	below	I_thr	(fractional)	of	the	strongest	one.	

ELOW																				=	-5	
EHIGH																			=	35	
SIGMA																			=	0.6		
NENER																			=	1000	
ESHIFT_FINAL				=	517.976																													#	***	Please	note	that	this	is	the	;inal	ESHIFT	

(2)	Running	mbxaspy	

Command	line:	
Non-anaconda	python:	
python	/your/path/to/mbxaspy/main.py	<	mbxaspy.in	>	mbxaspy.out	&	

Anaconda	distribution	of	python	(as	on	NERSC):	
python	/your/path/to/mbxaspy/main.py		mbxaspy.in	>	mbxaspy.out	&	

MPI	environment	(Anaconda)	
srun	–n	#proc	python	/your/path/to/mbxaspy/main.py		mbxaspy.in	>	
mbxaspy.out	

On	NERSC,	be	sure	to	unload	python	2.7	and	load	3.5-anaconda,	which	is	more	
stable:	

module	load	python/3.5-anaconda

For	 the	 f^(1)	 term	for	one	(spin,	k)	 tuple,	 the	mbxaspy	calculation	 is	actually	
quite	fast	and	you	can	run	it	on	command	line.	It	will	take	couples	of	minutes	at	
most	if	the	system	contains	<	100	atoms.	

Multiple	 (spin,	 k)	 are	 supported	 and	highly	parallelizable	 but	 only	 individual	
spectra	are	printed	out	at	the	end	because	we	still	don’t	know	how	to	combine	
them	for	multiple	k-points.	

Only	one	;inal-state	is	handled	for	each	mbxaspy	calculation.	We	can	do	more	
using	scripts	in	future.	

(3)	Check	mbxaspy.out	for	progress	and	error	messages	

(4)	If	the	code	runs	successfully,	in	the	end	you	will	have	for	each	(spin,k)	tuple:	

spec0_i.dat	
one-body	initial-state	spectrum	

spec0_f.dat		
one-body	;inal-state	spectrum,	if	xas.sh	is	done	and	;inal-state	xmat	has	been	
output.	

spec_xas.dat	
many-body	XAS	spectrum	up	to	f^(maxfn)	order	

spec_xps.dat	
many-body	XPS	spectrum	up	to	f^(maxfn	–	1)	order	

Columns	in	the	spec	;iles	are:	energy	axis,	total,	x,	y,	z		

(5)	To	check	if	the	PAW	corrections	are	done	correctly,	check	test_xi_eig.png	or	
test_xi_eig.dat,	which	contains	all	the	eigenvalues	of	\xi	and	they	should	not	be	
larger	than	1.0.		

♣ 	

