

Manual

Brain Network Construction and Classification Toolbox

BrainNetClass (Version 1.0)

 (Publishing date: 06-17-2019)

Copyright (C) 2019 IDEA Laboratory, Department of Radiology and Biomedical Research Imaging Center (BRIC)

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2

Table of Contents

1. Overview .. 3

2. Installation ... 5

3. Quick running ... 7

4. Inputs file preparation.. 8

5. Brain network construction ... 10

6. Feature extraction and selection .. 13

7. Classification and model evaluation .. 14

8. Before hitting the ‘Run’ button ... 16

9. Result display and guidance of result interpretation ... 17

10. Exemplary data ... 19

11. Batch mode .. 20

References .. 21

3

1. Overview

Brain functional connectivity networks derived from resting-state functional MRI has become an

important and popular technique to understand normative and altered brain functions. Machine

learning on the brain functional networks for individualized classification, prediction, or diagnosis

is booming in recent years. On the pressing demand by the neuroscientists and clinical researchers

who would like to construct the brain functional networks for classification but with limited

knowledge of machine learning or coding, we developed BrainNetClass (v1.0).

The aim of BrainNetClass is to make it easier for neuroscientists, clinicians, and researchers from

other fields conduct state-of-the-art brain network construction and rigorous machine learning-

based classifications in a hassle-free, automatic, and interpretable way. It also helps to facilitate

clinical applications of neuroimaging-based machine learning. It is hoped that this toolbox could be

of help in standardization the methodology and boost reproducibility, generalizability, and

interpretability of the network-based classification.

This toolbox is developed by Zhen Zhou, Xiaobo Chen, Yu Zhang, Han Zhang, and Dinggang Shen.

The brain network construction algorithms were contributed by Lishan Qiao, Renping Yu, Xiaobo

Chen, Yu Zhang, and Han Zhang. This work was supported in part by NIH grants EB022880,

AG049371, AG042599, and AG041721.

For any issues and suggestions, please contact Zhen Zhou (zzstefan@email.unc.edu) and Han Zhang

(hanzhang@med.unc.edu) at UNC-CH. If writing papers using our toolbox, please cite the

following toolbox article. It is also recommended to cite the corresponding methodological paper(s).

Please always cite the toolbox article (to be added).

If using dHOFC, please also cite: [1] Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.,

Alzheimer's Disease Neuroimaging, I., 2016. High-order resting-state functional connectivity

network for MCI classification. Hum Brain Mapp 37, 3282-3296. [2] Zhang, H., Chen, X.,

Zhang, Y., Shen, D., 2017. Test-retest reliability of “high-order” functional connectivity in

young healthy adults. Frontiers in Neuroscience, 11:439. [3] Chen, X., Zhang, H., Shen, D.,

2017. Hierarchical High-Order Functional Connectivity Networks and Selective Feature

Fusion for MCI Classification. Neuroinformatics, 15(3):271-284.

If using tHOFC, please also cite: [1] Zhang, H., Chen, X., Shi, F., Li, G., Kim, M.,

Giannakopoulos, P., Haller, S., Shen, D., 2016. Topographic Information based High-Order

Functional Connectivity and its Application in Abnormality Detection for Mild Cognitive

Impairment, Journal of Alzheimer's Disease, 54(3): 1095-1112. [2] Zhang, H., Chen, X.,

Zhang, Y., Shen, D., 2017. Test-retest reliability of “high-order” functional connectivity in

young healthy adults. Frontiers in Neuroscience, 11:439.

If using aHOFC, please also cite: [1] Zhang, Y., Zhang, H., Chen, X., Lee, S.-W., Shen, D., 2017.

Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for

mailto:zzstefan@email.unc.edu
mailto:hanzhang@med.unc.edu

4

Mild Cognitive Impairment Diagnosis, Scientific Reports, 7: 6530. [2] Zhang, H., Chen, X.,

Zhang, Y., Shen, D., 2017. Test-retest reliability of “high-order” functional connectivity in

young healthy adults. Frontiers in Neuroscience, 11:439.

If using LSR, please also cite: [1] Qiao, L., Zhang, H., Kim, M., Teng, S., Zhang, L., Shen, D.,

2016. Estimating functional brain networks by incorporating a modularity prior. NeuroImage

141, 399-407.

If using SSGSR, please also cite: [1] Zhang, Y., Zhang, H., Chen, X., Liu, M., Zhu, X., Lee, S.-W.,

Shen, D., 2019. Strength and Similarity Guided Group-level Brain Functional Network

Construction for MCI Diagnosis. Pattern Recognition, 88, 421-430.

If using SGR, WSR or WSGR, please also cite: [1] Yu, R., Zhang, H., An, L., Chen, X., Wei, Z.,

Shen, D., 2017. Connectivity strength-weighted sparse group representation-based brain

network construction for MCI classification. Human Brain Mapping, 38(5): 2370-2383.

If using GSR, please also cite: [1] Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D., 2014.

Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment

identification. Brain Struct Funct 219, 641-656.

5

2. Installation

First, download BrainNetClass from the Github site:

https://github.com/zzstefan/BrainNetClass

Together with the toolbox are the manual and exemplary data sets.

The recommended environment for running BrainNetClass is:

MATLAB version 2016b and higher, running on Windows 10 and Ubuntu 16.04 (the two platforms

have been tested successfully but other platforms may also work well).

Warning: If running on a lower version MATLAB, there could be compatibility errors.

The installation of BrainNetClass is similar to setting up other MATLAB toolboxes. Simply

download and unzip the package and add its main folder by using addpath to the MATLAB working

path. There are two options to add path:

• Command line

Type the following command line in the MATLAB command window:

>> addpath(genpath(‘D:\BrainNetClass’));

Where the ‘D: \BrainNetClass’ is the exemplary path of BrainNetClass on your computer.

• Interface

Click ‘Set Path’ on the MATLAB panel, or type ‘pathtool’ in the MATLAB command window.

Click ‘Add with Subfolders…’ button, and select path, i.e., ‘D:\BrainNetClass’.

Click ‘Save’ to save your change. If you do not have permission to save your changes on your

computer (e.g., on the server), please save pathdef.m to another location where you will often launch

MATLAB.

https://github.com/zzstefan/BrainNetClass

6

Warning: Make sure the BrainNetClass path DOES NOT include any space or special character.

Note: BrainNetClass-v1.0 uses libsvm-3.23 and SLEP-4.1 toolboxes. To run the toolbox, we

sometimes need a compiled libsvm library and SLEP library. Although the compiled version of them

are included in the toolbox, we highly recommend user make a compiled version by themselves.

To compile libsvm, after adding path, please type the following in the command window:

>> cd ‘D:\BrainNetClass’;

>> cd ‘toolbox/libsvm-3.23’;

>> mex -setup

To compile SLEP:

>> cd ‘D:\BrainNetClass’;

>> cd ‘toolbox/SLEP_package_4.1’;

>> mex -setup

Note: Compiling of these two packages may require compilers, please refer to

https://www.mathworks.com/support/requirements/supported-compilers.html.

After installation, to run the toolbox, type ‘BrainNetClass’ in the MATLAB command window. The

following GUI window will pop-up.

https://www.mathworks.com/support/requirements/supported-compilers.html

7

3. Quick running

1. Specify the RS-fMRI time series data of all subjects by selecting the folder containing all the

text files (in each text file, the data is arranged as a matrix sized Time × Node). Also, specify a

text-formatted label file containing a column of labels for all subjects (e.g., -1 for patient and 1

for control) in the same order as what the Matlab takes when reading these time series data. The

output directory should be also specified.

2. Choose the network construction method by first selecting the type of brain construction

methods and then the specific method. When choosing a parameter required brain network

construction method, the user needs to specify the parameter range(s) if they do not want to use

the default settings. There are brief explanations of the meanings of the parameters on the panel

above parameter settings for users to check.

3. Select or use predefined feature extraction and feature selection methods. There are also

explanations on the panel above for users to check.

4. Choose model evaluation or cross-validation method. If choosing 10-fold cross-validation,

users might also want to specify how many times the 10-fold cross validation will be repeated.

5. After clicking the Run button and waiting for all the processes completing as an ‘All Jobs

Completed’ window will pop out, all the results will be printed out on the result panel and the

suggested parameters panel (if applicable).

6. A full log of results for a hassle-free report is also generated in the result folder.

7. The users may also want to test the performance of other baseline methods, such as PC and SR,

to compare with the state-of-the-art by repeating the above steps.

8

4. Inputs file preparation

First, the user should specify the input folder that contains ALL of the input data files from ALL

subjects. There are time series files and a label file, both of which should be in the *.txt file format.

The format of the regional time series file (e.g., 001.txt, 002.txt …) should be the same as that of

the provided exemplary data (see the left panel of the figure below). For each subject, there should

be one *.txt file, which must be a matrix with rows denoting the time points and columns

representing the ROIs. Each subject’s data is in each file. The time series data can be obtained by

the DPABI toolbox (http://rfmri.org/dpabi), REST toolbox (http://restfmri.net/forum/REST_V1.8),

DPARSFA toolbox (http://rfmri.org/dpabi), or other software. For DPABI/REST/DPARSFA, using

‘extracting ROI time series’ function. For preprocessing of raw fMRI data, please see these

toolboxes’ manuals. The user should put all this extracted time series text files into a single folder

without any other files and set this folder as the input directory. The label text file should be prepared

like the following figure (right panel), with each label located in one line for each subject in an order

corresponding to the order of time series data. E.g., -1 represents patient and 1 represents control.

Warning: Make sure the order of two inputs is EXACTLY matched. If not sure, please check the

‘Current Folder’ window in MATLAB to get the idea of the ordering information for the time series

files. To avoid confusion, it is recommended to use the following naming convention:

ROISignals_sub0001.txt, ROISignals_sub0002.txt, … The label should be in the same order (and

should be only -1 and 1).

http://rfmri.org/dpabi
http://restfmri.net/forum/REST_V1.8
http://rfmri.org/dpabi

9

The output directory should also be specified at the beginning. The user may need to create an empty

folder and use it to store the final results. Remember every time you run the toolbox, all the old

result files in the result folder will be covered by new results. We suggest the user stores the saved

results elsewhere when setting up a new running process. Right after the inputs being specified, like

this:

10

5. Brain network construction

Then, the user should choose which brain construction method to use. The available methods can

be categorized into two types: those with No Parameter Required (Network Type I), e.g., PC,

aHOFC and tHOFC, and those with Parameter Required (Network Type II), e.g., SR, GSR, WSR,

WSGR, SGR, SSGSR, SLR, and dHOFC. For details, see below and please refer to the mentioned

original papers.

Tips: It is recommended that users select only one method that is assumed most appropriate for their

own study. In addition to the main method, the PC and SR can be used as baseline methods. Please

avoid blind selecting and testing all methods and only reporting the one with the best result, because

it violates the rule of machine learning, as the optimized model is determined based on the testing

data. If the sample size is large (e.g., > 200), better choose Network Type I, as parameter

optimization could be time-consuming. If physical memory is low (e.g., < 16GB), better choose

Network Type I. If the data is noising, Network Type II is better, as they may effectively reduce

noise.

Below is a brief explanation of all the available brain network construction methods. For more

details, please see the toolbox paper (to be added) and their respective original papers listed behind.

1. PC: Pearson’s correlation. The most conventional method. It can be used as a baseline

method. No parameter is required.

2. SR: Sparse representation with an L1-norm constraint. One parameter is required. When you

expect the network is sparse or there is heavy noise in the data, you may use it. It can also be

used as a baseline method.

3. GSR: Group sparse representation. It makes sure that all subjects have similar FC network

pattern. One parameter is required. (Wee et al., 2014)

4. SSGSR: Generate within-group similar networks but retain necessary between-group

difference. Two parameters are required. (Zhang et al., 2019)

5. SGR: Sparse group representation. Combining L1-norm and Lq,1-norm to preserve certain

structured information in the adjacency matrix. Two parameters are required. (Yu et al., 2017)

6. WSR: FC-weighted SR. SR-based network construction but with strong FC preserved. One

parameter is required. (Yu et al., 2017)

7. WSGR: Similar to SGR but with strong FC preserved. Two parameters are required. (Yu et

al., 2017)

8. LSR: Low-rank constraint-based SR. Make sure that the network is both sparse and structured

(having some modular structures). Two parameters are required. (Qiao et al., 2016)

9. tHOFC (topographical similarity-based HOFC): A high-order FC metric, the inter-regional

functional relationship is estimated by the FC topological similarity rather than the BOLD

signal similarity. No parameter is required. (Zhang et al., 2016)

10. aHOFC (associated HOFC): A further step from tHOFC measuring inter-level HOFC (the

similarity between HOFC and conventional FC topological profiles. No parameter is required.

(Zhang et al., 2016)

11

11. dHOFC: Dynamic FC-based HOFC that measures temporal synchronization of dynamic FC

time series. Two parameters are required. (Chen et al., 2016)

Tips: How to choose network construction methods

• If users want to use a simple yet reliable network construction method, PC, tHOFC, and aHOFC

are suggested. Compared to PC, tHOFC and aHOFC are more robust to noise yet interpretable, and

most importantly, they provide supplementary information to PC.

• By using the dynamic FC, dHOFC could capture more high-level complex interaction among brain

regions and perform better than the conventional low-order static FC. Therefore, for diseases (e.g.,

mental disorders) assumed to have little alterations in the brain network, dHOFC is suggested.

• Therefore, for data the potentially higher noise level, SR-based methods can be used. If the brain

networks generated too sparse, the user may choose WSR, WSGR, or SLR to make the estimated

network less sparse, contain more strong connections, or have certain structures. If the data look

quite heterogeneous across subjects and the PC-based networks show large variability (which might

be caused by the noise and artifacts), users may choose group-wise sparse representation, such as

GSR or SSGSR, to make the networks more topologically identical across individuals.

Note: It is not required to pre-specify parameters for the Network Type I, but when choosing a

method in Network Type II, the user needs to specify the related parameter(s) by entering the ranges

of it (them). Although the user could use the default parameter ranges given by the toolbox, it is

recommended to carefully choose them, as the parameters could significantly affect the constructed

brain networks and the classification results. The toolbox will provide default parameter range(s)

for users but they are allowed to change the default parameters based on their own preferences.

For example, as shown in the figure below, the default ranges for both parameters (λ1 and λ2) of

the SSGSR method are from 0.01 to 0.1 with the increment of 0.01, i.e., [0.01 0.02 0.03 0.04 0.05

0.06 0.07 0.08 0.09 0.1]. Also, it can be set as [2^-4 2^-3 2^-2 2^-1 2^0 2^1 2^2 2^3 2^4] (indicating

[2-4 2-3 2-2 2-1 20 21 22 23 24]). The roles or functions of the λ1 and λ2 are shown in the

panel below in blue.

12

For all the SR-based methods, we have 𝜆1 (and 𝜆2) to be specified, while for the dHOFC method,

we have window length and number of clusters to be specified since it uses dynamic functional

connectivity.

Tips: The memory needed and computation time are related to the sample size, number of ROIs in

the template, brain network construction method, and parameter range (if applicable). We

recommend use computing clusters or servers with a good amount of memory.

13

6. Feature extraction and selection

After choosing a network construction method, the user needs to choose the methods for feature

extraction and selection. We provide two types of feature extraction methods: connection

coefficients (i.e., directly use the connectivity strength of each link as features) and local clustering

coefficient (i.e., one of the widely used nodal character calculated based on a weighted graph). For

more details, please see (Chen et al., 2016; Zhang et al., 2019).

If the user chooses a network construction method requiring no parameters, he/she will then choose

the method for feature extraction (i.e., connection coefficients and weighted local clustering

coefficients) and selection (i.e., t-test, LASSO, and t-test + LASSO).

If the user chooses a network construction method requiring a parameter(s), specific feature

extraction/selection method will be automatically suggested to the user and it may be changed. For

example, for the SR-based methods, users are restricted to use the connection-based coefficients as

features combining with t-test+LASSO to perform feature selection (see the figure below). For the

dHOFC method, users are restricted to use weighted-graph local clustering coefficients as features

and LASSO to perform feature selection.

Note: The default threshold used for the t-test is p < 0.05. The hyper-parameter used for LASSO is

0.1. If the user wants to change these settings, please go to BrainNetClass.m file in the toolbox’s

path to change the settings. For example, one may change the value at the end of ‘[Line 119]

handles.default.lasso_lambda=0.1’ to any value. By decreasing it, the number of selected

parameters will be larger, and vice versa.

14

7. Classification and model evaluation

We provided two types of cross-validation strategies (see figure below). The first one is leave-one-

out cross-validation (LOOCV) and the other is 10-fold cross-validation. If the sample size is large,

we recommend the 10-fold cross-validation to save time. With a limited sample size, we recommend

LOOCV. Of note, Notably, 10-fold cross validation will be run for many times (default: 10 times,

the user may specify more than 10 times, e.g., 100, but it will increase the processing time). This is

because the result of 10-fold cross validation heavily depends on data partitioning.

There is a ‘Parameter Sensitivity Test’ function provided to assess the effects of the hyper-

parameters on classification accuracy using LOOCV with all the subjects. See (Zhang et al., 2019)

for the rationale for doing so. It is suggested to do so and include the result in the paper. When the

user chooses any parameter-required brain network construction method, the parameter sensitivity

test will be chosen automatically. While it is free to be de-selected, we still encourage the user to

choose the parameter sensitivity test, because it will not take too long time to run and will provide

a valuable result in terms of model sensitivity.

The toolbox also automatically counts the selection occurrence (%) of each combination of the

parameters. This information can be used to evaluate model robustness and is thus suggested to

include in the paper. For a robust model, there should be one value of the parameter (or one

combination of the parameters) significantly selected more than others.

In addition to the numeric classification performance evaluations and the ROC curve, the user may

also want to know which features contributed more (a.k.a., contributing features) or more important

to the disease classification. We thus provide the averaged weight derived from the SVM across all

15

the cross-validation runs for each feature as the feature importance measure. Another quantitative

measurement of feature importance, i.e., the selection occurrence of each feature being selected in feature

selection across all cross-validation runs, could also indicate feature importance. The more frequently a

feature has been selected, the more important this feature could be.

For dHOFC method, the resultant important features will be some clusters including some

nodes/edges and they will be saved in a different way. The saved result (‘result_features.mat’ in the

result folder) will be a cell array with four columns, representing the selection occurrence of each

feature (cluster), the indices of the involved nodes in each cluster, a matrix indicating the

connections in each cluster (nROI  nROI, if there is a connection between two nodes, then the

value of this connection is set to 1), and the mean weight for each feature (cluster), respectively.

For other methods, if connection coefficients are used as features, the saved result will be a cell

array with two elements. One is a matrix (nROI  nROI) with each connection set to the averaged

weight of the connection. The other is a matrix (nROI  nROI) with each connection set to the

normalized occurrence (%) of the connection. If local clustering coefficients are used for features,

then the saved result will be a cell array with two elements. One is a vector (in a length of nROI)

with each element representing an averaged weight of this node. The other is also a vector at the

same length with each element representing the normalized occurrence (%) of this node.

Besides, we also show the group-averaged brain network (which is saved as

‘Mean_optimal_negativeLabel_network_.mat’ and ‘Mean_optimal_positiveLabel_network_.mat’

in the result folder) in a form of two weighted adjacency matrices for each group constructed by the

optimal parameter(s) if the user chooses the parameter needed brain network construction methods.

For methods requiring no parameter, we just averaged the constructed brain network within each

group.

Another unique feature of our toolbox is that it saves the optimal classification model

(‘saved_model.mat’ in the result folder). With new data coming, the saved model can be simply

applied on the new data to decide the type of the new data (i.e., patient or normal control), omitting

the training and testing process, which will highly improve the efficiency.

16

8. Before hitting the ‘Run’ button

We have set up some reminders for the user to let them better use the toolbox. When the user chooses

a certain brain network construction method, if he/she forgets some settings (i.e., feature

extraction/selection method), a dialog box will pop out to remind the user, which are shown as below:

or

After all the settings are successfully set up, the user is ready to run the toolbox. There is also a

reminder of how much memory the toolbox could use when choosing one of the parameter-required

network construction methods (or Type II network construction methods; for Type I method,

memory usually is not a big concern). For example, when the user chooses dHOFC, a dialog box

will pop up showing the estimated memory that running the entire analysis will require as below. In

this example, at least 5.72 GB physical memory is needed. Note that it is just a rough estimation, it

may need more than 5.72 GB in reality. If the user feels that there is not enough memory left, he/she

may change to a computing cluster/server with more memory, or choose a network construction

method without parameter optimization (i.e., Type I method), or he/she can narrow down the range

of the parameters to be tuned (for example, by changing the parameter sampling strategy from [0.01

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1] to [0.01 0.03 0.05 0.07 0.09]).

17

9. Result display and guidance of result interpretation

Once all the data analysis process has been finished, a dialog box pops out, as shown below. If not,

please wait for this dialog box before doing anything further, as the toolbox is still running.

When all the computational processes are finished, the model performance will be displayed on the

GUI panel (see the left panel of the figure below). The results are also recorded and saved in a log

file (in *.txt format). This log file records the method used to construct the brain network, the

parameters the user specified, feature extraction and selection methods, cross-validation methods,

suggested parameter(s), the occurrence of parameters, and the performance of the classifier (see the

right panel of the figure below).

Furthermore, if the user chooses the parameter-required network construction methods and go

through the whole process (i.e., the parameter sensitivity test), the toolbox will generate five figures

in the result folder (see the figure below), which are:

a) Receiver Operating Characteristic (ROC) curve of the classification performance;

b) Classification accuracy from the parameter sensitivity test;

c) Parameter selection occurrence;

d) Averaged optimal network for each group;

e) Contributing features, showing as averaged weight and normalized occurrence.

18

The toolbox also generates four *.mat files in the result folder:

a) Mean_optimal_negativeLabel_network_.mat

b) Mean_optimal_positiveLabel_network_.mat

c) result_features.mat

d) saved_model.mat

For more interpretation of these generated results, please see the toolbox paper.

19

10. Exemplary data

We provide some exemplary data for the users to get familiar with the usage of the toolbox. The

data is from http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html (Beijing: Eyes Open

Eyes Closed Study). The goal is to use resting-state fMRI time series from 116 brain regions to

construct brain functional networks and predict whether the subject is in eyes closed state or eyes

open state. There is a full version (with longer running time but better classification result) and a

simplified version of the data (with shorter running time, for fast running). The labels (EC, EO) are

provided with two versions as well (see label.txt and label_simple.txt). For more details and more

experiments, please see the toolbox paper (to be added).

http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html

20

11. Batch mode

In addition to the GUI-based mode, BrainNetClass also offers a batch mode.

The batch mode is for advanced users.

The related functions can be found in ‘BatchExamples’ folder in the main folder of the toolbox,

which includes:

1. ‘param_select_demo.m’

This is a main batch-process function for all Type-II network-based classification, which requires

parameter optimization. It will be called by the provided demo function in 3 and generate some

results (ROC curve and other model evaluation metrics, parameter sensitivity test result). More

modules will be added in this demo in future versions.

2. ‘no_param_select_demo.m’

This is a main batch-process function for all Type-I network-based classification, which does not

require parameter optimization. It will be called by the provided demo function in 3 and generate

some results (ROC curve and other model evaluation metrics). More modules will be added in this

demo in future versions.

3. ‘run_EC_EO_demo.m’

This is an exemplary demo function for users to conduct a two-class classification using dHOFC

(the main method), SR (one of the baseline methods), and PC (one of the baseline methods). It

calls main functions in 1 and 2. Users may modify it according to their own preference. For details

of the inputs and outputs, please see ‘param_select_demo.m’ and ‘no_param_select_demo.m’.

Exemplar data inputs are provided in the ‘BatchExamples’ folder, which contain ‘ECEO_label.

mat’ and ‘ECEO.mat’. User can run ‘run_EC_EO_demo.m’ with these inputs.

21

References

Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D., Alzheimer's Disease Neuroimaging, I.,

2016. High-order resting-state functional connectivity network for MCI classification. Hum Brain

Mapp 37, 3282-3296.

Qiao, L., Zhang, H., Kim, M., Teng, S., Zhang, L., Shen, D., 2016. Estimating functional brain

networks by incorporating a modularity prior. Neuroimage 141, 399-407.

Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D., 2014. Group-constrained sparse fMRI

connectivity modeling for mild cognitive impairment identification. Brain Struct Funct 219, 641-

656.

Yu, R., Zhang, H., An, L., Chen, X., Wei, Z., Shen, D., 2017. Connectivity strength-weighted sparse

group representation-based brain network construction for MCI classification. Hum Brain Mapp 38,

2370-2383.

Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., Shen, D., 2016.

Topographical Information-Based High-Order Functional Connectivity and Its Application in

Abnormality Detection for Mild Cognitive Impairment. J Alzheimers Dis 54, 1095-1112.

Zhang, Y., Zhang, H., Chen, X., Liu, M., Zhu, X., Lee, S.-W., Shen, D., 2019. Strength and similarity

guided group-level brain functional network construction for MCI diagnosis. Pattern Recognition

88, 421-430.

