Rypyryting

BICYCLE OWNER'S MANUAL

Bicycle Owner's Manual

IMPORTANT:

This manual contains important safety, performance and service information. Read it before you take the first ride on your new bicycle, and keep it for reference.

Additional safety, performance and service information for specific
components such as suspension or pedals on your bicycle or for components such as suspension or pedals on your bicycle, or for accessories such as helmets or lights that you purchase, may also be
available. Make sure that your dealer has given you all the manufacturers' literature that was included with your bicycle or accessories. In case of a conflict between the instructions in this manual and information provided by a component manufacturer, always follow the component manufacturer's instructions.

If you have any questions or do not understand something, take
responsibility for your safety and consult with your dealer or the bicycle's manufacturer.

NOTE:
This manual is not intended as a comprehensive use, service, repair or maintenance manual. Please see your dealer for all service, repair
maintenance. Your dealer clinics or books on bicycle use, service, repair or maintenanc You may also purchase repair manuals at: www.bbinstitute.com Note this manual is available online at: www.marinbikes.com/manuals Please note that Marin customer service for USA/Canada purchasers is at: www.marinbikes.com/customer_service

PRODUCT REGISTRATION:
In order to improve warranty service you must completely fill out the online Bicycle Registration at time of purchase.
Bicycle Registration at time of purchase.
This can be found at: http://www.marinbikes.com/registration. To see Marin's current limited warranty and related warranty clain information please visit: http://www.marinbikes.com/warranty
Outside the USA and Canada the WARRANTY REGISTRATION CARD included in the back of this Owners Manual must be filled out immediate and returned to the Marin Bikes distributor in your country or at their
website if that distributor offers wet based warranty registration. The website if that distributor offers web based warranty registration. The contact information of the distributor in the country in which you bought the
bicycle is listed at: www.marinbikes.com/international_distributors
Please do not assume that the Warranty policies shown for the USA and Canada apply in your country. Warranty policies vary depending upon the Marin Distsibutor in the country of your purchase. Please check with your covering your purchase or check: www.marinbikes.com/warranty

CONGRATULATIONS!

You've just bought one of the finest bicycles in the world; a Marin! Since our beginning in 1986 , we've been developing and refining the qualty
our bicycles. We have been an industry leader, working with top name suppliers to identify the best new materials and latest developments in technology. All of these improvements are the result of several factors:
First: We race our top end bicycles on the toughest trails and roads in the world through our national and international race teams in North America and Europe.
Second: We ride and refine the bicycles ourselves. We are bicycle enthusiasts, and ane been since our inception. We ride Marin bikes dail collection of durable, lightweight, high-performance bicycles that we're sure you will be proud to own and ride.
We are extremely proud of the products we offer, and the service offered by our staff and our distributors. We have been, recognized year after year
and in 40 countries around the world, for our superior frame designs and unique performance characteristics. We are certain our hard work will be evident every time you go fora ride. So here's wishing you many years of enjoyment!

Thanks for investing in a Marin
Marin Bikes

Table of Contents

anderal warning

ASpecial Note for Pa

Chapter 4: Tech

 2. Wheels with Cam Action Systems 3. Removing and Installing Whee B. Seat Post Cam Action Clamp.
C. Brakes...
D. Shifting Gears.
F. Bicycle Suspensio.

Chapter 5: Service $\ldots . .32$

Chapter 2: Safety
A. The Basics....
C. Off Road Safety........................
D. Wet Weather Ridin
E. Night Riding.
F. Extreme, Stur
G. Changing Colut or Competition Riding
G. Changing Components or Adding Accessories..

Chapter 3: Fit
 A. Standover Height.
 C. Handlebar Height and Angle
 D. Control Position Adjustments.

A. Service Intervals...........................
B. If Your Bicycle Sustains an Impact.

Appendix A: Intended Usebe and is ComporentsAppendix C: Coaster Brakes, 42
Appendix D: Fastener Torque Specifications

GENERAL WARNING:

Like any sport, bicycling involves risk of injury and damage. By choosing
to ride a bicycle, you assume the responsibility for that risk, so you need to know - and to practice - the rules of safe and responsible riding and of proper use and maintenance. Proper use and maintenance of your bicycle ,

This Manual contains many "Warnings" and "Cautions" concerning the consequences of falure to
follow safe cycling practices.
-The combination of the safety alert symbol \triangle and the word WARNING indicates a potentially hazardous situation which, if not avoided, could result in serious injury or death.
-The combination of the safety alert symbol \triangle and the word CAUTION indicates a potentially hazardous situation which, if not avoided, may result minor or moderate injury, or is an alert against unsafe practices.
-The word CAUTION used without the safety alert symbol indicates a
situation which, if not avoided, could result in serious damage to the bicycle situation which, if not avoided,
or the voiding of your warranty.

Many of the Warnings and Cautions say "you may lose control and fall"
Because any fall can result in serious injury or even death, we do not Because any fall can result in serious injury or even
always repeat the warning of possible injury or death

Because it is impossible to anticipate every situation or condition which can occur while riding, this Manual makes no representation about the safe use
of the bicycle under all conditions. There are risks associated with the use of the bicycle under all conditions. There are risks associated with the use
of any bicycle which cannot be predicted or avoided, and which are the sole responsibility of the rider.

A Special Note for Parents:

As a parent or guardian, you are responsible for the activites and safety of
your minor child, and that includes making sure that the bicycle is properly fitted to the child; that it is in good repair and safe operating condition; that you and your child have learned and understand the safe operation of the bicycle; and that you and your child have learned, understand and obey not
only the applicable local motor vehicle, bicycle and traffic laws, but also the
 should read this manual, as well as review its warnings and the bicycle's functions and operating procedures with your child, before letting your child
ride the bicycle.

WARNING: Make sure that your child always wears an approved bicycle helmet when riding; but also make sure that your child understands that a bicycle helmet is for bicycling only, and must be removed when not riding. A helmet must not be worn while playing, in
play areas, on playground equipment, while climbing trees, or at any play areas, on playground equipment, while climbing trees, or at any
time while not riding a bicycle. Failure to follow this warning could result in serious injury or death.

Chapter 1: First

NOTE: We strongly urge you to read this Manual in its entirety before your first ride. At the very least, read and make sure that you understand each
point in this section, and refer to the cited sections on any issue which you don't completely understand. Please note that not all bicycles have of the features described in this Manual. Ask your dealer to point out the

A. Bike Fit

1. Is your bike the right size? To check, see Section 3.A. If your bicycle is bike is not the right size, ask your dealer to exchange it before you ride
2. Is the saddle at the right height? To check, see Section 3.B. If you adjust your saddle height, follow the Minimum Insertion instructions in Section
3.B. 3.B.
3. Are saddle and seat post securely clamped? A correctly tightened saddle will allow no saddle movement in any direction. See Section 3.B.
4. Are the stem and handlebars at the right height for you?

If not, see Section 3.C.
5. Can you comfortably operate the brakes? If not, you may be able adjust their angle and reach. See Section 3.D and 3.E.
6. Do you fully understand how to operate your new bicycle?
6. Do you fully understand how to operate your new bicycle?
If not, before your first ride, have your dealer explain any functions or
B. Safety Firs
1.Always wear an approved helmet when riding your bie helme
2. Do you have all the other required and recommended safety equipment? .tis your responsibility to familiarize yourself with the laws of the areas where you ride, and to comply with all applicable laws.
3. Do you know how to correctly secure your front and rear wheels? Check Section 4.A. 1 to make sure. Riding with an improperly secured wheel can cause the wheel to wobble or disengage from the bicycle, and cause sinury or death.
4. If your bike has toeclips and straps or clipless ("step-in") pedals, make sure you know how they work (see Section 4.E). These pedals require
special techniques and skills. Follow the pedal manufacturer's instructions for use, adjustment and care.
5. Do you have "toe overlap"? On smaller framed bicycles your toe or toeclip may be able to contact the front wheel when a pedal is all the way
forward and the wheel is turned. Read Section 4 E to chack whether you have toeclip overlap. have toeclip overlap.
6. Does your bike have suspension? If so, check Section 4.F. Suspension can change the way a bicycle performs. Follow the suspension manufacturer's instructions for use, adjustment and care

Routinely check the condition of your bicycle before every ride
Nuts, bolts screws \& other fasteners: Nuts, bolts screws \& other fasteners: Because manufacturers use a
wide variety of fastener sizes and shapes made in a variety of materials wide variety of fastener sizes and shapes made in a variety of materials,
often differing by model and component, the correct tightening force or otten aiferering by modee and component, the correct tightening force or
torque cannot be generalized. To make sure that the many fasteners on your bicycle are correctly tightened, refer to the Fastener Torque Specifications in Appendix D of this manual or to the torque specifications in the instructions provided by the manufacturer of the component in question. Correctly tightening a fastener requires a calibrated torque wrench. A professional bicycle mechanic with a torque wrench should torque the fasteners on you bicycle. If you choose to work on your own bicycle, you must use a torque wrench and the correct tightening torque
specifications from the bicycle or component manufacturer or from your dealer. If you need to make an adjustment at home or in the field, we urge you to exercise care, and to have the fasteners you worked on checked by your dealer as soon as possible.

WARNING: Correct tightening force on fasteners -nuts, bolts, screws- on your bicycle is important. Too little force, and the fastener may not hodd securely. Too much force, and the
fastener can strip threads, stretch, deform or break. Eithe way, incorrect tightening force can result in component failure, which can cause you to loose control and fall.

Make sure nothing is loose. Lift the front wheel off the ground by two or three inches, then let it bounce on the ground. Anything sound, feel or look loose? Do a visual and tactile inspection of the whole bike. Any loose parts or accessories? If so
with experience to check.
4.G.1). Check by putting one hand on the saddle, one on the intersection of the handlebars and stem, then bouncing your weight on the bike whil you know the tires are correctly inflated; and adjust if necessary. Tires in good shape? Spin each wheel slowly and look for cuts in the tread and sidewall. Replace damaged tires before riding the bike. \square Wheels true? Spin each wheel and check for brake clearance and side-to-side wobble. If a wheel wobbles side to side even slightly, or rub against or hits the brak

CAUTION: Wheels must be true for rim brakes to work and experience. Do not attempt to true a whel unecial tools and experience. Do not attempt to true a wheel unless you h
the knowledge, experience and tools needed to do the job correctly.
Wheel rims clean and undamaged? Make sure the rims are clean and undamaged at the tire bead and, if you have rim brakes, along the braking visible at any point on the wheel rim.

WARNING: Bicycle wheel rims are subject to wear. Ask your dealer about wheel rim wear. Some wheel rims have a rim wear ndicator which becomes visible as the rim's braking surface is an indication that the wheel rim has reached its maximum usable life. Riding a wheel that is at the end of its usable life can result in wheel failure, which can cause you to loose control and fall.

Brakes: Check the brakes for proper operation (see Sections 4.C).

Squeeze the brake levers. Are the brake quick-releases closed? All control

 s seated and securely engaged? If you have rim brakes, do the brake pads contact the wheel rim squarely and make full contact with the rim?Do the brakes begin to engage within an inch of brake lever movement? Can you apply full braking force at the levers without having them touch the handlebar? If not, your brakes need adjustment. Do not ride the bike until the brakes are properly adjusted by a professional bicycle mechanic. the front and rear wheels are correctly secured. See Section 4.A
Seat post: If your seat post has an over-center cam action fastener for easy height adjustment, check that it is properly adjusted and in the locked position. See Section 4.B.
\square Handlebar and saddle alignment: Make sure the saddle and handlebar stem are parallel to the bike's center line and clamped tight enough so that you can't twist them out of alignment. See Sections 3.B and 3.C.
\square
Ha

Handlebar ends: Make sure the handlebar grips are secure and in good condition. If not, have your dealer replace them. Make sure the good condition. If not, have your dealer replace them. Make sure the
handlebar ends and extensions are plugged. If not, have your dealer plug
them before you ride. If the handlebars have bar end extensions, make sure they are clamped tight enough so you can't twist them.
WARNING: Loose or damaged handlebar grips or extensions can cause you to lose control and fall. Unplugged handlebar or extensions can cut you and cause serious injury in an

VERY IMPORTANT SAFETY NOTE:
Please also read and become thoroughly familiar with the importan Appendix B on Page 43 .
D. First Ride

When you buckle on your helmet and go for your first familiarization ride on your new bicycle, be sure to pick a controlled environment, away from cars, other cyclists, obstacles or other hazards. Ride to be
controls, features and performance of your new bike.
Familiarize yourself with the braking action of the bike (see Section 4.C). Test the brakes at slow speed, putting your weight toward the rear and gently applying the brakes, rear brake first. Sudden or excessive
application of the front brake could pitch you over the handlebars. Applying brakes too hard can lock up a wheel, which could cause you to lose control
and fall. Skidding is an example of what can happen when a whel and fal
up.

If your bicycle has toeclips or clipless pedals, practice getting in and out of the pedals. See paragraph B. 4 above and Section 4.E.4.

If your bike has suspension, familiarize yourself with how the suspension responds to brake application and rider weight shifts. See paragraph B.

Practice shifting the gears (see Section 4.D). Remember to never move the shifter while pedaling backward, nor pedal backwards immediately after having moved the
damage to the bicycle.

Check out the han
If you have any questions, or if fel and should be, consult your dealer before you ride again.

Chapter 2: Safety

A. The Basics

WARNING: The area in which you ride may require specific safety devices. It is your responsibility to familiarize yourself with the law,
of the area where you ride and to comply with all applicable laws, including properly equipping yourself and your bike as the law requires.
Observe all local bicycle laws and regulations. Observe regulations about bicycle lighting, licensing of bicycles, riding on sidewalks, laws regulating bike path and trail use, helmet laws, child carrier laws, special bicycle traffic laws. It's your responsibility to know and obey the laws.

1. Always wear a cycling helmet which meets the latest certification standards and is appropriate for the type of riding you do. Always follow the helmet manufacturer's instructions for fit, use and care of your helmet. Most serious bicycle injuries involve head injuries which might have been avoided if the rider had worn an ronriate helmet.

WARNING: Failure to w
serious injury or death.
2. Always do the Mechanical Safety Check (Section 1.C) before you get on a bik.
3. Be thoroughly familiar with the controls of your bicycle: brakes 3. Be thoroughly familiar with the controls of your bicycle: brate
(Section 4.C.); pedals (Section 4.E.); shifting (Section 4.D.)

Be careful to keep body parts and other objects away from the sharp teeth of chainrings, the moving chain
5. Always wear:
. Always wear:
Shoes that will stay on your feet and will grip the pedals. Make sure that shoe laces cannot get into moving parts, and never ride barefoot or in andals.
Bright, visible clothing that is not so loose that it can be tangled in the icycle or snagged by objects at the side of the road or trail. Protective eyewear, to protect against airborne dirt, dust and bugs tinted when the sun is bright, clear when it's not.
6. Don't jump with your bike. Jumping a bike, particularly a BMX or mountain bike, can be fun; but it can put huge and unpredictable stress on he bicycle and its components. Riders who insist on jumping their bikes attempt to jump, do stunt riding or race with your bike, read and understan Section 2.F.
7. Ride at a speed appropriate for conditions. Higher speed means higher risk.

B. Riding Safety

1. Obey all Rules of the Road and all local traffic laws.
2. You are sharing the road or the path with others - motorists,
pedestrians and other cyclists. Respect their rights. pedestrians and other cyclists. Respect their rights.
3. Ride defensively. Always assume that others do not see you.
4. Look ahead, and be ready to avoid
-Vehicles slowing or turnin or coming up behind you.

- Parked car doors opening.
- Pedestrians stepping out
- Children or pets playing near the road.
- Pot holes, sewer grating, railroad tracks, expansion joints, road or sidewalk construction, debris and other obstructions that could cause yo
to swerve into traffic, catch your wheel or cause you to have an accident - The many other hazards and distractions which can occur on a bicycle ${ }^{-}$The ride.

5. Ride in designated bike lanes, on designated bike paths or as close to the edge of the road as possible, in the direction of traffic flow or as directed by local governing laws.
6. Stop at stop signs and traffic lights; slow down and look both ways at street intersections. Remember that a bicycle always loses in a collision with a motor vehicle, so be prepared to yield even if you have the right of way.
7. Use approved hand signals for turning and stopping
8. Never ride with headphones. They mask traffic sounds and emergency vehicle sirens, distract you from concentrating on what's going on around you to lose contros can tangle in the moving
9. Never carry a passenger, unless it is a small child wearing an approved helmer and secured in a correctly mounted child carrier or a child-carrying
trailer.

Never carry anything which obstructs your vision or your complete parts of the bicycle.

1. Never hitch a ride by holding on to another vehicle.
2. Don't do stunts, wheelies or jumps. If you intend to do stunts, heelies, jumps or go racing with your bike despite our advice not to ead Section 2.F, Downhill, Stunt or Competition Biking, now. Think with this kind of riding.
3. Don't weave through traffic or make any moves that may surprise people with whom you are sharing the road
4. Observe and yield the right of way.
5. Never ride your bicycle while under the influence of alcohol or drugs.
6. If possible, avoid riding in bad weather, when visibility is obscured, at dawn, dusk or in the dark, or when extremely tired. Each of these conditions increases the risk of accident.

We recommend that children not ride on rough terrain unless they are by an adult.

1. The variable conditions and hazards of off-road riding require close attention and specific skills. Start slowly on easier terrain and build up your skills. If your bike has suspension, the increased speed you may develop also
increases your risk of losing control and falling. Get to know how to handle your bike safely before trying increased speed or more difficult terrain.
2. Wear safety gear appropriate to the kind of riding you plan to do.
3. Don't ride alone in remote areas. Even when riding with others, make sure that someone knows where you're going and when you expect to be back.
4. Always take along some kind of identification, so that people know who you are in case of an accident; and take along some cash for food, a cool drink or an emergency phone call.
5. Yield right of way to pedestrians and animals. Ride in a way that does not frighten or endanger them, and give them enough room so that their unexpected moves don't en
6. Be prepared. If something goes wrong while you're riding off-road, help may not be close.
7. Before you attempt to jump, do stunt riding or race with your bike, read and understand Section 2.F

Off Road respect

Obey the local laws regulating where and how you can ride off-road, and respect private property. You may be sharing the trail with others - hikers, equestrians, other cyclists. Respect their rights. Stay on the designated sliding. Don't disturb the ecosystem by cutting your own trail or shortcut through vegetation or streams. It is by cur responsibility to triil or shortcut through vegetation or streams. It is your responsibility to minimize your
impact on the environment. Leave things as you found them; and always impact on the environment. Leave things as you found them; and always ake out everything you brought i

D. Wet Weather Riding

WARNING: Wet weather impairs traction, braking and visibility both for the bicyclist and for other vehicles sharing the road. The risk of an accident is dramatically increased in we conditions.

Under wet conditions, the stopping power of your brakes (as well as the brakes of other vehicles sharing the road) is dramatically reduced and your tires don't grip nearly as well. This makes it harder to control speed and easier to lose control. To make sure that you can slow down and stop more gradually than you would under normal, dry conditions. See also more gradual
Section 4.C.
E. Night Riding

Riding a bicycle at night is much more dangerous than riding during
the day. Abicyclist is very difficult for matorists and pedestrins to the day. A bicyclist is very difficult for motorists and pedestrians to see. Therefore, children should never ride at dawn, at dusk or at night. Adults
who chose to accept the greatly increased risk of riding at dawn, at dusk or at night need to take extra care both riding and choosing specialized
equipment which helps reduce that risk. Consult your dealer about night
equipment which helps
riding safety equipment.
WARNING: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system and
without reflectors is dangerous and may result in serious injury or death.

Bicycle reflectors are designed to pick up and reflect car lights and stree lights in a way that may help you to be seen and recognized as a moving
bict

CAUTION: Check reflectors and their mounting brackets regularly to make sure that they are clean, straight, unbrok and securely mounted. Have your dealer replace damaged
reflectors and straighten or tighten any that are bent or loose

The mounting brackets of front and rear reflectors are often designed as
brake straddle cable safety catches which prevent the straddle cable from catching on the tire tread if the cable jumps out of its yoke or breaks.

WARNING: Do not remove the front or rear reflectors or reflector brackets from your bicycle. They are an integral pa of the bicycle's safety system. Removing the reflectors reduce your visibiity to others using the roadway. Being st

The reflector brackets may protect you from a brake straddle cable catching on the tire in the event of brake cable failure. wheel to stop suddenly, causing you to loose control and fall.

If you choose to ride under conditions of poor visibility, check and be sure you comply with all local laws about night riding, and take the following
strongly recommended additional precautions: Which and install battery or generator powered head and tail lights which meet all regulatory requirements and provide adequate visibinit - Wear light colored, reflective clothing and accessories, such as a reflective vest, reflective arm and leg bands, reflective stripes on you helmet, flashing lights attached to your body and/or your bicycle ... any
reflective device or light source that moves will help you get the attention of reflective device or light source that moves will help you get the attention
approaching motorists, pedestrians and other traffic. - Make sure your clothing or anything you may be carrying on the bicycle does not obstruct a reflector or light.

- Make sure that your bicycle is equipped with correctly positioned and securely mounted reflectors.
While riding at dawn, at dusk or at night: - Ride slowly. - Avoid road hazards.
- Avoid road hazards.

If riding in traffic:
-Be predictable. Ride so that drivers can see you and predict your movements.

- Be alert. Ride defensively and expect the unexpected. - If you plan to ride in traffic often, ask your dealer about traffic safety - If you plan to ride in traffic often, ask your deal
classes or a good book on bicycle traffic safety.

F. Extreme, Stunt or Competition Riding

Whether you call it Aggro, Hucking, Freeride, North Shore, Downhill, Jumping, Stunt Riding, Racing or something else: if you engage in this sort of extreme, aggressive riding you will get hurt, and you voluntarily assume a
greatly increased risk of injury or death.

Not all bicycles are designed for these types of riding, and those that are may not be suitable for all types of aggressive riding. Check with your deale
or the bicycle's manufacturer about the suitability of your bicycle before or the bicycle's manufacturer about the suitability of your bicycle before engaging in extreme riding.
When riding fast down hill, you can reach speeds achieved by motorcycles, and therefore face similar hazards and risks. Have your bicycle and equipment carefully inspected by a qualified mechanic and be sure it is in
perfect condition. Consult with expert riders, area site personnel and rac officials on conditions and equipment advisable at the site where you plan ride. Wear appropriate safety gear, including an approved full face helmet, full finger gloves, and body armor. Ultimately, it is your responsibility to have proper equipment and to be familiar with course conditions.
. WARNING: Although many catalogs, advertisements and articles about bicycling depict riders engaged in extreme
this activity is extremely dangerous, increases your risk this activity is extremely dangerous, increases your risk
of injury or death, and increases the severity of any injury. Remember that the action depicted is being performed by Know your limits and always wear a helmet and other appropriate safety gear. Even with state-of-the-art protective safety gear, you could be seriously injured or killed when jumping, stu
competition.

WARNING: Bicycles and bicycle parts have limitations with
regard to strength and integrity, and this type of riding can exceed those limitations.
We recommend against this type of riding because of the increased risks but if you choose to take the risk, at least:

- Start with easy learning exercises and slowly develop your skills before - Start with easy learning exercises and slowly develop your skilis befor
trying more difficult or dangerous riding
- Use only designated areas for stunts, jumping, racing or fast downhill riding
- Wear a - Wear a full face helmet, safety pads and other safety gear - Understand and recognize that the stresses imposed on your bike by
this kind of activity may break or damage parts of the bicycle and void the this kind of activity may break or damage parts of the bicycle and void the warranty
-Take your bicycle to your dealer if anything breaks or bends. Do not ride your bicycle when any part is damaged.

If you ride downhill at speed, do stunt riding or ride in competition, know responsibility

G. Changing Components or Adding Accessories

There are many components and accessories available to enhance the comfort, performance and appearance of your bicycle. However, if you bicycle's manufacturer may not have tested that component or accessory for compatibility, reliability or safety on your bicycle. Before installing any component or accessory, including a different size tire, make sure that it is compatible with your bicycle by checking with your dealer. Be sure to read, understand and follow the instructions that accompany the products you purchase for your bicycle. See also Appendix A, p. 35 and B, p. 41.

WARNING: Failure to confirm compatibility, properly install, in serious injury or death.

1. WARNING: Changing the components on your bike with other

WARNING: Changing the components on your bike with other
than genuine replacement parts may compromise the safety of Whan genuine replacement parts may compromise the safety of
your bicycle and may void the warranty. Check with your dealer before changing the components on your bike.

Chapter 3: Fit

NOTE: Correct fit is an essential element of bicycling safety, performance
and comfort. Making the adjustments to your bicycle which result in correct fit for your body and riding conditions requires experience, skill and special tools. Always have your dealer make the adjustments on your bicycle; or, if you have the experience, skill and tools, have your dealer check your work
before riding.
. $\begin{aligned} & \text { WARNING: If your bicycle does not fit properly, you may lose } \\ & \text { control and fall. If your new bike }\end{aligned}$ exchange it before you ride it.

A. Standover Height

1. Diamond frame bicycles

Standover height is the basic element of bike fit (see fig. 2). It is the
distance from the ground to the top of the bicycle's frame at that point where your crotch is when straddling the bike. To check for correct standover height, straddle the
bike while wearing the kind of shoes in which you'll be riding, and bounce vigorously
on your heels. If your crotch on your heels. If your crotch
touches the frame, the bike is too big for you. Don't even ride the bike around the block. A bike which you ride only on paved surfaces and never take off-road should give you a minimum standover height
clearance of two inches (5 cm)
fig. 2

A bike that you'll ride on unpaved surfaces should give you a minimum of
three inches $(75 \mathrm{~cm})$ of standover height clearance. And a bike that youl use off road should give you four inches (10 cm) or more of clearance.
2. Step-through frame bicycles

Standover height does not apply to bicycles with step-through frames. Instead, the limiting dimension is determined by saddle height range. You must be able to adjust your saddle position as described in B without
exceeding the limits set by the height of the top of the seat tube and the "Minimum Insertion" or "Maximum Extension" mark on the seat post.

B. Saddle Position

Correct saddle adjustment is an important factor in getting the most performance and comfort trom your bicycle. If the saddle position is not comfortable for you, see your dealer.

The saddle can be adjusted in

1. Up and down adjustment. To check for correct saddle heigh (fig. 3):

- sit on the - sit on the saddle;
- place one heel on a pedal; - rotate the crank until the pedal with your heel on it is in the down position and the crank arm is parallel to the seat tube.
If your leg is not completely straight, your saddle height needs to be adjusted. If your
hips must rock for the heel to reach the pedal, the saddle is too high. If your leg is bent at the knee with your heel on the pedal, the saddle is too low.

Ask your dealer to set the saddle for your optimal riding position and to show you how to make this adjustment. If you choose to make your own saddle height adjustment:
loosen the seat post clamp
raise or lower the seat post in the seat tube
\square re-tighten the seat post clamp to the
recommended torque (Appendix D or the
Once the saddle is at the correct height, make sure that the seat post does not project from the frame beyond its "Minimum Insertion" or "Maximum Extension" mark (fig. 4).
NOTE: Some bicycles have a sight hole in the seat tube, the purpose of which
is to make it easy to see whether the seat post is inserted in the seat tube far
 enough to be safe. If your bicycle has such a sight hole, use it instead of the "Minimum Insertion" or "Maximum enough to be visible through the sight hole.

If your bike has an interrupted seat tube, as is the case on some suspensio bikes, you must also make sure that the seat post is far enough into the frame so that you can touch it through the bottom of the interrupted seat
tube with the tip of your finger without inserting your finger beyond its firs fricke. Also see NOTE above and fig. 5)
 The saddle can be adjusted forward
or back to help you get the optimal or back to help you get the optimal
position on the bike. Ask your dealer to set the saddle for your optimal riding position and to show you how to make
this adiustment. If you choose to make your own front and back adjustment,
make sure that the clamp mechanism is clamping on the straight part of the
saddle rails and is not touching the curved part of the rails, and that you saddle rails and is not touching the curved part of the rails, and that you
are using the recommended torque on the clamping fastener(s) (Appendix are using the recommended torque on the clamping fastener(s) (Appendix
D or the manufacturer's instructions). Sade
3. Saddle angle adjustment

Most people prefer a horizontal saddle; but some riders like the saddle
nose angled up or down just a little. Your dealer can adjust saddle angle Nost people prefer a horizontal saddle, but some riders like the saddle
nose angled up or down just a little. Your dealer can adjust saddle angle
or teach you how to do it. If you choose to make your own saddle angle or teach you how to do it. If you choose to make your own saddle angle
adjustment and you have a single bolt saddle clamp on your seat post, it is adjustment and you have a single bolt saddle clamp on your seat post, it is
critical that you loosen the clamp bolt sufficiently to allow any serrations on
the mechanism to disengage before changing the saddle's angle, and then critcal that you toosen the clamp bolt suficiently to allow any serrations on
the mechanism to disengage before changing the saddle's angle, and then
that the serrations fully re-engage before you tighten the clamp bolt to the that the serrations fully re-engage before you tighten the clamp bolt to the

WARNING: When making saddle angle adjustments with a serrations on the mating surfaces of the clamp are not worn. Worn serrations on the clamp can allow the saddle to move, causing you to lose control and fall.

Always tighten fasteners to the correct torque. Bolts that are too tight can stretch and deform. Bolts that are too loose can move and fatigue. Either mistake can lead to
the bolt, causing you to lose control and fall.

Note: If your bicycle is equipped with a suspension seat post, the

 suspension mechanism may require periodic service or maintenance. Askyour dealer for recommended service intervals for your suspension seat Small changes in saddle position can have a substantial effect on
performance and comfort. To find your best saddle position, make only one adjustment at a time.
WARNING: After any saddle adjustment, be sure that the saddle adjusting mechanism is properly seated cand lign can cause
riding. A loose saddle clamp or seat post clamp damage to the seat post, or can cause you to lose control and fall. A correctly tightened saddle adjusting mechanism will to make sure that the saddle adjusting mechanism is properly tightened
If, in spite of carefully adjusting the saddle height, till and fore-and-aft
position, your saddle is still uncomfortable, you may need a different s. position, your saddle is still uncomfortable, you may need a different saddle
design. Saddles, liee people, come in many different shapes, sizes and
resilience Yourdealer can help you select a saddle which, when correctly design. Saddles, like people, come in many different shapes, sizes and
resilience. Your dealer can help you select a saddle which, when correctiy adjusted for your body and riding style, will be comfortable.

WARNING: Some people have claimed that extended riding support your pelvic area correctly can cause short-term or long-term injury to nerves and blood vessels, or even
impotence. If your saddle causes you pain, numbness impotence. If your saddle causes you pain, numbness or other discomfort, listen to your body and stop riding until you see
your dealer about saddle adjustment or a different saddle.

C. Handlebar Height and Angle

Your bike is equipped either with a "threadless" stem, which clamps on to the outside of the steerer tube, or with a "quill" stem, which clamps on to
the sterps inside
the tube by way of an expanding binder bolt. If you aren't absolutely the steerer tube by way of an expanding binder bolt. If yo
sure which type of stem your bibe has, ask your dealer.
If your bike has a "threadless" stem
If your bike has a "threadless" stem
(fig
If your bike has a "threadless" stem
(fig. 6) your dealer may be tale to change handlebar height by moving
height adjustment spacers from below the stem to above the stem, or vice (fig. 6) your dealer may be able to chang
height adjustment spacers from below th
height adjustment spacers from below
versa. Otherwise, youll have to get a
stem of different length or rise. Consult
 yourself, as it requires special knowledge.
If your bike has a "quill" stem (fig. 7) If your bike has a "quill" "tem (fig. 7)
you can ask your dealler to adjust the you can ask your dealer to adjust the
handlebar height a bit by adjusting stem
 A quill stem has an etched or stamped
mark on its shaft which designates the
stem's "Minimum Insertion" or "Maximu stem's "Minimum Insertion" o "Maximum
Extension". This mark must not be visible Extension". This mark must not be visible
above the headset. above the headset.

WARNING: A quill stem's Minimum Insertion Mark must not be visible above the top of the headset. If the stem is extended beyond the Minimum Insertion Mark the stem may break or
damage the fork's steerer tube, which could cause you to lose control and fall.

1. WARNING: On some bicycles, changing the stem or stem height can affect the tension of the front brake cable, locking
the front brake or creating excess cable slack which can make the front brake inoperable. If the front brake pads move in towards the wheel rim or out away from the wheel rim when the
stem or stem height is changed, the brakes must be correctly adjusted before you ride the bicycle.
Some bicycles are equipped with an adjustable angle stem. If your bicycle has an adjustable angle stem, ask your dealer to show you how to adjust may also require adjustments to the bicycle's controls.

WARNING: Always tighten fasteners to the correct torque. Bolts that are too tight can stretch and deform. Bolts that are too loose can move and fatigue. Either mistake can lead to a

Your dealer can also change the angle of the handlebar or bar end extensions.

WARNING: An insufficiently tightened stem clamp bolt, handlebar clamp bolt or bar end extension clamping bolt may compromise steering action, which could cause you to lose control and fall. Place the front wheel of the bicycle between your legs and attempt to twist the handlebar/stem assembly. If you can twist the stem in reetation to the rront whee, tur extensions in relation to the handlebar, the bolts are insufficiently tightened.

D. Control Position Adjustments

The angle of the brake and shift control levers and their position on the handlebars can be changed. Ask your dealer to make the adjustments for you. If you choose to make your own control lever angle adjustment, be sure to re-tighten the clamp fasteners to the recommended torque
E. Brake Reach

Many bikes have brake levers which can be adjusted for reach. If you have small hands or find it difficult to squeeze the brake levers, your dealer can small hands or find it difficult to squeeze the brake leve
either adjust the reach or fit shorter reach brake levers.

WARNING: The shorter the brake lever reach, the more critical it is to have correctly adjusted brakes, so that fuli braking power
can be applied within available brake lever travel. Brake lever
travel insufficient to apply full braking power can result in loss travel insufficient to apply full braking power can resul
of control, which may result in serious injury or death.

Chapter 4: Tech

It's important to your safety, performance and enjoyment to understand how things work on your bicycle. We urge you to ask your dealer how to do the things described in this section before you attempt them yourself, and that you have your dealer check your work before you ride the bike. If you have even the slightest doubt as to whether you understand something in this section of the Manual, talk to your dealer. See also Appendix A, B, C
and D .
A. Wheels

Bicycle wheels are designed to be removable for easier transportation and for repair of a tire puncture. In most cases, the wheel axles are inserted mountain bikes use what is called a "through axle" wheel mounting system

If you have a mountain bike equipped with through axle front or rear wheels, make sure that your dealer has given you the manutacturer's
instructions, and follow those when installing or removing a through axle instructions, and wheel. If you don't know what a through axle is, ask your dealer.

Wheels are secured in one of three ways

A hollow axle with a shaft ("skewer") running through it which has an ajustable en an over-center cam on the othe (cam action system, fig. 8 a \& b)

-A hollow axle with a shaft ("skewer") running through it which has a nut on the other (through bolt, fig. 9)

- Hex nuts or hex key bolts which are threaded on to or into the hub axle (bolt-on wheel, fig. 10)

Your bicycle may be equipped with a different securing method for the front wheel than for the rear wheel. Discuss the wheel securing method for your bicycle with your dealer.

It is very important that you understand the type of wheel securing method It is very important that you understand the type of wheel securing method
on your bicycle, that you know how to secure the wheels correctly, and that you know how to apply the correct clamping force that safely secures the wheel. Ask your dealer to instruct you in correct wheel removal and installation, and ask him to give you any available manufacturer

WARNING: Riding with an improperly secured wheel can allow
 install and remove your wheels safely.
2. Understand and apply the correct technique for clamping your wheel in place.
3. Each time, before you ride the bike, check that the wheel is securely clamped.

The clamping action of a correctly secured wheel must emboss
the surfaces of the dropouts.

Ask your dealer to explain the particular secondary retention device on
your bike. your bike.

WARNING: Do not remove or disable the secondary retention
device. As its name implies, it serves as a back-up for a critical adjustment. If the wheel is not secured correctly, the secondary retention device can reduce the risk of the wheel disengaging from the fork. Removing or disabling

Secondary retention devices are not a substitute for correctly securing your wheel. Failure to properly secure the wheel ca cause the wheel to wobble or disengage, which could cause
you to loose control and fall, resulting in serious injury or you to

2. Wheels with Cam Action Systems

here are currently two types of over-center cam wheel retentio mechanisms: the traditional over-center cam (fig. 8a) and the cam-and-cup system (fig. 8b). Both use an over-center cam action to clamp the bike's
wheee in nlace. Your bicycle may have a cam-and-cup front wheel retention
system and a traditional rear wheel cam action system.
a. Adjusting the traditional cam action mechanism (fig. 8a) The wheel hub is clamped in place by the force of the over-center cam pushing against one dropout and pulling the tension adjusting nut, by way
of the skewer, against the other dropout. The amount of clamping force is controlled by the tension adjusting nut. Turning the tension adjusting nut clockwise while keeping the cam lever from rotating increases clamping
force: turning it counterclockwise while keeping force; turning it counterclockwise while keeping the cam lever from rotating reduces clamping force. Less than half a turn of the tension adjusting nut can make the difference between safe clamping force and unsafe clamping force.

WARNING: The full force of the cam action is needed to clamp
the wheel securely. Holding the nut with one hand and turning
the lever like a wing nut with the other hand until everything is
as light as you can get it will not clamp a cam action wheel
safely in the dropouts. See also the first WARNING in this Section, p. 18.
b. Adjusting the cam-and-cup mechanism (fig. 8b) The cam-and-cup system on your front wheel will have been correctly
adjusted for your bicycle by your dealer. Ask your aver to djustment every six months. Do not use a cam-and-cup front wheel on adjustment every six months. Do not use a cam-and-cup rront
any bicycle other than the one for which your dealer adjusted it.

3. Removing and Installing Wheels

WARNING: If your bike is equipped with a hub brake such as a it has an internal gear rear hub, do not attempt to remove the wheel. The removal and re-installation of most hub brakes and internal gear hubs requires special knowledge. Incorrect can cause you to lose control and fall.

CAUTION: If your bike has a disc brake, exercise care in touching caliper can get very hot during use
a. Removing a disk brake or rim brake Front Whee
(1) If your bike has rim brakes, disengage the brake's quick-release mechanism to increase the clearance between the tire and the brake pads
(See Section 4.C fig. 11 through 15).
(2) If your bike has cam action front wheel retention, move the cam lever from the locked or CLOSED position to the OPEN position (figs. $8 \mathrm{Ba} \& \mathrm{~b}$).
If your bike has through bolt or bolt-on front wheel retention, loosen the fastener(s) a few turns counter-clockwise using an appropriate wrench, lock key or the integral lever.
(3) If your front fork has a clip-on type secondary retention device, disengage it. If your front fork has an integral secondary retention device, and a traditional cam action system (fig. 8a) loosen the tension adjus
nut enough to allow removing the wheel from the dropouts. If your front wheel uses a cam-and-cup system, fig. 8b) squeeze the cup a cam lever together while removing the wheel. No rotation of any part is necessary with the cam-and-cup system

You may need to tap the top of the w
release the wheel from the front fork.

Installing a disk brake or rim brake Front Wheel

CAUTION: If your bike is equipped with a front disk brake, be careful not to damage the disk, caliper or brake pads when r, inserting the disk into the caliper. Never activate a disk brake's See also Section 4.C. (1) If your bike has cam action front wheel retention, move the cam lever
so that it curves away from the wheel (fig. 8b). This is the OPEN position If your bike has through bolt or bolt-on front wheel retention, go to the next
step.
(2) With the steering fork facing forward, insert the wheel between the fork
blades so that the axle seats firmly at the top of the fork dropouts. The cam blades so that the axle seats firmly at the top of the fork dropouts. The cam lever, if there is one, should be on rider's left side of the bicycle (fig. 8a \&
b). If your bike has a clip-on type secondary retention device, engage it. (3) If you have a traditional cam action mechanism: holding the cam lever
in the ADJUST position with your right hand, tighten the tension adiusting nut with your left hand until it is finger tight against the fork dropout fig. 8a). If you have a cam-and-cup system: the nut and cup (fig. 8b) will hav snapped into the re
should be required.
(4) While pushing the wheel firmly to the top of the slots in the for dropouts, and at the same time centering the wheel rim in the fork (a) With a cam action system, move the cam lever upwards and swing it into the CLOSED position (fig. 8a \& b). The lever should now be paralle
force, you should have to wrap your fingers around the fork blade for leverag
(b) With a through-bolt or bolt-on system, tighten the fasteners to the torque specifications in Appendix D or the hub manufacturer's instructions. NOTE: If, on a traditional cam action system, the lever cannot be pushed all the way to a position parallel to the fork blade, return the lever to the quarter turn and try tightening the lever again.
(5) With a through-bolt or bolt-on system, tighten the fasteners to the torque specifications in Appendix D or the hub manufacturer's instructions.
WARNING: Securely clamping the wheel with a cam action the cam lever without wrapping your fingers around the fork blade for leverage, the lever does not leave a clear imprint in the palm of your hand, and the serrations on the wheel fastener do not emboss the surfaces of the dropouts, the tension clockwise a quarter turn; then try again. See also the first WARNING in this Section, p. 18.
(6) If you disengaged the brake quick-release mechanism in 3. a. (1)
above, re-engage it to restore correct brake pad-to-rim clearance. (7) Spin the wheel to make sure that it is centered in the frame and clears
the brake pads; then squeeze the brake lever and make sure that the the brake pads; then squeeze the brake lever and make sure that the brakes are operating correctly.

Removing a disk brake or rim brake Rear Whee you have a multi-speed bike with a derailleur gear system: shift the

If you have an internal gear rear hub, consult your dealer or the hub fyou have a single-speed bike with rim disk bake, go to step (4) below
2) If your bike has rim brakes, disengage the brake's quick-release eechanism to increase the clearance between the wheel rim and the brake pads (see Section 4.C, figs. 11 through 15).
(3) On a derailleur gear system, pull the derailleur body back with your righ
hand.
(4) With a cam action mechanism, move the quick-release lever to the
OPEN position (fig. 8b). With a through bolt or bolt on mechanism, loos OPEN position (fig. 8b). With a through bolt or bolt on mechanism, loosen the fastener(s) with an appropriate wrench, lock lever or integral lever; the
push the wheel forward far enough to be able to remove the chain from the push the wheel
5) Lift the rear wheel off the ground a few inches and remove it from the ear dropouts.
d. Installing a disk brake or rim brake Rear Wheel

CAUTION: If your bike is equipped with a rear disk brake, be careful not to damage the disk, caliper or brake pads when reserting the disk into the caliper. Never activate a disk brake's ontrol lever unless the disk is correctly inserted in the caliper.
(1) With a cam action system, move the cam lever to the OPEN positio derailleur and freewheel sprockets.
(2) On a derailleur bike, make sure that the rear derailleur is still in its outermost, high gear, position; then pull the derailleur body back with your
right hand. Put the chain on top of the smallest freewheel sprocket. (3) On single-speed, remove the chain from the front sprocket, so that you
have plenty of slack in the chain. Put the chain on the rear wheel sprocket. (4) Then, insert the wheel into the frame dropouts and pull it all the way in
to the dropouts.
(5) On a single speed or an internal gear hub, replace the chain on th chainring; pull the wheel back in the dropouts so that it is straigh
frame and the chain has about $1 / 4$ inches of up-and-down play. (6) With a cam action system, move the cam lever upwards and swing it into the CLOSED position (fig. 8 a \& b). The lever should now be paralle to the seat stay or chain stay and curved toward the wheel. To apply enough clamping force, you should have to wrap your fingers around the
fork blade for leverage, and the lever should leave a clear imprint in the fork blade for levera
palm of your hand.
(7) With a through-bolt or bolt-on system, tighten the fasteners to the NOTE: If, on a traditional cam action system, the lever cannot be pushed
all the way to a position parallel to the seat stay or chain stay return the lever to the OPEN position. Then turn the tension adjusting n counterclockwise one-quarter turn and try tightening the lever again
A. WARNING: Securely clamping the wheel with a cam actio retention device takes considerable force. If you can fully close
the cam lever witho stay or chain stay for leverage, the lever does not leave a clea mprint in the palm of your hand, and the serrations on the wheel fastener do not emboss the surfaces of the dropouts, the tension is insufficient. Open the lever; turn the tension
adjusting nut clockwise a quarter turn; then try again. See also the first WARNING in this Section, p. 18.
(8) If you disengaged the brake quick-release mechanism in 3. c. (2)
above, re-engage it to restore correct brake pad-to-rim clearance.
(9) Spin the wheel to make sure that it is centered in the frame and clears the brake pads; then squeeze
brakes are operating correctly

B. Seat Post Cam Action Clamp

 Some bikes are equipped with a cam action seat post binder. The seatpost cam action binder works exactly like the traditional wheel cam actio post cam action binder works exactly like the traditional wheel cam action
fastener (Section 4.A.2) While a cam action binder looks like a long bolt with a lever on one end and a nut on the other, the binder uses an overA Whan: Ring wit

WARNING: Riding with an improperly tightened seat post can allow the saddle to
and fall. Therefore

1. Ask your dealer to help you make sure you know how to correctly clamp your seat post.
2. Understand and apply the correct technique for clamping

Adjusting the seat post cam action mechanism

The action of the cam squeezes the seat collar around the seat post to hold the seat post securely in place. The amount of clamping force is controlled by the tension adjusting nut. Turning the tension adjusting nut clockwise while keeping the cam lever from rotating increases clamping force; turning it counterclockwise while keeping the cam lever from rotating
reduces clamping force. Less than half a turn of the tension adjusting nut reduces clamping force. Less than half a turn of the tension adjusting nut
can make the difference between safe and unsafe clamping force.

WARNING: The full force of the cam action is needed to clam the seat post securely. Holding the nut with one hand and turning the lever like a wing nut with the other hand until
everything is as tight as you can get it will not clamp the seat everything
post safely.

WARNING: If you can fully close the cam lever without wrapping your fingers around the seat post or a frame tube for leverage,
and the lever does not leave a clear imprint in the palm of your and the lever does not leave a clear imprint in the palm of your
hand, the tension is insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.

C. Brakes

There are three general types of bicycle brakes: rim brakes, which operate by squeezing the wheel rim between two brake pads; disc brakes, which operate by squeezing a hub-mounted disc between two brake pads; and internal hub brakes. All three can be operated by way of a handlebar mounted lever. On some models of bicycle, the internal hub brake is
operated by pedaling bac
described in Appendix C.
(1) WARNING:

1. Riding with improperly adjusted brakes, worn brake pads, and can result in serious injury or death.
2. Applying brakes too hard or too suddenly can lock up a wheel, which could cause you to lose control and fall. Sudden over the handlebars, which may result in serious injury or death.
3. Some bicycle brakes, such as disc brakes (fig. 11) and inear-pull brakes (fig. 12), are extremely powerful. Take extra particular care when using them.
4. Some bicycle brakes are equipped with a brake force modulator, a small, cylindrical device through which the brak
control cable runs and which is designed to provide a more progressive application of braking force. A modulator makes the initial brake lever force more gentle, progressively

equipped with a brake force modulator, take extra care in

5. Disc brakes can get extremely hot with extended use. Be carefu
6. See the brake manufacturer's instructions for operation and care of your brakes, and for when brake pads must be replaced. If you do not have the manufacturer's instructions, see your dealer or conta the brake manufacturer.
7. If replacing worn or damaged parts, use only manufacturer
approved genuine replacement parts.

1. Brake controls and features

It's very important to your safety that you learn and remember which brat lever controls which brake on your bike. Traditionally, the right brake lever controls the rear brake and the left brake lever controls the front brake; but, to make sure your bike's brakes are set up this way, squeeze one brake
lever and look to see which brake, front or rear, engages. Now do the same with the other brake lever.

Make sure that your hands can reach and squeeze the brake levers comfortably. If your hands are too small to operate the levers comfortab consult your dealer before riding the bike. The lever reach may be
adjustable; or you may need a different brake lever design. adjustable; or you may need a different brake lever design.
Most rim brakes have some form of quick-release mechanis brake pads to clear the tire when a wheel is removed or reinstalled. Whe brake pads to clear the tire when a wheel is removed or reinstalled. When
the brake quick release is in the open position, the brakes are inoperative. Ask your dealer to make sure that you understand the way the brake quick release works on your bike (see figs. $12,13,14 \& 15$) and check each
to make sure both brakes work correctly before you get on the bike.
2. How brakes work
The braking action of a bicycle is a function of the friction between the braking surfaces To make sure that you have maximum friction available, keep your wheel rims and brake
pads or the disk rotor and caliper clean and pads or the disk rotor and caliper clean and
free of dirt, lubricants, waxes or polishes.
Brakes are designed to control your speed, not
just to stop the bike. Maximum braking force just to stop for each braking force the wheel "locks up" (stops rotating) and starts
to skid. Once the tire skids, you actually lose to skid. Once the tire skids, you actually lose
most of your stopping force and all directional most of your stopping force and all directio
control. You need to practice slowing and control. You need to practice slowing and
stopping smoothly without locking up a wheel. stopping smoothly without locking up a wheel.
The technique is called progressive brake
modulation. Instead of jerking the brake lever modulation. Instead of jerking the brake lever
to the position where you think you'll generate to the position where you think you'll generate
appropriate braking force, squeeze the lever, appropriate braking force, squeeze the lever,
progressively increasing the braking force If progressively increasing the braking force. If
you feel the wheel begin to lock up, release pressure e uist a little to keep the wheel rotating
just short of lockup. It's important to develop just short of lockup. It's important to develop
a feel for the amount of brake lever pessure a feel for the amount of brake lever pressure required for each wheel at different speeds and
on different surfacees. To better understand this, pressure to each brake lever, until the wheel locks. When you apply one or both brakes, the bike begins to slow, but your
body wants to continue at the speed at which it was going. This causes a
transfer of weight to the front wheel (or, under heavy brakig, around the front wheel hub, which could send you flying over the handlebars).

different amounts of around the
and ebars). and increase front braking force. This is even more important on descents, because descents shift weight forward.
Two keys to effective speed control and safe stopping are controlling wheel
lockup and weight transfer. This weight transfer is even more pronounced lockup and weight transfer. This weight transfer is even more pronounced
if your bike has a front suspension fork. Front suspension "dips" under if your bike has a front suspension fork. Front suspension "dips" under
braking, increasing the weight transfer (see also Section 4.F). Practice braking and weight transfer techniques where there is no traffic or other hazards and distractions.

Everything changes when you ride on loose surfaces or in wet weather. It
will take longer to stop on loose surfaces or in wet weather. Tire adhesion will take longer to stop on loose surfaces or in wet weather. Tire adhesion lock up with less brake force. Moisture or dirt on the brake padds reduces
their ability to gri.) The way to maintain control on loose or wet suffaces their ability to grip. The way to maintain control on loose or wet surfaces is

D. Shifting Gears

Your multi-speed bicycle will have a derailleur drivetrain (see 1 . below),
an internal gear hub drivetrain (see 2 below) or in some special cases, a .
rivetrain work
If you
arearcaser or sprocketcluster

- a rear cassette or
sually a front deraille
one, two or three front sprockets called chainrings
a drive chain

a. Shifting Gears

There are several different types and styles of shifting controls: levers, twist grips, triggers, combination shiftlbrake controls and push-buttons. Ask your
dealer to explain the type of shifting controls that are on your bike, and to show you how they work.

The vocabulary of shifting can be pretty confusing. A downshift is a shift to a "lower" or "slower" gear, one which is easier to pedal. An upshift is a shift to a "higher" or "faster", harder to pedal gear. What's confusing is that what's happening at the front derailleur is the opposite of what's happening the rear derailleur (for details, read the instructions on Shifting the Rear Derailleur and Shitting the Front Derailleur below). For example, you can select a gear which will make pedaling easier on a hill (make a downshift)
n one of two ways: shift the chain down the gear "steps" to a smaller gear at the front, or up the gear "steps" to a larger gear at the rear. So, at the ear gear cluster, what is called a downshift looks like an upshift. The way keep things straight is to remember that shifting the chain in towards he centerline of the bike is for accelerating and climbing and is called a ownshift. Moving the chain out or away from the centerline of the bike is or speed and is called an upshift

Whether upshifting or downshifting, the bicycle derailleur system design equires that the drive chain be moving forward and be under at least some ension. A derailleur will shift only if you are pedaling forward.

CAUTION: Never move the shifter while pedaling backwa shifter. This could jam the chain and cause serious damage

 the bicycle.
b. Shifting the Rear Derailleur

The rear derailleur is controlled by the right shifter.
The furction of the rear doreailleur is to move the drive chain from one gea sprocket to another. The smaller sprockets on the gear cluster produce higher gear ratios. Pedaling in the higher gears requires greater pedaling effort, but takes you a greater distance with each revolution of the pe
cranks. The larger sprockets produce lower gear ratios. Using them cranks. The larger sprockets produce lower gear ratios. Using them
requires less pedaling effort, but takes you a shorter distance with each pedal crank revolution. Moving the chain from a smaller sprocket of the gear cluster to a larger sprocket results in a downstifit. Moving the chain from a larger sprocket to a smaller sprocket results in an upshift. In order
for the derailleur to move the chain from one sprocket to another, the ride for the derailleur to orve the
must be pedaling forward.

c. Shifting the Front Derailleur:

The front derailleur, which is controlled by the left shifter, shifts the chain between the larger and smaller chainrings. Shifting the chain onto a chainring makes pedaling harder (an upshift).
d. Which gear should I be in

The combination of largest rear and smallest front gears (fig. 16) is for the steepest hills. The smallest rear and largest front combination is for the greatest speed. It is not necessary to shift gears in sequence. Instead, fin the "starting gear" which is right for your level of ability -a gear which is stop without wobbling - and experiment with upshifting and downshifting
to get a feel for the different ear combinations. At first, are no obstacles, hazards ther traffic, until you've buil up your confidence. Learn to anticipate the need to shift, and shift to a lower gear before the
hill gets too steep. If you have hill gets too steep. If you have problem could be mechanical adjustment. See your dealer for help.

WARNING: Never shift a derailleur onto the largest or the smallest sprocket if the derallsur is not shifting smoothly. The causing you to lose control and fall.
f moving the shift control one click repeatedly fails to result in a smooth shift to the next gear chances are that the mec
the bike to your dealer to have it adjusted.
How an internal gear hub drivetrain work
fyour bicycle has an internal gear hub drivetrain, the gear changing
mechanism will consist of
a $3,5,7,8,12$ speed or possibly an infinitely variable internal gear hub
one, or sometimes two shifters
one or two control cables
one front sprocket called a chainring
a drive chain

a. Shifting internal gear hub gears

Shifting with an internal gear hub drivetrain is simply a matter of moving the shifter to the indicated position for the desired gear ratio. After you have
moved the shifter to the gear position of your choice, ease the pressure the pedals for an instant to allow the hub to complete the shift.
b. Which gear should I be in?

The numerically lowest gear (1) is for the
largest gear is for the greatest speed.
Shifting from an easier, "slower" gear (like 1) to a harder, "faster" gear
(like 2 or 3) is called an upshift. Shifting from a harder, "faster" gear to a Sike or 3) is called an upshift. Shifting from a harder, "faster" gear to an
(likesier, "slower" "ear is called a downshift. It in not neecssary to shift gears
in sequence. Instead, find the "starting gear" for the conditions - a gear easier, "slower" gear is called a downshift. It is not necessary to shift gears
in sequence. Instead, find the "tsarting gear" for the conditions - a gear
which is hard enough for quick acceleration but easy enough to let you Which is hard enough for quick acceleration but easy enough to let you
start from a astop without owobling - and dexperiment w with upssiftitg and
downshifting to get a feel for the different gears. At first, practice shifting downshifting to get a feel for the different gears. At first, practice shifting
where there are no obstacles, hazards or other traffic, until you've built up where there are no obstacles, hazards or other traffic, until you've built up
your confidence. Learn to anticipate the need to shift, and shift to a lower gear before the hill gets too steep. If you have difficulties with shifting, the
c. What if it won't shift gears?

If moving the shift control one click repeatedly fails to result in a smooth shift to the next gear chances are that the mechanism is out of adjustment.
.
E. Pedals

1. Toe Overlap is when your toe can touch the front wheel when you turn
the handlebars to steer while a pedal is in the forwardmost position This the handlebars to steer while a pedal is in the forwardmost position. This
is common on small-framed bicycles, and is avoided by keeping the inside is common on small-framed bicycles, and is avoided by keeping the inside
pedal up and the outside pedal down when making sharp turns. On any
cycle, this technique will also prevent the inside pedal from striking the ground in a turn.
WARNING: Toe Overlap could cause you to lose control and fall. Ask your dealer to help you determine firembination of frame size, crank arm length, pedal design and shoes you
will use results in pedal overlap. Whether you have overlap will use results in pedal overlap. Whether you have overlap or
not, you must keep the inside pedal up and the outside pedal down when making sharp turns.
2. Some bicycles come equipped with pedals that have sharp and potentially dangerous surfaces. These surfaces are designed to add safety by increasing grip between the rider's shoe and the pedal. If your bicycle
has this type of high-performance pedal, you must take extra care to avoid serious injury from the pedals' 'sharp surfacees. Based on your riding style or
skill level, you may prefer a less aggressive pedal design, or chose to ride skill level, you may prefer a less aggressive pedal design, or chose to o ide
with shin pads. Your dealer can show you a number of options and make with shin pads. Your dealer
suitable recommendations.
3. Toeclips and straps are a means to keep feet correctly positioned and
engaged with the pedals. The toeclip positions the ball of the foot over engaged with the pedals. The toeclip positions the ball of the foot over
the pedal spindle, which gives maximum pedaling power. The toe strap,
when tightened, keeps the foot engaged throughout the rotation cycle of the pedal spindle, which gives maximum pedaling power. The toe strap,
when tightened, keeps the foot engaged throughout the rotation cycle of
the pedal. While toeclips and straps give some benefit with any kind of the pedal. Whie toeccips and straps give some benefit with any kind of
shoe, they work most effectively with cycling shoes designed for use with
toeclips. Your dealer can explain how toeclips and straps work. Shoes with oeclips. Your dealer can explain how toeclips and straps work. Shoes with
deep treaded soles or welts which might make it more difficult for you to deep treaded soles or welts which might make it more difficult for you to
insert or remove your foot should not be used with toeelips and straps.

WARNING: Getting into and out of pedals with toeclips and Until it becomes a reflex action, the technique requires concentration which can distract your attention and cause you o lose control and fall. Practice the use of toeclips and straps where there are no obstacles, hazards or traffic. Keep the
straps loose, and don't tighten them until your technique an confidence in getting in and out of the pedals warrants it. Never ride in traffic with your toe straps tight.
4. Clipless pedals (sometimes called "step-in pedals") are another means to keep feet securely in the correct position for maximum pedaling efficiency. They have a plate, called a "cleat," on the sole of the shoe,
which clicks into a mating spring-loaded fixture on the pedal. They on engage or disengage with a very specific motion which must be practiced until it becomes instinctive. Clipless pedals require shoes and cleats which are compatible with the make and model pedal being used.
Many clipless pedals are designed to allow the rider to adjust the amount of force needed to engage or disengage the foot. Follow the peda manufacturer's instructions, or ask your dealer to show you how to make this adjustment. Use the easiest setting until engaging and disengaging tension to prevent unintended release of your foot from the pedal.
WARNING: Clipless pedals are intended for use with shoes specifically made to fit them and are designed to firmly keep
the foot engaged with the pedal. Do not use shoes which do not engage the pedals correctly.
Practice is required to learn to engage and disengage the foot safely. Until
engaging and disengaging the foot becomes a reflex action, the technique
requires concentration which can distract your attention and cause you to place whel and fall. Practice engaging and disengaging clipless pedals aplace where there are no obstacles, hazards or trafic; and be sure to not have the manufacturerer's instructions, see your dealer or contact the not have the n
manufacturer.

F. Bicycle Suspension

Many bicycles are equipped with suspension systems. There are many
different types of suspension systems - too many to deal with individually different types of suspension systems - too many to deal with individ
in this Manual. If your bicycle has a suspension system of any kind, be sure to read and follow the suspension manufacturer's setup and service
instructions. If you do not have the manufacturer's instructions, see your instructions. If you do not have the
dealer or contact the manafactur

WARNING: Failure to maintain, check and properly adjust the suspension system may result in suspension
which may cause you to lose control and fall. If your bike has suspension, the increased speed you may develop also
increases your risk of injury. For example, when rbaking, the front of a
suspended bike dips You could lose control and fall ify ou do not have suspended bike dips. You could lose control and fall if you do not have
experience with this system. Learn to handle your suspension system experience with this system.
safely. See also Section 4.

WARNING: Changing suspension adjustment can change the handling and braking characteristics of your bicycle. Never
change suspension adjustment unless you are thoroughly change suspension adjustment unless you are thorough
familiar with the suspension system amiliar with the suspension system manufacturer's instructions and recommendations, and always check for
changes in the handling and braking characteristics of the bicycle after a suspension adjustment by taking a careful test
ride in a hazard-free area.

Suspension can increase control and comfort by allowing the wheels to
better follow the terrain. This enhanced capability may allow you to ride faster; but you must not confuse the enhanced capabilities of the bicycle with your own capabilities as a rider. Increasing your skill will take time and practice. Proceed carefully until you have learned to handle the full
capabilities of your bike. capabilities of your bike
WARNING: Not all bicycles can be safely retrofitted with some types of suspension systems. Before retrofitting a bicycle with any suspension, check with the bicycle's manufacturer to make sure that what you want to do is compatible with the bicycle's
design. Failing to do so can result in catastrophic frame failure

G. Tires and Tubes

1. Tires

Bicycle tires are available in many designs and specifications, ranging from general-purpose designs to tires designed to perform best under very
specific weather or terrain conditions. If, once you've gained experience specific weather or terrain conditio
with your new bike, you feel that different tire might better suit you
riding needs, your dealer can hel you select the most appropriate design.
The size, pressure rating, and on some ingh-peommance uire, are marked on the sidewall of
the tire (see fig 17) The the tire (see fig. 17). The part of important to you is Tire Pressure.

WARNING: Never inflate a tire beyond the maximum pressure
marked on the tire's sidewall. Exceeding the recommended maximum pressure may blow the tire off the rim, which could cause damage to the bike and injury to the rider and bystanders.

The best and safest way to inflate a bicycle tire to the correct pressure is with bicycle pump which has a built-in pressure gauge.

WARNING: There is a safety risk in using gas station air hoses or
other air compressors. They are not made for bicycle tires They move a large volume of air very rapidly, and will raise the move a large volume of air very rapidly, and will raise the
pressure in your tire very rapidly, which could cause the tube explode.

Tire pressure is given either as maximum pressure or as a pressure range How a tire performs under different terrain or weather conditions depends pressure gives the lowest rolling resistance; but also produces the harshest ride. High pressures work best on smooth, dry pavement.

Very low pressures, at the bottom of the recommended pressure range, give the best performance on smooth, slick terrain such as hard-packed clay, and on deep, loose surfaces such as deep, dry sand
Tire pressure that is too low for your weight and the riding conditions can cause a puncture of the tube by allowing the tire to deform sufficiently to pinch cause a puncture of the tube by aliowing the tire to def
the inner tube between the rim and the riding surface.
CAUTION: Pencil type automotive tire gauges can be inaccurate and should not be relied upon for consis reading
gauge.

Ask your dealer to recommend the best tire pressure for the kind of liding you will most often do, and have the dealer inflate your tires to that
pressure. Then, check inflation as described in Section 1.C so you'll know how correctly inflated tires should look and feel when you don't have access to a gauge. Some tires may need to be brought up to pressure every week or two, so it is important to check your tire pressures before every ride.
Some special high-performance tires have unidirectional treads: their tread pattern is designed to work better in one direction than in the other. The sidewall marking of a unidirectional tire will have an arrow showing the they are mounted to rotate in the correct direction.

2. Tire Valves

There are primarily two kinds of bicycle tube valves: The Schraeder Valve and the Presta Valve. The bicycle pump you use must have the fititing appropriate to the valve stems on your bicycle.

The Schraeder valve (fig. 18a) is like the valve on a car tire. To inflate a Schraeder valve tube, remove the valve cap and clamp the pump fiting onto the end of the valve stem. To let air out of a Schraeder valve, depress the pin in the end of the valve stem with the end of a key or other
appropriate object. appropriate object.
The Presta valve (fig. 18b) has a narrower diameter and is only The Presta valve (fig. 18b) has a narrower diameter and is on
found on bicycle tires. To inflate a Presta valve tube using a found on bicycle tires. To inflate a Presta valve tube using a
Presta headed bicycle pump, remove the valve cap; unscrew (counterclockwise) the valve stem lock nut; and push down on
(cheal the valve stem to free it up. Then push the pump head on to the valve head, and inflate. To inflate a Presta valve with a Schraeder
pump fiting, you'll need a Presta adapter (available at your bike
shop) which screws on to the valve stem once you've freed up the valve The adapter fits into the Schraeder pump fitting. Close the valve after inflation. To let air out of a Presta valve, open up the valve stem lock nut and depress the valve stem.

WARNING: We highly recommend that you carry a spare inner repair If you do not apply the patch correctly or aply several repair. If you do not apply the patch correctly or apply several
patches, the tube can fail, resulting in possible tube failure, which could cause you to loose control and fall. Replace a patched tube as soon as possible.

Chapter 5: Service

1. WARNING: Technological advances have made bicycles and is incle componing. It is impossible for this manual to provide all the information required to properly repair and/or maintain your bicycle. In order to heip minimize the chances of an accident
and possible injury, it is critical that you have any repair or maintenance which is not specifically described in this manual performed by your dealer. Equally important is that your individual maintenance requirements will be determined by everything from your riding style to geographic location.
Consult your dealer for help in determining your maintenanc requirements.

WARNING: Many bicycle service and repair tasks require service on your bicycle until you have learned from your dealer how to properly complete them. Improper adjustment or service may result in damage to the bicycle of in an acciden which can cause serious injury or death.
If you want to learn to do major service and repair work on your bike:

1. Ask your dealer for copies of the manufacturer's installation and service
instructions for the components on your bike, or contact the component instructions fo
manufacturer.
2. Ask your dealer to recommend a book on bicycle repair.
3. Ask your dealer about the availability of bicycle repair courses in your
area.

We recommend that you ask your dealer to check the quality of your work
the first time you work on something and before you ride the bike, just to make sure that you did everything correctly. Since that will require the time of a mechanic there may be a modest charge for this service.

We also recommend that you ask your dealer for guidance on what spare parts, such as inner tubes, light bulbs, etc. it would be appropriate for
you to have once you have learned how to replace such parts when they require replacement

A. Service Interval

Some service and maintenance can and should be performed by the owner, and require no spe
presented in this manual.

The following are examples of the type of service you should perform yourself. All other service, maintenance and repair should be performed in a properly equipped faciilty by a qualified bicycle mechanic using the
correct tools and procedures specified by the manufacturer. correct tools and procedures specified by the manufacturer.

1. Break-in Period: Your bike will last longer and work better if you break it in before riding it hard. Control cables and wheel spokes may stretch or "seat" when a new bike is first used and may require readjustment by your
dealer. Your Mechanical Safety Check (Section 1.C) will help you identify some things that need readjustment. But even if everything seems fine to some Yings that need readjustment. But even if everything seems fine to
you, it's best to take your bike back to the dealer for a checkup. Dealers typically suggest you bring the bike in for a 30 day checkup. Another way to
judge when it's time for the first checkup is to bring the bike in after three to judge when it's time for the first checkup is to bring the bike in after three to five hours of hard off-road use, or about 10 to 15 hours of on-road or more
casual off-road use. But if you think something is wrong with the bike, take casual off-road use. But if you think so
it to your dealer before riding it again.
2. Before every ride: Mechanical Safety Check (Section 1.C)
3. After every long or hard ride; if the bike has been exposed to water or
grit; or at least every 100 miles: Clean the bike and lightly lubricate the chain's rollers with a good quality bicycle chain lubricant. Wipe off excess lubricant with a lint-free cloth. Lubrication is a function of climate. Talk to your dealer about the best lubricants and the recommended lubrication frequency for your area.

4. After every long or hard ride or after every 10 to 20 hours of riding: - Squeeze the front brake and rock the bike forward and back. Everything

 - Squeeze the front brake and rock the bike forward and dack. Everything feel solid? If you feel a clunk with each forward or backward movementthe bike, you probably have a loose headset. Have your dealer check it. the bike, you probably have a loose headset. Have your dealer check it.

- Lift the front wheel off the ground and swing it from side to side. Feel
smooth? If you feel any binding or roughness in the steering, you may have smooth? If you feel any binding or roughness in the steering, you may have
a tight headset. Have your dealer check it. a tight headset. Have your dealer check it. - Grab one pedal and rock it toward and away from the centerline of the bike; then do the same wit
have your dealer check it. - Take a look at the brake pads. Starting to look worn or not hitting the wheel rim squarely? Time to have the dealer adjust or replace them. Carefully check the control cables and cable housings. Any rust? Kinks? Fraying? If so, have your dealer replace them. - Squeeze each adjoining pair of fpokes on either side of each wheel between your thumb and index finger. Do they all feel about the same? If
any feel loose, have your dealer check the wheel for tension and truenes - Check the tires for excess wear, cuts or bruises. Have your dealer replace them if necessary.
- check the wheel rims for
check the wheel rims for excess wear, dings, dents and scratches.
Consult your deales if - Check to make sure that all parts and accessories are still secure, and tighten any which are not.
- Check the frame, particularly in the area around all tube joints; the handlebars; the stem; and the seatpost for any deep scratches, cracks of
discoloration. These are signs of stress-caused fatigue and indicate that aiscoloration. These are signs of stress-caused fatigue and indicate that
a part is at the end of its useful life and needs to be replaced. See also
Appendix.

WARNING: Like any mechanical device, a bicycle and its nd mechanisms wear or fatigue from stress at different rates d have different life cycles. If a component's life cycle is ceeded, the component can suddenly and catastrophically fail, causing serious injury or death to the rider. Scratches,
cracks, fraying and discoloration are signs of stress-caused atigue and indicate that a part is at the end of its useful life an needs to be replaced. While the materials and workmanship of
your bicycle or of individual components may be covered by a ur bicycle or of hididual components may be covered by a warranty for a specified period of time by the manufacture,
is no guarantee that the product will last the term of the warranty. Product life is often related to the kind of riding you oo and to the treatment to which you submit the bicycle. The cycle's warranty is not meant to suggest that the bicycle cannot be broken or will last forever. It only means that the
bicycle is covered subject to the terms of the warranty. Please e sure to read Appendix A, Intended Use of your bicycle and ppendix B, The lifespan of your bike and its components, tarting on page 43.
. As required: If either brake lever fails the Mechanical Safety Check he 1.C), don't ride the bike. Have your dealer check the brakes. out of adjustment. See your dealer

Every 25 (hard off-road) to 50 (on-road) hours of riding: Take your bike 6. Every 25 (hard off-road) to 50 (on-ro
to your dealer for a complete checkup.

B. If Your Bicycle Sustains an Impact

First, check yourself for injuries, and take care of them as best you can.
Seek medical help if necessary.
,
Next, check your bike for damage.
After any crash, take your bike to your dealer for a thorough check. Carbon
composite components, including fames, wheels, handlebars, stems, composite components, including fames, wheels, handlebars, stems,
cranksets, brakes, etc. which have sustained an impact must not be cranksets, brakes, etc. which have sustained an impact must not be ridden
until they have been disassembled and thoroughly inspected by a qualified mechanic.
See also Appendix B, Lifespan of your bike and its components.
WARNING: A crash or other impact can put extraordinary
prematurely. Components suffering from stress fatigue can fail suddenly and catastrophically, causing loss of control, serious injury or death.

Appendix A
WARNING: Understand your bike and its intended use hazardous. Using your bike the wrong way is dangerous.
No one type of bicycle is suited for all purposes. Your retailer can help you pick the "right tool for the job" and help you understand its limitation
There are many types of bicycles and many variations within each type.
. There are many types of mountain, road, racing, hybrid, touring, cyclocross
and tandem bicycles. and tandem bicycles.

There are also bicycles that mix features. For example, there are road/
racing bikes with triple cranks. These bikes have the low gearing of a racing bikes with triple cranks. These bikes have the low gearing of a touring bike, the quick handling of a racing bike, but are not well suited for
carrying heavy loads on a tour. For that purpose you want a touring bike.

Within each of type of bicycle, one can optimize for certain purposes.
Visit your bicycle sho interests yoyle shop and find someone with expertise in the area interests you. Do your own homework. Seemingly small changes such as
the choice of tires can improve or diminish the performance of a bicycle for a certain purpose.

On the following pages, we generally outline the intended uses of various types of bikes. Industry usage conditions are generailized and evolving
Consult your dealer about how you intend to use your bike

High-Performance Road ONDITION 1
Marin Condition 1 models for 2011: Pro Fit Road, Natural Fit Road the tires do not lose ground contact
INTENDED To be ridden on paved roads only NOT INTENDED For off-road, cyclocross, or touring or pannier
OFF Material use is optimized to deliver both light weight and specific performance. You must understand that (1) these types of ikes are intended to give an aggressive racer or compeetitive cyclist a bikes are intended to give an aggressive racer or competitive cyclist a
performance advantage over a relatively short product life, (2) a less aggressive rider will enjoy longer frame life, (3) you are choosing light weight (shorter frame life) over more frame weight and a longer frame life, (4) you are choosing light weight over more dent resistant or rugged frames that weigh more. All frames that are very light need frequen spection. These frames are likely to be damaged or broken in a crash. hey are not designed to take abuse or be a rugged workhorse. See also Appendix B.

High-Performance Road

Maximum Weight Limit

RIDER	LUGGAGE *	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$275 / 125$	$10 / 4.5$	$285 / 129$

8General Pur
CONDITION
Marin Condition 2 models for 2011: Cross/Trekking,
Tour, Fixed, Comfort, EZ Step, ALP, Hybrid, Urban, Tour, Fixed, Comfort, EZ Step, ALP, Hybrid, Urban,
Cruiser, Metro, Commuter, Kids: MBX 50 and Tiny Cruiser,
Trail Bikes designed for riding Condition 1 , plus smooth gravel roads and improved tra
INTENDED For paved roads, gravel or dirt roads that are in good
condition, and bike paths.
NOT INTENDED For off-road or mountain bike use, or for any kind of jumping. Some of these bikes have suspension features, but these features are designed to add comfort, not off-road capability. Some come
with relatively wide tires that are well suited to gravel or dirt paths. Some with relatively wide tires that are well suited to gravel or dirt paths. Some pavement. If you ride on gravel or dirt paths, carry heavier loads or want more tire durability talk to your dealer about wider tires.

General Purpose Riding
Maximum Weight Limit
Maximum Weight Limit

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$30 / 14$	$285 / 129$
For Touring or Trekking		
$300 / 136$	$55 / 25$	$355 / 161$

Cross-Country, Marathon, Hardtails

Maximum Weight Limit

RIDER	LUGGAGE* *	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$

All Mountain CONDITION

Marin Condition 4 models for 2011: Quad XM 140 Marin Condition 4
QUAD Trail 160
Bikes designed for riding Conditions 1,2 , and 3 , plus
rough technical areas, moderately sized rough technical areas, moderately sized obstacles, and
small jumps.

INTENDED For trail and uphill riding. All-Mountain bicycles are: (1) mor heavy duty than cross country bikes, but less heavy duty than Freeride bikes,
(2) lighter and more (2) lighter and more nimble than Freeride bikes,
(3) heavier and have more suspension travel than a cross country bike, allowing them to be ridden in more difficult terrain, over larger obstacles and
moderate jumps, (4) intermediate in suspension travel and use components that fit the intermediate intended use, (5) cover a fairly wide range of intended use, and within this range are models that are more or less heavy duty. Talk to your retailer about your needs and these models.
NOT INTENDED For use in extreme forms of jumping/riding such as hardcore mountain, Freeriding, Downhill, North Shore, Dirt Jumping, Hucking etc. N
large drop offs, jumps or launches (wooden structures, dirt embankments) large drop offs, jumps or launches (wooden structures, dirt embankments)
requiring long suspension travel or heavy duty components; and no spending requiring long suspension travel or heavy duty components; and no spending
time in the air landing hard and hammering through obstacles. me in the air landing hard and hammering through obstacles.
for riding more difficult terrain. All-Mountain bikes are heavier and harder to ride uphill than cross country bikes. Al-Mountain bikes are lighter, more nimble and easier to ride uphill than Freeride bikes. All-Mountain bikes are not as rugged as Freeride bikes and must not be used for more extreme riding and terrain.
(See All M
(See All Mountain Maximum Weight Limit Chart)

?
Gravity, Freen
CONITION 5
Marin Co
Quad DH
Bikes designed for jumping, hucking, high speeds, aggressive riding on rougher surfaces, or landing on
flat surfaces. However, this type of riding is extremely hazardous and puts unpredictable forces on a b which may overload the frame, fork, or parts. If you choose to ride in Condition 5 terrain, you should take appropriate safety precautions such as
more frequent bike inspections and replacement of equipment. You should also wear comprehensive safety equipment such as a full-face helmet, pads, and body armor.
riding that includes the most difficult terrain that only very skilled riders should attempt.

Gravity, Freeride, and Downhill are terms which describe hardcore mountain, north shore, slopestyle. This is "extreme" riding and the terms
describing it are constantly evolving.

Gravity, Freeride, and Downhill bikes are: (1) heavier and have more
suspension travel than All-Mountain bikes, allowing them to be ridde suspension travel hina Ail-Moung abstacles and larger jumps, (2) the longes
more difficult terrain, over larger obser in suspension travel and use components that fit heavy duty intended use. While all that is true, there is no guarantee that extreme riding will not

The terrain and type of riding that Freeride bikes are designed for is
inherently dangerous. Appropriate equipment, such as a Freeride bik inherently dangerous. Appropriate equipment, such as a Freeride bike,
does not change this reality. In this kind of riding, bad judgment, bad luck, or riding beyond your capabilities can easily result in an accident, where you could be seriously injured, paralyzed or killed.

NOT INTENDED To be an excuse to try anything. Read Section 2. F, p. 10
TRADE OFF Freeride bikes are more rugged than All-Mountain bikes, for phill thare difficutt terrain. Freenide bikes are heavier and harder to ride uphill than All-Mountain bikes.
Gravity, Freeride, and Downhill
Maximum Weight Limit

RIDER	LUGGAGE *	TOTAL
$10 s / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$10 \mathrm{~s} / \mathrm{kg}$
$300 / 136$	$5 / 2.3$	$305 / 138$

Seat Bag Only

Dirt Jump
CONDITION
Marin Condition 5 model for 2011: Dirt Jump Bikes designed for jumping, hucking, high speeds, or aggressive riding on rougher surfaces, or landing on
flat surfaces. However, this type of riding is extremely hazardous and puts unpredictable forces on a bicycle hich may overload the frame, fork, or parts. If you choos to ride in Condition 5 terrain, you should take appropriate safety precautions such as moro frequent bike inspections and replacement of equipment. You should also wear comprel pads, and body armor.
INTENDED For man-m
INTENDED For man-made dirt jumps, ramps, skate parks other predictable obstacles and terrain where rinders need and skese skill and tike contriol, , arther
than suspension. Dirt Jumping bikes are used much like heavy duty BMX bikes. than suspension. Dirt Jumping bikes are e seded much like heavy duty BMX bikes
A Dirt Jumping bike does not give you skills to jump. Read Section 2 F p 10 A Dirt Jumping bike does not give you skills to jump. Read Section 2. F, p. 1 .
NOT INTENDED For terrain, drop offs or landings where large amounts of suspension travel are needed to help absorb the shock of landing and help
maintain control.
TRADE OFF Dirt Jumping bikes are lighter and more nimble than Freeride bikes, but they have no rear suspension and the suspension travel in the front is much shorter.
Dirt Jump
Maximum Weight Limit

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	0	$300 / 136$

2Cyclo-Cross
CONDITION 2
Marin Condition 2 model for 2011: Cyclo-Cross Bikes designed for riding Condition 1, plus smooth grevel roads and improved trails with moderate grades where the tires do not lose ground contact. INTENDED For cyclo-cross riding, training and acing. Cyclo-cross involves riding on a variety of terrain and surfaces including dirt or mud surfaces. Cyclo-cross bikes also work well for all weather rough road riding and commuting.
NOT INTENDED For off road or mountain bike use, or jumping. Cyclocoss riders and racers dismount before reaching an obstacle, carry heir bike over the obstacle and then remount. Cyclo-cross bikes are not are faster than the smaller mountain bike wheels, but not as strong

Cyclo-Cross
Maximum Weight Limit

RIDER	LUGGAGE	TOTAL
$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$	$\mathrm{lbs} / \mathrm{kg}$
$300 / 136$	$30 / 13.6$	$330 / 150$

Appendix B

1. Nothing Lasts Forever, Including Your Bike

When the useful life of your bike or its components is over, continued use
is hazardous.
Every bicycle and its component parts have a finite, limited useful
life. The length of that life will vary with the construction and materian life. The length of that life will vary with the construction and materia)
used in the frame and components; the maintenance and care the used in the frame and components; the maintenance and care the
frame and components receive over their life; and the type and am frame and components receive over their life; and the type and am
of use to which the frame and components are subjected. Use in competitive events, trick riding, ramp riding, jumping, aggressive riding,
riding on severe terrain, riding in severe climates, riding with heavy riding on severe terrain, riding in severe climates, riding with heavy
loads, commercial activities and other types of non-standard use can loads, commercial activities and other types of non-standard use can
dramatically shorten the life of the frame and components. Any one or dramatically shorten the life of the frame and components. Any one or a
combination of these conditions may result in an unpredictable failure.
All aspects of use being identical, lightweight bicycles and their
components will usually have a shorter life than heavier bicycle
components will usually have a shorter life than heavier bicycles and thei components. In selecting a lightweight bicycle or components you are
making a tradeoff, favoring the higher performance that comes with lighte making a tradeoff, favoring the higher performance that comes with ligh
weight over longevity. So, If you choose lightwight, high performance
equipment, be sure to have it inspected frequently. You should have your bicycle and its components checked periodically
by your dealer for indicators of stress and/or potential failure, including by your dealer for indicators of stress and/or potential failure, inclu
cracks, deformation, corrosion, paint peeling, dents, and any other cracks, deformation, corrosion, paint peeiing, dents, and any other
indicators of potential problems, inappropriate use or abuse. These are important safety checks and very important to help prevent accidents,
bodily injury to the rider and shortened product life.

2. Perspective

Today's high-performance bicycles require frequent and careful inspection
and service. In this Appendix we try to explain some underlying material and service. In this Appendix we try to explain some underlying material
science basics and how they relate to your bicycle. We discuss some of the science basics and how they relate to your bicycle. We discuss some of the
trade-offs made in designing your bicycle and what you can expect from your bicycle; and we provide important, basic guidelines on how to maintain and inspect it. We cannot teach you everything you need to know to properly inspect and service your bicycle; and that is why we repeatedly urge you to
take your bicycle to your dealer for professional care and attention
A. WARNNG: Frequent inspection of yourbikiki is inportant o o our Manual before every ride. Manual before every rid
Periodic, more detailed inspection of your bicycle is important.
How often this more detailed inspection is neded upon you.
You, the rider/owner, have control and knowledge of how often You, the riderlowner, have control and knowledge of
you use your bike, how hard you use it and where you you use your bike, how hard you use it and where you yuse your dealer cannot track your use, you must take responsibility for periodically bringing your bike to your
dealer for inspection and service. Your dealer will help you decide what frequency of inspection and service is appropriate decide what frequency of inspection
for how and where you use your bike.

For your safety, understanding and communication with your
dealer, we urge you to read this Appendix in its entirety. The dealer, we urge you to read this Appendix in its entirety. The materials used to make your bike determine how and ho
frequently to inspect.

Ignoring this WARNING can lead to frame, fork or other
component failure, which can result in serious injury or death.

A. Understanding Metals

Steel is the traditional material for building bicycle frames. It has good characteristics, but in high performance bicycles, steel has been largely change is interest by cycling enthusiasts in lighter bicycles.

Properties of Metals
Please understand that there is no simple statement that can be made
that characterizes the use of different metals for bicycles. What is true is how the metal chosen is applied is much more important than the material alone. One must look at the way the bike is designed, tested, manufactured, supported along with the characteristics of the metal rathe

Metals vary widely in their resistance to corrosion. Steel must be protected
or rust will attack it. Aluminum and Titanium quickly develop an oxide film
that protects the metal from further corrosion. Both are therefore quite that protects the metal from further corrosion. Both are therefore quite
resistant to corrosion. Aluminum is not perfectly corrosion resistant, and particular care must be used where it contacts other metals and galvanic corrosion can occur.
Metals are comparatively ductile. Ductile means bending, buckling and Metals are comparatively ductile. Ductile means bending, bucking and
stretching before breaking. Generally speaking, of the common bicycle
frame building materials steel is the most ductile, titanium less ductile, frame building material
followed by aluminum.
Metals vary in density. Density is weight per unit of material. Steel weighs 7.8 grams $/ \mathrm{cm3} 3$ (grams per cubic centimeter), titanium 4.5 grams $/$ cm3 3 ,
aluminum 2.75 grams $/ \mathrm{m} 3$. Contrast these numbers with carbon fiber composite at 1.45 grams $/ \mathrm{cm} 3$.
Metals are subject to fatigue. With enough cycles of use, at high enough
loads, metals will eventually develop cracks that lead to failure It is very

mportant that you read The basics of metal fatigue below.

Let's say you hit a curb, ditch, rock, car, another cyclist or other object.
At any speed above a fast walk, your body will continue to move forward, momentum carrying you over the front of the bike. You cannot ord will not stay on the bike, and what happens to the frame, fork and other components is irrelevant to what happens to your body.
What should you expect from your metal frame? It depends on many a design criteria. With that important note, we can tell you that if the impact a design criteria With that important note, we can tell you that if the impact
is hard enough the fork or frame may be bent or buckled. On a steel bike, the steel fork may be severely bent and the frame undamaged. Aluminu is less ductile than steel, but you can expect the fork and frame to be bent
or buckled. Hit harder and the top tube may be broken in tension and the or buckled. Hit harder and the top tube may be broken in tension and the down tube buckled. Hit harder and the top tube may be broken, the down the main triangle.

When a metal bike crashes, you will usually see some evidence of this ductility in bent, buckled or folded metal.

It is now common for the main frame to be made of metal and the fork of carbon fiber. See Section B, Understanding composites below. The relative
ductility of metals and the lack of ductility of carbon fiber means that in a ductility of metals and he lack of ductility of carbon iber means that in a crash scenario you can expect some bending or bucking in the metal but
none in the carbon. Below some load the carbon fork may be intact eve though the frame is damaged. Above some load the carbon fork will be completely broken.

The basics of metal fatigue
Common sense tells us that nothing that is used lasts forever. The more you use it in, the shorter its life.

Fatigue is the term used to describe accumulated damage to a part caused
by repeated loading. To cause fatigue damage, the load the part receives by repeated loading. To cause fatigue damage, the load the part receives must be great enough. A crude, often-used example is bending a paper
clip back and forth (repeated loading) until it breaks. This simple definitio clip back and forth (repeated loading) until it breaks. This simple definition
will help you understand that fatigue has nothing to do with time or age. A bicycle in a garage does not fatigue. Fatigue happens only through use.
So what kind of "damage" are we talking about? On a microscopic level, a crack forms in a highly stressed area. As the load is repeeatedly applied,
the crack grows. At some point the crack becomes visible to the naked eye Eventually it becomes so large that the part is too weak to carry the load that it could carry without the crack. At that point there can be a complete

One can design a part that is so strong that fatigue life is nearly infinite This requiries a lot of material and a lot of weight. Any structure that
must be light and strong will have a finite fatituel life Aircratt race must be light and strong will have a finite fatituee life. Aircraft, race cars,
motorcycles all have parts with finite fatigue lives. If you wanted a bicycle motorcycles all have parts with finite fatigue lives. If you wanted a bicycle
with an infinite fatigue life, it would weigh far more than any bicycle sold with an infinite fatigue life, it would weigh far more than any bicycle sold
today. So we all make a tradeoff: the wonderful, lightweight performance we want requires that we inspect the structure.

What to look for

- ONCE A CRACKS STARTS IT CAN GROW AND GROW FAST. Think about the crack as forming a pathway to failure. This means that any crack is potentially dangerous and will only become more dangerous.	SIMPLE RULE 1 : If you find crack, replace the part.
- CORROSSION SPEEDS DAMAGE. Cracks grow more quickly when they are in a corrosive environment. Think about the corrosive solution as further weakening and extending the crack.	SIMPLE RULE 2 : Clean your bike, lubricate your bike, protect your bike from salt, remove any salt as soon as you can.
- STAINS AND DISCOLORATION CAN OCCUR NEAR A CRACK. Such staining may be a warning sign that a crack exists.	SIMPLE RULE 3 : Inspect and investigate any staining to see if it is associalod mack
- SIGNIFICANT SCRATCHES, GOUGES, DENTS OR SCORING CREATE STARTING POINTS FOR CRACKS. Think about the cut surface as a focal point for stress (in fact engineers call such areas "stress risers," areas where the stress is increased). Perhaps you have seen glass cut? Recall how the glass was scored and then broke on the scored line.	SIMPLE RULE 4 : Do not scratch, gouge or score any surface. If you do, pay frequent attention to this area or replace the part.

What to look for (continued):

In most cases a fatigue crack is not a defect. It is a sign that the part has been worn out, a sign the part has reached the end of its useful life. When
your car tires wear down to the point that the tread bars are contacting the road, those tires are not defective. Those tires are worn out and the tread bar says "time for replacement." When a metal part shows a fatigue crack, it
is worn out. The crack says "time for replacement."

Fatigue Is Not A Perfectly Predictable Scienc

Fatigue is not a perfectly predictable science, but here are some general
factors to help you and your dealer determine how often your bicycle should factors to help you and your dealer determine how often your bicycle shoul be inspected. The more you fit the "shorten product life" profile, the more
frequent your need to inspect. The more you fit the "lengthen product life" frequent your need to inspect. The more you fil
profile, the less frequent your need to inspect.

Factors that shorten product life:

Hard, harsh riding style
"Hits", crashes, umps, other "shots" to the bike High mileage
Higher body w
Stronger, more fit, more aggressive rider

Corrosive environment (wet, salt air, winter road salt, accumulated
sweat)
Factors that lengthen product life
Smooth, fluid riding style
No "hits" crashes
No "hits", crashes jumps, other "shots" to the bike
Ow mileage
Less aggressive rider
Noo-corrosive environment (dry, salt-free air)
Clean riding environment
WARNING: Do not ride a bicycle or component with any crack, bulge or dent, even a small one. Riding a cracked frame, fork or compo nent could lead to complete failure, with risk of serious injury or death.

B. Understanding Composites

All riders must understand a fundamental reality of composites. Composite
materials constructed of carbon fibers are strong and light, but when materials constructed of carbon fibers are strong and light, but whe crashed or overloaded, carbon fibers do not bend, they break.

What Are Composites
The term "composites" refers to the fact that a part or parts are made up of different components or materials. You"ve
bike." This really means "composite bike."

Carbon fiber composites are typically a strong, light fiber in a matrix of

The composites with the best strenght-to-weight ratios are made of carbon fiber in a matrix of epoxy plastic. The epoxy matrix bonds the carbon
fibers together, transfers load to other fibers, and provides a smooth surface. The carbon fibers are the "skeleton" "that carries the load.

Why Are Composites Used?

Unike metals, which have uniform properties in all directions (engineers
call this istropici), carbon fibers can be placed in specific orientations to optimize the structure for particular loads. The choice of where to place the carbon fibers gives engineers a powertul tool to create strong, light bicycles. Engineers may also o
comfort and vibration damping.

Carbon fiber composites are very corrosion resistant, much more so than most metals

Carbon fiber materials have a very high strength-to-weight ratio

What Are The Limits of Composites?

Well designed "composite" or carbon fiber bicycles and components have long fatigue lives, usually better than their metal equivalents.
While fatigue iffe is an advantage of carbon fiber, you must still regularly inspect your carbon fiber frame, fork, or components.

Carbon fiber composites are not ductile. Once a carbon structure is
overloaded, it wiil not bend; it will break. At and near the break, the
be rough, sharp edges and maybe delamination of carbon fiber or carbo tayers. There will be no bending, buckiing, or stretching. From Your Carbon Fiber Bike?
Let's say you hita aurb, dith, rock, car, other cyclist or other object. At
any speed above a aast walk, your body will continue to move forward any speed above a fast walk, your body will continue to move forward,
the momentum carrying you over the front of the bike. You cannot and

What should you expect from your carbon frame? It depends on many What should you expect from your carbon frame II d depends on many
complex factors. . ut we can tell you that it he impact is hard enough, the fork or frame may be completely yroken. Note the significant difiererence
in behavior between carbon and metal. See Section 2 .A, Understanding in beenavior between carbon and metal. See Section 2.A. . Understanding
metas in in this Appendix. Even if the carbon trame was wice as stron as
antal metals in this Appendix. Even if the carbon frame was twice as strong as
a metal frame, once the carbon frame is overloaded it itill not bend, it wil a metal rame, onc.
break compleelel.
Inspection of Composite Frame, Fork, and Components Cracks:
Inspect for cracks, broken, or splintered areas. Any crack is serious. Do not
ride any biét Delamination:
Delamination is serious damage. Composities are made from layers of fabric. Delamination means that the layers of rabric are no Ionger bonded These are some delaminintion clues

1. Acloudy or white area. This kind of area looks different from the ordinary undamaged areas. Undamageed areas will look glassy, shiny, or doepp, as
if one was
and dloudy 2. Bulugng or deformed shape. If delamination occurs, the surface shape
may change. The surface may have a bump, a bulge, soft spot, or not te may change. Thir
smooth and fair
3Adiference 3.A difiference in sound when tapping the surface. If you gently tap the
surface of a surface of an undamaged composite you will hear a consistent sound,
usually hard. sharg usually a hard, sharp sound. If you then tap a de
hear d different sound, usually duller, less sharp.

Unusual Noises:
Unusual Noises:
Either crack or delamination can cause creaking noises while riding. Ether a crack or delamination can cause creaking noises while riding.
 find the source of any noise. It may not be a crack or deleamination, but
whatever is causing the noise must te fixed before ididen
. WARNING: Do not ride a bicycle or component with any
delamination or crack. Riding a delaminated or cracked frame fork or other component could lead to complete

c. Understanding components

It is often necessary to remove and disassemble components in order to
propery and carefuly inspect them. This is is job for a professional bicycle propery and carefully inspect them. This is a job for a professional bicy mechanic with the special tools, skills and experience to inspect and
service todays high-tech high-pertormance bicycles and their components.

Aftermarket "Super Light" components

Think carefilly about your idere profile as outined above. The more you
fit the shorten product life" profile, the more you must euestion the use fit he "shorten product tife" "rofile, the more you must question the use
of super light components. The more you fit the "lengthen product life"
profile, the more ikely it is that lighter components may be suitable for you. Discuss your needs and your profilie verrerp honenestly mayt be sutitable y dealer.
Take these choices serioussy and tisy and undersland that you are responsible for A useful slogan to discuss with your dealer if you contemplate changing components is "Strong, Light, Cheap -pick two:"

Original Equipment components

Bicycle and component manufacturers tests the fatigue life of the components that are original equipment on your bike. This means that they have met test criteria and have reasonable fatigue life. It does not mean that the original components will last forever. They won't.

Appendix C

1. How the Coaster Brake Works

The coaster brake is a sealed mechanism which is a part of the bicycle's rear wheel hub. The brake is activated by reversing the rotation of the
pedal cranks (see fig. 5). Start with the pedal cranks in a nearly horizontal position, with the front pedal in about the 40° 'clock position, and apply downward foot pressure on the pedal that is to the rear. About $1 / 8$ tur the more braking force, up to the point where the rear wheel stops rotataing the more braking forc
and begins to skid.
WARNING: Before riding, make sure that the brake is working properly. If it is not working properly, have the bicycle checked by your dealer before you ride it.

WARNING: If your bike has only a coaster brake, ride conservaively. A single rear brake does not have the stopping power of front-and-rear brake systems.

2. Adjusting Your Coaster Brake

Coaster brake service and adjustment requires special tools and specia knowledge. Do not attempt to disassemble or service your coaster brake.
Take the bicycle to your dealer for coaster brake service.

Appendix D

torque values
If you break a bolt during installation or use, or it slips, it is likely
because you have not used a proper tool, failed to properly lubricict because you have not used a proper tool, failed to properly lubricate
or "prep" the bolt threads or exceeded the torgue recomendations or "prep" the bolt threads or exceeded the torque recommendations
for the bolt. The following are generally recommended torque ranges for the bolt. The following are generally recommended torque ranges
for various bolts. Please check the component part manufacturers recommendations for specific parts torque values especially if there is a carbon part being bolted or bolted to.

Brake lever clamp bolts $25-40 \mathrm{in} / \mathrm{b}$ ($2.8-4.5 \mathrm{NM}$) Brake lever Clamp bolts $25-40 \mathrm{in} / \mathrm{Ib}(2.8-4.5 \mathrm{NM})$
Brake lever pivot bolts $25-35 \mathrm{in} / \mathrm{lb}(2.8-3.9 \mathrm{NM})$ Brake arch pivot bolts $30-50$ in $/ 16(3.4-5.7 \mathrm{~N})$
Brake pad bolts $70-80$ in $/ 6$ ($79-9.0 \mathrm{NM}$) Brake pad bolts $70-80$ in/lb ($7.9-9.0 \mathrm{NM}$) Straddle cable bolts $40-60$ in/lb ($4.5-6.8 \mathrm{NM}$)
Cable carrier bolts $35-40$ in $/ \mathrm{b}(39-4.5 \mathrm{NM})$ Brake cable anchor bolts $50-70$ in/lb ($5.7-7.9 \mathrm{NM}$) Cable carrier bolts $35-40$ in/lb (3.9-4.5 NM) Derailleur cable anchor bolts $35-50$ in/ll ($3.4-5.7 \mathrm{NM}$) Front derailleur clamp bolt $20-35$ in//b ($2.3-3.9 \mathrm{NM}$)
Rear derailleur fixing bolt $60-75$ in $/ \mathrm{b}(6.8-8.5 \mathrm{NM})$ Rear derailleur fixing bolt $60-75 \mathrm{n} / \mathrm{Ib}(6.8-8.5 \mathrm{~N}$)
Shift lever clamp bolts $25-40 \mathrm{in} / \mathrm{b}(2.8-4.5 \mathrm{NM})$
Shift lever pivot fixing bolts $22-30$ in/lb $(2.5-3.4 \mathrm{~N})$
Handlebar clamp bolt $80-100$ in/lb ($9.0-11.3 \mathrm{NM}$)
Handlebar stem expander bolt 175-200 in/lb (19.8-22.6 NM) Crank fixing bolts 200-240 in/lb (22.6-27.2 NM) Pedals 350 in/lb (39.6 NM)
Toe clip screws $25-30 \mathrm{in} / \mathrm{lb}$ (2.8-3.4 NM)
Chainwheel bolts $70-95$ in/lb $(7.9-10.7 \mathrm{NM})$
Saddle fixing bolt $140-175$ in/lb $((15.8-19.8 \mathrm{NM})$

ull Suspension "FRS" TORQUE VALUES

 Rear Shock Mounting NutsAircraft Nut, Self Locking M8 (\#9) $180 \mathrm{in} / \mathrm{b}$ (20.3 NM Static Shock End Mounting Screw Screw Socket Head (\#13) 60 in/l/b(6.8 NM)
Screw Socket Head $\# \# 6) 120$ in $1 / 13$ (13.6 NM) Modular Dropout Fixing Bolts 130 in/l. (15 NM)
Copyright © 2010/2011/2012 BPSA (www.bpsa.org) and MARIN BIKES, INC specifications subject to change without notice. Not all models available in al sizes in all countries.
Marin Bikes Registered Trademarks: Alcatraz, Alpine Trail, Argenta, Attack
Trail, B-17, Bayview Trail, Bear Valley, Belvedere, Bobcat Trail, Bolinas Ridge, Trail, B-17, Bayview Trail, Bear Valley, Belvedere, Bobcat Trail, Bolinas Ridg
Bridgeway, Coast Trail Cortina, Corte Madera, CXR Carbon, Dominican, Bridgeway, Coast Trail, Cortina, Corte Madera, CXR Carbon, Dominican,
Drakes eaeach, East Heak, Eldridge Grade, Fairfax, FRR, Hamition, Hawk
Hill, Hearts Desire, Hidden Canyon, Highway One, Ignacio, Indian Fire Trail, Hill, Hearts Desire, Hidden Canyon, Highway One, Ignacio, Indian Fire Trail,
Inverness, Iron Springs, Juniper Trail, Kentifild, Lagunitas, Larkspur, Lombard,
Lucas Valley, Madrone Trail, Marin, MBX, Mill Valley, Mount Vision, Muirwoods, Inverness, Iron Springs, Juniper Trail, Kentifild, Lagunitas, Larkspur, Lombard,
Lucas Valley, Marone Trail Marin, MBX, Mill Valley, Mount Vision, Muiwoods,
Nail Trail, Northside Trail, Novato, Olema, Palisades Trail, Pine Mountain, Nail Trail, Northside Trail, Novato, Olema, Palisades Trail, Pine Mountain,
Pioneer Trail, Point Reyes, Portofina, Portofino, Quake, Quad-Link, Quad--rail,
Ravena, Redwood, Rift Zone, Rock Springs, Rocky Ridge, San Anselmo, San Marino, San Quentin, San Rafael, Sausalito, Sea Drift, Sky Trail, Shoreline Trail, Stelvio, Stinson, TARA, Terra Linda, , Toscana, Treviso, Venezia, Verona

Marin Bikes Trademarks: CXR Carbon, Four Corners, MBX, Sky Trail, Tiny
All bikes come fully equipped with CPSC or CEN approved reflectors, however, for nighttime riding, it is the rider's responsibility to use an adequate lighting system that consists of front and rear lights and that complies with all local laws
and vehicle codes.

This WARRANTY REGISTRATION CARD must be filled out immediately and returned to the Marin Bikes distributor in your country or at their website if that distributor offers web based warranty registration. The
contact information of the distributor in the country in which you bought the bicycle is listed at:
www.marinbikes.com/international_distributors

NSTRUCTIONS:
tep 1) Please complete all information in this Warranty Registration Card
Step 2) Cut out this card from this Owner's Manual.
Step 3) Mail or Fax: Put in an envelope and mail to the Marin Bikes Distributor in your Country of purchase
Aternatively you may fax your Warranty Registration Card. To find distributor contact info visit. wn.marmbikes.co (DO NOT mail to Marin U.S.A.)

Name:
Address:
City:
State:
Country:
Postal Code:
E-mail Address:
Bike Model:
Serial Number:
So Place of Purchase:
Date of Purchase

265 Bel Marin Keys Blvd., Novato, CA 94949, USA 415.382 .6000 800.222.7557 www.MarinBikes.com

