
MarkDoc Wiki Manual (v. 4.0.0)
E. F. Haghish

Department of Mathematics and Computer Science
University of Southern Denmark

This manual is created from GitHub Wiki documentations automatically. GitHub Wiki is
a very convenient way to document a software. Using markdoc, you can convert the
documentation to PDF, HTML, or even Stata help files (sthlp). Read more about
markdoc on https://github.com/haghish/markdoc/

MarkDoc is a general-purpose literate programming package for Stata. MarkDoc is very simple and
intuitive to use and it supports creating dynamic documents interactively. The software has a
considerable focus on making literate programming easy and intuitive for newbies. Moreover, it
greatly values the readability of the source code and thus provide several options to keep the source
code as plain as possible. Therefore, MarkDoc can be taught to undergraduate students in
introductory statistics courses to boost active learning, document code, and practice statistical
reporting. Based on my personal experiences in teaching statistics students enjoy taking notes in
their script files and writing dynamic documents.

Not only students, but also lecturers can get benefit from MarkDoc for creating dynamic
presentation slides, directly from Stata, which makes their slides to be easily updatable, reusable,
and easy to create. Finally, advanced Stata programmers, can get benefit from MarkDoc for
creating Stata help files in (sthlp) or pdf package vignette from their source code.

Resources
MarkDoc package vignette (PDF)

Journal Article

Examples

Torture tests

Release notes

MarkDoc engine structure

Need help? Ask your questions on statalist.org

Need more help? Contact the author to plan a workshop in your department or company

Features
MarkDoc has several unique features which makes it an ideal package for practicing literate
programming at any level, from a complete newbie to an advanced programmer. In brief, it can:

file:///C:/Users/haghish.fardzadeh/Documents/GitHub/markdoc.wiki/%22https://github.com/haghish/markdoc/%22
https://github.com/haghish/markdoc/
https://github.com/haghish/markdoc/raw/master/Help/Help.pdf
http://www.stata-journal.com/article.html?article=pr0064
https://github.com/haghish/MarkDoc/tree/master/Examples
https://github.com/haghish/markdoc/tree/master/Torture_test
https://github.com/haghish/MarkDoc/releases
https://github.com/haghish/markdoc/wiki/Package-Structure
http://www.statalist.org/
http://www.haghish.com/contact.php

highlight the syntax of Stata commands in HTML and PDF
Produce dynamic documents in several formats by:

converting smcl log file to any format
actively reproducing a dynamic document from a do-file

Produce presentation slides in PDF or HTML
Produce Stata package help files (sthlp) or package vignette (pdf, html, latex, docx, ...) from
the source code
Render LaTeX mathematical notations in Microsoft Word docx, OpenOffice odt, html, and pdf
Capture a graph automatically from Stata and include it in the dynamic document or slides
Include a stored image in the dynamic document
Create dynamic tables
Write dynamic text for interpreting the results
Specify what commands or results should be included in the dynamic document
Include external text files (markdown, LateX, html, smcl, etc.) in the dynamic document
Provide a "standard" template with descriptions for creating template help files

Formats
The main idea of MarkDoc is that a single documentation format and a markup language should be
able to produce a variety of document formats from the same source. For example, a graduate
student should be able to produce an HTML output from a source code written with Markdown and
also, use the same source to create a PDF analysis report, presentation slides, a LaTeX document,
or a Microsoft Word document. This range of supported document formats makes "reusing" the
documentation easy because a single format can be used for creating a variety of formats.

However, in addition to Markdown, MarkDoc recognizes 3 other markup languages for
documentation which are LaTeX, HTML, and SMCL. MarkDoc applies the same format for
documentation and can produce:

1. dynamic analysis document (pdf, docx, tex, html, odt, epub, markdown)
2. Stata package vignette (pdf, docx, tex, html, odt, epub, markdown)
3. dynamic presentation slides (pdf, slidy)
4. Stata help files(sthlp, smcl).

MarkDoc produces these document formats in several ways. Classically, MarkDoc takes a Stata
smcl log file and converts it to any of the supported formats which are shown below.

In this case, MarkDoc processes the smcl file, which has a .smcl suffix and produces the
document. The smcl file can be written in any of the supported markup languages which are
Markdown ()default), html, latex. A smcl log file that is written with Markdown can be converted to
pdf, docx, tex, html, odt, epub, and markdown. If the smcl log file is written in html or latex, only a
pdf and html or latex document can be exported respectively. Therefore, to get the maximum format
compatibility from MarkDoc, Writing with Markdown is recommended compared to LaTeX or html.

https://daringfireball.net/projects/markdown/syntax
https://github.com/haghish/MarkDoc/blob/master/Resources/images/markdoc_smcl.png
http://www.haghish.com/statistics/stata-blog/reproducible-research/dynamic_documents/markdown.php
http://www.haghish.com/statistics/stata-blog/reproducible-research/dynamic_documents/latex.php

To ensure the analysis is really reproducible, converting a smcl file to a document is not enough.
Instead a very restricted procedure is required to ensure the do-file loads the dataset that it uses for
the analysis. In other words, the literate programming package should imagine there is no dataset
loaded in Stata and then executes the do-file in a cleared workspace. When MarkDoc is given a
Stata do-file, it executes the the script file in a new workspace and produces the dynamic document
or presentation slides in any of the supported formats.

In addition, MarkDoc can also create a dynamic document, presentation slides, or package
documentation from Stata script files which have the .do, .ado, and .mata suffix. Similarly, the
documentations can be written in Markdown, html, or latex. However, for exporting Stata help files,
only Markdown, smcl, or a combination of these two markup languages can be used to create .sthlp
files. While html and latex can be used for creating package vignettes, it seems more plausible to
write the documentation by combining smcl and Markdown, which on the one hand can greatly
simplifies writing Stata help files and on the other, ensures that the help file can have the flexibility of
the smcl language when it is needed.

Dialog box

https://github.com/haghish/MarkDoc/blob/master/Resources/images/markdoc_do.png
https://github.com/haghish/MarkDoc/blob/master/Resources/images/markdoc_source.png

To further facilitate using MarkDoc in classrooms, a dialog box was written for Stata, which also
shows the options and features of Stata. The dialog box is currently only supporting the dynamic
document engine of MarkDoc.

To use the dialog box, type:

db markdoc

You can read more about the dialog box here.

Installation

MarkDoc package can ONLY be installed from Github and is not hosted on SSC any longer. The
Stata github package can be used to install MarkDoc or any other Stata package hosted on Github.
If you don't have the github command installed, type:

net install github, from("https://haghish.github.io/github/")

Next, to install MarkDoc along with its dependencies from GitHub, type:

github install haghish/markdoc

Dependencies
The command above installs MarkDoc and its dependencies (other Stata packages), which are:

Weaver
Statax
md2smcl

github installs the dependencies by executing dependency.do file in the Github repository after
installing MarkDoc. This file includes the commands needed for installing the package
dependencies.

Required third-party software
MarkDoc also requires 3 third-party software, which are:

https://github.com/haghish/MarkDoc/wiki/GUI
https://github.com/haghish/MarkDoc/wiki/GUI
https://github.com/haghish/github
https://github.com/haghish/github
http://www.haghish.com/statistics/stata-blog/reproducible-research/weaver.php
http://www.haghish.com/statax/statax_package.php
https://github.com/haghish/md2smcl
https://github.com/haghish/github
https://github.com/haghish/markdoc/blob/master/dependency.do

Pandoc
pdfLaTeX
wkhtmltopdf

Having Pandoc installed on your system is rather necessary because many features of MarkDoc
rely on Pandoc. The pdfLaTeX is optional, but required for generating PDF slides and typesetting
documents written in LaTeX. If you write your document using Markdown and do not intend to
generate dynamic PDF slides within Stata, you don't need to install pdfLaTeX. The wkhtmltopdf is
only required for generating PDF documents from Markdown. Luckily, Pandoc and wkhtmltopdf
can be installed automatically (see below).

Automatic installation of third-party software
The markdoc command includes the install option, which downloads the Pandoc and
wkhtmltopdf software automatically if they are not already installed or cannot be accessed by
markdoc. The automatic installation was successfully tested on Mac OS X (10.9 and 10.10); 32-bit
and 64-bit versions of Microsoft Windows (XP, 7, 8); Microsoft Windows 10 (64-bit); and Linux
Ubuntu 14.04 (64-bit), Mint 17 (32-bit and 64-bit), and CentOS 7 (64-bit). However, manual
installation is generally recommended because it ensures the installation of the latest version of the
software.

markdoc installs the required software in a directory named Weaver inside the plus directory,
where Stata expects to find user-written ado-files. The path to the \ado\plus\ directory can be
found using the sysdir command, which lists Stata’s system directories. For Stata 13 and 14,

the default Weaver directory paths are shown below based on the operating system.

Windows: C:\ado\plus\Weaver
Mac OS X: ~/Library/Application Support/Stata/ado/plus/Weaver
Linux: /home/username/ado/plus/Weaver

Manual installation
Users can also download and install these software manually and define the paths to executable
software in MarkDoc. For example, if you wish to create a dynamic document

The users can also permanently define the paths to these software using the weave setup
command which memorizes the paths to the executable Pandoc and wkhtmltopdf permanently, even
if MarkDoc package gets updated. The path information is stored in an ado file named
weaversetup.ado, which can be found in /PLUS/w/weaversetup.ado.

Continue reading about weave setup in its separate page...

weave setup command

The weave setup command is borrowed from weaver package and is used for defining the path to
third-party software (e.g. Pandoc, wkhtmltopdf, pdfLaTeX) permanently. If you prefer to install the
third-party software manually, this command comes very handy to avoid specifying the paths to
these software anytime you call markdoc. To define permanent paths to these software, type:

weave setup

This command opens a file in your Stata where you can define file paths in it. The file has complete
instructions written in it that you can follow. Inside the file, there are a few global macros that you
can define the permanent file paths or change the behavior of markdoc package. To edit this file,
insert the path to the executable file inside the quotations to define the global macro. Here is an
example for defining the file path to pdfLaTeX on Windows (Note that the file path might be different
on your machine):

global pathPdflatex "C:\Program Files\MiKTeX 2.9\miktex\bin\x64\pdflatex.exe"

If you wish to remove a path, make sure not to leave an empty space between the quotation
marks. for example you can remove the example above by making the global macro NULL (i.e.

http://pandoc.org/installing.html
https://www.latex-project.org/get/
http://wkhtmltopdf.org/downloads.html
http://pandoc.org/installing.html
http://wkhtmltopdf.org/downloads.html
https://github.com/haghish/markdoc/wiki/weave-setup
https://github.com/haghish/weaver

no string character is defined):

global pathPdflatex ""

The changes made in this file are permanent and do not get replaced with the next package
update. But you can always access them using the weave setup command.

Here are the list of globals you can define in weave setup:

// ---
// Path to executable third-party software, required by Weaver and MarkDoc
// ===

// wkhtmltopdf
// -----------------------------------
global pathWkhtmltopdf "" //example: "C:\wkhtmltopdf\bin\wkhtmltopdf.exe"

// pdfLaTeX
// -----------------------------------
global pathPdflatex "" //example: "C:\Program Files\MiKTeX 2.9\miktex\bin\x64\pdflatex.exe"

// MathJax
// -----------------------------------
global pathMathJax "" //example: "C:\Users\haghish\Downloads\MathJax-master"

// Pandoc (for MarkDoc)
// -----------------------------------
global pathPandoc "" //example Win: "C:\Pandoc\pandoc.exe" //example Mac: "/usr/local/bin/pandoc"

// ---
// Settings for Weaver and MarkDoc
// ===

// markup language for MarkDoc
// -----------------------------------
global markdocDefault "" //example: "markdown" or "html" or "latex"

// Default paper size
// -----------------------------------
global doc_paper "" //example: "a4" or "letter"

The second part of the file is used for defining the default markup language and the paper size (for
weaver only). For example, if you intend to use LaTeX as your primary markup language, you can
change the default settings of markdoc.

GUI

MarkDoc includes a dialog box (GUI), which not only makes working with the package easier, but
also shows all of the potential of the package for writing dynamic documents, dynamic presentation
slides, and Stata help files and package vignette. To begin using the GUI, type:

. db markdoc

The command will open the GUI, which is divided into three main tabs, demonstrating the three
separate engines that are included in MarkDoc package. The tabs are Dynamic Document,
Presentation SLide, and Package Vignette.

In contrast to most of the Stata GUIs - which include a main tab and several tabs for options - the
tabs in MarkDoc GUI are independent (because the engines are also independent). Therefore, if
you wish to create a dynamic presentation slide or Stata help files, you should select the source file
and options in the specified tab.

Dynamic Document Tab
The first tab of the GUI is for creating dynamic documents from a source file, which can be a smcl
log-file or a do-file. MarkDoc processes these two source files differently. A smcl log-file will simply

be converted to a dynamic document, whereas a do-file will be executed in a new workspace (i.e.
the currently loaded data will not be available. You should include all of the code in the do-file) and
the results are used to generate a dynamic document. When typing db markdoc, the following
window appears:

The default markup is Markdown but you can change that to HTML or LaTeX. The GUI also
includes tips. By holding your mouse pointer on an object in the GUI, the tip will appear. For
example, if you hold your pointer on the "Markup language", the following box will appear:

https://raw.githubusercontent.com/wiki/haghish/MarkDoc/images/gui_markdoc.png

Presentation Slide Tab
The second tab is for creating PDF or HTML-based presentation slides.

https://raw.githubusercontent.com/wiki/haghish/MarkDoc/images/gui_help.png

While generating HTML-based presentation slides can be attractive for some users, most users
probably find the PDF presentation slides more useful and portable. The PDF presentation slides
require LaTeX, however, they can be written in Markdown, which makes generating slides much
easier. Moreover, MarkDoc includes several options for customizing the PDF slides. All of the
Beamers' themes, colors, and fonts, as well as options for specifying the font size of Stata output
and also the width and height of the slides can be customized.

NOTE that generating dynamic slides is not yet documented in this manual, nor it is mentioned in
the journal article. However the torture tests include a directory called Beamer that has several
examples for generating dynamic slides with Markdown and LaTeX. Basically, creating slides is not
really different for generating documents (despite the options and the engine), however, you should
separate the slides from one another. When writing with Markdown, you can separate the slides by:

1. Writing heading 1
2. Using a line --- which breaks the slide
3. Creating a new documentation chunk using "/" and "/" signs

Package Vignette
The package vignette tab uses ado-file or mata-file and extracts the documentation written in the file
to generate a dynamic Stata help file (sthlp) or a package vignette, in any of the supported formats.
The documentation can be written in smcl or a combination of smcl and Markdown. The package
vignette tab is shown below:

https://raw.githubusercontent.com/wiki/haghish/MarkDoc/images/gui_slide.png
https://github.com/haghish/MarkDoc/tree/master/Torture_test/Beamer

It is recommended to write the documentation in combination of Markdown and smcl, which
significantly simplifies writing and editing package documentation. This will ensure that your vignette
documents will look as good as your Stata files.

Dynaic Text

So far the only way for writing dynamic text - that is text that includes macros and scalars for
interpreting the results has been using the txt command. The txt command is very enabling, it can
be used inside loops, programs, etc, to display dynamic text in the dynamic document.

But I have been trying to make working with MarkDoc as simple as possible. Recently I developed a
new marker, named <!*!> that can be used inside the documentation to view local and global
macros, numeric and string scalars, as well as scalars from matrices and data sets. The syntax is
fairly simple, instead of the *, put the object that you wish to evaluate. The object can be:

Object Description
<!scalar!> Numeric or String scalar
<!matrix[r,c]!> Numeric scalar from a matrix
<!variable[n]!> Nth observation of a variable
<!`local'!> Numeric local macro
<!$global!> Numeric global macro
<!"`local'"!> String local macro
<!"$global"!> String global macro

Examples

https://raw.githubusercontent.com/wiki/haghish/MarkDoc/images/gui_vignette.png
https://github.com/haghish/MarkDoc/wiki/txt
https://github.com/haghish/MarkDoc/wiki/txt

1. Assume you have a local macro named a and you want to evaluate it inside your text. You'd
write:

local a = 1
scalar b = 2
matrix define A = (20,30\40,50)

/***
This is heading <!`a'!>
=======================

The values of a matrix can be displayed within the text. For example,
you can write <!A[1,1]!> which shows the scalar of the first row and
first column of the matrix in your documentation. This feature makes
writing dynamic text much more convenient compared to the previous procedure.

This is heading <!b!>

REMEMBER, that this procedure only works if you execute a do-file with
markdoc, that is, using the `markdoc filename.do, export(format)` syntax.
***/

if you save this script in a Stata do-file -- say example.do -- and execute it with markdoc:

 markdoc example.do, export(html) replace

you see that the local macro a is updated to 1 and scalar b is updated to 2. Note the difference
between the way the a and b are called inside the <!*!> markers.

This procedure is much easier than using the txt command and more natural to the way Markdoc
takes care of writing the documentation. However, it only works if you execute a do-file with
markdoc.

Additional Commands

The main command of the package is markdoc that produces the dynamic document from smcl log-
file or do file or Stata package documentation from ado or mata files. However, the package
includes other commands and it also borrows additional commands from Weaver package.

In general, you can create a dynamic document by just using a markup language (Markdown,
LaTeX, HTML, smcl) and the markdoc command. However the additional commands can make
working with MarkDoc package much more convenient.

List of additional commands

img
tbl
txt
pandoc
wkhtmltopdf

img Commands

Description
All markup languages supported by MarkDoc can include images from the disk or internet in the
dynamic document. For example, if you are writing with Markdown:

![image description](path/to/the/image)

if you are writing with LaTeX:

https://github.com/haghish/MarkDoc/wiki/txt
https://github.com/haghish/MarkDoc/wiki
https://github.com/haghish/Weaver
https://github.com/haghish/MarkDoc/wiki
https://github.com/haghish/markdoc/wiki/img
https://github.com/haghish/markdoc/wiki/tbl
https://github.com/haghish/markdoc/wiki/txt
https://github.com/haghish/markdoc/wiki/pandoc
https://github.com/haghish/markdoc/wiki/wkhtmltopdf

\includegraphics{path/to/the/image}

and if you are writing with HTML:

And to add an image dynamically, you can use the txt command to write the markup syntax:

txt ![image description](path/to/the/image)

Using a markup language for importing the an image requires two steps:

1. saving a graph from Stata to the disk
2. including the graph to the dynamic document

This procedure can be further simplified, using the img command which can automatically capture
the current graph from Stata and include it in the dynamic document. This command is borrowed
from the Weaver package.

Features
To make MarkDoc a suitable literate programming package for teaching statistics, even in
introductory courses, the img command was written to eliminate the need of learning a markup
language for importing and styling images in the dynamic document. The command can:

1. Automatically capture the current graph from Stata and include it in the dynamic document
2. Include a figure from the disk/internet in the dynamic document
3. Resize the width and the height of the image in the dynamic document
4. Align the image to the left (default) or center of the document
5. Add a graph description

Syntax
Import graphical files in the dynamic document

img [using filename] [, markup(str) title(str) width(int) height(int) left center]

Automatically include the current graph from Stata in the dynamic document

img [, markup(str) title(str) width(int) height(int) left center]

Options

Options Description
markup(str) specify the markup language that should be added to the smcl log
tittle(str) specify a header string (title) for the figure
width(int) define the width of the figure
hight(int) define the hight of the figure
left aligns the figure to the left-side of the dynamic document (default)
center aligns the figure to the center of the dynamic document

Examples
The img command prints the required markup language in the smcl log to import a figure in the
dynamic document. If the filename is not specified, img automatically captures the current graph
from Stata and includes it in the dynamic document. For example:

. sysuse auto

. histogram price

. img
>

In this example, img has stored the current graph in a directory called Weaver-figure and then
prints a markup syntax for importing the image in the dynamic document. If you are writing the

https://github.com/haghish/MarkDoc/wiki/txt
http://www.haghish.com/statistics/stata-blog/reproducible-research/weaver.php

documentation using LaTeX, you have to change the markup language using the markup() option:

. img, markup(latex)
>\begin{figure}[h]
>\centering
>\includegraphics[width=350px, height=250px]{Weaver-figure/f
> igure_3.png}
>\end{figure}

So instead of writing this LaTeX code for including the image, you just have used a simple
command. As you see by default, the image is imported with width=350 and height=250 pixels.
You can also resize the figure using the width and height options. This time, I use the HTML
markup as example:

. img, markup(html) width(400) height(300)
>

Unfortunately, markdown is a vey simplified markup language and it does not allow you to resize the
image. Therefore, if you want an image with a particular size you should use the second approach,
namely, saving exporting your figure with a particular size and then importing it in the dynamic
document. However, this is only necessary in the html format. So if you are intending to produce
pdf. slide, tex, docx, or odt from a markdown file, you don't have to worry about an oversized file.
MarkDoc takes care of that.

Finally, if you want to add a description to the graph or center the graph in the document, you can
use the title() and center options respectively. These options will add the required markup to
style your figure respectively. See the Examples for further demonstrations.

Remarks
The img command adds the required markup syntax for importing a graph to the log. The default
markup language is Markdown. Therefore, if you are using a different markup language such as
HTML or LaTeX, you should specify that using the markup() option.

tbl Commands

Description
Similar to the txt and img commands, the tbl command is also borrowed from the Weaver
package and was updated to support MarkDoc package. Therefore, you have to make sure the
Weaver log is closed. To do so, type weave query to check the status of the Weaver log. The tbl
command works similar to the

Features

tbl simplifies writing and styling dynamic tables
It can also align the content of each column to the left, center, or right
It creates a table somehow similar to the way a matrix is defined in Stata

Syntax
The tbl command creates a dynamic table in the specified markup language. The default markup
language is Markdown. The syntax of the command is:

tbl (*[,*...] [\ *[,*...] [\ [...]]]) [, markup(str) title(str) width(int) height(int) center left]

where the * represents a display directive which is:

 "double-quoted string"
 `"compound double-quoted string"'
 [%fmt] [=]exp
 ,
 {l}
 {c}
 {r}

https://github.com/haghish/MarkDoc/tree/master/Examples
http://daringfireball.net/
https://github.com/haghish/MarkDoc/wiki/txt
https://github.com/haghish/MarkDoc/wiki/img

Options

The tbl command takes fairly simple options. When HTML or LaTeX markup languages are used
for writing the documentation, the markup(str) option must be specified. Otherwise, the command
will append Markdown syntax to the log.

As noted, Markdown is a very minimalistic markup language with limited styling possibilities.
Therefore, there should be no surprise that the width(int), height(int), and center options are
only available when writing in HTML or LaTeX.

Optopns Discription
markup(str) specifies the markup language that is used for documentation
title(str) displays the table description
width(int) specifies the width of the table in HTML and LaTeX
height(int) specifies the height of the table in HTML and LaTeX
center aligns the table to the center of the document in HTML and LaTeX
left aligns the table to the left of the document

Display directives

Display Directive Discription
"double-quoted string" displays the string without the quotes
`"compound double-quoted
string"'

display the string without the outer quotes; allows embedded
quotes

[%fmt] [=] exp allows results to be formatted
, separates the directives of each column of the table
{l} creates a left-aligned column
{c} creates a center-aligned column
{r} creates a right-aligned column

Examples
creating a simple 2x3 table with string and numbers

. tbl ("Column 1", "Column 2", "Column 3" \ 10, 100, 1000)

Column 1 Column 2 Column 3
10 100 1000

creating a table that includes scalars and aligns the columns to left, center, and right respectively

. tbl ({l}"Left", {c}"Centered", {r}"Right" \ c(os), c(machine_type), c(username))

Left Centered Right
MacOSX Macintosh (Intel 64-bit) haghish

Remarks
Note that the tbl command parses the rows using the backslash symbol. Therefore, to include
LaTeX notations in a dynamic table that begin with a backslash such as \beta or 95\%, double
backslash should be used to avoid conflict with the parsing syntax (e.g. \\beta and 95\\%). Here
are a couple of examples:

. tbl ("$\\beta$", "$95\\%$ Confidence Interval" \ "values...", "values...")

. tbl ("$\\beta$", "$\\epsilon$" \ "$\\sum$", "$\\prod$")

txt Commands

Note: markdoc has a new method for writing dynamic text which is much simpler than using the txt
command. You can read more about the new feature on this page.

Description
MarkDoc has a very convenient way for writing text in the dynamic document, using a special
comment signs that are distinguished from regular comment. However, using comments for
documentation comes with a limit, namely, dynamic text - text that includes scalars and macros -
cannot be displayed in the document. The txt command provides a solution to this problem by
displaying values of scalar expressions or macros with text, allowing the users to write dynamic text.
For example:

. sysuse auto

. summarize price

. txt "the mean of Price variable is " r(mean)
> the mean of Price variable is 6165.26

You might wonder what is the benefit of writing dynamic text? The main benefit is reducing human
errors when returned values are meant to be used in the documentation. For example, you want to
mention the mean of a variable in a text paragraph. The mean, however, can change if you drop an
observation. Writing dynamic text will ensure that anytime there is a change in the data, the values
in the text will be automatically updated. There is another advantage for using the txt command.
Namely, you can produce dynamic text from a loop or a program. For example, imagine you are
looping over many varlists and you wish to include the results in separate sections. You could:

foreach lname of varlist var1 var2 ... {
 txt "### Analyzing the `lname` Variable
 ...
}
The txt command belongs to Weaver package, but it was updated to support MarkDoc. The
reason was to have a single command for writing dynamic text in both packages, instead of
introducing another command. You can only use the txt command in MarkDoc, when Weaver is
not in use, i.e. your "Weaver log" is off. To check the status of the Weaver log type:

. weave query
The txt command is to some extent similar to display command in Stata. For example, it can be
used to carry out a mathematical calculation by typing:

. txt 1+1
> 2

Features
The txt command can:

Write dynamic text, i.e. text that can interpret scalar and macros.

https://github.com/haghish/MarkDoc/wiki/Dynamic-text
https://github.com/haghish/Weaver
http://www.stata.com/manuals14/pdisplay.pdf

It can be used to use the values returned from Stata commands in the interpretation to
minimize human errors and make them traceable
It can also be used to write mono-space font in the document
It can style text using the same markup language that the document is written with
(Markdown, LaTeX, HTML)
It supports several display directives, similar to the display command in Stata
It can be included inside loops or programs to produce dynamic text

Syntax
The txt command prints dynamic text on the smcl log

txt [code] [display_directive [display_directive [...]]]

where the display_directive can be:

 "double-quoted string"
 `"compound double-quoted string"'
 [%fmt] [=]exp
 _skip(#)
 _column(#)
 _newline[(#)]
 _dup(#)
 ,
 ,,

The code argument changes the behavior of the txt command to display the text as a code block,
using a mono-space font (see below).

Display directives

The supported display_directives are used in do-files and programs to produce formatted
output. The directives are:

Display directive Description
"double-quoted string" displays the string without the quotes
`"compound double-quoted
string"'

display the string without the outer quotes; allows embedded
quotes

[%fmt] [=] exp allows results to be formatted
_skip(#) skips # columns
_column(#) skips to the #th column
_newline goes to a new line
_newline(#) skips # lines
_dup(#) repeats the next directive # times
, displays one blank between two directives
,, places no blanks between two directives

Styling dynamic text
By default, the txt command writes a text paragraph. However, the text can be displayed differently
in the dynamic document using the same markup language that is used in the document. For
example, if you are writing your document in Markdown, you can write a "Heading 3" dynamic text
as follows:

. txt "### some text ... "

or if you are writing your documentation in LaTeX:

. txt "\subsubsection{some text ...} "

Examples

http://www.stata.com/manuals14/pdisplay.pdf

You can use the txt command for interpreting your results. This works very similar to using the
display command.

. sysuse auto

. summarize price

. txt "the mean of Price variable is " r(mean) " and SD is " %9.3f r(sd)
> the mean of Price variable is 6165.26 and SD is 2949.496

Using the display_directives reveals the power of the txt command for producing dynamic text
with a particular structure. For example, you can use the _newline or simply _n to begin a new line.
However, if you are writing in Markdown, HTML, and LaTeX, breaking the line is not enough to make
sure the output also will be in multiple lines, although the txt command will break the lines in the
smcl log anyway. In the example below, which assumes writing with markdown, I use double space
characters at the end of each line to break the lines in the output. end of each line to ensure the
output generated from

txt "this is the first line " _n ///
 "and this is the second line "

I can also add indents to the text using the _column() directive:

txt _column(10) "Hello World"
> Hello World

Or skip a number of characters:

. txt _skip(10) "Hello World"
> Hello World

Remarks
In contrast to the display command that prints the scalar unformatted, the txt command uses the
default %10.2f format for displaying the scalar. This feature helps the users avoid specifying the
format for every scalar, due to popularity of this format.

. scalar num = 10.123

. txt "The value of the scalar is " num
> The value of the scalar is 10.12

However, specifying the format expression can overrule the default format. For example, to display
the value of the scalar with only 1 decimal place I can change the default format of the txt
command:

. txt "The value of the scalar is " %5.1f num
> The value of the scalar is 10.1

The example above will print the scalar with only 1 decimal number. This feature only supports
scalar interpretation and does not affect the macro contents.

pandoc Commands

MarkDoc relies on Pandoc software for converting the Markdown document to several formats.
However, many of the functionalities of this software are not included in MarkDoc, simply because
there is no obvious use for them for the majority of the users. However, since the software is
needed, the pandoc command was added to allow the users use Pandoc interactively within Stata.
The only advantage of this command is that it simplifies calling Pandoc and eliminates the need of
memorizing Pandoc path. See Pandoc Examples to get an idea of what you can do with this
command.

There are plenty of occasions that the pandoc command can be very helpful. For example, imagine
you have used a user-written command to export a LaTeX or HTML table but you wish to include a
Markdown table in your document. You can use the pandoc command to automatically convert the
file

http://www.stata.com/manuals14/pdisplay.pdf
http://pandoc.org/installing.html
http://pandoc.org/demos.html

Syntax
The syntax of the command is as follows:

pandoc command

Examples
executing Pandoc command

. pandoc filename -o filename

adding more Pandoc arguments

. pandoc -s -S filename -o filename

Remarks
Users can permanently define the path to Pandoc software using the weave setup command if they
have not installed Pandoc automatically, using the install option.

wkhtmltopdf Commands

Description
Pandoc software which is the main file convertor engine of MarkDoc package requires a LaTeX
distribution in order to create a PDF document. In other words, if users wish to write their
documentation in Markdown and produce a PDF file using Pandoc, they must also have LaTeX on
their machine. However, MarkDoc allows producing PDF documents from Markdown and HTML
documents, using another third-party software called wkhtmltopdf, which can be automatically
installed within Stata using the install option.

There are several user-written packages that produce HTML files from Stata. These packages can
get benefit from wkhtmltopdf to convert their HTML files to PDF. Therefore, this command was
written to simply allow the users to convert their HTML files to PDF.

Syntax
wkhtmltopdf converts HTML files to PDF and the general syntax of the command is as follows:

wkhtmltopdf [arguments] filename.html filename.pdf

The command can take many arguments which are documented here. Using the correct arguments
is crucial, especially if your HTML document includes several JavaScript programs.

Examples
convert html file to pdf

. wkhtmltopdf myfile.html myfile.pdf

Remarks
Unless you have installed the required third-party software using the install option, you should
use the weave setup command to define the permanent path to the wkhtmltopdf software.

Tutorials

See:

Examples
Mathematical notations
Writing with Markdown

http://pandoc.org/
http://wkhtmltopdf.org/
http://wkhtmltopdf.org/
http://wkhtmltopdf.org/usage/wkhtmltopdf.txt
https://github.com/haghish/MarkDoc/tree/master/Examples
https://github.com/haghish/markdoc/wiki/Mathematical-Notations
http://www.haghish.com/statistics/stata-blog/reproducible-research/dynamic_documents/markdown.php

Writing with LaTeX

Markdown tutorial

Although in addition to Markdown, MarkDoc supports HTML and LaTeX markup languages, using
Markdown is in general recommended since it notably keeps the do-file easy to read. HTML and
LaTeX syntax can reduce the readability of the script file, once it is added to a do-file that already
include programming code. However, HTML and LaTeX provide much more control over the
document whereas Markdown is a minimalistic language. Yet, the most notable benefit of writing the
documentation with Markdown is that MarkDoc can typeset a document that is written with
Markdown to several formats such as pdf, html, latex, slide, docx, odt, and epub.

In this section, I review the syntax of Markdown and provide several examples, demonstrating how
Markdown can be used within Stata DO-file editor to generate a document.

Headers
Without any syntax, the text written with Markdown appears as text paragraphs. However, writing a
header is as simple as adding hash "#" sign before a text line, where a single hash represents
header 1 and 6 hashes represent header 6:

H1
H2
H3
H4
H5
H6

This is a text paragraph, which requires no syntax.

Markdown also provides an alternative syntax for creating header 1 and 2, which further improves
the readability of the script file. The alternative syntax makes scanning through the documentation
greatly simpler, since the headers will become more distinctive in the script file.

Header 1
========

Header 2

Creating tables

In general, the tables that you include in the dynamic document can be divided in two groups:

1. static tables, where the content of the table does not include scalars or macros
2. dynamic tables, where the table includes scalar or macro values.

MarkDoc has a specific command for generating tables called tbl. However, there
are other possibilities for generating a table in MarkDoc which are covered in this
document. Most of the users will find the tbl command much handier!

Static tables
Any of the supported markup languages (Markdown, HTML, LaTeX) can be used to create a table.
Here are simple examples of Markdown, HTML, and LaTeX tables that generate a 3 by 3 table.

Table 1. preview of the example table written in Markdown

Animals Sports Fruits
Cat Soccer Apple
Dog Basketball Orange

http://www.haghish.com/statistics/stata-blog/reproducible-research/dynamic_documents/latex.php
https://github.com/haghish/MarkDoc/wiki/tbl
https://github.com/haghish/MarkDoc/wiki/tbl

All of these examples will render a table in the dynamic document which looks like the table above.
However, it would be a good idea to compare these markup languages to one another.

Example 1. Markdown table

/***
__Animals__	__Sports__	__Fruits__
Cat	Soccer	Apple
Dog	Basketball	Orange
***/

Example 2. LaTeX table

/***
\begin{table}[]
\centering
\caption{My caption}
\label{my-label}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Animals} & \textbf{Sports} & \textbf{Fruits} \\ \hline
Cat & Soccer & Apple \\ \hline
Dog & Basketball & Orange \\ \hline
\end{tabular}
\end{table}
***/

Example 3. HTML table

/***
<table class="tg">
 <tr>
 <th class="tg-yw4l">Animals</th>
 <th class="tg-yw4l">Sports</th>
 <th class="tg-yw4l">Fruits</th>
 </tr>
 <tr>
 <td class="tg-yw4l">Cat</td>
 <td class="tg-yw4l">Soccer</td>
 <td class="tg-yw4l">Apple</td>
 </tr>
 <tr>
 <td class="tg-yw4l">Dog</td>
 <td class="tg-yw4l">Basketball</td>
 <td class="tg-yw4l">Orange</td>
 </tr>
</table>
***/

As evident from the examples, the Markdown code is much more human readable compared to
HTML and LaTeX. Using an easy-to-read markup language such as Markdown for writing
documentation improves the readability of your script files.

Dynamic tables
The problem with the examples above is that the content of the tables is static, i.e. it does not
change. Often, when you are presenting the results of your data analysis and interpreting them, you
need to create a table using the results returned from the analysis.

One solution to this problem is to use the txt command for adding the code to the smcl log file. For
example, let's assume that you are writing your documentation using Markdown, and you want to
create a table similar to the previous 3 by 3 table, however, you want to obtain the values from local
macros.

Example 4. Dynamic table problem

local l1 Cat
local l2 Dog
local l3 Soccer
local l4 Basketball
local l5 Apple
local l6 Orange

https://github.com/haghish/MarkDoc/wiki/txt

txt ///
"| __Animals__ | __Sports__ | __Fruits__ |" _n ///
"|-------------|------------|------------|" _n ///
"| `l1' | `l3' | `l5' |" _n ///
"| `l2' | `l4' | `l6' |" _n

This example will be rendered similar to the Table 1. But creating such a table requires a lot of work.
MarkDoc provides a simpler method for creating a dynamic table, which is using the tbl command.
This command is documented in a separate section.

Package structure

For those who wish to contribute to MarkDoc, this document can behave as a quick reference to
different source files included in the package.

The main engine of MarkDoc is markdoc.ado. This program calls many other programs as well to
keep the syntax coherent. Here, these commands are explained.

Dynamic document and dynamic slides
The programs involved with making dynamic documents and slides are the same. markdoc.ado
takes care of translating SMCL log files and generating these documents. However, if a do-file is
specified as a source, markdoc will call rundoc program, defined in rundoc.ado. rundoc is called
for executing Stata commands in a particular way to allow passive dynamic text.

Dynamic Stata help files (sthlp)
For producing Stata help files and SMCL files, you should read sthlp.ado, markup.ado, and
md2smcl.ado. Here is a description of other script files:

Other files

markdocversion.ado checks the new updates available for MarkDoc, if there is any
markdoccheck.ado checks the required third-party software on the machine and if the install
option is specified, it install the required software
markdocpandoc.ado installs Pandoc automatically, if the install option is specified and the
software is not found
markdocwkhtmltopdf.ado installs wkhtmltopdf automatically, if the install option is specified
and the software is not found

https://github.com/haghish/MarkDoc/wiki/tbl
https://github.com/haghish/MarkDoc/wiki/tbl
http://pandoc.org/
http://wkhtmltopdf.org/

