

Mobile Application
Architecture Guide

Application Architecture Pocket Guide Series

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

 2008 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of
their respective owners.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 2

Mobile Application
Architecture Guide

patterns & practices

J.D. Meier

Alex Homer
David Hill

Jason Taylor
Prashant Bansode

Lonnie Wall
Rob Boucher Jr

Akshay Bogawat

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 3

Introduction

Overview
The purpose of the Mobile Application Architecture Pocket Guide is to improve your
effectiveness when building mobile applications on the Microsoft platform. The primary
audience is solution architects and development leads. The guide provides design-level
guidance for the architecture and design of mobile applications built on the .NET Platform. It
focuses on partitioning application functionality into layers, components, and services, and
walks through their key design characteristics.

The guidance is task-based and presented in chapters that correspond to major architecture
and design focus points. It is designed to be used as a reference resource, or it can be read from
beginning to end. The guide contains the following chapters and resources:
• Chapter 1, "Mobile Application Architecture," provides general design guidelines for a

mobile application, explains the key attributes, discusses the use of layers, provides
guidelines for performance, security, and deployment, and lists the key patterns and
technology considerations.

• Chapter 2, "Architecture and Design Guidelines,” helps you to understand the concepts of
software architecture, learn the key design principles for software architecture, and
provides the guidelines for the key attributes of software architecture.

• Chapter 3, "Presentation Layer Guidelines,” helps you to understand how the presentation
layer fits into the typical application architecture, learn about the components of the
presentation layer, learn how to design these components, and understand the common
issues faced when designing a presentation layer. It also contains key guidelines for
designing a presentation layer, and lists the key patterns and technology considerations.

• Chapter 4, "Business Layers Guidelines,” helps you to understand how the business layer
fits into the typical application architecture, learn about the components of the business
layer, learn how to design these components, and understand common issues faced when
designing a business layer. It also contains key guidelines for designing the business layer,
and lists the key patterns and technology considerations.

• Chapter 5, "Data Access Layer Guidelines,” helps you top understand how the data layer
fits into the typical application architecture, learn about the components of the data layer,
learn how to design these components, and understand the common issues faced when
designing a data layer. It also contains key guidelines for designing a data layer, and lists the
key patterns and technology considerations.

• Chapter 6, "Service Layer Guidelines,” helps you to understand how the service layer fits
into the typical application architecture, learn about the components of the service layer,
learn how to design these components, and understand common issues faced when
designing a service layer. It also contains key guidelines for designing a service layer, and
lists the key patterns and technology considerations.

• Chapter 7, "Communication Guidelines,” helps you to learn the guidelines for designing a
communication approach, and understand the ways in which components communicate

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 4

with each other. It will also help you to learn the interoperability, performance, and security
considerations for choosing a communication approach, and the communication technology
choices available.

• Chapter 8, "Deployment Patterns,” helps you to learn the key factors that influence
deployment choices, and contains recommendations for choosing a deployment pattern. It
also helps you to understand the effect of deployment strategy on performance, security,
and other quality attributes, and learn common deployment patterns.

Why We Wrote This Guide
We wrote this guide to accomplish the following:
• To help you design more effective architectures on the .NET platform.
• To help you choose the right technologies
• To help you make more effective choices for key engineering decisions.
• To help you map appropriate strategies and patterns.
• To help you map relevant patterns & practices solution assets.

Features of This Guide
• Framework for application architecture. The guide provides a framework that helps you to

think about your application architecture approaches and practices.
• Architecture Frame. The guide uses a frame to organize the key architecture and design

decision points into categories, where your choices have a major impact on the success of
your application.

• Principles and practices. These serve as the foundation for the guide, and provide a stable
basis for recommendations. They also reflect successful approaches used in the field.

• Modular. Each chapter within the guide is designed to be read independently. You do not
need to read the guide from beginning to end to get the benefits. Feel free to use just the
parts you need.

• Holistic. If you do read the guide from beginning to end, it is organized to fit together. The
guide, in its entirety, is better than the sum of its parts.

• Subject matter expertise. The guide exposes insight from various experts throughout
Microsoft, and from customers in the field.

• Validation. The guidance is validated internally through testing. In addition, product, field,
and support teams have performed extensive reviews. Externally, the guidance is validated
through community participation and extensive customer feedback cycles.

• What to do, why, how. Each section in the guide presents a set of recommendations. At the
start of each section, the guidelines are summarized using bold, bulleted lists. This gives you
a snapshot view of the recommendations. Then each recommendation is expanded to help
you understand what to do, why, and how.

• Technology matrices. The guide contains a number of cheat sheets that explore key topics
in more depth. Use these cheat sheets to help you make better decisions on technologies,
architecture styles, communication strategies, deployment strategies, and common design
patterns.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 5

• Checklists. The guide contains checklists for communication strategy as well as each mobile
application layer. Use these checklists to review your design as input to drive architecture
and design reviews for your application.

Audience
This guide is useful to anyone who cares about application design and architecture. The primary
audience for this guide is solution architects and development leads, but any technologist who
wants to understand good application design on the .NET platform will benefit from reading it.

Ways to Use the Guide
You can use this comprehensive guidance in several ways, both as you learn more about the
architectural process and as a way to instill knowledge in the members of your team. The
following are some ideas:
• Use it as a reference. Use the guide as a reference and learn the architecture and design

practices for mobile applications on the .NET Framework.
• Use it as a mentor. Use the guide as your mentor for learning how to design an application

that meets your business goals and quality attributes objectives. The guide encapsulates the
lessons learned and experience from many subject-matter experts.

• Use it when you design applications. Design applications using the principles and practices
in the guide, and benefit from the lessons learned.

• Create training. Create training from the concepts and techniques used throughout the
guide, as well as from the technical insight into the .NET Framework technologies.

Feedback and Support
We have made every effort to ensure the accuracy of this guide. However, we welcome
feedback on any topics it contains. This includes technical issues specific to the
recommendations, usefulness and usability issues, and writing and editing issues.

If you have comments on this guide, please visit the Application Architecture KB
at http://www.codeplex.com/AppArch.

Technical Support
Technical support for the Microsoft products and technologies referenced in this guidance is
provided by Microsoft Product Support Services (PSS). For product support information, please
visit the Microsoft Product Support Web site at: http://support.microsoft.com.

Community and Newsgroup Support
You can also obtain community support, discuss this guide, and provide feedback by visiting the
MSDN Newsgroups site at http://msdn.microsoft.com/newsgroups/default.asp.

The Team Who Brought You This Guide
This guide was produced by the following .NET architecture and development specialists:

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 6

• J.D. Meier
• Alex Homer
• David Hill
• Jason Taylor
• Prashant Bansode
• Lonnie Wall
• Rob Boucher Jr.
• Akshay Bogawat

Contributors and Reviewers
• Test Team. Rohit Sharma; Praveen Rangarajan
• Edit Team. Dennis Rea
• Special Thanks: Rob Tiffany; Rabi Satter

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary of the
problems you faced and how this guide helped you out. Submit your summary
to MyStory@Microsoft.com.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 7

Chapter 1: Mobile Application Architecture

Objectives
• Define a mobile application.
• Understand components found in a mobile application.
• Learn the key scenarios where mobile applications would be used.
• Learn the design considerations for mobile applications.
• Identify specific scenarios for mobile applications, such as deployment, power usage, and

synchronization.
• Learn the key patterns and technology considerations for designing mobile applications.

Overview
A mobile application will normally be structured as a multi-layered application consisting of
user experience, business, and data layers. When developing a mobile application, you may
choose to develop a thin Web-based client or a rich client. If you are building a rich client, the
business and data services layers are likely to be located on the device itself. If you are building
a thin client, the business and data layers will be located on the server. Figure 1 illustrates
common rich client mobile application architecture with components grouped by areas of
concern.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 8

Figure 1 Common rich client mobile application architecture

Design Considerations
The following design guidelines provide information about different aspects you should
consider when designing a mobile application. Follow these guidelines to ensure that your
application meets your requirements and performs efficiently in scenarios common to mobile
applications:
• Decide if you will build a rich client, a thin Web client, or rich Internet application (RIA). If

your application requires local processing and must work in an occasionally connected
scenario, consider designing a rich client. A rich client application will will be more complex
to install and maintain. If your application can depend on server processing and will always
be fully connected, consider designing a thin client. If your application requires a rich user

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 9

interface (UI), only limited access to local resources, and must be portable to other
platforms, design an RIA client.

• Determine the device types you will support. When choosing which device types to
support, consider screen size, resolution (DPI), CPU performance characteristics, memory
and storage space, and development tool environment availability. In addition, factor in
user requirements and organizational constraints. You may require specific hardware such
as GPS or a camera and this may impact not only your application type, but also your device
choice.

• Design considering occasionally connected limited-bandwidth scenarios when required. If
your mobile device is a stand-alone device, you will not need to account for connection
issues. When network connectivity is required, Mobile applications should handle cases
when a network connection is intermittent or not available. It is vital in this case to design
your caching, state management, and data-access mechanisms with intermittent network
connectivity in mind. Batch communications for times of connectivity. Choose hardware and
software protocols based on speed, power consumption, and “chattiness,” and not just on
ease of programming

• Design a UI appropriate for mobile devices, taking into account platform constraints.
Mobile devices require a simpler architecture, simpler UI, and other specific design
decisions in order to work within the constraints imposed by the device hardware. Keep
these constraints in mind and design specifically for the device instead of trying to reuse the
architecture or UI from a desktop or Web application. The main constraints are memory,
battery life, ability to adapt to difference screen sizes and orientations, security, and
network bandwidth.

• Design a layered architecture appropriate for mobile devices that improves reuse and
maintainability. Depending on the application type, multiple layers may be located on the
device itself. Use the concept of layers to maximize separation of concerns, and to improve
reuse and maintainability for your mobile application. However, aim to achieve the smallest
footprint on the device by simplifying your design compared to a desktop or Web
application.

• Design considering device resource constraints such as battery life, memory size, and
processor speed. Every design decision should take into account the limited CPU, memory,
storage capacity, and battery life of mobile devices. Battery life is usually the most limiting
factor in mobile devices. Backlighting, reading and writing to memory, wireless connections,
specialized hardware, and processor speed all have an impact on the overall power usage.
When the amount of memory available is low, the Microsoft® Windows Mobile® operating
system may ask your application to shut down or sacrifice cached data, slowing program
execution. Optimize your application to minimize its power and memory footprint while
considering performance during this process.

Mobile Client Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 10

Table 1 Mobile Client Frame

Category Key issues

Authentication and
Authorization

• Failing to authenticate in occasionally connected scenarios
• Failing to authorize in occasionally-connected scenarios
• Failing to use authentication and authorization over a virtual private

network (VPN)
• Failing to authenticate during synchronization over the air
• Failing to authenticate during synchronization with the host PC
• Failing to authenticate for all connection scenarios, such as over the air,

cradled, Bluetooth, and Secure Digital (SD) cards
• Failing to appreciate the differences between security models of

different devices
Caching • Caching unnecessary data on a device that has limited resources

• Relying on cached data that may no longer be available in occasionally-
connected scenarios

• Choosing inappropriate cache locations and formats
• Caching sensitive data in unencrypted form
• Failing to choose an appropriate caching technology

Communication • Failing to protect sensitive data over the air
• Failing to secure Web service communication
• Failing to secure communication over a VPN
• Not appreciating the performance impact of communication security on

limited-bandwidth connections
• Not managing limited-bandwidth connections efficiently
• Not managing connections to multiple network services efficiently
• Not designing to work with intermittent connectivity
• Not considering connection cost or allowing the user to manage

connections
• Not designing to minimize power usage when running on battery power
• Failing to use the appropriate communication protocol

Configuration
Management

• Failing to restore configuration state after a reset
• Failing to consider configuration management synchronization over the

air
• Failing to consider configuration management synchronization with the

host PC
• Choosing an inappropriate format for configuration information
• Failing to protect sensitive configuration information
• Failing to consider the techniques used by different manufacturers for

loading configuration settings
Data Access • Failing to implement data-access mechanisms that work with

intermittent connectivity
• Not considering database access performance
• Navigating through large datasets when not required

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 11

Category Key issues

• Failing to consider appropriate replication technologies and techniques
• Failing to consider access to device database services such as Microsoft

SQL Server® Compact Edition
Device • Failing to consider device heterogeneity, such as screen size and CPU

power
• Not presenting user-friendly error messages to the user
• Failing to protect sensitive information
• Failure to consider the processing power of the device

Exception
Management

• Not recovering application state after an exception
• Revealing sensitive information to the end user
• Not logging sufficient details about the exception
• Using exceptions to control application flow

Logging • Not considering remote logging instead of logging on the device
• Not considering how to access device logs
• Not considering resource constraints when logging
• Failing to protect sensitive information in the log files

Porting • Failing to rewrite the existing rich client UI to suit the device
• Failing to explore the available porting tools

Synchronization • Failing to secure synchronization when communicating
• Failing to manage synchronization over the air as opposed to cradled

synchronization
• Failing to manage synchronization interruptions
• Failing to handle synchronization conflicts
• Failing to consider merge replication where appropriate

Testing • Failing to appreciate debugging costs when choosing to support multiple
device types

• Failing to design with debugging in mind; for example, using emulators
instead of the actual devices

• Failing to debug in all connection scenarios
UI • Not considering the restricted UI form factor

• Not considering the single window environment
• Not considering that only one application can be running
• Not designing a touch-screen or stylus-driven UI for usability
• Not including support for multiple screen sizes and orientations
• Not managing device reset and resume
• Not considering the limited API and reduced range of UI controls

compared to the desktop
Validation • Not validating input and data during host PC communication

• Not validating input and data during over-the-air communication
• Failing to protect hardware resources, such as the camera and initiation

of phone calls
• Not designing validation with limited resources and performance in mind

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 12

Authentication and Authorization
Designing an effective authentication and authorization strategy is important for the security
and reliability of your application. Weak authentication can leave your application vulnerable to
unauthorized use. Mobile devices are usually designed to be single-user devices and normally
lack basic user profile and security tracking beyond just a simple password. Other common
desktop mechanisms are also likely to be missing. The discoverability of mobile devices over
protocols such as Bluetooth can present users with unexpected scenarios. Mobile applications
can also be especially challenging due to connectivity interruptions. Consider all possible
connectivity scenarios, whether over-the-air or hard-wired.

Consider the following guidelines when designing authentication and authorization:
• Design authentication for over-the-air, cradled synchronization, Bluetooth discovery, and

local SD card scenarios.
• Consider that different devices might have variations in their programming security models,

which can affect authorization to access resources
• Do not assume that security mechanisms available on larger platforms will be available on a

mobile platform, even if you are using the same tools. For example, access control lists
(ACLs) are not available in Windows Mobile, and consequently there is no operating
system–level file security.

• Ensure that you require authentication for access by Bluetooth devices.
• Identify trust boundaries within your mobile application layers; for instance, between the

client and the server or the server and the database. This will help you to determine where
and how to authenticate.

Caching
Use caching to improve the performance and responsiveness of your application, and to
support operation when there is no network connection. Use caching to optimize reference
data lookups, to avoid network round trips, and to avoid unnecessarily duplicated processing.
When deciding what data to cache, consider the limited resources of the device; you will have
less storage space available than on a PC.

Consider the following guidelines when designing caching:
• Identify your performance objectives. For example, determine your minimum response

time and battery life. Test the performance of the specific devices you will be using. Most
mobile devices use only flash memory, which is likely to be slower than the memory used in
desktop machines.

• Design for minimum memory footprint. Cache only data that is absolutely necessary for the
application to function, or expensive to transform into a ready-to-use format. If designing a
memory-intensive application, detect low-memory scenarios and design a mechanism for
prioritizing the data to discard as available memory decreases.

• Cache static data that is useful, and avoid caching volatile data. However, consider caching
any data, including volatile data, that the application will need in an occasionally connected
or offline scenario.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 13

• Consider using SQL Server Compact edition for caching instead of device memory. Memory
consumed by the application may be cleared in low memory situations.

• Choose the appropriate cache location, such as on the device, at the mobile gateway, or in
the database server.

Communication
Device communication includes wireless communication (over the air) and wired
communication with a host PC, as well as more specialized communication such as Bluetooth or
Infrared Data Association (IrDA). When communicating over the air, consider data security to
protect sensitive data from theft or tampering. If you are communicating through Web service
interfaces, use mechanisms such as the WS-Secure standards to secure the data. Keep in mind
that wireless device communication is more likely to be interrupted than communication from
a PC, and that your application might be required to operate for long periods in a disconnected
state.

Consider the following guidelines when designing your communication strategy:
• Design asynchronous, threaded communication to improve usability in occasionally

connected scenarios.
• If you are designing an application that will run on a mobile phone, consider the effects of

receiving a phone call during communication or program execution. Design the application
to allow it to suspend and resume, or even exit the application.

• Protect communication over untrusted connections, such as Web services and other over-
the-air methods.

• If you must access data from multiple sources, interoperate with other applications, or work
while disconnected, consider using Web services for communication.

• If you are using WCF and for communication and need to implement message queuing,
consider using WCF store and forward.

Configuration Management
When designing device configuration management, consider how to handle device resets, as
well as whether you want to allow configuration of your application over the air or from a host
PC.

Consider the following guidelines when designing your configuration-management strategy:
• Design for the restoration of configuration after a device reset.
• If you have you enterprise data in Microsoft SQL Server 2005 or 2008 and desire an

accelerated time to market, consider using merge replication with a “buy and configure”
application from a third party. Merge replication can synchronize data in a single operation
regardless of network bandwidth or data size.

• Due to memory limitations, choose binary format over Extensible Markup Language (XML)
for configuration files

• Protect sensitive data in device configuration files.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 14

• Consider using compression library routines to reduce the memory requirements for
configuration and state information.

• If you have a Microsoft Active Directory® directory service infrastructure, consider using the
System Center Mobile Device Manager interface to manage group configuration,
authentication, and authorization of devices. See the Technology Considerations section for
requirements for the Mobile Device Manager.

Data Access
Data access on a mobile device is constrained by unreliable network connections and the
hardware constraints of the device itself. When designing data access, consider how low
bandwidth, high latency, and intermittent connectivity will impact your design.

Consider the following guidelines when designing data access:
• Always prefer strongly-typed collections or generics over DataSets and XML due to to

reduce memory overhead and improve performance. If you decide to use DataSets and are
only reading (and not writing) data, utilize DataReaders.

• Consider using a local device database that provides synchronization services, such as SQL
Server Compact Edition. Only architect a special mechanism to synchronize data if the
standard data synchronization cannot meet your requirements.

• Program for data integrity. Files left open during device suspend and power failures may
cause data-integrity issues, especially when data is stored on a removable storage device.
Include exception handling and retry logic to ensure that file operations succeed.

• Do not assume that removable storage will always be available, as a user can remove it at
any time. Check for the existence of a removable storage device before writing or using
FlushFileBuffers.

• If you need to ensure data integrity in case the device loses power or has connectivity
disruptions, considering using transactions with SQL Server Mobile.

• If you use XML to store or transfer data, consider its overall size and impact on
performance. XML increases both bandwidth and local storage requirements. Use
compression algorithms or a non-XML transfer method.

• If your application needs to sync with multiple database types, use Sync Services for
ADO.NET. It allows you to store data in Microsoft SQL Server, Oracle, or DB2.

Device
Mobile device design and development is unique due to the constrained and differing nature of
device hardware. You may be targeting multiple devices with very different hardware
parameters. Keep the heterogeneous device environment in mind when designing your mobile
application. Factors include variations in screen size and orientation, limitations in memory and
storage space, and network bandwidth and connectivity. Your choice of a mobile operating
system will generally depend on the target device type.

Consider the following guidelines when determining your device strategy:

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 15

• Optimize the application for the device by considering factors such as screen size and
orientation, network bandwidth, memory storage space, processor performance, and other
hardware capabilities.

• Consider device-specific capabilities that you can use to enhance your application
functionality, such as accelerometers, graphics processing units (GPUs), global positioning
systems (GPS), haptic (touch, force and vibration) feedback, compass, camera, and
fingerprint readers.

• If you are developing for more than one device, design first for the subset of functionality
that exists on all of the devices, and then customize for device-specific features when they
are detected.

• Create modular code to allow easy module removal from executables. This covers cases
where separate smaller executable files are required due to device memory-size
constraints.

Exception Management
Designing an effective exception-management strategy is important for the security and
reliability of your application. Good exception handling in your mobile application prevents
sensitive exception details from being revealed to the user, improves application robustness,
and helps to avoid your application being left in an inconsistent state in the event of an error.

Consider the following guidelines when designing for exception management:
• Design your application to recover to a known good state after an exception occurs.
• Do not use exceptions to control logic flow.
• Do not catch exceptions unless you can handle them.
• Design a global error handler to catch unhandled exceptions.
• Design an appropriate logging and notification strategy that does not reveal sensitive

information for critical errors and exceptions.

Logging
Because of the limited memory on mobile devices, logging and instrumentation should be
limited to only the most necessary cases; for example, attempted intrusion into the device.
When devices are designed to be a part of a larger infrastructure, choose to track most device
activity at the infrastructure level. Generally, auditing is considered most authoritative if the
audits are generated at the precise time of resource access, and by the same routines that
access the resource. Consider the fact that some of the logs might have to be generated on the
device and must be synchronized with the server during periods of network connectivity.

Consider the following guidelines when designing logging:
• If you carry out extensive logging on the device, consider logging in an abbreviated or

compressed format to minimize memory and storage impact. There is no system Event Log
in Windows Mobile.

• Consider using an 3rd party logging mechanism that supports the .NET Compact Framework.
Several exist at the time this document was written. (OpenNetCF, nLog, log4Net)

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 16

• Consider using platform features such as health monitoring on the server, and mobile
device services on the device, to log and audit events. Explore adding in remote health
monitoring capabilities using the Open Mobile Alliance Device Management (OMA DM)
standard.

• Synchronize between the mobile database logs and the server database logs to maintain
audit capabilities on the server. If you have an Active Directory infrastructure, consider
using the System Center Mobile Device Manager to extract logs from mobile devices. See
the Technology Considerations section for requirements for the Mobile Device Manager.

• Do not store sensitive information in log files.
• Decide what constitutes unusual or suspicious activity on a device, and log information

based on these scenarios.

Porting
Developers often want to port part or all of an existing application to a mobile device. Certain
types of applications will be easier to port than others, and it is unlikely that you will be able to
port the code directly without modification.

Consider the following guidelines when designing to port your existing application to a mobile
device:
• If you are porting a rich client application from the desktop, rewrite the application in its

entirety. Rich clients are rarely designed to suit a small screen size and limited memory and
disk resources.

• If you are porting a Web application to a mobile device, consider rewriting the UI for the
smaller screen size. Also, consider communication limitations and interface chattiness as
these can translate into increased power usage and connection costs for the user.

• If you are porting an RIA client, research details to discover which code will port without
modification. Consult the technology considerations section of this chapter for specific
advice.

• Research and utilize tools to assist in porting. For example, Java-to-C++ convertors are
available. When converting from Smartphone to Pocket PC code, Microsoft Visual Studio®
will allow you to change the target platform and will provide warnings when you are using
Smartphone-specific functionality. You can also link Visual Studio Desktop and Mobile
projects to assist in knowing what is portable between the two projects.

• Do not assume that you can port custom controls as-is to a mobile application. Supported
APIs, memory footprint, and UI behavior are different on a mobile device. Test the controls
as early as possible so that you can plan to rewrite them or find an alternative if required.

Power
Power is the most limiting factor for a mobile device. All design decisions should at take into
account how much power the device consumes and its effect on overall battery life. If you have
a choice in devices, consider devices that can draw power from Universal Serial Bus (USB) or
other types of data hookups. Research communication protocols for their power consumption.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 17

Consider the following guidelines when designing for power consumption:
• To conserve battery life, do not update the UI while the application is in the background.
• Choose communication methods considering both power usage as well as network speed.
• Consider deferring nonessential wireless communications until the device is under external

power.
• Implement power profiles to increase performance when the device is plugged into external

power and not charging its battery.
• Design so that parts of the devices can be powered down when not in use, or when not

required. Common examples are screen backlighting, hard drives, GPS functions, speakers,
and wireless communications.

• Design services and communications to transfer the smallest number of bytes possible over
the air. Choose protocols, design service interfaces, and batch communications with this
goal in mind.

• If you are considering using the 3G hardware communications protocol, consider that while
it is significantly faster, it also currently uses much more power than its predecessors, such
as the Edge protocol. When you are using 3G, be sure to communicate in batched bursts
and to shut down communication at times when it is not needed.

Synchronization
Consider whether you want to support over-the-air synchronization, cradled synchronization,
or both. Because synchronization will often involve sensitive data, consider how to secure your
synchronization data, especially when synchronizing over the air. Design your synchronization
to handle connection interruptions gracefully, either by canceling the operation or by allowing
it to resume when a connection becomes available. Merge replication allows both upload-only
and bidirectional synchronization and is a good choice for infrastructures utilizing newer
versions of SQL Server. Consider the Microsoft Sync Framework as it can provide robust
synchronization services in a wide variety of situations.

Consider the following guidelines when designing synchronization:
• Design for recovery when synchronization is reset, and decide how to manage

synchronization conflicts.
• If you must support bidirectional synchronization to SQL Server, consider using merge

replication synchronization. Remember that merge synchronization will synchronize all of
the data in the merge set, which may require additional network bandwidth and can impact
performance.

• If your users must synchronize data when away from the office, consider including over-the-
air synchronization in your design.

• If your users will be synchronizing with a host PC, consider including cradled synchronization
in your design.

• Consider store-and-forward synchronization using WCF rather than e-mail or SMS (text
message), as WCF guarantees delivery and works well in a partially connected scenario.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 18

Testing
Mobile application debugging can be much more expensive than debugging a similar
application on a PC. Consider this debugging cost when deciding which devices, and how many
devices, your application will support. Also keep in mind that it can be harder to get debug
information from the device, and that device emulators do not always perfectly simulate the
device hardware environment.

Consider the following guidelines when designing your debugging strategy:
• Understand your debugging costs when choosing which devices to support. Factor in tools

support, the cost of initial (and perhaps replacement) test devices, and the cost of software-
based device emulators.

• If you have the device you are targeting, debug your code on the actual device rather than
on an emulator.

• If the device is not available, use an emulator for initial testing and debugging. Consider that
an emulator might run code slower than the actual device. As soon as you obtain the
device, switch to running code on the device connected to a normal PC. Perform final
testing on your device when not connected to a PC. Add in temporary or permanent
mechanisms to debug problems in this scenario. Consider the needs of people who will
support the device.

• Test scenarios where your device is fully disconnected from any network or connection,
including being disconnected from a PC debugging session.

• If you are an OEM or ODM and your device has not yet been created, note that it is possible
to debug a mobile program on a dedicated x86-based Microsoft Windows® CE PC. Consider
this option until your device is available.

User Interface
When designing the UI for a mobile application, do not try to adapt or reuse the UI from a
desktop application. Design your device UI so that it is as simple as possible, and designed
specifically for pen-based input and limited data entry capabilities as appropriate. Consider the
fact that your mobile application will run in full-screen mode and will only be able to display a
single window at a time. Therefore, blocking operations will prevent the user from interacting
with the application. Consider the various screen sizes and orientations of your target devices
when designing your application UI.

Consider the following guidelines when designing the UI for your mobile application:
• Design considering that a person’s hand can block a touch-screen UI during input with a

stylus or finger. For example, place menu bars at the bottom of the screen, expanding
options upwards.

• Design for a single-window, full-screen UI. If your device will be a single-user device running
only the main application, consider using kiosk mode. Keep in mind that Windows Mobile
does not support a kiosk mode, so you will need to use Windows CE.

• Consider input from various sources such as stylus, keypad, and touch. For example,
accommodate touch-screen input by making buttons large enough, and lay out controls so

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 19

that the UI is usable using a finger or stylus for input. Design for various screen sizes and
orientations.

• Give the user visual indication of blocking operations; for example, an hourglass cursor.

Performance Considerations
Design your mobile application with device hardware and performance constraints in mind.
Designing for a mobile device requires that you consider limited CPU speed, reduced memory
and storage, narrow bandwidth and high latency connections, and limited battery life.

Consider the following guidelines when designing your performance strategy:
• Design configurable options to allow the maximum use of device capabilities. Allow users to

turn off features they do not require in order to save power.
• To optimize for mobile device resource constraints, consider using lazy initialization.
• Consider limited memory resources and optimize your application to use the minimum

amount of memory. When memory is low, the system may release cached intermediate
language (IL) code to reduce its own memory footprint, return to interpreted mode, and
thus slow overall execution.

• Consider using programming shortcuts as opposed to following pure programming practices
that can inflate code size and memory consumption. For example, examine the cost of using
pure object-oriented practices such as abstract base classes and repeated object
encapsulation.

• Consider power consumption when using the device CPU, wireless communication, screen,
or other power-consuming resources while on battery power. Balance performance with
power consumption.

Deployment
Mobile applications can be deployed using many different methods. Consider the requirements
of your users, as well as how you will manage the application, when designing for deployment.
Ensure that you design to allow for the appropriate management, administration, and security
for application deployment.

Deployment scenarios listed for Windows Mobile device applications, with the more common
ones listed first, are:
• Microsoft Exchange ActiveSync® using a Windows Installer file (MSI).
• Over the air, using HTTP, SMS, or CAB files to provide install and run functionality.
• Mobile Device Manager–based, using Active Directory to load from a CAB or MSI file.
• Post load and auto-run, which loads a company-specific package as part of the operating

system.
• Site loading, manually using an SD card.

Consider the following guidelines when designing your deployment strategy:
• If your users must be able to install and update applications while away from the office,

consider designing for over-the-air deployment.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 20

• If you are using CAB file distribution for multiple devices, include multiple device
executables in the CAB file. Have the device detect which executable to install, and discard
the rest.

• If your application relies heavily on a host PC, consider using ActiveSync to deploy your
application.

• If you are deploying a baseline experience running on top of Windows Mobile, considering
using the post-load mechanism to automatically load your application immediately after the
Windows Mobile operating system starts up.

• If your application will be run only at a specific site, and you want to manually control
distribution, consider deployment using an SD memory card.

Pattern Map
Key patterns are organized by the key categories detailed in the Mobile Client Frame in the
following table. Consider using these patterns when making design decisions for each category.

Table 2 Pattern Map

Category Relevant patterns
Caching • Lazy Acquisition
Communication • Active Object

• Communicator
• Entity Translator
• Reliable Sessions

Data Access • Active Record
• Data Transfer Object
• Domain Model
• Transaction Script

Synchronization • Synchronization
UI • Application Controller

• Model-View-Controller
• Model-View-Presenter
• Pagination

• For more information on Application Controller, Model View Controller (MVC), Domain

Model, Transaction Script, Active Record, Data Mapper, Data Transfer Object, patterns see
“Patterns of Enterprise Application Architecture (P of EAA)”
at http://martinfowler.com/eaaCatalog/

• For more information on Entity Translator pattern see “Useful Patterns for Services”
at http://msdn.microsoft.com/en-us/library/cc304800.aspx

• For more information on Active Object pattern see “Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects.” Published by
Chichester, England; New York: John Wiley & Sons Ltd., 2000

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 21

• For more information on Communicator pattern see “Patterns for point-to-point
communications” by Guidi-Polanco, F., Cubillos F., C., Menga, G., & Penha, S. (2003)

• For more information on Pagination pattern see “Improving Application Performance by
Implementing Paginated Lists” at http://msdn.microsoft.com/en-us/library/ms978330.aspx

• For more information on synchronization pattern see “Data Patterns”
at http://msdn.microsoft.com/en-us/library/ms998446.aspx

• For more information on Lazy Acquisition pattern see “Pattern-Oriented Software
Architecture, Patterns for Resource Management. John Wiley & Sons.”

Pattern Descriptions
• Active Object. Support asynchronous processing by encapsulating the service request and

service completion response.
• Active Record. Include a data access object within a domain entity.
• Application Controller. An object that contains all of the flow logic, and is used by other

Controllers that work with a Model and display the appropriate View.
• Communicator. Encapsulate the internal details of communication in a separate component

that can communicate through different channels.
• Data Transfer Object (DTO). An object that stores the data transported between processes,

reducing the number of method calls required.
• Domain Model. A set of business objects that represents the entities in a domain and the

relationships between them.
• Entity Translator. An object that transforms message data types into business types for

requests, and reverses the transformation for responses.
• Lazy Acquisition. Defer the acquisition of resources as long as possible to optimize device

resource use.
• Model-View-Controller. Separate the UI code into three separate units: Model (data), View

(interface), and Presenter (processing logic), with a focus on the View. Two variations on
this pattern include Passive View and Supervising Controller, which define how the View
interacts with the Model.

• Model-View-Presenter. Separate request processing into three separate roles, with the
View being responsible for handling user input and passing control to a Presenter object.

• Pagination. Separate large amounts of content into individual pages to optimize system
resources and minimize use of screen space.

• Reliable Sessions. End-to-end reliable transfer of messages between a source and a
destination, regardless of the number or type of intermediaries that separate the endpoints

• Synchronization. A component installed on a device tracks changes to data and exchanges
information with a component on the server when a connection is available.

• Transaction Script. Organize the business logic for each transaction in a single procedure,
making calls directly to the database or through a thin database wrapper.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 22

Technology Considerations
The following guidelines contain suggestions and advice for common scenarios for mobile
applications and technologies.

Microsoft Silverlight for Mobile
Consider the following guidelines if you are using Microsoft Silverlight® for Mobile:
• At the time of document’s release, Silverlight for Mobile was an announced product under

development, but not yet released.
• If you want to build applications that support rich media and interactivity and have the

ability to run on both a mobile device and desktop as is, consider using Silverlight for
Mobile. Silverlight 2.0 code created to run on the desktop in the Silverlight 2.0 plug-in will
run in the Windows Mobile Silverlight plug-in in the latest version of Microsoft Internet
Explorer for Mobile. Consider that while it is possible to use the same Silverlight code in
both places, you should take into account the differing screen size and resource constraints
on a mobile device. Consider optimizing the code for Windows Mobile.

• If you want to develop Web pages for both desktop and mobile platforms, consider
Silverlight for Mobile or normal ASP.NET/HMTL over ASP.NET for Mobile unless you know
that your device cannot support either of these alternatives. As device browsers have
become more powerful, they are able to process the same native HTML and ASP.NET
targeted by the desktop, thus making ASP.NET Mobile development less important.
ASP.NET Mobile Controls currently supports a variety of mobile devices through specific
markup adapters and device profiles. While ASP.NET Mobile Controls automatically render
content to match device capabilities at run time, there is overhead associated with testing
and maintaining the device profiles. Development support for these controls is included in
Microsoft Visual Studio 2003 and 2005 but is no longer supported in Visual Studio 2008.
Run-time support is currently still available, but may be discontinued in the future. For more
information, see the links available in the Additional Resources section.

.NET Compact Framework
Consider the following guidelines if you are using the Microsoft .NET Compact Framework:
• If you are familiar with the Microsoft .NET Framework and are developing for both the

desktop and mobile platforms concurrently, consider that the .NET Compact Framework is a
subset of the .NET Framework class library. It also contains some classes exclusively
designed for Windows Mobile. The .NET Compact Framework supports only Microsoft
Visual Basic® and Microsoft Visual C#® development.

• If you are attempting to port code that uses Microsoft Foundation Classes (MFC), consider
that it is not trivial due to MFC’s dependency on Object Linking and Embedding (OLE). The
Windows Compact Edition supports COM, but not OLE. Check to see if the OLE libraries are
available for separate download to your device before trying to use MFC on a mobile
device.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 23

• If you have issues tracing into a subset of Windows Mobile code with the Visual Studio
debugger, consider that you might require multiple debug sessions. For example, if you
have both native and managed code in the same debug session, Visual Studio might not
follow the session across the boundary. In this case, you will require two instances of Visual
Studio running and will have to track the context between them manually.

Windows Mobile
Consider the following general guidelines for Windows Mobile applications:
• If you are targeting an application for both Windows Mobile Professional and Windows

Mobile Standard editions, consider that the security model varies on the different versions
of Windows Mobile. Code that works on one platform might not work on the other because
of the differing security models for APIs. Check the Windows Mobile documentation for
your device and version. See the Additional Resources section.

• If you will have to manage your application in the future or are upgrading an existing
application, be sure that you understand the Windows Mobile operating system derivation,
product naming, and versioning tree. There are slight differences between each version that
could potentially impact your application.

• Windows Mobile is derived from releases of the Windows CE operating system.
• Both Windows Mobile version 5.x and 6.x are based on Windows CE version 5.x.
• Windows Mobile Pocket PC was renamed Windows Mobile Professional starting

with Windows Mobile 6.0
• Windows Mobile Smartphone was renamed Windows Mobile Standard starting

with Windows Mobile 6.0.
• Windows Mobile Professional and Windows Mobile Standard have slight

differences in their APIs. For example, the Windows Mobile Standard
(Smartphone) lacks a Button class in its Compact Framework implementation
because softkeys are used for data entry instead.

• Always use the Windows Mobile APIs to access memory and file structures. Do not access
them directly after you have obtained a handle to either structure. Windows CE version 6.x
(and thus the next release of Windows Mobile) uses a virtualized memory model and a
different process execution model than previous versions. This means that structures such
as file handles and pointers may no longer be actual physical pointers to memory. Windows
Mobile programs that relied on this implementation detail in versions 6.x and before will fail
when moved to the next version of Windows Mobile.

• The Mobile Device Manager is mentioned in this article as a possible solution for
authorizing, tracking, and collecting logs from mobile devices, assuming that you have an
Active Directory infrastructure. MDM also requires a number of other products to fully
function, including:

• Windows Mobile 6.1 on devices
• Windows Software Update Service (WSUS) 3.0
• Windows Mobile Device Management Server
• Enrollment Server

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 24

• Gateway Server
• Active Directory as part of Windows Server
• SQL Server 2005 or above
• Microsoft Certificate Authority
• Internet Information Server (IIS) 6.0
• .NET Framework 2.0 or above

Windows Embedded
Consider the following guidelines if you are choosing a Windows Embedded technology:
• If you are designing for a set-top box or other larger-footprint device, consider using

Windows Embedded Standard.
• If you are designing for a point-of-service (POS) device such as an automated teller machine

(ATMs, customer-facing kiosks, or self-checkout systems), consider using Windows
Embedded for Point of Service.

• If you are designing for a GPS-enabled device or a device with navigation capabilities,
consider using Microsoft Windows Embedded NavReady™. Note that Windows Embedded
NavReady 2009 is built on Windows Mobile 5.0, while Windows Mobile version 6.1 is used
in the latest versions for Windows Mobile Standard and Professional. If you are targeting a
common codebase for NavReady and other Windows Mobile devices, be sure to verify that
you are using APIs available on both platforms.

Additional Resources
• For more information on the Windows Embedded technology options, see the Windows

Embedded Developer Center at http://msdn.microsoft.com/en-us/embedded/default.aspx.
• For the patterns & practices Mobile Client Software Factory,

see http://msdn.microsoft.com/en-us/library/aa480471.aspx
• For information on the Microsoft Sync Framework, see http://msdn.microsoft.com/en-

us/sync/default.aspx
• For more information on the OpenNETCF.Diagnostics.EventLog in the Smart Device

Framework see http://msdn.microsoft.com/en-us/library/aa446519.aspx
• For more information on ASP.NET Mobile, see http://www.asp.net/mobile/road-map/
• For more information on adding ASP.NET Mobile source code support into Visual Studio

2008, see http://blogs.msdn.com/webdevtools/archive/2007/09/17/tip-trick-asp-net-
mobile-development-with-visual-studio-2008.aspx

• For more information on security model permissions in Windows Mobile 6.x,
see http://blogs.msdn.com/jasonlan/archive/2007/03/13/new-whitepaper-security-model-
for-windows-mobile-5-0-and-windows-mobile-6.aspx

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 25

Chapter 2 – Architecture and Design Guidelines

Objectives
• Understand the fundamental concepts of software architecture.
• Learn the key design principles for software architecture.
• Learn the guidelines for key areas of software architecture.

Overview
Software architecture is often described as the organization or structure of a system, while the
system represents a collection of components that accomplish a specific function or set of
functions. In other words, architecture is focused on organizing components to support specific
functionality. This organization of functionality is often referred to as grouping components into
“areas of concern.” Figure 1 illustrates common application architecture with components
grouped by different areas of concern.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 26

Figure 1 Common mobile application architecture

In addition to the grouping of components, other areas of concern focus on interaction
between the components and how different components work together. The guidelines in this
chapter examine different areas of concern that you should consider when designing the
architecture of your application.

Key Design Principles
When getting started with your design, bear in mind the key principles that will help you to
create architecture that meets “best practices,” minimizes costs and maintenance
requirements, and promotes usability and extendibility. The key principles are:
• Separation of concerns. Break your application into distinct features that overlap in

functionality as little as possible.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 27

• Single Responsibility Principle. Each component or a module should be responsible for only
a specific feature or functionality.

• Principle of least knowledge. A component or an object should not know about internal
details of other components or objects. Also known as the Law of Demeter (LoD).

• Don’t Repeat Yourself (DRY). There should be only one component providing a specific
functionality; the functionality should not be duplicated in any other component.

• Avoid doing a big design upfront. If your application requirements are unclear, or if there is
a possibility of the design evolving over time, avoid making a large design effort
prematurely. This design principle is often abbreviated as BDUF.

• Prefer composition over inheritance. Wherever possible, use composition over inheritance
when reusing functionality because inheritance increases the dependency between parent
and child classes, thereby limiting the reuse of child classes.

Design Considerations
When designing an application or system, the goal of a software architect is to minimize the
complexity by separating the design into different areas of concern. For example, the user
interface (UI), business processing, and data access all represent different areas of concern.
Within each area, the components you design should focus on that specific area and should not
mix code from other areas of concern. For example, UI processing components should not
include code that directly accesses a data source, but instead should use either business
components or data access components to retrieve data.

Follow these guidelines when designing an application:
• Avoid doing all your design upfront. If you are not clear with requirements or if there is the

possibility of design evolution, it might be a good idea not to do complete design upfront.
Instead, evolve the design as you progress through the project.

• Separate the areas of concern. Break your application into distinct features that overlap in
functionality as little as possible. The main benefit of this approach is that a feature or
functionality can be optimized independently of other features or functionality. Also, if one
feature fails, it will not cause other features to fail as well, and they can run independently
of one another. This approach also helps to make the application easier to understand and
design, and facilitates management of complex interdependent systems.

• Each component or module should have a single responsibility. Each component or
module should be responsible for only one specific feature or functionality. This makes your
components cohesive and makes it easier to optimize the components if a specific feature
or functionality changes.

• A component or an object should not rely on internal details of other components or
objects. Each component or object should call a method of another object or component,
and that method should have information about how to process the request and, if needed,
route it to appropriate subcomponents or other components. This helps in developing an
application that is more maintainable and adaptable.

• Do not duplicate functionality within an application. There should be only one component
providing a specific functionality—this functionality should not be duplicated in any other

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 28

component. Duplication of functionality within an application can make it difficult to
implement changes, decrease clarity, and introduce potential inconsistencies.

• Identify the kinds of components you will need in your application. The best way to do this
is to identify patterns that match your scenario and then examine the types of components
that are used by the pattern or patterns that match your scenario. For example, a smaller
application may not need business workflow or UI processing components.

• Group different types of components into logical layers. Start by identifying different areas
of concern, and then group components associated with each area of concern into logical
layers.

• Keep design patterns consistent within each layer. Within a logical layer, the design of
components should be consistent for a particular operation. For example, if you choose to
use the Table Data Gateway pattern to create an object that acts as a gateway to tables or
views in a database, you should not include another pattern such as Repository, which uses
a different paradigm for accessing data and initializing business entities.

• Do not mix different types of components in the same logical layer. For example, the UI
layer should not contain business-processing components, but instead should contain
components used to handle user input and process user requests.

• Determine the type of layering you want to enforce. In a strict layering system,
components in layer A cannot call components in layer C; they always call components in
layer B. In a more relaxed layering system, components in a layer can call components in
other layers that are not immediately below it. In all cases, you should avoid upstream calls
and dependencies.

• Use abstraction to implement loose coupling between layers. This can be accomplished by
defining interface components such as a façade with well-known inputs and outputs that
translate requests into a format understood by components within the layer. In addition,
you can also use Interface types or abstract base classes to define a common interface or
shared abstraction (dependency inversion) that must be implemented by interface
components.

• Do not overload the functionality of a component. For example, a UI processing
component should not contain data access code. A common anti-pattern named Blob is
often found with base classes that attempt to provide too much functionality. A Blob object
will often have hundreds of functions and properties providing business functionality mixed
with cross-cutting functionality such as logging and exception handling. The large size is
caused by trying to handle different variations of child functionality requirements, which
requires complex initialization. The end result is a design that is very error-prone and
difficult to maintain.

• Understand how components will communicate with each other. This requires an
understanding of the deployment scenarios your application will need to support. You need
to determine if communication across physical boundaries or process boundaries should be
supported, or if all components will run within the same process.

• Prefer composition over inheritance. Wherever possible, use composition over inheritance
when reusing functionality because inheritance increases the dependency between parent

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 29

and child classes, thereby limiting the reuse of child classes. This also reduces the
inheritance hierarchies, which can become very difficult to deal with.

• Keep the data format consistent within a layer or component. Mixing data formats will
make the application more difficult to implement, extend, and maintain. Every time you
need to convert data from one format to another, you are required to implement
translation code to perform the operation.

• Keep cross-cutting code abstracted from the application business logic as much as
possible. Cross-cutting code refers to code related to security, communications, or
operational management such as logging and instrumentation. Attempting to mix this code
with business logic can lead to a design that is difficult to extend and maintain. Changes to
the cross-cutting code would require touching all of the business logic code that is mixed
with the cross-cutting code. Consider using frameworks that can help to implement the
cross-cutting concerns.

• Be consistent in the naming conventions used. Check to see if naming standards have been
established by the organization. If not, you should establish common standards that will be
used for naming. This provides a consistent model that makes it easier for team members to
evaluate code they did not write, which leads to better maintainability.

• Establish the standards that should be used for exception handling. For example, you
should always catch exceptions at layer boundaries, you should not catch exceptions within
a layer unless you can handle them in that layer, and you should not use exceptions to
implement business logic. The standards should also include policies for error notification,
logging, and instrumentation when there is an exception.

Architecture Frame
The following table lists the key areas to consider as you develop your architecture. Refer to the
key issues in the table to understand where mistakes are most often made. The sections
following this table provide guidelines for each of these areas.

Table 1 Architecture Frame

Area Key issues
Authentication • Lack of authorization across trust boundaries

• Granular or improper authorization
Caching • Caching volatile data not needed in an offline scenario

• Caching sensitive data
• Incorrect choice of caching store

Communication • Incorrect choice of transport protocol
• Chatty communication across physical and process boundaries
• Failure to protect sensitive data

Concurrency and Transactions • Not protecting concurrent access to static data
• Deadlocks caused by improper locking
• Not choosing the correct data concurrency model
• Long-running transactions that hold locks on data
• Using exclusive locks when not required

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 30

Area Key issues
Configuration Management • Lack of or incorrect configuration information

• Not securing sensitive configuration information
• Unrestricted access to configuration information

Coupling and Cohesion • Incorrect grouping of functionality
• No clear separation of concerns
• Tight coupling across layers

Data Access • Chatty calls to the database
• Business logic mixed with data access code

Exception Management • Failing to an unstable state
• Revealing sensitive information to the end user
• Using exceptions to control application flow
• Not logging sufficient details about the exception

Layering • Incorrect grouping of components within a layer
• Not following layering and dependency rules

Logging and Instrumentation • Lack of logging and instrumentation
• Logging and instrumentation that is too fine-grained
• Not making logging and instrumentation an option that is

configurable at run time
• Not suppressing and handling logging failures
• Not logging business-critical functionality

State Management • Using an incorrect state store
• Not considering serialization requirements
• Not persisting state when required

User Experience • Not following published guidelines
• Not considering accessibility
• Creating overloaded interfaces with unrelated functionality

Validation • Lack of validation across trust boundaries
• Failure to validate for range, type, format, and length
• Not reusing validation logic

Workflow • Not considering management requirements
• Choosing an incorrect workflow pattern
• Not considering exception states and how to handle them

Authentication
Designing a good authentication strategy is important for the security and reliability of your
application. Failure to design and implement a good authentication strategy can leave your
application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and other types
of attacks.

Consider the following guidelines when designing an authentication strategy:
• Identify your trust boundaries and authenticate users and calls across the trust boundaries.
• Do not store passwords in a database or data store as plain text. Instead, store a hash of the

password.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 31

• Enforce the use of strong passwords or password phrases.
• Do not transmit passwords over the wire in plain text.

Caching
Caching improves the performance and responsiveness of your application. However, a poorly
designed caching strategy can degrade performance and responsiveness. You should use
caching to optimize reference data lookups, avoid network round trips, and avoid unnecessary
and duplicate processing. To implement caching, you must decide when to load the cache data.
Try to load the cache asynchronously or by using a batch process to avoid client delays.

Consider following guidelines when designing a caching strategy:
• Do not cache volatile data unless that data is needed by a mobile device in an offline

scenario
• Consider using ready-to-use cache data when working with an in-memory cache. For

example, use a specific object instead of caching raw database data.
• Do not cache sensitive data unless you encrypt it.
• Do not depend on data still being in your cache. It may have been removed.

Communication
Communication concerns the interaction between components across different boundary
layers. The mechanism you choose depends on the deployment scenarios your application must
support. When crossing physical boundaries, you should use message-based communication.
When crossing logical boundaries, you should use object-based communication.

Consider the following guidelines when designing communication mechanisms:
• To reduce round trips and improve communication performance, design chunky interfaces

that communicate less often but with more information in each communication.
• Consider using message-based communication when crossing process or physical

boundaries.
• If your messages don’t need to be received in exact order and don’t have dependencies on

each other, consider using asynchronous communication to unblock processing or UI
threads.

Concurrency and Transactions
When designing for concurrency and transactions related to accessing a database, it is
important to identify the concurrency model you want to use and determine how transactions
will be managed. For database concurrency, you can choose between an optimistic model,
where the last update applied is valid, or a pessimistic model, where updates can only be
applied to the latest version. Transactions can be executed within the database, or they can be
executed in the business layer of an application. Where you choose to implement transactions
depends on your transactional requirements. Concurrency should also be considered when
accessing static data within the application or when using threads to perform asynchronous

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 32

operations. Static data is not thread-safe, which means that changes made in one thread will
affect other threads using the same data.

Consider the following guidelines when designing for concurrency and transactions:
• If you have business-critical operations, consider wrapping them in transactions.
• Use connection-based transactions when accessing a single data source.
• Where you cannot use transactions, implement compensating methods to revert the data

store to its previous state.
• Avoid holding locks for long periods; for example, when using long-running atomic

transactions.
• Updates to shared data should be mutually exclusive, which is accomplished by applying

locks or by using thread synchronization. This will prevent two threads from attempting to
update shared data at the same time.

• Use synchronization support provided by collections when working with static or shared
collections.

Configuration Management

Designing a good configuration-management mechanism is important for the security and
flexibility of your application. Failure to do so can make your application vulnerable to a variety
of attacks, and also leads to an administrative overhead for your application.

Consider the following guidelines when designing for configuration management:
• Consider using least-privileged process and service accounts.
• Encrypt sensitive information in your configuration store.
• Restrict access to your configuration information.
• Provide a separate administrative UI for editing configuration information.

Coupling and Cohesion
When designing components for your application, you should ensure that these components
are highly cohesive, and that loose coupling is used across layers. Coupling is concerned with
dependencies and functionality. When one component is dependent upon another component,
it is tightly coupled to that component. Functionality can be decoupled by separating different
operations into unique components. Cohesion concerns the functionality provided by a
component. For example, a component that provides operations for validation, logging, and
data access represents a component with very low cohesion. A component that provides
operations for logging only represents high cohesion.

Consider the following guidelines when designing for coupling and cohesion:
• Partition application functionality into logical layers.
• Design for loose coupling between layers. Consider using abstraction to implement loose

coupling between layers with interface components, common interface definitions, or
shared abstraction. Shared abstraction is where concrete components depend on

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 33

abstractions and not on other concrete components (the principle of dependency
inversion).

• Design for high cohesion. Components should contain only functionality that is specifically
related to that component.

• Know the benefits and overhead of loosely coupled interfaces. While loose coupling
requires more code, the benefits include a shortened dependency chain and a simplified
build process.

Data Access
Designing an application to use a separate data access layer is important for maintainability and
extensibility. The data access layer should be responsible for managing connections with the
data source and for executing commands against the data source. Depending on your business
entity design, the data access layer may have a dependency on business entities; however, the
data access layer should never be aware of business processes or workflow components.

Consider the following guidelines when designing data access components:
• Avoid coupling your application model directly to the database schema. Instead, you should

consider using an abstraction or mapping layer between the application model and
database schema.

• If you are using SQL Server CE open the connection when application is launched and
maintain it until the application is done running.

• Enforce data integrity in the database, not through data layer code.
• Move code that makes business decisions to the business layer.
• Avoid accessing the database directly from different layers in your application. Instead, all

database interaction should be done through a data access layer.

Exception Management
Designing a good exception-management strategy is important for the security and reliability of
your application. Failure to do so can make your application vulnerable to Denial of Service
(DoS) attacks, and may also reveal sensitive and critical information. Raising and handling
exceptions is an expensive process. It is important that the design also takes into account the
performance considerations. A good approach is to design a centralized exception-
management and logging mechanism, and to consider providing access points within your
exception-management system to support instrumentation and centralized monitoring that
assists system administrators.

Consider the following guidelines when designing an exception-management strategy:
• Do not catch exceptions unless you can handle them or need to add more information.
• Do not reveal sensitive information in exception messages and log files.
• Design an appropriate exception propagation strategy.
• Design a strategy for dealing with unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 34

Layering
The use of layers in a design allows you to separate functionality into different areas of concern.
In other words, layers represent the logical grouping of components within the design. You
should also define guidelines for communication between layers. For example, layer A can
access layer B, but layer B cannot access layer A.

Consider the following guidelines when designing layers:
• Layers should represent a logical grouping of components. For example, use separate layers

for UI, business logic, and data access components.
• Components within a layer should be cohesive. In other words, the business layer

components should provide only operations related to application business logic.
• Consider using an Interface type to define the interface for each layer. This will allow you to

create different implementations of that interface to improve testability.
• For Web applications, implement a message-based interface between the presentation and

business layers, even when the layers are not separated by a physical boundary. A message-
based interface is better suited to stateless Web operations, provides a façade to the
business layer, and allows you to physically decouple the business tier from the
presentation tier if this is required by security policies or in response to a security audit.

Logging and Instrumentation
Designing a good logging and instrumentation strategy is important for the security and
reliability of your application. Failure to do so can make your application vulnerable to
repudiation threats, where users deny their actions. Log files may be required for legal
proceedings to prove the wrongdoing of individuals. You should audit and log activity across the
layers of your application. Using logs, you can detect suspicious activity, which can provide early
indication of a serious attack. Generally, auditing is considered most authoritative if the audits
are generated at the precise time of resource access, and by the same routines that access the
resource. Instrumentation can be implemented by using performance counters and events to
give administrators information about the state, performance, and health of an application.

Consider the following guidelines when designing a logging and instrumentation strategy:
• Centralize your logging and instrumentation mechanism.
• Design instrumentation within your application to detect system- and business-critical

events.
• Consider how you will access and pass auditing and logging data across application layers.
• Create secure log file management policies. Protect log files from unauthorized viewing.
• Do not store sensitive information in the log files.
• Consider allowing your log sinks, or trace listeners, to be configurable so that they can be

modified at run time to meet deployment environment requirements.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 35

State Management
State management concerns the persistence of data that represents the state of a component,
operation, or step in a process. State data can be persisted by using different formats and
stores. The design of a state-management mechanism can affect the performance of your
application. You should only persist data that is required, and you must understand the options
that are available for managing state.

Consider the following guidelines when designing a state management mechanism:
• Keep your state management as lean as possible; persist the minimum amount of data

required to maintain state.
• Make sure that your state data is serializable if it needs to be persisted or shared across

process and network boundaries.

User Experience
Designing for an effective user experience can be critical to the success of your application. If
navigation is difficult, or users are directed to unexpected pages, the user experience can be
negative.

Consider the following guidelines when designing for an effective user experience:
• Design for a consistent navigation experience. Use composite patterns for the look and feel,

and controller patterns such as Model-View-Controller (MVC) for UI processing.
• Design the interface so that each page or section is focused on a specific task.
• Consider breaking large pages with a lot of functionality into smaller pages.
• Consider using published UI guidelines. In many cases, an organization will have published

guidelines to which you should adhere.

Validation
Designing an effective validation mechanism is important for the security and reliability of your
application. Failure to do so can make your application vulnerable to cross-site scripting, SQL
injection, buffer overflow, and other types of malicious input attacks. However, there is no
standard definition that can differentiate valid input from malicious input. In addition, how your
application actually uses the input influences the risks associated with exploitation of the
vulnerability.

Consider the following guidelines when designing a validation mechanism:
• Centralize your validation approach, if it can be reused.
• Constrain, reject, and sanitize user input. In other words, assume that all user input is

malicious.
• Validate input data for length, format, type, and range.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 36

Workflow
Workflow components are used when an application must execute a series of information-
processing tasks that are dependent on the information content. The values that affect
information-processing steps can be anything from data checked against business rules to
human interaction and input. When designing workflow components, it is important to
consider the options that are available for management of the workflow.

Consider the following guidelines when designing a workflow component:
• Determine management requirements. For example, if a business user needs to manage the

workflow, you require a solution that provides an interface that the business user can
understand.

• Determine how exceptions will be handled.
• Use service interfaces to interact with external workflow providers.
• If supported, use designers and metadata instead of code to define the workflow.
• With human workflow, consider the nondeterministic nature of users. In other words, you

cannot determine when a task will be completed, or if it will be completed correctly.

Pattern Map
Key patterns are organized by the key categories detailed in the Architecture Frame in the
following table. Consider using these patterns when making design decisions for each category

Table 2 Pattern Map

Category Relevant patterns
Caching • Cache Dependency
Communication • Pipes and Filters

• Service Interface
Concurrency and Transactions • Optimistic Offline Lock

• Pessimistic Offline Lock
Coupling and Cohesion • Adapter

• Dependency Injection
Data Access • Active Record

• Query Object
• Row Data Gateway
• Table Data Gateway

Layering • Façade
• Layered Architecture

• For more information on the Service Interface, and Layered Architecture patterns, see

“Enterprise Solution Patterns Using Microsoft .NET” at http://msdn.microsoft.com/en-
us/library/ms998469.aspx

• For more information on the Active Record, Data Mapper, Optimistic Offline Locking,
Pessimistic Offline Locking, Query Object, Repository, Row Data Gateway, and Table Data

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 37

Gateway patterns, see “Patterns of Enterprise Application Architecture (P of EAA)” at
http://martinfowler.com/eaaCatalog/

• For more information on the Adapter and Façade patterns, see “data & object factory” at
http://www.dofactory.com/Patterns/Patterns.aspx

• For more information on the Pipes and Filters pattern, see “Integration Patterns” at
http://msdn.microsoft.com/en-us/library/ms978729.aspx

Pattern Descriptions
• Active Record. Include a data access object within a domain entity.
• Adapter. An object that supports a common interface and translates operations between

the common interface and other objects that implement similar functionality with different
interfaces.

• Cache Dependency. Use external information to determine the state of data stored in a
cache.

• Dependency Injection. Use a base class or interface to define a shared abstraction that can
be used to inject object instances into components that interact with the shared abstraction
interface.

• Façade. Implement a unified interface to a set of operations to provide a simplified,
reduced coupling between systems.

• Optimistic Offline Lock. Ensure that changes made by one session do not conflict with
changes made by another session.

• Pessimistic Offline Lock. Prevent conflicts by forcing a transaction to obtain a lock on data
before using it.

• Pipes and Filters. Route messages through pipes and filters that can modify or examine the
message as it passes through the pipe.

• Query Object. An object that represents a database query.
• Row Data Gateway. An object that acts as a gateway to a single record in a data source.
• Service Interface. A programmatic interface that other systems can use to interact with the

service.
• Table Data Gateway. An object that acts as a gateway to a table in a data source.

Additional Resources
• For more information, see Enterprise Solution Patterns Using Microsoft .NET at

http://msdn.microsoft.com/en-us/library/ms998469.aspx.
• For more information, see Integration Patterns at http://msdn.microsoft.com/en-

us/library/ms978729.aspx.
• For more information, see Cohesion and Coupling at http://msdn.microsoft.com/en-

us/magazine/cc947917.aspx.
• For more information on caching, see Caching Architecture Guide for .NET Framework

Applications at http://msdn.microsoft.com/en-us/library/ms978498.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 38

• For more information on exception management, see Exception Management Architecture
Guide at http://msdn.microsoft.com/en-us/library/ms954599.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 39

Chapter 3 – Presentation Layer Guidelines

Objectives
• Understand how the presentation layer fits into typical application architecture.
• Understand the components of the presentation layer.
• Learn the steps for designing the presentation layer.
• Learn the common issues faced while designing the presentation layer.
• Learn the key guidelines for designing the presentation layer.
• Learn the key patterns and technology considerations for designing the presentation layer.

Overview
The presentation layer contains the components that implement and display the user interface
and manage user interaction. This layer includes controls for user input and display, in addition
to components that organize user interaction. Figure 1 shows how the presentation layer fits
into a common application architecture.

Figure 1 A typical application showing the presentation layer and the components it may contain

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 40

Presentation Layer Components
• User interface (UI) components. User interface components provide a way for users to

interact with the application. They render and format data for users. They also acquire and
validate data input by the user.

• User process components. User process components synchronize and orchestrate user
interactions. Separate user process components may be useful if you have a complicated UI.
Implementing common user interaction patterns as separate user process components
allows you to reuse them in multiple UIs.

Approach
The following steps describe the process you should adopt when designing the presentation
layer for your application. This approach will ensure that you consider all of the relevant factors
as you develop your architecture:
1. Identify your client type. Choose a client type that satisfies your requirements and adheres

to the infrastructure and deployment constraints of your organization. If your mobile
devices users will be intermittently connected to the network, a mobile rich client is
probably your best choice.

2. Determine how you will present data. Choose the data format for your presentation layer
and decide how you will present the data in your UI.

3. Determine your data-validation strategy. Use data-validation techniques to protect your
system from untrusted input.

4. Determine your business logic strategy. Factor out your business logic to decouple it from
your presentation layer code.

5. Determine your strategy for communication with other layers. If your application has
multiple layers, such as a data access layer and a business layer, determine a strategy for
communication between your presentation layer and other layers.

Design Considerations
There are several key factors that you should consider when designing your presentation layer.
Use the following principles to ensure that your design meets the requirements for your
application, and follows best practices:
• Choose the appropriate UI technology. Determine if you will implement a rich (smart)

client, a Web client, or a rich Internet application (RIA). Base your decision on application
requirements, and on organizational and infrastructure constraints.

• Use the relevant patterns. Review the presentation layer patterns for proven solutions to
common presentation problems.

• Design for separation of concerns. Use dedicated UI components that focus on rendering
and display. Use dedicated UI process components to manage the processing of user
interaction.

• Consider human interface guidelines. Review your organization’s guidelines for UI design.
Review established UI guidelines based on the client type and technologies that you have
chosen.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 41

• Adhere to user-driven design principles. Before designing your presentation layer,
understand your customer. Use surveys, usability studies, and interviews to determine the
best presentation design to meet your customer’s requirements.

Presentation Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Common issues
Caching • Caching volatile data.

• Caching unencrypted sensitive data.
• Incorrect choice of caching store.
• Assuming that data will still be available in the cache – it may

have expired and been removed.
Exception Management • Failing to catch unhandled exceptions.

• Failing to clean up resources and state after an exception
occurs.

• Revealing sensitive information to the end user.
• Using exceptions to control application flow.
• Catching exceptions you do not handle.
• Using custom exceptions when not necessary.

Input • Failing to design for intuitive use, or implementing overly
complex interfaces.

• Failing to design for accessibility.
• Failing to design for different screen sizes and resolutions.
• Failing to design for different device and input types, such as

touch-screen, and pen and ink–enabled devices.
Layout • Failing to consider different screen resolutions of mobile

devices.
• Implementing an overly complex layout.
• Failing to choose appropriate layout components and

technologies.
• Failing to adhere to accessibility and usability guidelines and

standards.
• Failing to support localization and globalization.

Navigation • Inconsistent navigation.
• Duplication of logic to handle navigation events.
• Failing to use Star forms style of navigation.
• Failing to manage state with wizard navigation.

Request Processing • Blocking the UI during long-running requests.
• Mixing processing and rendering logic.
• Choosing an inappropriate request-handling pattern.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 42

Category Common issues
User Experience • Displaying unhelpful error messages.

• Lack of responsiveness.
• Overly complex user interfaces.
• Lack of user personalization.
• Lack of user empowerment.
• Designing inefficient user interfaces.

UI Components • Creating custom components that are not necessary.
• Failing to maintain state in the Model-View-Controller (MVC)

pattern.
• Choosing inappropriate UI components.

UI Process Components • Implementing UI process components when not necessary.
• Implementing the wrong design patterns.
• Mixing business logic with UI process logic.
• Mixing rendering logic with UI process logic.

Validation • Failing to validate all input.
• Failing to correctly handle validation errors.
• Not identifying business rules that are appropriate for

validation.
• Failing to log validation failures.

Caching
Caching is one of the best mechanisms you can use to improve application performance and UI
responsiveness. Use data caching to optimize data lookups and avoid network round trips.
Cache the results of expensive or repetitive processes to avoid unnecessary duplicate
processing.

Consider the following guidelines when designing your caching strategy:
• Consider the limited resources on mobile device while deciding caching strategy.
• Do not cache volatile data.
• Consider using ready-to-use cache data when working with an in-memory cache. For

example, use a specific object instead of caching raw database data.
• Do not cache sensitive data unless you encrypt it.
• Do not depend on data still being in your cache. It may have been removed.

Exception Management
Design a centralized exception-management mechanism for your application that catches and
throws exceptions consistently. Pay particular attention to exceptions that propagate across
layer or tier boundaries, as well as exceptions that cross trust boundaries. Design for unhandled
exceptions so they do not impact application reliability or expose sensitive information.

Consider the following guidelines when designing your exception management strategy:
• Use user-friendly error messages to notify users of errors in the application.
• Avoid exposing sensitive data in error pages, error messages, log files, and audit files.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 43

• Design a global exception handler that displays a global error page or an error message for
all unhandled exceptions.

• Differentiate between system exceptions and business errors. In the case of business errors,
display a user-friendly error message and allow the user to retry the operation. In the case
of system exceptions, check to see if the exception was caused by issues such as system or
database failure, display a user-friendly error message, and log the error message, which
will help in troubleshooting.

• Avoid using exceptions to control application logic.

Input
Design a user input strategy based on your application input requirements. For maximum
usability, follow the established guidelines defined in your organization, and the many
established industry usability guidelines based on years of user research into input design and
mechanisms.

Consider the following guidelines when designing your input collection strategy:
• Use forms-based input controls for normal data-collection tasks.
• Use a document-based input mechanism for collecting input in Microsoft Office–style

documents.
• Implement a wizard-based approach for more complex data collection tasks, or for input

that requires a workflow.
• Design to support localization by avoiding hard-coded strings and using external resources

for text and layout.
• Consider accessibility in your design. You should consider users with disabilities when

designing your input strategy; for example, implement text-to-speech software for blind
users, or enlarge text and images for users with poor sight. Support keyboard-only scenarios
where possible for users who cannot manipulate a pointing device.

Layout
Design your UI layout so that the layout mechanism itself is separate from the individual UI
components and UI process components. When choosing a layout strategy, consider whether
you will have a separate team of designers building the layout, or whether the development
team will create the UI. If designers will be creating the UI, choose a layout approach that does
not require code or the use of development-focused tools.

As mobile devices have smaller screen size and limited input it might be difficult to incorporate
all of an applications’ functionality into a single screen. You may consider a design pattern to
break up information and actions across several screens. While doing this, you also need to
keep mobile applications and their interfaces as concise as possible, as having a large number
of screens may be difficult and frustrating for the user to easily navigate within the limited
framework of the mobile environment.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 44

Consider the following guidelines when designing your layout strategy:
• Use templates to provide a common look and feel to all of the UI screens.
• Use a common look and feel for all elements of your UI to maximize accessibility and ease

of use.
• Consider device-dependent input, such as touch screens, ink, or speech, in your layout. For

example, with touch-screen input you will typically use larger buttons with more spacing
between them than you would with mouse or keyboard inputs.

• Use well known design patterns, to separate the layout design from interface processing.

Navigation
Design your navigation strategy so that users can navigate easily through your screens or pages,
and so that you can separate navigation from presentation and UI processing. Ensure that you
display navigation links and controls in a consistent way throughout your application to reduce
user confusion and hide application complexity.

Consider the following guidelines when designing your navigation strategy:
• Use well-known design patterns to decouple the UI from the navigation logic where this

logic is complex. For mobile, use the “star forms” concept where you have one central
screen that acts as a “home page”. From that screen cascade to other screens to perform
more specific functions, always returning to the central home page screen.

• While designing toolbars and menus to help users find functionality provided by the UI,
consider the smaller screen size of devices.

• Consider using wizards to implement navigation between forms in a predictable way.
• Determine how you will preserve navigation state if the application must preserve this state

between sessions.
• Consider using the Command Pattern to handle common actions from multiple sources.

Request Processing
Design your request processing with user responsiveness in mind, as well as code
maintainability and testability.

Consider the following guidelines when designing request processing:
• Use asynchronous operations or worker threads to avoid blocking the UI for long-running

actions.
• Avoid mixing your UI processing and rendering logic.

User Experience
Good user experience can make the difference between a usable and unusable application.
Carry out usability studies, surveys, and interviews to understand what users require and
expect from your application, and design with these results in mind.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 45

Consider the following guidelines when designing for user experience:
• When developing a rich Internet application (RIA), avoid synchronous processing where

possible.
• Do not design overloaded or overly complex interfaces. Provide a clear path through the

application for each key user scenario.
• Design to support user personalization, localization, and accessibility.
• Design for user empowerment. Allow the user to control how he or she interacts with the

application, and how it displays data to them.

UI Components
UI components are the controls and components used to display information to the user and
accept user input. Be careful not to create custom controls unless it is necessary for specialized
display or data collection.

Consider the following guidelines when designing UI components:
• Take advantage of the data-binding features of the controls you use in the UI.
• Create custom controls or use third-party controls only for specialized display and data-

collection tasks.
• When creating custom controls, extend existing controls if possible instead of creating a

new control.
• Consider implementing designer support for custom controls to make it easier to develop

with them.
• Consider maintaining the state of controls as the user interacts with the application instead

of reloading controls with each action.

UI Process Components
UI process components synchronize and orchestrate user interactions. UI processing
components are not always necessary; create them only if you need to perform significant
processing in the presentation layer that must be separated from the UI controls. Be careful not
to mix business and display logic within the process components; they should be focused on
organizing user interactions with your UI.

Consider the following guidelines when designing UI processing components:
• Do not create UI process components unless you need them.
• If your UI requires complex processing or needs to talk to other layers, use UI process

components to decouple this processing from the UI.
• Consider dividing UI processing into three distinct roles: Model, View, and

Controller/Presenter, by using the MVC or MVP pattern.
• Avoid business rules, with the exception of input and data validation, in UI processing

components.
• Consider using abstraction patterns, such as dependency inversion, when UI processing

behavior needs to change based on the run-time environment.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 46

• Where the UI requires complex workflow support, create separate workflow components
that use a workflow system such as Windows Workflow or a custom mechanism.

Validation
Designing an effective input and data-validation strategy is critical to the security of your
application. Determine the validation rules for user input as well as for business rules that exist
in the presentation layer.

Consider the following guidelines when designing your input and data validation strategy:
• Validate all input data to reduce errors caused by invalid data.
• Design your validation strategy to constrain, reject, and sanitize malicious input.
• Use the built-in validation controls where possible, when working with .NET Compact

Framework.

Pattern Map
Key patterns are organized by key categories, as detailed in the Presentation Layer Frame in the
following table. Consider using these patterns when making design decisions for each category.

Category Relevant patterns
Caching • Cache Dependency
Exception Management • Exception Shielding
Layout • Template View
Navigation • Command Pattern
Presentation Entities • Entity Translator
User Experience • Asynchronous Callback

• Chain of Responsibility
UI Processing
Components

• Model-View-Controller (MVC)
• Presentation Model

• For more information on the Model-View-Controller (MVC), Template View patterns, see

“Patterns of Enterprise Application Architecture (P of EAA)” at
http://martinfowler.com/eaaCatalog/

• For more information on the Presentation Model patterns, see “Patterns in the Composite
Application Library” at http://msdn.microsoft.com/en-us/library/cc707841.aspx

• For more information on the Chain of responsibility and Command pattern, see “data &
object factory” at http://www.dofactory.com/Patterns/Patterns.aspx

• For more information on the Asynchronous Callback pattern, see “Creating a Simplified
Asynchronous Call Pattern for Windows Forms Applications” at
http://msdn.microsoft.com/en-us/library/ms996483.aspx

• For more information on the Exception Shielding and Entity Translator patterns, see “Useful
Patterns for Services” at http://msdn.microsoft.com/en-us/library/cc304800.aspx

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 47

Pattern Descriptions
• Asynchronous Callback. Execute long-running tasks on a separate thread that executes in

the background, and provide a function for the thread to call back into when the task is
complete.

• Cache Dependency. Use external information to determine the state of data stored in a
cache.

• Chain of Responsibility. Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request.

• Command Pattern. Encapsulate request processing in a separate command object with a
common execution interface.

• Entity Translator. An object that transforms message data types into business types for
requests, and reverses the transformation for responses.

• Exception Shielding. Prevent a service from exposing information about its internal
implementation when an exception occurs.

• Model-View-Controller. Separate the UI code into three separate units: Model (data), View
(interface), and Presenter (processing logic), with a focus on the View. Two variations on
this pattern include Passive View and Supervising Controller, which define how the View
interacts with the Model.

• Page Controller. Accept input from the request and handle it for a specific page or action on
a Web site.

• Presentation Model. Move all view logic and state out of the view, and render the view
through data-binding and templates.

• Template View. Implement a common template view, and derive or construct views using
this template view.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology.
The guidelines also contain suggestions for common patterns that are useful for specific types
of application and technology.

Mobile Applications
Consider the following guidelines when designing a mobile application:
• If you want to build full-featured connected, occasionally connected, and disconnected

executable applications that run on a wide range of Microsoft Windows®–based devices,
consider using the Microsoft Windows Compact Framework.

• If you want to build applications that support rich media and interactivity, consider using
Microsoft Silverlight® for Mobile.

Additional Resources
• For more information, see Microsoft Inductive User Interface Guidelines at

http://msdn.microsoft.com/en-us/library/ms997506.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 48

• For more information, see User Interface Control Guidelines at
http://msdn.microsoft.com/en-us/library/bb158625.aspx.

• For more information, see User Interface Text Guidelines at http://msdn.microsoft.com/en-
us/library/bb158574.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 49

Chapter 4: Business Layer Guidelines

Objectives
• Understand how the business layer fits into the overall application architecture.
• Understand the components of the business layer.
• Learn the steps for designing these components.
• Learn about the common issues faced when designing the business layer.
• Learn the key guidelines for designing the business layer.
• Learn the key patterns and technology considerations.

Overview
This chapter describes the design process for business layers, and contains key guidelines that
cover the important aspects you should consider when designing business layers and business
components. These guidelines are organized into categories that include designing business
layers and implementing appropriate functionality such as security, caching, exception
management, logging, and validation. These categories represent the key areas where mistakes
occur most often in business layer design. Figure 1 shows how the business layer fits into typical
application architecture.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 50

Figure 1 A typical application showing the business layer and the components it may contain

Key Business Components
The following list explains the roles and responsibilities of the main components within the
business layer:
• Application façade (optional). An application façade combines multiple business operations

into a single message-based operation. You might access the application façade from the
presentation layer by using different communication technologies.

• Business components. Within the business layer there are different components that
provide business services, such as processing business rules and interacting with data access
components. For example, you might have a business component that implements the
transaction script pattern, which allows you to execute multiple operations within a single
component used to manage the transaction. Another business component might be used to
process requests and apply business rules.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 51

• Business entities. Business components used to pass data between other components are
considered business entities. The data can represent real-world business entities, such as
products and orders, or database entities, such as tables and views. Consider using scalar
values as business entities. Alternatively, business entities can be implemented using data
structures such as DataSets and Extensible Markup Language (XML) documents.

• Business workflows. Many business processes involve multiple steps that must be
performed in the correct order and orchestrated. Business workflows define and coordinate
long-running, multi-step business processes, and can be implemented using business
process management tools.

Approach
When designing a business layer, you must also take into account the design requirements for
the main constituents of the layer, such as business components, business entities, and
business workflow components. This section briefly explains the main activities involved in
designing each of the components and the business layer itself. Perform the following key
activities in each of these areas when designing your data layer:
1. Create an overall design for your business layer:

o Identify the consumers of your business layer.
o Determine how you will expose your business layer.
o Determine the security requirements for your business layer.
o Determine the validation requirements and strategy for your business layer.
o Determine the caching strategy for your business layer.
o Determine the exception-management strategy for your business layer.

2. Design your business components:
o Identify business components your application will use.
o Make key decisions about location, coupling, and interactions for business

components.
o Choose appropriate transaction support.
o Identify how your business rules are handled.
o Identify patterns that fit the requirements.

3. Design your business entity components:
o Identify common data formats for the business entities.
o Choose the data format.
o Optionally, choose a design for your custom objects.
o Optionally, determine how you will serialize the components.

4. Design your workflow components:
o Identify workflow style using scenarios.
o Choose an authoring mode.
o Determine how rules will be handled.
o Choose a workflow solution.
o Design business components to support workflow.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 52

Design Considerations
When designing a business layer, the goal of a software architect is to minimize the complexity
by separating tasks into different areas of concern. For example, business processing, business
workflow, and business entities all represent different areas of concern. Within each area, the
components you design should focus on that specific area and should not include code related
to other areas of concern.

Consider the following guidelines when designing the business layer:
• Decide if you need a separate business layer. It is always a good idea to use a separate

business layer where possible to improve the maintainability of your application.
• Identify the responsibilities of your business layer. Use a business layer for processing

complex business rules, transforming data, applying policies, and for validation.
• Do not mix different types of components in your business layer. Use a business layer to

decouple business logic from presentation and data access code, and to simplify the testing
of business logic.

• Reuse common business logic. Use a business layer to centralize common business logic
functions and promote reuse.

• Avoid tight coupling between layers. Use abstraction when creating an interface for the
business layer. The abstraction can be implemented using public object interfaces, common
interface definitions, abstract base classes, or messaging.

Business Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Common issues
Business Components • Overloading business components, by mixing unrelated

functionality.
• Mixing data access logic within business logic in business

components.
• Not considering the use of message-based interfaces to

expose business components.
Business Entities • Choosing incorrect data formats for your business

entities.
• Not considering serialization requirements.

Caching • Caching volatile data not required in an offline scenario
• Caching too much data in the business layer.
• Failing to cache data in a ready-to-use format.
• Caching sensitive data in unencrypted form.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 53

Category Common issues
Coupling and Cohesion • Tight coupling across layers.

• No clear separation of concerns within the business
layer.

• Failing to use a message-based interface between layers.
Concurrency and Transactions • Not preventing concurrent access to static data that is

not read-only.
• Not choosing the correct data concurrency model.
• Using long-running transactions that hold locks on data.

Data Access • Accessing the database directly from the business layer.
• Mixing data access logic within business logic in business

components.
Exception Management • Revealing sensitive information to the end user.

• Using exceptions to control application flow.
• Not logging sufficient detail from exceptions.
• Failing to appropriately notify users with useful error

messages.
Logging and Instrumentation • Failing to add adequate instrumentation to business

components.
• Failing to log system-critical and business-critical events.
• Not suppressing logging failures.

Validation • Relying on validation that occurs in the presentation
layer.

• Failure to validate for length, range, format and type.
• Not reusing the validation logic.

Workflows • Not considering application management requirements.
• Choosing an incorrect workflow pattern.
• Not considering how to handle all exception states.
• Choosing an incorrect workflow technology.

Business Components
Business components implement business rules in diverse patterns, and accept and return
simple or complex data structures. Your business components should expose functionality in a
way that is agnostic to the data stores and services required to perform the work. Compose
your business components in meaningful and transactionally consistent ways. Designing
business components is an important task. If you fail to design business components correctly,
the result is likely to be code that is impossible to maintain.

Consider the following guidelines when designing business components:
• Avoid mixing data access logic and business logic within your business components.
• Design components to be highly cohesive. In other words, you should not overload business

components by adding unrelated or mixed functionality.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 54

• If you want to keep business rules separate from business data, consider using business
process components to implement your business rules.

• If your application has volatile business rules, store them in a rules engine.
• If the business process involves multiple steps and long-running transactions, consider using

workflow components.

Business Entities
Business entities store data values and expose them through properties; they provide stateful
programmatic access to the business data and related functionality. Therefore, designing or
choosing appropriate business entities is vitally important for maximizing the performance and
efficiency of your business layer.

Consider the following guidelines when designing business entities:
• Choose appropriate data formats for your business entities. For smaller data-driven

applications consider using DataSets, and for document-centric data consider using XML for
the data format. For other types of applications, consider using custom objects instead.

• If the tables in the database represent business entities, consider using the Table Module
pattern.

• Consider the serialization requirements of your business entities. For example, if you are
storing business entities in a central location for state management, or passing business
entities across process or network boundaries, they will need to support serialization.

• Minimize the number of calls made across physical tiers. For example, use the Data Transfer
Object (DTO) pattern.

Caching
Designing an appropriate caching strategy for your business layer is important for the
performance and responsiveness of your application. Use caching to optimize reference data
lookups, avoid network round trips, and avoid unnecessary and duplicated processing. As part
of your caching strategy, you must decide when and how to load the cache data. To avoid client
delays, load the cache asynchronously or by using a batch process.

Consider the following guidelines when designing a caching strategy:
• Consider caching static data that will be reused regularly within the business layer.
• Consider caching data that cannot be retrieved from the database quickly and efficiently.
• Consider caching data in a ready-to-use format within your business layer.
• Avoid caching sensitive data if possible, or design a mechanism to protect sensitive data in

the cache.

Coupling and Cohesion
When designing components for your business layer, ensure that they are highly cohesive, and
implement loose coupling between layers. This helps to improve the scalability of your
application.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 55

Consider the following guidelines when designing for coupling and cohesion:
• Avoid circular dependencies. The business layer should know only about the layer below

(the data access layer), and not the layer above (the presentation layer or external
applications that access the business layer directly).

• Use abstraction to implement a loosely coupled interface. This can be achieved with
interface components, common interface definitions, or shared abstraction where concrete
components depend on abstractions and not on other concrete components (the principle
of Dependency Inversion).

• Design for tight coupling within the business layer unless dynamic behavior requires loose
coupling.

• Design for high cohesion. Components should contain only functionality specifically related
to that component.

• Avoid mixing data access logic with business logic in your business components.

Concurrency and Transactions
When designing for concurrency and transactions, it is important to identify the appropriate
concurrency model and determine how you will manage transactions. You can choose between
an optimistic model and a pessimistic model for concurrency. With optimistic concurrency, locks
are not held on data and updates require code to check, usually against a timestamp, that the
data has not changed since it was last retrieved. With pessimistic concurrency, data is locked
and cannot be updated by another operation until the lock is released.

Consider the following guidelines when designing for concurrency and transactions:
• Consider transaction boundaries, so that retries and composition are possible.
• Where you cannot apply a commit or rollback, or if you use a long-running transaction,

implement compensating methods to revert the data store to its previous state in case an
operation within the transaction fails.

• Avoid holding locks for long periods; for example, when executing long-running atomic
transactions or when locking access to shared data.

• Choose an appropriate transaction isolation level, which defines how and when changes
become available to other operations.

Data Access
Designing an effective data-access strategy for your business layer is important for maximizing
maintainability and the separation of concerns. Failing to do so can make your application
difficult to manage and extend as business requirements change. An effective data-access
strategy will allow your business layer to adapt to changes in the underlying data sources. It will
also make it easier to reuse functionality and components in other applications.

Consider the following guidelines when designing a data-access strategy:
• Avoid mixing data-access code and business logic within your business components.
• Avoid directly accessing the database from your business layer.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 56

• Consider using a separate data access layer for access to the database.

Exception Management
Designing an effective exception-management solution for your business layer is important for
the security and reliability of your application. Failing to do so can leave your application
vulnerable to Denial of Service (DoS) attacks, and may allow it to reveal sensitive and critical
information about your application. Raising and handling exceptions is an expensive operation,
so it is important that your exception management design takes into account the impact on
performance.

When designing an exception-management strategy, consider following guidelines:
• Do not use exceptions to control business logic.
• Only catch exceptions that you can handle, or if you need to add information. For example,

catch data conversion exceptions that can occur when trying to convert null values.
• Design an appropriate exception propagation strategy. For example, allow exceptions to

bubble up to boundary layers where they can be logged and transformed as necessary
before passing them to the next layer.

• Design an approach for catching and handling unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions

that does not reveal sensitive information.

Logging and Instrumentation
Designing a good logging and instrumentation solution for your business layer is important for
the security and reliability of your application. Failing to do so can leave your application
vulnerable to repudiation threats, where users deny their actions. Log files may also be
required to prove wrongdoing in legal proceedings. Auditing is generally considered most
authoritative if the log information is generated at the precise time of resource access, and by
the same routine that accesses the resource. Instrumentation can be implemented using
performance counters and events. System-monitoring tools can use this instrumentation, or
other access points, to provide administrators with information about the state, performance,
and health of an application.

Consider the following guidelines when designing a logging and instrumentation strategy:
• Centralize logging and instrumentation for your business layer.
• Include instrumentation for system-critical and business-critical events in your business

components.
• Do not store business-sensitive information in the log files.
• Ensure that a logging failure does not affect normal business layer functionality.
• Consider auditing and logging all access to functions within business layer.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 57

Validation
Designing an effective validation solution for your business layer is important for the security
and reliability of your application. Failure to do so can leave your application vulnerable to
cross-site scripting attacks, SQL injection attacks, buffer overflows, and other types of input
attacks. There is no comprehensive definition of what constitutes a valid input or malicious
input. In addition, how your application uses input influences the risk of the exploit.

Consider the following guidelines when designing a validation strategy:
• Validate all input and method parameters within the business layer, even when input

validation occurs in the presentation layer.
• Centralize your validation approach, if it can be reused.
• Constrain, reject, and sanitize user input. In other words, assume that all user input is

malicious.
• Validate input data for length, range, format, and type.

Workflows
Workflow components are used only when your application must support a series of tasks that
are dependent on the information being processed. This information can be anything from data
checked against business rules to human interaction. When designing workflow components, it
is important to consider how you will manage the workflows, and to understand the available
options.

Consider the following guidelines when designing a workflow strategy:
• Implement workflows within components that involve a multi-step or long-running process.
• Choose an appropriate workflow style depending on the application scenario.
• Handle fault conditions within workflows, and expose suitable exceptions.
• If the component must execute a specified set of steps sequentially and synchronously,

consider using the pipeline pattern.
• If the process steps can be executed asynchronously in any order, consider using the event

pattern.

Pattern Map
Key patterns are organized by the key categories detailed in the Business Layer Frame in the
following table. Consider using these patterns when making design decisions for each category.

Category Relevant patterns
Business Components • Application Façade

• Chain of Responsibility
• Command

Business Entities • Entity Translator
• Table Module

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 58

Concurrency and
Transactions

• Capture Transaction Details
• Coarse-Grained Lock
• Implicit Lock
• Optimistic Offline Lock
• Pessimistic Offline Lock
• Transaction Script

Data Access • Active Record
• Query Object
• Row Data Gateway
• Table Data Gateway

Workflows • Data-driven workflow
• Human workflow
• Sequential workflow
• State-driven workflow

• For more information on the Domain Model, Table Module, Coarse-Grained Lock, Implicit Lock,

Transaction Script, Active Record, Data Mapper, Optimistic Offline Locking, Pessimistic Offline
Locking, Query Object, Repository, Row Data Gateway, and Table Data Gateway patterns,
see “Patterns of Enterprise Application Architecture (P of EAA)”
at http://martinfowler.com/eaaCatalog/

• For more information on the Façade, Chain of Responsibility, and Command patterns, see
“data & object factory” at http://www.dofactory.com/Patterns/Patterns.aspx

• For more information on the Entity Translator pattern, see “Useful Patterns for Services”
at http://msdn.microsoft.com/en-us/library/cc304800.aspx

• For more information on the Capture Transaction Details pattern, see “Data Patterns”
at http://msdn.microsoft.com/en-us/library/ms998446.aspx

• For more information on the Data-Driven Workflow, Human Workflow, Sequential Workflow, and
State-Driven Workflow, see “Windows Workflow Foundation Overview”
at http://msdn.microsoft.com/en-us/library/ms734631.aspx and “Workflow Patterns”
at http://www.workflowpatterns.com/

Pattern Descriptions
• Active Record. Include a data access object within a domain entity.
• Capture Transaction Details. Create database objects, such as triggers and shadow tables,

to record changes to all tables belonging to the transaction.
• Chain of Responsibility. Avoid coupling the sender of a request to its receiver by allowing

more than one object to handle the request.
• Coarse Grained Lock. Lock a set of related objects with a single lock.
• Command. Encapsulate request processing in a separate command object with a common

execution interface.
• Data-driven Workflow. A workflow that contains tasks whose sequence is determined by

the values of data in the workflow or the system.
• Entity Translator. An object that transforms message data types to business types for

requests, and reverses the transformation for responses.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 59

• Human Workflow. A workflow that involves tasks performed manually by humans.
• Implicit Lock. Use framework code to acquire locks on behalf of code that accesses shared

resources.
• Optimistic Offline Lock. Ensure that changes made by one session do not conflict with

changes made by another session.
• Pessimistic Offline Lock. Prevent conflicts by forcing a transaction to obtain a lock on data

before using it.
• Query Object. An object that represents a database query.
• Row Data Gateway. An object that acts as a gateway to a single record in a data source.
• Sequential Workflow. A workflow that contains tasks that follow a sequence, where one

task is initiated after completion of the preceding task.
• State-driven Workflow. A workflow that contains tasks whose sequence is determined by

the state of the system.
• Table Data Gateway. An object that acts as a gateway to a table or view in a data source

and centralizes all of the select, insert, update, and delete queries.
• Table Module. A single component that handles the business logic for all rows in a database

table or view.
• Transaction Script. Organize the business logic for each transaction in a single procedure,

making calls directly to the database or through a thin database wrapper.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology and
implement transaction support:
• If you require workflows that automatically support secure, reliable, transacted data

exchange, a broad choice of transport and encoding options, and provide built-in
persistence and activity tracking, consider using Windows Workflow (WF).

Additional Resources
• For more information, see Concurrency Control at http://msdn.microsoft.com/en-

us/library/ms978457.aspx.
• For more information, see Integration Patterns at http://msdn.microsoft.com/en-

us/library/ms978729.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 60

Chapter 5 – Data Access Layer Guidelines

Objectives
• Understand how the data layer fits into the application architecture.
• Understand the components of the data layer.
• Learn the steps for designing these components.
• Learn the common issues faced when designing the data layer.
• Learn the key guidelines for designing the data layer.
• Learn the key patterns and technology considerations for designing the data access layer.

Overview
This chapter describes the key guidelines for designing the data layer of an application. The
guidelines are organized by category and cover the common issues encountered, and mistakes
commonly made, when designing the data layer. Figure 1. shows how the data layer fits into
typical application architecture.

Figure 1 A typical application showing the data layer and the components it may contain

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 61

Data Layer Components
• Data access logic components. Data access components abstract the logic necessary to

access your underlying data stores. Doing so centralizes the data access functionality, which
makes the application easier to configure and maintain.

• Data helpers / utilities. Helper functions and utilities assist in data manipulation, data
transformation, and data access within the layer. They consist of specialized libraries and/or
custom routines especially designed to maximize data access performance and reduce the
development requirements of the logic components and the service agent parts of the
layer.

• Service agents. When a business component must use functionality exposed by an external
service, you might need to create code that manages the semantics of communicating with
that service. Service agents isolate your application from the idiosyncrasies of calling diverse
services, and can provide additional services such as basic mapping between the format of
the data exposed by the service and the format your application requires.

Approach
A correct approach to designing the data layer will reduce development time and assist in
maintenance of the data layer after the application is deployed. This section briefly outlines an
effective design approach for the data layer. Perform the following key activities in each of
these areas when designing your data layer:

1. Create an overall design for your data access layer:

a. Identify your data source requirements.
b. Determine your data access approach.
c. Choose how to map data structures to the data source.
d. Determine how to connect to the data source.
e. Determine strategies for handling data source errors.

2. Design your data access components:
a. Enumerate the data sources that you will access.
b. Decide on the method of access for each data source.
c. Determine whether helper components are required or desirable to simplify data

access component development and maintenance.
d. Determine relevant design patterns. For example, consider using the Table Data

Gateway, Query Object, Repository, and other patterns.
3. Design your data helper components:

a. Identify functionality that could be moved out of the data access components and
centralized for reuse.

b. Research available helper component libraries.
c. Consider custom helper components for common problems such as connection

strings, data source authentication, monitoring, and exception processing.
d. Consider implementing routines for data access monitoring and testing in your

helper components.
e. Consider the setup and implementation of logging for your helper components.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 62

4. Design your service agents:
a. Use the appropriate tool to add a service reference. This will generate a proxy and

the data classes that represent the data contract from the service.
b. Determine how the service will be used in your application. For most applications,

you should use an abstraction layer between the business layer and the data access
layer, which will provide a consistent interface regardless of the data source. For
smaller applications, the business layer, or even the presentation layer, may access
the service agent directly.

Design Guidelines
The following design guidelines provide information about different aspects of the data access
layer that you should consider. Follow these guidelines to ensure that your data access layer
meets the requirements of your application, performs efficiently and securely, and is easy to
maintain and extend as business requirements change.
• Choose the data access technology. The choice of an appropriate data access technology

will depend on the type of data you are dealing with, and how you want to manipulate the
data within the application. Certain technologies are better suited for specific scenarios.
Refer to the Data Access Technology Matrix found later in this guide. It discusses these
options and enumerates the benefits and considerations for each data access technology.

• Use abstraction to implement a loosely coupled interface to the data access layer. This can
be accomplished by defining interface components, such as a gateway with well-known
inputs and outputs, which translate requests into a format understood by components
within the layer. In addition, you can use interface types or abstract base classes to define a
shared abstraction that must be implemented by interface components.

• Consider consolidating data structures. If you are dealing with table-based entities in your
data access layer, consider using Data Transfer Objects (DTOs) to help you organize the data
into unified structures. In addition, DTOs encourage coarse-grained operations while
providing a structure that is designed to move data across different boundary layers.

• Encapsulate data access functionality within the data access layer. The data access layer
hides the details of data source access. It is responsible for managing connections,
generating queries, and mapping application entities to data source structures. Consumers
of the data access layer interact through abstract interfaces using application entities such
as custom objects, DataSets, DataReaders, and XML. Other application layers that access
the data access layer will manipulate this data in more complex ways to implement the
functionality of the application. Separating concerns in this way assists in application
development and maintenance.

• Decide how to map application entities to data source structures. The type of entity you
use in your application is the main factor in deciding how to map those entities to data
source structures.

• Decide how you will manage connections. As a rule, the data access layer should create
and manage all connections to all data sources required by the application. You must
choose an appropriate method for storing and protecting connection information that
conforms to application and security requirements.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 63

• Determine how you will handle data exceptions. The data access layer should catch and (at
least initially) handle all exceptions associated with data sources and CRUD (Create, Read,
Update, and Delete) operations. Exceptions concerning the data itself, and data source
access and timeout errors, should be handled in this layer and passed to other layers only if
the failures affect application responsiveness or functionality.

• Consider security risks. The data access layer should protect against attacks that try to steal
or corrupt data, and protect the mechanisms used to gain access to the data source. It
should also use the “least privilege” design approach to restrict privileges to only those
needed to perform the operations required by the application. If the data source itself has
the ability to limit privileges, security should be considered and implemented in the data
access layer as well as in the source.

• Reduce round trips. Consider batching commands into a single database operation.
• Consider performance objectives. Performance objectives for the data access layer should

be taken into account during design.

Data Access Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Common issues
BLOB • Improperly storing BLOBs in the database instead of the file

system.
• Using an incorrect type for BLOB data in the database.
• Searching and manipulating BLOB data.

Batching • Failing to use batching to reduce database round trips.
• Holding onto locks for excessive periods when batching.

Connections • Failing to handle connection timeouts and disconnections.
• Performing transactions that span multiple connections.

Data Format • Choosing the wrong data format.
• Failing to consider serialization requirements.
• Not mapping objects to a relational data store.

Exception Management • Not handling data access exceptions.
• Failing to shield database exceptions from the original caller.
• Failing to log critical exceptions.

Queries • Using string concatenation to build queries.
• Mixing queries with business logic.
• Not optimizing the database for query execution.

Transactions • Using the incorrect isolation level.
• Using exclusive locks, which can cause contention and

deadlocks.
• Allowing long-running transactions to block access to data.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 64

Validation • Failing to validate and constrain data fields.
• Not handling NULL values.
• Not filtering for invalid characters.

XML • Not considering how to handle extremely large XML data sets.
• Not choosing the appropriate technology for XML to relational

database interaction.
•

BLOB
A BLOB is a binary large object. When data is stored and retrieved as a single stream of data, it
can be considered to be a BLOB. A BLOB may have structure within it, but that structure is not
apparent to the database that stores it or the data layer that reads and writes it. Databases can
store the BLOB data or can store pointers to them within the database. The BLOB data is usually
stored in a file system if not stored directly in the database. BLOBs are typically used to store
image data, but can also be used to store binary representations of objects.

Consider the following guidelines when designing for BLOBs:
• Store BLOB data in a database only when it is not practical to store it on the file system.
• Consider using BLOBs to simplify synchronization of large binary objects between servers.
• Consider whether you need to search the BLOB data. If so, create and populate other

searchable database fields instead of parsing the BLOB data.
• When retrieving the BLOB, cast it to the appropriate type for manipulation within your

business or presentation layer.

Batching
Batching database commands can improve the performance of your data layer. Each request to
the database execution environment incurs an overhead. Batching can reduce the total
overhead by increasing throughput and decreasing latency. Batching similar queries can
improve performance because the database caches and can reuse a query execution plan for a
similar query.

Consider the following guidelines when designing batching:
• Consider using batched commands to reduce round trips to the database and minimize

network traffic.
• Batch similar queries for maximum benefit. Batching dissimilar or random queries provides

less reduction in overhead.
• Consider using batched commands and a DataReader to load or copy multiple sets of data.
• When loading large volumes of file-based data into the database, consider using bulk copy

utilities.
• Do not consider placing locks on long-running batch commands.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 65

Connections
Connections to data sources are a fundamental part of the data layer. All data source
connections should be managed by the data layer. Creating and managing connections uses
valuable resources in both the data layer and the data source. To maximize performance, follow
guidelines for creating, managing, and closing connections

Consider the following guidelines when designing for data layer connections:
• In general, open connections as late as possible and close them as early as possible. If you

are using SQL Server CE open the connection when application is launched and maintain it
until the application is running.

• To maximize the effectiveness, consider using a trusted subsystem security model.
• Perform transactions through a single connection where possible.
• Design retry logic to manage the situation where the connection to the data source is lost or

times out.

Data Format
Data formats and types are important in order to properly interpret the raw bytes stored in the
database and transferred by the data layer. Choosing the appropriate data format provides
interoperability with other applications, and facilitates serialized communications across
different processes and physical machines. Data format and serialization are also important in
order to allow the storage and retrieval of application state by the business layer.

Consider the following guidelines when designing your data format:
• In most cases, you should use custom data or business entities for improved application

maintainability. This will require additional code to map the entities to database operations.
• Consider using XML for interoperability with other systems and platforms or when working

with data structures that can change over time.
• Consider using DataSets for disconnected scenarios in simple CRUD-based applications.
• Understand the serialization and interoperability requirements of your application.

Exception Management
Design a centralized exception-management strategy so that exceptions are caught and thrown
consistently in your data layer. If possible, centralize exception-handling logic in your database
helper components. Pay particular attention to exceptions that propagate through trust
boundaries and to other layers or tiers. Design for unhandled exceptions so they do not result
in application reliability issues or exposure of sensitive application information.

Consider the following guidelines when designing your exception-management strategy:
• Determine exceptions that should be caught and handled in the data access layer.

Deadlocks, connection issues, and optimistic concurrency checks can often be resolved at
the data layer.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 66

• Consider implementing a retry process for operations where data source errors or timeouts
occur, where it is safe to do so.

• Design an appropriate exception propagation strategy. For example, allow exceptions to
bubble up to boundary layers where they can be logged and transformed as necessary
before passing them to the next layer.

• Design an approach for catching and handling unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions

that does not reveal sensitive information.

Queries
Queries are the primary data manipulation operations for the data layer. They are the
mechanism that translates requests from the application into create, retrieve, update and
delete (CRUD) actions on the database. As queries are so essential, they should be optimized to
maximize database performance and throughput.

When using queries in your data layer, consider the following guidelines:
• Consider that SQL Server Compact Edition supports only a subset of T-SQL supported by SQL

Server.
• Use parameterized SQL statements and typed parameters to mitigate security issues and

reduce the chance of SQL injection attacks succeeding.
• When it is necessary to build queries dynamically, ensure that you validate user input data

used in the query.
• Do not use string concatenation to build dynamic queries in the data layer.
• Consider using objects to build queries. For example, implement the Query Object pattern

or use the object support provided by ADO.NET.
• When building dynamic SQL, avoid mixing business-processing logic with logic used to

generate the SQL statement. Doing so can lead to code that is very difficult to maintain and
debug.

Transactions
A transaction is an exchange of sequential information and associated actions that are treated
as an atomic unit in order to satisfy a request and ensure database integrity. A transaction is
only considered complete if all information and actions are complete, and the associated
database changes are made permanent. Transactions support undo (rollback) database actions
following an error, which helps to preserve the integrity of data in the database.

Consider the following guidelines when designing transactions:
• Enable transactions only when you need them. For example, you should not use a

transaction for an individual SQL statement because Microsoft SQL Server® Compact Edition
automatically executes each statement as an individual transaction.

• Keep transactions as short as possible to minimize the amount of time that locks are held.
• Use the appropriate isolation level. The tradeoff is data consistency versus contention. A

high isolation level will offer higher data consistency at the price of overall concurrency. A

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 67

lower isolation level improves performance by lowering contention at the cost of
consistency.

• Consider that Microsoft SQL Server Compact Edition does not support nested transactions.
• Do not use distributed transactions as it is not supported by Microsoft Compact Framework.

Validation
Designing an effective input and data-validation strategy is critical to the security of your
application. Determine the validation rules for data received from other layers and from third-
party components, as well as from the database or data store. Understand your trust
boundaries so that you can validate any data that crosses these boundaries.

Consider the following guidelines when designing a validation strategy:
• Validate all data received by the data layer from all callers.
• Consider the purpose to which data will be put when designing validation. For example,

user input used in the creation of dynamic SQL should be examined for characters or
patterns that occur in SQL injection attacks.

• Understand your trust boundaries so that you can validate data that crosses these
boundaries.

• Return informative error messages if validation fails.

XML
Extensible Markup Language (XML) is useful for interoperability and for maintaining data
structure outside the database. For performance reasons, be careful when using XML for very
large amounts of data. If you must handle large amounts of data, use attribute-based schemas
instead of element-based schemas. Use schemas to validate the XML structure and content.

Consider the following guidelines when designing for the use of XML:
• Consider using XML readers and writers to access XML-formatted data.
• Consider using custom validators for complex data parameters within your XML schema.
• Store XML in typed columns in the database, if available, for maximum performance.

Manageability Considerations
Manageability is an important factor in your application because a manageable application is
easier for administrators and operators to install, configure, and monitor. Manageability also
makes it easier to detect, validate, resolve, and verify errors at run time. You should always
strive to maximize manageability when designing your application.

Consider the following guidelines when designing for manageability:
• Consider using common interface types or a shared abstraction (Dependency Inversion) to

provide an interface to the data access layer.
• Consider the use of custom entities, or decide if other data representations will better meet

your requirements. Coding custom entities can increase development costs; however, they

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 68

also provide improved performance through binary serialization and a smaller data
footprint.

• Implement business entities by deriving them from a base class that provides basic
functionality and encapsulates common tasks. However, be careful not to overload the base
class with unrelated operations, which would reduce the cohesiveness of entities derived
from the base class, and cause maintainability and performance issues.

• Design business entities to rely on data access logic components for database interaction.
Centralize implementation of all data access policies and related business logic. For
example, if your business entities access the databases directly, all applications deployed to
clients that use the business entities will require SQL connectivity and logon permissions.

Performance Considerations
Performance is a function of both your data layer design and your database design. Consider
both together when tuning your system for maximum data throughput.

Consider the following guidelines when designing for performance:
• Tune performance based on results obtained by running simulated load scenarios.
• Consider tuning isolation levels for data queries. If you are building an application with high-

throughput requirements, special data operations may be performed at lower isolation
levels than the rest of the transaction. Combining isolation levels can have a negative
impact on data consistency, so you must carefully analyze this option on a case-by-case
basis.

• Consider batching commands to reduce round trips to the database server.
• Consider using optimistic concurrency with non-volatile data to mitigate the cost of locking

data in the database. This avoids the overhead of locking database rows, including the
connection that must be kept open during a lock.

• If using a DataReader, use ordinal lookups for faster performance.

Security Considerations
The data layer should protect the database against attacks that try to steal or corrupt data. It
should allow only as much access to the various parts of the data source as is required. The data
layer should also protect the mechanisms used to gain access to the data source.

Consider the following guidelines when designing for security:
• Consider using Windows authentication where possible.
• Encrypt connection strings in configuration files instead of using a system name.
• When storing passwords, use a salted hash instead of an encrypted version of the

password.
• Require that callers send identity information to the data layer for auditing purposes.
• If you are using SQL statements, consider the parameterized approach instead of string

concatenation to protect against SQL injection attacks.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 69

Pattern Map
Key patterns are organized by the key categories detailed in the Data Layer Frame in the
following table. Consider using these patterns when making design decisions for each category.

Category Relevant patterns
General • Active Record

• Data Transfer Object
• Query Object
• Table Data Gateway
• Table Module

Batching • Parallel Processing
• Partitioning

Transactions • Coarse-Grained Lock
• Implicit Lock
• Optimistic Offline Lock
• Pessimistic Offline Lock
• Transaction Script

• For more information on the Table Module, Coarse-Grained Lock, Implicit Lock, Transaction

Script, Active Record, Data Transfer Object, Optimistic Offline Locking, Pessimistic Offline
Locking, Query Object, Repository patterns, see “Patterns of Enterprise Application
Architecture (P of EAA)” at http://martinfowler.com/eaaCatalog/

Pattern Descriptions
• Active Record. Include a data access object within a domain entity.
• Coarse Grained Lock. Lock a set of related objects with a single lock.
• Data Mapper. Implement a mapping layer between objects and the database structure that

is used to move data from one structure to another while keeping them independent.
• Data Transfer Object. An object that stores the data transported between processes,

reducing the number of method calls required.
• Implicit Lock. Use framework code to acquire locks on behalf of code that accesses shared

resources.
• Optimistic Offline Lock. Ensure that changes made by one session do not conflict with

changes made by another session.
• Parallel Processing. Allow multiple batch jobs to run in parallel to minimize the total

processing time.
• Partitioning. Partition multiple large batch jobs to run concurrently.
• Pessimistic Offline Lock. Prevent conflicts by forcing a transaction to obtain a lock on data

before using it.
• Query Object. An object that represents a database query.
• Table Data Gateway. An object that acts as a gateway to a table in a data source and

centralizes all of the select, insert, update, and delete queries.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 70

• Table Module. A single component that handles the business logic for all rows in a database
table.

• Transaction Script. Organize the business logic for each transaction in a single procedure,
making calls directly to the database or through a thin database wrapper.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology and
techniques depending on the type of application you are designing and the requirements of
that application:
• If you require basic support for queries and parameters, consider using ADO.NET objects

directly.
• If you want to manipulate XML-formatted data, consider using the classes in the

System.Xml namespace and its subsidiary namespaces.
• If you are accessing Microsoft SQL Server Compact Edition, consider using classes in the

ADO.NET SqlClient namespace to maximize performance.
• If you are designing an object-oriented business layer based on the Domain Model pattern,

consider using the ADO.NET Entity Framework.

Additional Resources
For more information on general data access guidelines, see the following resources:
• Typing, storage, reading, and writing BLOBs at http://msdn.microsoft.com/en-

us/library/ms978510.aspx#daag_handlingblobs
• .NET Data Access Architecture Guide at http://msdn.microsoft.com/en-

us/library/ms978510.aspx.
• Data Patterns at http://msdn.microsoft.com/en-us/library/ms998446.aspx.
• Designing Data Tier Components and Passing Data Through Tiers

at http://msdn.microsoft.com/en-us/library/ms978496.aspx

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 71

Chapter 6: Service Layer Guidelines

Objectives
• Understand how the service layer fits into your mobile application architecture.
• Understand the components of the service layer.
• Learn the steps for designing the service layer.
• Learn the common issues faced when designing the service layer.
• Learn the key guidelines for designing the service layer.
• Learn the key patterns and technology considerations for designing the service layer.

Overview
A mobile device normally includes a remote server infrastructure to support business functions
and manage mobile application updates. Services are often used to communicate with the
remote servers. When providing application functionality through services, it is important to
separate the service functionality into a separate service layer. Within the service layer, you
define the service interface, implement the service interface, and provide translator
components that translate data formats between the business layer of your server
infrastructure and external data contracts. One of the more important concepts to keep in mind
is that a service should never expose internal entities that are used by the business layer. Figure
1 shows where a service layer fits into the overall design of your application. In this figure
below, a mobile device would be considered an “External System”.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 72

Figure 1 An overall view of a typical mobile application infrastructure showing the service layer

Service Layer Components
The service layer is made up of the following components:
• Service interfaces. Services expose a service interface to which all inbound messages are

sent. The definition of the set of messages that must be exchanged with a service, in order
for the service to perform a specific business task, constitutes a contract. You can think of a
service interface as a façade that exposes the business logic implemented in the service to
potential consumers.

• Message types. When exchanging data across the service layer, data structures are
wrapped by message structures that support different types of operations. For example,
you might have a Command message, a Document message, or another type of message.
These message types are the “message contracts” for communication between service
consumers and providers.

Approach
The approach used to design a service layer starts by defining the service interface, which
consists of the contracts that you plan to expose from your service. Once the service interface

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 73

has been defined, the next step is to design the service implementation; which is used to
translate data contracts into business entities and to interact with the business layer.

The following steps can be used when designing a service layer:
• Define the Data and Message contracts that represent the schema used for messages.
• Define the Service contracts that represent operations supported by your service.
• Define the Fault contracts that return error information to consumers of the service.
• Design transformation objects that translate between business entities and data contracts.
• Design the abstraction approach used to interact with the business layer.

Design Considerations
There are many factors that you should consider when designing the service layer. Many of
these design considerations relate to proven practices concerned with layered architectures.
However, with a service, you must take into account message-related factors. The main thing to
consider is that a service uses message-based interaction, which is inherently slower than
object-based interaction. In addition, messages passed between a service and a consumer can
be routed, modified, or lost, which requires a design that will account for the non-deterministic
behavior of messaging. Often, your service layer will support both mobile and non-mobile
clients. It may be important to provide mobile-only interfaces in some cases. Mobile clients will
often support only a subset of the communication mechanisms and will have limited local
storage ability compared to desktop and laptop clients.

Consider the following guidelines when designing the service layer:
• Design services to be application-scoped and not component-scoped. Service operations

should be coarse-grained and focused on application operations. For example, with
demographics data, you should provide an operation that returns all of the data in one call.
You should not use multiple operations to return subsets of the data with multiple calls.

• Design entities for extensibility. In other words, data contracts should be designed so that
you can extend them without affecting consumers of the service.

• Compose entities from standard elements. When possible, use standard elements to
compose the complex types used by your service.

• Use a layered approach to designing services. Separate the business rules and data access
functions into distinct components where appropriate.

• Avoid tight coupling across layers. Use abstraction to provide an interface into the business
layer. This abstraction can be implemented by using public object interfaces, common
interface definitions, abstract base classes, or messaging. For Web applications, consider a
message-based interface between the presentation and business layers.

• Design only for the service contract. In other words, you should not implement
functionality that is not reflected by the service contract. In addition, the implementation of
a service should never be exposed to external consumers.

• Design to assume the possibility of invalid requests. You should never assume that all
messages received by the service will be valid.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 74

• Separate functional business concerns from infrastructure operational concerns. Cross-
cutting logic should never be combined with application logic. Doing so can lead to
implementations that are difficult to extend and maintain.

• Ensure that the service can detect and manage repeated messages (idempotency). When
designing the service, implement well-known patterns to ensure that duplicate messages
are not processed.

• Ensure that the service can manage messages arriving out of order (commutativity). If
there is a possibility that messages will arrive out of order, implement a design that will
store messages and then process them in the correct order.

• Consider versioning of contracts. A new version for service contracts mean new operations
exposed by the service, whereas for data contracts it means the addition of new schema
type definitions.

• Design for occasional connected devices. As a device is more likely to lose connectivity,
design your services to deal with this possibility. Do not rely on long running
communications.

• Consider the size of data being transferred. Devices have limited memory and cannot store
very large amounts of data. Consider minimizing the raw number of bytes being transferred
to a device.

Service Layer Frame
There are several common issues that you must consider as your develop your service layer
design. These issues can be categorized into specific areas of the design. The following table
lists the common issues for each category where mistakes are most often made.

Area Key issues
Authentication and
Authorization

• Lack of authentication across trust boundaries.
• Lack of authorization across trust boundaries.
• Granular or improper authorization.

Communication • Incorrect choice of transport protocol.
• Use of a chatty service communication interface.
• Failing to protect sensitive data.

Exception Management • Not catching exceptions that can be handled.
• Not logging exceptions.
• Not dealing with message integrity when an exception occurs.

Messaging Channels • Choosing an inappropriate message channel
• Failing to handle exception conditions on the channel.
• Providing access to non-messaging clients.

Message Construction • Failing to handle time-sensitive message content.
• Incorrect message construction for the operation.
• Passing too much data in a single message.

Message Endpoint • Not supporting idempotent operations.
• Not supporting commutative operations.
• Subscribing to an endpoint while disconnected.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 75

Area Key issues
Message Protection • Not protecting sensitive data.

• Not using transport layer protection for messages that cross
multiple servers.

• Not considering data integrity.
Message Routing • Not choosing the appropriate router design.

• Ability to access a specific item from a message.
• Ensuring that messages are handled in the correct order.

Message Transformation • Performing unnecessary transformations.
• Implementing transformations at the wrong point.
• Using a canonical model when not necessary.

REST • Implementing state within the service.
• Overusing POST statements.
• Putting actions in the URI.
• Using hypertext to manage state.

SOAP • Not choosing the appropriate security model.
• Not planning for fault conditions.
• Using complex types in the message schema.

Authentication
Designing an effective authentication strategy for your service layer is important for the
security and reliability of your application. Failure to design a good authentication strategy can
leave your application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and
other types of attacks.

Consider the following guidelines when designing an authentication strategy:
• Identify a suitable mechanism for securely authenticating users.
• Consider the implications of using different trust settings for executing service code.
• Ensure that secure protocols such as Secure Sockets Layer (SSL) are used with Basic

authentication, or when credentials are passed as plain text.
• Consider using secure mechanisms such as WS Security with SOAP messages.

Authorization
Designing an effective authorization strategy for your service layer is important for the security
and reliability of your application. Failure to design a good authorization strategy can leave your
application vulnerable to information disclosure, data tampering, and elevation of privileges.

Consider the following guidelines when designing an authorization strategy:
• Set appropriate access permissions on resources for users, groups, and roles.
• Use URL authorization and/or file authorization when using Windows authentication.
• Where appropriate, restrict access to publicly accessible Web methods by using declarative

principle permission demands.
• Execute services under the most restrictive account that is appropriate.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 76

Communication
When designing the communication strategy for your service, the protocol you choose should
be based on the deployment scenario your service must support. If the service will be deployed
within a closed network, you can use Transmission Control Protocol (TCP) for more efficient
communications. If the service will be deployed into a public-facing network, consider using
HyperText Transfer Protocol (HTTP) protocol. Consider the different devices and how to
support differing communication capabilities of those devices that may be connecting to your
services.
Consider the following guidelines when designing a communication strategy:
• Determine how to handle unreliable or intermittent communication.
• Minimize the number of bytes transferred to make communication with mobile devices

efficient and less likely to be interrupted. Use efficient transfer mechanisms and avoid long-
running communications when a connection could be unreliable.

• Consider using dynamic URL behavior with configured endpoints for maximum flexibility.
• Validate endpoint addresses in messages.
• Determine whether you need to make asynchronous calls.
• Determine if you need request-response or duplex communication. However, keep in mind

that duplex communications require a consistent reliable connection.

Exception Management
Designing an effective exception-management strategy for your service layer is important for
the security and reliability of your application. Failure to do so can make your application
vulnerable to denial of service (DoS) attacks, and can also allow it to reveal sensitive and critical
information.
Raising and handling exceptions is an expensive operation, so it is important for the design to
take into account the potential impact on performance. A good approach is to design a
centralized exception management and logging mechanism, and consider providing access
points that support instrumentation and centralized monitoring in order to assist system
administrators.

Consider the following guidelines when designing an exception-management strategy:
• Do not use exceptions to control business logic.
• Design a strategy for handling unhandled exceptions.
• Do not reveal sensitive information in exception messages or log files.
• Use SOAP Fault elements or custom extensions to return exception details to the caller.
• Disable tracing and debug-mode compilation for all services, except during development

and testing.

Messaging Channels
Communication between a service and its consumers consists of sending data through a
channel. In most cases, you will use channels provided by your chosen service infrastructure,
such as Windows Communication Foundation (WCF). You must understand which patterns your

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 77

chosen infrastructure supports, and determine the appropriate channel for interaction with
consumers of the service.

Consider the following guidelines when designing message channels:
• Determine appropriate patterns for messaging channels, such as Channel Adapter,

Messaging Bus, and Messaging Bridge.
• Determine how you will intercept and inspect the data between endpoints if necessary.
• Verify that you mobile device supports the same channel formats as your service. For

example, Compact WCF supports only a subset of all the possible Desktop WCF features.
Verify supported Bindings, Formatters, Encoders, Transports, ws-* standards, etc.

Message Construction
When data is exchanged between a service and consumer, it must be wrapped inside a
message. The format of that message is based on the types of operations you need to support.
For example, you may be exchanging documents, executing commands, or raising events. When
using slow message-delivery channels, you should also consider using expiration information in
the message.

Consider the following guidelines when designing a message-construction strategy:
• Determine the appropriate patterns for message constructions, such as Command,

Document, Event, and Request-Reply.
• Divide very large quantities of data into smaller chunks, and send them in sequence.
• Include expiration information in messages that are time-sensitive. The service should

ignore expired messages.

Message Endpoint
The message endpoint represents the connection that applications use to interact with your
service. The implementation of your service interface represents the message endpoint. When
designing the service implementation, you must consider the possibility that duplicate or invalid
messages can be sent to your service.

Consider the following guidelines when designing message endpoints:
• Determine relevant patterns for message endpoints, such as Gateway, Mapper, Competing

Consumers, and Message Dispatcher.
• Determine if you should accept all messages or implement a filter to handle specific

messages.
• Design for idempotency in your message interface. Idempotency is the situation where you

could receive duplicate messages from the same consumer, but should only handle one. In
other words, an idempotent endpoint will guarantee that only one message will be handled,
and all duplicate messages will be ignored.

• Design for commutativity in your message interface. Commutativity is related to the order
in which messages are received. In some cases, you may need to store inbound messages so
that they can be processed in the correct order.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 78

• Design for disconnected scenarios. For instance, you might need to support guaranteed
delivery.

Message Protection
When transmitting sensitive data between a service and its consumer, you should design for
message protection. You can use transport layer protection or message-based protection.
However, in most cases, you should use message-based protection. For example, you should
encrypt sensitive sections within a message and use a signature to protect the message from
tampering.

Consider the following guidelines when designing message protection:
• Be sure that your services use only mobile supported protection mechanisms
• If interactions between the service and the consumer are not routed through other

services, you can use transport layer security only, such as SSL.
• If the message passes through one or more servers, always use message-based protection.

In addition, you can also use transport layer security with message-based security. With
transport layer security, the message is decrypted and then encrypted at each server it
passes through, which represents a security risk.

• Consider using both transport layer and message-based security in your design.
• Use encryption to protect sensitive data in messages.
• Consider using digital signatures to protect messages and parameters from tampering.

Message Routing
A message router is used to decouple a service consumer from the service implementation.
There are three main types of routers that you might use: simple, composed, and pattern-
based. Simple routers use a single router to determine the final destination of a message.
Composed routers combine multiple simple routers to handle more complex message flows.
Architectural patterns are used to describe different routing styles based on simple message
routers.

Consider the following guidelines when designing message routing:
• Determine relevant patterns for message routing, such as Aggregator, Content-Based

Router, Dynamic Router, and Message Filter.
• If sequential messages are sent from a consumer, such as a mobile device, the router must

ensure that they are all delivered to the same endpoint in the required order
(commutativity).

• A message router will normally inspect information in the message to determine how to
route the message. As a result, you must ensure that the router can access that
information.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 79

Message Transformation
When passing messages between a service and consumer, there are many cases where the
message must be transformed into a format that the consumer can understand. This normally
occurs in cases where non–message-based consumers need to process data from a message-
based system. You can use adapters to provide access to the message channel for a non–
message-based consumer, and translators to convert the message data into a format that the
consumer understands.

Consider the following guidelines when designing message transformation:
• Determine relevant patterns for message transformation, such as Canonical Data Mapper,

Envelope Wrapper, and Normalizer.
• Use metadata to define the message format.
• Consider using an external repository to store the metadata.

REST
Representational State Transfer (REST) represents an architecture style for distributed systems.
It is designed to reduce complexity by dividing a system into resources. The resources and the
operations supported by a resource are represented and exposed as a set of URIs over the HTTP
protocol.

Consider the following guidelines when designing REST resources:
• Identify and categorize resources that will be available to clients.
• Choose an approach for resource representation. A good practice would be to use

meaningful names for REST starting points and unique identifiers, such as a globally unique
identifier (GUID), for specific resource instances. For example,
http://www.contoso.com/employee/ represents an employee starting point.
http://www.contoso.com/employee/8ce762d5-b421-6123-a041-5fbd07321bac4 uses a
GUID that represents a specific employee.

• Decide if multiple representations should be supported for different resources. For
example, you can decide if the resource should support an XML, Atom, or JSON format and
make it part of the resource request. A resource could be exposed as both
http://www.contoso.com/example.atom and http://www.contoso.com/example.json

• Decide if multiple views should be supported for different resources. For example, decide if
the resource should support GET and POST operations, or only GET operations.

• Protect against scenarios where your REST could potentially send large amounts of data
directly to a mobile device. Either build limitations into the service as a whole or provide a
set of mobile specific URLs where some implement protected behavior. For example, if
http://www.contoso.com/employee/ returns a set of all possible employees and some
limited details, you could easily overload a mobile device returning tens of thousands of
records in an XML format.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 80

Service Interface
The service interface represents the contract exposed by your service. When designing a service
interface, you should consider boundaries that must be crossed and the type of consumers who
will be accessing your service. For instance, service operations should be coarse-grained and
application scoped. One of the biggest mistakes with service interface design is to treat the
service as a component with fine-grained operations. This results in a design that requires
multiple calls across physical or process boundaries, which are very expensive in terms of
performance and latency.

Consider the following guidelines when designing a service interface:
• Consider using a coarse-grained interface to batch requests and minimize the number of

calls over the network.
• Design service interfaces in such a way that changes to the business logic do not affect the

interface.
• Do not implement business rules in a service interface.
• Consider using standard formats for parameters to provide maximum compatibility with

different types of clients.
• Do not make assumptions in your interface design about the way that clients will use the

service.
• Do not use object inheritance to implement versioning for the service interface.

SOAP
SOAP is a message-based protocol that is used to implement the message layer of a service. The
message is composed of an envelope that contains a header and body. The header can be used
to provide information that is external to the operation being performed by the service. For
instance, a header may contain security, transaction, or routing information. The body contains
contracts, in the form of XML schemas, which are used to implement the service.

Consider the following guidelines when designing SOAP messages:
• Define the schema for the operations that can be performed by a service.
• Define the schema for the data structures passed with a service request.
• Define the schema for the errors or faults that can be returned from a service request.

Deployment Considerations
The service layer can be deployed on the same tier as other layers of the application, or on a
separate tier in cases where performance and isolation requirements demand this. However, in
most cases the service layer will reside on the same physical tier as the business layer in order
to minimize performance impact when exposing business functionality.

Consider the following guidelines when deploying the service layer:

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 81

• Deploy the service layer to the same tier as the business layer to improve application
performance, unless performance and security issues inherent within the production
environment prevent this.

• If the service is accessed only by other applications within a local network, consider using
TCP for communications, assuming your mobile devices are also able to support TCP
communications

• If the service is publicly accessible from the Internet, use HTTP for your transport protocol.

Pattern Map
Key patterns are organized by the key categories detailed in the Service Layer Frame in the
following table. Consider using these patterns when making design decisions for each category.

Category Relevant patterns
Communication • Duplex

• Fire and Forget
• Reliable Sessions
• Request Response

Messaging Channels • Channel Adapter
• Message Bus
• Messaging Bridge
• Point-to-point Channel
• Publish-subscribe Channel

Message Construction • Command Message
• Document Message
• Event Message
• Request-Reply

Message Endpoint • Competing Consumer
• Durable Subscriber
• Idempotent Receiver
• Message Dispatcher
• Messaging Gateway
• Messaging Mapper
• Polling Consumer
• Selective Consumer
• Service Activator
• Transactional Client

Message Protection • Data Confidentiality
• Data Integrity
• Data Origin Authentication
• Exception Shielding
• Federation
• Replay Protection
• Validation

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 82

Category Relevant patterns
Message Routing • Aggregator

• Content-Based Router
• Dynamic Router
• Message Broker (Hub-and-Spoke)
• Message Filter
• Process Manager

Message Transformation • Canonical Data Mapper
• Claim Check
• Content Enricher
• Content Filter
• Envelope Wrapper
• Normalizer

REST • Behavior
• Container
• Entity
• Store
• Transaction

Service Interface • Remote Façade
SOAP • Data Contracts

• Fault Contracts
• Service Contracts

• For more information on the Duplex and Request Reponse patterns, see “Designing Service

Contracts” at http://msdn.microsoft.com/en-us/library/ms733070.aspx
• For more information on the Atomic and Cross-Service Transaction patterns, see “WS-*

Specifications” at http://www.ws-standards.com/ws-atomictransaction.asp
• For more information on the Command, Document Message, Event Message, Durable

Subscriber, Idempotent Receiver, Polling Consumer, and Transactional Client patterns, see
“Messaging Patterns in Service-Oriented Architecture, Part I” at
http://msdn.microsoft.com/en-us/library/aa480027.aspx

• For more information on the Data Confidentiality and Data Origin Authentication patterns,
see “Chapter 2: Message Protection Patterns” at http://msdn.microsoft.com/en-
us/library/aa480573.aspx

• For more information on the Replay Detection, Exception Shielding, and Validation patterns,
see “Chapter 5: Service Boundary Protection Patterns” at http://msdn.microsoft.com/en-
us/library/aa480597.aspx

• For more information on the Claim Check, Content Enricher, Content Filter, and Envelope
Wrapper patterns, see ”Messaging Patterns in Service Oriented Architecture, Part 2” at
http://msdn.microsoft.com/en-us/library/aa480061.aspx

• For more information on the Remote Façade pattern, see “P of EAA: Remote Façade” at
http://martinfowler.com/eaaCatalog/remoteFacade.html

• For more information on REST patterns such as Behavior, Container, and Entity, see “REST
Patterns” at http://wiki.developer.mindtouch.com/REST/REST_Patterns

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 83

For more information on the Aggregator, Content-Based Router, Publish-Subscribe, Message
Bus, and Point-to-Point patterns, see “Messaging patterns in Service-Oriented Architecture,
Part I” at http://msdn.microsoft.com/en-us/library/aa480027.aspx

Pattern Descriptions
• Aggregator. A filter that collects and stores individual related messages, combines these

messages, and publishes a single aggregated message to the output channel for further
processing.

• Behavior (REST). Applies to resources that carry out operations. These resources generally
contain no state of their own, and only support the POST operation.

• Canonical Data Mapper. Uses a common data format to perform translations between two
disparate data formats.

• Channel Adapter. A component that can access the application’s API or data and publish
messages on a channel based on this data, and that can receive messages and invoke
functionality inside the application.

• Claim Check. Retrieves data from a persistent store when required.
• Command Message. Provides a message structure used to support commands.
• Competing Consumer. Sets multiple consumers on a single message queue and have them

compete for the right to process the messages, which allows the messaging client to
process multiple messages concurrently.

• Container. Builds on the entity pattern by providing the means to dynamically add and/or
update nested resources.

• Content Enricher. Enriches messages with missing information obtained from an external
data source.

• Content Filter. Removes sensitive data from a message and reduces network traffic by
removing unnecessary data from a message.

• Content-Based Router. Routes each message to the correct consumer based on the
contents of the message; such as existence of fields, specified field values, and so on.

• Data Confidentiality. Uses message-based encryption to protect sensitive data in a
message.

• Data Contract. A schema that defines data structures passed with a service request.
• Data Integrity. Ensures that messages have not been tampered with in transit.
• Data Origin Authentication. Validates the origin of a message as an advanced form of data

integrity.
• Document Message. A structure used to reliably transfer documents or a data structure

between applications.
• Duplex. Two-way message communication where both the service and the client send

messages to each other independently, irrespective of the use of the one-way or the
request/reply pattern.

• Durable Subscriber. In a disconnected scenario, messages are saved and then made
accessible to the client when connecting to the message channel in order to provide
guaranteed delivery.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 84

• Dynamic Router. A component that dynamically routes the message to a consumer after
evaluating the conditions/rules that the consumer has specified.

• Entity. (REST). Resources that can be read with a GET operation, but can only be changed by
PUT and DELETE operations.

• Envelope Wrapper. A wrapper for messages that contains header information used, for
example, to protect, route, or authenticate a message.

• Event Message. A structure that provides reliable asynchronous event notification between
applications.

• Exception Shielding. Prevents a service from exposing information about its internal
implementation when an exception occurs.

• Façade. Implements a unified interface to a set of operations in order to provide a
simplified reduce coupling between systems.

• Fault Contracts. A schema that defines errors or faults that can be returned from a service
request.

• Federation. An integrated view of information distributed across multiple services and
consumers.

• Fire and Forget. A one-way message communication mechanism used when no response is
expected.

• Idempotent Receiver. Ensures that a service will only handle a message once.
• Message Broker (Hub-and-Spoke). A central component that communicates with multiple

applications to receive messages from multiple sources, determines the correct destination,
and route the message to the correct channel.

• Message Bus. Structures the connecting middleware between applications as a
communication bus that enables the applications to work together using messaging.

• Message Dispatcher. A component that sends messages to multiple consumers.
• Message Filter. Eliminates undesired messages, based on a set of criteria, from being

transmitted over a channel to a consumer.
• Messaging Bridge. A component that connects messaging systems and replicates messages

between these systems.
• Messaging Gateway. Encapsulates message-based calls into a single interface in order to

separate it from the rest of the application code.
• Messaging Mapper. Transforms requests into business objects for incoming messages, and

reverses the process to convert business objects into response messages.
• Normalizer. Converts or transforms data into a common interchange format when

organizations use different formats.
• Point-to-point Channel. Sends a message on a Point-to-Point Channel to ensure that only

one receiver will receive a particular message.
• Polling Consumer. A service consumer that checks the channel for messages at regular

intervals.
• Process Manager. A component that enables routing of messages through multiple steps in

a workflow.
• Publish-subscribe Channel. Creates a mechanism to send messages only to the applications

that are interested in receiving the messages without knowing the identity of the receivers.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 85

• Reliable Sessions. End-to-end reliable transfer of messages between a source and a
destination, regardless of the number or type of intermediaries that separate endpoints.

• Remote Façade. Creates a high-level unified interface to a set of operations or processes in
a remote subsystem to make that subsystem easier to use, by providing a course-grained
interface over fine-grained operations to minimize calls across the network.

• Replay Protection. Enforces message idempotency by preventing an attacker from
intercepting a message and executing it multiple times.

• Request Response. A two-way message communication mechanism where the client
expects to receive a response for every message sent.

• Request-Reply. Uses separate channels to send the request and reply.
• Selective Consumer. The service consumer uses filters to receive messages that match

specific criteria.
• Service Activator. A service that receives asynchronous requests to invoke operations in

business components.
• Service Contract. A schema that defines operations that the service can perform.
• Service Interface. A programmatic interface that other systems can use to interact with the

service.
• Store (REST). Allows entries to be created and updated with PUT.
• Transaction (REST). Resources that support transactional operations.
• Transactional Client. A client that can implement transactions when interacting with a

service.
• Validation. Checks the content and values in messages to protect a service from malformed

or malicious content.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology for
your service layer:
• Consider using ASP.NET Web services (ASMX) for simplicity, but only when a suitable Web

server will be available.
• Consider using WCF services for advanced features and support for multiple transport

protocols.
• If you are using ASMX and you require message-based security and binary data transfer,

consider using Web Service Extensions (WSE).
• If you are using WCF and you want interoperability with non-WCF or non-Windows clients,

consider using HTTP transport based on SOAP specifications.
• If you are using WCF, consider defining service contracts that use an explicit message

wrapper instead of an implicit one. This allows you to define message contracts as inputs
and outputs for your operations, which then allows you to extend the data contracts
included in the message contract without affecting the service contract.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 86

Additional Resources
• For more information, see Enterprise Solution Patterns Using Microsoft .NET at

http://msdn.microsoft.com/en-us/library/ms998469.aspx.
• For more information, see Web Service Security Guidance at http://msdn.microsoft.com/en-

us/library/aa480545.aspx
• For more information, see Improving Web Services Security: Scenarios and Implementation

Guidance for WCF at http://www.codeplex.com/WCFSecurityGuide

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 87

Chapter 7 - Communication Guidelines

Objectives
• Learn the guidelines for designing a communication approach for both the infrastructure

supporting mobile devices and for the devices themselves.
• Learn the ways in which components communicate with each other.
• Learn the interoperability, performance, and security considerations for choosing a

communication approach.
• Learn the communication technology choices.

Overview
One of the key factors that affect the design of an application, particularly a distributed
application, is the way that you design the communication infrastructure for each part of the
application. Mobile infrastructure support components must communicate with each other, for
example to send user input to the business layer, and then to update the data store through
the data layer. The mobile infrastructure must then communicate with the mobile device.
When components are located on the same physical tier, you can often rely on direct
communication between these components. However, if you deploy components and layers on
physically separate servers and client machines - as is likely in most scenarios - you must
consider how the components in these layers will communicate with each other efficiently and
reliably. This will also be true on the mobile device, though the methods of communication may
differ due to the smaller hardware footprint of the device. Always check the latest
documentation for your version of Windows Mobile to see what subset of communication
mechanisms is available on your device(s).

In general, you must choose between direct communication where components calls methods
on each other, and message-based communication. There are many advantages to using
message-based communication, such as decoupling and the capability to change your
deployment strategy in the future. However, message-based communication raises issues that
you must consider, such as performance, reliability, and - in particular - security.

This chapter contains design guidelines that will help you to choose the appropriate
communication approach, understand how to get the most from it, and understand security
and reliability issues that may arise.

Design Guidelines
When designing a communication strategy for your application, consider the performance
impact of communicating between layers, as well as between tiers. Because each
communication across a logical or a physical boundary increases processing overhead, design

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 88

for efficient communication by reducing round trips and minimizing the amount of data sent
over the network.

• Consider communication strategies when crossing boundaries. Understand each of your

boundaries, and how they affect communication performance. For example, the application
domain (AppDomain), computer process, machine, and unmanaged code all represent
boundaries that that can be crossed when communicating with components of the
application or external services and applications.

• Consider using unmanaged code for communication across AppDomain boundaries. Use
unmanaged code to communicate across AppDomain boundaries. This approach requires
assemblies to run in full trust in order to interact with unmanaged code.

• Consider using message-based communication when crossing process boundaries. Use
Windows Communication Foundation (WCF) with either the TCP to package data into a
single call that can be serialized across process boundaries. On the mobile device itself,
inter-process communication can use sockets, point to point queues, Windows Messages or
MSMQ depending on the scenario.

• Consider message-based communication when crossing physical boundaries. In the
infrastructure supporting mobile devices, consider using Windows Communication
Foundation (WCF) or Microsoft Message Queuing (MSMQ) to communicate with remote
machines across physical boundaries. Message-based communication supports coarse-
grained operations that reduce round trips when communicating across a network.
Between the mobile device and the infrastructure, consider using technologies that allow
for the occasionally connected nature of mobile communications such as WCF Store and
Forward.

• Reduce round trips when accessing remote layers. When communicating with remote
layers, reduce communication requirements by using coarse-grained message-based
communication methods, and use asynchronous communication if possible to avoid
blocking or freezing the user interface.

• Consider the serialization capabilities of the data formats passed across boundaries. If you
require interoperability with other systems, consider XML serialization. Keep in mind that
XML serialization imposes increased overhead. If performance is critical, consider binary
serialization because it is faster and the resulting serialized data is smaller than the XML
equivalent.

• Consider hotspots while designing your communication policy. Hotspots include
asynchronous and synchronous communication, data format, communication protocol,
security, performance, and interoperability.

Message-Based Communication
Message-based communication allow you to expose a service to your callers by defining a
service interface that clients call by passing XML-based messages over a transport channel.
Message-based calls are generally made from remote clients, but message-based service
interfaces can support local callers as well. A message-based communication style is well suited
to the following scenarios:

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 89

• You are implementing a business system that represents a medium- to long-term
investment; for example, when building a service that will be exposed to and used by
partners for a considerable time.

• You are implementing large-scale systems with high availability characteristics.
• You are building a service that you want to isolate from other services it uses, and from

services that consume it.
• You expect communication at either of the endpoints to be sporadically unavailable, as in

the case of wireless networks or applications that can be used offline.
• You are dealing with real-world business processes that use the asynchronous model. This

will provide a cleaner mapping between your requirements and the behavior of the
application.

When using message-based communication, consider the following guidelines:
• Consider that a connection will not always be present, and messages may need to be stored

and then sent when a connection becomes available.
• Consider how to handle the case when a message response is not received. To manage the

conversation state, your business logic can log the sent messages for later processing in
case a response is not received.

• Use acknowledgements to force the correct sequencing of messages.
• If message response timing is critical for your communication, consider a synchronous

programming model in which your client waits for each response message.
• Do not implement a custom communication channel unless there is no default combination

of endpoint, protocol, and format that suits your needs.

Asynchronous and Synchronous Communication
Consider the key tradeoffs when choosing between synchronous and asynchronous
communication styles. Synchronous communication is best suited to scenarios in which you
must guarantee the order in which calls are received, or when you must wait for the call to
return before proceeding. Asynchronous communication is best suited to scenarios in which
responsiveness is important or you cannot guarantee the target will be available.

Consider the following guidelines when deciding whether to use synchronous or asynchronous
communication:
• For maximum performance, loose-coupling, and minimized system overhead, consider using

an asynchronous communication model.
• Where you must guarantee the order in which operations take place, or you use operations

that depend on the outcome of previous operations, consider a synchronous model.
• For asynchronous local in-process calls, use the platform features (such as Begin and End

versions of methods and callbacks) to implement asynchronous method calls.
• Implement asynchronous interfaces as close as possible to the caller to obtain maximum

benefit.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 90

• If some recipients can only accept synchronous calls, and you need to support synchronous
communication, consider wrapping existing asynchronous calls in a component that
performs synchronous communication.

If you choose asynchronous communication and cannot guarantee network connectivity or the
availability of the target, consider using a store-and-forward message delivery mechanism to
avoid losing messages. When choosing a store-and-forward design strategy:
• Consider using Windows Communications Foundation (WCF) Store-and-Forward transport

to safely send messages to Windows Mobile devices regardless of whether the sender or
receiver is currently online.

• Consider using local caches to store messages for later delivery in case of system or network
interruption.

• Consider using Message Queuing to queue messages for later delivery in case of system or
network interruption or failure. Message Queuing can perform transacted message delivery
and supports reliable once-only delivery. Message Queuing is available on mobile devices,
but note that it has somewhat reduced functionality compared to the desktop version.

• On the mobile infrastructure, consider using BizTalk Server to interoperate with other
systems and platforms at enterprise level, or for Electronic Data Interchange (EDI).

Coupling and Cohesion
Communication methods that impose interdependencies between the distributed parts of the
application will result in a tightly coupled application. A loosely coupled application uses
methods that impose a minimum set of requirements for communication to occur.

When designing for coupling and cohesion, consider the following guidelines:
• For loose coupling, choose a message-based technology such as ASMX or WCF.
• For loose coupling, consider using self-describing data and ubiquitous protocols such as

HTTP and SOAP.
• To maintain cohesion, ensure that services and interfaces contain only methods that are

closely related in purpose and functional area.

State Management
It may be necessary for the communicating parties in an application to maintain state across
multiple requests.

When deciding how to implement state management, consider the following guidelines:
• On a mobile device, consider that state could easily be wiped out by a reset or loss of

power. Vital state information should be duplicated or synchronized with the infrastructure
supporting the mobile device.

• Only maintain state between calls if it is absolutely necessary, since maintaining state
consumes resources and can impact the performance of your application.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 91

• If you are using a state-full programming model within a component or service, consider
using a durable data store, such as a database, to store state information and use a token to
access the information.

• If you are designing an ASMX service, use the Application Context class to preserve state,
since it provides access to the default state stores for application scope and session scope.

• If you are designing a WCF service, consider using the extensible objects that are provided
by the platform for state management. These extensible objects allow state to be stored in
various scopes such as service host, service instance context and operation context. Note
that all of these states are kept in memory and are not durable. If you need durable state,
you can use the durable storage (introduced in .NET 3.5) or implement your own custom
solution.

Message Format
The format you choose for messages, and the communication synchronicity, affect the ability of
participants to exchange data, the integrity of that data, and the performance of the
communication channel.

Consider the following guidelines when choosing a message format and handling messages:
• Ensure that type information is not lost during the communication process. Binary

serialization preserves type fidelity, which is useful when passing objects between client
and server. Default XML serialization serializes only public properties and fields and does
not preserve type fidelity.

• Ensure that your application code can detect and manage messages that arrive more than
once (idempotency).

• Ensure that your application code can detect and manage multiple messages that arrive out
of order (commutativity).

Passing Data Through Tiers - Data Formats
To support a diverse range of business processes and applications, consider the following
guidelines when selecting a data format for a communication channel:
• Consider the advantage of using custom objects; these can impose a lower overhead than

DataSets and support both binary and XML serialization.
• If your application works mainly with sets of data, and needs functionality such as sorting,

searching and data binding, consider using DataSets. Consider that DataSets introduce
serialization overhead.

• If you are transferring data from a mobile device running SQL Server CE to the mobile
infrastructure servers, consider using merge replication, to conserve memory utilization.
This way, data stored in memory will not be duplicated –once in the SQL Server CE store,
and once in the DataSet.

• If your application works mainly with instance data, consider using scalar values for better
performance.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 92

Data Format Considerations
The most common data formats for passing data across tiers are Scalar values, XML, DataSets,
and custom objects. Scalar values will reduce your upfront development costs, however they
produce tight coupling that can increase maintenance costs if the value types need to change.
XML may require additional up front schema definition but it will result in loose coupling that
can reduce future maintenance costs and increase interoperability (for example, if you want to
expose your interface to additional XML-compliant callers). DataSets work well for complex
data types, especially if they are populated directly from your database. However, it is
important to understand that DataSets also contain schema and state information that
increases the overall volume of data passed across the network. Custom objects work best
when none of the other options meets your requirements, or when you are communicating
with components that expect a custom object.

Use the following table to understand the key considerations for choosing a data type.

Type Considerations
Scalar Values • You want built-in support for serialization.

• You can handle the likelihood of schema changes. Scalar values produce tight
coupling that will require method signatures to be modified, thereby affecting the
calling code.

XML • You need loose coupling, where the caller must know about only the data that
defines the business entity and the schema that provides metadata for the
business entity.

• You need to support different types of callers, including third-party clients.
• You need built-in support for serialization.

DataSet • You need support for complex data structures.
• You need to handle sets and complex relationships.
• You need to track changes to data within the DataSet.

Custom
Objects

• You need support for complex data structures.
• You are communicating with components that know about the object type.
• You want to support binary serialization for performance.

Interoperability Considerations
The main factors that influence interoperability of applications and components are the
availability of suitable communication channels, and the formats and protocols that the
participants can understand.

Consider the following guidelines for maximizing interoperability:
• To enable communication with wide variety of platforms and devices, consider using

standard protocols such as SOAP or REST. With both protocols, the structure of message
data is defined using XML schemas.

• Keep in mind that protocol decisions may affect the availability of clients you are targeting.
For example, target systems may be protected by firewalls that block some protocols.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 93

• Keep in mind that data format decision may affect interoperability. For example, target
systems may not understand platform-specific types, or may have different ways of
handling and serializing types.

• Keep in mind that security encryption and decryption decisions may affect interoperability.
For example, some message encryption/decryption techniques may not be available on all
systems.

Performance Considerations
The design of your communication interfaces and the data formats you use will also have a
considerable impact on performance, especially when crossing process or machine boundaries.
While other considerations, such as interoperability, may require specific interfaces and data
formats, there are techniques you can use to improve performance related to communication
between different layers or tiers of your application.

Consider the following guidelines for performance:
• Consider the business and data processing ability of your mobile device. It may be more

efficient for the device to pass data to the mobile infrastructure servers, process it and pass
back the result.

• Avoid fine-grained "chatty" interfaces for cross-process and cross-machine communication
if you know that the systems or devices involved will have reliable connectivity. These
require the client to make multiple method calls to perform a single logical unit of work.

• Consider using the Façade pattern to provide a coarse-grained wrapper for existing chatty
interfaces. If reliable connectivity is an issue, balance the chatty and coarse-grainedness of
your interfaces based on the expected or tested reliability of your connection.
Communications dropped in the middle of a message transfer will likely require the entire
message be repeated, negating the benefits of a very coarse-grained interface. Smaller
messages are more likely to be received in their entirety.

• Use Data Transfer Objects to pass data as a single unit instead of passing individual data
types one at a time.

• Reduce the volume of data passed to remote methods where possible. This reduces
serialization overhead and network latency.

• If serialization performance is critical for your application, consider using custom classes
with binary serialization.

• If XML is required for interoperability, use attribute based structures for large amounts of
data instead of element based structures.

Security Considerations
Communication security consists primarily of data protection. A secure communication strategy
will protect sensitive data from being read when passed over the network, it will protect
sensitive data from being tampered with, and if necessary, it will guarantee the identity of the
caller. There are two fundamental areas of concern for securing communications: transport
security and message-based security.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 94

Transport Security.
Transport security is used to provide point-to-point security between the two endpoints.
Protecting the channel prevents attackers from accessing all messages on the channel.
Common approaches to transport security are Secure Sockets Layer (SSL) and IPSec.

Consider the following when deciding to use transport security:
• When using transport security, the transport layer passes user credentials and claims to the

recipient.
• Transport security uses common industry standards that provide good interoperability.
• Transport security supports a limited set of credentials and claims compared to message

security.
• If interactions between the service and the consumer are not routed through other

services, you can use just transport layer security.
• If the message passes through one or more servers, use message-based protection as well

as transport layer security. With transport layer security, the message is decrypted and then
encrypted at each server it passes through; which represents a security risk.

• Transport security is usually faster for encryption and signing since it is accomplished at
lower layers, sometimes even on the network hardware.

Message Security
Message security can be used with any transport protocol. You should protect the content of
individual messages passing over the channel whenever they pass outside your own secure
network, and even within your network for highly sensitive content. Common approaches to
message security are encryption and digital signatures.

Consider the following guidelines for message security:
• Always implement message-based security for sensitive messages that pass out of your

secure network.
• Always use message-based security where there are intermediate systems between the

client and the service. Intermediate servers will receive the message, handle it, then create
a new SSL or IPSec connection, and can therefore access the unprotected message.

• Combine transport and message-based security techniques for maximum protection.

WCF Technology Options
WCF provides a comprehensive mechanism for implementing services in a range of situations,
and allows you to exert fine control over the configuration and content of the services. The
following guidelines will help you to understand how you can use WCF:
• You can use WCF to communicate with Web services to achieve interoperability with other

platforms that also support SOAP, such as the J2EE-based application servers.
• You can use WCF to communicate using SOAP messages and binary encoding for data

structures when both the server and the client use WCF.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 95

• You can use WS-Security to implement authentication, data integrity, data privacy, and
other security features.

• You can use WS-Reliable Messaging to implement reliable end-to-end communication, even
when one or more Web services intermediaries must be traversed.

• You can use WCF to build REST Singleton & Collection Services, ATOM Feed and Publishing
Protocol Services, and HTTP Plain XML Services.

WCF supports several different protocols for communication:
• When providing public interfaces that are accessed from the Internet, use the HTTP

protocol.
• When providing interfaces that are accessed from within a private network, use the TCP

protocol.
• When providing interfaces that are accessed from the same machine, use the named pipes

protocol, which supports a shared buffer or streams for passing data.

ASMX Technology Options
ASP.NET Web Services (ASMX) provide a simpler solution for building Web services based on
ASP.NET and exposed through an IIS Web server. The following guidelines will help you to
understand how you can use ASMX Web services:
• ASMX services can be accessed over the Internet.
• ASMX services use port 80 by default, but this can be easily reconfigured.
• ASMX services support only the HTTP protocol.
• ASMX services have no support for DTC transaction flow. You must program long-running

transactions using custom implementations.
• ASMX services support IIS authentication.
• ASMX services support Roles stored as Windows groups for authorization.
• ASMX services support IIS and ASP.NET impersonation.
• ASMX services support SSL transport security.
• ASMX services support the endpoint technology implemented in IIS.
• ASMX services provide cross-platform interoperability and cross-company computing.

REST vs. SOAP
There are two general approaches to the design of service interfaces, and the format of
requests sent to services. These approaches are REpresentational State Transfer (REST) and
SOAP. The REST approach encompasses a series of network architecture principles that specify
target resource and address formats. It effectively means the use of a simple interface that
does not require session maintenance or a messaging layer such as SOAP, but instead sends
information about the target domain and resource as part of the request URI. The SOAP
approach serializes data into an XML format passed as values in an XML message. The XML
document is placed into a SOAP envelope that defines the communication parameters such as
address, security, and other factors.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 96

When choosing between REST and SOAP, consider the following guidelines:
• SOAP is a protocol that provides a basic messaging framework upon which abstract layers

can be built.
• SOAP is commonly used as a remote procedure call (RPC) framework that passes calls and

responses over networks using XML-formatted messages.
• SOAP handles issues such as security and addressing through its internal protocol

implementation, but requires a SOAP stack to be available.
• REST can be implemented over other protocols, such as JSON and custom Plain Old XML

(POX) formats.
• REST exposes an application as a state machine, not just a service endpoint. It has an

inherently stateless nature, and allows standard HTTP calls such as GET and PUT to be used
to query and modify the state of the system.

• REST gives users the impression that the application is a network of linked resources, as
indicated by the URI for each resource.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 97

Chapter 8: Deployment Patterns

Objectives
• Learn the key factors that influence deployment choices.
• Understand the recommendations for choosing a deployment pattern.
• Understand the effect of deployment strategy on performance, security, and other quality

attributes.
• Understand the deployment scenarios for each of the application types covered in this

guide.
• Learn common deployment patterns.

Overview
Application architecture designs exist as models, documents, and scenarios. However,
applications must be deployed into a physical environment where infrastructure limitations
may negate some of the architectural decisions. Therefore, you must consider the proposed
deployment scenario and the infrastructure as part of your application design process.

This chapter describes the options available for deployment of mobile applications.. By
considering the possible deployment scenarios for your application as part of the design
process, you prevent a situation where a mobile application with its associated infrastructure
cannot be successfully deployed, or fails to perform to its design requirements because of
technical infrastructure limitations.

Choosing a Deployment Strategy
Choosing a deployment strategy requires design tradeoffs; for example, because of protocol or
port restrictions, or specific deployment topologies in your target environment. Identify your
deployment constraints early in the design phase to avoid surprises later. To help you avoid
surprises, involve members of your network and infrastructure teams to help with this process.

When choosing a deployment strategy:
• Understand the target physical environment for deployment.
• Understand the architectural and design constraints based on the deployment

environment.
• Understand the security and performance impacts of your deployment environment.

Mobile Application Deployment
Mobile applications can be deployed using many different methods. Consider the requirements
of your users, as well as how you will manage the application, when designing for deployment.
Ensure that you design to allow for the appropriate management, administration, and security
for application deployment.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 98

In general, you can deliver your application over the network or manually. Over the network
distribution methods will vary by whether your mobile devices are on an intranet or the
Internet and what type of infrastructure you have available for delivery. Manual delivery is
usually by external storage cards and in rare cases for Original Device Manufacturers (ODMs),
use of ROM or firmware memory built into the device itself which holds the application code.

CAB files
If your application will simply be an EXE that runs on the mobile client device, package the EXE
in a (.cab) CAB file for distribution. Visual Studio provides a .cab project mechanism to bundle a
single or several EXEs in to a .cab file. Consider signing the CAB file to ensure its authenticity,
especially if it is being distributed outside a protected network. It is possible to bundle a
number of instances of an application into a single .cab file.

You can use several methods to distribute the CAB file.

• Provide an HTML link for the device. Via the device browser, the .cab file can be
manually copied onto the device

• If the device can receive e-mail or Short Message Service (SMS) messages, provide a link
that the user clicks to download the file via Internet Explorer Mobile.

• Attach the .cab to an e-mail message. The .cab file is installed when the user runs the
attachment.

• Use the Application Manager installed with ActiveSync on a host PC to transfer the .cab
file on to the device and then install it.

• Provide the .cab on an external memory card. Either include instructions for the user to
access and install the .cab file or provide and AutoRun file, assuming that the device is
configured to enable Autorun functionality on the device.

Consider the following guidelines when designing your deployment strategy:
• If your users must be able to install and update applications while away from the office,

consider designing for over-the-air deployment.
• If you are using CAB file distribution for multiple devices, include multiple device

executables in the CAB file. Have the device detect which executable to install, and discard
the rest.

• If your application relies heavily on a host PC, consider using ActiveSync to deploy your
application.

• If you are deploying a baseline experience running on top of Windows Mobile, consider
using the post-load mechanism to automatically load the application after the Windows
Mobile operating system starts up.

• If your application will be run only at a specific site, and you want to manually control
distribution, consider deployment using an SD memory card

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 99

Mobile Application Infrastructure
Mobile devices may or may not require an accompanying infrastructure to support them. The
issues to be dealt with are similar to deployment issues for Web Applications that include a
service layer. The following information deals with the infrastructure that could help to serve a
set of mobile devices and the applications that run on them. Read this section if your devices
require servers to provide business services, data synchronization, or deliver installation
updates to your mobile devices.

Many of the concepts listed below are the same if you were building an infrastructure for a web
application. As such, the concepts are discussed only briefly. Use the companion patterns &
practices Web Application Pocket Guide for a future discussion of these architectural concepts.

Distributed vs. Non-distributed Deployment
When creating your deployment strategy for your mobile infrastructure, first determine if you
will use a distributed or a non-distributed deployment model. If you are running a web
interface on the same set of servers, and you are building a simple application for which you
want to minimize the number of required servers, consider a non-distributed deployment. If
you do not have another Web UI or are building a more complex application that you will want
to optimize for scalability and maintainability, consider a distributed deployment.

Non-distributed Deployment
In a non-distributed deployment, all of the functionality and layers reside on a single server
except for data storage functionality, as shown in Figure 1.

Database ServerWeb Server
Presentation

Business
Data

Figure 1 Non-distributed deployment

You would only use this method if you have a web UI in addition to services which would serve
your mobile devices. This approach has the advantage of simplicity and minimizes the number
of physical servers required. It also minimizes the performance impact inherent when
communication between layers has to cross physical boundaries between servers or server
clusters. Keep in mind that by using a single server, even though you minimize communication
performance overhead, you can hamper performance in other ways. Because all of your layers
share resources, one layer can negatively impact all of the other layers when it is under heavy
utilization. The use of a single tier reduces your overall scalability and maintainability since all of
the layers share the same physical hardware.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 100

Distributed Deployment
In a distributed deployment, the layers of the application reside on separate physical tiers.
Distributed deployment allows you to separate the layers of an application on different physical
tiers, as shown in Figure 2.

Database ServerWeb Server
Presentation

Application
Server
Business

Data

Figure 2 Distributed deployment

If you do not have a Web interface for your mobile application infrastructure, then the Web
Server would be removed from the above diagram.

A distributed approach allows you to configure the application servers that host the various
layers in order to best meet the requirements of each layer. Distributed deployment also allows
you to apply more stringent security to the application servers; for example, by adding a
firewall between the Web server and the application servers, and by using different
authentication and authorization options. For instance, in a mobile application, the device may
use Web services exposed through a Web server, or may access functionality in the application
server tier using Distributed COM (DCOM) or Windows Communication Foundation (WCF)
services.

Distributed deployment provides a more flexible environment where you can more easily scale
out or scale up each physical tier as performance limitations arise, and when processing
demands increase.

Performance and Design Considerations for Distributed Environments
Distributing components across physical tiers reduces performance because of the cost of
remote calls across server boundaries. However, distributed components can improve
scalability opportunities, improve manageability, and reduce costs over time.

Consider the following guidelines when designing an application that will run on a physically
distributed infrastructure:
• Choose communication paths and protocols between tiers to ensure that components can

securely interact with minimum performance degradation.
• Consider using services and operating system features such as distributed transaction

support and authentication that can simplify your design and improve interoperability.
• Reduce the complexity of your component interfaces. Highly granular interfaces (“chatty”

interfaces) that require many calls to perform a task work best when located on the same

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 101

physical machine. Interfaces that make only one call to accomplish each task (“chunky”
interfaces) provide the best performance when the components are distributed across
separate physical machines.

• Consider separating long-running critical processes from other processes that might fail by
using a separate physical cluster.

• Determine your failover strategy. For example, Web servers typically provide plenty of
memory and processing power, but may not have robust storage capabilities (such as RAID
mirroring) that can be replaced rapidly in the event of a hardware failure.

• Take advantage of asynchronous calls, one-way calls, or message queuing to minimize
blocking when making calls across physical boundaries.

• Determine how best to plan for the addition of extra servers or resources that will increase
performance and availability.

Recommendations for Locating Components within a Distributed
Deployment
When designing a distributed deployment, you need to determine which layers and
components you will put into each physical tier. In most cases you will place the presentation
layer on the client or on the Web server; the business, data access, and service layers on the
application server; and the database on its own server. In some cases you will want to modify
this pattern.

Consider the following guidelines when determining where to locate components in a
distributed environment:
• Only distribute components where necessary. Common reasons for implementing

distributed deployment include security policies, physical constraints, shared business logic,
and scalability.

• In Web applications, deploy business components that are used synchronously by user
interfaces (UIs) or user process components in the same physical tier as the UI in order to
maximize performance and ease operational management.

• Don’t place UI and business components on the same tier if there are security implications
that require a trust boundary between them. For instance, you might want to separate
business and UI components in a rich client application by placing the UI on the client and
the business components on the server.

• Deploy service agent components on the same tier as the code that calls the components,
unless there are security implications that require a trust boundary between them.

• Deploy asynchronous business components, workflow components, and business services
on a separate physical tier where possible.

• Deploy business entities on the same physical tier as the components that use them.

Scale Up vs. Scale Out
Your approach to scaling is a critical design consideration. Whether you plan to scale out your
solution through a Web farm, a load-balanced middle tier, or a partitioned database, you need
to ensure that your design supports this.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 102

When you scale your application, you can choose from and combine two basic choices:
• Scale up: Get a bigger box.
• Scale out: Get more boxes.

Scale Up: Get a Bigger Box
With this approach, you add hardware such as processors, RAM, and network interface cards
(NICs) to your existing servers to support increased capacity. This is a simple option and can be
cost-effective because it does not introduce additional maintenance and support costs.
However, any single point of failure remain, which is a risk. Beyond a certain threshold, adding
more hardware to the existing servers may not produce the desired results. For an application
to scale up effectively, the underlying framework, run time, and computer architecture must
scale up as well. When scaling up, consider which resources the application is bound by. If it is
memory-bound or network-bound, adding CPU resources will not help.

Scale Out: Get More Boxes
To scale out, you add more servers and use load-balancing and clustering solutions. In addition
to handling additional load, the scale-out scenario also protects against hardware failures. If
one server fails, there are additional servers in the cluster that can take over the load. For
example, you might host multiple Web servers in a Web farm that hosts presentation and
business layers, or you might physically partition your application’s business logic and use a
separately load-balanced middle tier along with a load-balanced front tier hosting the
presentation layer. If your application is I/O-constrained and you must support an extremely
large database, you might partition your database across multiple database servers. In general,
the ability of an application to scale out depends more on its architecture than on underlying
infrastructure.

Consider Whether You Need to Support Scale Out
Scaling up with additional processor power and increased memory can be a cost-effective
solution. This approach also avoids introducing the additional management cost associated
with scaling out and using Web farms and clustering technology. You should look at scale-up
options first and conduct performance tests to see whether scaling up your solution meets your
defined scalability criteria and supports the necessary number of concurrent users at an
acceptable performance level. You should have a scaling plan for your system that tracks its
observed growth.

If scaling up your solution does not provide adequate scalability because you reach CPU, I/O, or
memory thresholds, you must scale out and introduce additional servers. Consider the
following practices in your design to ensure that your application can be scaled out successfully:
• You need to be able to scale out your bottlenecks, wherever they are. If the bottlenecks

are on a shared resource that cannot be scaled, you have a problem. However, having a
class of servers that have affinity with one resource type could be beneficial, but they must
then be independently scaled. For example, if you have a single Microsoft SQL Server®

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 103

instance that provides a directory, everyone uses it. In this case, when the server becomes a
bottleneck, you can scale out and use multiple copies. Creating an affinity between the data
in the directory and the SQL Servers that serve the data allows you to concentrate those
servers and does not cause scaling problems later, so in this case affinity is a good idea.

• Define a loosely coupled and layered design. A loosely coupled, layered design with clean,
remotable interfaces is more easily scaled out than tightly-coupled layers with “chatty”
interactions. A layered design will have natural clutch points, making it ideal for scaling out
at the layer boundaries. The trick is to find the right boundaries. For example, business logic
may be more easily relocated to a load-balanced, middle-tier application server farm.

Consider Design Implications and Tradeoffs up Front
You need to consider aspects of scalability that may vary by application layer, tier, or type of
data. Know your tradeoffs up front and know where you have flexibility and where you do not.
Scaling up and then out with Web or application servers might not be the best approach. For
example, although you can have an 8-processor server in this role, economics would probably
drive you to a set of smaller servers instead of a few big ones. On the other hand, scaling up
and then out might be the right approach for your database servers, depending on the role of
the data and how the data is used. Apart from technical and performance considerations, you
also need to take into account operational and management implications and related total cost
of ownership (TCO) costs.

Stateless Components
If you have stateless components (for example, a Web front end with no in-process state and
no stateful business components), this aspect of your design supports both scaling up and
scaling out. Typically, you optimize the price and performance within the boundaries of the
other constraints you may have. For example, 2-processor Web or application servers may be
optimal when you evaluate price and performance compared with 4-processor servers; that is,
four 2-processor servers may be better than two 4-processor servers. You also need to consider
other constraints, such as the maximum number of servers you can have behind a particular
load-balancing infrastructure. In general, there are no design tradeoffs if you adhere to a
stateless design. You optimize price, performance, and manageability.

Data
For data, decisions largely depend on the type of data:
• Static, reference, and read-only data. For this type of data, you can easily have many

replicas in the right places if this helps your performance and scalability. This has minimal
impact on design and can be largely driven by optimization considerations. Consolidating
several logically separate and independent databases on one database server may or may
not be appropriate even if you can do it in terms of capacity. Spreading replicas closer to
the consumers of that data may be an equally valid approach. However, be aware that
whenever you replicate, you will have a loosely synchronized system.

• Dynamic (often transient) data that is easily partitioned. This is data that is relevant to a
particular user or session (and if subsequent requests can come to different Web or

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 104

application servers, they all need to access it), but the data for user A is not related in any
way to the data for user B. For example, shopping carts and session state both fall into this
category. This data is slightly more complicated to handle than static, read-only data, but
you can still optimize and distribute quite easily. This is because this type of data can be
partitioned. There are no dependencies between the groups, down to the individual user
level. The important aspect of this data is that you do not query it across partitions. For
example, you ask for the contents of user A’s shopping cart but do not ask to show all carts
that contain a particular item.

• Core data. This type of data is well maintained and protected. This is the main case where
the “scale up, then out” approach usually applies. Generally, you do not want to hold this
type of data in many places because of the complexity of keeping it synchronized. This is the
classic case in which you would typically want to scale up as far as you can (ideally,
remaining a single logical instance, with proper clustering), and only when this is not
enough, consider partitioning and distribution scale-out. Advances in database technology
(such as distributed partitioned views) have made partitioning much easier, although you
should do so only if you need to. This is rarely because the database is too big, but more
often it is driven by other considerations such as who owns the data, geographic
distribution, proximity to the consumers, and availability.

Consider Database Partitioning at Design Time
If your application uses a very large database and you anticipate an I/O bottleneck, ensure that
you design for database partitioning up front. Moving to a partitioned database later usually
results in a significant amount of costly rework and often a complete database redesign.

Partitioning provides several benefits:
• The ability to restrict queries to a single partition, thereby limiting the resource usage to

only a fraction of the data.
• The ability to engage multiple partitions, thereby getting more parallelism and superior

performance because you can have more disks working to retrieve your data.

Be aware that in some situations, multiple partitions may not be appropriate and could have a
negative impact. For example, some operations that use multiple disks could be performed
more efficiently with concentrated data. So when you partition, consider the benefits together
with alternate approaches.

Performance Patterns
Performance deployment patterns represent proven design solutions to common performance
problems. When considering a high-performance deployment, you can scale up or scale out.
Scaling up entails improvements to the hardware on which you are already running. Scaling out
entails distributing your application across multiple physical servers to distribute the load. A
layered application lends itself more easily to being scaled out. Consider the use of Web farms
or load-balancing clusters when designing a scale-out strategy.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 105

Web Farms
A Web farm is a collection of servers that run the same application. Requests from clients are
distributed to each server in the farm, so that each has approximately the same load.
Depending on the routing technology used, it may detect failed servers and remove them from
the routing list to minimize the impact of a failure. In simple scenarios, the routing may be on a
“round robin” basis where a Domain Name System (DNS) server hands out the addresses of
individual servers in rotation. Figure 3 illustrates a simple Web farm where each server hosts all
of the layers of the application except for the data store.

Database Server

Web/Application
Server

Presentation

Business
Data Access

Web/Application
Server

Presentation

Business
Data Access

Web Farm

Figure 3 A simple Web farm

Affinity and User Sessions
Web applications often rely on the maintenance of session state between requests from the
same user. A Web farm can be configured to route all requests from the same user to the same
server—a process known as affinity—in order to maintain state where this is stored in memory
on the Web server. However, for maximum performance and reliability, you should use a
separate session state store with a Web farm to remove the requirement for affinity.

In ASP.NET, you must also configure all of the Web servers to use a consistent encryption key
and method for viewstate encryption where you do not implement affinity. You should also
enable affinity for sessions that use Secure Sockets Layer (SSL) encryption, or use a separate
cluster for SSL requests.

Application Farms
If you use a distributed model for your application, with the business layer and data layer
running on different physical tiers from the presentation layer, you can scale out the business
layer and data layer by using an application farm. Requests from the presentation tier are
distributed to each server in the farm so that each has approximately the same load. You may
decide to separate the business layer components and the data layer components on different

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 106

application farms, depending on the requirements of each layer and the expected loading and
number of users.

Load-balancing Cluster
You can install your service or application onto multiple servers that are configured to share the
workload, as shown in Figure 4. This type of configuration is known as a load-balanced cluster.

Figure 4 A load-balanced cluster

Load balancing scales the performance of server-based programs, such as a Web server, by
distributing client requests across multiple servers. Load-balancing technologies, commonly
referred to as load balancers, receive incoming requests and redirect them to a specific host if
necessary. The load-balanced hosts concurrently respond to different client requests, even
multiple requests from the same client. For example, a Web browser might obtain the multiple
images within a single Web page from different hosts in the cluster. This distributes the load,
speeds up processing, and shortens the response time to clients.

Reliability Patterns
Reliability deployment patterns represent proven design solutions to common reliability
problems. The most common approach to improving the reliability of your deployment is to use
a failover cluster to ensure the availability of your application even if a server fails.

Failover Cluster
A failover cluster is a set of servers that are configured in such a way that if one server becomes
unavailable, another server automatically takes over for the failed server and continues
processing. Figure 5 shows a failover cluster.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 107

Figure 5 A failover cluster

Install your application or service on multiple servers that are configured to take over for one
another when a failure occurs. The process of one server taking over for a failed server is
commonly known as failover. Each server in the cluster has at least one other server in the
cluster identified as its standby server.

Security Patterns
Security patterns represent proven design solutions to common security problems. The
impersonation/delegation approach is a good solution when you must flow the context of the
original caller to downstream layers or components in your application. The trusted subsystem
approach is a good solution when you want to handle authentication and authorization in
upstream components and access a downstream resource with a single trusted identity.

Impersonation/Delegation
In the impersonation/delegation authorization model, resources and the types of operations
(such as read, write, and delete) permitted for each one are secured using Windows Access
Control Lists (ACLs) or the equivalent security features of the targeted resource (such as tables
and procedures in SQL Server). Users access the resources using their original identity through
impersonation, as illustrated in Figure 6.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 108

Web Server
or

Application
Server

Database
Server

A
B
C
D

A
B
C
D

Caller Impersonation/
Delegation

Figure 6 The impersonation/delegation authorization model

Trusted Subsystem
In the trusted subsystem (or trusted server) model, users are partitioned into application-
defined, logical roles. Members of a particular role share the same privileges within the
application. Access to operations (typically expressed by method calls) is authorized based on
the role membership of the caller. With this role-based (or operations-based) approach to
security, access to operations (not back-end resources) is authorized based on the role
membership of the caller. Roles, analyzed and defined at application design time, are used as
logical containers that group together users who share the same security privileges or
capabilities within the application. The middle-tier service uses a fixed identity to access
downstream services and resources, as illustrated in Figure 7.

Web or Application
Server

Database
Server

A
B
C
D

Trusted
Service
Identity

Trust Boundary

Role-Based
Authorization

Database trusts the
Web / Application server

Figure 7 The trusted subsystem (or trusted server) model

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 109

Multiple Trusted Service Identities
In some situations, you might require more than one trusted identity. For example, you might
have two groups of users, one who should be authorized to perform read/write operations and
the other read-only operations. The use of multiple trusted service identities provides the
ability to exert more granular control over resource access and auditing, without having a large
impact on scalability. Figure 8 illustrates the multiple trusted service identities model.

Web or Application Server Database Server
A
B
C
D

Trust Boundary

Role1

Role2

Trusted service
identity 1

Trusted service
identity 2

Identity 1 and 2 have different
permissions in the database

Figure 8 The multiple trusted service identities model

Network Infrastructure Security Considerations
Make sure that you understand the network structure provided by your target environment,
and understand the baseline security requirements of the network in terms of filtering rules,
port restrictions, supported protocols, and so on. Recommendations for maximizing network
security include:
• Identify how firewalls and firewall policies are likely to affect your application’s design and

deployment. Firewalls should be used to separate the Internet-facing applications from the
internal network, and to protect the database servers. These can limit the available
communication ports and, therefore, authentication options from the Web server to
remote application and database servers. For example, Windows authentication requires
additional ports.

• Consider what protocols, ports, and services are allowed to access internal resources from
the Web servers in the perimeter network or from rich client applications. Identify the
protocols and ports that the application design requires, and analyze the potential threats
that occur from opening new ports or using new protocols.

• Communicate and record any assumptions made about network and application layer
security, and what security functions each component will handle. This prevents security
controls from being missed when both development and network teams assume that the
other team is addressing the issue.

• Pay attention to the security defenses that your application relies upon the network to
provide, and ensure that these defenses are in place.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 110

• Consider the implications of a change in network configuration, and how this will affect
security.

Manageability Considerations
The choices you make when deploying an application affect the capabilities for managing and
monitoring the application. You should take into account the following recommendations:
• Deploy components of the application that are used by multiple consumers in a single

central location to avoid duplication.
• Ensure that data is stored in a location where backup and restore facilities can access it.
• Components that rely on existing software or hardware (such as a proprietary network that

can only be established from a particular computer) must be physically located on the same
computer.

• Some libraries and adaptors cannot be deployed freely without incurring extra cost, or may
be charged on a per-CPU basis; therefore, you should centralize these features.

• Groups within an organization may own a particular service, component, or application that
they need to manage locally.

• Monitoring tools such as System Center Operations Manager require access to physical
machines to obtain management information, and this may impact deployment options.

• The use of management and monitoring technologies such as Windows Management
Instrumentation (WMI) may impact deployment options.

Pattern Map
Key patterns are organized by key categories such as Deployment, Manageability, Performance
& Reliability, and Security in the following table. Consider using these patterns when making
design decisions for each category.

Category Relevant patterns

Deployment • Layered Application
• Three-Layered Services Application
• Tiered Distribution
• Three-Tiered Distribution
• Deployment Plan

Manageability • Adapter
• Provider

Performance & Reliability • Server Clustering
• Load-Balanced Cluster
• Failover Cluster

Security • Brokered Authentication
• Direct Authentication
• Federated Authentication (SSO)
• Impersonation and Delegation
• Trusted Subsystem

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 111

• For more information on the Layered Application, Three-Layered Services Application,
Tiered Distribution, Three-Tiered Distribution, and Deployment Plan patterns, see
“Deployment Patterns” at http://msdn.microsoft.com/en-us/library/ms998478.aspx

• For more information on the Server Clustering, Load-Balanced Cluster, and Failover Cluster
patterns, see “Performance and Reliability Patterns” at http://msdn.microsoft.com/en-
us/library/ms998503.aspx

• For more information on the Brokered Authentication, Direct Authentication,
Impersonation and Delegation, and Trusted Subsystem patterns, see “Web Service Security”
at http://msdn.microsoft.com/en-us/library/aa480545.aspx

• For more information on the Provider pattern, see “Provider Model Design Pattern and
Specification, Part 1” at http://msdn.microsoft.com/en-us/library/ms972319.aspx

• For more information on the Adapter pattern, see “data & object factory”
at http://www.dofactory.com/Patterns/Patterns.aspx

Key Patterns
• Adapter. An object that supports a common interface and translates operations between

the common interface and other objects that implement similar functionality with different
interfaces.

• Brokered Authentication. A pattern that authenticates against a broker, which provides a
token to use for authentication when accessing services or systems.

• Direct Authentication. A pattern that authenticates directly against the service or system
that is being accessed.

• Layered Application. An architectural pattern where a system is organized into layers.
• Load-Balanced Cluster. A distribution pattern where multiple servers are configured to

share the workload. Load balancing provides both improvements in performance by
spreading the work across multiple servers, and reliability where one server can fail and the
others will continue to handle the workload.

• Provider. A pattern that implements a component that exposes an API that is different from
the client API, in order to allow any custom implementation to be seamlessly plugged in.
Many applications that provide instrumentation expose providers that can be used to
capture information about the state and health of your application and the system hosting
the application.

• Tiered Distribution. An architectural pattern where the layers of a design can be distributed
across physical boundaries.

• Trusted Subsystem. A pattern where the application acts as a trusted subsystem to access
additional resources. It uses its own credentials instead of the user’s credentials to access
the resource.

Additional Resources
• For more information on deploying applications to Mobile devices,

see http://msdn.microsoft.com/en-us/library/bb158580.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 112

• For more information on authorization techniques, see Designing Application-Managed
Authorization at http://msdn.microsoft.com/en-us/library/ms954586.aspx.

• For more information on deployment scenarios and considerations, see Deploying .NET
Framework-based Applications at http://msdn.microsoft.com/en-
us/library/ms954585.aspx.

• For more information on design patterns, see Enterprise Solution Patterns Using Microsoft
.NET at http://msdn.microsoft.com/en-us/library/ms998469.aspx.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 113

Cheat Sheet: Presentation Technology Matrix

Objectives
• Understand the tradeoffs for each presentation technology choice.
• Understand the design impact of choosing a presentation technology.
• Understand all presentation technologies across application types.
• Choose a presentation technology for your scenario and application type.

Overview
Use this cheat sheet to understand your technology choices for the presentation layer. Your
choice of presentation technology will be related to both the application type you are
developing and the type of user experience you plan to deliver. Use the Presentation Layer
Technology Summary to review each technology and its description. Use the Benefits and
Considerations Matrix to make an informed choice of presentation technology based on the
advantages and considerations of each one. Use the Common Scenarios and Solutions to map
your application scenario to common presentation technology solutions.

Presentation Technologies Summary

Mobile Applications
The following presentation technologies are suitable for use in mobile applications:
• Microsoft .NET Compact Framework. This is a subset of the Microsoft .NET Framework

designed specifically for mobile devices. Use this technology for mobile applications that
must run on the device without guaranteed network connectivity.

• ASP.NET Mobile. This is a subset of ASP.NET, designed specifically for mobile devices.
ASP.NET Mobile applications can be hosted on a normal ASP.NET server. Use this
technology for mobile Web applications when you need to support a large number of
mobile devices and browsers that can rely on a guaranteed network connection.

• Microsoft® Silverlight® Mobile. This subset of the Silverlight client requires the Silverlight
plug-in to be installed on the mobile device. Use this technology to port existing Silverlight
applications to mobile devices, or if you want to create a richer user interface (UI) than is
possible using other technologies.

Note: At the time this guide was published, Silverlight for Mobile was an announced product
under development, but not yet released.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 114

Benefits and Considerations Matrix

Mobile Applications
Technology Benefits Considerations
.NET Compact
Framework

• Runs on the client machine for
improved performance and
responsiveness

• Does not require 100-percent
network connectivity.

• Has a familiar programming model
if you are used to Windows Forms.

• Has Microsoft Visual Studio®
Designer support.

• Is usually installed in ROM on the
device.

• Has a limited API compared to a
desktop Windows Forms application.

• Requires more client-side resources
than an ASP.NET Mobile application.

• Is not as easy to deploy over the
Web as an ASP.NET Mobile
application.

ASP.NET Mobile • Supports a wide range of devices,
including anything that has a Web
browser.

• Does not have a footprint on the
device because no application must
be installed.

• Has a familiar programming model
if you are used to ASP.NET Web
Forms.

• Templates can be downloaded off
the Web for designer support with
Visual Studio.

• Design support has been removed
from Visual Studio 2008, but the
controls will still render on devices.

• Requires 100-percent network
connectivity to run.

• Performance and responsiveness are
dependent on network bandwidth
and latency.

• Many devices now support full HTML
and ASP.NET, so ASP.NET Mobile
may not be required.

Silverlight Mobile • Offers rich UI and visualization,

including 2-D graphics, vector
graphics, and animation.

• Silverlight code running on
desktops can run on Silverlight
Mobile.

• Isolated storage is available to
maintain objects outside the
browser cache.

• Is an announced product in
development, but not yet released
at the time this document was
published.

• Uses more device resources than a
Web application.

• Desktop Silverlight applications
running on mobile may require
optimization to account for reduced
memory and slower hardware.

• Requires the Silverlight plug-in to be
installed.

• May not run on as many types of
devices as Web applications because
of plug-in install requirement.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 115

Common Scenarios and Solutions

Mobile Applications
.NET Compact Framework
Consider using the .NET Compact Framework if:
• You are building a mobile application that must support occasionally connected or offline

scenarios.
• You are building a mobile application that will run on the client to maximize performance

and responsiveness.

ASP.NET for Mobile
Consider using ASP.NET for Mobile if:
• You are building an application that can rely on 100-percent network connectivity.
• Your team has ASP.NET expertise and you want to target a wide range of mobile devices.
• You are building an application that must have no client-side installation or plug-in

dependencies.
• You want to support the widest possible range of devices.
• You want to use as few device resources as possible.

Silverlight for Mobile
Consider using Silverlight for Mobile if:
• You are building a Web application and want to leverage the rich visualization and UI

capabilities of Silverlight.
• The devices you are targeting have easy access to or already have the Silverlight plug-in

installed.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 116

Cheat Sheet: Data Access Technology Matrix

Objectives
• Understand the tradeoffs for each data-access technology choice on the Windows Mobile

platform.
• Understand the design impact of choosing a data-access technology.
• Understand all data-access technologies across application types.
• Choose a data-access technology for your scenario and application type.

Overview
Use this cheat sheet to understand your technology choices for the data access layer. Your
choice of data-access technology will be related both to the application type you are developing
and the type of business entities you choose for your data layer. Use the Data Access
Technologies Summary to review each technology and its description. Use the Benefits and
Considerations Matrix to make an informed choice of data-access technology based on the
advantages and considerations for each one. Use the Common Scenarios and Solutions section
to map your application scenarios to common data-access technology solutions.

Mobile Device Considerations
As mentioned through this document, a number of technologies are not available on the
Windows Mobile operating system, but may be useful for synchronization/service interfaces
running on a PC or server.

The following technologies are not available on Windows Mobile at the time of publication:
• ADO.NET Entity Framework
• ADO.NET Data Services Framework
• LINQ to Entities
• LINQ to SQL
• LINQ to Data Services
• ADO.NET Core; Windows Mobile supports only SQL Server and SQL Server Compact Edition

Be sure to check the product documentation to verify availability for later versions.

Data Access Technologies Summary
The following data-access technologies are available with the Microsoft .NET platform:
• ADO.NET. ADO.NET provides general retrieval, update, and management of data. On

Windows Mobile, ADO.NET includes providers for Microsoft® SQL Server®, and Microsoft®
SQL Server® Compact Edition.

• ADO.NET Sync Services. ADO.NET Sync Services is a provider included in the Microsoft Sync
Framework synchronization for ADO.NET-enabled databases. It enables data

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 117

synchronization to be built in occasionally connected applications. It periodically gathers
information from the client database and synchronizes it with the server database.

• Language-Integrated Query (LINQ). LINQ provides class libraries that extend C# and
Microsoft Visual Basic® with native language syntax for queries. Queries can be performed
against a variety of data formats, including DataSet (LINQ to DataSet), XML (LINQ to XML),
in-memory objects (LINQ to Objects),.Understand that LINQ is primarily a query technology
supported by different assemblies throughout the .NET Framework. For example, LINQ to
Entities is included with the ADO.NET Entity Framework assemblies; LINQ to XML is included
with the System.Xml assemblies; and LINQ to Objects is included with the .NET core system
assemblies.

Benefits and Considerations Matrix

Disconnected and Offline
Technology Benefits Considerations
LINQ to DataSet • Allows full-featured queries against a

DataSet.
• Processing is all on the client side.

ADO.NET Sync
Services

• Enables synchronization between
databases, collaboration, and offline
scenarios

• Synchronization can execute in the
background.

.

• Provides a hub-and-spoke type of
architecture for collaboration
between databases.

• Change tracking ability needs to be
provided.

• Exchanging large chunks of data
during synchronization can reduce
performance.

ADO.NET • Includes .NET managed code
providers for connected access to a
wide range of data stores.

• Provides facilities for disconnected
data storage and manipulation.

• Only a subset of the ADO.NET
Core. Does not support
System.Data.OleDB namespace.

• Code is written directly against
specific providers, thereby
reducing reusability.

• The relational database structure
may not match the object model,
requiring you to write a data
mapping layer by hand.

LINQ to Objects • Allows you to create LINQ-based
queries against objects in memory.

• Represents a new approach to
retrieving data from collections.

• Can be used directly with any
collections that support IEnumerable
or IEnumerable<T>.

• Can be used to query strings,
reflection-based metadata, and file
directories.

• Will only work with objects that
implement the IEnumerable
interface.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 118

Technology Benefits Considerations
LINQ to XML • Allows you to create LINQ-based

queries against XML data.
• Comparable to the Document Object

Model (DOM), which brings an XML
document into memory, but is much
easier to use.

• Query results can be used as
parameters to XElement and
XAttribute object constructors.

• Relies heavily on generic classes.
• Is not optimized to work with

untrusted XML documents, which
require different mitigation
techniques for security.

General Recommendations
Consider the following general recommendations:
• Microsoft Windows Mobile® Devices. Many data technologies are not supported on

Windows Mobile Devices because they are too heavy considering the limited memory
capabilities. For on the device data management, primarily utilize SQL Server Compact
Edition and ADO.NET Sync Services to maintain data on a mobile device and synchronize it
with a larger database system. Features such as merge replication can also assist in
Windows Mobile scenarios.

• Flexibility and performance on the Server. If you need maximum performance and
flexibility on a server supporting a mobile device, consider using ADO.NET. ADO.NET
provides the most capabilities and is the most server-specific solution. When using
ADO.NET, consider the tradeoff of additional flexibility versus the need to write custom
code. Keep in mind that mapping to custom objects will reduce performance.
Offline/Occasionally connected scenarios. If you must support a disconnected scenario,
consider using DataSets. Utilize the the Sync Framework or SQL Server merge replication if
you have will have at least an initial connection to put the required data onto the mobile
device.

Note: You might need to mix and match the data-access technology options for your scenario.
Start with what you need.

Common Scenarios and Solutions

ADO.NET
Consider using ADO.NET if you:
• Are on a mobile device and want to access data through SQL Server Compact Edition.
• Need to use low-level APIs for full control over data access in your application.
• Are building an application that needs to support a disconnected data-access experience.

ADO.NET Sync Services
Consider using ADO.NET Sync Services if you:
• Need to build an application that supports occasionally connected scenarios.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 119

• Need collaboration between databases.
• Are using Windows Mobile and want to sync with a central database server.

LINQ to DataSets
Consider using LINQ to DataSets if you:
• Want to execute queries against a Dataset, including queries that join tables.
• Want to use a common query language instead of writing iterative code.

LINQ to Objects
Consider using LINQ to Objects if you:
• Need to execute queries against a collection.
• Want to execute queries against file directories.
• Want to execute queries against in-memory objects using the LINQ syntax.

LINQ to XML
Consider using LINQ to XML if you:
• Are using XML data in your application.
• Want to execute queries against XML data using the LINQ syntax.

Additional Resources
For more information, see the following resources:
• ADO.NET at http://msdn.microsoft.com/en-us/library/e80y5yhx(vs.80).aspx.
• Language-Integrated Query (LINQ) at http://msdn.microsoft.com/en-

us/library/bb397926.aspx.
• SQL Server Data Services (SSDS) Primer at http://msdn.microsoft.com/en-

us/library/cc512417.aspx.
• Introduction to the Microsoft Sync Framework Runtime at http://msdn.microsoft.com/en-

us/sync/bb821992.aspx

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 120

Checklist – Mobile Application

Design Considerations
• You have determined the device types you will support.
• You have designed the application with occasionally-connected limited-bandwidth scenarios

in mind.
• The user interface design is appropriate for the mobile device.
• You did not try to reuse a desktop application design or user interface.
• You have considered device resource constraints for battery life, memory size and program

speed.

Authentication and Authorization
• You have designed authentication for over-the-air, cradled synchronization scenarios,

Bluetooth discovery, and local SD card scenarios.
• You have considered that different devices may have variations in their programming

security model, which can affect authorization to access resources
• You did not assume that security mechanisms available on larger platforms will be available

on a mobile platform.
• You have designed authentication for access to Bluetooth devices.
• Trust boundaries are identified within your mobile application layers.

Caching
• Performance objectives are identified, such as minimum response time and battery life.
• You are caching static data that is useful, and avoided caching volatile data except when

required for an offline scenario.
• You have considered data caching requirements for occasionally-connected scenarios.
• Your design supports low memory detection, and prioritization of data to discard, as

available memory decreases.
• You chose the appropriate cache location, such as on the device, at the mobile gateway, or

in the database server.

Communication
• Your design supports asynchronous, threaded communication to improve usability in

occasionally-connected scenarios.
• You have considered the effects of receiving a phone call during communication or program

execution.
• Communication over un-trusted connections, such as Web services and other over-the-air

methods, is protected.
• You have considered using Web services for communication when you must access data

from multiple sources, interoperate with other applications, or work while disconnected.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 121

• You have considered message queuing when you need guaranteed delivery, asynchronous
messaging, message security, or transaction support.

Configuration Management
• Your design supports the saving and restoration of configuration data after a device reset.
• Merge replication with a “buy and configure” application from a third party is used, if the

enterprise data is in Microsoft SQL Server 2005 or 2008 and desire an accelerated time to
market.

• You are using a binary format instead of XML for configuration files due to memory
limitations.

• You are protecting sensitive data in device configuration files.
• You have considered using compression library routines to reduce the memory

requirements for configuration and state information.
• You have considered using the Mobile Device Manager interface to manage group

configuration of devices when you have an Active Directory infrastructure.

Data Access
• You have designed application to ensure data integrity.
• You are using the device database services (such as SQL Server Compact Edition) when your

application must access a disconnected database.
• You are using merge replication to synchronize large volumes of data in one operation over

a high bandwidth network connection.
• You have considered the overall size and impact on performance when you use XML to

store or transfer data.
• You are using custom strongly-typed or generic data transfer objects instead of DataSets to

reduce memory overhead and improve performance.
• You are using the Microsoft Sync Framework when you must synchronize individual sets of a

data over a remote connection.

Debugging
• You understand debugging costs associated with devices you need to support.
• You are using an emulator for initial testing and debugging.
• You are using the device for final testing.
• You have tested fully-disconnected scenarios in the design.
• You understand that it may be difficult to maintain context between different types of code

running on a device.

Deployment
• Your design supports over-the-air deployment when users must be able to install and

update applications while away from the office.
• You are using ActiveSync to deploy your application when the application relies heavily on a

host PC.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 122

• You are using the post-load mechanism to automatically load your application immediately
after the Windows Mobile OS starts up when you are deploying a baseline experience
running on top of Windows Mobile.

• When targeting multiple devices, you have included multiple device executables in the CAB
when you are using CAB file distribution.

• Application will be deployed using an SD memory card if the application will be run only at a
specific site and you want to manually control distribution.

Device
• The application is optimized for the device by considering factors such as screen size and

orientation, network bandwidth, memory and storage space, and other hardware
capabilities.

• Device-specific capabilities have been considered that will enhance your application
functionality, such as accelerometers, GPUs, GPS, haptic (touch, force and vibration)
feedback, compass, camera and fingerprint readers.

• You have designed a core functionality sub set when you are developing for more than one
device.

• You have considered adding customization for device-specific features, including
functionality to detect when the code is running on a device that can utilize this
functionality.

• You have created modular code that can be removed if separate executable files are
required due to device memory size constraints.

Exception Management
• Your application is designed to recover to a known good state after an exception.
• You did not use exceptions to control logic flow.
• Sensitive information in exception messages and log files are not revealed to users.
• Unhandled exceptions are dealt with appropriately.
• You have designed an appropriate logging and notification strategy for critical errors and

exceptions.

Logging
• You did not store sensitive information in log files.
• You have considered using the Mobile Device Manager to extract logs from mobile devices

when you have an Active Directory infrastructure.
• You have considered using platform features such as health monitoring on the server, and

mobile device services on the device, to log and audit events.
• You have considered logging in an abbreviated or compressed format to minimize memory

and storage impact when you carry out extensive logging on the device.
• You have used OpenNetCF on the device if you do not require extensive logging.
• You have decided what constitutes unusual or suspicious activity on a device, and logged

information based on these scenarios.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 123

Porting
• The application was re-written in its entirety when porting a Rich Client application from the

desktop.
• The user interface has been redesigned for the smaller screen size when porting a Web

application to a mobile device.
• You have researched details to discover what code will port without modification when

porting a RIA client.
• You have researched and utilized tools to assist in porting.
• You have tested the custom controls which when porting to a mobile application and based

on the results decided to rewrite to find an alternative.

Power
• The user interface is not updated while the application is in the background.
• Communication methods that use the least amount of power necessary are used.
• Power profiles have been implemented to increase performance when device is plugged

into external power and not charging the battery.
• Power consumption has been considered when using the device CPU, wireless

communication, screen, or other power-consuming resources while on battery power.
• Device functionality is allowed to be powered down when not in use or not needed.

Common examples are screen backlighting, hard drives, GPS functions, speakers, wireless
communications.

Synchronization
• Your design supports recovery when synchronization is reset, and is able to manage

synchronization conflicts.
• You have considered the Microsoft Sync Framework when you want easy-to-implement

one-way synchronization.
• You have considered using merge replication synchronization when you must support

bidirectional synchronization to SQL Server.
• You have considered including over-the-air synchronization in your design when users must

synchronize data when away from the office.
• You have considered including cradled synchronization in your design when users will be

synchronizing with a host PC.
• You have considered store and forward synchronization using WCF over email or SMS (text

message) mechanisms.

User Interface (UI)
• You have provided the user with a visual indication of blocking operations; for example, an

hourglass cursor.
• You did not place menu bars at the top of the screen as they are difficult to see when using

a stylus or touch screen input.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 124

• The design of your layout considers input from various sources. For example, making
buttons large enough for devices that supports touch screen.

• Your design supports various screen sizes and orientations associated with devices you need
to support.

Performance Considerations
• Your design supports configurable options to allow the maximum use of device capabilities.
• You have considered using lazy initialization to optimize for mobile device resource

constraints.
• You have considered limited memory resources and optimized your application to use the

minimum amount of memory.
• You have considered using programming shortcuts as opposed to following pure

programming practices that can inflate code size and memory consumption.
• You have balanced performance requirements with power consumption requirements.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 125

Checklist - Presentation Layer

Design Considerations
• Relevant presentation layer patterns are identified and used in the design; for example, use

the Template View pattern for dynamic Web pages.
• The application is designed to separate rendering components from components that

manage presentation data and process.
• Organizational UI guidelines are well understood and addressed by the design.
• The design is based upon knowledge of how the user wants to interact with the system.

Caching
• Volatile data is not cached, unless caching data required in a disconnected scenario.
• Sensitive data is not cached unless absolutely necessary and encrypted.
• Data is cached is a ready to use format to reduce processing after the cached data is

retrieved.
• An in-memory cache is used unless the cache must be stored persistently.
• Your design includes a strategy for expiration, scavenging and flushing; for example,

scavenging based on absolute expiration if it is in-memory and you can predict the time at
which the data will change.

• The caching strategy has been tested to see if it improves performance

Exception Management
• Sensitive data or internal application details are not revealed to users in error messages or

in exceptions.
• User-friendly error messages are displayed in the event of an exception that impacts the

user.
• Unhandled exceptions are captured.
• Exceptions are not used to control application logic.
• The set of exceptions that can be thrown by each component is well understood.
• Exceptions are logged to support troubleshooting when necessary.

Input
• Form-based input is used for normal data collection.
• Wizard-based input is used for complex data collection tasks or input that requires

workflow.
• Device-dependant input, such as ink or speech, is considered in the design.
• Accessibility was considered in the design.
• Localization was considered in the design.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 126

Layout
• Templates are used to provide a common look and feel.
• A common layout is used to maximize accessibility and ease of use.
• User personalization is considered in the layout design.

Navigation
• Navigation is separated from UI processing.
• If access to navigation state is required across sessions, the application is designed to persist

navigation state.
• If navigation logic is complex, the UI is decoupled from the navigation logic.
• The Page Controller pattern is used to separate business logic from the presentation logic.
• The Front Controller pattern is used to configure complex page navigation logic dynamically.

Request Processing
• Requests do not block the UI.
• Long running requests are identified in the design and optimized for UI responsiveness.
• UI request processing uses unique components that are not mixed with components that

render the UI, or with components that instantiate business rules.

User Experience
• Error messages are designed with the target user in mind.
• UI responsiveness is considered in the design; for example, rich clients do not block UI

threads and Rich Internet Applications avoid synchronous processing.
• The design has identified key user scenarios and has made them as simple to accomplish as

possible.
• The design empowers users, allowing them to control how they interact with the

application and how it displays data.

UI Components
• Platform provided controls are used except for where it is absolutely necessary to use a

custom or third-party control for specialized display or input tasks.
• Platform provided databinding is used where possible.
• State is stored in the user’s session for ASP.NET Mobile Web applications.

UI Processing Components
• If the UI requires complex processing, UI processing has been decoupled from rendering

and display into unique UI processing components.
• If the UI requires complex workflow support, the design includes unique workflow

components that use a workflow system such as Windows Workflow.
• UI processing has been divided into model, view and controller or presenter by using the

MVC pattern.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 127

• UI processing components do not include business rules.

Validation
• The application constrains, rejects and sanitizes all input that comes from the client.
• Built-in validation controls are used when possible.
• Validation routines are centralized, where possible, to improve maintainability and reuse.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 128

Checklist - Business Layer

Design Considerations
• A separate business layer is used to implement the business logic and workflows.
• Component types are not mixed in the business layer.
• Common business logic functions are centralized and reused.
• Business layer is not tightly coupled to other layers.

Business Components
• Business components do not mix data access logic and business logic.
• Components are designed to be highly cohesive.
• Business components are invoked with message-based communication.
• All processes exposed through the service interfaces are idempotent.
• Workflow components are used, if the business process involves multiple steps and long-

running transactions.

Business Entities
• Appropriate data format is used to represent business entities.
• The Table Module pattern is used to design business entities, if the tables in the database

represent the business entities.
• Business entities support serialization if they need to be passed over network or stored

directly to the disk.
• The Data Transfer Object (DTO) pattern is used to minimize the number of calls made across

tiers.

Caching
• Static data that will be regularly reused within the business layer is cached.
• Data that cannot be retrieved from the database quickly and efficiently is cached.
• Data is cached in ready-to-use format.
• Sensitive data is not cached.

Coupling and Cohesion
• The design does not require tight coupling between the business layer and other layers.
• A message-based interface is used for the business layer.
• The business layer components are highly cohesive.
• Data access logic is not mixed with business logic in the business components.

Concurrency and Transactions
• Business critical operations are wrapped in transactions.
• Connection-based transactions are used when accessing a single data source.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 129

• The design defines transaction boundaries, so that retries and composition are possible.
• A compensating method to revert the data store to its previous state is used, when

transactions are not possible.
• Locks are not held during long-running atomic transactions, compensating locks are used

instead.
• Appropriate transaction isolation level is used.

Data Access
• Data access code and business logic are not mixed with the business components.
• The business layer does not directly access the database; instead, a separate data access

layer is used.

Exception Management
• Exceptions are not used to control business logic.
• Exceptions are caught only if they can be handled
• Appropriate exception propagation strategy is designed.
• Global error handler is used to catch unhandled exceptions.
• The design includes a notification strategy for critical errors and exceptions.
• Exceptions do not reveal sensitive information.

Logging and Instrumentation
• Logging and instrumentation solution is centralized for the business layer.
• System-critical and business-critical events in your business components are logged.
• Access to the business layer is logged.
• Business-sensitive information is not written to log files.
• Logging failure does not impact normal business layer functionality.

Validation
• All input is validated in the business layer, even when input validation occurs in the

presentation layer.
• The validation solution is centralized for reusability.
• Validation strategy constrains, rejects, and sanitizes malicious input.
• Input data is validated for length, format, and type.

Workflow
• Workflows are used within business components that involve multi-step or long-running

processes.
• Appropriate workflow style is used depending on the application scenario.
• The workflow fault conditions are handled appropriately.
• The Pipeline pattern is used, if the component must execute a specified set of steps

sequentially and synchronously.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 130

• The Event pattern is used, if the process steps can be executed asynchronously in any order.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 131

Checklist - Data Access Layer

Design Considerations
• Abstraction is used to implement a loosely coupled interface to the data access layer.
• Data access functionality is encapsulated within the data access layer.
• Application entities are mapped to data source structures.
• Data exceptions that can be handled are caught and processed.
• Connection information is protected from unauthorized access.

Blob
• Images are stored in a database only when it is not practical to store them on the file

system.
• BLOBs are used to simplify synchronization of large binary objects between servers.
• Additional database fields are used to provide query support for BLOB data.
• BLOB data is cast to the appropriate type for manipulation within your business or

presentation layer.

Batching
• Batched commands are used to reduce round trips to the database and minimize network

traffic.
• Largely similar queries are batched for maximum benefit.
• Batched commands are used with a DataReader to load or copy multiple sets of data.
• Bulk copy utilities are used when loading large amounts of file-based data into the

database.
• You do not place locks on long running batch commands.

Connections
• You are maintaining a single connection throughout the lifetime of the application, with SQL

Server CE.
• Transactions are performed through a single connection when possible.
• You do not rely on garbage collection to free connections.
• Retry logic is used to manage situations where the connection to the data source is lost or

times out.

Data Format
• You have considered the use of custom data or business entities for improved application

maintainability.
• Business rules are not implemented in data structures associated with the data layer.
• XML is used for structured data that changes over time.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 132

• DataSets have been considered for disconnected operations when dealing with small
amounts of data.

• Serialization and interoperability requirements have been considered.

Exception Management
• You have identified data access exceptions that should be handled in the data layer.
• Global exception handling has been implemented to catch unhandled exceptions.
• Data source information has been included when logging exceptions and errors.
• Sensitive information in exception messages and log files is not revealed to users.
• You have designed an appropriate logging and notification strategy for critical errors and

exceptions.

Queries
• Parameterized SQL statements are used, instead of assembling statements from literal

strings, to protect against SQL Injection attacks.
• User input has been validated when used with dynamically generated SQL queries.
• String concatenation has not been used to build dynamic queries in the data layer.
• Objects are used to build the database query.

Transactions
• Transactions are enabled only when actually required.
• Transactions are kept as short as possible to minimize the amount of time that locks are

held.
• Manual or explicit transactions are used when performing transactions against a single

database.
• You are not using nested transactions with SQL Server CE.
• You are not using distributed transactions with .NET Compact Framework.

Validation
• All data received by the data layer is validated.
• User input used to dynamic SQL has been validated to protect against SQL injection attacks.
• You have determined whether validation that occurs in other layers is sufficient, or if you

must validate it again.
• The data layer returns informative error messages if validation fails.

XML
• XML readers and writers are used to access XML-formatted data.
• Custom validators are used for complex data parameters within your XML schema.
• XML indexes have been considered for read-heavy applications that use XML in SQL Server.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 133

Manageability Considerations
• A common interface or abstraction layer is used to provide an interface to the data layer.
• You have considered creating custom entities, or if other data representations better meet

your requirements.
• Business or data entities are defined by deriving them from a base class that provides basic

functionality and encapsulates common tasks.
• Business or data entities rely on data access logic components for database interaction.

Performance Considerations
• Isolation levels have been tuned for data queries.
• Commands are batched to reduce round-trips to the database server.
• Optimistic concurrency is used with non-volatile data to mitigate the cost of locking data in

the database.
• Ordinal lookups are used for faster performance when using a DataReader.

Security Considerations
• Windows authentication has been used when available.
• Encrypted connection strings in configuration files are used instead of a System name.
• A salted hash is used instead of an encrypted version of the password when storing

passwords.
• Identity information is passed to the data layer for auditing purposes.
• Typed parameters are used with stored procedures and dynamic SQL to protect against SQL

injection attacks.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 134

Checklist - Service Layer

Design Considerations
• Services are designed to be application scoped and not component scoped.
• Entities used by the service are extensible and composed from standard elements.
• Your design does not assume to know who the client is.
• Your design assumes the possibility of invalid requests.
• Your design separates functional business concerns from infrastructure operational

concerns.

Authentication
• Your have identified a suitable mechanism for securely authenticating users.
• Your have considered the implications of using different trust settings for executing service

code.
• SSL protocol is used if you are using basic authentication.
• WS Security is used if you are using SOAP messages.

Authorization
• Appropriate access permissions are set on resources for users, groups, and roles.
• URL authorization and/or file authorization is used appropriately if you are using Windows

authentication.
• Access to Web methods is restricted appropriately using declarative principle permission

demands.
• Services are run using least privileged account.

Communication
• You have determined how to handle unreliable or intermittent communication scenarios.
• Dynamic URL behavior is used to configure endpoints for maximum flexibility.
• Endpoint addresses in messages are validated.
• You have determined the approach for handling asynchronous calls.
• You have decided if the message communication must be one-way or two-way.

Data Consistency
• All parameters passed to the service components are validated.
• All input is validated for malicious content.
• Appropriate signing, encryption, and encoding strategies are used for protecting your

message.
• XML schemas are used to validate incoming SOAP messages.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 135

Exception Management
• Exceptions are not used to control business logic.
• Unhandled exceptions are dealt with appropriately.
• Sensitive information in exception messages and log files is not revealed to users.
• SOAP Fault elements or custom extensions are used to return exception details to the caller

when using SOAP.
• Tracing and debug-mode compilation for all services is disabled except during development

and testing.

Message Channels
• Appropriate patterns, such as Channel Adapter, Messaging Bus, and Messaging Bridge are

used for messaging channels.
• You have determined how you will intercept and inspect the data between endpoints when

necessary.

Message Construction
• Appropriate patterns, such as Command, Document, Event, and Request-Reply are used for

message constructions.
• Very large quantities of data are divided into relatively smaller chunks and sent in sequence.
• Expiration information is included in time-sensitive messages, and the service ignores

expired messages.

Message Endpoint
• Appropriate patterns such as Gateway, Mapper, Competing Consumers, and Message

Dispatcher are used for message endpoints.
• You have determined if you should accept all messages, or implement a filter to handle

specific messages.
• Your interface is designed for idempotency so that, if it receives duplicate messages from

the same consumer, it will handle only one.
• Your interface is designed for commutativity so that, if messages arrive out of order, they

will be stored and then processed in the correct order.
• Your interface is designed for disconnected scenarios, such as providing support for

guaranteed delivery.

Message Protection
• The service is using transport layer security when interactions between the service and

consumer are not routed through other servers.
• The service is using message-based protection when interactions between the service and

consumer are routed through other servers.
• You have considered message-based plus transport layer (mixed) security when you need

additional security.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 136

• Encryption is used to protect sensitive data in messages.
• Digital signatures are used to protect messages and parameters from tampering.

Message Routing
• Appropriate patterns such as Aggregator, Content-Based Router, Dynamic Router, and

Message Filter are used for message routing.
• The router ensures sequential messages sent by a client are all delivered to the same

endpoint in the required order (commutativity).
• The router has access to the message information when it needs to use that information for

determining how to route the message.

Message Transformation
• Appropriate patterns such as Canonical Data Mapper, Envelope Wrapper, and Normalizer

are used for message transformation.
• Metadata is used to define the message format.
• An external repository is used to store the metadata when appropriate.

Representational State Transfer (REST)
• You have identified and categorized resources that will be available to clients.
• You have chosen an approach for resource identification that uses meaningful names for

REST starting points and unique identifiers, such as a GUID, for specific resource instances.
• You have decided if multiple views should be supported for different resources, such as

support for GET and POST operations for a specific resource.

Service Interface
• A coarse-grained interface is used to minimize the number of calls.
• The interface is decoupled from the implementation of the service.
• Business rules are not included in the service interface.
• The schema exposed by the interface is based on standards for maximum compatibility with

different clients.
• The interface is designed without assumptions about how the service will be used by clients.

SOAP
• You have defined the schema for operations that can be performed by a service.
• You have defined the schema for data structures passed with a service request.
• You have defined the schema for errors or faults that can be returned from a service

request.

Deployment Considerations
• The service layer is deployed to the same tier as the business layer in order to maximize

service performance.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 137

• You are using Named Pipes or Shared Memory protocols when a service is located on the
same physical tier as the service consumer.

• You are using the TCP protocol when a service is accessed only by other applications within
a local network.

• You are using the HTTP protocol when a service is publicly accessible from the Internet.

Mobile Application Pocket Guide v1.1

Microsoft patterns & practices 138

	Cover Page
	Title

	Introduction

	CH 01 - Mobile Application Architecture

	CH 02 - Architecture and Design Guidelines

	CH 03 - Presentation Layer Guidelines

	CH 04 - Business Layer Guidelines

	CH 05 - Data Access Layer Guidelines

	CH 06 - Service Layer Guidelines

	CH 07 - Communication Guidelines

	CH 08 - Deployment Patterns

	Technology Matrices

	
Cheat Sheet - Presentation Technology Matrix
	
Cheat Sheet - Data Technology Matrix

	Checklists

	
Checklist - Mobile Checklists
	
Checklist - Presentation Layer
	
Checklist - Business Layer
	
Checklist - Data Layer
	
Checklist - Service Layer

