
Customizing Markers
Just like in module 3, this assignment builds on the assignment you did previous modules. Once again, you
will not submit your code for grading. Rather, after you have completed all parts of this assignment you will
take an end-of-module quiz. And again remember, it's doing the programming where you will learn the
most (and have the most fun!).

IF YOU ARE WORKING OFFLINE: Remember to follow the instructions below, and look for the
documentation resources we recommend so you can download them if you don't have them already.

Learning outcomes:
• Organize a complex application by using several different classes.

• Build a class hierarchy to reflect the different kinds of markers for different categories of earthquakes.

• Write code to override methods in base classes.

• Write an abstract class that implements some methods and leaves others abstract.

• Use PGraphics methods to draw shapes.

Introduction
In the part of the project you completed in module 3, you wrote all of your styling code for the earthquake
markers in the setup method (or a helper method, which you then called from the setup method). Now that
you’ve learned about inheritance, you will use the power of class hierarchies to organize and improve your
code while also adding new features.

The impact of an earthquake depends on many factors, including whether the epicenter is over land or in
the ocean. Your class hierarchy will allow you to customize the earthquake marker for these different kinds
of earthquakes. You will write code in four different new classes: an abstract class named
EarthquakeMarker and two classes extending it: LandQuakeMarker and OceanQuakeMarker, as well as
another class CityMarker.

In each of these classes, you will override the draw() method. This method is executed automatically by the
Processing PApplet in a loop for each of the markers you create.

Burson

Resources to have open
In this assignment we will again expect you to work with the documentation for both Unfolding Maps and
Processing. You should open these links now:

• http://unfoldingmaps.org/javadoc/ In particular, the classes UnfoldingMap, SimplePointMarker,
PointFeature and the Marker interface

• https://www.processing.org/reference/ In particular the methods: text(), rect(), ellipse(), and fill() will
come in handy.

IF YOU ARE WORKING OFFLINE, you can download these documentation pages when you have an
internet connection.

What you will do
Just like before, we provide some skeleton code to get you started. Your goal will be to do the following:

1. Find and open the starter code: You will find the starter code for this part of the project in the module4
package. Expand the module4 package in the package explorer and you will see 5 java files:
EarthquakeCityMap.java , EarthquakeMarker.java , CityMarker.java , LandQuakeMarker.java ,
OceanQuakeMarker.java. You can open any of them by double-clicking on them. Make sure you are
working on the files in the module4 package and don't peek ahead to the other packages. We
recommend making sure all other files are closed in Eclipse so you don’t get confused which file you are
working on.

You will also see a file named “city-data.json” in the data folder (at the same level as the src folder). You
don’t have to modify that file, but if your favorite city is not there, you can add it by editing the file. Just be
sure to match the format and data of the other cities exactly!

2. Trace the starter code, predict what happens when you run it, and then run it. IF YOU ARE
WORKING OFFLINE: Don’t forget to change the value of the offline variable to true, otherwise you will get
an error. Notice that the file EarthquakeCityMap.java implements most of the functionality that you worked
on in the programming assignment for module 3, but it's not exactly the same. Are you surprised by what
happens (or doesn't happen) when you run it?

Hint for part 2: We’ll ask you about this behavior on the end of module assessment so you might want to
make a note of what’s going on and why.

3. Implement the isLand(Feature earthquake) method in EarthquakeCityMap. This method should
return true if the location of the input earthquake is on land. It should also set the "country" property on the
LandMarker to the country where the earthquake occurred. Otherwise, the location is in the ocean and the
method should return false. You will test this method once you have implemented the next method.

Hint for part 3: A location is on land if it is located in *some* country. So, you can loop through all
countries and check if the location is in any one of them. You can (and should) use the helper method
isInCountry() given in the file, which takes care of a lot of the work of isLand for you, including setting the
"country" property of the earthquake PointFeature.

Burson

4. Implement the printQuakes() method in EarthquakeCityMap. This method should use
System.out.println() to list each country for which there was 1 or more earthquakes and the number of
earthquakes detected in that country. Then it should print out the number of quakes that were detected in
the ocean. Note that this method is not trivial. You will have to calculate the number of earthquakes per
country from the information you have available. As an aside: If you are running the applet with a large
earthquake file/feed (e.g. 1.0+ Past week or 30 days), you might find that printQuakes takes a long time to
run. Feel free to comment out the call to printQuakes() in setup once you get it working if you find this is the
case.

Hint for part 4: A straightforward solution uses a nested loop (over the countries and then the
earthquakes).

5. Test isLand and printQuakes. To facilitate basic testing, we have included two tester input files
(test1.atom and test2.atom) and two files that include the expected output (test1.out.txt and test2.out.txt)
for each of these test files. All files are in the data folder. You will see lines in the starter code for setup()
that you can uncomment in order to run with the tester files. (Uncomment 1 line at a time). You can run
each test and compare them to the test output, which you can open in eclipse by double-clicking it in the
package explorer. If both outputs match, it is likely that you have implemented both isLand and
printQuakes correctly. Note that order and formatting does not have to match.

6. Draw a UML (class hierarchy) diagram describing the inheritance relationship between the
following classes/interfaces:

• Marker

• AbstractMarker

• SimplePointMarker

• EarthquakeMarker

• LandQuakeMarker

• OceanQuakeMarker

• CityMarker

You will want to keep this diagram handy for the end of module assessment.

Hint for part 6: The javadocs for for the built-in classes (Marker, AbstractMarker, SimplePointMarker) will
come in handy here: http://unfoldingmaps.org/javadoc/ then click on the classes you’re interested in in the
list on the left.

Burson

7. Complete the method definition for the draw() method in the CityMarker class. We suggest you use
triangles to represent cities, but of course the exact shape and color is up to you. Then add the marker to
your key (which you will need to modify as you change your earthquake markers). Your map should now
look something like the image below.

Hint for part 7: Because you are no longer working in the PApplet class, you will need to use the
PGraphics object for drawing. You can call the same methods you were calling when you were drawing on
the PApplet, but you call them on the pg object. The arguments x and y should be used (and passed into
your graphics calls) as the center of the Marker you are drawing. See the comments above the draw()
method for an example of how to do this.

8. Complete the method definitions for the drawEarthquake() method in LandQuakeMarker and
OceanQuakeMarker so that the size of the marker varies by its magnitude (larger magnitude=larger
marker). In addition, make the LandQuakeMarkers one shape (we suggest circles) and the
OceanQuakeMarkers a different shape (we suggest squares). Be sure to center them at the x, y position
passed in to drawEarthquake. Also, they will appear white for now. That’s OK. Do not set their color in
drawEarthquake. That will be done in the next step. Then add your markers to the key. Your map should
now look something like the image below. Make sure there is a visual difference between the size of the
markers for different magnitudes. Hint: You can scale the radius or use thresholds to set the size of the
markers.

Burson

Burson

9. Complete the method definition for colorDetermine() method in EarthquakeMarker and notice
where it and the methods from the derived classes are called in the EarthquakeMarker’s draw method. You
will be asked about the relationship between these methods on your self-assessment.

The colorDetermine() method changes the color of the earthquake marker depending on whether the
earthquake is shallow, intermediate, or deep, defined as follows:

“Shallow earthquakes are between 0 and 70 km deep; intermediate earthquakes, 70 - 300 km deep; and
deep earthquakes, 300 - 700 km deep. In general, the term "deep-focus earthquakes" is applied to
earthquakes deeper than 70 km. All earthquakes deeper than 70 km are localized within great slabs of
shallow lithosphere that are sinking into the Earth's mantle.”

Source: http://earthquake.usgs.gov/learn/topics/seismology/determining_depth.php

Update your key to include this new information. Your map should now look like the image below.

Hint for step 9: The Processing fill() method sets the color for text and shapes. Do not use the color()
method.

10. (Optional) Modify the draw method so that it draws an X over all earthquake markers whose
earthquakes have occurred in the last day. Hint: EarthquakeMarkers have an “age” property, and the
value of this property can be: “Past Hour”, “Past Day”, “Past Week” or “Past Month”.

Update your key to include this new information. Your map should look like this:

You’re also welcome to add any other extensions you are interested in. As usual, we encourage creativity.

Congratulations on finishing this part of the project!

	

