

Monitoring Java Applications

eG Enterprise v6.0

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of this

document may be reproduced or disclosed to others without the prior permission of eG Innovations Inc. eG

Innovations Inc. makes no warranty of any kind with regard to the software and documentation, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows NT, Windows 2003, and Windows 2000 are either registered trademarks or trademarks

of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Copyright

©2015 eG Innovations Inc. All rights reserved.

Table of Contents
MONITORING A JAVA APPLICATION ... 1

1.1 How does eG Enterprise Monitor Java Applications? ... 2

1.1.1 Enabling JMX Support for JRE .. 2

1.1.2 Enabling SNMP Support for JRE .. 14

1.2 The Java Transactions Layer ... 19

1.2.1 Java Transactions Test .. 20

1.3 The JVM Internals Layer .. 38

1.3.1 JMX Connection to JVM .. 39

1.3.2 JVM File Descriptors Test .. 40

1.3.3 Java Classes Test ... 41

1.3.4 JVM Garbage Collections Test ... 44

1.3.5 JVM Memory Pool Garbage Collections Test .. 47

1.3.6 JVM Threads Test ... 52

1.4 The JVM Engine Layer ... 62

1.4.1 JVM Cpu Usage Test .. 63

1.4.2 JVM Memory Usage Test ... 68

1.4.3 JVM Uptime Test .. 74

1.4.4 JVM Leak Suspects Test ... 78

1.5 What the eG Enterprise Java Monitor Reveals? .. 88

1.5.1 Identifying and Diagnosing a CPU Issue in the JVM .. 89

1.5.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM ... 93

1.5.3 Identifying and Diagnosing a Thread Waiting Situation in the JVM .. 98

1.5.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM .. 102

1.5.5 Identifying and Diagnosing Memory Issues in the JVM ... 106

1.5.6 Identifying and Diagnosing the Root-Cause of Slowdowns in Java Transactions... 109

CONCLUSION ... 115

Table of Figures

Figure 1: Layer model of the Java Application .. 1
Figure 2: Selecting the Properties option ... 6
Figure 3: The Properties dialog box .. 7
Figure 4: Deselecting the ‘Use simple file sharing’ option .. 8
Figure 5: Clicking the Advanced button .. 8
Figure 6: Verfying whether the Owner of the file is the same as the application Owner ... 9
Figure 7: Disinheriting permissions borrowed from a parent directory ... 10
Figure 8: Copying the inherited permissions ... 10
Figure 9: Granting full control to the file owner .. 11
Figure 10: Scrolling down the jmxremote.password file to view 2 commented entries ... 12
Figure 11: The jmxremote.access file .. 13
Figure 12: Uncommending the ‘controlRole’ line ... 13
Figure 13: Appending a new username password pair... 14
Figure 14: Assigning rights to the new user in the jmxremote.access file ... 14
Figure 15: The snmp.acl file .. 16
Figure 16: The snmp.acl file revealing the SNMP ACL example .. 16
Figure 17: Uncommenting the code block ... 17
Figure 18: The edited block ... 18
Figure 19: The test mapped to the Java Transactions layer.. 20
Figure 20: The layers through which a Java transaction passes ... 21
Figure 21: How eG monitors Java transactions ... 22
Figure 22: The eG Application Server Agent tracking requests using Java threads ... 24
Figure 23: The detailed diagnosis of the Slow transactions measure ... 32
Figure 24: The Method Level Breakup section in the At-A-Glance tab page .. 33
Figure 25: The Component Level Breakup section in the At-A-Glance tab page .. 34
Figure 26: Query Details in the At-A-Glance tab page .. 34
Figure 27: Detailed description of the query clicked on .. 35
Figure 28: The Trace tab page displaying all invocations of the method chosen from the Method Level Breakup section 35
Figure 29: The Trace tab page displaying all methods invoked at the Java layer/sub-component chosen from the Component Level Breakup

section .. 36
Figure 30: Queries displayed in the SQL/Error tab page ... 37
Figure 31: Errors displayed in the SQL/Error tab page ... 37
Figure 32: The detailed diagnosis of the Error transactions measure ... 38
Figure 33: The tests associated with the JVM Internals layer .. 39
Figure 34: Editing the startup script file of a sample Java application ... 52
Figure 35: The STACK TRACE link .. 60
Figure 36: Stack trace of a resource-intensive thread .. 61
Figure 37: Thread diagnosis of live threads ... 61
Figure 38: The tests associated with the JVM Engine layer .. 63
Figure 39: The detailed diagnosis of the CPU utilization of JVM measure ... 67
Figure 40: The detailed diagnosis of the Used memory measure ... 73
Figure 41: A sample code .. 79
Figure 42: The detailed diagnosis of the Leak suspect classes measure .. 88
Figure 43: The detailed diagnosis of the Number of objects measure ... 88
Figure 44: The Java application being monitored functioning normally .. 89
Figure 45: The High cpu threads measure indicating that a single thread is consuming CPU excessively .. 90
Figure 46: The detailed diagnosis of the High cpu threads measure ... 90
Figure 47: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure .. 91
Figure 48: Stack trace of the CPU-intensive thread ... 91
Figure 49: The LogicBuilder.java file ... 92
Figure 50: The High cpu threads measure reporting a 0 value ... 93
Figure 51: The value of the Blocked threads measure being incremented by 1 ... 94
Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the blocked thread ... 94
Figure 53: The Stack Trace of the blocked thread ... 95
Figure 54: The DbConnection.java program file ... 96
Figure 55: The lines of code preceding line 126 of the DbConnection.java program file .. 96
Figure 56: Viewing the stack trace of the ObjectManagerThread .. 97
Figure 57: The lines of code in the ObjectManager.java source file .. 97
Figure 58: Comparing the ObjectManager and DbConnection classes .. 98
Figure 59: The Waiting threads ... 99
Figure 60: The detailed diagnosis of the Waiting threads measure .. 99
Figure 61: Viewing the stack trace of the waiting thread ... 100

Figure 62: The Thread Diagnosis window for Waiting threads ... 100
Figure 63 : The stack trace for the SessionController thread ... 101
Figure 64: The UserSession.java file ... 101
Figure 65: The JVM Threads test reporting 0 Deadlock threads ... 102
Figure 66: The Deadlock threads measure value increasing in the event of a deadlock situation .. 103
Figure 67: The detailed diagnosis page revealing the deadlocked threads ... 103
Figure 68: Viewing the stack trace of the dadlocked threads in the detailed diagnosis page ... 103
Figure 69: The stack trace for the ResourceDataOne thread .. 104
Figure 70 : The stack trace for the ResourceDataTwo thread .. 105
Figure 71: The lines of code executed by the ResourceDataOne thread .. 105
Figure 72: The lines of code executed by the ResourceDataTwo thread ... 106
Figure 73: The Used memory measure indicating the amount of pool memory being utilized .. 107
Figure 74: The detailed diagnosis of the Used memory measure ... 107
Figure 75: Choosing a different Sory By option and Measurement Time .. 108
Figure 76: The method that is invoking the SapBusinessObject .. 108
Figure 77: The layer model of a sample Java application indicating too many slow transactions ... 109
Figure 78: The detailed diagnosis of the Slow transactions response time measure .. 110
Figure 79: The At-A-Glance tab page of the URL tree .. 111
Figure 80: The Trace tab page highlighting the single instance of the org.dom5j.io.SAXReaer.read(InputSource) method in our example 112
Figure 81: The Component Level Breakup ... 113
Figure 82: The Trace tab page displaying all the methods invoked by the POJO layer ... 114

Monitor ing a Java App l icat ion

1

Monitoring a Java Application
Java applications are predominantly used in enterprises today owing to their multi-platform nature. Once written, a

Java application can be run on heterogeneous platforms with no additional configuration. This is why, the Java

technology is widely used in the design and delivery of many critical web and non-web-based applications.

The prime concern of the administrators of these applications is knowing how well the application is functioning, and

how to troubleshoot issues (if any) in the performance of these applications. Most web application server vendors

prescribe custom APIs for monitoring – for instance, WebSphere and WebLogic allow administrators to use their

built-in APIs for performance monitoring and problem detection. The details of these APIs and how eG Enterprise

uses them to monitor the application server in question is discussed elaborately in the previous chapters of this

document.

Besides such applications, you might have stand-alone Java applications that do not provide any APIs for monitoring.

To enable users to monitor the overall health of such stand-alone Java applications, eG Enterprise offers a generic

monitoring model called the Java Application.

Figure 1: Layer model of the Java Application

Each layer of Figure 1 above is mapped to a series of tests that report critical statistics pertaining to the Java

application being monitored. Using these statistics, administrators can figure out the following:

a. Has the Java heap been sized properly?

b. How effective is garbage collection? Is it impacting application performance?

c. Often, Java programs use threads. A single program may involve multiple concurrent threads running in

parallel. Is there excessive blocking between threads due to synchronization issues during application

design?

Monitor ing a Java App l icat ion

2

d. Are there runaway threads, which are taking too many CPU cycles? If such threads exist, which portions of

code are responsible for spawning such threads?

e. Is the JVM managing its memory resources efficiently or is the free memory on the JVM very less? Which

type of memory is being utilized by the JVM increasingly?

f. Has a scheduled JVM restart occurred? If so, when?

1.1 How does eG Enterprise Monitor Java Applications?
The Java Application model that eG Enterprise prescribes provides both agentless and agent-based monitoring

support to Java applications. The eG agent, deployed either on the application host or on a remote Windows host in

the environment (depending upon the monitoring approach – whether agent-based or agentless), can be configured

to connect to the JRE used by the application and pull out metrics of interest, using either of the following

methodologies:

 JMX (Java Management Extensions)

 SNMP (Simple Network Management Protocol)

The eG agent uses the specifications prescribed by JSR 174 to perform JVM monitoring.

This is why, each test mapped to the top 2 layers of Figure 1 provides administrators with the option to pick a

monitoring MODE - i.e., either JMX or SNMP. The remaining test configuration depends upon the mode chosen.

Since both JMX and SNMP support are available for JRE 1.5 and above only, the Java Application model can be used

to monitor only those applications that are running JRE 1.5 and above.

The sections to come discuss how to enable JMX and SNMP for JRE.

1.1.1 Enabling JMX Support for JRE
In older versions of Java (i.e., JDK/JRE 1.1, 1.2, and 1.3), very little instrumentation was built in, and custom-

developed byte-code instrumentation had to be used to perform monitoring. From JRE/JDK 1.5 and above however,

support for Java Management Extensions (JMX) were pre-built into JRE/JDK. JMX enables external programs like the

eG agent to connect to the JRE of an application and pull out metrics in real-time.

Monitor ing a Java App l icat ion

3

This section discusses the procedure for enabling JMX support for the JRE of any generic Java

application that may be monitored using eG Enterprise. To know how to enable JMX support for the

JRE of key application servers monitored out-of-the-box by eG Eterprise, refer to the relevant chapters

of the Configuring and Monitoring Application Servers document.

By default, JMX requires no authentication or security (SSL). In this case therefore, to use JMX for pulling out metrics

from a target application, the following will have to be done:

1. Login to the application host.

2. The <JAVA_HOME>\jre\lib\management folder used by the target application will typically contain the following

files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl.template

3. Edit the managerment.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false

com.sun.management.jmxremote.authenticate=false

For instance, if the JMX listens on port 9005, then the first line of the above specification would be:

com.sun.management.jmxremote.port=9005

4. Then, save the file.

5. Next, edit the start-up script of the target application, and add the following line to it:

-Dcom.sun.management.config.file=<management.properties_file_path>

-Djava.rmi.server.hostname=<IP Address>

6. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management\management.properties

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification will be

as follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties

8. In the second line, set the <IP Address> to the IP address using which the Java application has been managed

in the eG Enterprise system. Alternatively, you can add the following line to the startup script: -

Djava.rmi.server.hostname=localhost

9. Save this script file too.

10. Next, during test configuration, do the following:

 Set JMX as the mode;

 Set the port that you defined in step 3 above (in the management.properties file) as the jmx remote

port;

 Set the user and password parameters to none.

Monitor ing a Java App l icat ion

4

 Update the test configuration.

On the other hand, if JMX requires only authentication (and no security), then the following steps will apply:

1. Login to the application host. If the application is executing on a Windows host, then, login to the host as a

local/domain administrator.

2. As stated earlier, the <JAVA_HOME>\jre\lib\management folder used by the target application will typically contain

the following files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl.template

3. First, copy the jmxremote.password.template file to any other location on the host, rename it as as

jmxremote.password, and then, copy it back to the <JAVA_HOME>\jre\lib\management folder.

4. Next, edit the jmxremote.password file and the jmxremote.access file to create a user with read-write access to

the JMX. To know how to create such a user, refer to Section 1.1.1.2 of this document.

5. Then, proceed to make the jmxremote.password file secure by granting a single user “full access” to that file.

For monitoring applications executing on Windows in particular, only the Owner of the jmxremote.password file

should have full control of that file. To know how to grant this privilege to the Owner of the file, refer to Section

1.1.1.1.

6. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be granted full access

to the jmxremote.password file, by following the steps below:

 Login to the host as the user who is to be granted full control of the jmxremote.password file.

 Issue the following command:

 chmod 600 jmxremote.password

 This will automatically grant the login user full access to the jmxremote.password file.

7. Next, edit the management.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false

com.sun.management.jmxremote.authenticate=true

com.sun.management.jmxremote.access.file=<Path of jmxremote.access>

com.sun.management.jmxremote.password.file=<Path of jmxremote.password>

For instance, assume that the JMX remote port is 9005, and the jmxremote.access and jmxremote.password files

exist in the following directory on a Windows host: D:\bea\jrockit_150_11\jre\lib\management. The specification

above will then read as follows:

com.sun.management.jmxremote.port=9005

com.sun.management.jmxremote.access.file=D:\\bea\\jrockit_150_11\\jre\\lib\\managem

ent\\jmxremote.access

com.sun.management.jmxremote.password.file=D:\\bea\\jrockit_150_11\\jre\\lib\\manag

ement\\jmxremote.password

Monitor ing a Java App l icat ion

5

8. If the application in question is executing on a Unix/Solaris/Linux host, and the jmxremote.access and

jmxremote.password files reside in the /usr/jdk1.5.0_05/jre/lib/management folder of the host, then the last 2

lines of the specification will be:

com.sun.management.jmxremote.access.file=/usr/jdk1.5.0_05/jre/lib/management/jmxre

mote.access

com.sun.management.jmxremote.password.file=/usr/jdk1.5.0_05/jre/lib/management/jmx

remote.password

9. Finally, save the file.

10. Then, edit the start-up script of the target web application server, include the following line in it, and save the

file:

-Dcom.sun.management.config.file=<management.properties_file_path>

-Djava.rmi.server.hostname=<IP Address>

11. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management\management.properties

12. On other hand, on a Linux/Solaris host, a sample <management.properties_file_path> specification will be as

follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties

13. In the second line, set the <IP Address> to the IP address using which the Java application has been managed

in the eG Enterprise system. Alternatively, you can add the following line to the startup script of the target web

application server: -Djava.rmi.server.hostname=localhost

14. Next, during test configuration, do the following:

 Set JMX as the mode;

 Ensure that the port number configured in the management.properties file at step 5 above is set as

the jmx remote port;

 Make sure that the user and password parameters of the test are that of a user with readwrite rights

to JMX. To know how to create a new user and assign the required rights to him/her, refer to Section

1.1.1.2.

eG Enterprise cannot use JMX that requires both authentication and security (SSL), for

monitoring the target Java application.

Monitor ing a Java App l icat ion

6

1.1.1.1 Securing the ‘jmxremote.password’ file

To enable the eG agent to use JMX (that requires authentication only) for monitoring a Windows-based Java

application, you need to ensure that the jmxremote.password file in the <JAVA_HOME>\jre\lib\management folder used

by the target application is accessible only by the Owner of that file. To achieve this, do the following:

1. Login to the Windows host as a local/domain administrator.

2. Browse to the location of the jmxremote.password file using Windows Explorer.

3. Next, right-click on the jmxremote.password file and select the Properties option (see Figure 2).

Figure 2: Selecting the Properties option

4. From Figure 3 that appears next, select the Security tab.

Monitor ing a Java App l icat ion

7

Figure 3: The Properties dialog box

However, if you are on Windows XP and the computer is not part of a domain, then the Security tab may be

missing. To reveal the Security tab, do the following:

 Open Windows Explorer, and choose Folder Options from the Tools menu.

 Select the View tab, scroll to the bottom of the Advanced Settings section, and clear the check box

next to Use Simple File Sharing.

Monitor ing a Java App l icat ion

8

Figure 4: Deselecting the ‘Use simple file sharing’ option

 Click OK to apply the change

 When you restart Windows Explorer, the Security tab would be visible.

5. Next, select the Advanced button in the Security tab of Figure 5.

Figure 5: Clicking the Advanced button

Monitor ing a Java App l icat ion

9

6. Select the Owner tab to see who the owner of the file is.

Figure 6: Verfying whether the Owner of the file is the same as the application Owner

7. Then, proceed to select the Permissions tab in Figure 6 to set the permissions. If the jmxremote.password file

has inherited its permissions from a parent directory that allows users or groups other than the Owner to access

the file, then clear the Inherit from parent the permission entries that apply to child objects check box in Figure

7.

Monitor ing a Java App l icat ion

10

Figure 7: Disinheriting permissions borrowed from a parent directory

8. At this point, you will be prompted to confirm whether the inherited permissions should be copied from the

parent or removed. Press the Copy button in Figure 8.

Figure 8: Copying the inherited permissions

9. Next, remove all permission entries that allow the jmxremote.password file to be accessed by users or groups

other than the file Owner. For this, click the user or group and press the Remove button in Figure 9. At the end

of this exercise, only a single permission entry granting Full Control to the owner should remain in Figure 9.

Monitor ing a Java App l icat ion

11

Figure 9: Granting full control to the file owner

10. Finally, click the Apply and OK buttons to register the changes. The password file is now secure, and can only

be accessed by the file owner.

If you are trying to enable JMX on a Linux host, you might encounter issues with the way

hostnames are resolved.

To solve it you might have to set the -Djava.rmi.server.hostname=<hostname or localhost or

ip> property in the startup script of the target web application server.

If you are in local, simply try with -Djava.rmi.server.hostname=localhost or -

Djava.rmi.server.hostname=127.0.0.1.

Monitor ing a Java App l icat ion

12

1.1.1.2 Configuring the eG Agent to Support JMX Authentication

If the eG agent needs to use JMX for monitoring a Java application, and this JMX requires authentication only (and

not security), then every test to be executed by such an eG agent should be configured with the credentials of a valid

user to JMX, with read-write rights. The steps for creating such a user are detailed below:

1. Login to the application host. If the application being monitored is on a Windows host, then login as a

local/domain administrator to the host.

2. Go to the <JAVA_HOME>\jre\lib\management folder used by the target application to view the following files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl.template

3. Copy the jmxremote.password.template file to a different location, rename it as jmxremote.password, and copy

it back to the <JAVA_HOME>\jre\lib\management folder.

4. Open the jmxremote.password file and scroll down to the end of the file. By default, you will find the

commented entries indicated by Figure 10 below:

Figure 10: Scrolling down the jmxremote.password file to view 2 commented entries

5. The two entries indicated by Figure 10 are sample username password pairs with access to JMX. For instance,

in the first sample entry of Figure 10, monitorRole is the username and QED is the password corresponding to

monitorRole. Likewise, in the second line, the controlRole user takes the password R&D.

6. If you want to use one of these pre-defined username password pairs during test configuration, then simply

uncomment the corresponding entry by removing the # symbol preceding that entry. However, prior to that,

you need to determine what privileges have been granted to both these users. For that, open the

jmxremote.access file in the editor.

Monitor ing a Java App l icat ion

13

Figure 11: The jmxremote.access file

7. Scrolling down the file (as indicated by Figure 11) will reveal 2 lines, each corresponding to the sample

username available in the jmxremote.password file. Each line denotes the access rights of the corresponding

user. As is evident from Figure 11, the user monitorRole has only readonly rights, while user controlRole has

readwrite rights. Since the eG agent requires readwrite rights to be able to pull out key JVM-related statistics

using JMX, we will have to configure the test with the credentials of the user controlRole.

8. For that, first, edit the jmxremote.password file and uncomment the controlRole <password> line as depicted

by Figure 12.

Figure 12: Uncommending the ‘controlRole’ line

9. Then, save the file. You can now proceed to configure the tests with the user name controlRoleand password

R&D.

10. Alternatively, instead of going with these default credentials, you can create a new username password pair in

the jmxremote.password file, assign readwrite rights to this user in the jmxremote.access file, and then

configure the eG tests with the credentials of this new user. For instance, let us create a user john with

password john and assign readwrite rights to john.

11. For this purpose, first, edit the jmxremote.password file, and append the following line (see Figure 13) to it:

john john

Monitor ing a Java App l icat ion

14

Figure 13: Appending a new username password pair

12. Save the jmxremote.password file.

13. Then, edit the jmxremote.access file, and append the following line (see Figure 14) to it:

john readwrite

Figure 14: Assigning rights to the new user in the jmxremote.access file

14. Then, save the jmxremote.access file.

15. Finally, proceed to configure the tests with the user name and password, john and john, respectively.

1.1.2 Enabling SNMP Support for JRE

Instead of JMX, you can configure the eG agent to monitor a Java application using SNMP-based access to the Java

runtime MIB statistics.

In some environments, SNMP access might have to be authenticated by an ACL (Access Control List), and in some

other cases, it might not require an ACL.

If SNMP access does not require ACL authentication, then follow the steps below to enable SNMP support:

1. Login to the application host.

Monitor ing a Java App l icat ion

15

2. Ensure that the SNMP service and the SNMP Trap Service are running on the host.

3. Next, edit the management.properties file in the <JAVA_HOME>\jre\lib\management folder used by the target

application.

4. Append the following lines to the file:

com.sun.management.snmp.port=<Port No>

com.sun.management.snmp.interface=0.0.0.0

com.sun.management.snmp.acl=false

For instance, if the SNMP port is 1166, then the first line of the above specification will be:

com.sun.management.snmp.port=1166

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept SNMP requests

from any host in the environment. To ensure that the JRE services only those SNMP requests that are received

from the eG agent, set the second line of the specification to the IP address of the agent host. For instance, if

the eG agent to monitor the Java application is executing on 192.168.10.152, then the second line of the

specification will be:

com.sun.management.snmp.interface=192.168.10.152

5. Next, edit the start-up script of the target application, include the following line it, and save the script file.

-Dcom.sun.management.config.file=<management.properties_file_path>

6. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management\management.properties.

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification will be

as follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties.

On the contrary, if SNMP access requires ACL authentication, then follow the steps below to enable SNMP support for

the JRE:

1. Login to the application host. If the target application is executing on a Windows host, login as a local/domain

administrator.

2. Ensure that the SNMP service and SNMP Trap Service are running on the host.

3. Copy the snmp.acl.template file in the <JAVA_HOME>\jre\lib\management folder to another location on the local

host. Rename the snmap.acl.template file as snmp.acl, and copy the snmp.acl file back to the

<JAVA_HOME>\jre\lib\management folder.

4. Next, edit the snmp.acl file, and set rules for SNMP access in the file.

Monitor ing a Java App l icat ion

16

Figure 15: The snmp.acl file

5. For that, first scroll down the file to view the sample code block revealed by Figure 16.

Figure 16: The snmp.acl file revealing the SNMP ACL example

6. Uncomment the code block by removing the # symbol preceding each line of the block as indicated by Figure

Monitor ing a Java App l icat ion

17

17.

Figure 17: Uncommenting the code block

7. Next, edit the code block to suit your environment.

8. The acl block expects the following parameters:

 communities : Provide a comma-separated list of community strings, which an SNMP request should

carry for it to be serviced by this JRE; in the example illustrated by Figure 17, the community strings

recognized by this JRE are public and private. You can add more to this list, or remove a community

string from this list, if need be.

 access : Indicate the access rights that SNMP requests containing the defined communities will have;

in Figure 17, SNMP requests containing the community string public or private, will have only read-

only access to the MIB statistics. To grant full access, you can specify rea-write instead.

 managers : Specify a comma-separated list of SNMP managers or hosts from which SNMP requests

will be accepted by this JRE; in the example illustrated by Figure 17, all SNMP requests from the

localhost will be serviced by this JRE. Typically, since the SNMP requests originate from an eG agent,

the IP of the eG agent should be configured against the managers parameter. For instance, if the IP

address of the agent host is 192.16.10.160, then, to ensure that the JRE accepts requests from the eG

agent alone, set managers to 192.168.10.160, instead of localhost.

9. Every acl block in the snmp.acl file should have a corresponding trap block. This trap block should be

configured with the following values:

 trap-community: Provide a comma-separated list of community strings that can be used by SNMP

traps sent by the Java application to the managers specified in the acl block. In the example of Figure

17, all SNMP traps sent by the Java application being monitored should use the community string

public only.

Monitor ing a Java App l icat ion

18

 hosts: Specify a comma-separated list of IP addresses / host names of hosts from which SNMP traps

can be sent. In the case of Figure 17, traps can be sent by the localhost only. If a single snmp.acl file

is being centrally used by multiple applications/devices executing on multiple hosts, then to ensure

that all such applications are able to send traps to the configured SNMP managers (in the acl block),

you can provide the IP address/hostname of these applications as a comma-separated list against

hosts.

10. Figure 18 depicts how the acl and trap blocks can be slightly changed to suit the monitoring needs of an

application.

Figure 18: The edited block

11. Then, proceed to make the snmp.acl file secure by granting a single user “full access” to that file. For

monitoring applications executing on Windows in particular, only the Owner of the snmp,.acl file should have

full control of that file. To know how to grant this privilege to the Owner of a file, refer to Section 1.1.1.1. This

section actually details the procedure for making the jmxremote.password file on Windows, secure. Use the

same procedure for making the snmp.acl file on Windows secure, but make sure that you select the snmp.acl

file and not the jmxremote.password file.

12. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be granted full access

to the snmp.acl file, by following the steps below:

 Login to the host as the user who is to be granted full control of the snmp.acl file.

 Issue the following command:

chmod 600 snmp.acl

 This will automatically grant the login user full access to the jmxremote.password file.

13. Next, edit the management.properties file in the <JAVA_HOME>\jre\lib\management folder used by the target

application.

Monitor ing a Java App l icat ion

19

14. Append the following lines to the file:

com.sun.management.snmp.port=<PortNo>

com.sun.management.snmp.interface=0.0.0.0

com.sun.management.snmp.acl=true

com.sun.management.snmp.acl.file=<Path_of_snmp.acl>

If the second line of the specification is set to 0.0.0.0, then, it indicates that the JRE will accept SNMP requests

from any host in the environment. To ensure that the JRE services only those SNMP requests that are received

from the eG agent, set the second line of the specification to the IP address of the agent host.

For example, if the Java application being monitored listens for SNMP requests at port number 1166, the eG

agent monitoring the Java application is deployed on 192.168.10.152, and these SNMP requests need to be

authenticated using the snmp.acl file in the D:\bea\jrockit_150_11\jre\lib directory, then the above specification

will read as follows:

com.sun.management.snmp.port=1166

com.sun.management.snmp.interface=192.168.10.152

com.sun.management.snmp.acl=true

com.sun.management.snmp.acl.file=D:\\bea\\jrockit_150_11\\jre\\lib\\management\\sn

mp.acl

15. However, if the application in question is executing on a Unix/Solaris/Linux host, and the snmp.acl file is in the

/usr/jdk1.5.0_05/jre/lib/management folder of the host, then the last line of the specification will be:

com.sun.management.snmp.acl.file =/usr/jdk1.5.0_05/jre/lib/management/snmp.acl

16. Next, edit the start-up script of the target application, include the following line in it, and save the script file.

-Dcom.sun.management.config.file=<management.properties_file_path>

17. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management\management.properties.

18. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification will be

as follows: /usr/jdk1.5.0_05/jre/lib/management/management.properties.

The sections to come discuss the top 2 layers of Figure 1, as the remaining layers have already been discussed at

length in the Monitoring Unix and Windows Servers document.

1.2 The Java Transactions Layer
By default, this layer will not be available for any monitored Java Application. This is because, the Java Transactions

test mapped to this layer is disabled by default. To enable the test, follow the Agents -> Tests -> Enable/Disable

menu sequence, select Java Application as the Component type, Performance as the Test type, and then select Java

Transactions from the DISABLED TESTS list. Click the Enable button to enable the selected test, and click the Update

button to save the changes.

The Java Transactions test, once enabled, will allow you to monitor configured patterns of transactions to the target

Java application, and report their response times, so that slow transactions and transaction exceptions are isolated

and the reasons for the same analyzed. For the Java Transactions test to execute, you need to enable the Java

Transaction Monitoring (JTM) capability of the eG agent. The procedure for the same has been discussed in Section

1.2.1.1 of this document.

Monitor ing a Java App l icat ion

20

Java Transaction Monitoring (JTM) can be enabled only for those Java applications that use

JDK 1.5 or higher.

Figure 19: The test mapped to the Java Transactions layer

1.2.1 Java Transactions Test

When a user initiates a transaction to a J2EE application, the transaction typically travels via many sub-components

before completing execution and sending out a response to the user.

Figure 20 reveals some of the sub-components that a web transaction/web request visits during its journey.

Monitor ing a Java App l icat ion

21

Figure 20: The layers through which a Java transaction passes

The key sub-components depicted by Figure 20 have been briefly described below:

 Filter: A filter is a program that runs on the server before the servlet or JSP page with which it is

associated. All filters must implement javax.servlet.Filter. This interface comprises three methods:

init, doFilter, and destroy.

 Servlet: A servlet acts as an intermediary between the client and the server. As servlet modules run

on the server, they can receive and respond to requests made by the client. If a servlet is designed to

handle HTTP requests, it is called an HTTP Servlet.

 JSP: Java Server Pages are an extension to the Java servlet technology. A JSP is translated into Java

servlet before being run, and it processes HTTP requests and generates responses like any servlet.

Translation occurs the first time the application is run.

 Struts: The Struts Framework is a standard for developing well-architected Web applications. Based

on the Model-View-Controller (MVC) design paradigm, it distinctly separates all three levels (Model,

View, and Control).

A delay experienced by any of the aforesaid sub-components can adversely impact the total response time of the

transaction, thereby scarring the user experience with the web application. In addition, delays in JDBC connectivity

and slowdowns in SQL query executions (if the application interacts with a database), bottlenecks in delivery of mails

via the Java Mail API (if used), and any slow method calls, can also cause insufferable damage to the 'user-

perceived' health of a web application.

The challenge here for administrators is to not just isolate the slow transactions, but to also accurately identify where

the transaction slowed down and why - is it owing to inefficent JSPs? poorly written servlets or struts? poor or the

lack of any JDBC connectivity to the database? long running queries? inefficient API calls? or delays in accessing the

POJO methods? The eG JTM Monitor provides administrators with answers to these questions!

With the help of the Java Transactions test, the eG JTM Monitor traces the route a configured web transaction takes,

and captures live the total responsiveness of the transaction and the response time of each Java component it visits

en route. This way, the solution proactively detects transaction slowdowns, and also precisely points you to the sub-

Monitor ing a Java App l icat ion

22

components causing it - is it the Filters? JSPs? Servlets? Struts? JDBC? SQL query? Java Mail API? or the POJO? In

addition to revealing where (i.e., at which Java component) a transaction slowed down, the solution also provides

the following intelligent insights, on demand, making root-cause identification and resolution easier:

 A look at the methods that took too long to execute, thus leading you to those methods that may have

contributed to the slowdown;

 Single-click access to each invocation of a chosen method, which provides pointers to when and where

a method spent longer than desired;

 A quick glance at SQL queries and Java errors that may have impacted the responsiveness of the

transaction;

Using these interesting pointers provided by the eG JTM Monitor, administrators can diagnose the root-cause of

transaction slowdowns within minutes, rapidly plug the holes, and thus ensure that their critical web applications

perform at peak capacity at all times!

1.2.1.1 How does eG Perform Java Transaction Monitoring?

Figure 21 depicts how eG monitors Java transactions.

Figure 21: How eG monitors Java transactions

Monitor ing a Java App l icat ion

23

To track the live transactions to a J2EE application, eG Enterprise requires that a special eG Application Server Agent

be deployed on the target application. The eG Application Server Agent is available as a file named eg_jtm.jar on the

eG agent host, which has to be copied to the system hosting the application being monitored. The detailed steps for

deployment have been discussed hereunder:

In the <EG_INTALL_DIR>\lib directory (on Windows; on Unix, this will be /opt/egurkha/lib) of the eG agent, you will find

the following files:

 eg_jtm.jar

 aspectjrt.jar

 aspectjweaver.jar

 jtmConn.props

 jtmLogging.props

 jtmOther.props

Login to the system hosting the Java application to be monitored.

If the eG agent will be 'remotely monitoring' the target Java application (i.e., if the Java application is to be

monitored in an 'agentless manner'), then, copy all the files mentioned above from the <EG_INSTALL_DIR>\lib directory

(on Windows; on Unix, this will be /opt/egurkha/lib) of the eG agent to any location on the Java application host.

Then, proceed to edit the start-up script of the Java application being monitored, and append the following lines to

it:

set JTM_HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE JAR FILES AND PROPERTY FILES

LISTED ABOVE>>

"-javaagent:%JTM_HOME%\aspectjweaver.jar"

"-DEG_JTM_HOME=%JTM_HOME%"

Note that the above lines will change based on the operating system and the web/web application server being

monitored.

Then, add the eg_jtm.jar, aspectjrt.jar, and aspectjweaver.jar files to the CLASSPATH of the Java application being

monitored.

Finally, save the file.

Next, edit the jtmConn.props file. You will find the following lines in the file:

#Contains the connection properties of eGurkha Java Transaction Monitor

JTM_Port=13631

Designated_Agent=

By default, the JTM_Port parameter is set to 13631. If the Java application being monitored listens on a different JTM

port, then specify the same here. In this case, when managing a Java Application using the eG administrative

interface, specify the JTM_Port that you set in the jtmConn.props file as the Port of the Java application.

Also, against the Designated_Agent parameter, specify the IP address of the eG agent which will poll the eG JTM

Monitor for metrics. If no IP address is provided here, then the eG JTM Monitor will treat the host from which the

very first 'measure request' comes in as the Designated_Agent.

Monitor ing a Java App l icat ion

24

In case a specific Designated_Agent is not provided, and the eG JTM Monitor treats the host from

which the very first 'measure request' comes in as the Designated_Agent, then if such a

Designated_Agent is stopped or uninstalled for any reason, the eG JTM Monitor will wait for a

maximum of 10 measure periods for that 'deemed' Designated_Agent to request for metrics. If no

requests come in for 10 consecutive measure periods, then the eG JTM Monitor will begin responding

to 'measure requests' coming in from any other eG agent.

Finally, save the jtmConn.props file.

Restart the Java application.

Each request in the J2EE architecture is handled by a thread. Once the Java application is restarted therefore, the eG

Application Sever Agent uses the thread ID and thread local data to keep track of requests to configured URL

patterns (see Figure 22).

Figure 22: The eG Application Server Agent tracking requests using Java threads

In the process, the eG Application Sever Agent collects metrics for each URL pattern and stores them in memory.

Then, every time the Java Transactions test runs, the eG agent will poll the eG Application Server Agent for the

required metrics, extract the same from the memory, and report them to the eG manager.

The table below explains how to configure the Java Transactions test and what measures it reports.

Purpose Traces the route a configured web transaction takes, and captures live the total responsiveness

of the transaction and the response time of each component it visits en route. This way, the

solution proactively detects transaction slowdowns, and also precisely points you to the Java

component causing it - is it the Filters? JSPs? Servlets? Struts? JDBC? SQL query? Java Mail API?

or the POJO?

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

25

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens; if Java Transaction

Monitoring is enabled for the target Java application, then the JTM PORT has to be

specified here

4. JTM PORT – Specify the port number configured as the JTM_Port in the jtmConn.props

file described in the procedure outlined above.

5. URL PATTERNS - Provide a comma-separated list of the URL patterns of web

requests/transactions to be monitored. The format of your specification should be as

follows: <DisplayName_of_Pattern>:<Transaction_Pattern>. For instance, your

specification can be: login:*log*,ALL:*,pay:*pay*

6. FILTERED URL PATTERNS - Provide a comma-separated list of the URL patterns of

transactions/web requests to be excluded from the monitoring scope of this test. For

example, *blog*,*paycheque*

7. SLOW URL THRESHOLD - The Slow transactions measure of this test will report the

number of transactions (of the configured patterns) for which the response time is higher

than the value (in seconds) specified here.

8. METHOD EXEC CUTOFF - The detailed diagnosis of the Slow transactions measure

allows you to drill down to a URL tree, where the methods invoked by a chosen transaction

are listed in the descending order of their execution time. By configuring an execution

duration (in seconds) here, you can have the URL Tree list only those methods that have

been executing for a duration greater the specified value. For instance, if you specify 5

here, the URL tree for a transaction will list only those methods that have been executing

for over 5 seconds, thus shedding light on the slow method calls alone.

9. MAX SLOW URLS PER TEST PERIOD - Specify the number of top-n transactions (of a

configured pattern) that should be listed in the detailed diagnosis of the Slow transactions

measure, every time the test runs. By default, this is set to 10, indicating that the detailed

diagnosis of the Slow transactions measure will by default list the top-10 transactions,

arranged in the descending order of their response times.

10. MAX ERROR URLS PER TEST PERIOD - Specify the number of top-n transactions (of a

configured pattern) that should be listed in the detailed diagnosis of the Error transactions

measure, every time the test runs. By default, this is set to 10, indicating that the detailed

diagnosis of the Error transactions measure will by default list the top-10 transactions, in

terms of the number of errors they encountered.

Monitor ing a Java App l icat ion

26

 11. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

12. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for each configured URL pattern

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Total transactions:

Indicates the total number of

transactions of this pattern that the

target application handled during the

last measurement period.

Number

 Avg. response time:

Indicates the average time taken by

the transactions of this pattern to

complete execution.

Secs Compare the value of this measure

across patterns to isolate the type of

transactions that were taking too long

to execute.

You can then take a look at the values

of the other measures to figure out

where the transaction is spending too

much time.

 Slow transactions:

Indicates the number of transactions

of this pattern that were slow during

the last measurement period.

Number This measure will report the number of

transactions with a response time

higher than the configured SLOW

URL THRESHOLD.

A high value is a cause for concern, as

too many slow transactions to an

application can significantly damage

the user experience with that

application.

Use the detailed diagnosis of this

measure to know which transactions

are slow.

Monitor ing a Java App l icat ion

27

 Slow transactions response time:

Indicates the average time taken by

the slow transactions of this pattern

to execute.

Secs

 Error transactions:

Indicates the number of transactions

of this pattern that experienced

errors during the last measurement

period.

Number A high value is a cause for concern, as

too many error-prone transactions to

an application can significantly

damage the user experience with that

application.

Use the detailed diagnosis of this

measure to isolate the error

transactions.

 Error transactions response time:

Indicates the average duration for

which the transactions of this pattern

were processed before an error

condition was detected.

Secs

 Filters:

Indicates the number of filters that

were accessed by the transactions of

this pattern during the last

measurement period.

Number A filter is a program that runs on the

server before the servlet or JSP page

with which it is associated.

 Filters response time:

Indicates the average time spent by

the transactions of this pattern at the

Filters layer.

Secs Typically, the init, doFilter, and

destroy methods are called at the

Filters layer. Issues in these method

invocations can increase the time

spent by a transaction in the Filters

Java component.

Compare the value of this measure

across patterns to identify the

transaction pattern that spent the

maximum time with the Filters

component.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 JSPs accessed:

Indicates the number of JSPs

accessed by the transactions of this

pattern during the last measurement

period.

Number

Monitor ing a Java App l icat ion

28

 JSPs response time:

Indicates the average time spent by

the transactions of this pattern at the

JSP layer.

Secs Compare the value of this measure

across patterns to identify the

transaction pattern that spent the

maximum time in JSPs.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs..

 HTTP Servlets Accessed:

Indicates the number of HTTP

servlets that were accessed by the

transactions of this pattern during the

last measurement period.

Number

 HTTP servlets response time:

Indicates the average time taken by

the HTTP servlets for processing the

HTTP requests of this pattern.

Secs Badly written servlets can take too

long to execute, and can hence

obstruct the smooth execution of the

dependent transactions.

By comparing the value of this

measure across patterns, you can

figure out which transaction pattern is

spending the maximum time in

Servlets.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 Generic servlets accessed:

Indicates the number of generic

(non-HTTP) servlets that were

accessed by the transactions of this

pattern during the last measurement

period.

Number

Monitor ing a Java App l icat ion

29

 Generic servlets response time:

Indicates the average time taken by

the generic (non-HTTP) servlets for

processing transactions of this

pattern.

Secs Badly written servlets can take too

long to execute, and can hence

obstruct the smooth execution of the

dependent transactions.

By comparing the value of this

measure across patterns, you can

figure out which transaction pattern is

spending the maximum time in

Servlets.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 JDBC queries:

Indicates the number of JDBC

statements that were executed by the

transactions of this pattern during the

last measurement period.

Number The methods captured by the eG JTM

Monitor from the Java class for the

JDBC sub-component include:

Commit(), rollback(..),

close(),GetResultSet(),

executeBatch(), cancel(),

connect(String,

Properties),

getConnection(..),getPool

edConnection(..)

 JDBC response time:

Indicates the average time taken by

the transactions of this pattern to

execute JDBC statements.

Secs By comparing the value of this

measure across patterns, you can

figure out which transaction pattern is

taking the most time to execute JDBC

queries.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 SQL statements executed:

Indicates the number of SQL queries

executed by the transactions of this

pattern during the last measurement

period.

Number

Monitor ing a Java App l icat ion

30

 SQL statement time avg.:

Indicates the average time taken by

the transactions of this pattern to

execute SQL queries.

Secs Inefficient queries can take too long to

execute on the database, thereby

significantly delaying the

responsiveness of the dependent

transactions. To know which

transactions have been most impacted

by such queries, compare the value of

this measure across the transaction

patterns.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- at the filters layer, JSPs layer,

servlets layer, struts layer, in

exception handling, when executing

JDBC/SQL queries, when sending Java

mails, or when accessing POJOs.

 Exceptions seen:

Indicates the number of exceptions

encountered by the transactions of

this pattern during the last

measurement period.

Number Ideally, the value of this measure

should be 0.

 Exceptions response time:

Indicates the average time which the

transactions of this pattern spent in

handling exceptions.

Secs If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- at the filters layer, JSPs layer,

servlets layer, struts layer, in

exception handling, when executing

JDBC/SQL queries, when sending Java

mails, or when accessing POJOs.

 Struts accessed:

Indicates the number of struts

accessed by the transactions of this

pattern during the last meaurement

period.

Number The Struts framework is a standard for

developing well-architected Web

applications.

Monitor ing a Java App l icat ion

31

 Struts response time:

Indicates the average time spent by

the transactions of this pattern at the

Struts layer.

Secs If you compare the value of this

measure across patterns, you can

figure out which transaction pattern

spent the maximum time in Struts.

If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 Java mails:

Indicates the number of mails sent by

the transactions of this pattern during

the last measurement period, using

the Java mail API.

Number The eG JTM Monitor captures any mail

that has been sent from the monitored

application using Java Mail API. Mails

sent using other APIs are ignored by

the eG JTM Monitor.

 Java mail API time:

Indicates the average time taken by

the transactions of this pattern to

send mails using the Java mail API.

Secs If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

 POJOs:

Indicates the number of transactions

of this pattern that accessed POJOs

during the last measurement period.

Number Plain Old Java Object (POJO) refers to

a 'generic' method in JAVA Language.

All methods that are not covered by

any of the Java components (eg.,

JSPs, Struts, Servlets, Filters,

Exceptions, Queries, etc.) discussed

above will be automatically included

under POJO.

When reporting the number of POJO

methods, the eG agent will consider

only those methods with a response

time value that is higher than the

threshold limit configured against the

METHOD EXEC CUTOFF parameter.

Monitor ing a Java App l icat ion

32

 POJO avg. access time:

Indicates the average time taken by

the transactions of this pattern to

access POJOs.

Secs If one/more transactions of a pattern

are found to be slow, then, you can

compare the value of this measure

with the other response time values

reported by this test to determine

where the slowdown actually occurred

- in the filters, in JSPs, in servlets, in

struts, in exception handling, when

executing JDBC/SQL queries, when

sending Java mails, or when accessing

POJOs.

The detailed diagnosis of the Slow transactions measure lists the top-10 (by default) transactions of a configured

pattern that have violated the response time threshold set using the SLOW URL THRESHOLD parameter of this

test. Against each transaction, the date/time at which the transaction was initiated/requested will be displayed.

Besides the request date/time, the remote host from which the transaction request was received and the total

response time of the transaction will also be reported. This response time is the sum total of the response times of

each of the top methods (in terms of time taken for execution) invoked by that transaction. To compute this sum

total, the test considers only those methods with a response time value that is higher than the threshold limit

configured against the METHOD EXEC CUTOFF parameter.

In the detailed diagnosis, the transactions will typically be arranged in the descending order of the total response

time; this way, you would be able to easily spot the slowest transaction. To know what caused the transaction to be

slow, you can take a look at the SUBCOMPONENT DETAILS column of the detailed diagnosis. Here, the time spent by

the transaction in each of the Java components (FILTER, STRUTS, SERVLETS, JSPS, POJOS, SQL, JDBC, etc.) will be

listed, thus leading you to the exact Java component where the slowdown occurred.

Figure 23: The detailed diagnosis of the Slow transactions measure

You can even perform detailed method-level analysis to isolate the methods taking too long to execute. For this, click

on the URL Tree link. Figure 24 will then appear. In the left panel of Figure 24, you will find the list of transactions

that match a configured pattern; these transactions will be sorted in the descending order of their Total Response

Time (by default). This is indicated by the Total Response Time option chosen by default from the Sort by list in

Monitor ing a Java App l icat ion

33

Figure 24. If you select a transaction from the left panel, an At-A-Glance tab page will open by default in the right

panel, providing quick, yet deep insights into the performance of the chosen transaction and the reasons for its

slowness. This tab page begins by displaying the URL of the chosen transaction, the total Response time of the

transaction, the time at which the transaction was last requested, and the Remote Host from which the request was

received.

If the Response time appears to be very high, then you can take a look at the Method Level Breakup section to figure

out which method called by which Java component (such as FILTER, STRUTS, SERVLETS, JSPS, POJOS, SQL, JDBC, etc.)

could have caused the slowdown. This section provides a horizontal bar graph, which reveals the percentage of time

for which the chosen transaction spent executing each of the top methods (in terms of execution time) invoked by it.

The legend below clearly indicates the top methods and the layer/sub-component that invoked each method. Against

every method, the number of times that method was invoked in the Measurement Time, the Duration (in Secs) for

which the method executed, and the percentage of the total execution time of the transaction for which the method

was in execution will be displayed, thus quickly pointing you to those methods that may have contributed to the

slowdown. The methods displayed here and featured in the bar graph depend upon the METHOD EXEC CUTOFF

configuration of this test - in other words, only those methods with an execution duration that exceeds the threshold

limit configured against METHOD EXEC CUTOFF will be displayed in the Method Level Breakup section.

Figure 24: The Method Level Breakup section in the At-A-Glance tab page

While the Method Level Breakup section provides method-level insights into responsiveness, for a sub-component or

layer level breakup of responsiveness scroll down the At-A-Glance tab to view the Component Level Breakup section

(see Figure 25). Using this horizontal bar graph, you can quickly tell where - i.e., in which Java component - the

transaction spent the maximum time. A quick glance at the graph's legend will reveal the Java components the

transaction visited, the number of methods invoked by Java component, the Duration (Secs) for which the

transaction was processed by the Java component, and what Percentage of the total transaction response time was

spent in the Java component.

Monitor ing a Java App l icat ion

34

Figure 25: The Component Level Breakup section in the At-A-Glance tab page

Besides Java methods, where the target Java application interacts with the database, long-running SQL queries can

also contribute to the poor responsiveness of a transaction. You can use the At-A-Glance tab page to determine

whether the transaction interacts with the database or not, and if so, how healthy that interaction is. For this, scroll

down the At-A-Glance tab page.

Figure 26: Query Details in the At-A-Glance tab page

Upon scrolling, you will find query details below the Component Level Breakup section. All the SQL queries that the

chosen transaction executes on the backend database will be listed here in the descending order of their Duration.

Corresponding to each query, you will be able to view the number of times that query was executed, the Duration for

which it executed, and what percentage of the total transaction response time was spent in executing that query. A

quick look at this tabulation would suffice to identify the query which executed for an abnormally long time on the

Monitor ing a Java App l icat ion

35

database, causing the transaction's responsiveness to suffer. For a detailed query description, click on the query.

Figure 27 will then pop up displaying the complete query and its execution duration.

Figure 27: Detailed description of the query clicked on

This way, the At-A-Glance tab page allows you to analyze, at-a-glance, all the factors that can influence transaction

response time - be it Java methods, Java components, and SQL queries - and enables you to quickly diagnose the

source of a transaction slowdown. If, for instance, you figure out that a particular Java method is responsible for the

slowdown, you can zoom into the performance of the 'suspect method' by clicking on that method in the Method

Level Breakup section of the At-A-Glance tab page. This will automatically lead you to the Trace tab page, where all

invocations of the chosen method will be highlighted (see Figure 28).

Figure 28: The Trace tab page displaying all invocations of the method chosen from the Method Level Breakup
section

Typically, clicking on the Trace tab page will list all the methods invoked by the chosen transaction, starting with the

very first method. Methods and sub-methods (a method invoked within a method) are arranged in a tree-structure,

which can be expanded or collapsed at will. To view the sub-methods within a method, click on the arrow icon that

Monitor ing a Java App l icat ion

36

precedes that method in the Trace tab page. Likewise, to collapse a tree, click once again on the arrow icon. Using

the tree-structure, you can easily trace the sequence in which methods are invoked by a transaction.

If a method is chosen for analysis from the Method Level Breakup section of the At-A-Glance tab page, the Trace tab

page will automatically bring your attention to all invocations of that method by highlighting them (as shown by

Figure 28). Likewise, if a Java component is clicked in the Component Level Breakup section of the At-A-Glance

section, the Trace tab page will automatically appear, displaying all the methods invoked from the chosen Java

component (as shown by Figure 29).

Figure 29: The Trace tab page displaying all methods invoked at the Java layer/sub-component chosen from the
Component Level Breakup section

For every method, the Trace tab page displays a Request Processing bar, which will accurately indicate when, in the

sequence of method invocations, the said method began execution and when it ended; with the help of this progress

bar, you will be able to fairly judge the duration of the method, and also quickly tell whether any methods were

called prior to the method in question. In addition, the Trace tab page will also display the time taken for a method

to execute (Method Execution Time) and the percentage of the time the transaction spent in executing that method.

The most time-consuming methods can thus be instantly isolated.

The Trace tab page also displays the Total Execution Time for each method - this value will be the same as the

Method Execution Time for 'stand-alone' methods - i.e., methods without any sub-methods. In the case of methods

with sub-methods however, the Total Execution Time will be the sum total of the Method Execution Time of each sub-

method invoked within. This is because, a 'parent' method completes execution only when all its child/sub-methods

finish executing.

With the help of the Trace tab page therefore, you can accurately trace the method that takes the longest to

execute, when that method began execution, and which 'parent method' (if any) invoked the method.

Next, click on the SQL/Errors tab page. This tab page lists all the SQL queries the transaction executes on its

backend database, and/or all the errors detected in the transaction's Java code. The query list (see Figure 30) is

typically arranged in the descending order of the query execution Duration, and thus leads you to the long-running

queries right away! You can even scrutinize the time-consuming query on-the-fly, and suggest improvements to your

administrator instantly.

Monitor ing a Java App l icat ion

37

Figure 30: Queries displayed in the SQL/Error tab page

When displaying errors, the SQL/Error tab page does not display the error message alone, but displays the complete

code block that could have caused the error to occur. By carefully scrutinizing the block, you can easily zero-in on the

'exact line of code' that could have forced the error - this means that besides pointing you to bugs in your code, the

SQL/Error tab page also helps you initiate measures to fix the same.

Figure 31: Errors displayed in the SQL/Error tab page

This way, with the help of the three tab pages - At-A-Glance, Trace, and SQL/Error - you can effectively analyze and

accurately diagnose the root-cause of slowdowns in transactions to your Java applications.

Monitor ing a Java App l icat ion

38

The detailed diagnosis of the Error transactions measure reveals the top-10 (by default) transactions, in terms of

TOTAL RESPONSE TIME, that have encountered errors. To know the nature of the errors that occurred, click on the

URL Tree icon in Figure 32. This will lead you to the URL Tree window, which has already been elaborately discussed.

Figure 32: The detailed diagnosis of the Error transactions measure

1.3 The JVM Internals Layer
The tests associated with this layer measure the internal health of the Java Virtual Machine (JVM), and enables

administrators to find accurate answers to the following performance queries:

g. How many classes have been loaded/unloaded from memory?

h. Did garbage collection take too long to complete? If so, which memory pools spent too much time in

garbage collection?

i. Are too many threads in waiting state in the JVM?

j. Which threads are consuming CPU?

Monitor ing a Java App l icat ion

39

Figure 33: The tests associated with the JVM Internals layer

1.3.1 JMX Connection to JVM

This test reports the availability of the target Java application, and also indicates whether JMX is enabled on the

application or not. In addition, the test promptly alerts you to slowdowns experienced by the application, and also

reveals whether the application was recently restarted or not.

Purpose Reports the availability of the target Java application, and also indicates whether JMX is enabled

on the application or not. In addition, the test promptly alerts you to slowdowns experienced by

the application, and also reveals whether the application was recently restarted or not

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

40

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. JMX REMOTE PORT – Here, specify the port at which the JMX listens for requests from

remote hosts. Ensure that you specify the same port that you configured in the

management.properties file in the <JAVA_HOME>\jre\lib\management folder used by the

target application (see page 3).

5. USER, PASSWORD, and CONFIRM PASSWORD – If JMX requires authentication only

(but no security), then ensure that the USER and PASSWORD parameters are configured

with the credentials of a user with read-write access to JMX. To know how to create this

user, refer to Section 1.1.1.2. Confirm the password by retyping it in the CONFIRM

PASSWORD text box.

6. JNDINAME – The JNDINAME is a lookup name for connecting to the JMX connector. By

default, this is jmxrmi. If you have resgistered the JMX connector in the RMI registery

using a different lookup name, then you can change this default value to reflect the same.

Outputs of the

test

One set of results for the Java application being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

JMX availability:

Indicates whether the target

application is available or not and

whether JMX is enabled or not on the

application.

Percent If the value of this measure is 100%,

it indicates that the Java application is

available with JMX enabled. The value

0 on the other hand, could indicate

one/both the following:

k. The Java application is

unavailable;

l. The Java application is

available, but JMX is not

enabled;

 JMX response time:

Indicates the time taken to connect

to the JMX agent of the Java

application.

Secs A high value could indicate a

connection bottleneck.

 Has the PID changed?

Indicates whether/not the process ID

that corresponds to the Java

application has changed.

 This measure will report the value Yes

if the PID of the target application has

changed; such a change is indicative

of an application restart. If the

application has not restarted - i.e., if

the PID has not changed - then this

measure will return the value No.

1.3.2 JVM File Descriptors Test

This test reports useful statistics pertaining to file descriptors.

Monitor ing a Java App l icat ion

41

Purpose Reports useful statistics pertaining to file descriptors

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. JMX REMOTE PORT – Here, specify the port at which the JMX listens for requests from

remote hosts. Ensure that you specify the same port that you configured in the

management.properties file in the <JAVA_HOME>\jre\lib\management folder used by the

target application (see page 3).

5. USER, PASSWORD, and CONFIRM PASSWORD – If JMX requires authentication only

(but no security), then ensure that the USER and PASSWORD parameters are configured

with the credentials of a user with read-write access to JMX. To know how to create this

user, refer to Section 1.1.1.2. Confirm the password by retyping it in the CONFIRM

PASSWORD text box.

6. JNDINAME – The JNDINAME is a lookup name for connecting to the JMX connector. By

default, this is jmxrmi. If you have resgistered the JMX connector in the RMI registery

using a different lookup name, then you can change this default value to reflect the same.

Outputs of the

test

One set of results for the Java application being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Open file descriptors in JVM:

Indicates the number of file

descriptors currently open for the

application.

Number

 Maximum file descriptors in JVM:

Indicates the maximum number of

file descriptors allowed for the

application.

Number

 File descriptor usage by JVM:

Indicates the file descriptor usage in

percentage.

Percent

1.3.3 Java Classes Test

This test reports the number of classes loaded/unloaded from the memory.

Purpose Reports the number of classes loaded/unloaded from the memory

Target of the A Java application

Monitor ing a Java App l icat ion

42

test

Agent

deploying the

test

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appers only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

43

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

20. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

Outputs of the

test

One set of results for the Java application being monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

Monitor ing a Java App l icat ion

44

test Classes loaded:

Indicates the number of classes

currently loaded into memory.

Number Classes are fundamental to the design

of Java programming language.

Typically, Java applications install a

variety of class loaders (that is, classes

that implement java.lang.ClassLoader)

to allow different portions of the

container, and the applications running

on the container, to have access to

different repositories of available

classes and resources. A consistent

decrease in the number of classes

loaded and unloaded could indicate a

road-block in the loading/unloading of

classes by the class loader. If left

unchecked, critical resources/classes

could be rendered inaccessible to the

application, thereby severely affecting

its performance.

Classes unloaded:

Indicates the number of classes

currently unloaded from memory.

Number

 Total classes loaded:

Indicates the total number of classes

loaded into memory since the JVM

started, including those subsequently

unloaded.

Number

1.3.4 JVM Garbage Collections Test

Manual memory management is time consuming, and error prone. Most programs still contain leaks. This is all

doubly true with programs using exception-handling and/or threads. Garbage collection (GC) is a part of a Java

application’s JVM that automatically determines what memory a program is no longer using, and recycles it for other

use. It is also known as "automatic storage (or memory) reclamation''. The JVM Garbage Collections test reports the

performance statistics pertaining to the JVM's garbage collection.

Purpose Reports the performance statistics pertaining to the JVM's garbage collection

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

45

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appers only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

46

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

20. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

Outputs of the

test

One set of results for each garbage collector that is reclaiming the unused memory on the JVM

of the Java application being monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

Monitor ing a Java App l icat ion

47

test No of garbage collections

started:

Indicates the number of times this

garbage collector was started to

release dead objects from memory

during the last measurement period.

Number

Time taken for garbage

collection:

Indicates the time taken to by this

garbage collector to perform the

current garbage collection operation.

Secs Ideally, the value of both these

measures should be low. This is

because, the garbage collection (GC)

activity tends to suspend the

operations of the application until such

time that GC ends. Longer the GC

time, longer it would take for the

application to resume its functions. To

minimize the impact of GC on

application performance, it is best to

ensure that GC activity does not take

too long to complete.

 Percent of time spent by JVM for

garbage collection:

Indicates the percentage of time

spent by this garbage collector on

garbage collection during the last

measurement period.

Percent

1.3.5 JVM Memory Pool Garbage Collections Test
While the JVM Garbage Collections test reports statistics indicating how well each collector on the JVM performs

garbage collection, the measures reported by the JVM Memory Pool Garbage Collections test help assess the impact

of the garbage collection activity on the availability and usage of memory in each memory pool of the JVM. Besides

revealing the count of garbage collections per collector and the time taken by each collector to perform garbage

collection on the individual memory pools, the test also compares the amount of memory used and available for use

pre and post garbage collection in each of the memory pools. This way, the test enables administrators to guage the

effectiveness of the garbage collection activity on the memory pools, and helps them accurately identify those

memory pools where enough memory could not reclaimed or where the garbage collectors spent too much time.

Purpose Helps assess the impact of the garbage collection activity on the availability and usage of

memory in each memory pool of the JVM

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

48

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MEASURE MODE - This test allows you the option to collect the desired metrics using one

of the following methodologies:

 By contacting the Java runtime (JRE) of the application via JMX

 Using GC logs

To use JMX for metrics collections, set the measure mode to JMX.

On the other hand, if you intend to use the GC log files for collecting the required metrics,

set the MEASURE MODE to Log File. In this case, you would be required to enable GC

logging. The procedure for this has been detailed in Section 1.3.5.1 of this document.

5. JMX REMOTE PORT – This parameter will be available only if the MEASURE MODE is

set to JMX. Here, specify the port at which the JMX listens for requests from remote hosts.

Ensure that you specify the same port that you configured in the management.properties

file in the <JAVA_HOME>\jre\lib\management folder used by the target application (see page

3).

6. JNDINAME – This parameter will be available only if the MEASURE MODE is set to JMX.

The JNDINAME is a lookup name for connecting to the JMX connector. By default, this is

jmxrmi. If you have resgistered the JMX connector in the RMI registery using a different

lookup name, then you can change this default value to reflect the same.

7. USER, PASSWORD, and CONFIRM PASSWORD – This parameter will be available only

if the MEASURE MODE is set to JMX. If JMX requires authentication only (but no

security), then ensure that the USER and PASSWORD parameters are configured with

the credentials of a user with read-write access to JMX. To know how to create this user,

refer to Section 1.1.1.2. Confirm the password by retyping it in the CONFIRM

PASSWORD text box.

8. JREHOME - This parameter will be available only if the MEASURE MODE is set to Log

File. Specify the full path to the Java Runtime Environment (JRE) used by the target

application.

9. LOGFILENAME - This parameter will be available only if the MEASURE MODE is set to

Log File. Specify the full path to the GC log file to be used for metrics collection.

Outputs of the

test

One set of results for every GarbageCollector:MemoryPool pair on the JVM of the Java

application being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Has garbage collection

happened:

Indicates whether garbage collection

occurred on this memory pool in the

last measurement period.

 This measure reports the value Yes if

garbage collection took place or No if

it did not take place on the memory

pool.

The numeric values that correspond to

the measure values of Yes and No are

listed below:

Monitor ing a Java App l icat ion

49

 State Value

Yes 1

No 0

Note:

By default, this measure reports the

value Yes or No to indicate whether a

GC occurred on a memory pool or not.

The graph of this measure however,

represents the same using the numeric

equivalents – 0 or 1.

 Collection count:

Indicates the number of time in the

last measurement pool garbage

collection was started on this memory

pool.

Number

 Initial memory before GC:

Indicates the initial amount of

memory (in MB) that this memory

pool requests from the operating

system for memory management

during startup, before GC process.

MB Comparing the value of these two

measures for a memory pool will give

you a fair idea of the effectiveness of

the garbage collection activity.

If garbage collection reclaims a large

amount of memory from the memory

pool, then the Initial memory after GC

will drop. On the other hand, if the

garbage collector does not reclaim

much memory from a memory pool, or

if the Java application suddenly runs a

memory-intensive process when GC is

being performed, then the Initial

memory after GC may be higher than

the Initial memory before GC.

 Initial memory after GC:

Indicates the initial amount of

memory (in MB) that this memory

pool requests from the operating

system for memory management

during startup, after GC process

MB

Monitor ing a Java App l icat ion

50

 Max memory before GC:

Indicates the maximum amount of

memory that can be used for memory

management by this memory pool,

before GC process.

MB Comparing the value of these two

measures for a memory pool will

provide you with insights into the

effectiveness of the garbage collection

activity.

If garbage collection reclaims a large

amount of memory from the memory

pool, then the Max memory after GC

will drop. On the other hand, if the

garbage collector does not reclaim

much memory from a memory pool, or

if the Java application suddenly runs a

memory-intensive process when GC is

being performed, then the Max

memory after GC value may exceed

the Max memory before GC.

 Max memory after GC:

Indicates the maximum amount of

memory (in MB) that can be used for

memory management by this pool,

after the GC process.

MB

 Committed memory before GC:

Indicates the amount of memory that

is guaranteed to be available for use

by this memory pool, before the GC

process.

MB

 Committed memory after GC:

Indicates the amount of memory that

is guaranteed to be available for use

by this memory pool, after the GC

process.

MB

 Used memory before GC:

Indicates the amount of memory

used by this memory pool before GC.

MB Comparing the value of these two

measures for a memory pool will

provide you with insights into the

effectiveness of the garbage collection

activity.

If garbage collection reclaims a large

amount of memory from the memory

pool, then the Used memory after GC

may drop lower than the Used

memory before GC. On the other

hand, if the garbage collector does not

reclaim much memory from a memory

pool, or if the Java application

suddenly runs a memory-intensive

process when GC is being performed,

then the Used memory after GC value

may exceed the Used memory before

GC.

 Used memory after GC:

Indicates the amount of memory

used by this memory pool after GC.

MB

Monitor ing a Java App l icat ion

51

 Percentage of memory collected:

Indicates the percentage of memory

collected from this pool by the GC

activity.

Percent A high value for this measure is

indicative of a large amount of unused

memory in the pool. A low value on

the other hand indicates that the

memory pool has been over-utilized.

Compare the value of this measure

across pools to identify the pools that

have very little free memory. If too

many pools appear to be running short

of memory, it could indicate that the

target application is consuming too

much memory, which in the long run,

can slow down the application

significantly.

 Collection duration:

Indicates the time taken by this

garbage collector for collecting

unused memory from this pool.

Mins Ideally, the value of this measure

should be low. This is because, the

garbage collection (GC) activity tends

to suspend the operations of the

application until such time that GC

ends. Longer the GC time, longer it

would take for the application to

resume its functions. To minimize the

impact of GC on application

performance, it is best to ensure that

GC activity does not take too long to

complete.

1.3.5.1 Enabling GC Logging

If you want the JVM Memory Pools Garbage Collections test to use the GC log file to report metrics, then, you first

need to enable GC logging. For this, follow the steps below:

1. Edit the startup script file of the Java application being monitored. Figure 20 depicts the startup script file of a

sample application.

Monitor ing a Java App l icat ion

52

Figure 34: Editing the startup script file of a sample Java application

2. Add the line indicated by Figure 20 to the startup script file. This line should be of the following format:

-Xloggc:<Full path to the GC log file to which GC details are to be logged> -XX:+PrintGCDetails -

XX:+PrintGCTimeStamps

Here, the entry, -XX:+PrintGCDetails -XX:+PrintGCTimeStamps, refers to the format in which GC details are to

be logged in the specified log file. Note that this test can monitor only those GC log files which contain log

entries of this format.

3. Finally, save the file and restart the application.

1.3.6 JVM Threads Test

This test reports the status of threads running in the JVM. Details of this test can be used to identify resource-hungry

threads.

Purpose Reports the status of threads running in the JVM

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

53

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appears only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

54

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. PCT MEDIUM CPU UTIL THREADS - By default, the PCT MEDIUM CPU UTIL

THREADS parameter is set to 50. This implies that, by default, the threads for which the

current CPU consumption is between 50% and 70% (the default value of the PCT HIGH

CPU UTIL THREADS parameter) willl be counted as medium CPU-consuming threads.

The count of such threads will be reported as the value of the Medium CPU threads

measure.

15. This default setting also denotes that threads that consume less than 50% CPU will, by

default, be counted as Low CPU threads. If need be, you can modify the value of this PCT

MEDIUM CPU UTIL THREADS parameter to change how much CPU should be used by a

thread for it to qualify as a medium CPU-consuming thread. This will consequently alter the

count of low CPU-consuming threads as well.

16. PCT HIGH CPU UTIL THREADS - By default, the PCT HIGH CPU UTIL THREADS

parameter is set to 70. This implies that, by default, the threads that are currently

consuming over 70% of CPU time are counted as high CPU consumers. The count of such

threads will be reported as the value of the High CPU threads measure. If need be, you

can modify the value of this parameter to change how much CPU should be used by a

thread for it to qualify as a high CPU-consuming thread.

17. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

Monitor ing a Java App l icat ion

55

 18. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

19. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

20. ENCRYPTPASSWORD – Specify the encryption password here.

21. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

22. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

23. USEPS - This flag is applicable only for AIX LPARs. By default, on AIX LPARs, this test

uses the tprof command to compute CPU usage. Accordingly, the USEPS flag is set to No

by default. On some AIX LPARs however, the tprof command may not function properly

(this is an AIX issue). While monitoring such AIX LPARs therefore, you can configure the

test to use the ps command instead for metrics collection. To do so, set the USEPS flag to

Yes.

Note:

Alternatively, you can set the AIXusePS flag in the [AGENT_SETTINGS] section of the

eg_tests.ini file (in the <EG_INSTALL_DIR>\manager\config directory) to yes (default: no) to

enable the eG agent to use the ps command for CPU usage computations on AIX LPARs. If

this global flag and the USEPS flag for a specific component are both set to no, then the

test will use the default tprof command to compute CPU usage for AIX LPARs. If either of

these flags is set to yes, then the ps command will perform the CPU usage computations

for monitored AIX LPARs.

In some high-security environments, the tprof command may require some special

privileges to execute on an AIX LPAR (eg., sudo may need to be used to run tprof). In such

cases, you can prefix the tprof command with another command (like sudo) or the full path

to a script that grants the required privileges to tprof. To achieve this, edit the eg_tests.ini

file (in the <EG_INSTALL_DIR>\manager\config directory), and provide the prefix of your

choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS] section. Finally, save

the file. For instance, if you set the AixTprofPrefix parameter to sudo, then the eG agent

will call the tprof command as sudo tprof.

Monitor ing a Java App l icat ion

56

 24. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

25. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

26. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for the Java application being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Total threads:

Indicates the total number of threads

(including daemon and non-daemon

threads).

Number

Runnable threads:

Indicates the current number of

threads in a runnable state.

Number The detailed diagnosis of this measure,

if enabled, provides the name of the

threads, the CPU usage by the

threads, the time for which the thread

was in a blocked state, waiting state,

etc.

Monitor ing a Java App l icat ion

57

 Blocked threads:

Indicates the number of threads that

are currently in a blocked state.

Number If a thread is trying to take a lock (to

enter a synchronized block), but the

lock is already held by another thread,

then such a thread is called a blocked

thread.

The detailed diagnosis of this measure,

if enabled, provides in-depth

information related to the blocked

threads.

 Waiting threads:

Indicates the number of threads that

are currently in a waiting state.

Number A thread is said to be in a Waiting

state if the thread enters a

synchronized block, tries to take a lock

that is already held by another thread,

and hence, waits till the other thread

notifies that it has released the lock.

Ideally, the value of this measure

should be low. A very high value could

be indicative of excessive waiting

activity on the JVM. You can use the

detailed diagnosis of this measure, if

enabled, to figure out which threads

are currently in the waiting state.

While waiting, the Java application

program does no productive work and

its ability to complete the task-at-hand

is degraded. A certain amount of

waiting may be acceptable for Java

application programs. However, when

the amount of time spent waiting

becomes excessive or if the number of

times that waits occur exceeds a

reasonable amount, the Java

application program may not be

programmed correctly to take

advantage of the available resources.

When this happens, the delay caused

by the waiting Java application

programs elongates the response time

experienced by an end user. An

enterprise may use Java application

programs to perform various functions.

Delays based on abnormal degradation

consume employee time and may be

costly to corporations.

Monitor ing a Java App l icat ion

58

 Timed waiting threads:

Indicates the number of threads in a

TIMED_WAITING state.

Number When a thread is in the

TIMED_WAITING state, it implies that

the thread is waiting for another

thread to do something, but will give

up after a specified time out period.

To view the details of threads in the

TIMED_WAITING state, use the

detailed diagnosis of this measure, if

enabled.

 Low CPU threads:

Indicates the number of threads that

are currently consuming CPU lower

than the value configured in the PCT

MEDIUM CPU UTIL THREADS text

box.

Number

 Medium CPU threads:

Indicates the number of threads that

are currently consuming CPU that is

higher than the value configured in

the PCT MEDIMUM CPU UTIL

THREADS text box and is lower than

or equal to the value specified in the

PCT HIGH CPU UTIL THREADS text

box.

Number

 High CPU threads:

Indicates the number of threads that

are currently consuming CPU that is

greater than the percentage

configured in the PCT HIGH CPU

UTIL THREADS text box.

Number Ideally, the value of this measure

should be very low. A high value is

indicative of a resource contention at

the JVM. Under such circumstances,

you might want to identify the

resource-hungry threads. To know

which threads are consuming

excessive CPU, use the detailed

diagnosis of this measure.

` Peak threads:

Indicates the highest number of live

threads since JVM started.

Number

 Total threads:

Indicates the the total number of

threads started (including daemon,

non-daemon, and terminated) since

JVM started.

Number

 Daemon threads:

Indicates the current number of live

daemon threads.

Number

Monitor ing a Java App l icat ion

59

 Deadlock threads:

Indicates the current number of

deadlocked threads.

Number Ideally, this value should be 0. A high

value is a cause for concern, as it

indicates that many threads are

blocking one another causing the

application performance to suffer. The

detailed diagnosis of this measure, if

enabled, lists the deadlocked threads

and their resource usage.

If the mode for the JVM Threads test is set to SNMP, then the detailed diagnosis of this test will not

display the Blocked Time and Waited Time for the threads. To make sure that detailed diagnosis

reports these details also, do the following:

 Login to the application host.

 Go to the <JAVA_HOME>\jre\lib\management folder used by the target application, and

edit the management.properties file in that folder.

 Append the following line to the file:

com.sun.management.enableThreadContentionMonitoring

 Finally, save the file.

1.3.6.1 Accessing Stack Trace using the STACK TRACE link in the Measurements
Panel

While viewing the measures reported by the JVM Thread test, you can also view the resource usage details and the

stack trace information for all the threads, by clicking on the STACK TRACE link in the Measurements panel.

If the mode set for the JVM Thread test is SNMP, the stack trace details may not be available.

Monitor ing a Java App l icat ion

60

Figure 35: The STACK TRACE link

A stack trace (also called stack backtrace or stack traceback) is a report of the active stack frames instantiated

by the execution of a program. It is commonly used to determine what threads are currently active in the JVM, and

which threads are in each of the different states – i.e., alive, blocked, waiting, timed waiting, etc.

Typically, when a Java application begins exhibiting erratic resource usage patterns, it often takes administrators

hours, even days to figure out what is causing this anomaly – could it be owing to one/more resource-intensive

threads being executed by the application? If so, what is causing the thread to erode resources? Is it an inefficient

piece of code? In which case, which line of code could be the most likely cause for the spike in resource usage? To

be able to answer these questions accurately, administrators need to know the complete list of threads that the

application executes, view the stack trace of each thread, analyze each stack trace in a top-down manner, and trace

where the problem originated.

eG Enterprise simplifies this seemingly laborious procedure by not only alerting administrators instantly to excessive

resource usage by a target application, but also by automatically identifying the problematic thread(s), and providing

the administrator with quick and easy access to the stack trace information of that thread; with the help of stack

trace, administrators can effortlessly drill down to the exact line of code that requires optimization.

To access the stack trace information of a thread, click on the STACK TRACE link in the Measurements panel of

Figure 35.

Monitor ing a Java App l icat ion

61

Figure 36: Stack trace of a resource-intensive thread

Figure 36 that appears comprises of two panels. The left panel, by default, lists all the threads that the target

application executes, starting with the threads that are currently live. Accordingly, the All Threads option is chosen by

default from the Measurement list. If need be, you can override the default setting by choosing a different option

from the Measurement list – in other words, instead of viewing the complete list of threads, you can choose to view

threads of a particular type or which are in a particular state alone in Figure 36, by selecting a different Measurement

from Figure 36. For instance, to ensure that the left panel displays only those threads that are currently in a runnable

state, select the Live threads option from the Measurement list. The contents of the left panel will change as depicted

by Figure 37.

Figure 37: Thread diagnosis of live threads

Also, the thread list in the left panel is by default sorted in the descending order of the Percent Cpu Time of the

threads. This implies that, by default, the first thread in the list will be the thread that is currently active and

consuming the maximum CPU. You can change the sort order by selecting a different option from the Sort by list in

Figure 37.

Monitor ing a Java App l icat ion

62

Typically, the contents of the right panel change according to the thread chosen from the left. Since the first thread

is the default selection in the left panel, and this thread by default consumes the maximum CPU, we can conclude

that the right panel will by default display the details of the leading CPU consumer. Besides the name and state of

the chosen thread, the right panel will provide the following information:

 Cpu Time : The amount of CPU processing time (in seconds) consumed by the thread during the last

measurement period;

 Percent Cpu Time: The percentage of time the thread was using the CPU during the last measurement

period;

 Blocked Count: The number of the times during the last measurement period the thread was blocked

waiting for another thread;

 Blocked Time: The total duration for which the thread was blocked during the last measurement period;

 Percentage Blocked Time: The percentage of time (in seconds) for which the thread was blocked during the

last measurement period;

 Waited: The number of times during the last measurement period the thread was waiting for some event to

happen (eg., wait for a thread to finish, wait for a timing event to finish, etc.);

 Waited Time: The total duration (in seconds) for which the thread was waiting during the last measurement

period;

 Percentage Waited Time: The percentage of time for which the thread was waiting during the last

measurement period.

In addition to the above details, the right panel provides the Stack Trace of the thread.

In the event of a sudden surge in the CPU usage of the target Java application, the Thread Diagnosis window of

Figure 37 will lead you to the CPU-intensive thread, and will also provide you with the Stack Trace of that thread. By

analyzing the stack trace in a top-down manner, you can figure out which method/routine called which, and thus

locate the exact line of code that could have contributed to the sudden CPU spike.

If the CPU usage has been increasing over a period of time, then, you might have to analyze the stack trace for

one/more prior periods, so as to perform accurate root-cause diagnosis. By default, the Thread Diagnosis window of

Figure 37 provides the stack trace for the current measurement period only. If you want to view the stack trace for a

previous measurement period, you will just have to select a different option from the Measurement Time list. By

reviewing the code executed by a thread for different measurement periods, you can figure out out if the same line

of code is responsible for the increase in CPU usage.

1.4 The JVM Engine Layer
The JVM Engine layer measures the overall health of the JVM engine by reporting statistics related to the following:

 The CPU usage by the engine

 How the JVM engine manages memory

 The uptime of the engine

Monitor ing a Java App l icat ion

63

Figure 38: The tests associated with the JVM Engine layer

1.4.1 JVM Cpu Usage Test

This test measures the CPU utilization of the JVM. If the JVM experiences abnormal CPU usage levels, you can use

this test to instantly drill down to the threads that are contributing to the CPU spike. Detailed stack trace information

provides insights to code level information that can highlight problems with the design of the Java application.

 If you want to collect metrics for this test from the JRE MIB – i.e, if the mode

parameter of this test is set to SNMP – then ensure that the SNMP and SNMP Trap

services are up and running on the application host.

 While monitoring a Java application executing on a Windows 2003 server using SNMP,

ensure that the community string to be used during SNMP access is explicitly added

when starting the SNMP service.

Purpose Measures the CPU utilization of the JVM

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

64

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appers only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

7. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

65

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

Monitor ing a Java App l icat ion

66

 20. USEPS - This flag is applicable only for AIX LPARs. By default, on AIX LPARs, this test

uses the tprof command to compute CPU usage. Accordingly, the USEPS flag is set to No

by default. On some AIX LPARs however, the tprof command may not function properly

(this is an AIX issue). While monitoring such AIX LPARs therefore, you can configure the

test to use the ps command instead for metrics collection. To do so, set the USEPS flag to

Yes.

Note:

Alternatively, you can set the AIXusePS flag in the [AGENT_SETTINGS] section of the

eg_tests.ini file (in the <EG_INSTALL_DIR>\manager\config directory) to yes (default: no) to

enable the eG agent to use the ps command for CPU usage computations on AIX LPARs. If

this global flag and the USEPS flag for a specific component are both set to no, then the

test will use the default tprof command to compute CPU usage for AIX LPARs. If either of

these flags is set to yes, then the ps command will perform the CPU usage computations

for monitored AIX LPARs.

In some high-security environments, the tprof command may require some special

privileges to execute on an AIX LPAR (eg., sudo may need to be used to run tprof). In such

cases, you can prefix the tprof command with another command (like sudo) or the full path

to a script that grants the required privileges to tprof. To achieve this, edit the eg_tests.ini

file (in the <EG_INSTALL_DIR>\manager\config directory), and provide the prefix of your

choice against the AixTprofPrefix parameter in the [AGENT_SETTINGS] section. Finally, save

the file. For instance, if you set the AixTprofPrefix parameter to sudo, then the eG agent

will call the tprof command as sudo tprof.

21. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

22. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

23. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for the Java application being monitored

Monitor ing a Java App l icat ion

67

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

CPU utilization of JVM:

Indicates the percentage of total

available CPU time taken up by the

JVM.

Percent If a system has multiple processors,

this value is the total CPU time used

by the JVM divided by the number of

processors on the system.

Ideally, this value should be low. An

unusually high value or a consistent

increase in this value is indicative of

abnormal CPU usage, and could

warrant further investigation.

In such a situation, you can use the

detailed diagnosis of this measure, if

enabled, to determine which runnable

threads are currently utilizing

excessive CPU.

The detailed diagnosis of the CPU utilization of JVM measure lists all the CPU-consuming threads currently executing

in the JVM, in the descending order of the Percentage Cpu Time of the threads; this way, you can quickly and

accurately identify CPU-intensive threads in the JVM. In addition to CPU usage information, the detailed diagnosis

also reveals the following information for every thread:

 The number of times the thread was blocked during the last measurement period, the total duration of

the blocks, and the percentage of time for which the thread was blocked;

 The number of times the thread was in wating during the last measurement period, the total duration

waited, and the percentage of time for which the thread waited;

 The Stacktrace of the thread, using which you can nail the exact line of code causing the CPU

consumption of the thread to soar;

Figure 39: The detailed diagnosis of the CPU utilization of JVM measure

Monitor ing a Java App l icat ion

68

1.4.2 JVM Memory Usage Test

This test monitors every memory type on the JVM and reports how efficiently the JVM utilizes the memory resources

of each type.

 This test works only on Windows platforms.

 This test can provide detailed diagnosis information for only those monitored Java

applications that use JRE 1.6 or higher.

Purpose Monitors every memory type on the JVM and reports how efficiently the JVM utilizes the memory

resources of each type

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

69

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appers only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

70

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

20. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

Monitor ing a Java App l icat ion

71

21. HEAP ANALYSIS – By default, this flag is set to off. This implies that the test will not

provide detailed diagnosis information for memory usage, by default. To trigger the

collection of detailed measures, set this flag to On.

Note:

If heap analysis is switched On, then the eG agent will be able to collect detailed

measures only if the Java application being monitored uses JDK 1.6 OR HIGHER.

22. JAVA HOME – This parameter appears only when the HEAP ANALYSIS flag is switched

On. Here, provide the full path to the install directory of JDK 1.6 or higher on the application

host. For example, c:\JDK1.6.0.

23. EXCLUDE PACKAGES - The detailed diagnosis of this test, if enabled, lists the Java

classes/packages that are using the pool memory and the amount of memory used by

each class/package. To enable administrators to focus on the memory consumed by those

classes/packages that are specific to their application, without being distracted by the

memory consumption of basic Java classes/packages, the test, by default, excludes some

common Java packages from the detailed diagnosis. The packages excluded by default are

as follows:

 All packages that start with the string java or javax - in other words, java.* and

javax.*.

 Arrays of primitive data types - eg., [Z, which is a one-dimensional array of type

boolean, [[B, which is a 2-dimensional array of type byte, etc.

 A few class loaders - eg., <symbolKlass>, <constantPoolKlass>,

<instanceKlassKlass>, <constantPoolCacheKlass>, etc.

This is why, the EXCLUDE PACKAGES parameter is by default configured with the

packages mentioned above. You can, if required, append more packages or patterns of

packages to this comma-separated list. This will ensure that such packages also are

excluded from the detailed diagnosis of the test. Note that the EXCLUDE PACKAGES

parameter is of relevance only if the HEAP ANALSIS flag is set to 'Yes'.

24. INCLUDE PACKAGES - By default, this is set to all. This indicates that, by default, the

detailed diagnosis of the test (if enabled) includes all classes/packages associated with the

monitored Java application, regardless of whether they are basic Java packages or those

that are crucial to the functioning of the application. However, if you want the detailed

diagnosis to provide the details of memory consumed by a specific set of classes/packages

alone, then, provide a comma-separated list of classes/packages to be included in the

detailed diagnosis in the INCLUDE PACKAGES text box. Note that the INCLUDE

PACKAGES parameter is of relevance only if the HEAP ANALSIS flag is set to 'Yes'.

Monitor ing a Java App l icat ion

72

 25. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

26. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for every memory type on the JVM being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Initial memory:

Indicates the amount of memory

initially allocated at startup.

MB

 Used memory:

Indicates the amount of memory

currently used.

MB It includes the memory occupied by all

objects, including both reachable and

unreachable objects.

Ideally, the value of this measure

should be low. A high value or a

consistent increase in the value could

indicate gradual erosion of memory

resources. In such a situation, you can

take the help of the detailed diagnosis

of this measure (if enabled), to figure

out which class is using up memory

excessively.

 Available memory:

Indicates the amount of memory

guaranteed to be available for use by

the JVM.

MB The amount of Available memory

may change over time. The Java

virtual machine may release memory

to the system and committed memory

could be less than the amount of

memory initially allocated at startup.

Committed will always be greater than

or equal to used memory.

Monitor ing a Java App l icat ion

73

 Free memory:

Indicates the amount of memory

currently available for use by the

JVM.

MB This is the difference between

Available memory and Used

memory.

Ideally, the value of this measure

should be high.

 Max free memory:

Indicates the maximum amount of

memory allocated for the JVM.

MB

 Used percentage:

Indicates the percentage of used

memory.

Percent Ideally, the value of this measure

should be low. A very high value of

this measure could indicate excessive

memory consumption by the JVM,

which in turn, could warrant further

investigation. In such a situation, you

can take the help of the detailed

diagnosis of this measure (if enabled),

to figure out which class is using up

memory excessively.

The detailed diagnosis of the Used memory measure, if enabled, lists all the classes that are using the pool memory,

the amount and percentage of memory used by each class, the number of instances of each class that is currently

operational, and also the percentage of currently running instances of each class. Since this list is by default sorted in

the descending order of the percentage memory usage, the first class in the list will obviously be the leading memory

consumer.

Figure 40: The detailed diagnosis of the Used memory measure

Monitor ing a Java App l icat ion

74

1.4.3 JVM Uptime Test

This test tracks the uptime of a JVM. Using information provided by this test, administrators can determine whether

the JVM was restarted. Comparing uptime across Java applications, an admin can determine the JVMs that have been

running without any restarts for the longest time.

Purpose Tracks the uptime of a JVM

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

75

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appears only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

76

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

Monitor ing a Java App l icat ion

77

20. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

21. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

22. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for every Java application monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

Monitor ing a Java App l icat ion

78

test Has JVM been restarted?:

Indicates whether or not the JVM has

restarted during the last

measurement period.

 If the value of this measure is No, it

indicates that the JVM has not

restarted. The value Yes on the other

hand implies that the JVM has indeed

restarted.

The numeric values that correspond to

the restart states discussed above are

listed in the table below:

State Value

Yes 1

No 0

Note:

By default, this measure reports the

value Yes or No to indicate whether a

JVM has restarted. The graph of this

measure however, represents the

same using the numeric equivalents –

0 or 1.

 Uptime during the last measure

period:

Indicates the time period that the

JVM has been up since the last time

this test ran.

Secs If the JVM has not been restarted

during the last measurement period

and the agent has been running

continuously, this value will be equal

to the measurement period. If the JVM

was restarted during the last

measurement period, this value will be

less than the measurement period of

the test. For example, if the

measurement period is 300 secs, and

if the JVM was restarted 120 secs

back, this metric will report a value of

120 seconds. The accuracy of this

metric is dependent on the

measurement period – the smaller the

measurement period, greater the

accuracy.

 Total uptime of the JVM:

Indicates the total time that the JVM

has been up since its last reboot.

Secs Administrators may wish to be alerted

if a JVM has been running without a

reboot for a very long period. Setting a

threshold for this metric allows

administrators to determine such

conditions.

1.4.4 JVM Leak Suspects Test

Java implements automatic garbage collection (GC); once you stop using an object, you can depend on the garbage

collector to collect it. To stop using an object, you need to eliminate all references to it. However, when a program

Monitor ing a Java App l icat ion

79

never stops using an object by keeping a permanent reference to it, memory leaks occur. For example, let’s consider

the piece of code below:

Figure 41: A sample code

In the example above, we continue adding new elements to the list memoryLeakArea without ever removing

them. In addition, we keep references to the memoryLeakArea, thereby preventing GC from collecting the list

itself. So although there is GC available, it cannot help because we are still using memory. The more time passes the

more memory we use, which in effect requires an infinite amount memory for this program to continue running.

When no more memory is remaining, an OutOfMemoryError alert will be thrown and generate an exception like this:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at

MemoryLeakDemo.main(MemoryLeakDemo.java:14)

Typically, such alerts signal a potential memory leak!

A memory leak can diminish the performance of your mission-critical Java applications by reducing the amount of

available memory. Eventually, in the worst case, it may cause the application to crash due to thrashing. To avert

such unwarranted application failures, it is imperative that memory leaks are detected at the earliest and the objects

responsible for them accurately isolated. This is where, the JVM Leak Suspects test helps! This test continuously

monitors the JVM heap usage and promptly alerts administrators when memory usage crosses a configured limit. The

detailed diagnostics of the test will then lead you to the classes that are consuming memory excessively, thereby

pointing you to those classes that may have caused the leak.

This test will work only if the monitored Java application uses JRE 1.6 or higher.

Monitor ing a Java App l icat ion

80

This test is disabled by default. To enable the test, follow the Agents -> Tests -> Enable/Disable menu sequence.

Select Java application as the Component type and Performance as the Test type. From the DISABLED TESTS list, pick

this test and click the Enable button to enable it.

Purpose Continuously monitors the JVM heap usage and promptly alerts administrators when memory

usage crosses a configured limit

Target of the

test

A Java application

Agent

deploying the

test

An internal/remote agent

Monitor ing a Java App l icat ion

81

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens

4. MODE – This test can extract metrics from the Java application using either of the

following mechanisms:

 Using SNMP-based access to the Java runtime MIB statistics;

 By contacting the Java runtime (JRE) of the application via JMX

To configure the test to use SNMP, select the SNMP option. On the other hand, choose the

JMX option to configure the test to use JMX instead. By default, the JMX option is chosen

here.

5. JMX REMOTE PORT – This parameter appears only if the MODE is set to JMX. Here,

specify the port at which the JMX listens for requests from remote hosts. Ensure that you

specify the same port that you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 3).

6. USER, PASSWORD, and CONFIRM PASSWORD – These parameters appear only if the

MODE is set to JMX. If JMX requires authentication only (but no security), then ensure that

the USER and PASSWORD parameters are configured with the credentials of a user with

read-write access to JMX. To know how to create this user, refer to Section 1.1.1.2.

Confirm the password by retyping it in the CONFIRM PASSWORD text box.

7. JNDINAME – This parameter appears only if the MODE is set to JMX. The JNDINAME is a

lookup name for connecting to the JMX connector. By default, this is jmxrmi. If you have

resgistered the JMX connector in the RMI registery using a different lookup name, then

you can change this default value to reflect the same.

8. SNMPPORT – This parameter appears only if the MODE is set to SNMP. Here specify the

port number through which the server exposes its SNMP MIB. Ensure that you specify the

same port you configured in the management.properties file in the

<JAVA_HOME>\jre\lib\management folder used by the target application (see page 15).

9. SNMPVERSION – This parameter appears only if the MODE is set to SNMP. The default

selection in the SNMPVERSION list is v1. However, for this test to work, you have to

select SNMP v2 or v3 from this list, depending upon which version of SNMP is in use in the

target environment.

10. SNMPCOMMUNITY – This parameter appears only if the MODE is set to SNMP. Here,

specify the SNMP community name that the test uses to communicate with the mail server.

The default is public. This parameter is specific to SNMP v1 and v2 only. Therefore, if the

SNMPVERSION chosen is v3, then this parameter will not appear.

Monitor ing a Java App l icat ion

82

 11. USERNAME – This parameter appears only when v3 is selected as the SNMPVERSION.

SNMP version 3 (SNMPv3) is an extensible SNMP Framework which supplements the

SNMPv2 Framework, by additionally supporting message security, access control, and

remote SNMP configuration capabilities. To extract performance statistics from the MIB

using the highly secure SNMP v3 protocol, the eG agent has to be configured with the

required access privileges – in other words, the eG agent should connect to the MIB using

the credentials of a user with access permissions to be MIB. Therefore, specify the name of

such a user against the USERNAME parameter.

12. AUTHPASS – Specify the password that corresponds to the above-mentioned

USERNAME. This parameter once again appears only if the SNMPVERSION selected is

v3.

13. CONFIRM PASSWORD – Confirm the AUTHPASS by retyping it here.

14. AUTHTYPE – This parameter too appears only if v3 is selected as the SNMPVERSION.

From the AUTHTYPE list box, choose the authentication algorithm using which SNMP v3

converts the specified USERNAME and PASSWORD into a 32-bit format to ensure

security of SNMP transactions. You can choose between the following options:

 MD5 – Message Digest Algorithm

 SHA – Secure Hash Algorithm

15. ENCRYPTFLAG – This flag appears only when v3 is selected as the SNMPVERSION. By

default, the eG agent does not encrypt SNMP requests. Accordingly, the ENCRYPTFLAG

is set to NO by default. To ensure that SNMP requests sent by the eG agent are encrypted,

select the YES option.

16. ENCRYPTTYPE – If the ENCRYPTFLAG is set to YES, then you will have to mention the

encryption type by selecting an option from the ENCRYPTTYPE list. SNMP v3 supports

the following encryption types:

 DES – Data Encryption Standard

 AES – Advanced Encryption Standard

17. ENCRYPTPASSWORD – Specify the encryption password here.

18. CONFIRM PASSWORD – Confirm the encryption password by retyping it here.

19. TIMEOUT - This parameter appears only if the MODE is set to SNMP. Here, specify the

duration (in seconds) within which the SNMP query executed by this test should time out in

the TIMEOUT text box. The default is 10 seconds.

Monitor ing a Java App l icat ion

83

 20. PCT HEAP LIMIT - This test counts all those classes that are consuming memory beyond

the limit (in percentage) specified against PCT HEAP LIMIT as ‘memory leak suspects’.

This count is reported as the value of the Leak suspect classes measure. By default, 30

(%) is the PCT HEAP LIMIT. This implies that the test, by default, reports each class that

consumes over 30% of the Allocated heap memory as a Leak suspect class. Such classes

are listed as part of detailed diagnostics.

21. DATA OVER TCP – This parameter is applicable only if MODE is set to SNMP. By default,

in an IT environment, all data transmission occurs over UDP. Some environments however,

may be specifically configured to offload a fraction of the data traffic – for instance, certain

types of data traffic or traffic pertaining to specific components – to other protocols like

TCP, so as to prevent UDP overloads. In such environments, you can instruct the eG agent

to conduct the SNMP data traffic related to the equalizer over TCP (and not UDP). For this,

set the DATA OVER TCP flag to Yes. By default, this flag is set to No.

22. DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

23. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

 The eG manager license should allow the detailed diagnosis capability

 Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for every Java application monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Allocated Heap Memory:

Indicates the total amount of memory

space occupied by the objects that

are currently loaded on to the JVM.

MB

Monitor ing a Java App l icat ion

84

 Leak suspected classes:

Indicates the number of classes that

are memory leak suspects.

Number Use the detailed diagnosis of this

measure to know which classes are

using more memory than the

configured PCT HEAP LIMIT.

Remember that all applications/classes

that throw OutofMemory exceptions

need not be guilty of leaking memory.

Such an exception can occur even if a

class requires more memory for

normal functioning. To distinguish

between a memory leak and an

application that simply needs more

memory, we need to look at the "peak

load" concept. When program has just

started no users have yet used it, and

as a result it typically needs much less

memory then when thousands of users

are interacting with it. Thus,

measuring memory usage immediately

after a program starts is not the best

way to gauge how much memory it

needs! To measure how much memory

an application needs, memory size

measurements should be taken at the

time of peak load—when it is most

heavily used. Therefore, it is good

practice to check the memory usage of

the ‘suspected classes’ at the time of

peak load to determine whether they

are indeed leaking memory or not.

 Number of objects:

Indicates the number of objects

present in the JVM.

Number Use the detailed diagnosis of this

measure to view the top-20 classes in

the JVM in terms of memory usage.

 Number of classes:

Indicates the number of classes

currently present in the JVM.

Number

 Number of class loaders:

Indicates the number of class loaders

currently present in the JVM.

Number

Monitor ing a Java App l icat ion

85

 Number of GC roots:

Indicate the number of GC roots

currently present in the JVM.

Number A garbage collection root is an object

that is accessible from outside the

heap. The following reasons make

an object a GC root:

Reason Description

System Class Class loaded by

bootstrap/syste

m class loader.

For example,

everything from

the rt.jar

like java.util.

JNI Local Local variable in

native code,

such as user

defined JNI

code or JVM

internal code

JNI Global Global variable

in native code,

such as user

defined JNI

code or JVM

internal code

Thread Block Object referred

to from a

currently active

thread block

Thread A started, but

not stopped,

thread

Monitor ing a Java App l icat ion

86

 Busy Monitor Everything that

has

called wait() or

notify() or that

is synchronized.

For example, by

calling synchro

nized(Object)

or by entering a

synchronized

method. Static

method means

class, non-static

method means

object

Java Local Local variable.

For example,

input

parameters or

locally created

objects of

methods that

are still in the

stack of a

thread.

Native Stack In or out

parameters in

native code,

such as user

defined JNI

code or JVM

internal code. or

reflection.

Monitor ing a Java App l icat ion

87

 Finalizer An object which

is in a queue

awaiting its

finalizer to be

run.

Unfinalized An object which

has a finalize

method, but has

not been

finalized and is

not yet on the

finalizer queue.

Unreachable An object which

is unreachable

from any other

root, but has

been marked as

a root by MAT

to retain objects

which otherwise

would not be

included in the

analysis.

Unknown An object of

unknown root

type.

 Objects pending for finalization:

Indicates the number of objects that

are pending for finalization.

Number Sometimes an object will need to

perform some action when it is

destroyed. For example, if an object is

holding some non-java resource such

as a file handle or window character

font, then you might want to make

sure these resources are freed before

an object is destroyed. To handle such

situations, Java provides a mechanism

called finalization. By using finalization,

you can define specific actions that will

occur when an object is just about to

be reclaimed by the garbage collector.

A high value for this measure indicates

the existence of many objects that are

still occupying the JVM memory space

and are unable to be reclaimed by GC.

A consistent rise in this value is also a

sign of a memory leak.

The detailed diagnosis of the Leak suspected classes measure lists the names of all classes for which the memory

usage is over the configured PCT HEAP LIMIT. In addition, the detailed diagnosis also reveals the PERCENTAGE

RETAINED HEAP of each class - this is the percentage of the total Allocated heap size that is used by every class. From

this, you can easily infer which class is consuming the maximum memory, and is hence, the key memory leak

Monitor ing a Java App l icat ion

88

suspect. By observing the memory usage of this class during times of peak load, you can corroborate eG’s findings -

i.e., you can know for sure whether that class is indeed leaking memory or not!

Figure 42: The detailed diagnosis of the Leak suspect classes measure

The detailed diagnosis of the Number of objects measure lists the names of the top-20 classes in the JVM, in terms

of memory usage. In addition, the detailed diagnosis also reveals the PERCENTAGE RETAINED HEAP of each class - this

is the percentage of the total Allocated heap size that is used by every class. From this, you can easily infer which

class is consuming the maximum memory, and is hence, the key memory leak suspect. By observing the memory

usage of this class during times of peak load, you can corroborate eG’s findings - i.e., you can know for sure whether

that class is indeed leaking memory or not!

Figure 43: The detailed diagnosis of the Number of objects measure

1.5 What the eG Enterprise Java Monitor Reveals?
This section discusses how administrators can effortlessly and accurately diagnose the root-cause of issues

experienced by Java applications, using thclasse eG JVM Monitor. Each of the sub-sections that follow take the case

of a sample application problem, and illustrates the steps to be followed to troubleshoot the problem in the eG

monitoring console.

Monitor ing a Java App l icat ion

89

1.5.1 Identifying and Diagnosing a CPU Issue in the JVM

In this section, let us consider the case of the Java application, sapbusiness-152:123, which is being monitored by eG

Enterprise. Assume that this application is running on a Tomcat server.

Initially, the application was functioning normally, as indicated by Figure 44. There are no high CPU threads.

Figure 44: The Java application being monitored functioning normally

Now, assume that suddenly, one of the threads executed by the application starts to run abnormally, consuming

excessive CPU resources. This is indicated by a change in the value of the High cpu threads measure reported by the

JVM Threads test mapped to the JVM Internals layer of the Java Application monitoring model (see Figure 44). As you

can see, as long as the sapbusiness application was performing well, the value of the High cpu threads measure was

0 (see Figure 44). However, as soon as a thread began exhibiting abnormal CPU usage trends, the value changed to

1 (see Figure 45).

Monitor ing a Java App l icat ion

90

Figure 45: The High cpu threads measure indicating that a single thread is consuming CPU excessively

To know which thread is consuming too much CPU, click on the DIAGNOSIS icon (i.e., the magnifying glass icon)

corresponding to the High cpu threads measure in Figure 45. Figure 46 then appears revealing the name of the CPU-

intensive thread (SapBusinessConnectorThread) and the percentage of CPU used by the thread during the last

measurement period. In addition, Figure 46 also reveals the number of times the thread was blocked, the total

duration of the blocks, the number of times the thread was in waiting, and the percentage of time waited, thereby

revealing how resource-intensive the thread has been during the last measurement period.

Figure 46: The detailed diagnosis of the High cpu threads measure

Let us now get back to the CPU usage issue. Now that we know which thread is causing the CPU usage spike, we

next need to determine what is causing this thread to erode the CPU resources. To facilitate this analysis, the

detailed diagnosis page of Figure 46 also provides the Stack Trace for the thread. You might have to scroll left to

view the complete Stack Trace of the thread (see Figure 47).

Monitor ing a Java App l icat ion

91

Figure 47: Viewing the stack trace as part of the detailed diagnosis of the High cpu threads measure

The stack trace is useful in determining exactly which line of code the thread was executing when we took the last

diagnosis snapshot and what was the code execution path that the thread had taken.

To view the stack trace of the CPU-intensive thread more clearly and to analyze it closely, click on the icon in

Figure 47 or the Stack Trace label adjacent to the icon. Figure 48 then appears.

Figure 48: Stack trace of the CPU-intensive thread

As you can see, Figure 48 provides two panels. The left panel of Figure 48, by default, displays all the high CPU-

consuming threads sorted in the descending order of their CPU usage. Accordingly, the High cpu threads measure is

chosen by default from the Measurement list, and the Percentage Cpu Time is the default selection in the Sort By list

in Figure 48. These default selections can however be changed by picking a different option from the Measurement

and Sort By lists.

The right panel on the other hand, typically displays the current state, overall resource usage, and the Stack Trace

for the thread chosen from the left panel. By default however, the right panel provides the stack trace for the leading

CPU consumer.

In the case of our example, since only a single thread is currently utilizing CPU excessively, the name of that thread

(i.e, SapBusinessConnectorThread) alone will appear in the left panel of Figure 48. The right panel too therefore, will

display the details of the SapBusinessConnectorThread only. Let us begin to analyze the Stack Trace of this thread

carefully.

Stack trace information should always be viewed in a top-down manner. The method most likely to be the cause of

the problem is the one on top. In the example of Figure 48, this is com.ibc.sap.logic.LogicBuilder.createLogic. The

line of code that was executed last when the snapshot was taken is within the createLogic method of the

com.ibc.sap.logic.LogicBuilder class. This is line number 216 of the LogicBuilder.java source file. The subsequent lines

Monitor ing a Java App l icat ion

92

of the stack trace indicate the sequence of method calls that resulted in com.ibc.sap.logic.LogicBuilder.createLogic

being invoked. In this example, com.ibc.sap.logic.LogicBuilder.createLogic has been invoked from the method

com.ibc.sap.SapBusinessLogic.getLogic. This invocation has been done by line 515 of SapBusinessLogic.java source

file.

To verify if the stack trace is correct in identifying the exact line of the source code that is responsible for the sudden

increase in CPU consumption by the SapBusinessConnectorThread, let us review the LogicBuilder.java file in an editor

(see Figure 49).

Figure 49: The LogicBuilder.java file

Figure 49 indicates line 216 of the LogicBuilder.java file. At this line, a while loop seems to have been initiated. This

code is supposed to loop 1,500,000 times and then sleep waiting for count to decrease. Instead, a problem in the

code – the value of count being reset to 0 at line 222 - is causing the while loop to execute forever, thereby resulting

in one of the threads in the JVM taking a lot of CPU. Deleting the code at line 222 would solve this problem. Once

this is done, then the SapConnectorThread will no longer consume too much CPU; this in turn will decrement the

value of the High Cpu threads measure by 1 (see Figure 50).

Monitor ing a Java App l icat ion

93

Figure 50: The High cpu threads measure reporting a 0 value

With that, we have seen how a simple sequence of steps bundled into the eG JVM Monitor, help an administrator in

identifying not only a CPU-intensive thread, but also the exact line of code executed by that thread that could be

triggering the spike in usage.

1.5.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM

This section once again takes the example of the sapbusiness application used by Section 1.4.1. Here, we will see

how the eG JVM Monitor instantly identifies blocked threads, and intelligently diagnoses the reason for the blockage.

If a thread executing within the sapbusiness application gets blocked, the value of the Blocked threads measure

reported by the JVM Threads test mapped to the JVM Internals layer, gets incremented by 1. When this happens, eG

Enterprise automatically raises this as a problem condition and changes the state of the Blocked threads measure

(see Figure 51).

Monitor ing a Java App l icat ion

94

Figure 51: The value of the Blocked threads measure being incremented by 1

According to Figure 51, the eG JVM Monitor has detected that a thread running in the sapclient application has been

blocked. To know which thread this is and for how long it has been blocked, click on the DIAGNOSIS icon

corresponding to the Blocked threads measure. Figure 52 will then appear revealing the name of the blocked thread,

how long it was blocked, the CPU usage of the thread, and the time for which the thread was in waiting.

Figure 52: The detailed diagnosis of the Blocked threads measure revealing the details of the blocked thread

Figure 52 clearly indicates that the DatabaseConnectorThread running in the sapbusiness application was blocked

100% of the time. The next step is to figure out who or what is blocking the thread, and why. To achieve this, we

need to analyze the stack trace information of the blocked thread. To access the stack trace of the

DatabaseConnectorThread, click on the icon in Figure 52 or the Stack Trace label adjacent to the icon. Figure 53

then appears.

Monitor ing a Java App l icat ion

95

Figure 53: The Stack Trace of the blocked thread

While the left panel of Figure 53 displays the DatabaseConnectorThread, the right panel provides the following

information about the DatabaseConnectorThread:

 The Thread State indicating the thread that is blocking the DatabaseConnectorThread, and the object

on which the block occurred; from the right panel of Figure 53, we can infer that the

DatabaseConnectorThread has been blocked on the java.lang.Strin@11bebad object owned by the

ObjectManagerThread.

 The CPU usage of the DatabaseConnectorThread, and the number of times and duration for which this

thread has been blocked and has been in waiting;

 The Stack Trace of the DatabaseConnectorThread.

Now that we have identified the blocked thread, let us proceed to determine the root-cause for this block. For this

purpose, the Stack Trace of the DatabaseConnectorThread needs to be analyzed. As stated earlier, the stack trace

needs to be analyzed in the top-down manner to identify the method that could have caused the block. Accordingly,

we can conclude that the first method in the Stack Trace in Figure 53 is most likely to have introduced the block.

This method, as can be seen from Figure 21, executes the lines of code starting from line 126 contained within the

Java program file named DbConnection.java. In all probability, the problem should exist in this code block only.

Reviewing this code block can therefore shed more light on the reasons for the DatabaseConnectorThread getting

blocked. Hence, let us first open the DbConnection.java file in an editor (see Figure 54).

Monitor ing a Java App l icat ion

96

Figure 54: The DbConnection.java program file

Line 126 of Figure 54 is within a synchronized block. The object used to synchronize the accesses to this block is a

variable named “sync”. Looking at the variable declarations at the top of the source code, we can see that the “sync”

variable refers to the static string “test” (see Figure 37).

Figure 55: The lines of code preceding line 126 of the DbConnection.java program file

By comparing information form stack trace and the source we can see that the DatabaseConnectorThread is stuck

entering the synchronized block. Access to the synchronized block is exclusive – so some other thead is blocking this

DatabaseConnectorThread from entering the synchronized block. Looking at the stack trace again (see Figure 35),

we can see the name of the blocking thread. The blocking thread is the thread named “ObjectManagerThread”.

We can now use the stack trace tool again to see the stack trace of the blocking ObjectManagerThread.

Monitor ing a Java App l icat ion

97

Figure 56: Viewing the stack trace of the ObjectManagerThread

From here, we can see that the ObjectManagerThread went into a timed waiting state at line number 26 of the

ObjectManager.java source code.

Figure 57: The lines of code in the ObjectManager.java source file

Monitor ing a Java App l icat ion

98

Again, using a text editor, we can see that the ObjectManager thread enters a 3600 second timed wait at line 26.

This sleep call is inside a synchronized block with the local variable “mysync” being used as the object to synchronize

on.

The key to troubleshooting this problem is to look at the variable declarations at the top of each source code file.

On the surface, it is not clear why the ObjectManager thread, which synchronizes a block using a variable called

“mysync” which is local to this class would be blocked by the DbConnection thread, which synchronizes on a variable

called “sync” that is local to the DbConnection class.

An astute java programmer, however, would know to look at the variable declarations at the top of each source code

file. In that way, one will quickly observe that both the "mysync" variable of the ObjectManager class and the "sync"

variable of the DbConnection class in fact refer to the same static string: “test”.

Figure 58: Comparing the ObjectManager and DbConnection classes

So, even though the programmer has given two different variable names in the two classes, the two classes refer to

and are synchronizing on the same static string object “test”. This is why two unrelated threads are interfering with

each other’s execution.

Modifying the two classes – ObjectManager and DbConnection – so that the variables "mysync" and "sync" point to

two different strings by using the new object creator resolves the problem in this case.

We have demonstrated here a real-world example, where because of the careless use of variables, one could end up

in a scenario where one thread blocks another. The solution in this case to avoid this problem is to define non-static

variables that the two classes can use for synchronization. This example has demonstrated how the eG Java Monitor

can help diagnose and resolve a complex multi-thread synchronization problem in a Java application.

1.5.3 Identifying and Diagnosing a Thread Waiting Situation in the
JVM

This section takes the help of the sapbusiness application yet again to demonstrate how the eG JVM Monitor quickly

isolates waiting threads and identifies the root-cause for the thread waits.

Whenever a thread goes into waiting, the value of the Waiting threads measure reported by the JVM Threads test

mapped to the JVM Internals layer gets incremented by 1 (see Figure 59).

Monitor ing a Java App l icat ion

99

Figure 59: The Waiting threads

To know which threads are in waiting, click on the DIAGNOSIS icon corresponding to the Waiting threads measure in

Figure 59. Figure 60 then appears listing all the threads that are currently in waiting.

Figure 60: The detailed diagnosis of the Waiting threads measure

Of the threads listed in Figure 60, those that begin with http* are Tomcat’s java threads. For these threads to be in a

waiting state is normal, and hence, these threads can be ignored. Only the SessionController thread indicated by

Figure 60 is an application-specific thread. To know why this thread has been in waiting, you need to study the stack

trace of the thread; for this, first scroll to the left of Figure 60. You will then be able to view the stack trace of the

thread.

Monitor ing a Java App l icat ion

100

Figure 61: Viewing the stack trace of the waiting thread

If you want to view the stack trace more clearly, click on the icon in Figure 61 or the Stack Trace label adjacent to

the icon. Figure 62 then appears.

Figure 62: The Thread Diagnosis window for Waiting threads

The left panel of Figure 62 lists all the waiting threads, with the thread that registered the highest waiting time

being selected by default. Since we are interested in the user-defined SessionController thread, select it from the left

panel. The right panel will then change as depicted by Figure 63 below.

Monitor ing a Java App l icat ion

101

Figure 63 : The stack trace for the SessionController thread

A close look at the stack trace reveals that the thread could have gone into the waiting mode while executing the

code block starting at line 215 of the UserSession.java program file. To zero-in on the precise code that could have

caused the thread to wait, open the UserSession.java file in an editor, and locate line 215 in it.

Figure 64: The UserSession.java file

The code block starting at line 215 of Figure 64 explicitly puts the thread in the wait state until such time that the

notify() method is called to change the wait state to a runnable state. This piece of code will have to be optimized to

reduce or even completely eliminate the waiting period of the SessionController thread.

With that, we have demonstrated the eG JVM Monitor’s ability to detect waiting threads and lead you to the precise

line of code that could have put the threads in a wait state.

Monitor ing a Java App l icat ion

102

1.5.4 Identifying and Diagnosing a Thread Deadlock Situation in the
JVM

In this section, the sapclient application is used one more time to explain how the eG JVM Monitor can be used to

report on deadlock situations in your JVM, and to diagnose the root-cause of the deadlock.

Until a deadlock situation arises, the Deadlock threads measure reported by the JVM Threads test will report only 0 as

its value (see Figure 65).

Figure 65: The JVM Threads test reporting 0 Deadlock threads

When, say 2 threads are deadlocked for a particular resource/object, then the Deadlock threads measure will report

the value 2, as depicted by Figure 66. Since a deadlock situation arises when two/more threads try to block each

other from accessing a memory object or a resource, the value of the Blocked threads measure too will increase in

the event of a deadlock; in the case of our example therefore, you will find that the Blocked threads measure too

reports the value 2.

Monitor ing a Java App l icat ion

103

Figure 66: The Deadlock threads measure value increasing in the event of a deadlock situation

To know which threads are in a deadlock, click on the DIAGNOSIS icon corresponding to the Deadlock threads

measure. Figure 67 then appears.

Figure 67: The detailed diagnosis page revealing the deadlocked threads

Figure 67 clearly reveals that 2 threads, namely – the ResourceDataTwo and the ResourceDataOne thread- are in a

deadlock currently. To figure out why these two threads are deadlocked, you would have to carefully review the

stack trace of both these threads. For this purpose, scroll to the left of Figure 67 to view the stack trace clearly.

Figure 68: Viewing the stack trace of the dadlocked threads in the detailed diagnosis page

Monitor ing a Java App l icat ion

104

To keenly focus on the stack trace, without being distracted by the other columns in Figure 67 and Figure 68, click on

the icon in Figure 68 or the Stack Trace label adjacent to the icon. Figure 69 then appears.

Figure 69: The stack trace for the ResourceDataOne thread

The left panel of Figure 69 lists the 2 deadlocked threads, with the thread that is the leading CPU consumer being

selected by default – in the case of our example, this is the ResourceDataOne thread. For this default selection, the

contents of the right panel will be as depicted by Figure 69 above. From the Thread State, it is evident that the

ResourceDataOne thread has been blocked on an object that is owned by the ResourceDataTwo thread.

If you closely scrutinize the stack trace of ResourceDataOne, you will uncover that once the thread started running, it

executed line 40 of the ResourceMonitor.java program file, which in turn invoked line 68 of the same file; the

deadlock appears to have occurred at line 68 only.

Let us now shift our focus to the ResourceDataTwo thread. To view the stack trace of this thread, click on the thread

name in the left panel of Figure 69. As you can see, the Thread State clearly indicates that the ResouceDataTwo

thread has been blocked by the ResourceDataOne thread. With that, we can conclude that both threads are blocking

each other, thus making for an ideal deadlock situation.

Analysis of the stack trace of the ResourceDataTwo thread (see Figure 70) reveals that once started, the thread

executed line 94 of the ResourceMonitor.java file, which in turn invoked line 21 of the same file; since no lines of

code have been executed subsequently, we can conclude that the deadlock occurred at line 21 only.

Monitor ing a Java App l icat ion

105

Figure 70 : The stack trace for the ResourceDataTwo thread

From the above discussion, we can infer both the threads deadlocked while attempting to execute code contained

within the ResourceMonitor.java file. We now need to examine the code in this file to figure out why the deadlock

occurred. Let us therefore open the ResourceMonitor.java file.

Figure 71: The lines of code executed by the ResourceDataOne thread

If you can recall, the stack trace of the ResourceDataOne thread indicated a problem while executing the code

around line number 68 (see Figure 69) of the ResourceMonitor.java file. Figure 71 depicts this piece of code.

According to this code, the ResourceDataOne thread calls a lockSecondResource() method, which in turn invokes a

synchronized block that puts the thread to sleep for 500 milliseconds; a synchronized method, when called by a

thread, cannot be invoked by any other thread until its original caller releases the method.

Going back to Figure 71, at the end of the sleep duration of 500 milliseconds, the synchronized block will invoke

another method named lockFirstResource(). However, note that this method and the lockSecondResource() method

are also called by the ResourceDataTwo thread. To verify this, let us proceed to review the lines of code executed by

the ResourceDataTwo thread (see Figure 72).

Monitor ing a Java App l icat ion

106

Figure 72: The lines of code executed by the ResourceDataTwo thread

As per the stack trace corresponding to the ResourceDataTwo thread (see Figure 70), the deadlock creeps in at line

21 of the ResourceMonitor.java file. Figure 72 depicts the code around line 21 of the ResourceMonitor.java file. This

code reveals that the ResourceDataTwo thread executes a lockFirstResource()method, which in turn invokes a

synchronized block; within this block, the thread is put to sleep for 500 milliseconds. Once the sleep ends, the block

will invoke the lockSecondResource() method; both this method and the lockFirstResource() method are also

executed by the ResourceDataOne thread.

From the discussion above, the following are evident:

 The ResourceDataOne thread will not be able to execute the lockSecondResource() method, since the

ResourceDataTwo thread calls this method within a synchronized block – this implies that the

ResourceDataTwo thread will ‘block’ the ResourceDataOne thread from executing the

lockSecondResource() method until such time that ResourceDataTwo executes the method.

 The ResourceDataTwo thread on the other hand, will not be able to execute the lockFirstResource()

method, since the ResourceDataOne thread calls this method within a synchronized block – this

implies that the ResourceDataOne thread will ‘block’ the ResourceDataTwo thread from executing the

lockFirstResource() method until such time that ResourceDataOne executes the method.

Since both threads keep blocking each other, a deadlock situation occurs.

With that, we have demonstrated the eG JVM Monitor’s ability to detect deadlock threads and lead you to the precise

line of code that could have caused the deadlock.

1.5.5 Identifying and Diagnosing Memory Issues in the JVM

This section takes the example of the sapclient application again to demonstrate the effectiveness of the eG JVM

Monitor in proactively detecting and alerting administrators to memory contentions experienced by Java applications.

If the usage of a memory pool increases, the eG JVM Monitor indicates the same using the Used memory measure

for that pool reported by the JVM Memory Usage test mapped to the JVM Engine layer.

Monitor ing a Java App l icat ion

107

Figure 73: The Used memory measure indicating the amount of pool memory being utilized

To know which class is consuming memory excessively, click on the DIAGNOSIS icon corresponding to the Used

memory measure in Figure 73. Figure 74 then appears listing all the classes that are using the pool memory, the

amount and percentage of memory used by each class, the number of instances of each class that is currently

operational, and also the percentage of currently running instances of each class. Since this list is by default sorted in

the descending order of the percentage memory usage, the first class in the list will obviously be the leading memory

consumer. In the case of our example, the memory contention in the sapbusiness application has been caused by the

22% heap memory usage of the com.ibc.object.SapBusinessObject class.

Figure 74: The detailed diagnosis of the Used memory measure

Sometimes, you might want to sort the classes by another column or quickly switch to another measurement period

to analyze the memory usage during that time frame. To achieve this, click on the Heap Details link or the button

next to it. Figure 53 then appears, allowing you the flexibility to view memory-consuming classes based on a Sort by

option and a Measurement Time of your choice.

Monitor ing a Java App l icat ion

108

Figure 75: Choosing a different Sory By option and Measurement Time

Careful examination of the method that calls the SapBusinessObject (see Figure 76) reveals that an endless while

loop is causing an array list named a to be populated with 20,000 instances of the SapBusinessObject, every 10

seconds! The continuous addition of objects is quiet obviously depleting the memory available to the JVM.

Figure 76: The method that is invoking the SapBusinessObject

This is how the eG JVM Monitor greatly simplifies the process of identifying the source of memory bottlenecks in a

Java application.

Monitor ing a Java App l icat ion

109

1.5.6 Identifying and Diagnosing the Root-Cause of Slowdowns in
Java Transactions

This section takes the example of a Java application to demonstrate how effectively the eG JTM Monitor identifies

transactions that are responding slowly and isolates the root-cause of the slowdown.

If one/more transactions executing on a Java application experience a slowdown, the Slow Transactions measure of

the Java Transactions test captures the delay and reports the count of transactions that have been affected. From

Figure 77, it is evident that 11 transactions executiing on the sample Java application in our example are slowing

down. Too many slow transactions to an application can significantly damage the user experience with that

application - this is why, this problem has been flagged as a Critical problem by the eG Enterprise system, and the

state of the Slow Transactions measure has been set as Critical. The Slow transactions response time measure

reported by the same test indicates how slowly these transactions are responding. To know which transactions are

slow, click on the 'magnifying glass' icon adjacent to the Slow transactions response time measure.

Figure 77: The layer model of a sample Java application indicating too many slow transactions

This will lead you to Figure 78, where you can view the URL of the top-10 (by default) slow transactions. These

transactions will be arranged in the descending order of the TOTAL RESPONSE TIME. We can thus conclude that the

transaction with the URL, "/StrutsDemo/login;jsessionid=...", with the highest response time of over 1.5 seconds, is

the slowest transaction on the target application. But, what is causing this slowdown and where did it originate? The

SUBCOMPONENT DETAILS column of Figure 78 answers these questions.

Monitor ing a Java App l icat ion

110

Figure 78: The detailed diagnosis of the Slow transactions response time measure

When a user initiates a transaction to a Java-based web application, the transaction typically travels many

layers/sub-components (in Java) before completing execution and sending out a response to the user. These

layers/sub-components can be FILTERS, STRUTS, JSPs, SERVLETS, POJOs, JAVA MAIL APIs, JDBC QUERIES, or SQL

STATEMENTS. A variety of methods are typically invoked at each layer/sub-component. A delay in the execution of

any of these methods/queries can impact the execution of the transaction. The SUBCOMPONENT DETAILS column of

Figure 78 will reveal the layers/sub-components that the corresponding transaction visited during its journey, and the

time the transaction spent at each layer/sub-component. Using this information, you can quickly identify the

layer/sub-component at which the slowdown might have occurred. In the case of our example, the POJO sub-

component, with a total response time of over 1.3 seconds, is guilty of consuming too much time. We can thus

conclude that the slowdown may have originated at the POJO layer. But, which method is causing the slowdown? To

figure this out, click on the URL Tree icon in Figure 78. This will invoke Figure 79.

Monitor ing a Java App l icat ion

111

Figure 79: The At-A-Glance tab page of the URL tree

In the left panel of Figure 79, you will find the list of slow transactions sorted in the descending order of their Total

Response Time. By default, the slowest transaction in our example, the "/StrutsDemo/login;jsessionid=...", will be

chosen from the left panel. The At-A-Glance tab page, which will be open by default in the right panel, will provide

quick, yet deep insights into the performance of the chosen transaction and the reasons for its slowness.

You can take a look at the Method Level Breakup section in the At-A-Glance tab page to figure out which method

called by which layer/sub-component (such as FILTER, STRUTS, SERVLETS, JSPS, POJOS, SQL, JDBC, etc.) could have

caused the slowdown. This section provides a horizontal bar graph, which reveals the percentage of time the chosen

transaction spent executing each of the top methods (in terms of execution time) invoked by it. The legend below

clearly indicates the top methods and the layer/sub-component that invoked each method. Previously, we had

deduced that one/more methods invoked at the POJO layer could have hampered transaction execution. The bar

graph and the legend in the Method Level Breakup section corroborate this finding, as the most time-consuming

method, as inferred from Figure 79, is the org.dom5j.io.SAXReaer.read(InputSource), which is invoked by the POJO

component (indicated by the POJO icon). The legend also reveals that this method has been running for over 1.5

seconds, and is hogging nearly 97% of the total execution time (i.e., response time) of the transaction. The question

now which invocation of the org.dom5j.io.SAXReaer.read(InputSource) method could have contributed to the

slowdown. Thankfully, the Count column of the legend reveals that this POJO method has been invoked only once! To

know when and how the method was called, click on the org.dom5j.io.SAXReaer.read(InputSource) method in the

Method Level Breakup section of Figure 80. Doing so automatically switches control to the Trace tab page in the right

panel (see Figure 80).

Monitor ing a Java App l icat ion

112

Figure 80: The Trace tab page highlighting the single instance of the org.dom5j.io.SAXReaer.read(InputSource)
method in our example

Typically, the Trace tab page lists all the methods invoked by the chosen transaction, starting with the very first

method. Methods and sub-methods (a method invoked within a method) are arranged in a tree-structure, which can

be expanded or collapsed at will. To view the sub-methods within a method, click on the arrow icon that precedes

that method in the Trace tab page. Likewise, to collapse a tree, click once again on the arrow icon. Using the tree-

structure, you can easily trace the sequence in which methods are invoked by a transaction.

If a method is chosen for analysis from the Method Level Breakup section of the At-A-Glance tab page, the Trace tab

page will automatically bring your attention to all invocations of that method by highlighting them (as shown by

Figure 80). Since the org.dom5j.io.SAXReaer.read(InputSource) method was invoked only once, Figure 80 highlights

it. From the invocation sequence indicated by the Trace Details column of Figure 76, it is clear that the delay in the

execution of the org.dom5j.io.SAXReaer.read(InputSource) method has rippled and affected the execution of all its

'parent methods', thus significantly affecting transaction performance. We can thus conclude that the

org.dom5j.io.SAXReaer.read(InputSource) method, with a response time of over 1.5 seconds, is the source of the

slowdown experienced by the transaction. To confirm these findings, you can use the Component Level Breakup

section that appears when scrolling down the the At-A-Glance tab page (see Error! Reference source not

found.).

Monitor ing a Java App l icat ion

113

Figure 81: The Component Level Breakup

Using the horizontal bar graph in this section, you can quickly tell where - i.e., at which Java layer/sub-component -

the transaction spent the maximum time. A quick glance at the graph's legend will reveal the layers/sub-components

the transaction visited, the number of methods invoked by each layer/sub-component, the Duration (Secs) for which

the transaction was processed at the layer/sub-component, and what Percentage of the total transaction response

time was spent at the layer/sub-component. From Figure 81 in our example, it is evident that the transaction has

spent considerable time at the POJO layer. To know the exact duration, take a look at the Duration and % of time

column. The transaction has apparently pent nearly 98% of its time at the POJO layer - this amounts of over 1.5

seconds.

To know which methods are causing it, click on the top layer in the legend of the Component Level Breakup section.

Doing so will invoke the Trace tab page yet again (see Figure 79), but this time displaying all the methods invoked by

the POJO layer alone. A quick look at Figure 79 reveals that the org.dom5j.io.SAXReaer.read(InputSource) method

invoked by the parent method has been executing for over 1.5 seconds, and could hence be causing the slowdown.

Monitor ing a Java App l icat ion

114

Figure 82: The Trace tab page displaying all the methods invoked by the POJO layer

By closely scrutinizing the parent method's code and that of the org.dom5j.io.SAXReaer.read(InputSource) method,

you will be able to detect coding inconsistencies, which when removed, can make the code more efficient and faster!

Conc lus ion

115

Conclusion
This document has clearly explained how eG Enterprise monitors Java Applications. For more information on eG

Enterprise, please visit our web site at www.eginnovations.com or write to us at sales@eginnovations.com.

	1. Monitoring a Java Application
	1.1 How does eG Enterprise Monitor Java Applications?
	1.1.1 Enabling JMX Support for JRE
	1.1.1.1 Securing the ‘jmxremote.password’ file
	1.1.1.2 Configuring the eG Agent to Support JMX Authentication

	1.1.2 Enabling SNMP Support for JRE

	1.2 The Java Transactions Layer
	1.2.1 Java Transactions Test
	1.2.1.1 How does eG Perform Java Transaction Monitoring?

	1.3 The JVM Internals Layer
	1.3.1 JMX Connection to JVM
	1.3.2 JVM File Descriptors Test
	1.3.3 Java Classes Test
	1.3.4 JVM Garbage Collections Test
	1.3.5 JVM Memory Pool Garbage Collections Test
	1.3.5.1 Enabling GC Logging

	1.3.6 JVM Threads Test
	1.3.6.1 Accessing Stack Trace using the STACK TRACE link in the Measurements Panel

	1.4 The JVM Engine Layer
	1.4.1 JVM Cpu Usage Test
	1.4.2 JVM Memory Usage Test
	1.4.3 JVM Uptime Test
	1.4.4 JVM Leak Suspects Test

	1.5 What the eG Enterprise Java Monitor Reveals?
	1.5.1 Identifying and Diagnosing a CPU Issue in the JVM
	1.5.2 Identifying and Diagnosing a Thread Blocking Issue in the JVM
	1.5.3 Identifying and Diagnosing a Thread Waiting Situation in the JVM
	1.5.4 Identifying and Diagnosing a Thread Deadlock Situation in the JVM
	1.5.5 Identifying and Diagnosing Memory Issues in the JVM
	1.5.6 Identifying and Diagnosing the Root-Cause of Slowdowns in Java Transactions

	2. Conclusion

