
rJ1 _.
~ = ~
~
~

Digital S·
AND THE MICR

~
'J:J
'J:J _.
= ~

»
z
0

-i
I
m

$: -
0
:0
0

T 0
0
Z
-i
:0
0
r
r
m • :0

Digital
Signal
Processing
and
The Microcontroller

Mark McQuilken
Microprocessor and Memory Technologies Group
Motorola, Inc.
Austin, Texas

James P. LeBlanc
Electrical Engineering Department
Cornell University
Ithaca, New York

All rights reserved.

Reproduction or translation of any part of this
work beyond that permitted by written permission
of Motorola, Inc. is unlawful.

ACKNOWLEDGMENTS

The Motorola Advanced Microcontroller Division gratefully acknowledges the con
tributions of the following people in the creation of this book. Many thanks to:

Scott Anderson and Tom Marischen for their commitment to "doing the right thing"
regardless of division boundaries.

Arie Brish for reviewing many of the chapters, even over the holidays, for technical
accuracy. His responsiveness and willingness to "dig-in" and help resolve production
schedule crises made delivery of this work possible. Arie, should we have reserved this
acknowledgement for the next edition?

Francis Christian for sharing his field experience and insights, and for technically
reviewing some of the material.

James LeBlanc, former Motorolan, who left the "rat race" to obtain his PhD. and further
his already extensive knowledge of DSP. Despite a myriad of personal pressures, he
still managed to fulfill his commitment to Motorola and provide us with high quality
material for chapters four through seven (and then some!). Without his contributions,
this book would not have been possible. Now if we could just get him to stop listening
to "The Buzzcocks".

Steve Marsh, who mandated that this book be written, left for "greener pastures", and
thenstood back and watched the fun! Despite this, he and his wife Jackie most graciously
edited, proofread, and critiqued various versions of the manuscript.

Mark McQuilken, who deserves much more than a thank you for the enormous amount
of effort and time spent, much of it at his family'S expense, in authoring chapters one
through three, editing and reviewing all material, preparing figures and drawings, and
coordinating the whole project. His never-ending patience was much appreciated. And,
special thanks go to Mark's wife, Beth, for so graciously putting up with it all, and for
her help in editing some of the material.

Judy Racino, who got saddled, during the last two weeks ofthe production cycle, with
the responsibility to complete this work on-time. Her honest, clear-minded approach to
problem solving avoided many potential obstacles. She willingly spent many long hours
and did "whatever it took" (e.g., writing, editing, proofreading, going for sandwiches,
etc.) to deliver this book to the printer on-time.

Tanya Tussing, who spent untold time and effort in editing and reviewing, including the
removal of thousands of prepositional phrases, to ensure technical accuracy and under
standability.

John Waite, who provided the glossary of technical terms.

Brian Wilkie for his negotiating skills, financial and moral support of this project.

A "tip of the hat" to Tim Ahrens, Robert Chretien, Mark Glenewinkel, Mark Johnson,
and Craig Haller for helpful edits, suggestions, and moral support.

Special thanks go to Staats Falkenberg & Partners for their assistance with many of the
figures and for designing the cover art: especially to Jack Robberson for his willingness
to always help in tight situations and for being so very organized.

Admundson and Associates for providing the required last minute resources, and
especially to (Iast-but-not-least) Wendy Heath for her editing!layout skills, creativity,
shortened honeymoon, and for sticking with us to the end (well, at least the end of this
edition). Wendy, what time did you finish last night?!

PREFACE

Microcontrollers are signal processors. This may come as a surprise to some, but in the
strictest interpretation it's true: microcontrollers (rviCUs) are almost always used to
evaluate inputs (signals) from sensors and the like, then manipulate (process) the digital
form of those inputs and produce some relevant output. If you're like most of us
however, we don't think of MCUs when we think of digital signal processing (DSP).
That's probably because of two general misconceptiom: I) DSP may only be accom
plished with ultra-fast processors that have been designed for the purposes of doing DSP,
and 2) you have to be a brilliant person just to understand DSP, let alone use it. This
guidebook will show that both of these are truly misconceptions.

The smaller geometries achieved by the semiconductor industry has made possi ble more
highly integrated microcontrollers; practically a full computer system on one chip.
Because of these advances in technology, digital signal processing (DSP) functions are
being integrated as part of the microcontroller. As a result of high integration levels and
diversity offunctions now available on a single chip, electrical engineers are becoming
exposed to areas that were previously covered by specialists. Digital signal processing
is a prime example.

This book is intended to help bridge the knowledge gap between the two technologies:
digital signal processors and microcontrollers. The target audience is design engineers,
programmers, technicians, and students who deal with embedded control applications,
but need to have a working knowledge of DSP concepts. Most digital signal processing
books are highly theoretical and focus on the mathematics behind DSP. The style of this
book is a little different - it is written in a more casual tone. We believe this type of
presentation will help the reader enjoy and understand the topics discussed.

Chapter Descriptions

Chapter 1 introduces the microcontroller in general, and in particular, discusses the traits,
and extols the space-and-cost-saving virtues of the Motorola MC68HC705C8 (C8). The
C8 is then used in a proto-typical application, a household thermostat, to illustrate an
MCU's usage in the "real-world". As part of this illustration, a noise problem is

hypothetically encountered which is resolved by having the MCU average the readings

coming from the Analog-to-Digital Converter (ADC). This averaging process is then
graphically developed into a "lattice diagram", a graphic device which displays the
process of traditional digital filtering. The rudiments of Analog-to-Digital conversion
and specific ADC types are then briefly presented.

Chapter 2 discusses the strengths and weaknesses of "doing things digitally" with MCV s.
The digital domain strengths are shown two ways: a) through the development of an
MCV-based magnetic tape noise reduction system, and, b) through the implementation
of an MCV-based "digital delay". Although both the noise reduction and delay units
have typically and traditionally been implemented using analog circuits, the digital
MCV versions are shown to be superior because of the inherent strengths of the digital
domain. The details, of each application, even including assembly code segments are
shown. This chapter is closed with a brief overview of the disadvantages of working in
the digital domain.

Chapter 3 shows the benefits and practical details of remapping our "oscilloscope-view"
of signals (classically referred to as the "time-domain") to a frequency response view
(classically referred to as the "frequency domain") for use by an MCV. This remapping
is accomplished by using the Fourier transform (FT). The FT is presented as a set of
paired signals (transform pairs; time domain and frequency domain versions of a given
signal) and a set of rules, including FT properties, rather than as mathematical manipu
lations of the messiest kind. The transform pairs and rules are then used to review the
thermostat example of Chapter 1 as a digital filter. In addition, the Nyquist criteria for
digitally sampled systems and signal aliasing are "proven" by intuitively applying the
FT. The chapter is closed with a brief list of recommendations for continuing to learn
Digital Signal Processing.

Chapter 4 discusses the fundamental concepts of signal processing by reviewing some
of the basic building blocks required to apply signal processing: the characteristics of
sinusoids and their spectra, the delta function, real and complex modulation, imaginary
and complex numbers, Euler's relation, and phasors. These basic ideas are then applied
to produce a heuristic presentation of the Fourier transform and its basic properties which
are presented, unlike Chapter 3, with some of the mathematics of the FT. The chapter
is closed with a discussion of FT transform pairs - all necessary fare to understand the
contents of chapter 5.

Chapter 5 presents elements of signal filters, both ideal and "real-world" implementa
tions, and transfer functions. Topics include: using the time domain to describe filters,
signal convolution, and the duality of the FT. The specific characteristics of an ideal
filter are presented with an eye toward defining the critical parts of a filter's response.
Since ideal filters, like perfect circles, are not realized in the real-world, the topic shifts
from ideal to real-world filters and the considerations which must be made, like
"windowing", to understand and develop real filters. The chapter ends with a review of
typical signal classifications band-widths one is likely to encounter when developing
filters.

Chapter 6 begins the discussion of digital signal processing with an emphasis, as with
previous chapters, on filtering. The moving average filter, like that of Chapter 1 's
thermostat example, is presented along with the mathematics. The relationship between
this filter type and the digital version of convolution (the convolution sum) is defined.
A connection between the concept of impulse response and frequency response is
presented. By combining the impulse and frequency response concepts with the transfer
function, two classes of filter types are constructed which are expressed through the
lattice diagram and the "z -1" unit time delay. The last item covered in this chapter is a
characterization of the frequency response of a discrete time system.

Chapter 7 discusses the development of digital filters. A comparison between FIR and
IIR filter types is presented. This chapter is the culmination of basic signal processing
building blocks and requires some understanding of the topics in previous chapters.

Notes

Some micro controller prices are mentioned in this book. These are general price ranges
and not actual price quotes. If you are interested in obtaining prices for Motorola
microcontrollers, please contact your nearest Motorola sales office or Motorola author
ized distributor.

Practical implementations of DSP theory sometimes requires a few extra steps, which
frequently are not included in this book. For more rigorous discussions of 1) all the
required assumptions about signals and systems for DSP theory to be true, and 2)
additional transfer functions that do front-end signal manipulations required for real
time DSP functions, consult one or more of the books listed in our reference section (at
the end of this book).

Digital Signal Processing And The Microcontroller is a preliminary edition especially
developed as an educational tool and specifically to be part of the "HC16 Tool Kit."
Motorola plans to have future editions available, which will be published by Prentice
Hall. We appreciate your constructive comments and suggestions. After reviewing this
guidebook, please take time to fill out the business reply card included with the kit and
return it to Motorola.

CONTENTS

Chapter 1

The Microcontroller

What is an MCU? 1-1
A Sample MCU 1-2

What A MCU Is Not 1-5
The Human Factor 1-7
ATypicalMCU Application 1-11
ADC Basics 1-24

Chapter 2

Digital Domain

TheAdvantages 2-1
Digital Domain Strengths 2-3

The MCU As Analog Circuit 2-10

HCIINR and Digital Advantages 2-11

A Perfect Solution 2-19

Chapter 3

Representation of Signals

Pulling It All Together 3-18

Digital Strengths Revisited 3-25
Averaging Filter Summary 3-26

Chapter 4

Fundamentals of DSP

Continuous Time Systems

Sinusoids and Spectra

The Frequency Description

The Sinusoid and Delta Function

Amplitude and Phase Description

Sinusoid Basis of Signals

Real and Complex Modulation

Frequency Shifting Properties

Imaginery Numbers

Chapter 5

Filters and Transfer Functions

Filters and Transfer Functions

Filter Specification

Chapter 6

General DSP Concepts

What Exactly is DSP?

Convolution Sum and the Moving Average

Frequency Response of the Moving Average Operator 6-9

Infinite Impulse Response Filters 6-19

Chapter 7

Digital Filter Design

How To get the Filter You Desire

4-1

4-1

4-3

4-4

4-7

4-14

4-15

4-18

4-19

5-1

5-19

6-1

6-7

7-1

C HAP T E R 1 The Microcontroller
----------_.- ---------------

T oday, the microcontroller (MCU)
is regarded as a single piece of
silicon that contains all of the

major elements of a computer system. The MCU not only includes the central
processing unit (CPU), comprised of the arithmetic logic unit (ALU) and execu
tion unit (EU), but the peripheral devices and memory arrays as well. The common
MCU peripherals and memories coresident with the CPU include such diverse
devices as:

• Analog-to-Digital Converters (ADCs)

• Digital-to-Analog Converters (DACs)

• Digital input/output lines

• H-hridge motor drivers

• Voltage comparators

• Math coprocessors

• Light-emitting Diode (LED) drivers

• Random-Access-Memory (RAM)

• Read-Only-Memory (ROM)

• Electrically-Erasable Programmable ROM (EEPROM)

• Electrically-Programmable ROM (EPROM)

• Timer/counters

• Watchdog timers

• Low-voltage detectors

• High-speed Synchronous Peripheral Interface (SPI)

• Universal Asynchronous ReceiverlTransmitters (UART)

This list is certainly not exhaustive and
changes almost weekly. It does, however, represent a good cross section of the
diversity of peripherals available on today's MCUs.

Typically, these peripherals and memo
ries are not on a single chip; although this is technically feasible, each periph
eral/memory adds more costs to the MCU. As we will reveal later, "an expensive
MCU" is an oxymoron like "jumbo shrimp."

WhatlsAn
MCU?

1-1

Chapter 1 - The Microcontroller

Vpp

,--,--.._ PAl

PAS

PA5
PM
PAl

PA2

PAl

'---'--"~ P'"
,--,--.._ PS7

PB6
PBS
PB4

P83
P82
PSI

'---'--"~ PlIO

,--,--..- PC7

PCS

PC,

Pel

PC3
PC2

PCI

'---'--1'- PCO

~~~IP07 

OSCI 

OSC2~~bd 

Figure 1-1 

C8 Block Diagram 

PO, 

P04 
PO, 

PO, 

POI 

POO 

TCIAP 

TCAP 

A Sample MCU A typical combination of peripherals is 

1-2 

one of the most popular MCVs these days, the Motorola MC68HC70SC8 (see 
Figure 1-1). To understand why the MCV is becoming increasingly popular, we'll 
tabulate the approximate number and type of peripheral devices displaced by 
on-chip peripherals as we look at MCV features. Keep in mind that all of the 
features outlined below are on a single chip whose package, a 44-pin plastic leaded 
chip carrier (PLCC) in this case, requires no more area than .S square inch. 

Features Already Built-in to This MCU: 
• On-chip driver for crystal or ceramic resonator to build a stable oscilla

tor. This feature is very common today, so a separate, external crystal 
oscillator, which requires a 14-pin DIP inverter and some discrete 
components, is not needed. 



Chapter 1 - The Microcontroller 

• Memory-mapped digital 110: 24 bidirectional and 7 input-only lines. The 
bidirectional lines are software configurable, one bit at a time. This is pretty 
nice if the exact mix of digital I/O is unknown at design time. As long as 
you don't exceed the maximum count, your software can determine the 
110 mix, on-the-fly. This function used to be provided by such devices as 
the MC6821 Peripheral Interface Adapter (PIA), a 40-pin DIP. 

• 7,744 bytes of EPROM for user program/data storage. This is roughly 
equivalent to having a 27C64 type EPROM, a 28-pin DIP, on the same 
chip as the CPU. 

• Up to 304 bytes of fully static RAM. Since this amount of RAM is small 
even when compared to some ofthe smallest available, we'll not count this 
in the package savings. 

• Software-selectable memory configurations which allow RAMIROM 
space tradeoff under program control. This is a neat feature if certain parts 
of your program need more RAM at times and more ROM at other times. 

• Watchdog timer. This is a safeguard against a runaway program and 
potentially catastrophic system performance. Until it was integrated on 
devices like this MCU, the watchdog function was handled by an external 
circuit, a retriggerable monostable timer. This on-chip retriggerable 
monostable is digitally implemented. Its timebase is derived directly from 
the crystal oscillator, which avoids drift problems associated with analog
based retriggerable monostables. I've often seen analog retriggerable 
monostables implemented with a 555-type timer, an 8-pin mini-DIP. 

• Serial communications interface (SCI). This is equivalent to something 
like the old tried and true MC6850, a 24-pin DIP. This self-contained 
system uses the CPU crystal timebase to derive various standard baud 
rates. With the addition of RS-232 level shifters connected to the receive 
and transmit pins, this is a complete system for communicating to termi
nal-like devices or other MCUs over long wires. 

• Serial peripheral interface (SPI). This high-speed (up to 1 Mbits/second on 
some devices) interface is a four-wire system: 2 data lines, a serial clock 
line, and a select line. This is useful for expanding I/O capability by 
hanging Serial-In, Parallel-Out (SIPO) or Parallel-In, Serial-Out (PISO) 
shift register devices on this SPI "bus." Plus, there are many peripherals 
available, such as EEPROM or ADC, that "hang" directly on this interface, 
expanding the capabilities of this MCU even further. The SPI system 

1-3 



Chapter 1 - The Microcontroller 

1-4 

peripheral was not really used in the old days, probably because CPUs 
had their buses laid bare for the world to use. These buses could be easily 
and directly connected to the peripheral, rather than through an inter
mediate interface system like the SPI. Since a single-chip MCU is 
self-contained when used as a single-chip, and the internal CPU bus is 
not available to the off-chip world, there is a considerable benefit to 
expanding I/O through such an SPI system. 

• 16-bit timer subsystem. This system gives us the ability to time external 
events relative to CPU activity as well as to generate events. This is 
similar in function to a MC6840 Programmable Timer Module ... yes, 
another old part and a 28-pin DIP. 

Let's count up the packages we can 
eliminate by using an MCU along with the type, size, pin count, and area each 
package occupies. Table 1-1 contains this information. 

Table 1-1 

Multi-chip equivaleut of 68HC705 C8's peripherals 

Chip Size Type Length x Width Area 

8-pin DIP Analog timer 0.4 x 0.3 0.12 

14-pin DIP Inverter 0.7 xO.3 0.21 

24-pin DIP UART 1.2 x 0.6 0.72 

28-pin DIP EPROM 1.4 x 0.6 0.84 

28-pin DIP Timer 1.4 x 0.6 0.84 

40-pin DIP PIA 2.0 x 0.6 1.20 



Chapter 1 - The Microcontroller 

Using individual peripherals and memo
ries, a minimum total area of 3.93 inches2 would be used. This excludes the 
real-estate of the printed circuit board (PCB) which would be consumed just to 
electrically connect these components. Compare 3.93 inches 2 to the .5 
inches 2 the entire MCU consumes (see Figure 1- 2). Based on this comparison 
alone, the MCU is very useful and economical. 

·--1 

0.5 sq.ii 

J 
MCU 

Solution 

Figure 1-2 

3.93 sq. in. 

CPU 
Solution 

A comparison of areas required by like-functioned MCU and CPU systems. 

Now that we've mentioned the remark- What An MCU 
able features of a specific MCU and what an MCU is in general, we will discuss Is Not 
what an MCU is not: 

It is not expensive. Although "expen
siveness" is relative, MCUs would not be considered expensive by most. Some 
Motorola MCUs, for example, are available for as little as 90¢ in large quantities 
(yes, for the complexity of even this smaller MCU, that is a very reasonable price). 
Of course, for a logic gate like the MC74HCOO, 90¢ is a lot of money. But if you 
find a MC68020 for that price (and it's still functional), buy it! The MC68020 
CPU sells routinely for as much as $170. By comparison, the MCU is an 
inexpensive problem solver! 

1-5 



Chapter 1 - The Microcontroller 

1-6 

It is not bulky. Offered in various pack
ages, a reasonably complex MCV can be obtained in a package as small as a 
16-lead SOIC (.4 in. x .3 in., or .12 in2). Even very complex microcontrollers, 
like the MC68332 32-bit MCV, similar in performance to some older mainframe 
computers like the VAX PDP-l 1, are still available in packages that take up no more 
room than 1.2 in2. This is, literally, mainframe computing power in the palm of 
your hand! 

It is not a "power pig". Advances in 
CMOS technology have continued to increase MCV speeds while reducing power 
consumption. One measure of microcontroller/microprocessor performance is 
the "instructions per second per watt"(lPS/W). The higher this quantity, the more 
efficiently the MCV is using each unit of power. Calculating this quantity for a 
popular NMOS CPV of days gone by, the Motorola MC6800, we get 1 million 
IPS/W maximum. Compared to the same calculation for the newer 
MC68HCllA8, an even more complex product than the relatively primitive 
6800, we get 13.3 million IPSIW - over 13 times more efficient in the use of 
available power! Of course, at this point we could argue about the technical term 
"power pig" and the classification of one or another MCV as such a pig, but we 
would miss the point: The MCV of today uses power more efficiently than any 
of its predecessors. 

Is not difficult to use. Building a micro
controller application is still a technically oriented process. It requires many levels 
of understanding in highly technical disciplines. It requires a leap of faith to 
mentally follow the process that generates ASCII data on a word processor and 
then assembles, downloads, and emulates the ASCII text file - almost incom
prehensible to most non-engineers. It's a lot easier and less expensive to develop 
MCV applications today than 15 years ago. In these modern times, a complete 
in-circuit emulator with software, both assembler and PC-host software for the 
emulator, whose performance and features were available ten years ago for 
$lO,OOO,.can now be bought for about $500. I've seen some people work with 
the new Evaluation Module (EVM), Motorola's answer to low-cost, quick
learning environments, and program small applications on MCVs the same day! 
Pretty amazing considering this was accomplished by a non-electrical engineer. 



Chapter 1 - The Microcontroller 

It is not a panacea. You should be aware 
that an MCU can't be everything to everyone. Perhaps this isn't the time to 
question the MCU's potential usefulness, but we will discuss this later in the 
chapter. The limiting factor for the performance of an MCU-based system is 
usually the MCU's maximum bandwidth. 

At this point, you may have a suspicion The Human 
that this MCU stuff actually may be useful. From where I sit, I'd say that you're Factor 
right. But usefulness, like other things, depends on the observer. Consequently, 
as we discuss the potential usefulness ofMCUs, we will compare it to the vantage 
points considered important in the electronics industry. Let's start with the most 
important points: 

An Engineering View 

If you've been engineering for a while, 
you know engineers never make mistakes. In fact, this may actually be Newton's 
long-lost fourth law. In any case, whenever there is a schedule slip: 

a) It's usually the technician's fault, and/or, 

b) The MegaBug lO00X compiler/assembler keeps 
randomly inserting HCF (Halt and Catch Fire) 
opcodes in your code, and/or, 

c) The purchasing department still hasn't placed the 
part order you submitted a year ago last Tuesday. 

Whatever the cause, the engineer always 
has to modify the design at the last minute. Fortunately, one of the advantages of 
MCU-based designs is they are easily modified. This is because, like most 
computers, the bulk of the MCU systems' performance lies in its programming. 
Consequently, from an engineer's perspective, the MeU is a hedge against 
schedule slips from other people's screw-ups. 

Trying New Things 

During the times engineers are not sav
ing projects by our ingenious "on-the-fly" redesigns, we are often looking for 
new, innovative, and creative ways to accomplish old, boring, and unnecessary 
functions. For example, a colleague of mine recently designed a programmable 
power supply for generating EPROM and EEPROM programming voltages for 

1-7 



Chapter 1 - The Microcontroller 

1-8 

some Motorola MCUs. He worked very hard to design in an MCU at the core of 
the power supply. His boss later pointed how much easier his job would have 
been had he used an adjustable linear regulator, a potentiometer instead of an 
MCU, and a half dozen other ICs and components. In all seriousness, the design 
did have some advantages - the output voltage could be set under computer (PC 
type) control by using the MCUs built-in serial interface. That's a feature we pay 
a lot for these days in commercial power supply units. 

Easy Prototyp,ing 
Actually, the reason I mentioned this 

power supply is to illustrate the MCU's usefulness to the engineer as a very 
friendly and quick-prototyping environment. Even in the case of the programma
ble power supply, the real value of that approach is to provide an experimental 
platform for similar projects whose characteristics, such as rise and fall times, 
could be quickly modified. This quick tum-around of ideas in solving problems 
can make or break its success. During the early development stages of production 
test stations, we would often use the Motorola EVM in conjunction with "experi
menter's boards" to generate signals which looked similar to the device under test 
(DUT). This allowed us to easily validate the performance of the production tester 
with known, measurable excitation. It took us no more than an hour with this 
approach compared to the time to do the same thing by wiring a bunch of counters 
and gates together. 

One Part Fits All ... Almost 
Imagine having to stock only one IC in 

your engineering stockroom/workshop. It's an exaggeration to sayan MCU is so 
flexible it would replace all the other ICs in your parts bins. If you've got to choose 
only one digital IC for prototyping, however, the MCU should be that device. 
Looking in the parts bins in my lab, I have devices like digital-to-analog 
converters (e.g., AD7524 CMOS DAC), analog-to-digital converters (like Na
tional's ADC0800), display drivers (MC14499 for example), analog multipliers 
(AD536), op-amps (TL074s, NE5534, etc.), EPROMs (2732s, 2764s), LSITL 
and HCMOS logic (' 138s,'00s, etc.), a few generic PALs (16R8s), and, of course, 
some MCUs (MC68HC705C8s, MC68705R3s, MC68HC8l1E2s, etc.). When 
trying out ideas, I use the MCUs most frequently. Let's say we need a two-digit 
LED display for a new product. I can either hook up an MCU, which feeds the 
MC14499 display driver via the SPI, or I can hook up the MCU in the configu
ration shown in Figure 1-3. In this form, the MCU drives the seven-segment 
LEDs directly, and the software instructs the MCU to decode and multiplex the 



Chapter 1 - The Microcontroller 

MCU 

Figure 1-3 

MCV drives LED directly 

display. This eliminates the middleman, that is, the middlecircuit, consisting of 
the MC14499 and its supporting components. Since the MCV software decides 
the decoding sent to the display, characters appear that aren't supported by the 
MC14499. 

Despite the flexibility of the MCU in a 
prototyping and brainstorming environment, don't throwaway all your non-MCU 
components. There are some things other components can do that the MCU can't 
- it's just the MCU may be the easiest, most flexible component in your bag of 
tricks. Some feature or function implemented with the MCU, to one degree or 
another, can replace each of the devices already mentioned. 

Product Enhancements 

Designing an MCU into a product af

fords the same flexibility we had for validating our test equipment. A typical 
situation might be to use an MCU to interface to an "aural annunciator" (that's a 
25-cent word for the lO-cent word, "buzzer") like that shown in Figure 1- 4. The 
characteristics of the buzzer will be changed sometime during the life of the 
product (see the preceding reasons a, b, and c for schedule slips, page 1-6). If 
this circuit had been done with the ubiquitous 555 monolithic timer, one or both 
of the timing elements (i.e., resistor and/or capacitor) will need to be physically 
changed sometime during its lifetime. Replacing a single resistor and/or capacitor 
is probably not a big deal. But imagine having to change some resistors and 

1-9 



Chapter 1 - The Microcontroller 

1-10 

Vpiezo 

I 
D 

MCU 

Figure 1-4 

Very often a product change means software change only 

capacitors in lO,OOO final assemblies before shipping your product! An MCU can 
avoid many, but not all, uncomfortable situations like this one: an MCU-based 
unit could be easily removed and replaced with updated software without risking 
any damage the to PCB/assembly. There are many other situations where 
easily-altered MCUs can make a lot of cost-effective and face-saving sense. 

MCUs Promote Proper Design 
Most of us dread the day we make a 

mistake ... that is, design-in an undocumented feature. Fortunately, this is more 
difficult when using an MCU. Many processes that can be brainlessly put together 
with other technologies (discrete, linear, small-scale integration logic, etc.) have 
to be carefully considered with an MCU. That is not to sayan MCU is difficult, 
it just requires some thought. If you think about it in advance, there is another 
advantage to using MCUs: performance is more bounded and predictable than 
other choices. This is due to two reasons: 

a) One of the advantages of the digital domain is 
bounded and predictable performance, and 

b) The MCU, like most standard computational ma
chines, is a sequential machine ... basically, it can 
only make one mistake at a time. 



Chapter 1 - The Microcontrolier 

We'll revisit this topic when discussing 
the advantages of the digital domain in the next chapter. 

The View From Production 

Production organizations appear to have 
two common traits: a) production people intensely dislike rework, and b) 
production managers typically don't like to inventory vast amounts of parts stock. 
The features of the MCV can turn your production people into "shiny, happy 
people." 

A product can be designed around the 
MCV almost exclusively. The production manager will likely have fewer prob
lems with a product having few components compared to one with many. 

Let's take a look at the MCV in action. 
This way you can experience first hand the MCV's value. Most importantly, 
however, this provides a good transition to describe some advantages of working 
in the digital domain. 

Functionally, the household thermostat 
is nothing more than a "window comparator," a mechanism that evaluates the 
temperature of a room and operates the heating or cooling system (see Figure 
1-5). In other words, if a room's temperature is greater or less than a predefined 
range of temperatures (called the "comfort zone"), the thermostat switches the 
heat or air conditioner on or off until the temperature is again within the comfort 
zone. 

A To air conditioner 

Vsensor~---' 

B To heater 

Figure 1-5 

A Window Comparator 

ATypical MCU 
Application: 
A Household 
Thermostat 

1-11 



Chapter 1 - The Microcontroller 

1-12 

Comparators may be used as the main 
measuring function of the thermostat as indicated in Figure 1-5. 

By adding a few more components, this 
function diagram could become the "real thing" in Figure 1-. The simplest version 

Temp. 
Sensor 

Vee 

"Temperature Set" 

To AC relay 

To heater relay 

Figure 1-6 

A typical household thermostat circuit 

of a thermostat is a metallic strip usually wound in a coil used as a lever 
(contractor) in a single-pole double-throw switch. When the metal in the strip 
contracts from the cold, the lever is pulled one direction toward another contact 
point, which then completes a circuit and turns on the heat. The heat expands the 
metallic strip, and the lever moves in the opposite direction completing another 
circuit to tum on the air conditioner. Although this will vary from design to design, 
this describes the basic operation of a mechanical thermostat. 

When such simple mechanisms are so 
reliable, an engineer must have many compelling reasons to use more complex 
and costly circuitry. Or the engineer has to be just plain crazy. Jim Sibigtroth, the 
original designer of an MCU-based thermostat, had some compelling reasons to 
design such an application. The block diagram for this thermostat is shown in 
Figure 1-7 . 



Chapter 1 - The Microcontroller 

Keyboard 14c-)l~ 

MCU 

Figure 1-7 

LCD 
Display 

An MeV-based thermostat 

Basic MCU Thermostat Operation 

The microcontroller (MCU) reads the 
current room temperature through a solid-state temperature sensor whose output 
is translated by an Analog-to-Digital Converter (ADC) for the MCU. The ADC' s 
output is interpreted by the MCU's software to determine the appropriate action 
for any temperature. Through a keypad, someone specifies the "trip points" that 
define the "comfort zone" for the heater and air conditioner which is indicated by 
liquid crystal display (LCD). The MCU acknowledges this operation through a 
piezobuzzer. 

Furthermore, the MCU' s serial interface 
is made accessible to allow some debugging without affecting the entire assembly. 
This is a very typical MCU application. Figure 1- shows the flowchart of the 
main control program. 

1-13 



Chapter 1 - The Microcontrolier 

MAIN 

.... 
~~ 

Schedule next timer "tick" 
(TIC) to occur in 50ms 

# 

'f ~ Timed out? 

Yes 

TIC =TIC+ 1 

TIC = 20? ~ 
Yes 

Clear TIC To Zero 

..... 

1) Update Time And Day 

2) Service Keypad 

3) Service Beeper 

4) Check For User Entry 

5) Service AID Temp. Sensors 

6) Update Hvac Outputs 

7) Service Lcd Display 

Figure 1-8 

Main Control Program for Honsehold Temperature Control 

1-14 



Chapter 1 - The Microcontroller 

A Hypothermal Hypothetical 

Let's say doing an MCU-based thermo
stat appeals to your sense of HTF (High Toy Factor) and has enticed you to try to 
build this thermostat project. So you send away to your area's Motorola sales 
office for the M68HC05 Applications Guide (M68HC05AG/AD) that has the 
details for the project. After painstakingly building the hardware, writing the 
software, and installing the thermostat in your wall, you discover the thermostat 
is acting strangely. At first, you're not even sure anything is wrong ... but then ... you 
notice: it's December, you live in Alaska, and your air conditioner has just kicked 
on! But you can to hook up your PC to the thermostat through a serial port and 
RS-232 level-shifters. Consequently, you can debug the problem without having 
to gouge the thermostat out ofthe wall. Fortunately, you are able to "look at" the 
data from the ADC and thus can ascertain, at the very least, if the problem is a 
malfunction with the temperature sensor or ADC. So, you set up your PC to take 
readings for a 12-hour period and retire to your igloo with a few extra dogs that 
night (a three-dog night, thanks to the air conditioner). 

After a bone-chilling night of restless 
sleep, you get up to compile and graph your data from the previous 12 hours. This 
is the graph in Figure 1-. Being an astute observer, you notice two things: a) 
the word "comfort" is misspelled due to your typing "i" instead of "0" because of 
your hypothermally-induced shaking, and b) the readings from the sensor are 

Too Hot--turn on AC 

SP.M. 12 A.M. SA.M. 

Figure 1-9 

A temperature plot of a malfunctioning air condtioner system 

1-15 



Chapter 1 - The Microcontroller 

1-16 

rapidly changing. Based upon a rough thermodynamic calculation (done on the 
back of a napkin, of course) and your personal experience, you conclude the actual 
temperature can't be varying as wildly nor as frequently as indicated by your graph. 
It must be noise. What's an engineer to do? Here are some options: 

• Low-pass filter the voltage(s) from the sensors. This makes sense but 
isn't indicated since you can't determine whether the noise is coming 
from the sensor(s) or there is a malfunction in the ADC. Besides it's 
going to get awfully messy to try and remove the unit from your igloo 
wall to put the resistors and capacitors needed to low-pass the sensor 
output(s). For these reasons, you decide this isn't a reasonable alterna
tive. 

• Move into another igloo. This sounds more like a management decision 
than an engineering one. Consequently, it isn't a reasonable alternative. 

• Reduce the variations over time in the ADC data. This makes sense, 
assuming you can change the MCU code without changing the hardware. 
Since this is my hypothetical example, we'll choose this option. Figure 
1- shows the ADC service routine for the thermostat with a call to the 
low-pass filter routine inserted. 

Some Average{ing) Software 
A simple jump-to-subroutine placed 

within the ADC read routine won't get rid of our noise problem: it's the subroutine 
that's going to do the work. What's in it? Look at the listing in Figure 1-. We' 11 
take it one chunk of code at a time. Before starting, however, I want to introduce 
a graphic aid to help visualize the movement of data in the averaging routine. 
We'll use the following diagram to symbolize the MCU memory: 

(most reJ;~Ts~~~~11-7 ________ 0 

L-____ .---~ 

• 
• 

TBUfEnd' I---------1 

(oldest sample)L-----------' 

64 Bytes 



Chapter 1 - The Microcontroller 

********************************************************* 
* A2D - Check temp. sensors (via SPI and MC145041) * 
* If TIC 0, send addr 0 ignore return data * 
* 1fT I C 1, send addr 1 ret urn dat a is ch. 0 va I * 
* 1fT I C 2, send addr 2 ret urn dat a is ch. 1 va I * 
* If TIC> 2, skip A2D routine * 
* To compensate for sensor & op-amp offset, AID result * 
* wi I I be modified by subtracting an offset constant * 
********************************************************* 
A2D EOU * 

LOA TIC 
CMP #2 
BHI XA2D 
ASLA 
ASLA 
ASLA 
ASLA 
TST SPSR 
BCLR 3,PORTC 
STA SPDR 

Check temp. sensors 
If Tic 0,1,or2writetoSPI 

1fT i c > 2; Ex i t 
Move TIC # 0-2 to upper nibble 

4 bit left sh i ft 
Reads SPIF (part of SP1F clear) 
Drive low true SAID CEO to 0 
Initiates a transfer 

* Requests conversion of next channel and returns data 
* from previous channel Ch.O=lndoor Ch. l=Outdoor 

SPIFLP BRCLR 7,SPSR,SPIFLP 
BSET 3,PORTC 
LOA TIC 
BEO XA2D 
LOA SPDR 

JSR LOUPRSS 

BRSET 1,TIC,ADCHl 
SUB OFFO 
STA INTMP 
BRA XA2D 

ADCH 1 SUB OFF 1 
STA OUTMP 

XA2D RTS 

Wait for SPI Xfer complete 
Drive low true SAID CEo to 
If O-Exit, 1 or 2 Read AID data 
o so exit 
Get AID data 

Fi Iter input uith 6,/pt aug. 

1fT i c=2, dat a is Ch. 1 
A/D Ch.O; subtract offset 
Update indoor temperature 
& Ex i t 
A/D Ch. 1; subtract offset 
Update outdoor temperature 
** RETURN from A2D ** 

Figure 1-10 

ADC routine for thermostat 

The left-right width of the block is the 
data width, which is 8-bits in this case. The top-bottom height of the block is the 
number of bytes. Now ... back to the code. 

1-17 



Chapter 1 - The Microcontrolier 

1-18 

There are two pieces of the code that 
actually do the work in averaging the readings. The ftrst is from the label 
"MoveSmpls" up to, but not including, the label "AvgLoop." The second is from 
AvgLoop to the label "AvgDone."The first block of code basically prepares the 
data to calculate the average by making sure that the 64 most-recentADC samples 
are placed within the RAM buffer. The second chunk of code, the one that actually 
averages the readings, starts at AvgLoop. Starting at the instruction before 
MoveSmpls, we note the x-register is initialized with a value equal to the buffer 
RAM location with the highest numerical value minus one: "TBufEnd-l." The 
first two instructions at the label MoveSmpls move the second-oldest sample from 
TBufEnd-1 to "TBufEnd." The sample at TBufEnd is now the oldest ADC sample 
in memory. The third instruction after MoveSmpls decrements the x-register so 
it points to TButTop-2. Afterwards, the x-register is checked to see if we've 
averaged all of our samples, which is, in this case, 64. Since we haven't done that 
many yet, our code branches back to MoveSmpls. 

If viewed as data movement within our 
rectangular memory block, there are 64 data movements sequentially moving 
toward the part of the memory block labelled "TimeBufr." Each data movement 
copies the contents of each RAM location to the RAM location just below. The 
most current ADC sample is always located at TimeBufr. This is schematically 
represented in Figure 1- . 

TimeBufr f-I ------I 

EJ·[ ___ 3 
[= ____ 1 

Figure 1-11 

ADC Samples memory locations 



Chapter 1 - The Microcontroller 

*****"'***************.*******"'*"*****************-*****"""'<**** 
*t!ane:LowPasi9 

"'Purpose: To reduce uariatlons in ADC data frolltherllol 
'" sensors. A6't-point Ilouingaveroge Is used. 

"'Use: poss lalest sample from ADC to this routine uio RCCA. 

segPAGEORAM 

TellpSllpl rnb 1 
RccnSB I"lIIb 1 
TellpCotc rnb 1 
TimeBufr rmbM 
TBufTop eQu'" 

segProgran 

lOIlJPOss staTellpSnpJ jthis contains the latest 
; ADCeD"ple. 50ve It. 

IdxlTBufTop-1 ,stort l1ouingdato frOllhere. 
MoveSllpls IdoO,x ;get sample 

911;1I,x ;nove it dOUlnlhe line. 

cpx'TilleBufr-l ;check. for latest eOllple location. 
bneMoueSlllpts 
inx 
stoO,X 
clrAccMSe 

;Ieaue x pointing to Ti",eBufr 

;thlspreps the nSB of the 
; Dverogeresult. 

RugLoop inx ;polnt to next location. 
cpxITBufTop+\ ;check far last lacation 

; In buffer. 
beQScale 
add ,x 
bccAvglaop 

staTellpCalc 
ctra 

;Ieave If last $ample. 
;begin avg calc. 
;If no ripple to MSB thru 
; cy flag, then add again. 

adcAccMSB ;thispropagale$CY fig 
; Into AccnSB 

staAccMSB 
Ida Te .. pCalc 
bra AvgLoop 

Scale lsI' AccMSB 
rora 
lsI' AccMSB 
rora 
IsrAccnSB 

1151' AccMSB 
1'01'0 

IsrAccMSB 
l"orQ 
lsI' AccMSB 
"01'0 

AvgDone I"t8 

Figure 1-12 

64-point moving average routine 

Following the flow of the code, if our 
MCU has made it to AvgLoop, then the x -register contains the value TimeBufr-l. 
Because we want to confine our averaging routine to the ADC data, which resides 
between TimeBufr and TButTop inclusive, we first increment the x-register so it 
is pointing to TimeBufr instead of TimeBufr-l. The next instruction compares the 
value of the x-register to see if we've made it to the top of the RAM buffer where 
the newest ADC sample resides. We branch to the next chunk of code IF the 
x-register is pointing to the newest ADC sample located at the "top" of the RAM 
buffer (TimeBufr). In our next chunk of code, we begin the process of adding the 
ADC samples together. The RCD5 CPU is an 8-bit machine that requires some 
extra steps for doing 16-bit addition. These steps are the instructions after the 
"add,x" and the instruction just before the label "Scale." 

1-19 



Chapter 1 - The Microcontroller 

1-20 

Averaging consists of two separate proc
esses, addition of a list of numbers and division of the sum by the count of the 
numbers in the list. Now it is time to do the division. That's what the lines 
inclusively between the labels "Scale" and "AvgDone" do. The 8-bit architecture 
of the HCOS requires many instructions to divide. Following the instructions from 
Scale to the end, you'll see these perform six 16-bit shifts on the sum of the ADC 
values added in the previous part of the code. 

To give you a sneak preview of things to 
come, let's mess around with the symbols we use to show data movements. This 
will show you that what we are talking about now has a direct application to the 
fun stuff later on. So, first separate each block and connect with arrows as shown 
in Figure L-. 

* I I 
~ 

Figure 1-13 

Now, turn the entire string of rectangles 
90° counter-clockwise and reduce the size of the rectangles to make it easier to 
display. This results in Figure 1-. 

Figure 1-14 



Chapter 1 - The Microcontroller 

This view of the memory roughly repre
sents the movement of the data by the averaging routine where each memory 
location is represented by arectangle. At the output of each block, which represents 
each byte of data, draw arrows to a circle with a "plus" sign in it. One way of 
drawing it is in Figure 1- (a). 

Below the summation bubble, draw an
other circle with an "x" in it. .. the symbol for multiplication (Figure 1- (b». 

T~ 
" 

Figure 1-15 

Let's pause at this point to review a rule 
of arithmetic we learned long ago but probably forgot. A rule in arithmetic says 
multiplication is distributive over addition. When mUltiplying a number by the 
sum of two other numbers it doesn't matter whether you multiply the individual 
numbers first and then add or add them first and then multiply. The result is the 
same. In symbols this is: 

A(B+ C) =AB +AC 

For our diagram, move the multiplica
tion bubble from its current location to each line entering the addition bubble, 
like Figure 1-. 

1-21 



Chapter 1 - The Microcontroller 

1-22 

Figure 1-16 

Lattice Diagram 

Do you recognize this diagram? If you 
don't, don't worry. You'll see plenty of it if you work with DSP stuff. For those 
who recognized it, you know this as a lattice diagram. This type of diagram is 
often used to show the structure of digital filters. Does that mean that the averaging 
we just did is in fact a digital filter? Stay tuned. 

Thermostat Performance Results 
After walking through the code, let alone 

writing it to begin with, we want to know "Does it work?". The answer to that 
question indicates writing a book has something in common with writing televi
sion sitcoms: the writer never introduces a problem or question without an 
answer ... and usually the answer is the obvious one. So yes ... of course our 
averaging routine works! To see how effectively the averaging process works on 
the actual thermostat data, look at the before and after graphs of the data in Figure 
1- . 

Had this thermostat been constructed 
with just any other technology, the solutions would have required more extensive 
hardware changes. Although we could have opted for a pure hardware fIX in this 
case, we didn't have to. That's the whole point of this last exercise: it only took 
a few strokes of the computer keyboard to rewrite the source code to the MeV, 



Chapter 1 - The Microcontroller 

w 
a: 
::I 

~ 
W 
a.. 
:E 
w 
I-

6 P.M. 

WithoutAverating 

6 P.M. 

WithAveraging 

Too Hot--turn on AC 

12 A.M. 

Too Hot--turn on AC 

COMFORT ZONE 

Too CoJd--turn on Heat 

12 A.M. 

Figure 1-17 

Thermal sensor before and after averaging routine 

6 A.M. 

6A.M. 

program a new RC05 with the improved software, and then trade the socketed 
MCV for the new version. Compare this to pulling the thermostat out of the wall, 
desoldering discrete components, and spending untold hours changing resistor
capacitor values until the problem disappeared. Granted, you have to know about 
software, but the ease of working in the digital domain justifies the effort to 
becomes fluent with this software stuff. 

1-23 



Chapter 1 - The Microcontroller 

ADC Basics We could capture signals in digital form 

1-24 

so the MCU' s software could work on it through an analog-to-digital converter 
(A-to-D, or AOC). Most of us are familiar with these devices and many of us 
have used one. Even so, we need to discuss these in more detail to capitalize on 
the strengths of the digital domain and minimize construction problems. Digitiz
ing analog signals creates artifacts in the process not present in the input analog 
waveforms. 

Now, we will begin our discussion about 
analog-to-digital conversion by describing the constituent parts of the process, 
followed by a brief discussion about various converters. 

The Sample-Hold Function 
In most modern ADCs, the first step in 

our conversion is usually the sample-hold function. Although not absolutely 
necessary, this function is, to some degree, a function of the selected ADC as well 
as the signal we want to convert. Is this function required for your application? 
What happens if we don't use it? We will answer these questions in a minute. First, 
let's look at the process of sampling the analog world with our sample/hold 
amplifier. 

Figure 1- shows an analog wave form. 
The sample/hold amplifier function is represented graphically by the following 
steps: 

1) Move directly up from the "t" axis with a straight 
line until intersecting the input wave form. 

2) Draw a rectangle, with a width determined by the 
distance between t-axis "ticks" and the height de
termined by (1), with its left-hand corner touching 
the analog wave form. 

3) Repeat this process for each successive tick on the 
horizontal axis or until you run out of input wave 
form. 

We have a wave form that looks like 
stairsteps representing the general shape of the input waveform. This stairstepped 
waveform is the sample-holdvalue that is fed to the input stage of the ADC. 



Chapter 1 - The Microcontroller 

Ih 
I 

I 

fm1 
Figure 1-18 

Sampling an Analog Signal with Sample and Hold Amplifier 

We assume most of the signals we want 
to convert to digital numbers include both DC and AC components. Let's feed a 
sine wave into an ADC. Taking the derivative of this function, we obtain an 
expression for the the sine wave's rate of voltage change per unit time. The 
maximum rate of voltage change occurs when a sine wave crosses the horizontal 
time axis. In quantitative terms, the rate of change of an A volt peak-valued sine 
wave amounts to: 

Vet) = Asin(21tft) 

Maximum rate of change == (: 10= 21tAf 

fmax = [_1 ~ = [ 1 )[~)"" 194 Hertz 
21tA) dt 21t(16 x 10-6) 28 

If we are using an 8-bit converter with a 
conversion time of 16 microseconds and a reference voltage of 5V, the maximum 
undistorted sine wave frequency that can be converted is less than 40 Hz, although 
our conversion frequency is much greater than the frequency of the sine wave! 

The Generalized ADe 

The analog-to-digital conversion proc
ess is nothing more than a translation of continuous-time, real-world signals into 
a granular, digital approximation. This digital representation is, in most cases, 
only an approximation of the actual voltage. In doing this translation, regardless 
of the specific ADC device used, a voltage comparator compares the input's analog 
voltage to a converging voltage internally generated by the ADC. When these two 

1-25 



Chapter 1 - The Microcontroller 

1-26 

inputs to the comparator are equal, the analog voltage generator stops and the 
digital code associated with the internal analog voltage generator at that moment 
represents the analog signal. Let's see how this mechanism is applied with the 
various converters. 

Successive Approximation Converter 
One ADC is the successive approxima

tion converter (SAC). A device responsible for the character of the SAC is the 
successive approximation register (SAR), which determines how the voltage is 
generated by the ADC. The elements of the SAC are: a) a voltage comparator, b) 
a digital-to-analog converter (DAC) and c) a clocked digital counter. The output 
of the comparator tells the digital counter to stop once the D/A output and the 
input voltage are roughly equivalent. The SAC's distinctive characteristic is the 
manner in which the DAC voltage is created: each "guess" at the input voltage, 
created by the DAC, is successively halved until equivalence is achieved. This 

technique allows a moderately fast (conversion rates> Illsecond ) and moderate 

resolution (12-bits or less) ofthe unknown analog voltage. 

IntegratingADC 
Another popular converter used for 

much slower but typically much higher resolution conversions is the integrating 
type converter. This converter applies our generalized converter form in a unique 
way: it substitutes a charging capacitor for the DAC of our generalized ADC. The 
capacitor is charged by the input signal voltage and discharged by a constant 
current source. The time it takes for the voltage ramp, created from discharging 
the capacitor, to reach zero voltage is directly proportional to the analog input 
voltage that originally charged the capacitor. The linear voltage ramp is timed by 
a digitally clocked counter until reaching zero, at which time the digital counter 
stops. The resulting count shown by the counter is directly proportional to the 

input voltage. This type of AID process is good for 10 Ilsec or higher conversion 
times and resolutions typically in the 18- and 20-bit range. 

Flash Converter 

Another conversion process is the 
''flash'' converter, which uses a string of voltage comparators. Each comparator 
has one input tied to successively increasing reference voltages. The input voltage 
is applied to all of the other comparator's inputs that have all been tied together. 
The outputs of the comparators are sent through a digital logic array to produce 



Chapter 1 - The Microcontroller 

a convenient output code as a function of the input voltage. Let's say we have 
three voltage comparators. The comparator's individual inverting inputs are 
connected to 1.2SV, 2.5V, and SV, respectively, so the comparators are referenced 
to 1.2SV, 2.SV, and SY. Let us then apply our input voltage to the other input. If 
the input voltage is less than the reference voltages, none of the comparators will 
trip. Once the input voltage increases above 1.2SV, the comparator having the 
1.2SV reference will change from logic 0 to logic I. The other comparators will 
remain unchanged until the input voltage rises above their respective reference 
voltages. Because its performance depends primarily upon the comparator's 
response speed, the flash converter is very useful for high-speed concertinas. 

1-27 





CHAPTER 

The Digital Domain 

MCUS processing digitized ana
log signals are powerful new 
tools for solving old and new 

problems alike. In Chapter 1 the microcontroller was introduced as a set of very 
useful features, including A-to-D conversion. Using these features we solved a 
noise problem in a common household thermostat without changing the hardware. 
In this chapter, we'll investigate some traits in the digital domain that make it a 
very appealing solution. 

Listing the strengths and weaknesses of 
the digital domain is a straight-forward task. Some of the important subtleties of 
those strengths and weaknesses, however, are unclear. Consequently, we will 
briefly discuss and then illustrate each strength with actual applications. After
ward, we will discuss the weaknesses. 

2 

We'll begin by discussing benefits and The Advantages 
strengths of the digital domain. Remember the example of the thermostat in 
Chapter 1 and how the digital domain worked to our advantage. 

Doesn't Vary Over Time 

It's hard not to notice the consistent per
formance from your unit once you've designed in the digital domain. For example, 
designing a remotely controllable "digital pot" - a potentiometer substitute that 
varies the amplitude of a digitized signal - you notice the performance of the 
unit doesn't vary over time or temperature. The process of varying a signal's 
amplitude consists of multiplying an incoming signal by a value representing the 
amplitude, or "volume" setting, you want. There's not much to drift or change in 
that situation. Multiplication is multiplication today, tomorrow, or next year. 
That's important to designers who want their designs to work "first time and every 
time" for everyone else as well as themselves. The same cannot be said for an 
analog implementation, which uses something like a transconductance multiplier 
for multiplication. Every example of such devices requires the trimming of offsets 
for many applications which can drift with time, temperature, and vibration. In 
addition, the strategic placement of a temperature-sensitive resistor is often 
required to compensate for the transistors' inherent drift that occurs with changes 

2-1 



Chapter 2 - The Digital Domain 

2-2 

in temperature. Such analog circuit traits are manageable, but ifwe can reduce 
drifting parameters, then let's do it. With any carefully implemented digital 
domain design, sources of parametric drift are eliminated completely within 
specified error bounds. 

Doesn't Vary Between Units 
The next step with our digital pot design 

is to produce the product. It's in this next phase where the advantages of working 
in the digital domain are apparent. Even your company's accountant could 
appreciate this point: parametric changes between units are predictable and 
bounded. Translated into English, this means the differences between products 
can be negligible or, at best, known in the design phase. From an accounting 
perspective this means more profit from more sales of a better product, fewer 
service returns, and a better reputation for your company. 

Less Expensive Than Analog 
Many times implementing a design in 

the digital domain can be less expensive than the equivalent analog implemen
tation. V sing our digital pot example, however, the analog implementation is less 
costly to build than the digital version. 

Unnatural Responses 
We have assumed the digital pot example 

is just a straight translation of the analog pot function. Another advantage of the 
digital domain is the ability to achieve "unnatural" responses including extraor
dinary analog-like responses. The word "unnatural" in this case is meant to imply 
a system response not easily implemented with analog components. So, even 
though a single $1 pot could replace our more expensive digital example, would 
the analog pot be an equally good solution if there were additional "unnatural" 
performance criterion? That depends on what it is. If the analog pot must respond 
to the commands from a personal computer (PC) via its RS-232 port, which of 
the two makes sense? Right, our digital pot. An analog pot doesn't to respond to 
your Pc. 

Performance Easily Changed 
A final advantage of the digital domain 

is illustrated with this example. Let's assume that your customers said they 
preferred a logarithmic taper to the digital pot instead of the linear taper product 
you currently ship. No problem. Just change the software in the MeV. Perform-



Chapter 2 - The Digital Domain 

ance is easily altered with a digital domain implementation. Whether you're 
addressing feature enhancements or correcting problems with a product's opera
tion, you will appreciate the easily altered performance of the digital domain. 
Although the performance of some analog circuits can be easily modified, 
component values must be changed to alter the circuit's performance. It is possible 
with a digital domain implementation to make significant enhancements without 
changing a single component. Try that with an analog circuit! 

We've been somewhat superficial and 
academic in our discussion about the strengths of the digital domain. Let's now 
bring it down to earth with a real-world application: creating a magnetic tape 
noise reduction system. 

"Noise 'R' Us" Recording Studios 

Suppose I am an owner of a small sound 
recording studio that friends and clients use to tape their musical talents. The 
studio has a 16-track magnetic tape machine suffering from the evils of tape hiss, 
a high frequency sound produced from the tape's physically passing over the tape 
machine's playback head. Digitally-based recording systems with performance 
like a compact disc make tape hiss a problem of the past. 

A digital recording system, however, is 
still too expensive for me to justify. We want our system, however, to sound as 
much like commercially available CDs. 

Fortunately, in recent years much head
way has been made in reducing the type of tape noise plaguing our system: Dolby 
Labs and a company by the name of dbx have both created noise reduction systems 
that effectively reduce tape hiss so it's inaudible. There's only one minor hitch: 
money, my lack of money. As nice as the commercially available noise reduction 
circuits are, they are expensive. Dolby Labs makes a system that is excellent at 
reducing the tape hiss and, at $1200 per tape channel, very good at reducing my 
available funds. It was the need for low-noise recordings and the high cost of the 
commercial noise reduction systems that is leading me to design my own noise 
reduction system. To design a workable system, I had to first understand how noise 
reduction works and then choose a specific implementation. 

Digital Domain 
Strengths 
Illustrated 

2-3 



Chapter 2 - The Digital Domain 

2-4 

Simple Noise Reduction 

Tape hiss is a function of the current state 
of the music's signal-to-noise ratio (SNR). If the music is loud, a listener can't 
hear the tape hiss through the music - the tape hiss is "masked." If the volume 
of the music is low, compared to the tape hiss, then a listener hears the tape hiss. 
Consequently, the masking effect from a high signal-to-noise ratio (SNR) is an 
effective way of reducing the audible impact of tape hiss. 

The SNR is a way to compare the level 
of the music to the level of the noise ... tape hiss, in this case. Several record 
producers believe noise reduction is not necessary for rock and roll. Why? 
Because rock'n'roll tends to have consistently high signal levels. This is particu
larly true of the "heavier" rock'n'roll tunes; there's so much music that the music 
effectively covers up or "masks" the tape hiss at any given time. You could say 
the SNR of rock'n'roll is typically very high (some classical music fans would 
refer to the rock'n'roll as noise). Recording only high-energy rock'n'roll is one 
way, and perhaps the simplest, to reduce the perceptible noise in recordings. But 
this doesn't work in our hypothetical situation .. Some of my clients like "bizarre," 
i.e., non-rock'n'roll, music such as jazz and R&B. Consequently, I had to find 
some other way to maximize the SNR of my tape system. 

Another method that can be used to ad
dress the tape hiss issue is shown in Figure 2-1. In this noise reduction (NR) 
system, the high frequencies are boosted, for example, + 1 0 dB before the signal 
is recorded to tape. On playback if we introduce a 10 dB loss (-10 dB) at the same 
frequencies we boosted, the net result is the signal on the tape will sound the same 
as before. This is because the net effect of boosting and then cutting the same 
frequencies in this complementary way produces the original signal. This is 
analogous to an amplifier stage which boosts overall signal gain by a factor of 
two only to have a successive stage introduce a gain factor of.5. The net effect is 
the signal emerges apparently unaffected, i.e., at unity gain, at the output of the 
last stage. This "boost then cut" form of noise reduction does the same thing except 
we are boosting and cutting only parts ofthe signal, only in the same area ofthe 
frequency spectrum where the tape hiss resides. In this way, during the playback 
the tape hiss levels are cut back when the frequencies are cut. Since we have 
effectively restored the original signal and cut the tape hiss, by 10 dB in this 
example, we have effectively increased the SNR of our tape recording system by 

10 dB. This looks like a practical way to reduce tape hiss when recording clients 
don't want to record high-energy rock'n'roll. 



Chapter 2 - The Digital Domain 

Danger of tape 
saturalionatlower 
levels'causeol~ 
boosledhighs. 

~+12 o~ 

O~ I I ~~2 
2.5 kHz 10 kHz I \ 2.5 kHz 10 kHz 

PRE-EMPHASIS FILTER DE-EMPHASIS FILTER 

Audio Audio 
highs highs 

boosted boosted,lapehiss 
normal 

Audio 
Audio In--to tape highs 

Figure 2-1 

Tape Noise Example 

normal,tape hiss 
reduced 

There is a significant flaw with this 
boost!cut noise reduction system: the tape's limited dynamic range as a storage 
medium_ This means the boosted high frequencies will distort the tape at a lower 
absolute level than the lower, unboosted frequencies_ So although the boost/cut 
scheme maximizes the SNR, we reduce the effective dynamic range of the system 
because of the boost. Fortunately, there is a way around this problem to make the 
boost/cut method usable_ An amplitude compression can be used to record the 
signal with the boosted high frequencies while reducing the chance of overloading 
and distorting the tape. Here's how it works. As the energy of the music increases, 
an automatic volume control, the amplitude compressor, turns down the volume 
of the music in a predetermined way. As an example, if the music increased its 
loudness by a factor of two (6 dB for voltage measurement), we could have this 
compressor decrease the volume by 1.414 (3 dB for voltage measurement). The 
net result is the signal going to the tape has increased by only a factor of 
approximately 1.414 (a 2:1 ratio of input to output change in dB) instead of by 6 
dB before we compressed the signal. 

What does this all mean? Simply this: by 
using a compressor we can reduce the chance of tape overload from boosted high 
frequencies. Good, but compressing the signal like this introduces a new problem_ 
It sounds "unnatural." Fixing this is analogous to boosting and cutting specific 

2-5 



Chapter 2 - The Digital Domain 

2-6 

frequencies of our signal during recording and playback. While compressing the 
signal during record to avoid premature distortion, we use the complement of 
compression, called expansion, to restore the original signal's dynamic range on 
playback. 

Encode/Decode NR System 
Figure 2-2 shows a block diagram for 

implementing an encode/decode type of tape noise reduction (NR) system. Within 
the box marked "process" is the compressor and preemphasis filter to encode the 
signal going to the tape. This system view of the NR system allows you to see the 
actual mechanics of how the NR works without getting bogged down in the details. 
Basically, the process block produces a known output, a(t), when presented with 
the signal, s(t), that we want to record. The signal that actually gets recorded onto 
tape, however, is the sum of these two, that is, a(t) + s(t). During playback, we 
change the configuration slightly of the process and summing amplifier. The point 
of the decode process is to retrieve the original unencoded signal s(t). By inverting 
the phase of the process block and taking its input from the output of the summer, 
we get a decode process that is the mirror image of the encode process and that 
strips the encoded part of the signal, a(t), from the signal stored on the tape. 
Remember, the process function produces a(t) if s(t) is presented at its input. It is 
also true if s(t) is at the output of the summer and the phase of the process is 
inverted that the system-level equations work out: 

ENCODE PROCESS 

~ O'-----Proce_ss ~~ .,.," 
DECODE PROCESS 

s(t)+a(t) --------t s(t) 

Figure 2-2 

EncodeIDecode Tape Noise Reduction 



Chapter 2 - The Digital Domain 

Once I determined the overall configura
tion of the NR system by similar reasoning, I needed to identify the characteristics 
of the process block. This was relatively easy because the process employs both 
compression and preemphasis to do what I needed it to do. The details of the 
encoder is shown in Figure 2-3 . 

from 
SOURC E 

r-

log(vin ) f- iF- -
Linear-ta-Log Converter RMS·to-DC 

I 

• 
0----/1+12 --- ~ -----< 

500 12 kHz 

PRE·EMPHASISlHIGH·PASS FILTER Voltage Controlled Amplifier 

1 + 

Figure 2-3 

Noise Reductiou Encoder Detailed Block Diagram 

2.16 

T 
to 
APE 

The function blocks marked VCA, 
RMS-to-DC, and LogO make up the compressor. The preemphasized signal is 
fed to the input of the compressor, while the output of the compressor is summed 
with the unaltered signal. This produces the composite signal, set) + aCt), which 
is recorded on tape. Analogously, the decode loop uses the same elements; the 
only difference is the input to the compressor is now the output of the summer 
rather than the signal to be encoded. 

2-7 



Chapter 2 - The Digital Domain 

2-8 

Performance Requirements 

After identifying the key concepts for a 
noise reduction system, I established a set of performance standards for the NR 
system. They were: 

• The NR system shall reduce audible tape playback noise to a level 
competitive with commercially available units. 

• The artifacts from mistracking between the encode/decode processes 
will be kept to an absolute minimum or eliminated completely. 

• The NR system will have the lowest possible cost, specifically, less than 
$25 per channel. 

• The tape shall be "listenable" without the NR decode process. Listenable 
means that any equalization funnies can be corrected with standard 
studio gear. This is a precaution in case a client takes one of our master 
tapes to another studio. I'd sure hate to ship my NR system with the 
client's tape! 

The next step in the design process was 
to identify a specific circuit implementation. 

The NR Prototype 

The analog-based prototype has two 
noteworthy features: an RMS-to-DC converter, with built-in logarithmic output 
for driving the VCA, and a thermal tracking resistor. The resistor is required to 
keep the RMS-to-DC converter's output voltage from drifting. 

Performance Of The Prototype 

I breadboarded the circuit to verify the 
performance of the unit. All the testing I did was subjective in nature. The dynamic 
nature of noise reduction makes it difficult to test with standard lab equipment. 
The important performance criterion is how good the NR sounds to the ear. I used 
a cassette deck as the tape machine under test. The results were very gratifying 
because it performed to my subjective expectations. 



Chapter 2 - The Digital Domain 

NR Implementation Problems 

If the subjective performance of the NR 
system is so good, then the design must be O.K., right? No. Unfortunately, the 
performance of the circuit could falter sometime in the future because of mis
tracking between the encode and decode modes of operation. This type of 
mistracking can be induced by environmental conditions and results in certain 
circuit parameters drifting. Remember our encode/decode equations in Figure 2-2 
on page 34 assumed perfect encode/decode arithmetic; there were no error terms 
shown in the math. 

A tracking error between the encode and 
decode process is exhibited as a loss or accentuation of certain frequencies during 
tape playback. Nonetheless, I wanted to reduce as much as practical. You have 
probably experienced this type of phenomena with your home and car stereos, if 
you record tapes at home and listen to them in your car. The mismatch between 
the encode and decode filters of the two different machines causes the differences 
in the frequency response between your home cassette recorder and your car's 
playback unit. 

One way to correct this problem is to use 
components or processes having low errors. Another way is to trim out the error. 
I prefer using circuits that don't require trimming because the components used 
to trim can become sources of drift themselves. This left me to find devices or 
techniques without the inherent errors. While I was surveying the industry for such 
devices, I realized that there was yet another problem to consider even while 
looking for solutions to the drift problem: price. 

In many ways, the drift issue may be 
trivial when compared to the price issue. Even with a perfect solution to my tape 
hiss problem, like a digital recording system, the availability of that solution is a 
function my VISA credit line. Like it or not, the price issue as legitimate a 
consideration in product design as the selection of technologies. 

So, here was my dilemma: my prototype 
worked well, but included a $23 RMS-to-DC converter inherently prone to 
temperature-related drift. Both the cost and inclination for drift were at odds with 
my performance specifications. That spec included a total product cost per channel 
of $25 or less for all the electronics. The spec also required the design must 

2-9 



Chapter 2 - The Digital Domain 

TheMCUAs 
An Analog Cir
cuit 

2-10 

minimize, if not completely eliminate, tracking errors. An additional, "hidden" 
spec requirement was I didn't want to spend all my time selecting the components 
for this project. This project was beginning to look too much like work! But I 
stumbled upon the solution in my "defunct" projects box. 

Several months ago, I developed an 
MCU-based audio device using one of the HCII variants I obtained for around 
$11 apiece in some quantity. This device was to control a Voltage Controlled 
Amplifier (VCA) using upon certain information contained in the audio. The 
device, an audio compressornimiter, was the functional equivalent to the ampli
tude compressor needed in the NR system. The question is: if I use it in the NR 
system, would it address the performance issues? 

Figure 2-4 gives a visual hint about how 
an HCII applies to this application. By replacing the RMS-to-DC chip with the 
HCll, both the RMS-to-DC conversion is replaced as well as the linear-log 
weighting of the signal required to properly drive the VCA stage. Would this part 
substitution address the drift and cost issues? Yes. Here's how: the RMS-to-DC 
process is implemented by performing simple math on ADC results. The results 
of these calculations are causal, bounded, possibly convergent, and possess error 
margins that are calculable. This on account of the nature of the arithmetic -
even with quantifying the arguments. If you have any doubt about this, perform 
an RMS calculation on a set of numbers tomorrow in your spare time. Repeat this 
same calculation several times thereafter under different conditions, but using the 
same set of numbers. It doesn't matter when or where you perform the calcula
tions, you'll get the same answer. It's almost absurd to suggest there would be a 
difference from the original calculation. In addition, even the numbers in the 
calculation are changed or the precision of the arithmetic, the results may be 
predicted to lie within particular outer bounds. If so, then the question is, "Is the 
bounded error sufficiently low or can it be made sufficient for our application?" 
By subjective test, under a variety of conditions and after guesstimating a 
quantitative impact, the answer is a resounding "Yes!" 



Chapter 2 - The Digital Domain 

log(vin ) f--

Linear-to-Log Converter 

--
JJ,:')~ f---

RMS-to-OC 

Figure 2-4 

~----LLl(J)~mCl).E~CJt3::Sfj 
I-~ -c[8§~»CLo...o..a.. 

8 XTAL Qa::: LL 
9 pca 

10 PCl 
PC2 

12 PC3 
13 PC4 
14 PCS 
15 PC6 
16 PC? 
17 Resel\ 
18 XIRQI 
191RQI 
20 PDO 

MC68HC11A1 

68 HCll Can Replace Both the RMS-TO-DC 

Chip and the Linear Log Weighting 

The linear-to-Iog converter has the same 
features the RMS-to-DC process does: the process is bounded and has a predict
able error contribution. This, too, turned out to be acceptable for this application 
even when combined with the errors ofthe RMS-to-DC conversion process. 

Before our discussion about the NR sys
tem, we talked about the strengths of the digital domain. These strengths include: 

a) Minimizing parametric changes within a unit over 
time and temperature, 

b) Predictable and bounded performance between 
units, 

c) Lower costs than an equivalent analog version, 
usually having a subset of analog performance, 

d) "Unnatural" responses, including extraordinary 
analog-like responses, and 

e) Flexible performance. 

HC11 NRAnd 
Digital Domain 
Advantages 

2-11 



Chapter 2 - The Digital Domain 

2-12 

The digitally-controlled NR system cer
tainly takes advantage of these features. If you agree our RMS-to-DC converter 
and linear-to-Iog converter functions will not drift or change original performance 
when implemented digitally, then we can agree that parametric changes relative 
to time and temperature are minimized within the same device because of the 
digital implementation. It's not a large leap in logic to assert the same charac
teristics that give us (a) also give us (b). Parametric changes between units are 
predictable and bounded. The latter point is really a restatement of the former. 

The cost of the HC II-based NR system 
per channel, around $15, is much less than the analog counterpart even though it 
includes the cost of the DAC required to interface to the VCA. Compare this $15 
price tag with the $23 price tag for just the RMS-to-DC converter. This exemplifies 
another advantage of the digital domain: a digital implementation is less expen
sive than analog but usually with a subset of analog performance. In this case, 
the digitally implemented RMS-to-DC converter does not have the 10 MHz 
bandwidth of the monolithic RMS-to-DC converter. The bandwidth of the 
digitally implemented system is lower than the analog version ... but so is the price. 

The HCll-based NR system is also a 
good example of how the digital domain can be used to obtain "unnatural" 
responses. In the NR system, the unnatural response is a nonlinear, logarithmic 
response. The same function may be accomplished using analog components like 
the RMS-to-DC chip and its log output, but the accuracy ofthe output is affected 
by temperature. This is only one example. Many functions in the analog domain 
could be accomplished with great difficulty or many parts that are much more 
easily accomplished in the digital domain. This is because of the nonlinear or 
complex nature of the required function. Functions like waveform generation fall 
in the "it's-easier-to-do-in-digital-than-in-analog" category. Good examples are 
waveforms that are not particularly periodic or that have other characteristics not 
be easily processed or generated by continuous-time devices. 

Finally, digital system performance is 
more easily changed than that of an analog system. While the NR system we've 
described is useful to illustrate several advantages of using the digital domain, 
another process is useful to illustrate how a digital system is more easily modified. 
And that's an analog building-block, the all-pass filter. 



Chapter 2 - The Digital Domain 

Easily Modified Performance 

The operational amplifier schematic in 
Figure 2-5 shows an "all-pass" filter. We won't discuss the practical uses ofthe 
all-pass filter. Instead, we will contrast the circuit's ability to manipulate certain 
parameters of its input signal. Then we will indicate some possible uses for the 
circuit. 

R R 
Signal >~-_-'\N'v -_-----'VV'v--<~_C> ...... Signal 

In Out 

R 

, 

I 
11 • 'wRCI -J (1)' + (·jwRC) 2 

ITOw)1 = J = = 1 

11+jwRCI -J(1)'+OWRC) 2 

Figure 2-5 

All Pass Filter 

The equations in the figure reveal two 
performance aspects of the all-pass network. One, quantity, the magnitude ofthe 
network function, is equated to a value of one. This means this circuit produces 
a signal whose amplitude is identical to the input. Normally, an amplifier with this 
characteristic would be called a voltage follower. But this is not a voltage follower. 
The second mathematical expression the figure shows is the time delay of a signal 
passing through this circuit will be affected as a function of the input frequency 
of that signal. The expression given is called the group delay of the network. 

Let's ignore any reason why we would 
change the time delay of a signal- we'll get back to that later. How would we 
duplicate this same type of function in the digital domain? One answer is a simple, 
single-stage delay illustrated in Figure 2-6 . Let's walk through the description of 
this diagram. The input signal is digitized with an ADC, processed by the CPU, 
and output to a DAC. To realize a delay, the processor must perform three steps: 

(a) Move data from a RAM location to the DAC. 

(b) Move data from the ADC to the RAM location. 

2-13 



Chapter 2 - The Digital Domain 

2-14 

(c) Go back to step (a). 

7 0 

"A"IIIIIIIII.a 
7 0 

~.IIIIIIIII 

a) Move data from 
location "A" to DAC. • 

c) GO BACK TO STEP "a" 

Figure 2-6 

Single Stage Delay 

b) Move data from ADC to location "A". 

That approach is straightforward. How 
long is the time delay? It's however long it takes the CPU to perform steps (a), 
(b), and (c). How long is the delay of the analog circuit compared to this? Well, 
I'm not sure but I sure don't want to figure it out! But the expression for the 
analog circuit's time delay is much messier than the digital version. What if we 
wanted to change the time delay value? Basically we only have to shuffle the ADC 
samples in RAM around a bit more than we are currently doing. 

As shown in Figure 2-7 , to achieve a 
longer time delay, lengthen the RAM buffer from what was previously one 
location to "n" locations and employ the following procedure: 

(a) Transfer the last ("nth" sample) RAM location to 
theDAC, 

(b) Move each previous sample into the next higher 
sample position of the RAM array, and 

(c) Fill the top position with the latest ADC sample. 



Chapter 2 - The Digital Domain 

7 

a) Take last sample in buffer 
and send to DAC 

o 

7 

o 

o 

7 o o 

w ~ \ •••• ~ samples ~ ., 

c) Get latest sample from 
the ADC and place at the 
"top' of the buffer. 

b) Move each lower sample 
into the next higher sample 
starting at the "bottom". 

~ •• 7 o} 

Figure 2-7 

d) Return to step "a". 

"n" 
samples 

Longer RAM Buffer is Used to Achieve Longer Delay 

To change the delay time of this digital 
delay, we only have to change the number of bytes in the RAM array for the ADC 
values. The source code for implementing this digital delay line on the Motorola 
MC68HC05 MCU is shown in Figure 2-8 . 

2-15 



Chapter 2 - The Digital Domain 

2-16 

************************************************************** * Name: T i meOe I ay 

* * Purpose: To illustrate a 61 sample digital delay, 

* 
************************************************************** 

TempSmp I 
TimeBufr 
TBufEnd 

T i meDe I ay 

MoveSmp I s 

w PRGEORRM 

rmb I 
rmb 64 
equ * 

se8 Program 

sta TempSmpl 

Ida TBufEnd 
sta ORC 
I dx ITBufEnd-1 
Ida O,x 
sta I, x 
dex 

;this contains the latest 
; ROC !amp Ie, Save it, 
; Get very last samp Ie, 
;Send it to ORC, 
;start moving data from here, 
; get samp I e 
; move it down t he line, 

cpx 'TimeBufr-1 ;check for latest sample location, 
bne MoveSmp I s 
inx ; leave x point ing to TimeBufr 
Ida RDCResu I t 
sta O,x ;put latest result into buffer, 
rts 

Figure 2-8 

7 

• • • • 

o 

TBulEnd_ 

Implementing Digital Delay Line with 68HCOS 

How do we change the time delay char
acteristics in the analog all-pass filter in Figure 2-5 (page 2-13)? A circuit with 

an approximate time delay of lOOllsec, for most frequencies, is shown in Figure 

2-9. Although the expression for the first analog all-pass filter's time delay (Figure 
2-5) wasn't too complex, it was nothing compared to this all-pass network's 



Chapter 2 - The Digital Domain 

expression. The transfer function for this mUlti-opampcircuit is so messy we won't 
present it here, let alone attempt to modify the circuit elements to obtain a different 
time delay! Can it be done? Yes. Would I want to do it? No. The digital implemen
tation is much more convenient to modify. 

Q01~F 
2740Q 

1430Q 
10.0kQ 100 kQ 

.01 ~F 

1---.--1+ 

10.0 kQ 

2150Q 

Figure 2-9 

100 Ilsec delay all-pass filter 

Uses Of Time Delay 

We've skirted answering the question, 
"Why would anyone want to delay a signal?" Here's One answer that's to the 
point is: to delay signals. Another, is many analog filters mess up a signal's group 
delay that can be corrected by an all-pass network. In the past when passive audio 
signal equalizers were the only game in town, some people believed the signal 
would sound better if the weird time delay characteristics of some equalizers were 
corrected. 

A more contemporary use of the time 
delay function is to hide the fact that most rock'n'roll singers can't sing. Yet, even 
this is not the primary use for such a device. 

Time delay is an integral part of the 
process of averaging data. We saw this first hand with the thermostat described 
earlier in this chapter. But at that point we didn't call the data movement "time 
delay," and that's exactly what we're doing with the data. Look at Figure 2-10 . 
The left side of this figure is the HCOS source code from Figure 1-11 in Chapter 

2-17 



Chapter 2 - The Digital Domain 

2-18 

1, and the right side is the averaging routine from our discussion on filtering 
thermostat data. The heavy-lined rectangle highlights the common code segments 
between the time delay routine and the averaging routine. The time delay code is 
exactly duplicated in the lowpass filtering routine. Time delay is an important 
and integral part of the filtering process. 

************************************************************** 
* Hame:TimeDelay 

* * Purpose: To illustrate a 64 sample digital delay. 

* 
************************************************************** 

TempSmpl 
TimeBufr 
TBufEnd 

TimeDelay 

MoveSmpls 

seg PAGEORAM 

rmb 
rmb 64 
equ * 

seg Program 

sta TempSmpl 

Ida TBufEnd 
sta DAC 

Idx IITBufEnd-l 
Ida O,x 
sta 1, x 
dex 

j th i s conta i ns the latest 
j ADC sample. Save it. 
jGet very last sample. 
jSend it to DAC. 

jstart moving data from here. 
jget sample 
j move it down t he line. 

cpx IITimeBufr-l jcheck for latest sample location. 
bne MoveSmpls 
inx 

Ida ADCResuit 
st a 0, x 
rts 

j leave x pointing to TimeBufr 

j put I at est resu I tint 0 bu ff er. 

Figure 2-10 

Time Delay is an Integral Part of Averaging Data 



Chapter 2 - The Digital Domain 

We hope you are convinced, if not enthu- A Perfect 
siastic, about "doing things digitally." After all, digital techniques appear to have Solution? 
a lot of advantages over many analog methods. So, it appears there is an ideal 
solution to most problems. Well ... not quite. There are some disadvantages to using 
digital processes. Some are practical considerations like cost, and others are 
problems inherent in the process of digital conversion and manipulation. Let's 
take them one at a time. These are not listed in order of importance since their 
significance depends on your system. 

Limited resolution of data. Even the 
output of high resolution A-to-D converters, like 18- and 20-bit converters, are 
still only approximations of the real-world. The process of sampling with limited 
resolution and finite sampling intervals produces artifacts not present before 
converting the analog signal. Usually, the artifacts are unwanted and must be 
minimized to avoid corrupting the system's specified performance. 

Limited bandwidth. The maximum sig
nal frequency that may be processed by a digitally sampled system is considerably 
lower than that of an analog system. Many analog system frequency responses 
run into the gigahertz region, while high-resolution (8-bits or higher) systems are 
pushing the current technology to run in the area of tens of megahertz. Because 
of this technology/performance ceiling, we must deliberately minimize the band
width of the incoming signal to avoid sampling artifacts. This may severely limit 
a purely digital implementation, depending on the application. The bandwidth 
issue is commonly linked to the issue of limited resolution. As the speed of data 
conversion goes up, the resolution tends to go down. Whereas you may obtain 
30-megasamples per second from an 8-bit converter, a l6-bit converter may not 
produce the same conversion rate. The two issues are inversely related. 

Limited dynamic range. Dynamic range 
is the measure of a system's ability to handle very small and very large amplitude 
signals. There are really two reasons the dynamic range is limited with digital 
systems: the inherent resolution limitations of the ADC process and the arithmetic 
characteristics of the given CPU. If an 8-bit converter is used, for example, then 
the maximum ratio of the smallest to largest signals that can be digitized is 255: 1. 
A 16-bit system, on the other hand, can handle a maximum ratio of 65535: I! The 
dynamic range is significant. If an input signal is larger or smaller than the 
dynamic range, the signal will be either completely ignored or severely distorted 
since the signal isn't large enough for the digital system to "see" it. 

2-19 



Chapter 2 - The Digital Domain 

2-20 

Dynamic range is also detennined by the 
arithmetic capabilities of the CPU. Given identical throughput and functional 
performance requirements, an 8-bit CPU will handle a wider input signal dynamic 
range than a 4-bit CPU and produce less erosion of the dynamic range. For 
example, let's add the number "I" twenty times to itself. After the sixteenth 
addition, the 4-bit CPU would either overflow or invoke a special overflow 
handling routine. Doing the same thing on an 8-bit CPU requires nothing special 
until the 255th addition! Although there are other, more subtle arithmetic processes 
like convergent rounding that affect the dynamic range and precision of a digital 
system, quantizing the arguments degrades dynamic range the most. 

High cost for high resolution and 
throughput systems. Basically, the more closely we're able to digitally represent 
a signal and/or at a higher bandwidth, the more money it is going to cost. When 
conversion time is constant, then the higher the resolution conversion, the greater 
the cost. With system throughput remaining constant, the higher the bandwidth 
you need, the greater the cost. These are detennined by the practicalities of making 
high-speed, high resolution ADCs and CPUs. 



C HAP T E R 3 The Representation of Signals 

N ow that we know how various 
ADCs perform their magic, it's 
time to talk about some different 

ways of looking at wave forms. This is a topic that many of us take for granted, 
and yet it is as fundamentally important to understanding signal processing as 
Ohm's law is to understanding AC and DC circuits. If you're a practicing engineer 
or even just have some experience poking around a circuit with an oscilloscope, 
you've seen a signal's familiar voltage versus time representation on the 'scope. 
Well, whether you're experienced or not, we will now stop taking this repre
sentation for granted. There is information we've overlooked to help us understand 
digital manipulation of signals a bit better. At the worst (or at best, depending on 
your view), we'll avoid some problems because we won't make certain assump
tions. 

As just mentioned, voltage versus time 
is probably the most common view. Our lab instruments continually enforce this 
view by showing us how signals change over time. Consequently, we develop 
skills and, particularly, thought processes centered around this view. How many 
times have you watched the rise time of a square wave degraded by an "integrator" 
similar to Figure 3-1 ? Or observed the characteristic tilt of the high-pass differ
entiator on a square wave or a tone burst as shown in Figure 3-2? In these cases, 
the type and extent of filtering is evaluated according to the time domain view. 
There is another way. You might ask, "Why do we need another view? After all, 
our trusty 'scope usually helps us solve the problem and what's wrong with my 
thought processes anyway?!" As we will see, the idea is to make things easier for 
us and to make us more effective. The concepts we are about to discuss will be 
very helpful as we start to move from the analog realm into the digital world. 

Figure 3-1 

An Integrated Square Wave 

Figure 3-2 

A Square Wave Through A High 

Pass Filter 

Repre
sentationof 
Signals 

3-1 



Chapter 3 - The Representation of Signals 

3-2 

There are really many different ways of 
looking at the same signals. In fact, in many cases different views can provide 
much more information about the signals in question than the 'scope view or, as 
it is also called, the time domain description. There is at least one new and exciting 
way of looking at signals in addition to the standard time domain view. For 
example, let's recall the log function. Aside from giving us grief during our first 
calculus courses, this function proved to be very useful in the early days of 
computers. Then a computer could only add and subtract. (According to all you 
purists out there, it is really only addition, since subtraction is addition with signed 
numbers.) Any multiplication and division had to be performed by sequential 
additions or subtractions. You may even recall the restoring and nonrestoring 
division algorithms, which used iterative subtractions and were popular for such 
machines. 

In any case, a much faster and non-itera
tive way to do the same type of functions was to map the arguments into the log 
domain, that is, to use the identity: Log(xy)=Log(x) + Log(y). By taking the 
exponential of both sides, we're left with xy=l O(Log(x)+Log(y». Roughly translated 
into English, this means that we can determine the product of two numbers (x and 
y in this case) by adding the log of the numbers and exponentiating the result. 
The advantage to this approach, in this example, is we can multiply two numbers 
by using the addition capability of our computers. "So what?!", you say. What 
does this have to do with the representation of signals? Simply this: by changing 
our view of the numbers, i.e., by mapping into the log domain, we are able to 
quickly perform a function that our computer otherwise isn't capable of perform
ing quickly. In other words, we can do something relatively easily with the 
numbers which we couldn't do easily before, just by remapping the problem 
from one domain to the other. 

So, what is this new and exciting way of 
viewing signals? Sad to say, it's neither new nor very exciting, but it is extremely 
useful. It's the frequency response view. Yes, the frequency response view can be 
a very compact and useful way of characterizing a system's performance. If you're 
a stereo enthusiast, you know your equipment's frequency response is a key 
measurement of your system's ability to accurately reproduce your favorite music. 
One thing you may not have realized, however, is the frequency response of your 
stereo is a shorthand method of describing the stereo's response to a whole bunch 



Chapter 3 - The Representation of Signals 

of time domain signals. For example, my stereo, if excited with a 50 hertz sine 
wave of .775 Vrms, will put out a 50 hertz sine wave of such-and-such size. 
Imagine doing this for a collection of sine waves of various frequencies. It might 
look something like Table 3-1. 

Table 3-1 

25Hz 50Hz 100Hz 200Hz 1kHz 4kHz 10kHz 20kHz 

.700 .780 .905 .825 .790 .803 .653 .420 

Table 3-1 certainly illustrates the ability 
of my stereo to handle each frequency, but it also took a while to fill in this table. 
The table is also hard to read and understand. A better way to show the same 
information might have been to graph the magnitude of the sine waves, at the 
output of my stereo, versus its frequency value, as shown in Figure 3-3. Easier 
to read, isn't it? These two ways of showing stereo performance are also equivalent 
in meaning. Notice that the frequency response plot is merely another way of 
describing how the stereo responds to sine waves. 

1.0 

0.9 

0.8 

0.7 
en 
::2; 0.6 

es 0.5 
gJ 
0 0.4 > 

0.3 

0.2 

0.1 

0.0 
10 100 1000 

Frequency (in Hertz) 

Figure 3-3 
Frequency Plot of a Stereo Amplifier 

10000 100000 

3-3 



Chapter 3 - The Representation of Signals 

3-4 

If there were nothing to be gained by the 
frequency response view, it would not be worth discussing. Since we would never 
put anything wasteful in this book, this view must offer a lot of potential gain. 
Earlier in this chapter, we discussed the use of averaging to effectively filter noisy 
data. Would you believe there is an easier way to filter the noise which uses our 
new frequency response representation? The answers to the following two 
questions give a clue to this easier way: 

• What answer do you get when you multiply a number by 1 ? 

• What answer do you get when you multiply a number by O? 

The answer to the first question is, of 
course, the number itself, and the second answer is zero. Now, imagine taking a 
frequency response, such as shown in Figure 3-4(a), and mUltiplying it by the 
rectangular shape, as shown in Figure 3-4(b). In other words, for any frequency 
that has nonzero amplitude in both figures, we plot the first frequency response 
in the resultant graph. Otherwise, we plot a 0 in the resultant graph. After we 
perform this short procedure, we end up with the graph shown in Figure 3-5. 

Figure 3-4 

(a) An Input Signal Spectrum and 

(b) A Low Pass Filter Spectrum 

fx= 5kHz 

Figure 3-5 

Result of Multiplying Fig. 3-4 

(b) by Fig.3-4 (b) 

The plot of Figure 3-4(a) contains only 
those frequency components at or below 5 kHz. After mUltiplying the original 
frequency response, containing frequencies up to 15 kHz, by a rectangular pulse 
with a width of 5 kHz, we end up with a frequency response containing frequency 
components no greater than 5 kHz. In other words, we have low-pass filtered the 
original frequency response plot. At this point, you would probably guess that it 
is possible to filter a signal by simply multiplying it's frequency representation 
by a rectangular shape. Your guess would be perfectly correct! Couple this idea 
with your knowledge of how effectively and easily we can multiply numbers with 
microprocessors these days. 



Chapter 3 - The Representation of Signals 

Before we start multiplying, there are 
actually two challenges at this point: 

• Transform the real-world signals from their normal, analog state into a 
form that a microprocessor can manipulate. 

• Transform the digital time domain data into a frequency domain repre
sentation. 

We already covered converting analog 
signals into digital ones a little earlier. Let's discuss time and frequency domain 
converSIOns. 

We have, at least implicitly, agreed that 
the scope and frequency response representations are equivalent. If they really 
are (and they are!), then the process of going from time-like data into frequency
like data must also be reversible. So maybe instead of transforming the time-based 
data into the frequency domain, we could translate our rectangular frequency 
response into time-based data. Either approach is valid because the time and 
frequency domain representations of the signal are equivalent. From a practical 
view, the point is to identify which representation is easier and/or cost effective 
to manipulate. In the earlier thermostat example, we actually implemented the 
filtering function in the time domain. We transformed (unknown to most of us at 
the time) the desired frequency response shape into a set of time-based procedures 
consisting of additions and multiplications. If we had graphically presented the 
actual frequency response shape (which we hadn't done at that point), you would 
have seen something like Figure 3-6 - much less stark and extreme than the 
rectangular frequency shape. This "rounder" frequency response shape ultimately 
translates to a more gradual slope in the transition band - a less effective filter. 

Figure 3-6 

Low-pass Frequency Response of Thermostat 

Averaging Filter of 

3-5 



Chapter 3 - The Representation of Signals 

3-6 

Time To Frequency And Back Again 
What is it that allows us to move from 

the time-data to frequency-data and vice versa? As we saw with the logarithm 
example, there are many potential remapping techniques. However, the most 
widely accepted mapping technique between the frequency and time domains is 
the Fourier Transform (Fr). A function has two representations: time domain 
and frequency domain. The combination of these two representations is called a 
transform pair. 

Believe it or not, you don't really have to 
know the details of the Fourier Transform for it to be useful to you. Though it 
would probably benefit you to work through the math of an Fr at least once, we 
won't go through it here. You may review the FT in Chapter 4 which shows the 
actual mechanics of the Fourier Transform. To become somewhat conversant in 
manipulating signals in the digital domain, we need to discuss some of the results 
of applying the Fr. 

By now, we've presented several con
cepts possibly new to you. Without jumping ahead in the book, you may have to 
take the concepts and their manipulation on faith. However, if you are squeamish 
about "taking things on faith," then please read ahead to Chapter 4. There you 
will find the detailed logical argument to thoroughly understand and accept the 
concepts. Otherwise, continuing here will at least expose you to some very 
important concepts and "grease the skids" for later. Just seeing the application 
of the FT, without the nitty-gritty mathematical details, can be immediately useful 
to you. We will now present some of the more useful transform pairs along with 
some important signal constructs. 



Chapter 3 - The Representation of Signals 

The Impulse 

An impulse is a concept represented by 
a vertical arrow: 

f 

The impulse is a periodic event the con
verter uses to initiate taking a sample of the incoming analog wave form. It also 
can represent a sample clock, like that used by the ADC process. Actually, a single 
impulse is not used to model the ADC, but a "train" of impulses is used. The train 
of impulses is usually regarded as stretching infinitely in time. Two useful 
characteristics of these impulses are: 

1) The magnitude can be 1, and when multiplied by 
the input signal gives us a rudimentary under
standing of the process of digitally sampling ana
log signals. 

2) Also, the time-based infinite train of impulses 
gives us a corresponding infinite train of impulses 
in the frequency domain, and the distance between 
impulses is given by the inverse relationship 
f=I!f, where "f' denotes the frequency and "T" 
the period of the time signal. 

Looking at this graphically as in Figure 
3-7 , we see as the distance in the time-based train of impulses is decreased, the 
distance of the frequency-based train of impulses increases. Conversely, as the 
distance between the time domain impulses increases, the distance between the 
frequency domain impulses decreases. The importance of this characteristic will 
become evident shortly. Keep it in mind. 

3-7 



Chapter 3 - The Representation of Signals 

3-8 

~ 
I-- 31.---J t t ... 
! .. 

":1 ... 

i 

j f4- ~T 
4 t t t t t t t t f: t 

• 
i 

1--.57T --I I-- 1.751 0 

. :ltt... .. t.t . .t.:: t ... t .. J ..... J:: 
Frequent Domain I 

Figure 3-7 

Relationship Between Time & Frequency Impulses 

Multiplication 
Earlier we discussed the frequency re

sponse of a stereo system. We went through a brief exercise of multiplying a 
frequency response by a rectangular shape. We just discussed how mUltiplying a 
train of impulses by an analog signal models the process of sampling that signal. 
Based on just these two scenarios, the process of multiplication in either the time 
or frequency domain is useful. But are they really the same thing? That is, is 
multiplication in the frequency domain the same type of multiplication in the time 
domain? Let me say definitively: yes and no. An explanation is in order. 

The mechanics of multiplication are the 
same regardless of the domain you are working in. The same old multiplication 
you and I have been doing for many years now is implemented the same in either 
domain. That is not to say if we multiply something in one domain we are also 
simultaneously mUltiplying in the other domain. On the contrary. Remember we 
are using the FT to go between the time and frequency domains. Because of this 
mapping process, multiplication in one domain translates into a different opera-



Chapter 3 - The Representation of Signals 

tion in the other domain, just as adding in the log domain results in multiplication 
in the linear domain. The results are always the same. It's just that the steps, or 
mechanics of the processes are different depending upon which domain you are 
working in. 

Convolution 

If you derive an output in the time do
main by multiplying a signal by a function, what is the equivalent operation used 
on that signal and function in the frequency domain? It's called convolution. If 
you applied convolution to an input and a function in the time domain, what is 
the corresponding operation used in the frequency domain? It's multiplication. 
In DSP lingo: 

y(t) = x(t) * h(t) => Y(f) = X(f) * H(f) 

and 

Y(f) = X(f) * H(f) => y(t) = x(t) * h(t) 

Armed with this technotrivia, you can 
liven up your convoluted technical discussions with all kinds of bad puns like this 
one. Once you know the mechanics of a convolution, you can put it to work 
livening up your MCU-based product designs. Let's look at the mechanics of 
convolution by looking at a special case involving a train of impulses. 

Simply stated, convolving a wave shape 
with a train of impulses duplicates that wave shape for every frequency there is 
an impulse. For example, let's convolve, in the time domain, the following two 
signals: a rectangular pulse and a train of impulses as shown in Figure 3-8. Now 
apply the convolution "rule" we just stated on the rectangular pulse and the train 
of impulses. Take the rectangular pulse of Figure 3.8(a)and "paste" its shape at 
every frequency having an impulse (Figure 3.8(b). Notice that just as the input 
rectangular pulse was centered around the vertical axis, a rectangle is centered at 
each impulse after convolution. If done properly, we end up with the graph in 
Figure 3-9. Not very informative or useful you say? True ... but that's just an 
example. Let's take it one step further with an example with a more useful 
outcome. 

3-9 



Chapter 3 - The Representation of Signals 

.... l ........ t ............ J""" 
, 

Figure 3-8 

Rectangular Pulse (a) and a Train ofImpulses (b) 

Figure 3-9 

Convolution of Fig. 3-8 (a) & 3-8 (b) 

3-10 



Chapter 3 - The Representation of Signals 

Take the sine wave in Figure 3-1 O( a) and 
multiply it by the train of impulses Figure 3-1O(b). The result is like that in Figure 
3-11. Obviously we have a train of impulses with the original sine wave's shape. 
Now, convolve this sinusoidally-weighted train of impulses with the rectangular 
pulse shown in Figure 3-12. What's the result? The time-domain plot shown in 
Figure 3-13. You astute observers will recognize this as the sample-and-hold 
function applied to a sine wave. The rest of us, particularly the management types, 
will describe the resultant wave form as "a bumpy sine wave." Who am I to argue? 

", 

, .. ... tlttttltt~tttt!ttt .. · ~ 
~ 

Figure 3-10 

A sine wave (a) and a train of impulses (b) to sample it 

f t 

Figure 3-11 

The Sine Wave of Fig. 3-10 Multiplied by a Train of Impulses 

Figure 3-12 

A Short Rectangular Pulse 

II 

Ii' 
I III 

IIII II 

IIII 

U II 
w 

n 

nil 

...J III 

IIIIII 

II IIII 

IIII 

UII 

Figure 3-13 

n 

nil 

..J III 

IIIIII 

Sine Wave of Fig. 3-10 (a) after Sam-

3-11 



Chapter 3 - The Representation of Signals 

3-12 

Nevertheless, this convolution's result 
closely represents a real world sample-hold function sampling a sine wave. As we 
discussed earlier, the sample-hold function is usually an analog to digital con
verter's first step in the process of going from the analog to the digital world. By 
using the impulse's characteristics and convolution mechanics, we can model 
what happens to a signal in the analog to digital process. 

A Quick Convolution Example 

If you understand the concepts presented 
thus far, you actually have enough information to start processing real-world 
signals. Convolving functions in the frequency domain is the real-world process
ing for which we're prepared. Summarized below are the FT's features and 
relevant facts discussed so far about the frequency domain: 

Important point #1: Convolving a rec
tangular shape with a train of impulses results in duplicating that rectangular shape 
everywhere there is an impUlse. 

Important point #2: A rectangular 
shape centered around the vertical frequency axis in the frequency domain is a 
low-pass filter. 

Important point #3: MUltiplying a sig
nal by a train of impulses in the time domain represents the digital sampling 
process for an analog wave form. 

Given these tidbits of information, try to 
determine the answer to the following problem: 

Convolve a 1 OOO-hertz wide rectangular shape cen
tered at zero frequency, with an impulse train in the 
frequency domain. What minimum distance be
tween frequency impulses is required to guarantee 
no overlap between the resultant rectangular 
shapes? 

The answer follows this reasoning: 

First, the lOOO-hertz wide rectangular 
shape is centered around zero frequency, so it stretches SOO hertz on either side 
of the vertical axis. Once the impulse train is convolved with the rectangular shape, 
it will stretch SOD-hertz on either side of each impulse. 



Chapter 3 - The Representation of Signals 

We know that convolving a train of im
pulses with another function basically duplicates that function everywhere there 
is an impulse. Therefore, the result of this impulse train convolved with this 
rectangular shape is a series of 1000-Hz rectangular shapes, centered at each 
impulse of the impulse train. The minimum distance between the duplicated 
rectangular pulses will be 500 hertz, for a given impulse, plus 500 Hz for each 
adjacent impulse. As you probably know, 500 Hz plus 500 Hz equals 1000 Hz. 
Thus, in this case, the minimum distance between impulses, to avoid overlap of 
the rectangular shapes, must be at least 1000 Hertz. 

What have wejustreasoned through? It's 
called the Nyquist Criteria for digitally sampled systems. You've probably heard 
of it. It's an important operating consideration when working with digitally 
sampled systems. A typical textbook definition of the Nyquist Criteria states 
that our system sampling frequency must be greater than twice the highest 
frequency component of the input signal. Why? When this "rule" is not followed 
(as in the example above), the frequency spectrum associated with one impulse 
starts to "collide" with the frequency spectrum associated with the impulse next 
to it. Overlapping spectra is not usually something that we want, because over
lapping spectra means the spectra are interfering with each other. In fact, the 
overlap creates frequencies not present in the original spectrum. These products 
of overlapping spectra are called aliased components. 

By applying the rudiments of the Fourier 
transform, we've seen all digitally sampled systems are bound by two important 
concepts: The Nyquist Criteria and aliasing. Despite their importance, we have 
been able to deduce their existence, and we've even guesstimated a quantitative 
system impact. 

The Rectangular Pulse 

Most of this material may appear to be 
"black magic," but I assure you the rules and transform pairs we have discussed 
are a direct consequence of the FT. We've only looked at signals graphically, but 
a mathematical approach supports the FT as well. Without actually performing 
the mathematics of the FT, it's pretty tough to predict the time-frequency pairs. 
Time-frequency pairs are the two functions that represent a signal or operation in 
both the time and frequency domain. For example, given a rectangular pulse in 
the time domain, the FT transformation results in a rather strange-looking, obtuse 
function called the sinc function (pronounced "sink"). It looks like the graph of 

3-13 





Chapter 3 - The Representation of Signals 

The Sine And Cosine Functions 
This transform pairis one you've already 

seen but probably didn't realize it. In fact, we opened our discussion on transform 
pairs with it: the Ff of the sine or cosine function results in an impulse in the other 
domain. For a time-based sinusoid, the frequency plot will be an impulse located 
at the frequency of the sinusoid like that shown in Figure 3-15. As you may 
remember, the difference between the sine and cosine functions is slight. They 
are really the same wave form but 90° out-of-phase with respect to one another. 
To be truthful, both sine and cosine may simply be represented with a single 
impulse arrow as shown in Figure 3-15. That's only part of the story, however. 
There is an equivalent frequency domain representation to designate the phase 
differences between the two, but we'll leave that for further discussion until 
ChapterXX. It is sufficient at this time to represent either time-based function 
by a single impulse in the frequency domain. 

f 

Figure 3-15 

The Fourier Transfonn of a Sine or Cosine Wave 

Frequency Representation of Direct Current (DC) 
A DC wave form is really no wave form 

at all. Electrical engineers understand DC to mean the current or voltage amplitude 
does not vary with time-there is zero frequency. This produces a horizontal line 
on an amplitude versus time plot as shown in Figure 3-16. The equivalent 
frequency domain is a single impulse located at the zero frequency point. 

3-15 



Chapter 3 - The Representation of Signals 

3-16 

F 

Figure 3-16 

DC and Its Spectrum 

The consequence of this is twofold: a) A 
train of impulses that has an impulse located at the zero frequency point means 
there is a DC component in the time domain signal, b) A horizontal line in the 
frequency domain is plotted in the time domain as an impulse at t=O. This is an 
important point. The implication is a horizontal line in the frequency domain 
suggests that all frequencies are at the same amplitude. We interpret the single 
time domain impulse as a very short-lived signal. A short time domain impulse 
produces a frequency plot containing all frequencies. 

Time Or Frequency: It's All The Same 
Up to this point we've freely inter

changed a signal's representation in the time and frequency domains and vice 
versa. That is, if a rectangular pulse in the time domain results in a sinc function 
in the frequency domain, we've also assumed the opposite was true: a sinc function 
in the time domain produces a rectangular wave shape in the frequency domain. 
We haven't attempted to prove this, we've just casually presented this as accept
able. Fortunately, it is not only acceptable, it's correct. This pairing of wave 
shapes, regardless of the domains in which they reside, is called duality in signal 
processing lingo. This is actually one of the most important consequences of the 
FT. Keep it in mind as you would the transform pairs we've discussed - it's very 
important. 



Chapter 3 - The Representation of Signals 

Other Important FT Stuff 

We've only talked about one of the prop
erties of the FT so far: duality. There are many more. We can get along well, for 
most day-to-day engineering work, without these additional details. This is 
primarily because some of the properties, like the linearity property, are so 
common in engineering that we assume it applies here too. Most of us haven't 
been concerned with other properties, like the time and frequency shifting 
properties, until now. What follows is a list of the properties with a short 
explanation. 

Linearity property. The FT of the sum 
of two functions is equivalent to the sum the FT of each function. 

Because the FT is a linear function, many 
of the other arithmetic properties also apply and often come in handy when 
solving problems. Two of those properties I've found particularly useful are the 
commutative and associative properties. 

Symmetry property. This is another 
term for duality. 

Time scaling property. This is one of 
the properties establishing the inverse relationship between the time and fre
quency domains. Basically, this property states that if our time variable "t" is 
multiplied by a constant "k" then the transformed "f' variable is divided by the 
constant "k." As it turns out, the amplitude of the transformed function is also 
affected by this property. 

Frequency scaling. A complementary 
statement of the time scaling property starting at the frequency domain. You could 
"prove" this by applying the time scaling and the symmetry properties. In 
symbols, that is, frequency scaling symbols. 

Time shifting property. This property 
is responsible for the fact that time delay in the time domain is equivalent to phase 
shifting in, you guessed it, the frequency domain. 

Frequency shifting property. The con
cept of modulation is a direct consequence of this property, which states a 
frequency may be shifted by multiplying the corresponding time domain function 
by a certain exponential function. 

3-17 



Chapter 3 - The Representation of Signals 

Putting It All 
Together 

3-18 

Other properties. Even functions, odd 
functions, real functions, and imaginary functions are properties that, at this point, 
require little more than this quick acknowledgment. Although ultimately very 
important to those of us who will become deeply involved in signal processing, 
these are not absolutely necessary to apply signal processing to many engineering 
problems. 

At the end of this book is a list of some 
really informative books (not including this one of course), where the curious 
among you may delve more deeply into these things. 

We will now put our new knowledge to 
work by taking the concepts we have learned so far to develop a digital filter. We 
will develop the details of the digital filter we constructed for the thermostat that 
is the averaging filter. Although this is a very specific filter, the mechanics 
presented are useful for constructing any type of digital filter that does not utilize 
feedback in the filtering process. 

Earlier in the chapter we said filtering an 
input signal could be accomplished by multiplying the input signal spectrum by 
a rectangular wave shape. But, while we didn't indicate how to obtain the input 
signal spectrum, we did infer that maybe we didn't have to. Instead, we assumed 
we could work in the time domain. By working in the time domain we avoid the 
transformation of an input signal into a frequency spectrum. Then we found the 
rectangular low-pass filter shape in the frequency domain was identical to the sinc 
function in the time domain. The rectangular shape and the sinc function are 
transform pairs. These concepts give us a good starting point to build a digital 
filter. 

Let's recount these principles and state 
them the way you might see them in a signal processing textbook. 

Multiplication of two frequency spectra 
in the frequency domain is equivalent to the convolution in the time domain of 
Uhe inverse FT of each spectrum. This is the kind of statement you see in a 
signal processing textbook. It's short, concise, and confusing. We'll translate it. 

Multiplication of two frequency spectra 
in the frequency domain. In the case of our low-pass filter, this means we will 
mUltiply the rectangular wave shape by the input signal spectrum. But we don't 
know what the input signal's spectrum is or how to get it. So, we're much better 
off working in the time domain. How? ... 



Chapter 3 - The Representation of Signals 

Is convolution in the time domain of the 
inverse FT of each spectrum. Earlier we discussed specific Fourier Transform 
pairs. We said the FT of a rectangular time-based pulse is a sinc function in the 
frequency domain. Because of the symmetry property, we also are able to say a 
rectangular shape in the frequency domain is a sinc function in the time domain. 
The process of translating a time domain function to its frequency domain version 
is usually referred to as "taking the Fourier transform" of the time-based func
tions. The process of translating the frequency domain function into its time 
domain version is referred to as "taking the inverse FT" of the function. We have 
been freely going both directions because we have been applying the symmetry 
property. Thus, all we have to do is con vol ve the sinc pulse with a time-based input 
signal to filter it. 

Simply stated, if our lowpass filter is the 
mUltiplication of a rectangular wave shape with the input signal's frequency 
spectra, then we can filter in the time domain by convolving the time-based input 
signal by time domain representation of the rectangle wave. In this case, it is the 
sinc function. But how do we convolve an input signal with a sinc function? We 
already have. We have already convolved an input signal with another function. 
Remember the thermostat averaging routine and the lattice diagram? Both the 
routine and the diagram demonstrate convolution in the time domain! Let's walk 
through the details of this thermostat filter implementation. 

First, we digitally sample the output of 
the analog temperature sensor. We now know we may approximate a signal's 
digitization by multiplying the input waveform by a train of time domain im
pulses. Because we don't really know what the time or frequency domain output 
of the sensor looks like, we'll make something up. We'll assume temperature 
slowly varies, and for all intents and purposes, it's a DC value. To demonstrate 
the characteristics of the filter, we'll superimpose a 60 Hz sine wave on top of the 
DC output of the sensor. The output ofthe sensor would then look like this: 

From the view of the sensor output, the 
functional interpretation of Figure 3-17 is the temperature is relatively stable. 
Unfortunately, "riding on top" of the sensor output voltage is some 60-cyc1e noise, 
possibly induced by the house wiring. The corresponding spectrum for this time 
domain wave shape is: 

The lhermosIat 
Example Re
visited 

3-19 



Chapter 3 - The Representation of Signals 

3-20 

Figure 3-17 

An Imagined Output of a Thermal Sensor Plus Noise (60Hz) 

For the sake of brevity, we will designate 
this composite function TempNnoyz(t). The plot in Figure 3-18 shows an FT 
property and two of the transform pairs we looked at earlier. The figure reveals 
the FT's linearity property. Briefly, the linearity property states the FT of the 
sum of two signals is equivalent to the sum of each function's FT. 

10 20 30 40 50 60 70 80 90 100 

Figure 3-18 

Spectrum of Thermal Sensor Output Plus Noise of Fig. 3-17 

The first transform pair is shown in Fig
ure 3-16. It is a constant time function, and its corresponding impulse is located 
at the frequency plot's origin, like so: 

The second transform pair is a sine wave 
and its corresponding FT, an impulse located at the frequency of the sine wave: 



Chapter 3 - The Representation of Signals 

By applying the linearity property, we 
end up with the composite spectrum TempNnoyz(t) in Figure 3-18. 

Now that the output voltage of the sensor 

.... 
F 

has been defined, the signal must be digitized. In this case, we will use a sampling 
rate 10 times greater than the frequency of the 60 Hz sine wave. Remember, 

Figure 3-19 

I I I I I t I I I I ~ 
10 203040 50 60 70 80 90 100 F 

A 60 Hz Sine Wave and Its Spectrum 

digitally sampling a signal can, for our purposes, be adequately modeled by 
multiplying the input signal by a train of impulses in the time domain. The time 
domain plot of the sampled temperature profile looks like Figure 3-20 on the 
following page: 

3-21 



Chapter 3 - The Representation of Signals 

3-22 

_~]]lllllllllllllllilli 

Figure 3-20 

Digitally Sampled Thermal Sensor Output 

We'll call this TempNnoyz(nT). Notice 
the use of "nT" to distinguish the signal's sampled timebase from the continuous 
time designation of "t." What does the spectrum of this digitized function look 
like? You are correct if you guessed the composite function of Figure 3-18 
duplicated wherever there is an impulse in the frequency domain. This function 
is Figure 3-21 and occurs because time domain multiplication translates to 
frequency domain convolution. And convolving a wave shape by a train of 
impulses duplicates the wave shape everywhere there is an impulse. To sample 
TempNnoyz(t), we multiplied it by a train of time domain impulses which resulted 
in TempNnoyz(nT). The frequency domain translation of this time domain activity 
is to convolve the FT TempNnoyz(t), which is given by TempNnoyz(f), by a 
frequency domain impulse train. This process of sampling translates the continu
ous time function into a stream of numbers. We then need to feed these into the 
process represented by the lattice diagram. Let's look at the lattice diagram we 
developed earlier: 

I 

t + L 
Figure 3-21 

Spectrum of Sampled 
Sensor Output 

t + .. , 

Figure 3-22 
A Lattice Diagram 



Chapter 3 - The Representation of Signals 

Data moves from left to right. The sam
ples coming from the ADC enter on the left, and they leave our averaging process 
on the right. As shown in the lattice diagram, each piece of data held in RAM is 
first multiplied by a number or coefficient. If you'll remember from our discussion 
placement of this coefficient is a consequence of the distributive property of 
multiplication over addition. Suffice it to say in our thermostat averaging exam
ple: 

a) There are 64 "blocks" in our main data 
flow in the lattice diagram. 

b) All 64 of the coefficients happen to be 
the same. They all had the value of 1164. 

The data moves through the lattice dia
gram so that each data sample is shifted left to right, once each sample clock. We 
could view the output of each block, called taps, as being one sample clock apart. 
Since each sample coefficient has an amplitude of 1164 and a sample clock delay, 
we could picture combining these two basic elements for every tap. The plot would 
look like this: 

t 

Figure 3-23 
Representation of Lattice Diagram Coefficients as a Sampled Rectangular 

Pulse 

Does this look familiar? It looks like a 
rectangular pulse multiplied by a train of impulses. Since we are convolving this 
wave shape by the digitized input signal, TempNnoyz(nT), this convolution also 
looks like the input signal's FT being multiplied by the FT of the sampled 
rectangular pulse. The spectra for a sampled rectangular pulse looks like this: 

3-23 



Chapter 3 - The Representation of Signals 

3-24 

Figure 3-24 

Spectrum of Sampled Rectangular Pulse of Fig. 3-23 

So, how does this filter work? If we look 
morec1osely at Figure 3-24, we can see the details. Figure 3-25 shows figure3-14 
(the sinc function) magnified a little. The graph's left hand side, the "negative" 

frequencies, is cropped from view. In addition, it only shows its characteristic sinc 
shape up to where it first passes through the horizontal axis. We did this to simplify 
the final step of multiplying the input spectra by this wave shape. Compare Figure 
3-25 sinc-type spectrum with the shape of the ideallowpass filter: 

-'. 

Figure 3-25 
Sinc Function Low-pass Filter 

Figure 3-26 

Ideal Low-pass Filter Frequency Response 



Chapter 3 - The Representation of Signals 

The two spectra in this figure are similar. 
The amplitudes in the lower frequency are affected less that those in the higher 
frequency. But the sinc function's gradual slope implies it is going to be less 
effective as a filter. The final step in understanding this averaging type filter is 
to multiply the input signal spectrum by the filter's spectrum: 

1020304050607080 90100f 10 2030 40 50 60 70 80 90 100 f 

Figure 3-27 

Multiplying Thennal Sensor Output Spectrum (Plus Noise) by Sinc Func

tion Results in Reduced Noise Component 

We can see from the graph that applying 
this averaging process has significantly reduced the magnitude of unwanted noise 
in our system. 

It may not be obvious that there is a lot 
of underlying mathematics involved in building the averaging filter. Yet it is 
precisely the mathematics that gives this averaging filter its performance and 
appeal. Solving the problem of the noisy thermostat illustrates its performance, 
but how about its appeal? The following indicates the appeal of using the 
averaging filter as well as other digital filters: 

• The performance of the filter doesn't vary over time or temperature. 

• Parametric changes between units are predictable and bounded. 

• Performance of a digital domain implementation is easily altered. 

This averaging filter exemplifies these 
"strengths" perfectly. Here's why: the point where the sincfunction passes through 
the horizontal axis is set by the relationship f=1/(2T), where T is the width of the 
rectangular pulse either side of the vertical axis in the time domain. By increasing 
the ''T'' value, i.e., making the width of the pulse wider, the corresponding width 
of the sine pulse becomes narrower. If you needed more roll-off of the noise than 
we obtained, you would widen the rectangular pulse. Since the width of the 

Digital 
Strengths Re
visited 

3-25 



Chapter 3 - The Representation of Signals 

Averaging Fil-

rectangular pulse is determined by the number of averaging points, we would have 
to increase the number of averaging points to narrow the sine pulse. In any case, 
the characteristics of the filter are a function of the mathematics, the number of 
points, and the arithmetic used to combine the data and are unaffected by the 
ravages of time and temperature. 

We have just constructed an averaging 
ter Summary filter by doing two major things: 

Where Do We 
Go From 
Here? 

3-26 

Learning new concepts. We learned how 
to look at signals from a different perspective; the Ff has given us a new way of 
looking at signals. The Ff has also given us a new methods, like convolution, to 
give us a very effective means of manipulating signals. 

Reinterpreting what we already knew. 
The same old process of averaging which many of us have done time and again 
was reviewed and translated to include the new concepts brought to us by the 
Fourier Transform. 

Before we started to talk about the details 
of the FT, I said we could do useful things without getting bogged down in the 
mathematics of the FT. We built a digital filter and have "proven" the Nyquist 
criteria and aliasing. Both of these are substantial accomplishments. They indicate 
a true understanding of some of the more difficult signal processing concepts like 
convolution. 

From here, you can apply the type of 
reasoning we learned from the averaging filter. This style ofthought and problem 
solving will always have its place no matter how detailed your involvement in the 
mathematics of signal processing. I must give you a word of caution: although 
our accomplishments to this point are very real and very useful, you must progress 
to the next level of understanding to be truly creative, and wholly accurate, in 
applying signal processing techniques. In order to increase your understanding of 
signal processing, I recommend that you read Chapters 4-7 of this book. These 
chapters review the concepts we've discussed and presents many others like 
Infinite Impulse Response CUR) filters and the discrete Fourier Transformjust to 
name two in more detail. 



Chapter 3 - The Representation of Signals 

Then read every signal processing text 
you can get your hands on. At first, the mathematics can be intimidating. If you 
try to relate the math to the graphical and intuitive treatment of the subject in this 
book, you won't get so bogged down or lost. While many of us may be involved 
in signal processing for recreation, I believe signal processing is a problem-solv
ing tool which could enrich all our lives. 

Talk to anyone and everyone about what 
you are learning. By hearing yourself talk about what you know and what you're 
learning, you will solidify your understanding. 

3-27 





C HAP T E R 

4 Fundamentals of DSP 

The purpose of this chapter is to 
. present some basic concepts 

needed for the use and apply Digi-
tal Signal Processing (DSP). The presentation of this chapter may be different 
than the reader is accustom to. I have attempted to present topics through the use 
of arguments and concepts. Mathematics is omitted where verbal and graphical 
presentations may better convey an idea. For more in-depth applications, you are 
directed to one of several texts on the subject. 

Before leaping into the digital domain of 
DSP, take a minute to look at the world around us, a continuous real-time world, 
the analog domain. By continuous, we mean things move from one state to another 
by passing through all the states in between. At all times there can be a state 
associated with this process. The way the sun moves from sunrise to sunset is a 
good example of a continuous time process. The sun does not stay in the same 
position all morning and then jump instantaneously to its sunset position. Nor 
does it jump 1112 of its journey at the top of each hour. It appears to move 
continuously across the sky. This is analog. What we see, hear and touch are 
analog signals. This being the case, many readers may wonder why anyone would 
be interested in digital (non-analog) signal processing. Digital signal processing's 
advantages are made clearer later, but ftrst let's investigate continuous time analog 
signals and the concepts of the analog domain. 

Much literature is dedicated to the study of 
sinusoids. Sinusoids go by many names: sine waves, pure tones, simple harmonic 
signals, etc. Taking our lead from this, perhaps we should look at the sinusoids 
and their spectra. Many of the everyday events involve sinusoids, vibrating guitar 
strings, rotating motors, even the apparent motion ofthe sun. The most convenient 
example might be the ordinary dial tone of the telephone. This signal is a sine 
wave which oscillates back and forth. The word "tone" is used because a person 
perceives the signal as a single pitch at 440 cycles each second (440 Hz). 

Notice that the dial tone was described two 
different ways. The ftrst, as an oscillating sine wave, describes what is happening 
with respect to time. This is known as the time domain description of the signal. 
The second description indicated something is going back and forth in a cyclic 

Continuous 
Time 
Systems 

Sinusoids 
And Spectra 

4-1 



Chapter 4 - Fundamentals of DSP 

4-2 

manner and as a tone, tells us how fast or how often it is moving. This is an example 
of the frequency domain description of the signal. Both the time and frequency 
domain descriptions accurately described the phenomena. To understand digital 
signal processing, we will need to accept, understand, and use the two different 
yet intimately related descriptions of signals in the time andfrequency domains. 

Figure 4-1 Domain 
Description of Cosine 

Function 

The Cosine Function 

100 200 300 400 500 
frequency in Hertz 

Figure 4-2 Frequency 
Domain Description of 

Cosine Signal 

The cosine function is a sine wave with a 
phase of 90 degrees. The term "sinusoid" is often used to refer to a cosine function 
as well as a sine function. This reference is generally accepted. Thus, for the 
remainder of the book, the term sinusoid may refer to either a sine or cosine. At 
times one may be preferable to the other; some mathematical relationships are 
more eJegantly stated using one instead of the other. 



Chapter 4 - Fundamentals of DSP 

Figure 4-3 

Cosine Function is equal to sine wave 
with a phase shift of 90 degrees 

Few engineers would argue that we 
describe a dial tone by a time domain description or a frequency domain 
description, that is, a tone with a frequency of 440 Hertz and no other frequencies. 
Some readers may not be so sure we can give a frequency domain description for 
any arbitrary signal. For example, take the signal coming from the needle of your 
stereo when playing a favorite record. It has a time domain description that can 
be viewed on a scope. We may guess that it also has a frequency domain 
description since that's what the bass and treble adjusts on the stereo. What is 
really meant when we talk about the frequency domain description of this 
complicated signal? Let's use a hand waving argument for a moment. Let x(time) 
describe what happens to x over time, that is, how the recording varies with time. 
Now let X(frequency) describe how often these "things" happen to the recording 
x(time). Frequency is synonymous with "how often something happens." The 
question remains, "What should we use as a basis to measure how often these 
things occur?" 

The 
Frequency 
Description 

4-3 



Chapter 4 - Fundamentals of DSP 

The Sinusoid 
And The Delta 

Function 

4-4 

We are able to accept that a sinusoid con
sists of a single frequency. The simplicity of this description makes the sinusoid 
the ideal concept to use as a basisfor frequency domain descriptions. This means 
that we may think of the complete frequency domain description as a collection 
of sinusoids, just as we view the time domain description as a collection of points 
in time. It is also possible to view this the other way around: a collection of 
sinusoids (a frequency domain description) may be used to construct a collection 
of time points. The time or frequency domain descriptions are equally valid and 
there is nothing lost going from one to the other. Based upon this reasoning, the 
highly complicated waveform of our favorite record does indeed have a valid and 
unique frequency domain description. 

Figure 4-4 Time Domain 
Description of Signal x(t) 

<=> X(Q ~IIIIIIIIIIr'-, f· 
Figure 4-5 Frequency 
Domain Description of 

Signal X(t) 

Continuing with the frequency domain de
scription of the sinusoid, it can be said that thefrequency domain description (or 
spectra) of a sinusoid is zero everywhere except at the frequency of that sinusoid. 

At this point we have skirted the issue of what the value of the spectra is at the 
frequency of the sinusoid. 

Let's not worry about the height of the 
spectrum at the sinusoid's frequency. Our concern is with the area under the curve 
at the sinusoid's frequency. Let's define the spectra of a sinusoid as having an 
amplitude of zero everywhere except at the sinusoid'sfrequency, where the area 
under the curve of the spectra has an area of one. See Figures 4-6 and 4-7 for 
an illustration. 

A sinusoid with an amplitude of two can 
be considered as having zero spectra everywhere except at the sinusoid's fre
quency where the area under the curve is equal to two. The mathematical notation 
for this type of function is known as the Delta function. 



Chapter 4 - Fundamentals of DSP 

Figure 4-6 Sine 
Wave with 

Figure 4-8 

Sine Wave with 
Amplitude 2 and 
Frequency 1/2 of 

Fig. 4-6 

<=> 

<=> 

1 ------
Area under 
spike = 1 

~ '---v-... f 
zero zero 

Figure 4-7 Spectra 

Area under 
spike = 2 

'---v-' '-----v-- ....... f 
zero zero 

Figure 4-9 Spectra 
of Sine Wave 

from Figure 4-8 

The Delta Function 

The Delta junction equals zero every
where except when its argument is zero. At the zero point, the value of the function 
is not specified, but rather, the area underneath the curve is specified. This area 
is specified with a value of one. One way to understand this is by looking at various 
rectangles. The area of a rectangle is equal to the base times the height. Consider 
a sequence of rectangles all with an area of one. As shown in Figure 4-10, start 

4-5 



Chapter 4 - Fundamentals of DSP 

4-6 

with a square (base = 1, height = 1, thus area = 1 x 1). Notice that for each 
successive rectangle we have shortened the base and are forced to increase the 
height in order to maintain a total area of one. It is in our interest to continue this 
process until our rectangle is so narrow that its base is zero. How tall would the 
last rectangle have to be to maintain its area of one? In a rough sense, it would 
have to have infinite height to make up for its zero width. 

W 
A 
E 

AREA A ~} he;ght _ 1 - he;ght _ 2 

~ 1 
base = 1 base = 2'" 1 

base = 4"" 

Area = 1 

I 

f he;ght-oo 

base = 0 

Figure 4-10 

Delta Function has zero width, infinite height, and area one 

If we place the last rectangle on an axis, we 
can consider this as a function that was zero everywhere except at a certain point 
where the area under the curve is one. This is precisely the Delta function. 

Figure 4-11 Example of 
the Delta Function 

Figure 4-12 Example of the 
Delta Function 

It is also worth noting that typically the 
Delta function is plotted with an arrow at the top of the spike. This arrow helps 
remind us the height is infinite. 



Chapter 4 - Fundamentals of DSP 

Earlier we discussed that the sinusoid with 
amplitude one has an area of one under the spectral spike, and the sinusoid with 
amplitude two has an area of two. Since we know the arrow reminds us the height 
is infinite, we are free to draw the length of the line to be proportional to the area 
under the spike. This is exactly the convention used. 

You may now, for the time being, forget 
about the Delta function and breathe a sigh of relief. It was included so that some 
loose ends can be avoided when the Fourier transform is presented. 

The process of specifying a signal is a bit 
more complicated than saying there is a tone at a particular frequency. To be 
thorough, we need to discuss two other parameters: amplitude and phase. 
Amplitude is the maximum level a sinusoid reaches anywhere in its cycle. Think 
of the sinusoid's height in Figure 4-13. For physical phenomena, the amplitude 
can be related to qualities such as loudness, brightness, and voltage. The higher 
the amplitude, as seen in the time domain, the higher the amplitude is in the 
frequency domain represented as a "spike". 

Let's look at phase, a simple idea so often 
made difficult. Take a look at the signals shown in Figures 4-13. These are all 
sinusoids of the same frequency and amplitude, yet they are obviously different. 
Not only is the time domain description we were using up to now inadequate to 
resolve these differences, Figure 4-14 shows the frequency domain description 
is also lacking. The last descriptor we need to help us out of this quandary is the 
descriptor of phase. 

Looking once more at Figure 4-13, we see 
the only difference between the sinusoids is each starts at a different point in its 
cycle. Wave one starts at zero degrees (at t = 0), wave two starts at 90 degrees, 
and wave three starts at 180 degrees. Calling this starting point "the phase" of 
the sinusoid completes the description nicely. We will also need to provide for 
phase in the frequency description as shown in Figures 4-15 through 4-24. 

Amplitude 
And Phase 
Descriptions 

4-7 



Chapter 4 - Fundamentals of DSP 

• 

Figure 4-13 
Figure 4-14 

A: ~~ x(i) 

~~ <-> --~--- -
Phase I. 

Figure 4-15 
Figure 4-16 

B: 

~_u<=>'(fj 
Phase 

Figure 4-17 Figure 4-18 

c: x(i) 

~~ ---<=> 
---~I Phase 

Figure 4-19 Time Domain Figure 4-20 Frequency Domain 

4-8 



Xa 

Xc 

Chapter 4 - Fundamentals of DSP 

Importance Of Phase 

If the previous description of phase is any 
indication, the concept of phase doesn't seem too difficult, then why is it so 
misunderstood? The difficulty doesn't begin with the phase, but with the question 

of when does t = O. Viewing Figure 4-13, it is easy to know when t = O. Simply 
look at the plot, point to where t = 0, and you have it. Look at the dial tone example 
in Figures 4-21 through 4-23. Let's define t = 0 as the exact moment you pick up 
the receiver. When the receiver is picked up you can "look" at the waveform, 
determine its phase as shown in the figures, and complete the amplitude, phase 
and frequency descriptions. Sometimes it can be picked up exactly when the 
waveform equals zero and increasing (0 degrees phase, Figure 4-21), and other 
times when it equals one and decreasing (90 degrees phase). Simple enough? 
Suppose someone left the receiver off the hook before you arrived. You are asked· 
to give the waveform description as before. How do you determine the phase? 
Well, you can't. Sometimes phase doesn't matter, ~only the amplitude and 
frequency are important. 

Figure 4-21 

~~ ... ... / ""--

Figure 4-22 

Figure 4-23 

4-9 



Chapter 4 - Fundamentals of DSP 

4-10 

Relative Phase 

As we just discussed, sometimes it is not 
possible to determine the absolute phase of a signal due to the ambiguity of when 
t = o. Therefore, we must accept the fact that we cannot determine phase of a signal 
and go about our business. However, there's more to consider than just the 
absolute phase. We must also consider relative phase. The idea comes into play 
when there is more than one signal. Let's use three for illustrative purposes. We 
may not know the absolute phase of any of the three, but we can easily see a phase 
difference between them. This phase difference is known as relative phase. 

The three signals of Figures 4-24 through 
4-26 have the same frequency but different phases. We know this because we can 
see their peaks and valleys do not coincide. We do not know the absolute phase 
of A, B, or C, but we can determine theirrelative phase. Let's arbitrarily pick signal 
A as our reference signal. We can find a point on A where the wave equals zero 
and is headed positive. Use this point as a time reference and determine the other 
two signals' phases in relation to this point. Remember that since we chose the 
reference point, it is the relative phase we are determining, not the absolute phase. 

Now a quick look at the importance of 
relative phase. In Figures 4-27 and 4-28 we added signals A and B (Figures 4-24 
through 4-28 to get signal X (Figure 4-28). Notice how signal X has the same 
frequency, but the amplitude has become larger. We also added signals Band C 
to get signal Y (Figure 4-28). This equals zero all the time. We have two very 
different results from adding signals of like frequency but of different relative 
phases. Therefore, relative phase is important. 

... J K7 

Figure 4-24 

... ~ ... ...~ .... 
Figure 4·25 Figure 4-26 



Chapter 4 - Fundamentals of DSP 

Figure 4-27 

... -----...;....------

Figure 4-28 

Time Delay And Phase Shift 

By now, you've had it with sinusoids, phase, etc. What has this all have to do with 
DSP? It is time for a technical teaser, a simple concept that is at the very root of 
filtering (including digital filtering). It also starts us thinking about the interplay 
between time and frequency. Consider Figures 4-29. The sinusoid shows a phase 
equal to zero (solid line). Also found is a delayed version of the same (dotted line). 
The time delay between the two is "t" seconds. We can visually estimate the 

relative phase between the two to be approximately 3/4 1t (about 120 degrees). 

Let's add the delayed version to its original and look at the output. Notice the 
amplitude has been effected. The original and delayed amplitude both had an 
amplitude of one, but their sum has a smaller amplitude. 

Continuing the teaser, observe the same 
experiment in figures 4-31 and 4-32. The only thing different is the frequency of 
the sinusoid. The time delay is the same but the relative phase is different! We 

1t 
will estimate the relative phase to be 2" here. Again, summing the two, we find the 

amplitude of the result is different from the inputs (Figure 4-32). But more 
importantly, we see the resulting amplitude is different from that offigures 4-30. 



Chapter 4 - Fundamentals of DSP 

4-12 

The frequency dependency of the relation
ship between the inputs and outputs of our simple setup shows the characteristics 
of a filter. For our constant time delay of ''t,'' there are input frequencies for which 
constructive interference occurs which results in larger amplitudes, and there are 
other input frequencies for which destructive interference occurs which results in 
smaller amplitudes. This futering effect is made possible by the fact that for a 
constant time delay, the relative phase is dependent upon the inputfrequency. 
The frequency dependency of the relative phases can be used to affect different 
frequencies in different manners. 

What about DSP? The experiment shows 
the makings of afi/ter. The first operation was a delay, the second the summation. 
Although DSP hasn't actually been discussed yet, those of you with an inkling 
may see the two operations (delay and addition) are the types a computer (or DSP) 
would be very good at. To delay, one could store something in memory to be used 
again later. To add, well, it should be obvious that computers can be somewhat 
useful with addition and storage. 

Fig u re 4-30 

Figure 4-29 

1t ••••••••••••••••• 

LlO=2 

Figure 4-31 Figure 4-32 

Input L .. d::>-Output 

I Delay ~ 



Xa(t) 

A: 

Xh(t) 

B: 

Xc =Xa +Xb 

c: 

D: 

Chapter 4 - Fundamentals of DSP 

Frequency Descriptions 

We have been adding signals of the same 
frequency to each other without a problem. Let's investigate two signals of 
different frequencies. Figures 4-33,4-35, and 4-37 show signal A, alowfrequency 
sinusoid, added to B, a higher frequency sinusoid, to produce C which exhibits 
sinusoids of both frequencies. The time domain plot of C visibly shows the two 
frequencies. The large amplitude-slow fluctuations are due to A, while the small 
and fast fluctuations are due to signal B. The frequency domain representations 
may also describe the phenomena here Figures 4-34 through 4-36). 

r\A <=> 11------ ---i~ 

Figure 4-33 Figure 4-34 

r--- <=> J----.-- f--

Figure 4-35 Figure 4-36 

r'tFt <=> LL-L- .1'~ 

Figure 4-37 Figure 4-38 

... ft;r~J\:. <=> Jlt,tcu ___ ._ 
Figure 4-39 Figure 4-40 

4-13 



Chapter 4 - Fundamentals of DSP 

4-14 

Sinusoidal 
Basis of 

Signals 

Notice how the frequency domain plots are 
very simple and quickly show signal spectral components. To further the point, 
consider signal D (Figure 4-33). Can we determine what's really happening here? 
Not easily. However, the frequency domain representation ofD clearly shows its 
components (Figure 4-40) 

Until now, we have been discussing the 
sinusoid. The greatest advantage of this signal is it is so easy to determine the 
frequency domain description: a single spectral line with its height proportional 
to its amplitude. But, hasn't this been a waste of time since "real world" signals 
are so much more complicated? Not really. 

A classic example of this is the square 
wave. Figure 4-41 shows how a square wave can be built by adding the sinusoids 
of the proper frequency, phase, and amplitude. Moreover, from this construction 
we are given a sense of what spectral content of the square wave is. Notice how 
we get closer to the desired square wave with each additional step. Using all of 
the odd harmonics of the original sinusoid, we eventually get a square wave. This 
means that a perfect square wave needs infinite terms, thus, has infinite spectral 
content. But as you can see, the amplitude needed for each addition gets smaller. 

So, for many purposes, a square wave 
which is "good enough" can be achieved with a limited number of spectral 
components. The need for an infinite number of sinusoids where only a limited 
number may be physically tolerated is called the Gibb's Phenomena. This is why 
many square waves we see on oscilloscopes actually look more like C, D or F than 
G. Many non-sinusoidal signals can be treated as the summation ofsinusoids. 
This is how we are able to think of frequency components of non-sinusoidal 
signals. 

Figure 4-1 



Chapter 4 - Fundamentals of DSP 

Il, tit I tit I. 

Figure 4-42 Figure 4-43 

We added various sinusoids and saw what 
can happen in both the time and frequency descriptions. What happens when we 
mUltiply various sinusoids? Before we answer this, let's walk through a thought 
experiment. If we took a constant and multiplied it by a time varying signal, our 
result will be another time varying signal. We can say that by multiplying the 
constant by this time varying signal we affected the frequency of the original 
constant. Obviously, if this is true, our result is no longer constant. Now, what 
happens if the original signal wasn't constant, but a time varying signal as well? 
It seems completely likely that we will still affect its frequency by multiplying 
it with another time varying signal. This idea is known as modulation. 

Our thought experiment is graphically 
shown in Figure 4-44 with a teaser of things to come. The left columns are time 
plots, the right columns are the frequency domain plots. We can think of constant's 
original spectra (located at zero) as jumping up to a new location determined by 
the multiplying signal. The real question is what happens in the second case when 
there are two time-varying signals? 

Real And 
Complex 
Modulation 

4-15 



Chapter 4 - Fundamentals of DSP 

4-16 

Xa(t) 

t t 
time 

time 

Xc = Xa(t) * Xb(t) 

---Ih /\ /--
V~~ 

time 

Figure 4-44 

Was here: ; •. ~ 1 Is now here. 

Xg(t) 
Figure 4-45 

frequency 

t 
frequency 

1 
frequency 

---~~~~L;: <=> L--_______ --lt_ 

t========= ========.. <=>1 L-____ ..L.t ---

Xi=Xg 'Xh 

r"=7c=:==-,'C:7-==----'C7c='\" <=> 

Figure 4-46 



Chapter 4 - Fundamentals of DSP 

Real Modulation 

The mathematical basis for exactly how 
the frequency is affected is given by the trigonometric identity found in at the 
bottom of the page. However, even without using the identity, we can visualize 
some of its qualities. We start with two sinusoids of frequency f and 3f Figures 
4-47 through 4-52. These two are multiplied together. Notice the resulting wave 
looks a bit different, it doesn't really match either of the original two waves. 

Take a closer look. Its not too hard to 
imagine that within the resulting wave we see something happening twice as often 
as f and maybe something else happening at four times as often as f. Just for grins, 
let's plot waves with frequencies of 2f and 4f. As a check, we added the waves of 
f = 2 and f = 4 and verified their sum to be the same as when we multiplied waves 
withf= 1 andf=3. 

Figure 4-47 Figure 4-48 

~1\1[\/\J[\I\A 
Figure 4-49 Figure 4-50 

Figure 4-51 Figure 4-52 

4-17 



Chapter 4 - Fundamentals of DSP 

Earlier we graphically demonstrated how 
modulation can be interpreted in the time domain. In most cases, the goal of 
modulation is to make use of its frequency shifting properties. To illustrate this, 
the corresponding frequency domain plots are shown in figure 4-53 - 4-59. To 
keep things simple, only the cases where alpha - beta and alpha + beta results in 
positive numbers as shown. We will discuss negative frequency cases later. 

Frequency shifting is most relevant to 
modulation. It is this modulation effect that allows audio signals (voice, music, 
etc.) with frequencies between 20 to 20,000 Hertz to be shifted up to the hundreds 
of thousands of Hertz or even megahertz where these signals may be transmitted 
in the form of radio waves. 

I ~f I , 
tz-Jl 

t I > 

Figure 4·53 
Figure 4·54 

II 

tz+Jl 

t ~ 
tz 

v···t·····"'1 ~ 

Figure 4·55 Figure 4·56 

Figure 4·57 Figure 4·58 

Signal with fl Signal with f2 - fl and h + fl 

---+)@----+ 

~ Signal with f2 

Figure 4·59 

4-18 

Frequency 
Shifting 
Properties 



Chapter 4 - Fundamentals of DSP 

Imaginary 
Numbers 

The philosophy adopted for this book has 
been to provide conceptual examples and heuristic arguments first to create an 
understanding. Mathematics should follow where they cement these concepts 
into a firm foundation. However, this is not so easy with the introduction of 
imaginary or complex numbers. Historically, there has been some debate of the 
philosophical aspects of the use of imaginary numbers. The reader is asked to 
take a slight leap offaith concerning the use of imaginary numbers. Please believe 
that their use can be valid and they are not uncomfortable to work with. More 
importantly, they allow us to perform analysis in an easier manner. 

The basis of imaginary numbers is the unit 
i (or sometimes j - used by electrical engineers who wish to avoid confusion with 
the symbol (i) which is used to represent current). "i" represents the square root 
of -1. 

If we define vC1 to be equal to a number 

we will call "i," then "i" exists by definition. First we will view some of the basic 
properties of "i." This begans to make more sense after it's been explained with 
some of the examples on the next few pages. 

If i = -Y-f , then f = -1 and ~ = -i 
I 

Some imaginary numbers: 5i -4i 2.2li sqrt(2)i 

Q: What is 2i + 3i ? 

A: 5i. 

Q: What is 5i . i ? 

A: 5' i2 = 5' (-1) = -5. 

Let's look at the next step - complex 
numbers. Complex numbers are numbers which may have real and imaginary 
parts. Generally, we write complex numbers as the sum of these two parts. 

Some complex numbers: 2 + i 4 + 3i -2 - 2i 

Q: What is (2+i) + (4+3i) ? 

4-19 



Chapter 4 - Fundamentals of DSP 

A: Add the real parts together and add the imaginary parts together to get 6+4i. 

Q: What is (2+i) . (4+3i) ? 

A: 2"4 + 2'3i + i"4 + i'3i 

= 8 + 6i + 4i + 3i2 

= 8 + 10i + (-3) 

= 5 + 10i 

The letter z is often used to denote a 
complex variable. Further convention uses x to represent the real component and 
y to represent the imaginary component (foreshadowing?): 

z = X + iy 

Real(z) = X 

Imag(z) = y 

The Z-Plane (Cartesian Form) 

Okay, the foreshadowing relates to how 
conveniently the components of complex numbers can be represented on a plane, 
This Cartesian plane is known as the Z-plane (or the Complex plane), Here a 
complex number's real component is the x-coordinate, and the imaginary 
component is the y-coordinate. Therefore each complex number can be 
represented as a point on this plane. 

-----7 

Figure 4-60 

4-20 



Chapter 4 - Fundamentals of DSP 

The Z-Plane (Polar Form) 

Every point on the Z-plane can be ex
pressed in Cartesian (XY) coordinates. Alternatively polar coordinates could be 
used. Here, the point is defined by its distance from the origin (magnitude or "r") 

and the angle from the positive real axis (angle or <1». 

L 

Figure 4-61 

Cartesian And Polar Relationships 

Points on the Z-plane can be represented 
in either coordinate system. Both are used. The relationship between the can be 
expressed by Figure 4-.0 The superscribed asterisk denotes complex conjugate. 

Figure 4-62 

4-21 



Chapter 4 - Fundamentals of DSP 

Euler's Formula 

We're going to need to look at one more 
mathematical tidbit before we can complete this section. It's a version of euler's 
formula, named after Leonhard Euler 18th century mathematician and physicist. 
This tidbit is quite useful. But, more than that it is really elegant. So elegant that 
we'll provide a summary of its derivation. Consider the exponential function and 
its series expansion, 

Also remember: 

·0 1 I = , ·1 . 
I = I, ·2 1 I = - , ·3 . ·4 1 ·5 . 

I = -I, I = , I = I ... 

Letting "a" be replaced with "ia" we have: 

Grouping real and imaginary components together: 

The real grouping is the series expansion 
for the cosine function and the imaginary grouping is the expansion for the sine 
function! So: 

eia = cosa + i sina (EulersFormula) 

4-22 



Chapter 4 - Fundamentals of DSP 

Now does it seem like it might be useful to 
us? Sure. Previous page tells us we can describe the complex number z by 
cartesian (XY) or polar (magnitude angle) systems: 

but, 

so, 

Since, 

Then, 

Remember Euler now? 

Z= x+ jy 

X= ICOS(<1» 
Y= fSin(<1» 

Z = r [cos(<1» + i sin(<1»] 

\/ 
eH 

ei ($) = cos<1> + isin <1> 

With Euler's formula we can see that for 
any z we have a concise representation of z: 

Not only do we have this concise repre
sentation, but since we've shown thatthis is mathematically valid as well, we know 
that we can perform mathematical operations on this representation and expect 
them to be true. 

4-23 



Chapter 4 - Fundamentals of DSP 

Phasors And Unit Circle 

Let's plot a group of z's on the complex 
plane. For the plot we choose z's with a constant unit magnitude (r=1) and allow 

for different (and increasing <\>'s.) 

Figure 4-63 

With <\> increasing with time, we have the 

concept of a phasor. This phasor can be thought of as rotating around and around 

at some frequency. The frequency of rotation depends on how quickly cp increases. 

For our chosen z' s with r= 1, this phasor will trace out a set of points known as the 
unit circle. The points 1, -1, i, -i all lie on the unit circle. 

Figure 4-64 

4-24 



Chapter 4 - Fundamentals of DSP 

Some points to consider about phasor's. 
They are described by quantities such as magnitude (r) and frequency (rate of 
rotation). This sounds a bit familiar to the qualities of sinusoids, true? Yeah, 
maybe. 

Another thought, if a phasor has a fre
quency of "f' turning counterclockwise, then a phasor with "-f' would tum the 
other way wouldn't it? Yes. 

Figure 4-65 

Figure 4-66 

What About Phasors? 

Let's draw a picture using two counter-ro
tating (one with +f, one with -f) phasors A and B. 

Figure 4-66 

4-25 



Chapter 4 - Fundamentals of DSP 

Figure 4-67 

Also, review the relationships 

Now, let's add the phasors A and B. 
Graphically we can see that this results in cancellation of the imaginary part (one 
is positive, the other negative), and the real part is doubled. From above we also 
know the real part (x) is r cos phi. 

Figure 4-68 

In a similar manner, B could be subtracted 
from A. Now the real parts cancel, leaving two time the imaginary components. 

But, the imaginary component (y) is equal to sin(<I». 

Figure 4-69 

4-26 



Chapter 4 - Fundamentals of DSP 

Negative Frequencies In Sinusoids? 

Rewriting and restating we have: 

[
ei2.1tf + e -i2.1tfl 

cos(2rrJt) = 2 

(
ei2.1tf - e-i2.1tfj 

sin(2nft) = j 2 

Figure 4-70 

Remembering our sinusoid we see that this 
could now be expressed as consisting of two phasors. One phasor has positive 
frequency, one has negative frequency. Well, in our earlier plots for the frequency 
domain we haven't shown that. Let's correct for that omission now and redraw 
the frequency domain plot for a sinusoid with frequency of "f." 

What about the phase for this negative 
frequency? Let's take a look at the two phasors at t=O. (Which seems fair enough 
since we look at the points around t=O to determine the phase of a sinusoid in a 
time plot.) 

(
ei2.1tf + e-i2.1tfj 

cos(2nft) = 2 

4-27 



Chapter 4 - Fundamentals of DSP 

but t=O, 

(
eiO + e-iOj 

cos(O) = 2 

So one phasor is at eiO (but eiO=l) and 
the other is at e -iO (but e-iO=l), so plotting these phasors we have the following: 

Figure 4-71 

From our definition of angles we can agree 
the angles are ° for both. 

Thus, representing both the phase and 
magnitude of the particular sinusoid, we have the given phase for the positive 
frequency and the opposite phase for the negative frequency. 

4-28 



Chapter 4 - Fundamentals of DSP 

This page intentionally left blank. 

4-29 



Chapter 4 - Fundamentals of DSP 

Let's put the complex representation of the 
sinusoid to use in a quick review of the modulation theorem and verify that the 
new representation works. 

When a sine wave is multiplied with an
other sine wave, we still get waveforms of the sum and differences of the two 
original frequencies. 

1 
cos(x) cos(y) = 2 [coS(X- y) + cos(x+ y)] 

This product can be written as: 

[~~e--) ["'Y~e-"Y) 

mUltiplying term by term, 

rearranging, 

1 
2[COS(X + y) + cos(x - y)] 

t t 

Figure 4-72 Spectrum of cosx 

4-30 

Complex 
Reprsentation 



Chapter 4 - Fundamentals of DSP 

r_ -1" _ 

Figure 4-73 Spectrum of cosx cosy 

So why bother to use this complex repre
sentation if you get the same thing? We have used complex number notations to 
represent strictly real sinusoids. Remember that for the complex phaser of the 
sinusoid, the imaginary parts exactly cancel and what is left is the real part. Since 
only the representation changed, one would not expect anything different to 
happen. However, if we want to, we can do something different. 

With the use of complex representation, we 
now have the freedom to multiply our real sinusoid by a complex waveform; one 
with both real and imaginary components where the imaginary components don't 
have to cancel. Notice that both of the resulting phasers had their frequencies 
reduced by a factor of y. We no longer get the sum and the difference, only the 
sum; for example, (x + -y) and (-x + -y). The result shows that we have one phaser 
rotating in the positive direction at rate (x+y), and one phaser rotating in the 
negative direction (x-y). What have we produced? The multiplication by the single 
phaser gave us a means to perform a frequency shift in only one direction. We can 
choose this shift to be up or down by the sign of the exponential. 

Looking at the spectral plot in figure 4-74, 
we see that it is not symmetric about f = O. This means that for each spike on the 
left there is not a corresponding spike on the right. The lack of pairing means that 
the phaser does not have a counter-rotating pair which cancels the imaginary part. 
The resulting waveform is complex. 

What happens if we take the real part of the 
resulting waveform? Let's toss out the 112 for clarity. 

Figure 4-74 

4-31 



Chapter 4 - Fundamentals of DSP 

Real [cos(x - y) + j sin(x - y) + above_ cos(x + Y) - j cos(x + y) ]} 

We have the sum and difference again, just 
as we would if we had done a strictly real modulation. 

Integral Of Sine Wave 

The last bit of information you need to 
truly appreciate and comprehend the Fourier Transform is below. This transform 
is the basis of spectral analysis. Bear in mind that the figure on this page is a 

stepping stone to greater things and is not introducing a concept that stands 
alone. By the way, for those who get queasy with the mention of integral calculus, 
breath easy ... this material is straight forward. 

We think of the integral of a waveform as, 
on a XY plot, the integral of the curve Y as it is plotted along the X axis is the 
area under the curve. An addendum is that the area above the x axis is + and the 
area below is-. 

Let's use a sinusoid for the curve. What's 
the integral, the area under the curve, for one complete cycle of a sinusoid? In 

j {r=:J 

Figure 4-75 

! 
Figure 4-76 

4-32 



Chapter 4 - Fundamentals of DSP 

figure 4-77 we can see that there is the same amount of positive area above the x 
axis as there is negative area below the axis. These two are equal; however, 
opposite sign areas cancel each other. The integral of the sinusoid's cycle is zero. 
We can extend this reasoning for a sinusoid that continues to infinity. Still there 
are equal positive and negative areas that cancel each other; thus, the integral of 
the infinite sine wave is zero. Notice, that this result is true regardless of the 
frequency, amplitude or phase of the sine wave. All infinite duration sinusoids 
have an integral of zero. 

Figure 4-77 

All Sinusoids Have Zero Valued Integers? 

One clarification needs to be made for a 
special case. What if the sinusoid's frequency is zero? A zero frequency means 
that it is unchanging or a constant. Electrical Engineers recognize this as 
another way of saying DC. Figure 4-78 shows us that a constant integrated over 
infinity is not zero, it is infinite. So a sinusoid with zero frequency, a constant or 
DC if you prefer, is different. 

Fourier We have all the arguments in place to 
Transforms understand a most magical concept called the Fourier Transform. We do hope, 

however, that it will not seem too mysterious after the explanation. 

t Area 

Figure 4-78 

4-33 



Chapter 4 - Fundamentals of DSP 

The Fourier Transfonn is what enables us 
to look at signals in either the time or frequency domain. It allows us to switch 
back and forth or perfonn, as it is usually said, a transfonnation between the two 
domains. Before actually defining the Fourier Transfonn and proceeding with an 
example, let's introduce some of the language and symbols associated with the 
transfonn. 

If we describe a signal by its time domain 
description, we use a small letter followed by (t); for example, x(t). Alternatively, 
when a signal is described by its frequency domain representation, a capital letter 
is used followed by (f); for example, X(f). The same letter is used in both the time 
and frequency descriptions if both descriptions refer to the same signal. For 

instance, x(t);: time domain description of signal x and X(f) = frequency domain 

description of the same signal x. 

The variables x(t) and X(f) are intimately 
related since they both describe the same signal. The relationship between the two 
is given a name, Fourier Transform pairs, or just transform pairs. In fact, the 
relationship is also given a symbol. The symbol means that the variables on each 
side are indeed transfonn pairs. x(t) <=> X(f) means that x(t) is a transfonn pair 
with X(f). This is written as: 

X(f) = F [x(t)] where F means Fourier Transfonn 

Taking the Fourier Transfonn of some
thing really means that you give me the time domain description of x, and I'll give 
you the Frequency Domain description. More explicitly, we can say X(f) is 
described by taking the Fourier Transfonn ofx(t). See figure 4-79 for an illustra
tion. 

F[x(t)] 

8~0 
Figure 4-79 

4-34 



Chapter 4 - Fundamentals of DSP 

Alternatively, it can be described as you 
give me the frequency domain description and I'll give you the time domain 
description. In other words, going the other direction. This is called the inverse 
Fourier1'ransform. This is written as: 

x(t) = F -\ [X(f) I where F -\ means Inverse Fourier Transform 

JT! [X(f)] 

~y 
~ 

~~ 
~ 

Figure 4-80 

Why the Fourier Transform? 

Good question. Here are a few reasons 
why. 

Reason 1: In signal processing, a common 
problem involves the transmission of signals or their reception. This transmission 
and reception takes place through a channel. For radio, the channel is the sky; 
for a musical concert, the channel is the room in which the concert takes place; 
for underwater sonar, it is the water. The point is, each one of these channels has 
its own characteristics. Some may really corrupt the signal of interest. The channel 
characteristics may have echoes (and other frequency-dependent effects). Time 
delay, which we have seen, inherently effects frequencies. With the Fourier 
Transform we have a better understanding of the frequency content of the signals 
we are sending and receiving. It provides a quantitative measure of the spectral 
corruption of the channel. With this measure, we are better equipped to use our 
signal processing to correct for the corruption, analyze the effects of such 
corruption, or assess performance. 

4-35 



Chapter 4 - Fundamentals of DSP 

Reason 2: In many applications we look 
for the presence of a signal or the lack thereof. This sounds simple enough, but 
in a noisy environment or channel it may be difficult. The Fourier Transform can 
help. Assume that our signal of interest is a sinusoid with a frequency off With 
time plot 4-81, noise has been added. However, looking at the Fourier Transform 
of plot 4-82, it is apparent that the sinusoid is there. Voila! The Fourier Transform 
in action. 

Figure 4-81 
Figure 4-82 

4-36 



Chapter 4 - Fundamentals of DSP 

The Mathematics Of The Fourier Transform 

Now it's time to mathematically define 
this transform. Don't get caught up with the form of the equation itself, the 
concepts needed to understand it have already been covered. The Fourier 
Transform is defined as: 

X(f) = F[x(f)] 

ctoo 

X(~ = f x(f) e-j2rcft dt 

It's not as bad as it looks. Let's dissect it a 
little. First, ignore the integral and look at the inside. We have a signal x(t) 
multiplied by a complex exponential. 

x( f) e -j2rctt dt 

Do you recognize this expression? Isn't 
that complex modulation? Yes, it is. Remember that complex modulation is a 
one-way shift of the spectra. In fact, the value of "I' chosen is what determines 
how much the spectra shifted and in which direction.lnfact, after the modulation 
is complete, the spectra that was originally atfnow resides at the frequency of 
zero. 

Shifted by Ie 

Figure 4-83 Spectrum of x(t) Figure 4-84 

Let's look at the integral in figure 4-85 and 
4-86. We are taking the integral over infinite time which is the area under the curve 

4-37 



Chapter 4 - Fundamentals of DSP 

Let's look at the integral in figure 4-85 and 
4-86. We are taking the integral over infinite time which is the area under the curve 
of a signal composed of sinusoids. Didn't we see that the integral for sinusoids 
over infinite time equals zero? Yes, unless the frequency of the sinusoid is zero. 
First the complex modulation allows us to choose f which performs a shift of the 
spectra. The chosenfis now at zero frequency. The integration makes everything 
zero except for what was shifted down to zero frequency. Basically, that's all the 
Fourier Transform is doing. We pick a frequency of interest and modulate the 
signal by that frequency so that after integration we have a measure of how much 
of the signal was at the chosen frequency. kes everything zero except for what has 
been shifted down to zero frequency. 

, , 
, , , , , , 
, , , , 

Figure 4-85 
Figure 4-86 

Basically, that's all the Fourier Transform 
is doing, we select a frequency of interest, modulate the signal by that frequency, 
so that after we integrate (cancel all the non-zero frequency content), we have a 
measure of how much of the signal was at our chosen frequency. 

Some may wish to accuse us of circular 
reasoning so let's look at a different example. For this example, we will not do 
the actual calculus to perform the integration. Instead, keep in mind an assumption 
and two rules previously learned to follow an intuitive approach. 

Assumption: Any signal describable in 
the time domain has a description in the frequency domain. We may not know 
exactly what its frequency domain description is right now, but we can assume 
that it does exist. 

4-38 

Intuitive 
Example Of 
The Fourier 
Transform 



Chapter 4 - Fundamentals of DSP 

Rule #1) Multiplication by a complex si
nusoid represents a one-way shift of a spectrum. The process is called complex 
modulation. 

Rule #2) Integration of non-zero fre
quency sinusoids over all time equals O. By choosing to integrate something over 
all time, we deliberately force ourselves to look at the DC component which is 
the only component that may have a non-zero component. We effectively blind 

ourselves to any time-varying quantities. 
We can now follow a simple procedure to construct the spectra of any given real 
waveform x(t). 

Let's integrate the given x(t) over all time. 
Using rule two, we know the zero frequency component and can fill in the f = 0 
position on the spectral plot. 

Figure 4-87 

I I >1 I I 

We can choose f, say f = 3, and modulate, 

using rule one, the given signal x(t) and call the result x'(t). By using rule two, 

we can integrate x'(t) and determine the DC component of x'(t). Furthermore, we 

4-39 



Chapter 4 - Fundamentals of DSP 

know that by rule number one that the modulation shifted the spectra of x(t) by 

f=3. So that the DC component ofx '(t) is the f=3 component of the original x(t). 

Thus, we can now fill in the point on the spectral plot for f=3. 

X(O) X(O) 

-ccc:--+-, -+, +~-+-, _t!---+~--1TL-/~' - __ ,. 

Figure 4-88 

lDIII'I,,. -,----------
Figure 4-89 Figure 4-90 Entire spectrum of x(t) 

4-40 



Chapter 4 - Fundamentals of DSP 

This procedure can be continued for other 
values off(f = 1, f = 2, f = 2.002, f = 2.0024, f = 3.14159 ... , etc.) Once all the 
values off are viewed, and the entire spectrum of x(t) is determined, we find X(f) 
from x(t). 

Very nice, but there are a couple of prob
lems with this approach; for example, we have to integrate a signal over all time. 
Who can wait that long? Furthermore, does this have to be done for each frequency 
component? Keep in mind that this presentation has tried to heuristically show 
what the mathematical operations that comprise the Fourier Transform are actu
ally doing, and how these operations may give us the spectral composition of a 
signal from its time domain description. 

Determining the Fourier Transform of a 
simple mathematical formula may be done analytically. Finding the Fourier 
Transform of a real-life signal may be different. We will address these differences 
later under the heading Fourier Transfonn of Real-Life Signals. If you would like 
more math, continue with the Fourier Transform Pairs section. 

A More Mathematical Approach To The Fourier Transform 

This page presents a slightly more mathe
matical demonstration of the Fourier transform. If you've no interest please turn 
the page, you will not need this for following material. 

The term "slightly more mathematical" 
was used because the development will utilize some straight forward elementary 
calculus. We're not going to provide a development of the delta function. 

Let's look at the Fourier Transform of a 

sinusoid with phase <I> and non-zero frequency fc: 

x(t) = cos(21tfct+ <1» 

XCf) = J+OO cos(21tfct+ <1» e-j2nft dt 

4-41 



Chapter 4 - Fundamentals of DSP 

Notice that if "f' is not equal to +/- fe, 
we've got the infinite time integral of sinusoids which we know are zero. What 
about if f = +/- fc? 

For f = +fc we have, 

1 ·f+co 1+= 
= 2" eJ<l> -co 1 dt+ 2" f_co cos (21tft + <1» dt 

1+00 
+ 2" f _= sin(2nft + <1» dt 

Similarly for f = -fc we have, 

4-42 



Chapter 4 - Fundamentals of DSP 

Notice the sinusoidals terms are zero since 
they are the infinite integral of sinusoids with non-zero frequency. 

Now we're left with the just the first term 

for f=+fc and the last term when f=-fc 

1 +00 1 
X(t) = - ej$f 1 dt= - e j$ ;1(+00) - t(-oo) = 00 for f= fc 

2 -DO 2 

1 . +00 1· 
+ - e-1$f 1 dt= - efCP ;1(+00) - t(-oo) = 00 for f= -fc 

2 -00 2 

So we have infinity? What the does that 

mean? 

Well, first let's look at the whole thing. 
True we've infinity when f is the frequency of the sinusoid (fc or -fc) but we also 
figured that the spectrum if zero for all fnot equal to +/-fc. Putting these two ideas 
together, what does this sound like? It's the Delta function we saw earlier. Using 

this substition we can see: 

F[cos(2nfct+ <l»] = e H 8(f- fc) + e-H 8(f- fc) 

To illustrate, let <l> = O. Then we have the 

famaliar transform of the cosine function below: 

cos(2nfct) <=> 8(f - fc) + 8(f + fc) 

1 1 
-!c Ie 

Figure 4-3 

4-43 



Chapter 4 - Fundamentals of DSP 

What about using the sine function instead 
of the cosine function? 

sin(2nft) = ?? 

We could start from scratch again and fol
low the same path as we did for cosine or we take a short cut and can use the 

trigonometric identity sinx = cos(x - ~), 

Figure 4-91 

F[sin(2nfct)] = F[cos(2nfct- ~)] 

r ,n ,n l 
-}- }-

_I !!_~§(f- fc) + e 2 8(f+ fc) 1 

-L 2 J 

= [ -j 8(f- fc) 2+ j 8(f+ fc)] 

4-44 



Chapter 4 - Fundamentals of DSP 

Notice the Fourier transform of the sine 
function is purely imaginary. Don't let this bother you, the imaginary parts and 
real parts are just used to describe the phase. Notice that the only difference 
between the cosine and sine function is phase. In fact, we just made use of this 
fact! 

Phase And Magnitudes Of The Fourier Transforms 

jy 

cos(2rif<.t) = .! ~21tf,t + .! e -j21tf,l 
2 2 

Figure 4-92 

The preceding pages plots the Fourier 
transforms for the sine function and the cosine function. The cosine was strictly 
real and the sine was stricly imaginary. Typically, however, we tend to view things 
in terms of amplitude and phase. Especially when we aren't lucky enough to have 
just strictly real or just strictly imaginary. Viewing the cosine and sine functions 
Fourier transforms with amplitude and phase we get... 

jy 

sin(21t" .t) = 1. ef11if,t _ 1. e -J11tf,! 
~'2j 2j 

Figure 4-93 

4-45 



Chapter 4 - Fundamentals of DSP 

We have come full circle at this point. This 
is exactly the description for sinusoids that was at the very begining of the chapter 
when time and frequency domain were first mentioned! 

What about those phasors, do they still 
have relevence? Yes, in fact they tie everything together quite nicely. Below are 
the phasor diagrams for both the cosine and sine function. 

In coming full circle we have now ce
mented the relationship between the two domains with a mathematical relation
ship, the Fourier transform. The main idea here is that the heuristic presentation 
that worked in the first few pages continues to work after a more rigouress 
development. Inspite of the integral calculus and complex mathematics of this 
transform, it is indeed possible to make sense and utilize Fourier transforms. 

4-46 



Chapter 4 - Fundamentals of DSP 

Figure 4-94 

Pair: Sine Function 

sin(2n:fct) <=> ~ j [if + fc)l 

t 
.11 

mag 

t 

sin(2n:fct) <=> ~ j [(f-Jcl- (f+Jcll 

4-47 



Chapter 4 - Fundamentals of DSP 

Duality 

A quick note on a concept that can save us 
tim. This concept is called duality. 

Two points to consider: 

Point I: Did you notice that the Fourier 
transform of a Delta function ( (t» in time resulted in a constant values in the 
frequency domain? In other words, a spike at t=O has frequency components of 
equal magnitudes for every frequency f. 

Point 2: Did you notice the the Inverse 
fourier transform of a spike in the frequency domain at f=O results in a constant 
in time domain? In other words a DC component remains constant over all time. 

·Notice how if one ignores the axis labels 
they are the same? Notice how it doesn't matter if we are talking about time or 
frequency. The fact remains that the "shape" on the left side of the plots transforms 
to the same "shape" on the right side of the plots regardless of the name we give 
to the domain? Well, this is an example of what is meant by duality. 

We can be more specific andmore mathe-
matical: 

+00 
F[x(t)] = f x(t) e-j2rcft dt= X(fJ 

(We already knew this, just a review) 

+00 . 

F-1[X(fJ] = f X('> e J2rcft df= x(t) 

(We knew this too) 

Now, not only is the above true, but now we also have: 

x(-t) = f+OO X(fJ e-j2rcft df 

and 

4-48 



Chapter 4 - Fundamentals of DSP 

The concept of a transform pair is valid 
regardless which domain is actually being considered. The transform of a spike 
is a constant, regardless of whether the spike is in the frequency or the time 
domain. A rectangular pulse transforms into a sinc pulse, regardless of whether 
the rectangular pulse refers to a time signal or a spectral content. Etc, etc, etc ... 

This tends to make a lot of sense when one 
realizes that the only difference between the Fourier transform and the Inverse 
Fourier transform is the sign of the exponential (direction of (de)modulation). 

The amplitude, phase and frequency are 
useful measures of the sinusoid. However, not all signals are simple sinusoids, 
so there are other metrics that are useful in describing these other signals. 

4-49 





C HAP T E R 

Filters and Transfer Functions 5 
W e briefly mentioned (signal) Filters and 

filters earlier. The signal filter Transfer 
in concept is no different than Functions 

a coffee filter or an oil filter. A coffee filter lets the coffee through but filters out 
the grinds. A signal filter lets some components of the signal through but filters 
out the other components of the signal (hopefully the noise.) But let's make it a 
little more formal. 

A signal filter (from now on called a filter) 
is typically drawn as a box (Figure 5-1). By conventionx(t) represents the filter's 
input signal, y(t) the output signal. The filter is described by a function that is 
usually given the letter h(t). Filter impulse response is the name given to h(t) . 

... Y(t) 
x(t) h(t) 

input Filter output 

Figure 5-1 A signal Filter in Time Domain 

More on this and how exactly the three 
(x(t), y(t) and h(t» are related later. How are x(t),y(t) and h(t) related? Typically 
the frequency domain makes more sense. Often it is the frequency components 
of a signal that we desire to affect. (remember bass/treble controls on the stereo?). 

Let's use the frequency domain, now we 
have the input spectra labeled by X(f), the output spectra by Y(f). The filter is 
now described by a function H(f). This is exactly the transform of h(t). H(f) is 
known as the filter frequency response. 

x(f) 

input 
H(f) 

Filter output 

Figure 5-2 A signal Filter in the Frequency Domain 

5-1 



Chapter 5 - Filters and Transfer Functions 

5-2 

The advantage of using the frequency do
main is that the relationship between X(f), Y(f), and H(f) is simple. Use multipli
cation. As shown below, Y(f) is equal to X(f) times H(f). 

YCD = HCD XCD -XCD 11(1) 

input Filter output 

Figure 5-3 

You'll see a good reason as to why H(f) is 
called the transfer function if the equation is re-written as ... 

Y(f) 
H(f)=

X(f) 

It's understood that H(f) describes how the 
input (X(f)) is related to the output (Y(f)). In other words "how the input is 
'transferred' to the output by the function H(f)." 

Remember, since H(f) is a Fourier trans
form ofh(t), we know that H(f) could well be complex even ifh(t) is strictly real. 
Thus, we'll be interested in the magnitude of H(f) as well as the phase of H(f). 
Discussions often focus more on the magnitude. This is common, but don't get 
lulled into thinking the phase doesn't matter, as we know, sometimes it does. 

What Exactly Is h(t)? 

Let's try a thought experiment, if someone 
handed us an unknown filter (H(f) is unknown), how could we figure out what it 
was? 



Chapter 5 - Filters and Transfer Functions 

A simple way would be to put in a wave
form that consisted of equal amounts of all frequencies. By doing that, we could 
look at the resulting output from the unknown filter and see how each of these 
input frequencies were affected. We could identify the filter's frequency response, 
since it's the ratio of the input and the output. In fact, for X(t)= 1, then H(t)= Y (t)! 
Thus, we've directly measured the filter's frequency response H(t). 

Let's use X(f) 

-----l .. ~1 H(Q ? 
t 

Figure 5-4 

YCf) 

YCf) 

HCf) XCf) but XCf) 

HCf) • 1 = HCf) .. 
Determination of H(f) 

t, 

Simple enough, but how can we put in such 
an input spectrum (X(t)=l for all t)? Looking at the Fourier transform pairs, we 
find that such a spectrum exists if the input is a Delta function. So, using an 
impulse as input, the time domain description of the above block diagram is ... 

[~(f)-;---:'=-; iW· 

------~-~IL ___ H_Cf_)_~_-______ ~--------
___ l 

:a 
---::::.=--=:.. •. i-::..:::· 

Determination of h(t) 

Figure 5-5 

h(t) is output from impulse 

5-3 



Chapter 5 - Filters and Transfer Functions 

5-4 

Two Views Of The Same Thing 

When using frequency domain we used 
X(f)=l as an input and got the frequency description of the filter as the output is 
H(f). H(j) has been called the filter's "transfer function." 

Alternatively, the time domain descrip
tions could be viewed. Here we used an input Delta function to give us the time 
domain description of the filter. Because of this, the time descriptor h(t) is known 
as the filter's impulse response (the response due to an impulse being used as 
input). 

Either description, h(t) or H(f), may be 
used to completely describe a filter. Essentially, they describe the same thing 
since they are uniquely related to each other by the Fourier transform. Both views 
have there merits and uses. 

What About Using The Time Domain To Describe Filters? 

The question remains, "If Y(j) = H(j) X(f), 

what can we say about how the time domain descriptions x(t), h(t), and yet) are 
related." 

We can figure this out. Remember the 
Inverse Fourier transform? Let's use that and what we learned previously. It's 
not necessarily evident what's going on here for those with a dislike for calculus, 
but it's not too terribly difficult if you are interested. 

Mathematical Derivation Of The x(t), y(t), and h(t) Relationship 

Let's start with what we have accepted so far: 

x(t) X(f), y(t) Y(f), h(t) H(f) and, 

Y(f) = H(f) X(f) let's take the 1FT (Inverse Fourier transform) 

y(t) = F -1 [Y(f)] = F -1 [H(f) X(f)] 



Chapter 5 - Filters and Transfer Functions 

by definition, we get: 

y(t) = r y(~ d21tft df= r H(~ X(~ d21tftdt 

but we know X(f)=F[x(t')] is used for dummy variable 

so rewriting we have, 

rewriting again, 

y(t)=r r H(~ x(f) e-~1tf( d21tft dt' df 

now let's relate t' and t by 't = t - t', substitute and rewrite 

y(t) = r r H(~ x(t-'t) e-~1tft d't df 

separate and reorder integral, 

y(t) = r x(t-'t) [r H(~ d21tft df] d't 

this is the IFf of H(f), so it equals h( 't). 

Then let's rewrite now and obtain, 

y(t) = r x(t-'t) h('t) d't 

5-5 



Chapter 5 - Filters and Transfer Functions 

5-6 

Certainly we are getting close. What else 
can we do? Unfortunately (or maybe fortunately), this is the end of the road, we're 
stuck with this. However, this integral is so useful its given a name and a symbol 
of its own. It's known as the convolution integral. The asterisk (*) is used to 
denote convolution, please don't confuse this with multiplication, it's not the 
same. 

yCt) = x(t) * h(t) = r x(t-'t) h('t) de 

Let's redraw the filter block diagram with 
this new information to tie it together: 

x(~) hCt) I yet) = xCt) * hCt) 

----; YCf) = noRCf) XCf) 
XCf) L-_R--'C'-.-'.f) __ -------' 

Figure 5-6 

Convolution Integral, Intuitive Perspec-
tive 

The Fourier transform was an integral 
equation, yet it made sense on a basic level. The same can be said for the 
convolution integral. This time we'll work backwards. Iinstead of dissecting the 
integral equation to understand it, let's synthesize it from a string of arguments. 

Argument #1) Input an impulse into a 
filter and the output is the impulse response, h(t). We established that a filter is 
completely defined by its impulse response. 

Argument #2) Input signal as a collection 
of impulses: 



Chapter 5 - Filters and Transfer Functions 

Imagine the waveform x(t) as shown -

Figure 5-8 

Let's draw some impulses, say every sec
ond, equal to the value of x(t) at that time (in other words, weighted impulses ). 

Figure 5-7 

Try drawing more of these impulses this 
time, sayan every half second. This still doesn't look like much. 

T I r r 1 
Figure 5-9 

5-7 



Chapter 5 - Filters and Transfer Functions 

5-8 

Now, try every tenth of a second. This is 
starting to look pretty good. It's not too bad of a representation of the original 
signal x(t). 

Figure 5-10 

What if we drew the impulses every infi
nitesimal time interval? We would get exactly the original x(t). 

Figure 5-11 

We can indeed view the signal x(t) as a 
collection of individual impulses. 

Argument #3) Without explicitly stating it, we assumed our discussion is based 
on linear time invariant systems. (Non-linear systems and their analysis can get 
quite complicated and are beyond the scope of this book.) What linear means to 
us is a linear system that has the property that "the sum of the input components 
produce an output equal to the sum of the outputs if the individual components." 
This is known as superposition. Pictorially it is simple: 



Chapter 5 - Filters and Transfer Functions 

·1 h(t) 
~ 

xa(t) Ya(t) 

Figure 5-12 

·1 h(t) ~ 
Xb(t) Yb (t) 

Figure 5-13 

- h(t) -xa(t) + Xb(t) Ya(t) + Yb(t) 

Figure 5-14 

Time invariant means the systems im
pulse response does not change with time. Impulses coming in at different times 
would still have the same response (assuming equivalent states). 

Combine #1 and #2 and #3 to form the 
logical string. Input an impulse into the filter and the output is the impulse 
response (argument #1). 

Every impulse train that the input signal x 
is constructed from, argument #2, will have a corresponding impulse response 
generated by it, arguments #1 and #2. 

The actual output of the filter due to signal 
x(t) is the additive action of all these impulse responses (argument # 3). 

5-9 



Chapter 5 - Filters and Transfer Functions 

5-10 

Assume the original signal x(t) and imag
ine an impulse response that looks like the example below. 

-1 h(t) ~ 
x(t) ~ 

Figure 5-15 Figure 5-16 

Let's recreate the "a signal is a collection 
of impulse" plots with the filter's output y( t) represented by the addition of these 
impulse responses. 

Draw some impulse responses, say every 
second, equal to the value ofx(t) at that time. As expected, there is not too much 
to say about this. 

Figure 5-17 

Try drawing more of these impulse re
sponses this time, say on every half second. Again, it still doesn't look like much. 

Figure 5-18 



Chapter 5 - Filters and Transfer Functions 

Now try every tenth of a second. This is 
starting to look pretty good. 

Figure 5-19 

What was meat when we drew the im
pulses every infinitesimal time interval?Actuaily we would get exactly the true 
output signal yet). 

lZ5 
Figure 5-20 

Take a minute to review how these pre
sented arguments and accompanying plots lead us to the convolution integral. 
After that, we'll step up the above argument with a little more mathematics. 

Each point of our input signal x(t) can be 
represented by an weighted impulse (by weighted we mean an impulse whose 
area under the curve (i.e. integral) is equal to x(t) at that time. Say, for any time 
= tau, we get: 

y(1:) = r 8 (t-1:) h(f) dt 

One impulse at time t=1: ( (t-'t)) into the 

filter will generate one impulse response starting at time t=1: (h(t-1:». 

By superposition, the output of a collec
tion of inputs equals the collection of the outputs of the individual inputs. This 

5-11 



Chapter 5 - Filters and Transfer Functions 

5-12 

This means the output signal yet) is the collection of the outputs of each of the 
impulse inputs. (Since again we've got an infinite number, we'll get an integral.) 

Voila, the convolution integral. In spite of 
the looks of this integral equation, it really does make sense. 

Convolution In The Time Domain 
Multiplication In The Frequency Domain 

In describing a filter we just naturally 
assumed that a filter would have the characteristics that Y(t) = H(t) X(f). This is 
because we tend to think as filters as acting on frequencies, by attenuating or 
amplifying certain frequency components. This characteristic come about from 
our definition and concept of a filter. 

In order to have the frequency domain 
characteristic of Y(f) = H(f)· X(t), we found that the time domain characteristics 
were given by the convolution integral. This was done by use of the definition of 
the relation between the time and frequency domains (the Fourier transform). 

As seen earlier, convolution is so prevalent 
that it' given a shorthand notation, the asterisk: 

x(t) * h(t) = r h(t-'t)x(j)df 

Putting this more succinctly we have: 

If yet) = x(t) * h(t), then Y(f) = H(f)X(f) 

"Convolution in the time domain equals 
multiplication in the Frequency domain!" 

Duality Revisited 

Could duality come into play with regards 
to the above quote? If duality means that we swap "f' and "t," does it also mean 
that "convolution'" and "multiplication" could get swapped as well? Does 
"multiplication in the time domain equal convolution int the frequency domain?" 



Chapter 5 - Filters and Transfer Functions 

Yes. The proof of this is left as an exercise 
to the reader. 

t t t t 
\ 

t t t t 

Figure 5-21 

A familiar example of this would be the 
multiplication of two sinusoids x(t) and y(t). 

The reason that convolution came up was 
because we were talking about filters. Let's get back to that. 

Ideal Filter Types 

It is impossible to draw a perfect circle, 
nonetheless, the concept of a perfect circle is commonly used. 

It is much the same with the ideal filters 
presented. They are impossible to construct, but they are useful idealizations. 
The basic ideal filter types are; low-pass, high-pass, bandpass, and bandstop. 

Ideal Low-Pass Filter: A ideal lowpass 
filter will allow all frequency components below the cutoff frequency to pass 
unharmed, but prevent the passage of frequency components above the cutoff 
frequency. The set of frequencies allowed to pass through is called the Passband. 
The set of frequencies stopped is the Stopband. 

5-13 



Chapter 5 - Filters and Transfer Functions 

5-14 

Figure 5-22 

Ideal High-Pass Filter: Merely the oppo
site of a lowpass filter. Highs go through but the low frequencies get stopped. 
Again the boundary between these two is determined by the cutoff frequency. 

Figure 5-23 

Ideal Bandpass Filter: Here only the 
frequencies that lie between the upper bandedge and the lower bandedge get 
through. Thus, there are two stopbands and one passband. 

Figure 5-24 



Chapter 5 - Filters and Transfer Functions 

Ideal Bandstop Filter: As you probably 
guessed, it is the opposite of the bandpass. Frequencies between the lower 
bandedge and upper bandedge get stopped. Now there's two passbands and one 
stopband. 

Figure 5-25 

Why Can't You Make An Ideal Filter? (Causality) 

It's a good question. Also, its gives us one 
of the first opportunities to use what we learned about Fourier transforms. 

Let's look closer at the ideallowpass filter. 

Figure 5-26 

We know that we can determine the 
impulse response h(t) from its frequency description H(f). We can do so by 
calculating the inverse Fourier transform, but let's save ourselves the bother and 
refer back at the Transform Pair section where we'd find the pair: 

5-15 



Chapter 5 - Filters and Transfer Functions 

5-16 

Thus, from transform pairs and duality we 
now know that the ideal filter has an impulse response defined by the sine pulse 
(shown below) 

Figure 5-27 

Great, so now we can go ahead and build 
the ideal filter, right? No. Take a look at the sine pulse plot, notice the dots at the 
left and right. They signify that the impulse response continues for ever and ever. 
Well, this is one reason the ideal filter is impossible. Eternal time systems are a 
bit difficult to build. 

Remember, when we plot impulse re
sponses, by convention, we say the input impulse "hits" the filter at time t=O. 
Look again at the impulse response and notice how it has appreciable content to 
the left of t=O. This corresponds to the time before the input impulse even get to 
the filter! More specifically, the ideal filter would have to start reacting to 
something that hasn't even occurred yet! (A difficult task at best). A term to 
describe this task is "non-causal." To build a non-causal filter is beyond our 
means. 

We'd really like the filters to be causal, 
which is to say h(t) = 0 for t = o. 

The observant reader may say, "We could 
just build a delay in the filter." This could be thought of as shifting the impulse 
response plot to the right. If we could delay this enough, maybe we could move 
the whole impulse response to the right of t=O, then it'd be causal and we'd be 
able to build it. Great! But, don't forget the impulse response needed for the 
ideal LPF is infinite in duration. Thus, we'd have to add a lot of delay, infinite 
in fact. So much for that idea. 

However, the idea of putting delay into the 
impulse response is not an entirely bad idea. It does, indeed, get us an impulse 
response closer to what we needed. 



Chapter 5 - Filters and Transfer Functions 

Almost Realistic Filter Types 

Here we take a step towards a little more 
realism in our description of filters. One thing that made the ideal filters so 
impossible was the discontinuity, or jump in the filter's frequency response from 
o in the stopband to 1 in the passband. Let's get over this hurdle by allowing 
values in between 0 and 1. This added concept is the transition band, bordered 
by the stopband edge and the passband edge. 

Almost Realistic Low-Pass: 

\ 
Figure 5-28 

Almost Realistic High-Pass: 

Figure 5-29 

5-17 



Chapter 5 - Filters and Transfer Functions 

Filter 
Specification 

5-18 

Realistic Filters 

I 
Figure 5-30 

To be able to build a filter we must allow 
some additional concessions. 

Figure 5-31 

First, we allow for variation in the pass 
band. The pass-band response is allowed to vary somewhat around the desired 
response ofH(f)=l. It could be greater than 1 or a less (of course we'd generally 
like it to be really close to 1). This is sometimes called passband ripple. 

Secondly, we relax the constraint of the 
stop-band. Now, it doesn't have to exactly equal zero (of course we'd like 
generally like it to be really close to 0). The amount of signal allowed through 
the stopband is called stopband attentuation. 

Now, we have all the basic parameters we 
need to specify a basic filter that we wish to build. These are: 

These are the parameters generally re
garded as filter design specifications. (Some may argue that I've left out such 



Chapter 5 - Filters and Transfer Functions 

things as phase response, overshoot, etc. Fine, but I will still call the above 
parameters the basic filter design parameters.) 

Type (Lowpass, Highpass, etc.) 

Passband Edges /{ 
Passband Ripple 

Stopband Edges 

Stopband Attenuatio"'n __ +-______ -+~ 

Figure 5-32 

Implementing The Filter From These Parameters: 

From a set of filter design parameters, 
there are a variety of techniques for implementing an actual filter. Some of the 
classical filter implementation types for continuous time filters are Chebychev, 
Butterworth, Elliptic. Traditionally, continuous time implementations of these 
filters used capacitors, resistor, inductors in passive filters or active filters with 
the inclusion of op-amps. 

Our goal is Digital Signal Processing. I 
know we still haven't formally started the DSP discussion yet - hang in there, the 
continuous time basics are important. Let's delve into filter implementation 
issues as digital filter implementation issues and save this for when we get to the 
strict DSP sections. 

5-19 



Chapter 5 - Filters and Transfer Functions 

5-20 

Return To Fourier Transforms 

We defined the Fourier transform with an 
equation. We investigated the motives for such an equation and it seemed to 
make sense. Next, we took a survey of Fourier transform pairs of some simple 
mathematical functions of interest. 

Let's apply the concept to common sig
nals. Let's use our knowledge to see what happens when we want use the Fourier 
transform to determine the spectra of signals that we'll find in real-life. By 
real-life, we simply mean something that we might measure over finite time. 

Finite Measuring Time 
We actually give a technical term and dis

cussion about the fact that we'll use a finite measurement time on the signal we 
wish to apply Fourier analysis. The Fourier integral has plus infinity and and 
minus infinity as the limits of integration. When we limit our time "window" we 
see that we aren't doing a strict Fourier analysis. We're kind of "fudging" a bit. 
Thus, the results we get from our limited Fourier analysis will be somewhat 
different. Let's demonstrate. Below, you'll find the sinusoid in its infinitely 
long time representation along with its spikey Fourier representation. 



Chapter 5 - Filters and Transfer Functions 

X(j) = F(sin(2nft» 

Figure 5-33 
Figure 5-34 

Let's consider what happens if we take 
only a small portion of that sinusoid. In other words, we'll use a finite window 
instead of minus infinite to plus infinite. Let's say we'll examine the "sinusoid" 
from 8:21 AM to 8:23 AM. We might draw this Be (before coffee) time domain 
waveform as shown below: 

Xhc(t) = sin(2nft) [when t is from 
8:21 a.m. to 8:23 a.m.] 

Figure 5-35 

The question remains, what's its frequency 
domain description? 

More On Windowing 

Let's define xbc(t) a little more properly. 

5-21 



Chapter 5 - Filters and Transfer Functions 

5-22 

a.m. 

8:21 a.m. 

Figure 5-36 

Now with this proper definition we could 
calculate the Fourier transform of xbc(t) by direct application of the Fourier 
Transform Equation and get an answer. Who wants to go through the steps of 
calculus? There is no need to do that, there's a more illustrative solution. We'll 
consider Xbc(t) to be made up by the product of two other "simple" signals, w(t) 
and s(t). 

Xbc(t)= w(t)"s(t) 

where: w(t) is a rectangular pulse (we've 
examined these before) 

s(t) is an infinite sinusoid 

The three signals xbc(t), w(t), and s(t) are 
plotted below to verify that, indeed, the product of x(t) and s(t) is a valid 
representation. 

~I 
Figure 5-37 



Chapter 5 - Filters and Transfer Functions 

wet), 

\.10 1 i 

Figure 5-38 

Xbc(t)= w(t)·s(t) 

Figure 5-39 

By viewing Xbc(t) composed in this way, 
we can take an shortcut around the calculus computations using the dual of 
"convolution in the time domain equals multiplication in the frequency domain." 
The dual of this states: 

"Multiplication in the time domain is con-
volution in the frequency domain." 

Knowing this, we can directly construct 
the frequency domain representation of Xbc(t) is (Xbc(f)). 

To convolve the spectra of set) with wet), 
written as S(f)*W(f). We'll need to know S(f) and W(f), luckily we've already 
seen them in the Fourier transform pairs sections. Here they are, 

I 
S(f) 

Figure 5-40 Figure 5-41 

5-23 



Chapter 5 - Filters and Transfer Functions 

5-24 

Think of convolution as it was presented 
in the filtering section paralleled below. Signal S is convoloved with W by 
considering W to be the "impulse response" of a filter. (If the thought of sticking 
frequency domain signals into filters bothers you, just forget about what domain 
they are in and consider them by their shapes, that's why we've stripped off the 
"f' in S(f). Remember we're only interested in the convolution process. 

·1 '--------------' 

s 

Figure 5-42 

Finally, we can see what the spectrum of 
this windowed sinusoid look like. 

Observation #1: Notice that Xbc(f) is not 
a simple spike like the infinite time sinusoid was. It's been spread out to infinity. 



Chapter 5 - Filters and Transfer Functions 

Observation #2: Here we chose to view the 
windowing effect as convolving the frequency responses of the window and the 
input sinusoid to get the resulting plot. Since we chose the input as a sinusoid 
we could have looked at it in a different way. We know multiplication of a signal 
by a sinusoid is modulation. Verify that the spectrum of the window could also 
be viewed as having been modulated up and down by the sinusoid. It's amazing 
how you can view the same thing from different angles and it still makes sense. 

Observation #3: There's an interesting 
interplay between time and frequency stemming from the fact that time and 
frequency are reciprocals of each other. Remember the duality issue between 
convolution and multiplication? Well, here's a close relative - "A finite time signal 
has infinite frequency content." We uSed S to stand for the the signal and W for 
the window. 

Windowing Interplay 

Use the same setup as before but change 
the length of the time window that we'll use to examine the sinusoid. Instead of 
a couple of minutes before coffee, let's examine it all morning from 9am to 11:30 
am. We'll call this Xam(t), what's its spectrum look like now? 

Figure 5·45 

(JO(\Of) 
O~VO 

(JO(\Of) 
O~VO 

Figure 5·47 Figure 5·48 

5-25 



Chapter 5 - Filters and Transfer Functions 

5-26 

With the a different window function w 
we'11 have to re-work our determination of its frequency description W. We see 
that the longer w(t) is "on" (has an amplitude of 1), the narrower its frequency 

domain description is. Since we end up convolving our spikey (S) with a narrower 
(W), see below. Notice now we get a representation closer to what the actual 
Fourier determination gives us, this makes sense. 

Figure 5-49 

Figure 5-50 Figure 5-51 

Now let's go the other way. Let's choose 
to examine the signal over a one second intervals call this signal Xlsec(t). Again 
we guess what the new window's frequency description will look like and do the 
convolution. With such a short duration window, w(t) we get a very broad spectral 
representation, W(f). Thus, we might get something like this: 

Now the frequency determination is not as 
good. We can still determine the sinusoids exact frequency by picking the biggest 
the "peak" of the very broad bump. 

But, if there was the slightest amount of 
noise in our measurements we'd have something resembling the plot below. Try 
to tell the exact frequency of the signal. 



Chapter 5 - Filters and Transfer Functions 

Figure 5-52 

This bit of noise wouldn't have bothered 
us as much in the signal xam(t). 

Windows Wrap-up 

Hopefully the preceding pages have driven 
home the point that the chosen window can have a big impact on your spectral 
analysis. It's a simple point, but one that is sometimes forgotten. For instance, 
forgetful engineers have been known to try to do spectral analysis in the 20-50 
Hz region using a window only a few millisecond long. The figure below may 
give an intuitive feel to how accurate their results might have been. 

Figure 5-53 

Alternative Windows 

We may have lead the reader erroneously 
to believe that the only window function to use is the rectangular window that 
we've been discussing. This is not true. It just happens to be the simplest to use 
and easiest for illustrative purposes. In the rectangular window we presented, 
you're either looking at the signal or you're not. There's a negative point about 

5-27 



Chapter 5 - Filters and Transfer Functions 

5-28 

the rectangular window and that is its frequency domain description. W(t) is 
bumpy with many local rninimas and local maximas (sidelobes). 

A better approach may be to avoid using 
the rectangular window and its "I'm looking, I'm not looking" approach. A 
different windowing function will allow for a more gradual transition between 
looking and not looking. 

See the example of the Hamming Window. 
Instead of multiplying the signal set) by the rectangular window wet) of duration 
of two minutes, we'll use the hamming window Whamm(t) of the same duration. 
Start viewing at the signal a little bit at first, then more and more till we taper the 
view back down to zero. 

\J~ \J \J~ C7 

Figure 5-54 

Figure 5-55 

f\hf\ 

Figures 5-56 

Notice that the frequency description of 
Whamm(t) (Whamm(t)) is a smoother function. 



Chapter 5 - Filters and Transfer Functions 

... - ... , 

Figure 5-57 

, , , 

Thus, when we convolve S(f) and 
Whamm(f) to get the spectral estimate, we get a better plot. By better, we mean 
lower sidelobe levels. 

\ , 
'. 

Figures 5-58 

, , 
\ J l .. 

Spectrum of x using a Hamming Window 

Windows Caveat 

Compare the plots of the spectral estimates 
for the two minute rectangular window and the two minute hamming window on 
the next page. 

5-29 



Chapter 5 - Filters and Transfer Functions 

5-30 

Figures 5-59 

Indeed, the Hamming Window signal's 
spectra have lower sidelobes, but notice how it has broadened as well. 

Conversely the rectangular windowed sig
nal's spectra is narrower but the sidelobes are higher. 

That's the window tradeoff: sidelobe sup
pression vs. spectral widening. There are many possible window functions to 
choose from. Each falls in its own niche within the window tradeoff. Some of 
the more common window functions are, rectangular, hamming, hanning, gaus
sian, blackman harris. 

The Bandwidth Concept 
Armed with the Fourier transform and 

choosing our windows properly, we may determine the spectra of various signals. 

Voice Signals 
Let's look at an arbitrary voice spectra. 

We'll find most of its content is located in the maybe 200Hz to 3200 Hz range. 
This total span of frequencies where there are appreciable spectral components, 
3200 Hz, is called the Signal Band Width. Thus, any system which is used to 
carry voice signals should have the ability to carryall these frequencies. (In fact, 
the frequencies listed here are the frequencies generally used for telephone 
applications). If this is so, we say that this system has a System Band Width of 
3200 Hz. In general, it's a good idea for the system bandwidth at least as large 
as the signal bandwidth for good results. 

Musical Signals 
The range of human hearing is generally 

20 to 20,000 Hz. So, a good musical reproduction system should have a 
bandwidth of 20,000 Hz. 



Chapter 5 - Filters and Transfer Functions 

Why does an (mono) FM radio signal have 
only a bandwidth of 15000 Hz? It would be better if it was 20,000 Hz. However, 
to allow for this much bandwidth, the broadcast station would have to use up more 
of the radio spectra (or radio band). The bandwidth of 15000 Hz was seen as a 
good compromise between getting a "good" quality signal to broadcast and 
conserving more of the band. So by it's bandlimiting approach (system band
width smaller than the input signal bandwidth) we don't get a "perfect" musical 
reproduction. 

The Baseband Concept: 

The term baseband is used to describe an 
original signal before any modulation takes place. In the above example of 
musical signals in a radio broadcast we can regard 0 to 15,000 Hz as the baseband 
of the signal. After this music is modulated up to radio frequencies (in the 
hundreds of megahertz range) it is no longer considered in the baseband. In order 
for the listeners to enjoy the music, their radios must de-modulate the radio signal 
to bring the music back to baseband. 

Modulation does not effect the signal 
bandwidth. This bandwidth remains constant throughout the modulation and 
demodulation process and it is not effected by where it is modulated. 

A general rule of thumb: For a signal at 
baseband, its bandwidth can generally be regarded as the frequency for which the 
signal has any appreciable content. 

5-31 





C HAP T E R 6 General DSP Concepts 

signal processing. 

I n dissecting the term digital signal 
processing, we know that digital is a 
given. Let's examine what is meant by 

Signal processing is a general term used to 
describe the various functions are performed on signals usually to improve or 
enhance the original signal. The specific improvement or enhancement differs 
greatly from application to application and the type of signals involved. Perhaps 
a quick sketch of various applications of signal processing, specific signals and 
types of processing will help. Let's start with a few classic examples. 

General Signal Processing 

Communications Example: A communica
tions engineer may be foremost concerned with the proper transfer and reception 
of information from point A to point B over a channel or medium. Any signal will 
is affected in some way by the channel. To extract the maximum information, it 
is necessary to counteract the channel effects. That is, filtering may be used to 
filter out the unwanted added noise or interference. Automatic gain control may 
possibly be used to compensate for fading. 

Control Example: In control engineering 
(e.g., manufacturing quality/process control, chemical process control, vehicle 
stabilization) the actual control performances done by taking measurements of 
the process, then initiating a corrective action based upon the measurement. 
Signal processing becomes involved when this measurement may be affected by 
noise and require filtering for accurate, stable results. Further, signal generation 
may be required to initiate the desired corrective action. 

Storage or Retrieval Example: storage or 
Retrieval is a fancy way of saying recording or signal storage. Here, the goal is 
to archive the signal so that extracting information is maximized on storage and 
on playback. Again, filtering is helpful. 

The word "classic" is used to describe the 
signal processing used in the examples because the problems with their theory 

What Exactly 
Is DSP? 

6-1 



Chapter 6 - General DSP Concepts 

6-2 

and solutions have been known for a long time, that is since the beginning of 
radio. Simple components such as tubes, transistors, inductors, capacitors, 
resistors and vinyl or magnetic tape, are used to compose the elements of the 
signal processing gear. The functional elements of signal processing are filters, 
variable gain amplifiers, mixers, and oscillators. 

nsp composes the most elemental and 
most important aspects of signal processing today and it offers solutions to these 
classic problems as welL However, with the advantages that DSP offers, signal 
processing has moved beyond the "same old thing." Signal processing ideas 
dabbled with in research labs and labeled "interesting but unrealistic" have found 
new life in a variety of consumer as well as military and industrial products. 

DSP's Newer Uses 

We will look at those necessary and effec
tive classic approaches to see how DSP is used to implement those functions in 
later sections. 

Communications Example: In addition to 
the noise and interference introduced by the channel, an echo is often introduced 
as well. Have you ever seen the "ghosting" of images on your TV set or heard an 
echo on a long distance telephone call? DSP made possible the implementation 
of "echo cancellers" of quality previously beyond the reach of the analog 
electronics. 

Storage/Retrieval Example: Think of the 
compact audio disc. This is perhaps one of the most visible examples of a digital 
storage and playback system. Earlier forms of storage and playback such as the 
LP or cassette tapes demanded, accurate and expensive motors to minimize the 
warbling sound resulting from motor speed variations. Each time a LP or cassette 
is played back, mechanical wear degrades the quality of the achieving medium. 
Additionally, the medium itself generates additional components of noise; surface 
noise for LPs and tape hiss. Storing digitally eliminates the need for expensive 
motors and no archival degradation takes place on playback. The medium itself 
introduces no additional noise to the system. The market acceptance of the 
compact disc demonstrates that these advantages can be achieved within market 
cost constraints. 



Chapter 6 - General DSP Concepts 

A major factor in the introduction of DSP 
into a variety of areas has been the decreasing cost of digital micro-electronics 
and digital memories. The presence of new DSP implementations will likely 
continue as micro-electronic components continue to increase in performance 
while decreasing in cost. 

We may be accused of skipping over the 
tempting "wow factor" and "wonder toys" associated with DSP; those machines 
that recognize and respond to the spoken word, machines that speak for them
selves; real time signature analysis; and machine vision. While such DSP func
tioning does exist today it is to a large degree, so application-specific that it's 
understanding would not be very portable from one to the next. This is a 
publication concerning DSP and not the complexities of voice recognition algo
rithms. Realize that DSP applications are based, to a great extent, on the classical 
techniques already introduced such as with filtering. 

Defining Digital Filtering 

It should be made clear exactly what is 
meant by the term digital filtering. The digital filtering is filtering which takes 
place by the mathematical manipulation of the numbers which representing the 
signal. In fact, for the balance of the presentation, we assume that the sampling 
and reconstruction conditions are properly met by the data conversion sub-sys
tems. Additionally, the appropriate choice of sample word-length is assumed based 
upon the sampled signals SNR and the dynamic range. Focusing strictly on the 
digital portion of the system, we will deal with the effects of numerical manipu
lations on the signal samples. 

Introduction To Digital Filtering 

The moving average operator is the first 
hint of a digital filter. The filter needs an input signal to operate on, an operation 
to perform, and an output signal. We chose an arbitrary sample sine wave of O.lfs 
as the input. See figure 6-1. 

6-3 



Chapter 6 - General DSP Concepts 

6-4 

10 Samples per cycle 

?rrrrllr. pllrrrIL 

Figure 6-1 An Arbitrary Sampled Input Sigual 

For the moving average operator, the op
eration performed is an averaging of the samples. We sum up a few samples, then 
divide the sum by the number of samples that we added together, and voila, an 
average! Moving means that we find an average for one sample, then move to 
another, find an average, and so on. The output is formed by looking at the 
sequential values obtained by each step of the averaging process. 

Deciding how many samples are averaged, 
determines the order of the filter. Imagine this with the input and output signals 
below. 

x(n) = input signal 

y(n) = output signal = moving average of x(n) 

10 Samples per cycle 
Avera.ge these 10 .. _ 

'"~~ 11111T[O' 11 [U !J ", [q TIF' """ 
the"e 10 (etc.) 

Figure 6-2 

The input and output signals differ. Is this 
really a filter in terms of what we have previously discussed? If it is, why haven't 
we discussed its frequency characteristics? Where is the convolution in the time 
domain? To answer these questions, we step up our notation used to represent and 
manipulate sampled signals. 



Chapter 6 - General DSP Concepts 

Representation Of Sampled Signals 

Sampled signals, or more accurately, dis
crete signals, have acquired a representation of their own. Below is an overview. 

x(n); This is a signal called x. With a value 
it takes at integer value of n. If n is explicitly stated, (i.e., x(S» means the fifth 
sample of signal x. If n, is left as an unspecified integer value (i.e., we have x(n», 
then we are generally speaking of the entire signal x. 

x(n-k); This is a delayed version of the 
signal x(n). It is delayed by k samples. To see this, view the sketch in figure 6-3 
and let's use k = 4. Now, compare the signals x(n) and x(n-4). Notice that x(n-4) 
eventually takes on the same values of x(n) just four samples later. For instance, 
for n = 10, k = 4 we have if, x(lO) = 100, then x(lO) = x(14-4) = 100. 

I I 
I I 
I .. 

I I 
I .. .. 

o = x(n) 
_ = x(n-4) 

Figure 6-3 x(n) Delayed by Four Units 

N yx(i); Summation of samples of signal 
x. Here, the samples x(l), x(2), x(3), ... , N are summed together. 

Moving Average Operator 

We can now continue the investigation of 
the moving average operation adding a more mathematical description. For the 
input, we chose a sine wave sampled at O.1fs. This can be written as; 

x(n) = sin( 21tnTs), where Ts is the sampling period 

= sin( 21tnf/fs ), but f=O.1fs so this is also 

= sin( 21tnO.1 ) 

6-5 



Chapter 6 - General DSP Concepts 

6-6 

Defining the output waveform y(n) be the 
moving average of ten samples of x(n.) Rewriting this mathematically gives 
insight. 

y(n) = 1/10 [x(n) + x(n-1) + x(n-2) + x(n-3) + ... + x(n-8) + x(n-9)] 

It should be obvious that this is an averag
ing process. x(n-l) is the sample that occurred just before x(n). Similarly, x(n-2) 
is the sample value that occurred two sample periods before x(n). So the formula 
shows that the output is simply formed by adding the present input sample, x(n), 
to its nine preceding sample's value, then dividing by ten. Let's use the summation 
version of this equation. 

1 9 
y(n) = 10 L x(n - k) 

k=O 

Let's take a not-so-obvious mathematical 
tum. Instead of adding the samples x(n-k)s and then dividing by ten, let's bring 
the 1110 inside the summation sign. So we multiply all of the samples by 1110 
first. This doesn't change a thing, we still have the same equation. 

1 1 1 1 1 
yCn) = 10 x(n) + 10 x(rr-1) + 10 x(rr-2) + 10 x(rr-3) + ... + 10 x(rr-9) 

In fact, let's give the 1110's a variable 
name. How about calling it "h?" Better yet, let's have ten h's all with the value of 
1110. Again, using the summation method of writing the exact same thing: 

9 1 
yCn) = L h(k) * x(rr-k) where h(k) = -10 for k=O, 1, 2, ... 9 

k=O 

Nothing has changed by rewriting. How
ever, now we have the discrete version of something with which we are very 
familiar. Remember the convolution integral from the continuous time and 
filtering discussion? We will rewrite it with a generalized version of our new 
formula. 

yCt)=f h('t)*x(t-'t)d't 



Chapter 6 - General DSP Concepts 

y(n) = I h(k) * x(n-k) 
k=Q 

(For a particular pattern we have h(k) = /0 for k=O, 1, ... 9 and zero every

where else.) 

Notice how strong the parallel is between 
the convolution integral and the summation formula above. In both cases, we have 
the input signal x and its past values, multiplied by a function h. We then take the 
sum. Remember that the integral is nothing more than an infinite sum. Indeed, 
the summation formula is precisely the discrete version of the convolution 
integral. It is known as the convolution sum. 

How far can we push the parallel between 
the convolution integral, continuous time filters, conOlolution sum, and discrete 
time filters? Let's play some games with this moving average. 

For the summation formula representation 
of the moving average, we chose h(k) = 1110 for k = 0, 1,2, ... 9. If this is truly 
like the convolution formula we saw earlier, we would expect that h(k) represents 
the impulse response of the filter. That's what is represented for the continuous 
time filters. Let's check that out. The impulse input means: 

x(n) = 1 for n=O 

o else 

Notice that this implies, 

x(n-k) = 1 for n=k (since if n=k, then n-k=O) 

o else 

So our output yen) is, 

y(n) = average of ten x(n)'s 

= [1/10 x(n) + 1/10 x(n-1) + 1/10 x(n-2) + 1/10 x(n-3) 

+ ... + 1/10 x(n-9) 1 

So we can determine yen) for each n from our input x(n). 

Convolution 
SumAndThe 
Moving 
Average 

6-7 



Chapter 6 - General DSP Concepts 

6-8 

Ifn<O, then all then-I, n-2, n-3, .,. indices 
are strictly less than zero. This means allx(n-k)'s are zero. 

For n=O, only x(n) is not zero, 

y(O) = [1/10 * 1 + 1/10 * 0 + 1/10 * 0 + 1/10 * 0 + ... + 1/10 * 0] 

For n = 1, only x(n-1) is not zero, 

y(1) = [ 1/10 * 0 + 1/10 * 1 + 1/10 * 0 + 1/10 * 0 + ... + 1/10 * 0] 

For n = 2, only x(n-2) is not zero, 

y(2) = [ 1/10 * 0 + 1/10 * 0 + 1/10 * 1 + 1/10 * 0 + ... + 1/10 * 0] 

and so on through n = 9. 

Ifn = 9, then all the n-I, n-2, n-3, ... , n-9, 
are now strictly greater than zero, thus all other x(n-k)'s are again zero. 

Basically, we input an impulse and got ten 

~ r r r r r r r r r r ~~::-.--o-" 
-2 -1 a 1 2 3 4 5 6 7 8 9 10 11 12 • • • 

Figure 6-4 Impulse Response of y(n) 

values. The actual impulse response is ten values, each equal to 1110. These output 
values are exactly described by the terms of h(i). Indeed, h(i) is the impulse 
response. So what about frequency responses? 



Chapter 6 - General DSP Concepts 

We saw from continuous time filters that 
if we have the impulse response of a filter (h(t), then the frequency response 
(H(f) of the filter is determined by the Fourier transform of h( t). We are not ready 
to make bold statements about our moving average operator. It is appropriate to 
start looking at the moving average operation from a frequency domain perspec
tive. 

Averaging is performed to get a better view 
of longer term trends, in other words, to remove the day-to-day or moment-to
moment fluctuations by filtering out the higher frequency noise. 

The moving averaging process is a digital 
low pass filter. We can use our Fourier transform process to see the frequency 
response. 

Since averaging is easy to compute, let's 
take a look at how various frequency inputs are affected by this averaging. For 
the following figures, the input amplitude remained constant with a value of one; 
only the input frequencies were varied. All that has been done here is the 
computation of the moving average (averaging ten consecutive samples) of the 
input sinusoid for the various frequencies. 

We can take a shortcut and remember that 
the average of a constant value is merely the constant value. So it's no surprise to 
see that we get the same amplitude on the output as we had for the input. 

fre =0 

0.5 

0 

-0.5 

-1 
0 50 100 

Figure 6-5 

Frequency 
Response Of 
The Moving 
Average 
Operator 

6-9 



Chapter 6 - General DSP Concepts 

6-10 

fre = 0.04 

0.5 

-0.5 

50 100 

Figure 6-6 

fre = 0.08 

0.5 -

-0.5 

-10~----------~5~0----------~100 

Figure 6-7 

fre = 0.1 

0.5 

o --------

-0.5 

-I 
o 

0.5 

------"------------' 
50 100 

Figure 6-8 

fre = 0.12 

_IL ___________ ~ __________ ~ 

o 50 100 

Figure 6-9 



Chapter 6 - General DSP Concepts 

0.5 

-0.5 

fre =0.14 

f ::: 0; 14 output C()IltinueS to 
increase in amplitude. 

-I _._.-... _ .... 
o 50 

Figure 6-10 

0.5 

o f 0.2 Zero output again. 

-0.5 

_IL-_____ ~ ______ ~ 
o 50 100 

Figure 6-11 

We could continue, but let's assume we 
have actually run a set of sampled sine waves of various frequencies through our 
moving average operator. We chose to let sampled sinusoids have frequencies 
from zero to half the sampling frequency our limit given by the Nyquist criterion. 
We can now present a plot of the resulting amplitudes for the various frequency 
inputs. We now have a rough plot of the frequency response of the moving average 
operator. 

.g 
~ 0.8 

~ 0.6 

0.4 

0.2 

0 
0 

Out ut Am vs. In ut Fre 

0.5 

flfs Frequency 

Figure 6-12 
Frequency Response of a 
Moving Average Operator 

6-11 



Chapter 6 - General DSP Concepts 

6-12 

Since we can discuss the frequency 
response of this moving average operator, we will throw out the word operator 
and call it a moving average filter. 

The Moving Average Filter 

Let's reflect for a moment on this moving 
average filter. In fact, since we are interested in exactly how the output waveforms 
are produced, let's zoom in on ten samples and overlay a plot of the h( k) values 
on the plot of input samples x(n). 

3 4 6 7 8 10 

Figure 6-13 

This type of diagram comes in handy for 
understanding many types of filters and gives a great intuitive feel for exactly 
how the filtering process works. Please become familiar with it! Notice that it 
shows the actual convolution process. The figure below shows values ofx(n) for 
an input frequency of O. We can use this graphic for other input frequencies to 
verify the frequency dependence of the averaging process. 

Since an interesting aspect of the moving 
average filter's frequency response is the value of zero it takes on at O.1fs, let's 
re-draw the diagram using an input frequency of 0.1 fs. 

Figure 6-14 



Chapter 6 - General DSP Concepts 

It is now possible to see how the averaging 
process produces a zero output. There are waveform samples that are positive, and 
five samples that are negative. In fact, the pairs of fives are identical except for 

being opposite in sign. Thus, when all ten samples are added together, a value of 
zero is produced. In a like fashion, the other frequencies that lead to zero amplitude 
exhibit a similar kind of symmetry. The sum of the positive samples in the 
averaging window is equal and opposite in sign to the sum ofthe negative samples 
in the averaging window. Thus, the positive samples cancel the negative samples 
and the sum is zero. For this perfect cancellation to take place, the input waveform 
must conform to the moving average window. 

Perhaps the easiest case to see why 
multiples of O.lfs are zero, is the case of f=0.5fs. Here, we recognize that the 
sample values alternate between + 1 and -1. Therefore, the moving average is 
always adding five samples of + 1 with five values of -1. The sum equals O. Thus, 
the moving average always equals zero. 

Figure 6-15 

Construction VS. Destruction 

The averaging process is a low pass 
process and part of the averaging requires the summation of neighboring samples. 
In a low frequency input, neighboring samples have the same sign. Each of these 
samples is multiplied by an hen) value. Since these are all the same sign, the 
summation of these values is always constructive in nature. 

>crII]JIr~ 

Figure 6-16 

>< - LoVV' frequency 
input da.ta. 

6-13 



Chapter 6 - General DSP Concepts 

6-14 

Conversely, a high frequency signal has 
samples of both positive and negative signs over the same size neighborhood. 
MUltiplying by the constant h(n) values will have no effect on the sign of these 
samples. Therefore, we are left with both positive valued and negative valued 
samples. As such, their summation is destructive in nature. 

x - High frequency input data 

Few neighboring samples have 
opposite sign. 

Figure 6-17 

It is e~actly the frequency dependent na
ture of the constructive or destructive properties of the summation calculation 
that is exploited to yield a filtering process. 

Conjecture Relating Impulse Response To Frequency Response 

In the previous section, the h( n)' s were all 
of the same sign. This acted to produce a low pass filter. What happens if we were 
to change the h(n) values to something that alternated signs? Can we conjecture 
the following? 

Low Frequency Signal 
Same Signed Neighbors 

High Frequency Signal 
Alternating Signed 

Neighbors 

Conjecture Investigated 

Impulse Response ====> Constructive Addition 
Of Alternating Sign 

Impulse Response ====> Destructive Addition 
Of Alternating Sign 

This conjecture certainly has an attractive, 
symmetric quality to it. To investigate, use two standard waveforms, a DC signal 



Chapter 6 - General DSP Concepts 

(constant) and one with a frequency of fs/2. These are chosen simply because 
they are so easy to work with and still provide useful information. 

What happens if the impulse response al
ternates in sign? Let's take the previous impulse response and change the sign of 
hen) when n is an odd number. Thus, we have h(n) when n is an odd number. 

0.1 o - Filter impulse response 

-0.1 

Figure 6-18 

Impulse Response that Alternates in Sign 

We can easily see that a DC waveform 
undergoes a destructive summation effect in this case, due to the alternating sign 
of the hen). What about the case of fs12? Let's look again using the signal 
superimposed on the impulse response diagram. 

_ - Filter impulse response 

x - Data samples 

Figure 6-19 

h(n) and x(n-k) lined up so each pair is either 

positive or negative 

Here we have the h(n)'s and x(n-k)'s "lin
ing up" so that each pair is either both positive or both negative. Thus, the result 
of the multiplication step is always positive, and the sum is constructive. The 
output sample has a positive value. Its appreciable magnitude conveys a high pass 
filter. That may be correct for figure 6-19, but look at what happens for the next 
output sample. 

6-15 



Chapter 6 - General DSP Concepts 

6-16 

For the next sample, we can view the input 
as delayed, or moved to the right, within the filter window. The last sample from 
the previous diagram has exited to the right, while the new sample has appeared 
to the left. 

-Hl1[11--
o - Filter impulse response 

x - Data samples (1 sample later than 
previous plot) 

Figure 6-20 

What occurs when hen) and x(n-k) are lined up with 

opposite signs. 

In cases like this, we always have positive 
samples lined up with negative h(n)'s or negative samples lined up with positive 
hen)' s. So now the result of each of the multiplications is negative. The sum of a 
collection of negative numbers is negative. We still have constructive addition 
and an appreciable magnitude on the output sample. It just has a negative sign, 
that's all. 

There is absolutely no problem that the 
output signal alternates signs every other sample. This is exactly what the input 
signal did. 

We have seen how this alternating sign, 
h(n), can indeed attenuate low frequency inputs while passing high frequencies. 
Our experiment, based upon rudimentary examples, demonstrates the underlying 
principles involved with digital filtering. However, few filters are simple moving 
average or alternating sign filters. 

The moving average filter discussion was 
used to introduce the topic of digital filtering. Our everyday idea of averaging 
was expanded to a moving average. This lead to the notion of a convolution 
summation. This convolution sum was shown to possess a frequency-dependent 
character which certainly appears suitable for a filtering operation. Moreover, it 
has become apparent that different choices for the impulse response (h(n)'s) can 
greatly effect the frequency characteristics of the convolution sum. To design a 



Chapter 6 - General DSP Concepts 

digital filter of a desired frequency response, you must determine the correspond
ing impulse response. 

Determining The Right Impulse Response 

The moving average filter had a given 
impulse response and determined frequency response as shown in figure 6-12. If 
we were to make a continuous time analogy to the h(n), by connecting the dots 
to get h(t), we would have a continuous time version of the impulse response. 
Since this is now a continuous time impulse response, the dots have become 
connected. We can apply the Fourier transform to determine the frequency 
response. 

In our familiarity with the continuous time 
Fourier transform, we realize that the filter's needed impulse response can be 
found simply by taking the inverse Fourier transform of the desired frequency 
response. 

In light of the similarity between discrete 
and continuous convolutions we can determine the digital filter's impulse re': 
sponse. In other words, take a desired continuous frequency response, call it H(f) 

and compute its impulse response, h(t) by the inverse Fourier transform. We 
merely take a sample value of h(t). These samples are taken every sample period 
corresponding to the rate the digital system is intended to use. We call these 
samples h(n), and use h(n) to implement the digital filter. This is known as the 
impulse invariant filter design. 

Implementing Response 

There are a variety of ways to determine a 
proper filter given the desired frequency response. We will look at other methods 
of impulse response determination later. 

We presently need to address another im
portant aspect of digital filtering; implementation. It is correct to do so at the 
present time since the eventual implementation will invariably impact the filter 
determination as well. 

6-17 



Chapter 6 - General DSP Concepts 

Z -1 has 
the same 
meaning as 
Delay and 
is discussed 
on page 6-20. 

6-18 

Finite Impulse Response Filters 

The finite impulse response fIlter (FIR) 
is the first filter type we will view. Actually, the FIR filter is nothing more than a 
generalization of the moving average filter we discussed. The difference is that 
we no longer require the h(n)'s to have the same value. 

The limits of the summation go from zero 
to N-I. This helps to denote the that the impulse response is finite. Since there are 
N terms in this summation, N is known as the order of the filter. This convolution 
sum becomes more penetrable in its block diagram form. The block diagram is a 
direct implementation of the actual convolution sum above. For this reason, the 
block diagram, shown in figure 6-21, is known as the direct form or canonical 
form of the FIR. 

Figure 6-21 

The Direct Form or Canonical Form of FIR Filter 

We can see that each delayed sample is put 
through a gain (multiplied by hen)). The output consists of the summation of N 
of these delayed and gained samples. The direct form implementation is closely 
related to analog tap delay lines used in communications engineering and has 
borrowed much of its nomenclature. The string of digital delays along the top is 
known as a delay line. The points available within this delay line are called taps. 
The values the samples are multiplied by are the tap gains, tap coefficients, and 
tap weights. 

The FIR filter structure is a very standard 
and common filter structure. The most notable being: 

1) They are inherently stable (as opposed to the next filter type to be pre
sented). 



Chapter 6 - General DSP Concepts 

2) The dynamic range of the states of the filter is easily computed. This is 
important to prevent clipping of the signal. 

3) It can easily be constructed to have the desirable property of linear phase. 

4) FIR tap gains for a given desired frequency response and can be easily 
computed by Fourier transform techniques. 

Let's look at another standard digital filter 
implementation. 

We do not need an infinite number of taps 
to construct an infinite impulse response (I1R). The reason for this is that the IIR 
does not use the same structure as the FIR. The concept of feedback is used for 
the I1R. Here, the idea is to re-circulate some of the input signal. It should be 
obvious what is meant by looking at the I1R block diagram shown in figure 6-23. 
To simplify things, we drew an elementary, IIR filter. 

Figure 6-23 IIR Direct Form 

To realize the infinite nature of the filter's 
impulse response, look at figure 6-23 using a feedback gain of 0.9 for the filter. 
For the first output of the impulse response we have the same value as the impulse. 
The next output value is the sum of the input plus 0.9 times the previous output. 
However, all following input values are zero, so we keep multiplying the present 
output by 0.9 to get the next output value. The frequency response of this IIR filter 
can be computed in the same manner as was done for the moving average filter 
in figure 6-2. 

Infinite 
Impulse 
Response 
Filters 

Z -1 has 
the same 
meaning as 
Delay and 
is discussed 
on page 6-20. 

6-19 



Chapter 6 - General DSP Concepts 

6-20 

The Delay 

In both the FIR and IIR filter descriptions, 
we made casual use of an element labeled delay or sample delay. Whatever 
sample value you enter eventually comes out. Often we talk of the unit sample 
delay, which means the time between input and output is exactly one sample 
period of the digital system. 

This sample delay appeared in both of the 
block diagrams and in the convolution summation. The only reason we bring the 
delay up again is to introduce an alternate description. This new description gives 
us a more abstract and powerful representation. It provides us with a direct link 
between the digital impulse response and the digital frequency response. In 
other words, we won't have to use continuous Fourier Transforms and sampling 
as a bridge to determine the digital filter. 

The z-1 Description Of Delay 

Although the actual reasoning behind the 
use of the z-l to represent a delay is not completely intractable, it is one of those 
discussions that is beyond our scope. Let's agree to use it as an alternative and 
identical description of the sample delay. Using this notation, instead of writing 
the sample delay ofx( n) as x( n-l), we will now write the delayed version as z-l x( n). 

Although we have glossed over the how's 
and whys of this notation, we can still use it as an effective device (albeit a blind 
rule) to gain insight into DSP. This shouldn't bother us too much since the idea 
of following blind recipes is exactly what quantum physicists have been doing 
for years. To acquaint ourselves with the use of this new notation, let's rewrite a 
familiar equation, the convolution sum of the moving average filter, using this 
z-l form. 

The Frequency Response Of Discrete Time Signals And Systems 

The previous pages have begun to discuss 
digital filtering. As filters are, for the most part, thought of as effecting the 
frequency components of signals, we will need to present some further ideas on 
what frequency really means in terms of digital (or discrete) signals. 



Chapter 6 - General DSP Concepts 

Up to this point, we have allowed to our
selves to think of a discrete sequence having certain frequency components by 
imagining that we are merely talking about the sampled version of some continu
ous waveform with those frequency components. This has an intuitive appeal. A 
true mathematical expression for the frequency description of the actual discrete 
time signals was deliberately delayed until now. We now seek to rid ourselves of 
this excess baggage by re-examining the Fourier transform. Consider the continu
ous time signal x(t) and its frequency description X(f) given by the Fourier 
transform of x(t): 

xu) = AAt)] = r x(t) e-/2rcft dt 

Now, consider the sampled version of x(t) 
obtained by sampling x(t) every Ts seconds, call this xs(n). Here n=kTs where k 
takes integer values. This is just the same sampling process we've used all along. 

xs(n) = xs(kTs) = x(t) 8 (t-kTs) 

We are still at liberty to take the Fourier 
transform of this, so let's do just that: 

xu) = FIxs(n)] = F[x(t) * (5 (t-kTs)] = r x(t) * 8 (t-kTs) e-/2rcft dt 

Since 8(t-kTs) is zero everywhere except 

for when t-kTs is an integer. For simplicity let's call this integer n. We need to 
consider only the values in the integral. This reduces the integral merely to the 
summation: 

xu) = L x(kTs) e-/2rcfkTs = L oo x(n) e-j2rcfn 
~-oo ~ 

This expression gives us the frequency 
components of the discrete, or digital, signal directly from the samples of the 
signal x(n). We no longer need to imagine a link to the continuous signal; the 
frequency components are strictly determined by the samples. This is the Fourier 
transform of the sequence x( n) now given by an infinite sum. 

6-21 



Chapter 6 - General DSP Concepts 

6-22 

Often in DSP, engineers talk not of the 
Fourier transform, but of the "Z-transform." Indeed, the Z-transform is prevalent 
and will be presented and defined next. Although the reasons behind the use of 
the Z-transform and Z notation are not completely intractable, it is just one of 
those discussions that is beyond the scope of this book. 



C HAP T E R 

7 Digital Filter Design 

To construct this digital filter there are a How To Get 
variety of well-defined options available once the desired frequency response is The Filter You 
decided upon. To a large extent, the filter design methods used will depend on Desire 
the filter parameters that have been specified for the desired response. 

For instance, we've seen from our discus
sion on continuous time filters that the general parameters needed to specify an 
analog filter (and digital) consist of: 

• Pass band Edge(s) 

• Stopband Edge(s) 

• Stopband Attenuation 

A bit simplified. For the analog filter, we 
also have to decide the order of the filter, that is how many inductors and 
capacitors will be required. This order determination is required for our digital 
filter as well. For the digital implementation, the filter order may be thought of 
as the number of "delay" operators (or the highest power of z in the H(z) 
polynomial--- it's the same thing.) So, we'll add that to our list: 

• Filter Order 

Notice that the first three quantities are 
generally readily apparent to us based on our filtering needs. Whereas, the value 
of our filter order is dependent on our first three constraints, as well as our chosen 
filter design technique and filter implementation. Generally, from a cost consid
eration, we seek to keep the filter order as small as possible while still doing the 
job. 

The problem is the value of our filter order 
depends on the design method we use. It also depends on the type of filter we 
choose to build, IIR or FIR. 

In general, the first decision to make on the 
filter implementation is to choose either an IIR or FIR. Each has its own set of 
advantages and disadvantages and the two can be quite different. Faced with this, 

7-1 



Chapter 7 - Digital Filter Design 

7-2 

we are required to present some basic facts and generalities on the issue of llR 
vs. FIR. 

FIR Filter 

#1) - may require high 

order for relatively 

modest filtering 

requirements 

#2) + always stable 

#3) + simple limits to 

state dynamic rang 

#4) 

#5) 

#6) +(?) linear phase 

response 

Here are a few points. 

FIR vs. IIR "FACT" SHEET 

IIR Filter 

+ impressive performance 

achievable with modest order 

-(?) stability issues must be 

considered 

- internal states may 

acquire very high dynamic range 

- sensitivity to coefficient quantization 

- susceptibility limit cycles 

-(?) non-linear phase response 

#1) The first point is short and sweet. 
When it comes to filtering performance, as measured in great stopband attenu
ation, sharp transition regions, the IIR generally can out perform the FIR, for any 
given filter order. The performance difference (or equivalently the order differ
ence) can be dramatic. However, the advantage of IIR' s in this area may be offset 
by the other factors. Obviously, the continued popularity of the FIR filter 
demonstrates that filtering efficiency is not the only metric used to decide between 
IIR or FIR. 



Chapter 7 - Digital Filter Design 

#2) Unstable filters (or systems) are to be 
avoided. Instability may arise only from a feedback mechanism. This feedback 
is inherent in IIR designs. The stability liability of the IIR may be a bit misleading 
at first glance. To be sure, we don't want an unstable filter. With proper design, 
all filter poles can be made to fall inside the unit circle. Thus, proper stability will 
be guaranteed. Conversely, FIR filters have no feedback, and are thus inherently 
stable. The FIR transfer function has no poles, consisting strictly of zeros. 

#3) The state of a filter is just another way 
of saying a filter memory location (or register) used to hold the delayed samples. 
These states have a dynamic range, just as we say a signal possesses a dynamic 
range. We've already seen that the dynamic range of a signal is limited by the 
number of bits used in this signal's representation. Let's examine the state's of 
both the FIR and IlR filter, keeping the dynamic range in mind. We'll use a 
canonical form of the FIR and IIR block diagrams to make our point here. 

Note: Quotation marks around the word 
'facts' is deliberate; this table is formed by generalities. The +'s and -'s above 
are meant to give some indication of the desirability, or , of the listed filter 
qualities. 

FIR: 

Figure 7-1 The Direct Form Realization of FIR Filter 

This case is straight forward. Here, the 
dynamic range of the states is exactly the same as the dynamic range of the signal. 
(This is seen by realizing that the signal itself passes through the delay line.) The 
same number of bits may be used in the filter state storage as is used in the signal 
representation. In fact, the only point of concern here may be at the summer. 

7-3 



Chapter 7 - Digital Filter Design 

7-4 

Since we could be adding a potentially 
large number of delayed samples (obviously this number depends on the filter 
order). The concern for possible overflow at summer stage can be mitigated in 
many situations by appropriate scaling of the tap gain values. 

IIR: 

Figure 7-2 The IIR Direct Form 

In contrast to the FIR filter, the IIR filter 
does not have only the original input signal flowing through its filter states. 
Because of the feedback mechanism of the IIR filter, many delayed and super
imposed versions of the input signal circulate through the delay line. If this 
superimposition is constructive in nature the amplitudes of the filter states 
(dynamic range) may greatly exceed that of the input signal. This may allow for 
the filter states' dynamic range to be much larger than the original input signal. 
For such cases, the same number of bits may not be used in the filter state storage 
as is used in the signal representation. Poor results, such as clipping, may result. 
Care must be taken not only for the summer nodes but also the filter state. 

#4) Sensitivity to Coefficient Quantiza
tion. In the following sections we'll discuss how to determine the proper 
coefficients for a desired frequency response. For now let's imagine we have 
determined the proper coefficients by one of these methods. Frequently, these 

coefficient values will be determined through the use of a computer program 
(with rather high numerical precision - perhaps 32-bit floating point). Since our 
filter will require real-time operation (fast) at reasonable cost (cheap), the filter 
will probably be implemented on a machine (programmable DSPmicroprocessor, 



Chapter 7 - Digital Filter Design 

or fixed hardware state machine) with lesser numerical accuracy. In this case, we 
cannot implement the "true 32 bit floating point" desired coefficients, but are 
forced to accept something reasonably close. The term used for, not surprisingly, 
known as coefficient quantization. Typical quantization values for fixed point 
coefficients are 12, 14, 16, or 24 bits. In making this transition from high accuracy 
design to limited accuracy implementation we must take care. Some implemen
tation forms are more sensitive to coefficient quantization than others. To be a 
bit simplistic, we'll say here that FIR structure implementations are generally less 
susceptible to this quantization than I1R filters. Furthermore, among IIR imple
mentations there are some forms more sensitive than others. 

#5) Limit Cycles: Limit Cycles are a phe
nomena strictly limited to the IIR filters since they are not possible in the FIR 
implementations. This again is due to the feedback nature of the I1R. As we've 
seen, we fully expect a stable filter to eventually reach a zero output condition for 
the zero input case. [Think of the example where the impulse response was (1 
-0.9 (_0.9)2 (_0.9)3 ... ), here the output asymptomatically approaches zero.] Note 
that this has been discussed in reference to infinite precision processes, where we 
make no quantizations on either the coefficient (0.9) nor the state of the filter. 
The point here is that re-examining this with respect to quantized coefficients and 
quantized filter states we get an interesting result. This may be best shown by an 
example. 

-1 "-----'------'-----' 

0=5 Bit Quantized System 

* = Unquantized System 

Figure 7 - 3 The Limit Cycle 

7-5 



Chapter 7 - Digital Filter Design 

7-6 

In figure 7-3, we have resurrected a 
first order (at z=-O.9) IIR filter. However, now the state and coefficient quanti
zation have been included. For illustrative purposes, we have chosen a 5-bit 
quantization (see other figure). The impulse response has been plotted for the 
first 25 output values. Notice how the quantized IIR's output "gets stuck" in a 
fixed value oscillation, while the unquantized version continues on its journey 
towards zero. This occurs because in the quantized system the result of the 
multiplication of the (quantized) state by the (quantized) alpha yields the same 
magnitude (after quantization) as the previous state. This is a simple example of 
a limit cycle. The point to note is that this limit cycle has produced an oscillation. 
Its behavior has been greatly magnified for our example here by using a severely 
limited quantization scheme of only five bits. However, even for more realistic 
quantizations limit cycles may still persist. These limit cycles may become more 
complex as the IIR structure increases in order. 

#6) In the preceding chart, the "Linear 
Phase vs. Non-linear Phase Response" of FIR versus IIR filters, a question mark 
was placed next to the entry. It's presence was meant to make the reader reflect 
on whetherlinear phase might be a good, bad, or even a "don't care" characteristic. 
The answer to this depends on the application. However, it might be said that 
linear phase response is given more credit than it deserves as a desirable filter 
quality. To be sure, some applications require linear phase. However, if you're 
not explicitly aware of phase properties of your signals, chances are you don't 
need a linear phase filter. First, some background: 

• We haven't paid too much attention to the concept of phase since it 
Was first discussed in the continuous-time section. Reviewing the 
basic points will remind us that is phase is always relative measure 
between two sinusoids. In a filter, this relative measurement is 
taken between the sinusoidal input and the sinusoidal output of a 
filter. The "Phase Response" of the filter is result of the collection 
of all such relative measurements for all possible input frequen
cies. As such, a filter's phase response defines a relative phase (or 
phase delay) as a function of frequency. 

• In our continuous-time filter discussion, we concentrated on the 
magnitude response of ideal and non-ideal filters. The reason for 
this concentration (beyond the fact that magnitude response is a 
slightly simpler concept that phase response) is that most often it 
is exactly the magnitude response that is desired to be affected. 
Below is an example. 



Chapter 7 - Digital Filter Design 

Example: You want the bass guitar on your stereo to be 
louder, so you turn up the bass knob (which increases 
the magnitude response of low frequencies of your ste
reo.) Nobody even asks about the phase response con
siderations involved in turning this knob. 

• What does linear phase mean? Linear phase means that the phase 
delay between filter input and output is a linear function with re
spect to frequency. For example, the phase delay at 200 Hz will be 
some constant times the phase delay at 100 Hz. The actual mean
ing of linear phase becomes easier to see with a small excursion, 
looking at a few equations with our linear phase filter. Consider a 
simple, sinusoidal input: 

input: 

cos(w ·t) 

output: 

-----> A· cos(w . t + <p) 

Here, the corresponding output is the ex
pected sinusoid of the same frequency with a different amplitude and phase. We're 
interested only in the phase for this discussion. But, we actually know more than 

this. From the fact that this is a linear phase filter we know that <p is a linear 

function of frequency (w), writing this out: 

<p = - a·w 

now, rewriting the above equations: 

cos("t) -----> Aco.s(3w·t-a·3·w) 

-----> Acos( W· (t-a)) 

Remember that for any function f(t), the 
function f(t-td) is the same function delayed by some time td. The result is really 
no surprise here: We just get a delayed and amplitude scaled version of our original 

7-7 



Chapter 7 - Digital Filter Design 

7-8 

sinusoid as output. What happens if the input was of a different frequency? Let's 

see, using 3.00 instead of 00: 

cos(3oot) -----> Acos(3oot+<p) 

but <p==a3oo (by linear phase filter), 

cos(3oo· t) ----> Acos(3oot-a3oo) 

-----> Acos(3oo(t-a)) 

We get the same time delay as the case 

before. For two different frequencies (00 and 3(0), we get the same time delay (a). 

In fact, for any input frequency, we'll get the same time delay between input and 

output, as long as the linear phase constraint of <p = a 00 is met! It may make more 

sense to call a linear phase filter a constant time delay filter since all spectral 

components are delayed by the same amount of time. 

Okay, so with the above points in mind, we 

may consider the linear phase argument with respect to FIR and IIR filtering. It 
turns out that the linear phase, or constant time delay property can be easily met 
with an FIR filter implementation. This linear phase condition can be guaranteed 
by constraining the filter's impulse to be symmetric about the center tap. For 
instance, assuming an N tap filter where N is odd for our picture, we have: 

• (N/2)-1 = (N/2)+ 1 

(N/2)-2 = (N/2)+2 picture of symmetric hen) 

(NI2)-3 = (NI2)+3 etc. 

The FIR can easily be made to have linear 
phase response. The same does not hold for IIR filters. One quick way to see this 
is to consider the symmetry argument of impulse response that guarantees linear 
phase. For the IIR we'd seek to answer the question, "How does one build a 
symmetric version of something with an infinite tail?" (Don't forget the first "I" 
in IIR stands for "infinite") Obviously, we'll require an infinite duration 'head' 



Chapter 7 - Digital Filter Design 

before this infinite tail. But, this would give us problems with respect to causality. 
So, the goal of finding a causal, linear phase IIR filter seems elusive. 

Keep in mind that continuous-time (ana
log) filters have never been linear phase. And yet, in spite of their lack of linear 
phase, they have been useful tools for a variety of functions over the years. So, 
be careful not to relegate non-linear phase filters to the junk pile of obsolescence, 
it just isn't so. 

Should You Choose An FIR Or An IIR Filter? 

Wouldn't it be great if we could simply 
"always use an FIR filter? The truth is that there is no one, global answer. Each 
filter design must be considered within the framework of its implementation. The 
list presented some of the general tradeoffs involved in this selection. 

Typically, the engineer may perform a 
rough filter design using estimates of the desired filter response for both an FIR 
implementation and an IIR implementation. The results ofthis initial design gives 
an estimate of the necessary filter orders. (And correspondingly, the number of 
numerical operations per second required for such a filter.) Sometimes the limited 
horsepower of DSP machinery used in the filter's implementation will dictate the 
use of the IIR filter at this point. However, in general, the selection may have to 
be based on other issues mentioned. This design process typically is an iterative 
process where the engineer unravels the desired filters implementation through a 
series of small investigations. Luckily, as we'll soon see, much of the drudgery 
of this series of small investigations is mitigated by the use of computer programs. 
A great variety ofDSP filter design computer packages makes this job easier. This 
by no means that an exhaustive computer search should be used to find the "best" 
filter implementation! 

"FIR vs. IIR", some readers may believe 
there is a prejudice against FIR filters. This is definitely not so, although, we have 
deliberately played down the linear phase advantage of the FIR over the IIR. This 
is because the "linear phase advantage" is truly an advantage only in those 
applications where linear phase is important. For a large number of applications 
this may not be the case. Thus, if one were to be limited to the choice of an FIR 
because of its linear phase properties (when it is of no consequence for the 
application at hand) the engineer has placed an unnecessary constraint on the 
design problem (and thus not obtained the optimal solution). The result of such 

7-9 



Chapter 7 - Digital Filter Design 

7-10 

a false constraint could have a tremendous impact on the system solution, as IIR 
and FIR filters of similar performance can be of considerably different order. 



GLOSSARY 

AC (Alternating Current): Refers to the cyclical nature of electric current when it 
has a frequency associated with it. 

ACCOUNTANT-ESE: Terms which may be used by an accountant. 

ADC: Analog to digital converter. 

ALL-PASS FILTER: A filter that allows all frequencies to pass through the circuit. 

AMPLITUDE: Amplitude refers to the intensity of an electrical signal in terms of its 
voltage (or potential), current or power level at any given point in time or 
frequency. 

AMPLITUDE COMPRESSION: An action to shrink a signal' s amplitude. Ampl itude 
compression is performed on music signals before they are sent across the 
airwaves, for example. 

AMPLITUDE 1 (OR, AMPLITUDE OF ONE): When this phrase is used, the author 
is referring to the maximum intensity of unit 1 that a signal reaches. It may 
refer, for example to voltage, current, or, power signals. In the case of a signal 
which repeats itself periodically, such as a sine wave, this phrase refers to the 
intensity that a signal may reach on its upward or downward swing. 

ANALOG: This concept refers to an unbroken stream of any natural or man-made 
phenomena, such as a river, or the electrical current flowing through a high 
power line. In signal processing, the continuous action always refers to the 
continuous action of an electrical signal or signals in which we have taken 
interest. The idea of brokenness, or discontinuity, as it is associated to signal 
processing, is discussed under both "Discrete" and "Digital." 

ANALOG DOMAIN: This phrase refers to the category under which all continuous 
actions fall; or to everything in the universe that can be said to be continuous 
and analog. For example, we can say that the motion of the sun is part of the 
analog universe. However, in the unlikely event that something breaks the 
motion of the sun from its normal path, we would cease to think of its motion 
as continuous and analog in that moment (see "Discrete" and "Digital"). 

G-1 



Glossary 

ANALOG SIGNALS: An analog signal refers to something in the analog domain 
that contains information (see "Signal"). For example, the position of 
the sun is an analog signal if we view it as something which contains 
information about the time of day. 

ANALOG-TO-DIGITAL-CONVERTER: This device does just as it says; it 
converts analog waveforms into digital numbers suitable for storage in 
computer memory. 

ARITHMETIC LOGIC UNIT (ALU): The ALU is the portion of the Central 
Processing Unit (CPU) which interprets and performs arithmetic and 
logic commands which we issue to the CPU. 

ASCII: This acronym stands for American Standard Code for Information 
Interchange. This is the standard which defines certain digital bit patterns 
to stand for common symbols such as our alphabet and our number 
system. The bit pattern, 0011000, for example, stands for the number 
zero. 

ATTENUATION: This is what happens when a signal tapers off. We are 
attenuating the music on our radio when we tum down the volume. 

BANDPASS FILTER: This is a filter which attenuates all frequencies higher 
than the upper bandedge, and lower than the lower bandedge; while 
allowing all those frequencies in between to "pass." It is the opposite of 
a bandstop filter. The ideal filter has an absolute transition to zero, rather 
than the non-ideal attenuation. 

BANDSTOP FILTER: This filter passes frequencies higher than the upper 
bandedge, and lower than the lower bandedge, while attenuating all those 
in between the bandedges; this is commonly referred to as a "notch 
filter." This filter is the opposite of a bandpass Filter. The ideal filter has 
an absolute transition to zero, rather than the non-ideal attenuation: 

BANDWIDTH: A bandwidth is a range of frequencies. For example, the lowest 
audible frequency is 20 Hertz, while the highest audible frequency is 
20000 Hertz; together, these frequencies define the bandwidth of audible 
frequencies. 

G-2 



Glossary 

BASEBAND: This is an often-used term to refer to the original form of a signal before 
it was modified by a DSP filtering technique. 

BLACKMAN HARRIS WINDOW: (See "Windows") -C- CERAMIC RESONA
TOR: This is a frequency-producing device whose ceramic material is so 
strong and responsive that it can be made to resonate, or vibrate, at a very 
high frequency when an electrical signal is applied (see "Natural Fre
quency"). 

BREADBOARDED: To build up the circuit with the intent of trying it to see if it 
works. 

CARRIER FREQUENCY: This can best be understood in terms of the example 
given in the textbook. We know that the audible range of musical signals is 
from 20 Hertz to 20000 Hertz. However, it turns out that when FM radio 
stations want to broadcast these signals, they do so at a considerably higher 
frequency; somewhere between 88000 Hertz and 108000 Hertz. The musical 
signals are being 'carried' by another signal; hence the term "Carrier Fre
quency." 

CAUSAL: This concept refers to the idea that any signal which we create, and which 
we begin to see at the output of our system, was created from previous inputs. 
That is, the causal system never anticipates what the input might be; but it 
depends on a new value at the input to create another output value. 

CENTRAL PROCESSING UNIT (CPU): This is the "brain of the computer. The 
CPU analyzes and interprets the commands that we give it, and then it 
executes those commands in an orderly fashion. 

COEFFICIENT: This is also known as a Coefficient Multiplier. This is a number by 
which each point in a signal is multiplied in order to alter it in predetermined 
way. More than one coefficient is generally used to accomplish the signal 
processing objective. 

CONVERSION TIME: Length of time to convert a signal from analog to digital. 

CONVOLUTION: This is the process whereby 2 or more signals are mixed together 
to form a new signal. 

G-3 



Glossary 

CONVOL UTION INTEGRAL: This is the mathematical formula, or algorithm, 
which describes how 2 or more signals are mixed to synthesize a new 
one. In a more detailed sense, this integral describes how signals, 
themselves composed of 1 or more sinusoids, may be systematically 
meshed together for the purpose of creating a new set offinely integrated 
sinusoids, which together compose one new signal. This is also known 
as the Superposition Integral. 

COSINE FUNCTION: Below we see a graphically description of a cosine 
function: Figure 1. A cosine function 

D.C. (OR, DIRECT CURRENT): Whenever the term "dc," or "level," is used, 
it refers simply to the constant voltage level of a signal which exists 
without a frequency component. 

DAC: Digital to analog converter. 

DELAY: Delay is one of the main strengths of DSP. In an analog system, it is 
difficult to control how long one event must precede another, faithfully, 
time after time. A digital system, however, incorporates memory devices 
which can store a value for just about as long as we want to before using 
it again. Computers, and their ability to store and synchronize events, 
are the reason for Digital Signal Processing; and they give us the 
flexibility to use delay effectively. 

G-4 



Glossary 

DELTA FUNCTION: The delta function is a tool used in many areas of Electrical 
Engineering to describe a single, infinitely small occurrence of a signal 
whether it be in the Frequency Domain, or in the Time Domain. It can be 
viewed as the smallest, simplest element of any signal, out of which all signals 
are built. The delta function is to the atom, as signals are to matter. 

DIGITAL: Digital simply means having a value of "1" or '0", as opposed to analog, 
which could have any value in between. It often implies computers or 
computing devices. The word digital is best thought of in connection with the 
words analog and discrete. A signal being received by a computer is at first 
analog in nature since it is generally a continuous wavefonn. The analog 
signal then passes through a device which converts the analog signal into a 
set of discrete quantifiable sub-signals. These sub-signals are then put into 
memory within the computer where they can officially be termed "digital." 

DIGITAL SIGNAL PROCESSING, OR, DSP: This is what this book is all about 
and aims to explain. Briefly, DSP refers to the way in which computers are 
used to alter signals which have already passed out of the analog domain, 
into the discrete domain, and finally into the digital domain. Once in the 
digital domain, the DSP engineer uses the processing power of the computer 
to alter the properties of the signal before it is passed back out of the computer 
into the analog world again. 

DIGITAL-TO-ANALOG-CONVERTER: A device which converts digital numbers 
into analog output. 

DISCRETE: Discrete implies a broken stream of of a nonnally-thought -to-be 
continuous action or thing. For example, old timepieces had second hands 
that swept across the face of the watch in one continuous, analog motion. The 
newer watches, we noticed, had second hands that skipped across the face of 
the watch at regular intervals to count out the seconds. This action would be 
considered discrete (broken ). 

DOMAIN: In Digital Signal Processing, the engineer or enthusiast frequently speaks 
in tenns of domains - for example, the frequency domain, or the digital 
domain. The word domain came from a branch of mathematics called Set 
Theory; but generally it is used define the boundaries of the set to which we 
are limiting ourselves. 

DRIFT: Change in perfonnance. 

G-5 



Glossary 

DUALITY: Without meaning to sound cosmic about it, this is a concept which 
refers to the "twoness" in the universe. But more important to DSP, it 
refers to the reciprocal relationship between the time and the frequency 
domains which makes possible the the very powerful tool of the Fourier 
Transform Pairs. 

DUMPING: To get rid of; stop using. 

DYNAMIC RANGE: This refers to the frequency range of a signal. Since most 
signals are composed of many sub- signals, it is helpful to speak of its 
dynamic range, or the range of frequencies of which it is composed. 

EEPROM: Electrically, erasable programmable memory. 

EPROM: Erasable programmable memory. 

EXECUTION UNIT: This part of the Central Processing Unit (CPU) coordi
nates and synchronizes all actions which the Arithmetic Logic Unit 
(ALU) performs. 

FEEDBACK: In signal processing. quite often the output of a system is re-used 
in order to help make it more stable, or simply to produce a desired effect; 
this is known as feedback. FILTER (OR, SIGNAL FILTER): In the 
broadest sense, a filter is anything that modifies whatever it is that we 
are trying to modify. For example, a singer modifies, or filters, sounds 
in order to make the tones pleasing to the ear. We can see that filtering 
is actually a point of view. However, in the DSP sense, filters are ways 
that we can change an incoming signal, such as the signal being received 
from a telephone line, or the music we hear from our CD player. 

FLASH CONVERTER: This is a high speed Analog-to-Digital Converter (See 
"Successive Approximation Converter"). 

FOURIER TRANSFORM: The Fourier Transform is a process based on the 
mathematics of calculus which is used to move back and forth between 
the frequency and the time domains in examining the signal. 

G-6 



Glossary 

FOURIER TRANSFORM PAIRS: Table XX given on page YY lays them out for 
perusal. Such frequent use of these particular bridges, so to speak, between 
the frequency and the time domains (and back again)is made, that it finally 
became prudent simply to put one of these tables in just about every DSP 
reference manual or textbook in existence. 

FREQUENCY: Intuitively, we know that this word means how often something 
happens. In the DSP sense, we mean how quickly a signal finishes one of its 
cycles (see "Sine Function"). 

FREQUENCY DOMAIN: This domain gives information about how often a signal 
completes one of its cycles, and how many major sub-signals there are 
contained in the signal. A signal can be composed of many individual signals 
where each one of those signals has its own cycle, or, frequency, associated 
with it ( see "Sine Function," or, "Cosine Function" ). So, one can imagine 
that, upon viewing a complicated signal in the frequency domain, one would 
see a full range of main lobes, indicating that the signal has many concen
trations of single frequencies within it. 

FREQUENCY DOMAIN DESCRIPTION: (see "Frequency Domain"). 

FREQUENCY RESPONSE: Completely defines the way a system responds to 
frequency input. 

FUNDAMENTAL FREQUENCY: This refers to the dominant frequency among a 
group of related frequencies (See "Harmonics"). 

GAUSSIAN WINDOW: (See "Windows"). 

GmB'S PHENOMENON: These are oscillations in the time or the frequency domain 
which occur at any sharp transition point in a signal. The famous mathema
tician, Josiah Gibbs, proved that when we are attempting to create a square 
wave (which is a wholly owned subsidiary of the human mind -they do not 
occur in nature) or, whenever we are trying to create a signal in the frequency 
or the time domain which exhibits sharp transitions, small oscillations start 
to occur. These oscillations are also known as ringing (See "Ringing"). 

GROUP DELAY: In the DSP sense, this takes each increment of phase change, and 
ratios it with the amount of frequency change during the same increment. 
When the signal is demonstrating Gibb's Phenomenon in the frequency 
domain, for example, the ratio is not constant; but for as long as the amplitude 
was flat, the ratio was a constant. 

G-7 



Glossary 

H- H-BRIDGE MOTOR DRIVER: This is a microcontroller peripheral which 
is a configuration of transistors used to control motors. Yes, the circuit 
does look like an "H." 

HAMMING WINDOW: (See "Windows"). 

HANG: Connect; attach to. 

HANNING WINDOW: (See "Windows"). 

HARMONICS: When we pluck a guitar string we produce a sound which is 
composed of many different sub- signals each of which has its own 
individual frequency. Each one of these frequencies is associated with 
an integer multiple of the main, or fundamental, frequency that the 
plucked string made. Harmonics, then, are the related sub-frequencies 
that a signal may produce. In a frequency domain plot, we would see the 
fundamental frequency as a main lobe, and each of its harmonics would 
be the side lobes, which taper away from it on either side. 

HERTZ: The unit used to measure electrical signal frequency. 

HEURISTIC: Refers to the exploratory method of engineering sciences. But it 
is really just a fancy name for "rules of thumb." Heuristic notions are 
also common sense notions, or notions about how to do things based on 
the experiences of life; for example, we learn not to touch a live wire by 
either being zapped, or being warned before it can happen. This is known 
as negative feedback, and it is the most important part of the heuristic 
method. 

HIGHPASS FILTER: This is a software or hardware device which will block 
the low frequency signals of our choice, and allow us to pass those high 
frequency signals which interest us. The ideal filter has an absolute, sharp 
transition to zero, rather than the non-ideal attenuation. 

IDEAL FILTER: The ideal filter blocks every frequency component of an 
incoming signal above, and/or, below, the specified bandedges of the 
filter. If it were a bandpass filter, it would look like a this: 

G-8 



Glossary 

Needless to say, the ideal does not occur naturally; but it is a convenient form to tum 
to since it is easier to draw when we are trying to explain something. 

IDEAL BANDPASS FILTER: (See "Ideal Filter," and "Bandpass Filter"). 

IDEAL BANDSTOP FILTER: (See "Ideal Filter," and "Bandstop Filter"). 

IDEAL LOWPASS FILTER: (See "Ideal Filter," and "Low Pass Filter"). 

IIR FILTER: Infinite Impulse Response Filter 

IMPULSE: This is a single discrete sample of a signal (See "Delta Function"). 

IN-CIRCUIT-EMULATOR: This device is generally built into a computer for the 
purpose of allowing the systems designer to use external equipment to 
examine, alter, and control the MCU system. 

INFINITE IMPULSE RESPONSE FILTER: This kind filter is produced using 
feedback. Its major drawback is that it has stability problems. 

INTEGRATING CONVERTER: A Digital-to-Analog Converter whose specialty is 
making very accurate representations ofthe analog signalfor use in the digital 
domain. The drawback is that this kind of converter is slow. 

INVERSE FOURIER TRANSFORM: The inverse of the Fourier Transform simply 
refers to the process whereby a signal which we are viewing in the frequency 
domain, is transformed back to the time domain. (See "Fourier Transform"). 

LINEARITY: In the DSP sense, and in almost any other sense, this idea refers to the 
constant ratio associated with incremental changes in cause and effect. For 
example, if time changes and voltage changes with it, and the ratio between 
them remains a constant, then we have a linear relationship. 

LINEAR-LOG WEIGHTING: (See "Weighting"). This is a conversion used to 
emphasize aspects of a signal that come out best when viewed on a logarith
mic scale as opposed to a linear scale. 

LOCAL MINIMAS: When viewing a graph of a waveform in the frequency, or in 
the time domain, we may choose to study one partiCUlar area of the waveform, 
ignoring all the rest. Local to that one particular area, the waveform may have 
a lowest, and a highest point: the local minima is, clearly enough, the lowest 
point (See "Local Maximas"). 

G-9 



Glossary 

LOCAL MAXIMAS: When viewing a graph of a waveform in the frequency, or 
in the time domain, we may choose to study one particular area of the 
waveform, ignoring all the rest. Local to that one particular area, the 
waveform may have a lowest, and a highest point: the local maxima is, 
clearly enough, the highest point (See "Local Minimas "). 

LOW-PASS FILTER: This is a device which blocks frequencies higher than a 
predetermined point in the frequency spectrum; thereby allowing only 
those frequencies lower than that point to pass through, since all the 
points higher than that point would be multiplied by zero. The ideal filter 
has an absolute transition to zero, rather than the non-ideal attenuation. 
Please see the graphical description below: 

LOW VOLTAGE DETECTORS: This is circuitry which alerts the Central 
Processing Unit, or Microcontroller Peripheral that the amplitude of the 
signal in question has dropped below a certain point. 

MAGNITUDE: This is a measure of the intensity of a signal. 

MAIN LOBE: The main lobe is located by searching, in the frequency domain, 
for the largest peak among a group of smaller peaks which taper up to 
it. The main lobe represents the area within which most of the signal's 
frequency is found. If the signal were composed of exactly one sinusoid 
operating at a frequency of exactly 440 Hertz, we would find, ideally 
speaking, a spike at 440 Hertz on the frequency plot. 

MAPPING: Using an established mathematical relationship to transfer from one 
domain to another. 

MC6800: A 4-bit Motorola MicroController. 

MC68332: A Motorola 32-bitMCU. 

MC68HCllA8: An 8-bit Motorola MicroController. 

MICROCONTROLLER: A bunch of mostly digital and somewhat analog 
circuitry that helps us control mainly mechanical equipment; and, as we 
know, also helps us perform low-level DSP operations. 

G-10 



Glossary 

MICROCONTROLLER PERIPHERALS (MCU): These are functions through 
which the MCU communicate to the outside world. (Examples: AlD, Timers, 
Serial I/O ports, etc.) 

MODULATION: This is the process whereby we modify the frequency of an existing 
signal. This word describes the act of multiplying two signals together with 
the purpose in mind of modifying the frequency properties which each 
originally had to arrive at one signal with an entirely new frequency domain 
signature - phew! that was a mouthful- (See "Carrier Signal" for a well 
known application of this method). 

NETWORK FUNCTION: When we are talking about the design of filters in DSP, 
this idea refers to the ratio of input to output terms. 

NATURAL FREQUENCY: Every material on earth has a frequency at which it 
vibrates best as a result of its own physical properties. This is known as its 
resonant, or natural frequency. 

NON-CAUSAL: If a system is non-causal then it is a system whose output is 
independent of the inputs (see "Causal"). 

NON-CAUSAL FILTER: A device whose signal-altering capabilities do not depend 
upon previous inputs to the system. 

NYQUIST CRITERIA: The rule which states that the frequency at which we sample 
the incoming signal must be twice that of the highest frequency inherent in 
that signal. 

ODD HARMONICS: (See "Harmonics "). Odd harmonics are individual frequencies 
which are odd integer multiples of the fundamental or main frequency. 

ONLY GAME IN TOWN: The only way of doing something. 

OPAMP: Operational amplifier. 

OPERATIONAL AMPLIFIER: A bunch of analog circuitry which can filter, boost 
or otherwise process analog signals. 

OSCILLOSCOPE: This is device which is used to view and analyze the time domain 
activity of any signal. 

OUT-OF -PHASE: Shifted 90 degrees. 

PARALLEL TRANSFER: The transfer of bit patterns, pattern by pattern. In other 
words, the bits are sent in parallel. 

PARALLEL INTERFACE ADAPTOR(PIA): This is a device which can link an 
MCU to a MCU peripheral device. 

G-11 



Glossary 

PASSBAND EDGE: This is a boundary of a filter within which frequencies are 
passed. PASSBANDS: These are ranges of frequencies which are not 
filtered out by a digital, or analog, filter. 

PASSBAND RIPPLE: (See "Gibbs Phenomenon', or, 'Ringing") 

PHASE: Phase is a measure which helps to show us the difference between two 
cyclical signals. Below we see a graph of a sine wave and a cosine wave. 
If each cycle takes one second, we can see that the time delay between 
them is 114 of a second; however, the phase delay would be expressed 
not in terms of time, but in terms of cycle differences. In this case we 
see that we have a 1/4 cycle difference between the two signals. In other 
words, if we moved the sine wave over by 114 of a cycle, we would get 
the cosine wave. 

PHASE, ABSOLUTE: Under this condition we know exactly when the signal 
started up(See "Phase"). 

PHASE, RELATIVE: This phrase refers to a common condition of not knowing 
when a signal has started up; but we do know the relationship between 
that signal relative to another signal (See "Phase"). 

PIEZOBUZZER: A piece of piezo-electric material which acts as a buzzer. 

PISO: Parallel In Serial Out. 

PLCC: Plastic leaded chip carrier. 

PREEMPHASIS: A frequency enhancer; that is, a device that will boost the 
frequencies that we choose to boost (See "Weighting"). 

QUANTIZATION: When we tum a discrete signal into a digital one, this is 
known as quantizing. 

RAM BUFFER: Random Access Memory (RAM) where we store the quantized 
signal and the coefficients we will be using to modify it. 

REAL-ESTATE: Surface area, in this case referring to printed circuit board area. 

RESONANCE: (See "Natural Frequency"). 

G-12 



Glossary 

RIDING ON TOP: Superimposed on 

RINGING: This is a phenomenon which results from the energy required to change 
from one intensity level, or, amplitude, to another higher or lower one. 
Intuitively we can see that as the intensity level shoots up from a lower to a 
higher level, it may, and quite often will, overshoot the mark -like letting 
go of one end of a loose spring which then will first overshoot the mark, and 
then undershoot it as it returns. Finally, it will settle down to the intended 
level. This is known as ringing( see "Gibbs Phenomenon"). 

RMS (ROOT MEAN SQUARE): The fundamental measurement of the magnitude 
of the A.C. signal. Mathematically, we compute this by squaring the signal, 
taking its average, and then taking the square root of the resulting number. 

RMS-TO-DC FUNCTION: The method by which we arrive at the DC equivalent of 
an RMS value. The DC value that produces the same amount of heat as its 
RMS counterpart is the equivalent value. 

ROM: Read only memory. 

SAMPLE: One instantaneous value of an analog waveform. 

SAMPLE-AND-HOLDAMPLIFIER: This is the analog circuit that takes an instan-
taneous value of an incoming waveform and holds it until it is time to take 
another sample (See "Sample-and-Hold Function"). 

SAMPLE-AND-HOLD FUNCTION: This is the bridge between the discrete form 
of a signal and the analog representation of it. This function describes what 
a Sample-And-Hold circuit would do; which is to take an instantaneous value 
of a waveform and hold it until such time as another sample is taken. During 
the time that it is held, the instantaneous value is converted (quantized) into 
a digital value and stored in a RAM Buffer (See "Sample-and-Hold Ampli
fier"). 

SERIAL: Sequential transfer of bit patterns, one bit at a time; and furthermore, one 
right after the other. 

SERIAL COMMUNICATIONS INTERFACE: This device allows a bit-by-bit 
transfer of information outside the MeU. 

SIDELOBES: Whenever we look at a signal's frequency domain plot, we see many 
small peaks each getting successively larger and larger until it reaches the 
largest one in that group; then, on the other side of the largest one, each peak 
gets successively smaller. Sidelobes are all those smaller ones. (See "Main 
Lobe"). 

G-13 



Glossary 

SIGNAL: A signal is anything that has meaning or significance to the person or 
device receiving it. In other words, a signal is anything that contains 
information of value to the receiver, like an electrical signal, for instance. 

SIGNAL BANDWIDTH: The bandwidth of a signal is defined by the number 
of different sinusoids that compose it. If a signal contains three sinusoids 
each operating at a different speed, then its bandwidth is defined by the 
highest to the lowest of those three contributing frequencies. 

SIGNAL FILTER: (See "Filter"). 

SIGNAL-TO-NOISE RATIO: In designing signal filters, the DSP engineer 
must account for noise in the system. This ratio is a characteristic of the 
system which the engineer is always trying to maximize by minimizing 
the noise with appropriate filtering techniques. 

SIGNAL PROCESSING: This the general title for the branch of Electrical 
Engineering which is devoted finding new ways to alter electrical signals 
for useful ends whether it be by analog, or digital means. 

SINC FUNCTION: (1) This function is fundamental to the field of signal 
processing. It is often used to show the duality concept when referring 
to the relationship between the frequency and the time domains. It is 
used this way since the time domain representation of the frequency 
domain sinc function is a rectangular pulse; and vice versa, the time 
domain sinc function is a frequency domain "rectangular pulse," such 
as a bandpass filter(See "Sinc Pulse"). (2) The function used to 'trace 
out' a set of discrete impulses at the output of a Digital-to- Analog 
Converter, thereby producing an analog waveform. 

SINC PULSE: This refers to the dual of the sinc function in the opposite domain 
which is always a rectangular pulse(See "Sinc Function"). 

G-14 



Glossary 

SINE WAVE: Below we see a graphical description of a sine wave: 

For an explanation of the mathematical detail behind these descriptions, please refer 
to a Signal Processing text. 

SINGLE FREQUENCY: When the author of this chapterrefers to "single frequency" 
he means a sinusoid which has only one frequency. 

SINUSOIDS: One idea in DSP which one should understand is that of the Sinusoid. 
Sinusoids are the signals which when combined in various ways compose all 
other signals that occur naturally or synthetically in the universe. These are 
the signals which the DSP enthusiast will filter orreshapefor whateverreason. 
When the mathematician, Joseph Fourier, examined these signals, he made 
the remarkable discovery that all the signal he studied are part of the set of 
signals which are composed entirely of sine waves and cosine waves. 

SIPO: Serial In Parallel Out. 

SNR: Signal to noise ratio. 

SOIC: Small Outline Integrated Circuit. 

SPEC: Specification. 

SPECTRA: This word is the plural form of the word, spectrum (see "Spectrum"). 

SPECTRAIANALYSIS: In one sense, we refer here to the thought process whereby 
we study and dissect the frequency domain signature of a signal in an effort 
to gain some understanding of its characteristics. In another sense, it is the 
act whereby a frequency domain representation of a signal is broken down 
into its component parts in order to return it to its time domain representation; 
which, by another name, is the inverse fourier transformation. 

G-15 



Glossary 

SPECTRAL SPIKE: Please refer to the graphic under the glossary heading 
"Cosine Wave," or, "Sine Wave." A spectral spike in each of those cases 
is that which is described graphically in the second figure of each entry. 
It is the single frequency associated with a simple sinusoid. 

SPECTRUM: This word refers to the way a signal looks when we view its 
frequency characteristics. For example, when we look at a rainbow, we 
are actually looking at how often particular light waves finish one cycle 
of their life. If one of them finishes one cycle in 15 seconds, then when 
we view its frequency domain description, we see that its spectrum, or 
range of frequencies fall into the category of blue colors. A spectrum is 
simply a range of frequencies. 

SPI: Serial Port Interface. 

SPIKE: In the frequency domain, this is an area, denoted by a main lobe, where 
we would find a major concentration of a particular frequency. In the 
time domain, this can be a representation of an instantaneous energy 
surge which appears suddenly in time, and disappears just as quickly; 
which we would view as a spike on an oscilloscope. 

SQUARE WAVE: In this section of his chapter, the author is attempting to show 
how all signals are composed of one or more simple sinusoids. The 
square wave is a signal which looks like one might expect: 

STOPBANDATTENUATION: Everything before the passband edge is passed 
frequencies, and everything after it until the stopband edge, is stopband 
attenuation. This is the part of the frequency domain representation of a 
filter which "rolls off' until it reaches zero amplitude. The major issue 
which filter designers contend with is how many frequency bands must 
the stopband attenuation pass through before it reaches zero? The fewer, 
the better. However, the "faster" stopband attenuation implies more 
computation, and therefore, more computing time and power to achieve 
it. 

STOPBAND EDGE: Somewhere, just before the stopband attenuation reaches 
zero, we reach the stopband edge. As in the case of the passband edge, 
calculus describes how we reach one or the other edge just before we 
reach either the bottom or the top of our amplitude extremes. 

G-16 



SUCCESSIVE APPROXIMATION CONVERTER: ThisisanAnalog-to-Digi
tal Converter which is used in applications where the speed required is 
no more than about one million hertz (which by today's standards is not 
slow, but not blazingly fast either). 

SUPERPOSITION: This is a mathematical principle which simply put, states 
that we can add two signals to get another. This allows us to describe and 
understand signals which are composed of many sub- signals. Convolu
tion also uses the superposition principle. 

SUPERPOSITION INTEGRAL: (See "Convolution Integral"). 

SYSTEM BANDWIDTH: We are referring here to the range of frequencies that 
are relevant to a particular system. For example, the system bandwidth 
of our telephone system is 4000 Hertz. This means that any signals from 
zero to 4000 Hertz in frequency will be heard by whoever is at the other 
end of the line. 

TIME DELAY: The time delay is the difference in time between two signals. 

TIME DOMAIN: When we speak of the time domain, we are signifying that we 
are interested in any signal behavior, which we observe over time. We 
could, for example, observe this behavior on an oscilloscope. 

TIME DOMAIN DESCRIPTION: This kind of description can be a verbal, a 
graphical, or a mathematical model, but it must contain elements which 
always impinge upon the time-domain signal processing goals for which 
we have set out. 

TIME-FREQUENCY PAIRS: (See "Fourier Transform Pairs"). 

TRAIN OF IMPULSES: This refers to a set of equally spaced delta functions 
each corresponding to a different point on a signal. This terminology is 
generally used to describe the effect of sample-and-hold circuitry upon 
the incoming waveform. 

Glossary 

G-17 



Glossary 

G-18 

TRANSFER FUNCTION: We are referring, here, to a relationship between the input 
and the output of our Digital Signal Processing system, whatever that may 
be. It is generally expressed as a ratio of the mathematical expression of the 
output sequence, to the expression for the input sequence. 

TRIP POINTS: A threshold at which something occurs. 

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART): This 
device converts bits that are being transferred one at a time, into a set of bits 
that are to be transferred as one packet. It can also convert a packet of bits 
into bits that are to be transferred in serial (See "Serial" and "Parallel 
Transfer"). 

VANTAGE POINTS: Views or Perspectives. 

VAX PDP-ll: Alargemainframecomputer. 

VCA: Voltage controller amplifier. 

VOLTAGE FOLLOWER: Circuitry whose voltage output tracks the voltage input. 
To be more precise, it makes a fine high current buffer because it has high 
input impedance, low output impedance and unity gain. 

WATCHDOG TIMER: These timers are used to protect against faulty computer 
programs, or situations in which an instruction sequence begins to repeat 
itself indefinitely and in a way that is outside the control of the user. This 
countdown timer detects these situations by allowing only a certain number 
of repetitions to occur before timing out and giving control back to the user. 

WEIGHTING: Basically, this is a constant assigned to, say, one frequency item, in 
order to indicate its importance. In general, it is any constant assigned to any 
part of a signal to emphasize or de- emphasize it. 

WINDOWS: A window, in the Digital Signal Processing sense, is a type of aperture 
used to filter a given signal (see "Windowing"). The most famous windows 
are: Rectangular, Hamming, Hanning, Gaussian, and Blackman-Harris. 
When we get to the point where we want to select the right window for our 
filtering purposes, we would begin by exercising our ability to juggle with 
the tradeoffs inherent in each window's characteristics. In general, the 
characteristics which we would attempt to keep aloft in our heads are: (1) the 
width of the central peak, or main lobe; (2) the passband edge location; (3) 



is relative to the main lobe, and how 'quickly' the other sidelobes taper 
off to nothing; and, (4) the amount of area beneath the window function's 
frequency domain description. (Adapted from DSP in VLSI, by Richard 
1. Higgins). 

WINDOWING: Windowing is like taking a photograph. If we are very concerned 
about getting the most complete photograph that we can, we concern 
ourselves with getting the appropriate film for the occasion (color, or 
black and white; high-speed shutter sensitivity; and so on). Then, before 
actually pushing the shutter release button, we would try to get the best 
possible picture of the event given the size of our frame. It is the same 
way with windowing; that is, before we actually start snapping pictures, 
we choose the right film (the window) which will have all the right 
qualities given the kind of picture we are trying to take of the signal; then 
we try to get everything into the picture that we need (choose the width 
of the window properly); and then we start taking pictures. 

Glossary 

G-19 





References 

The Fast Fourier Transform. E. Oran Brigham, Prentice-Hall, 1974. 

Digital Signal Processing In VLSI, R. J. Higgins, Prentice-Hall, 1988. 

TheFourierTransform And Its Awlications. 2nd edition, R. N. Bracewell, McGraw-Hill, 
1978. 

Signals And Systems. Alan V. Oppenheim and Alan S. Willsky with Ian T. Young, 
Prentice-Hall, 1983. 

Digital Signal Processing, A. V. Oppenheim and R. W. Schafer, Prentice-Hall, 1975. 



NOTES 




