N1 Manual

Dirk Heisswolf

January 23, 2019

Revision History

Date

Change

January 23, 2019

Pre-release

CONTENTS CONTENTS

Contents

1 Glossary 5

2 Overview 7

3 Instruction Set 8
3.1 Returnfroma Call (;) 9
3.2 Jump Instructions oo 9
3.3 Call Instructions 9
3.4 Conditional Branches. 9
3.5 Literals e 9
3.6 ALU Instructions e 9
3.7 Stack Instructions 11
3.8 Memory Access Instructions L. 14
3.9 Control Instructions 14

4 ANS Forth Words 15

5 Stacks 16
5.1 Parameter Stack 16
5.2 Return Stack Stack 17

LIST OF FIGURES LIST OF FIGURES

List of Figures

3-1 Imstruction encodingo oo 8
3-2 Transition encoding of stack instructions, 11
5-1 Stack Architecture L oL 16

LIST OF TABLES LIST OF TABLES

List of Tables

3-1 ALUoperations 10
3-2 Common stack operations oL oL 12
3-2 Common stack operations 13
3-2 Common stack operations 14
3-3 Control instructionso 14
4-1 ALU operations oo 15

Glossary

1 Glossary

End of a word definition in Forth.

ALU
Arithmetic Logic Unit.

byte
An 8-bit data entity.

call
A change of the program flow, where a return address is kept on the return
stack.

cell

A data entity within a stack.

conditional branch

A change of the program flow without return option, only if a certain (non-zero)
argument value is given.

Forth

Forth is a extensible stack-based programming language.

intermediate stack
The section of the stack, which serves as a buffer between the lower stack and
the upper stack. See Section 5 “Stacks“.

IST

A bit field in the stack instruction which contols data movement on the interme-
diate parameter stack or return stack. The mnemonic stands for “Iintermediate
Stack Transition”.

jump

A change of the program flow without return option.
literal
A fixed numerical value within the program code.

lower stack
The section of the stack which stored in RAM. See Section 5 “Stacks®.

opcode

Encoding of a machine instruction. Short for “operation code”.

parameter stack

A LIFO storage mainly for keeping call parameters and return values.

Glossary Glossary

RAM

Random access memory.

return stack

A LIFO storage mainly for maintaining return addresses of calls.

stack
A LIFO storage.

upper stack

The section of the stack, which contains the TOS. It supports reordering of its
storage cell. See Section 5 “Stacks“.

UST

A bit field in the stack instruction which contols data movement between two
neighboring cells in the upper parameter stack or return stack. The mnemonic
stands for “Upper Stack Transition”.

word

The term word is used in two different contexts throughout this document.
It refers to either a 16-bit data entity or a callable code sequence in Forth
terminology.

2 OVERVIEW

2 Overview

The N1 is a snall stack machine, inspired by the J1 Forth CPU[1]. Just like its
paragon, the N1 is a 16-bit processor wich implements basic Forth words directly in
hardware. However the N1 parts from the J1’s simplistic design approach in in two
ways:

e The N1 support a larger code space of up to 32KB. Therefore it has its own
instruction set (see Section 3 “Instruction Set*.

e The N1 implements its parameter and return stacks as shallow register stacks,
which overflow into RAM. The overall depth of each stack is determined by the
available RAM. (see Section 5 “Stacks*.

3 INSTRUCTION SET

3 Instruction Set

The intent of the N1’s instruction set is to map most of the essential Forth words to
single cycle instructions. Figure 3-1 illustrates the basic structure of the instructuion
encoding.

4

8 7 6 5 32
[1]1]1 11111111111 1|0,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 111 14-bit absolute word address < 0x3FFF ‘ '(]li";p
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| of1l1 1111111111111 \ (40) @ waan) | Change
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Of FIOW
I 01 14-bit absolute word address < 0x3FFF ‘ ?’an) (R: — addr) Instructions

6 4

8 7 5 3 2
[5]o 1]1 111 11 1 1 1 1 1 1 1]y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.) Conditional branch
I 10 1 ‘ 13-bit relative word address < 0x1FFF ‘ (ﬁzglfl(;nd e
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 .
I 510 0 1 ‘ 12-bit signed integer ‘ (LM'II,&)I‘S Literals
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
J operation
I ;10 0 0 1 1 | Operator ‘ Operand # 0 ‘ (A‘%L ;'; atio
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o ALU operation
I ;0 0 0 1 1 | Operator ‘ 00 0 0 O ‘ (<)
e ALU
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instructions
J rati
I 510 0 01 O | Operator ‘ Operand # 0 ‘ ?,E[, ipxel)m"
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LU operation
I /0 0 01 0 | Operator ‘ 00 0 0O ‘ f{i e x“)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Stack
E]

00 00 1‘ Stack transition pattern ‘Stavk operation

Instructions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -
[5/]o 00001 111 111 1 1 1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 .
[5/o0o000 1 1]t 111111 00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 .
I /0 O 00 0 1 1 ‘ 8-bit word address < 0xFE ‘ Ff’:l;wd 1\1811’101“}/
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ACCQSS
o Byte write .
[5]0 0000 1 0f1 111 1 1 1 1], Instructions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 . .
[5/o00o000 1 1]t 111111 0 Vi
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 . .
I 5;/0 O 00 0O 1 1 ‘ 8-bit word address < 0xFE ‘ F:r,d)wme]

1.5 e = . = - : < 3_ : : : Comtrol instruction CODtrOl
I B ‘ Instruction ‘ (-) .
Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I; 000000 1‘ Reserved ‘Reserved

Figure 3-1: Instruction encoding

3.1 Return from a Call (;) 3 INSTRUCTION SET

3.1 Return from a Call (;)

Rather than providing a dedicated instruction to end the execution of word in Forth
and to return the program flow to its caller, the N1 allows to perform this operation
in parallel to the execution of any of its instructions. Each opcode contains a bit
(bit 15) to indicate, that the current instruction in the last operation in the current
word. If this bit is set, the program flow will resume at the calling word as soon as
the operationis performed.

As shown in Figure 3-1, bit 15 is also used to distinguish jump and call. Consid-
ering that the last call in a word definition can be optimized to a jump to the first
instruction of the called word, bit 15 can ber regarded as termination bit for these
instructions as well.

For a Forth compiler, this means that the semi-colon (;) always translates to
setting bit 15 of the last instruction.

3.2 Jump Instructions

Jump instructions transfer the program flow to any word location within the sup-
ported 64KB program space. Jump instructions consume an absolute destination
address, which can be either placed on the top of the Parameter stack or encoded
into the opcode of the instruction (only for destination addresses < 0x3FFF).

3.3 Call Instructions

Call instructions temporarily transfer the program flow to any word location within
the supported 64KB program space, while pushing a return address onto the return
stack. Call instructions consume an absolute destination address, which can be either
placed on the top of the Parameter stack or encoded into the opcode of the instruction
(only for destination addresses < 0x3FFF).

3.4 Conditional Branches

Conditional branches invoke a change of program flow depending on an argument on
the parameter stack. The branch destination cab be either an absolute address placed
on the the top of the Parameter stack or relative relative address, encoded into the
opcode of the instruction (only for destination addresses < 0x1FFF).

3.5 Literals

Signed integer literals of 12-bit length can be pushed onto the parameter stack within
a single instruction. For larger integers a supplemental TBD call is required.

3.6 ALU Instructions

ALU instructions perform an operation on two cell values, resulting in a new double
cell value. The reult can be either placed entirely onto the parameter stack, or trun-
cated, discarding the most significant cell. The first operand is always taken from the
Parameter stack. The second operand can be either taken from the Parameter stack
or encoded into the opcode of the instruction. In the latter case, the interpretation
of the embedded 5-bit value depends on the operation. It is either regarded as an
unsigned (uimm), a sign extended (simm), or an offsetted (oimm) integer value:

3.6 ALU Instructions

3 INSTRUCTION SET

Table 3-1 lists the supported ALU operations.

wimm = opcode[4:0]

. opcode[4:0],
simm =
opcode[4:0] — 32,

oimm = opcode[4:0] — 16

if opcode[4:0] < 16
if opcode[4:0] > 16

Table 3-1: ALU operations

Encoding Operation (x1-d) (x1x2—-d)
00000 Sum x1 4+ uimm x1 + x2
00001 Sum otmm + x1 x2 + x1
00010 Difference x1 — uimm x1 — x2
00011 Difference oimm — x1 x2 — x1
00100 Unsigned lower-than comparison x1 < uimm? x1 < x27
00101 Signed greater-than comparison otmm < x17 x2 < x17
00110 Unsigned greater-than comparison x1 > uimm? x1 > x27
00111 Signed lower-than comparison oimm > x17 x2 > x17
01000 Equals comparison x1 = uimm? x1 = x27
01001 Equals comparison oimm = x17? x2 = x17
01010 Not-equals comparison x1 # wimm? x1 # x27
01011 Not-equals comparison oimm # x17 x2 # x17
01100 Unsigned product x1 * uimm x1 * x2
01101 Unsigned product x1 * simm x1 * x2
01110 Signed product x1 * uimm x1 * x2
01111 Signed product x1 * simm x1 * x2
10000 Logic AND x1 A simm x1 A x2
10001 Logic OR x1 V uimm x1 V x2
10010 Logic XOR x1 & simm x1 @ x2
10011 Reserved
10100 Logic right shift x1 > uimm x2 > x1
10101 Logic left shift x1l < uimm x2 < x1
10110 Arithmetic right shift x1 > wimm x2 > x1
10111 Reserved
11000 Set upper bits of an immediate value | simm, x1[11:0] | simm, x2[11:0]
11001 Reserved
11010 Reserved
11011 Reserved
11100 Current interrupt vector vector address
11100 Current error code throw code
11100 Parameter stack status IPS:UPS
11100 Return stack status IPS:UPS

10

3.7 Stack Instructions 3 INSTRUCTION SET

3.7 Stack Instructions

The N1’s stack instruction aims at efficiently implementing the essential stack opera-
tions in Forth only using the data pathes which needed for the stack’s push and pull
operations.

The opcode of the stack instruction contains a 10-bit wide field to specify a tran-
sition pattern of the upper cells of the parameter stack and the return stack. The
structure transition patter is shown in Figure 3-2.

IST UsT
0: 00: —H—
1: T) 01: —
— 10: ¢—
11: —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
510 O O O 1 IsST| UST UST UST UST |IST

Stack Instruction E

LEEEE T EEE

> TOS TOS

Parameter stack Return stack

Figure 3-2: Transition encoding of stack instructions

The stack instruction contains four UST fields which control the data transfer
within the upper four cells of the parameter stack and the top of the return stack.
Each UST field determines the direction of data transfer between two neighboring
stack cells. Four options are selectable:

e No data transfer
e Data transfer upwards (or towards the return stack)
e Data transfer downwards (or towards the parameter stack)

e Data exchange between two stack cells

It is possible to put the UST fields into a combination which would trigger a data
transfer of two source cells to a single desination cell. In these cases, the resulting
data in the desination cell is undefined.

The two remaining IST fields in the stack instruction control the data movement
of the lower stacks. Two options are selectable:

e No data transfer

e Data shift throughout the entire intermediate stack. The direction is determined
by the data movement of the lowest cell of the upper stack.

Table 3-2 shows how stack operations in Forth are mapped N1 instructions.

11

3.7 Stack Instructions

3 INSTRUCTION SET

Table 3-2: Common stack operations

Word Description Transitions Opcode
DROP (x—) :l—ﬁ —> = —¥ ros | [ros | |: 0x06A8
DUP (x—xx) - — — e ros] [ros] [| 0x0750
SWAP (x1x2-x2x1) T L] [Jeafros] [mos] [| oxo4a18
OVER (x1x2-x1x2x1) = e e efros| [mes| [| o0x0758
NIP (x1x2-x2) :l—ﬂ = = | [ros| [mos] |: 0x06A0

0S oS

TUCK 5ol 580 — 525 5 58 | o o e je{ros] [mos] [| oxo7s50

] L1 [Jef] [ros] [wos] [| 0x0460
0s 0s
ROT (x1x2x3-x2x3x1) 1 || ha | [zos] [mos] [0x0460
] L] [] [JeAros] [mos] [| 0x0418
P LT L] [efros] [mos] [| oxoa18

-ROT (x1 x2x3—x3x1x2) = |] o |] [5] 00460
RDROP (Rix—) 1] | | | | | [Tos| [mosk<d | o0x0001
I (R x—xx) L L[] [roskefros A | oxo007

o 0 Y Y 7 £ 1000

SR ((RX:}z) P —> = 3 Tos — Tos = 0x06AB

RO (fg;; x)X) T e o ros k—fmos] [| o0x0754

R> ((Ri)}:,)) :|H — — = Tos j¢— Tos k—[0x0755
0S oS

oDROP (sl =] P P B Pmes] [wes| [| oxoens

L B] [me] [| Owosks
0S oS

oDUP (x1x2 - x1x2x1x2) e e Jewos] [mos| [| oxo7ss

el e Jer] [me] [| 0worSs
) L] e] [mos] [mos] [| 4y0460
2SWAP (x1 x2 x3 x4 — x4 x3 x1 x2)]) | | e ros| [ros] [| 0x0598
0x0460
I L 1 L Jef] [ros] [mos] [| ™
JeL e L) el O,
0S oS
20VER (x1 x2x3 x4 —x1 x2 x3 x4 x1 x2) y a o | [ros] [aos] L | oxosso
el el 1 [Jems] [mes] [| Owores
0x0460
L et] [ros] [wos] [
0S 0S
- sl 580 58— 5| P P P] [wos] [mos] [| oxo6a0
L B] (] [mes] [| Owosko

12

...continued

3.7 Stack Instructions

3 INSTRUCTION SET

Table 3-2: Common stack operations

Word Description Transitions Opcode
R T
i T o s
2TUCK (x1 x2 x3 x4 —x3 x4 x1 x2x3 x4) :| ‘ ‘ ‘ ‘ ‘ H — ‘ ‘ — ‘ |: 0x0418
S) e] [res] [wos] [| 0x0460
T e e e e e | g
e T
PL L L Pl
el][] [res] [wos] [| oxo6aB
T B P e tos = 1os | 0x0580
0x06AB
T C el] [el] | 2%
2ROT | (x1 x2 x3 x4 x5 x6 — x3 x4 x5 x6 x1 x2) | k=~ — — 4~ Tos ¢— 1os = | 0x0755
0x0598
i i R i s
o o o A rosk—mos o | oxos598
] L el] [Jefros] [mos] [| 0x0460
)] el] [ros] [wos] [
P et] [ros] [mos] [
L el [efres] [mes] [] ox0a60
" P o vos o wos b | 0x0598
0x06AB
T el] [el [| 20
-2ROT | (x1 x2x3 x4 x5 x6 —x5x6x1x2x3x4) | = = = Tos —{ 1os | 0x06AB
0x0598
i R el s
o e o e ros ks | oxo018
]) [[jefwos] [mos] [T | 0%0755
e e e e {mm
3 L]]] [ros] [moskH " | oxooo01
2RDROP (Rixl1x2-) 020001
L]] [] [ros] [mosjef— | Ox
T e |,
H TOS TOS
2RDUP (R:x1x2-x1x1x1x2) = - - = | ox0757
T 0 o o{mes o | 0xo6B
AB
TR s e |
P (x1x2-) P 3 ! = ros = 1os { | 0x0000
(R: - x1x2) o o tos Fmes | 0x0000

13

...continued

3.9 Control Instructions

3 INSTRUCTION SET

Table 3-2: Common stack operations

Word Description Transitions Opcode
- (—x1x2) e o e ros s | oxo000
(RexIx2-x1x2) A — — e~ ros = ros 9 0x0000

. (-x1x2) _ — — 4 ros f—{tos ={ | 0x0000
(R:x1x2—) " W e e ros k—{mos ko | 0x0000

3.8 Memory Access Instructions

Memory access instruction perform read or write acesses to the system’s 64-Kbyte
address space. Data can be accessed in word or byte entities. Misaligned word
accesses are not supported. Word accesses to a 510-Kbyte subset of the address
space can be done through an immediate addressing. This will offer faster access to
frequently used system variables.

3.9 Control Instructions

The N1 implements of set of instrictions to controls some of its internal components.
None of these instructions consume input arguments from the parameter stack, nor do
they produce a return value. The encoding of these instructions is shown in Table 3-3.
Multiple control instructions can be combined to one.

Table 3-3: Control instructions

Encoding Instruction
xxxxxx11 Enable interrupts
xxxxx%x10 Disable interrupts
xxxxxlxx | Reset parameter stack
XXXX1XXX Reset return stack

14

4 ANS FORTH WORDS

4 ANS Forth Words

Table 4-1 provides a list of standard ANS Forth words (see [?]) which directly map
to hardware instructions of the N1 processor.

Table 4-1: ALU operations

Word Stack Description Opcode
! (x a-addr —) Store cell 0000
* (nljul n2u2 — n3u3) Multiply two cells 0000
+ (nljul n2u2 — n3ju3) Add two cells 0000
- (nljul n2u2 — n3|u3d) | Subtract a cell from another. 0000

15

5 STACKS

5 Stacks

The N1 operates with two stacks: the parameter stack to perform data transactions
and the return stack to manage the program flow. As illustrated in Figure 5-1, each of
these stacks consists of three hardware components: the upper stack, the intermediate
stack, and the lower stack.

Parameter Stack Return Stack
-~
] TOS
n
)
& TOS
)
)
=
Q N <
&
n
[«D]
=
5
£
E RAM RAM
= —) Controller — Controller

I I
RAM RAM

Lower Stack

Figure 5-1: Stack Architecture

5.1 Parameter Stack

The upper stack of the parameter stack contains is four cells deep and contains the
most recent data entries. It’s purpose is to perform stack and ALU operations (see
Section 3.7 “Stack Instructions® and Section 3.6 “ALU Instructions“). When the ca-
pacity of the upper stack is exceeded, older data entries are transferred to the inter-
mediate stack.

The intermediate stack serves as a buffer between the upper stack and the lower
stack which resides in RAM. The purpose of the intermediate stack is to minimize
RAM traffic to and from the lower stack. Push operation to the intermediate stack are
only propagated to the lower stack, when the buffer capacity is exceeded. Pull oper-
ations are onle propagated, when the intermediate stack is empty. Stack fluctuations
within the buffer capacity are not visible to the lower stack.

The lower stack is a region of the RAM, which is managed by the memory con-
troller of the intermediate stack.

16

5.2 Return Stack Stack 5 STACKS

5.2 Return Stack Stack

The upper stack of the parameter stack has the capacity of one cell. The intermediate
stack and lower stack are similar to the ones of the parameter stack.

17

REFERENCES REFERENCES

References

[1] Menlo Park James Bowman, Willow Garage. J1: a small forth cpu core for fpgas.
http://www.excamera.com/files/j1.pdf, 2010.

18

http://www.excamera.com/files/j1.pdf

	Glossary
	Overview
	Instruction Set
	Return from a Call (;)
	Jump Instructions
	Call Instructions
	Conditional Branches
	Literals
	ALU Instructions
	Stack Instructions
	Memory Access Instructions
	Control Instructions

	ANS Forth Words
	Stacks
	Parameter Stack
	Return Stack Stack

